May 5, 2004

1 Revised: May 2004

2 **Prograf**[®]

3 *tacrolimus capsules*

4 tacrolimus injection (for intravenous infusion only)
5

6 WARNING
7 Increased susceptibility to infection and the possible development of lymphoma may
8 result from immunosuppression. Only physicians experienced in immunosuppressive
9 therapy and management of organ transplant patients should prescribe Prograf. Patients
10 receiving the drug should be managed in facilities equipped and staffed with adequate
11 laboratory and supportive medical resources. The physician responsible for maintenance
12 therapy should have complete information requisite for the follow-up of the patient.

13

14 **DESCRIPTION:**

Prograf is available for oral administration as capsules (tacrolimus capsules) containing the equivalent of 0.5 mg, 1 mg or 5 mg of anhydrous tacrolimus. Inactive ingredients include lactose, hydroxypropyl methylcellulose, croscarmellose sodium, and magnesium stearate. The 0.5 mg capsule shell contains gelatin, titanium dioxide and ferric oxide, the 1 mg capsule shell contains gelatin and titanium dioxide, and the 5 mg capsule shell

20 contains gelatin, titanium dioxide and ferric oxide.

21 Prograf is also available as a sterile solution (tacrolimus injection) containing the 22 equivalent of 5 mg anhydrous tacrolimus in 1 mL for administration by intravenous

infusion only. Each mL contains polyoxyl 60 hydrogenated castor oil (HCO-60), 200

 $m_{\rm rescaled}$ mg, and dehydrated alcohol, USP, 80.0% v/v. Prograf injection must be diluted with

25 0.9% Sodium Chloride Injection or 5% Dextrose Injection before use.

26 Tacrolimus, previously known as FK506, is the active ingredient in Prograf.

27 Tacrolimus is a macrolide immunosuppressant produced by *Streptomyces tsukubaensis*.

28 Chemically, tacrolimus is designated as $[3S-[3R^*[E(1S^*,3S^*,4S^*)]],$

29 4*S**,5*R**,8*S**,9*E*,12*R**,14*R**,15*S**,16*R**,18*S**,19*S**,26a*R**]]-

30 5,6,8,11,12,13,14,15,16,17,18,19,24,25,26,26a-hexadecahydro-5,19-dihydroxy-3-[2-(4-

31 hydroxy-3-methoxycyclohexyl)-1-methylethenyl]-14,16-dimethoxy-4,10,12,18-

32 tetramethyl-8-(2-propenyl)-15,19-epoxy-3H-pyrido[2,1-c][1,4] oxaazacyclotricosine-

33 1,7,20,21(4H,23H)-tetrone, monohydrate.

CH

нс

осн

May 5, 2004

35	The chemical	structure	of tacro	limus	is:

36 37

38 39

40

41

42

43

44

45 46

40

48

49 Tacrolimus has an empirical formula of $C_{44}H_{69}NO_{12}$ H_2O and a formula weight of

50 822.03. Tacroliums appears as white crystals or crystalline powder. It is practically

insoluble in water, freely soluble in ethanol, and very soluble in methanol andchloroform.

H₃CC

53

54 CLINICAL PHARMACOLOGY:

55 Mechanism of Action

56 Tacrolimus prolongs the survival of the host and transplanted graft in animal transplant 57 models of liver, kidney, heart, bone marrow, small bowel and pancreas, lung and trachea,

58 skin, cornea, and limb.

In animals, tacrolimus has been demonstated to suppress some humoral immunity and, to a greater extent, cell-mediated reactions such as allograft rejection, delayed type hypersensitivity, collagen-induced arthritis, experimental allergic encephalomyelitits, and graft versus host disease.

63 Tacrolimus inhibits T-lymphocyte activation, although the exact mechanism of 64 action is not known. Experimental evidence suggests that tacrolimus binds to an 65 intracellular protein EKPP 12 A complex of tacrolimus EKPP 12 coloium

65 intracellular protein, FKBP-12. A complex of tacrolimus-FKBP-12, calcium,

66 calmodulin, and calcineurin is then formed and the phosphatase activity of calcineurin

67 inhibited. This effect may prevent the dephosphorylation and translocation of nuclear

68 factor of activated T-cells (NF-AT), a nuclear component thought to initiate gene

69 transcription for the formation of lymphokines (such as interleukin-2, gamma interferon).

70 The net result is the inhibition of T-lymphocyte activation (i.e., immunosuppression).

71

72 *Pharmacokinetics*

Tacrolimus activity is primarily due to the parent drug. The pharmacokinetic parameters
(mean±S.D.) of tacrolimus have been determined following intravenous (IV) and oral
(PO) administration in healthy volunteers, and in kidney transplant and liver transplant

- 76 patients. (See table below.)
- 77

78

May 5, 2004

Population	N Route		Parameters					
- op united		(Dose)	C _{max} (ng/mL)	T _{max} (hr)	AUC (ng•hr/mL)	t _{1/2} (hr)	CI (L/hr/kg)	V (L/kg)
Healthy Volunteers	8	IV (0.025 mg/kg/4hr)			598* ± 125	34.2 ± 7.7	0.040 ± 0.009	1.91 ± 0.31
	16	PO (5 mg)	29.7 ± 7.2	1.6 ± 0.7	243** ± 73	34.8 ±11.4	0.041† ± 0.008	1.94† ± 0.53
Kidney Transplant Pts	26	IV (0.02 mg/kg/12 hr)			294*** ± 262	18.8 ± 16.7	$\begin{array}{c} 0.083 \\ \pm \ 0.050 \end{array}$	1.41 ± 0.66
		PO (0.2 mg/kg/day)	19.2 ± 10.3	3.0	203*** ± 42	#	#	#
		PO (0.3 mg/kg/day)	24.2 ± 15.8	1.5	288*** ± 93	#	#	#
Liver Transplant Pts	17	IV (0.05 mg/kg/12 hr)			3300*** ± 2130	11.7 ± 3.9	0.053 ± 0.017	$\begin{array}{c} 0.85 \\ \pm \ 0.30 \end{array}$
		PO (0.3 mg/kg/day)	68.5 ± 30.0	2.3 ± 1.5	519*** ±179	#	#	#

81 82 83 84 Corrected for individual bioavailability

*AUC₀₋₁₂₀

**AUC₀₋₇₂

***AUC_{0-inf}

85 86 -- not applicable

not available

87

88 Due to intersubject variability in tacrolimus pharmacokinetics, individualization of 89 dosing regimen is necessary for optimal therapy. (See DOSAGE AND

90 ADMINISTRATION). Pharmacokinetic data indicate that whole blood concentrations

91 rather than plasma concentrations serve as the more appropriate sampling compartment to

- 92 describe tacrolimus pharmacokinetics.
- 93
- 94 Absorption

Absorption of tacrolimus from the gastrointestinal tract after oral administration is 95

96 incomplete and variable. The absolute bioavailablility of tacrolimus was 17±10% in

97 adult kidney transplant patients (N=26), 22±6% in adult liver transplant patients (N=17),

98 and $18\pm5\%$ in healthy volunteers (N=16).

99 A single dose study conducted in 32 healthy volunteers established the

100 bioequivalence of the 1 mg and 5 mg capsules. Another single dose study in 32 healthy

volunteers established the bioequivalence of the 0.5 mg and 1 mg capsules. Tacroliums 101

102 maximum blood concentration (C_{max}) and area under the curve (AUC) appeared to

May 5, 2004

103	increase in a dose-proportional fashion in 18 fasted healthy volunteers receiving a single
104	oral dose of 3, 7, and 10 mg.
105	In 18 kidney transplant patients, tacrolimus trough concentrations from 3 to 30
106	ng/mL measured at 10-12 hours post-dose (C _{min}) correlated well with the AUC
107	(correlation coefficient 0.93). In 24 liver transplant patients over a concentration range of
108	10 to 60 ng/mL, the correlation coefficient was 0.94.
109	<i>Food Effects:</i> The rate and extent of tacrolimus absorption were greatest under
110	fasted conditions. The presence and composition of food decreased both the rate and
111	extent of tacrolimus absorption when administered to 15 healthy volunteers.
112	The effect was most pronounced with a high-fat meal (848 kcal, 46% fat): mean
113	AUC and C _{max} were decreased 37% and 77%, respectively; T _{max} was lengthened 5-fold.
114	A high-carbohydrate meal (668 kcal, 85% carbohydrate) decreased mean AUC and mean
115	C _{max} by 28% and 65%, respectively.
116	In healthy volunteers (N=16), the time of the meal also affected tacrolimus
117	bioavailability. When given immediately following the meal, mean C _{max} was reduced
118	71%, and mean AUC was reduced 39%, relative to the fasted condition. When
119	administered 1.5 hours following the meal, mean C _{max} was reduced 63%, and mean AUC
120	was reduced 39%, relative to the fasted condition.
121	In 11 liver transplant patients, Prograf administered 15 minutes after a high fat
122	(400 kcal, 34% fat) breakfast, resulted in decreased AUC ($27\pm18\%$) and C _{max} ($50\pm19\%$),
123	as compared to a fasted state.
124	
125	Distribution
126	The plasma protein binding of tacrolimus is approximately 99% and is independent of
127	concentration over a range of 5-50 ng/mL. Tacrolimus is bound mainly to albumin and
128	alpha-1-acid glycoprotein, and has a high level of association with erythrocytes. The
129	distribution of tacrolimus between whole blood and plasma depends on several factors,
130	such as hematocrit, temperature at the time of plasma separation, drug concentration, and
131	plasma protein concentration. In a U.S. study, the ratio of whole blood concentration to
132	plasma concentration averaged 35 (range 12 to 67).
133	
134	Metabolism
135	Tacrolimus is extensively metabolized by the mixed-function oxidase system, primarily
136	the cytochrome P-450 system (CYP3A). A metabolic pathway leading to the formation

- 137 of 8 possible metabolites has been proposed. Demethylation and hydroxylation were
- 138 identified as the primary mechanisms of biotransformation in vitro. The major
- 139 metabolite identified in incubations with human liver microsomes is 13-demethyl
- 140 tacrolimus. In in vitro studies, a 31-demethyl metabolite has been reported to have the
- 141 same activity as tacrolimus.
- 142

143 <u>Excretion</u>

- 144 The mean clearance following IV administration of tacrolimus is 0.040, 0.083 and 0.053
- 145 L/hr/kg in healthy volunteers, adult kidney transplant patients and adult liver transplant
- 146 patients, respectively. In man, less than 1% of the dose administered is excreted
- 147 unchanged in urine.

May 5, 2004

148	In a mass balance study of IV administered radiolabeled tacrolimus to 6 healthy
149	volunteers, the mean recovery of radiolabel was $77.8\pm12.7\%$. Fecal elimination
150	accounted for $92.4\pm1.0\%$ and the elimination half-life based on radioactivity was
151	48.1 ± 15.9 hours whereas it was 43.5 ± 11.6 hours based on tacrolimus concentrations.
152	The mean clearance of radiolabel was 0.029±0.015 L/hr/kg and clearance of tacrolimus
153	was 0.029±0.009 L/hr/kg. When administered PO, the mean recovery of the radiolabel
154	was 94.9±30.7%. Fecal elimination accounted for 92.6±30.7%, urinary elimination
155	accounted for 2.3±1.1% and the elimination half-life based on radioactivity was
156	31.9 ± 10.5 hours whereas it was 48.4 ± 12.3 hours based on tacrolimus concentrations.
157	The mean clearance of radiolabel was 0.226 ± 0.116 L/hr/kg and clearance of tacrolimus
158	0.172±0.088 L/hr/kg.
159	
160	Special Populations
161	Pediatric
162	Pharmacokinetics of tacrolimus have been studied in liver transplantation patients, 0.7 to
163	13.2 years of age. Following IV administration of a 0.037 mg/kg/day dose to 12 pediatric
164	patients, mean terminal half-life, volume of distribution and clearance were 11.5±3.8
165	hours, 2.6±2.1 L/kg and 0.138±0.0/1 L/hr/kg, respectively. Following oral
166	administration to 9 patients, mean AUC and C_{max} were $33^{2}\pm16^{7}$ ng·hr/mL and $43.4\pm2^{7}.9$
167	ng/mL, respectively. The absolute bioavailability was $31\pm21\%$.
168	Whole blood trough concentrations from 31 patients less than 12 years old
169	showed that pediatric patients needed higher doses than adults to achieve similar
1/0	tacrolimus trough concentrations. (See DOSAGE AND ADMINISTRATION).
1/1	Renal and Henatic Insufficiency
172	The mean pharmacokinetic parameters for tacrolimus following single administrations to
174	nations with renal and henatic impairment are given in the following table
175	putients with fenal and neputie imputitient are given in the following able.
176	
177	
178	
179	
180	
181	
182	
183	
184	
185	
186	
187	
188	
189	
190	
191	
192	

May 5, 2004

	Dose	AUC _{0-t}	t _{1/2} (hr)	V (L/kg)	CI (L/hr/kg)
Renal	0.02	393±123	(111)	(L/Kg)	
Impairment	mg/kg/4hr	(t=60 hr)	26.3 ±9.2	1.07±0.20	0.038±0.01
(n=12)	IV				
Mild Hepatic	0.02	367 ± 107	60.6±43.8 Panga: 27.8 141	3.1±1.6	0.042±0.02
(n=6)	ING/KG/4III IV	(1-12 m)	Kange. $2/.6 - 141$		
(•)					
	7.7 mg	488±320	66.1±44.8	3.7±4.7*	0.034±0.01
Savara	PO	(t=72 hr) 762+204	Range: 29.5 – 138		
Hepatic	IV (n=2)	(t=120 hr)			
Impairment		(,	198±158		
(n=6, IV)	0.01 mg/kg/8hr	289±117	Range:81-436	3.9±1.0	0.017±0.01
	IV (n=4)	(t=144 hr)			
(n=5, PO)†	8 mg PO	658			
	(n=1)	(t=120 hr)	119±35		
	5 mg BO	522+156	Range: 85-178	3.1±3.4*	0.016±0.01
	(n=4)	(t=144 hr)			
	4 mg PO	(, ,			
12.0 ± 2.4 mg/dL	, respectively) pr ined were similar	ior to their k	kidney transplant	. The pharm	nacokinet
The mean cl	earance of tacrol	imus in pati	ents with renal dy	sfunction v	was simila
The mean cl to that in norma <u>Hepatic Insuffic</u> Tacrolimus phan dysfunction (me The mean cleara substantially dif Tacrolimus phan dysfunction (me	earance of tacrol l volunteers (see <u>eiency:</u> rmacokinetics have an Pugh score: 6 ance of tacrolimu ferent from that i rmacokinetics we	imus in patie previous tab ve been dete .2) followin s in patients n normal vo re studied in 10) The m	ents with renal dy ble). ermined in six pate g single IV and o with mild hepati function (see pre- n 6 patients with sean clearance wa	vsfunction v cients with r ral adminis c dysfuncti vious table) severe hepa	was simila mild hepat strations. on was no). itic
The mean cl to that in norma <u>Hepatic Insuffic</u> Tacrolimus phar dysfunction (me The mean cleara substantially dif Tacrolimus phar dysfunction (me patients with sev <u>Race</u>	learance of tacrol l volunteers (see <u>siency:</u> rmacokinetics have an Pugh score: 6 ance of tacrolimu ferent from that i rmacokinetics we an Pugh score: > vere hepatic dysfi	imus in patie previous tab (2) followin s in patients n normal vo re studied in 10). The m unction, irre	ents with renal dy ble). ermined in six pat g single IV and o with mild hepati blunteers (see pre n 6 patients with ean clearance wa spective of the ro	vsfunction v tients with n ral adminis c dysfuncti vious table) severe hepa s substantia oute of adm	was simila mild hepa strations. on was no). ttic ally lower inistratior

Black and Caucasian kidney transplant patients indicated that Black patients required
 higher tacrolimus doses to attain similar trough concentrations. (See DOSAGE AND

- **ADMINISTRATION.**)

May 5, 2004

223 <u>Gender</u>

229

A formal study to evaluate the effect of gender on tacrolimus pharmacokinetics has not been conducted, however, there was no difference in dosing by gender in the kidney transplant trial. A retrospective comparison of pharmacokinetics in healthy volunteers, and in kidney and liver transplant patients indicated no gender-based differences.

230 Clinical Studies

231 *Liver Transplantation*

The safety and efficacy of Prograf-based immunosuppression following orthotopic 232 233 liver transplantation were assessed in two prospective, randomized, non-blinded 234 multicenter studies. The active control groups were treated with a cyclosporine-based 235 immunosuppressive regimen. Both studies used concomitant adrenal corticosteroids 236 as part of the immunosuppressive regimens. These studies were designed to evaluate 237 whether the two regimens were therapeutically equivalent, with patient and graft 238 survival at 12 months following transplantation as the primary endpoints. The 239 Prograf-based immunosuppressive regimen was found to be equivalent to the 240 cyclosporine-based immunosuppressive regimens.

241In one trial, 529 patients were enrolled at 12 clinical sites in the United States;242prior to surgery, 263 were randomized to the Prograf-based immunosuppressive243regimen and 266 to a cyclosporine-based immunosuppressive regimen (CBIR). In 10244of the 12 sites, the same CBIR protocol was used, while 2 sites used different control245protocols. This trial excluded patients with renal dysfunction, fulminant hepatic246failure with Stage IV encephalopathy, and cancers; pediatric patients (≤ 12 years old)247were allowed.

In the second trial, 545 patients were enrolled at 8 clinical sites in Europe; prior to surgery, 270 were randomized to the Prograf-based immunosuppressive regimen and 250 275 to CBIR. In this study, each center used its local standard CBIR protocol in the active-control arm. This trial excluded pediatric patients, but did allow enrollment of subjects with renal dysfunction, fulminant hepatic failure in Stage IV encephopathy, and cancers other than primary hepatic with metastases.

One-year patient survival and graft survival in the Prograf-based treatment groups
were equivalent to those in the CBIR treatment groups in both studies. The overall
one-year patient survival (CBIR and Prograf-based treatment groups combined) was
88% in the U.S. study and 78% in the European study.

The overall one-year graft survival (CBIR and Prograf-based treatment groups combined) was 81% in the U.S. study and 73% in the European study. In both studies, the median time to convert from IV to oral Prograf dosing was 2 days.

Because of the nature of the study design, comparisons of differences in
 secondary endpoints, such as incidence of acute rejection, refractory rejection or use
 of OKT3 for steroid-resistant rejection, could not be reliably made.

265 *Kidney Transplantation*

264

Prograf-based immunosuppression following kidney transplantation was assessed in a
 Phase III randomized, multicenter, non-blinded, prospective study. There were 412

kidney transplant patients enrolled at 19 clinical sites in the United States. Study

May 5, 2004

- 269therapy was initiated when renal function was stable as indicated by a serum270creatinine $\leq 4 \text{ mg/dL}$ (median of 4 days after transplantation, range 1 to 14 days).271Patients less than 6 years of age were excluded.
- There were 205 patients randomized to Prograf-based immunosuppression and 273 207 patients were randomized to cyclosporine-based immunosuppression. All 274 patients received prophylactic induction therapy consisting of an antilymphocyte 275 antibody preparation, corticosteroids and azathioprine.
- Overall one year patient and graft survival was 96.1% and 89.6%, respectively and was equivalent between treatment arms.
- Because of the nature of the study design, comparisons of differences in
 secondary endpoints, such as incidence of acute rejection, refractory rejection or use
 of OKT3 for steroid-resistant rejection, could not be reliably made.
- 282 INDICATIONS AND USAGE:
- Prograf is indicated for the prophylaxis of organ rejection in patients receiving
 allogeneic liver or kidney transplants. It is recommended that Prograf be used
 concomitantly with adrenal corticosteroids. Because of the risk of anaphylaxis,
 Prograf injection should be reserved for patients unable to take Prograf capsules
 orally.
- 288

281

289 **CONTRAINDICATIONS:**

- Prograf is contraindicated in patients with a hypersensitivity to tacrolimus. Prograf
 injection is contraindicated in patients with a hypersensitivity to HCO-60 (polyoxyl
 60 hydrogenated castor oil).
- 293

294 WARNINGS:

- 295 (See boxed WARNING.)
- Insulin-dependent post-transplant diabetes mellitus (PTDM) was reported in 20% of
 Prograf-treated kidney transplant patients without pretransplant history of diabetes
 mellitus in the Phase III study (See Tables Below). The median time to onset of
 PTDM was 68 days. Insulin dependence was reversible in 15% of these PTDM
 patients at one year and in 50% at two years post transplant. Black and Hispanic
 kidney transplant patients were at an increased risk of development of PTDM.
- 302
- 303 304

Incidence of Post Transplant Diabetes Mellitus and Insulin Use at 2 Years in Kidney Transplant Recipients in the Phase III Study

Status of PTDM*	Prograf	CBIR
Patients without pretransplant history of diabetes mellitus.	151	151
New onset PTDM*, 1 st Year	30/151 (20%)	6/151 (4%)
Still insulin dependent at one year in those without prior history of diabetes.	25/151 (17%)	5/151 (3%)
New onset PTDM* post 1 year	1	0
Patients with PTDM* at 2 years	16/151 (11%)	5/151 (3%)

305 306 * use of insulin for 30 or more consecutive days, with < 5 day gap, without a prior history of insulin dependent diabetes mellitus or non insulin dependent diabetes mellitus.

May 5, 2004

307 308

309

310

Development of Post Transplant Diabetes Mellitus by Race and by Treatment Group during First Year Post Kidney Transplantation in the Phase III Study

Detiont		Prograf	UBIR		
Race	No. of Patients at Risk	Patients Who Developed PTDM*	No. of Patients At Risk	Patients Who Developed PTDM*	
Black	41	15 (37%)	36	3 (8%)	
Hispanic	17	5 (29%)	18	1 (6%)	
Caucasian	82	10 (12%)	87	1 (1%)	
Other	11	0 (0%)	10	1 (10%)	
Total	151	30 (20%)	151	6 (4%)	

*use of insulin for 30 or more consecutive days, with < 5 day gap, without a prior history of insulin dependent diabetes mellitus or non insulin dependent diabetes mellitus.

314 Insulin-dependent post-transplant diabetes mellitus was reported in 18% and 11% of Prograf-treated liver transplant patients and was reversible in 45% and 315 316 31% of these patients at one year post transplant, in the U.S. and European 317 randomized studies, respectively (See Table below). Hyperglycemia was 318 associated with the use of Prograf in 47% and 33% of liver transplant recipients in the 319 U.S. and European randomized studies, respectively, and may require treatment (see 320 **ADVERSE REACTIONS).**

- 321
- 322 323

Incidence of Post Transplant Diabetes Mellitus and Insulin Use at One Year in Liver Transplant Recipients

Status of PTDM*	US	Study	European Study		
	Prograf	CBIR	Prograf	CBIR	
Patients at risk**	239	236	239	249	
New Onset PTDM*	42 (18%)	30 (13%)	26 (11%)	12 (5%)	
Patients still on insulin at 1 year	23 (10%)	19 (8%)	18 (8%)	6 (2%)	

* use of insulin for 30 or more consecutive days, with < 5 day gap, without a prior history of insulin

324

- 325 326
- 327

328 Prograf can cause neurotoxicity and nephrotoxicity, particularly when used in high 329 doses. Nephrotoxicity was reported in approximately 52% of kidney transplantation 330 patients and in 40% and 36% of liver transplantation patients receiving Prograf in the U.S. and European randomized trials, respectively (see ADVERSE REACTIONS). 331 More overt nephrotoxicity is seen early after transplantation, characterized by 332 333 increasing serum creatinine and a decrease in urine output. Patients with impaired 334 renal function should be monitored closely as the dosage of Prograf may need to be 335 reduced. In patients with persistent elevations of serum creatinine who are

dependent diabetes mellitus or non insulin dependent diabetes mellitus.

**Patients without pretransplant history of diabetes mellitus.

336 unresponsive to dosage adjustments, consideration should be given to changing to 337 another immunosuppressive therapy. Care should be taken in using tacrolimus with

May 5, 2004

other nephrotoxic drugs. In particular, to avoid excess nephrotoxicity, Prograf
 should not be used simultaneously with cyclosporine. Prograf or cyclosporine
 should be discontinued at least 24 hours prior to initiating the other. In the
 presence of elevated Prograf or cyclosporine concentrations, dosing with the
 other drug usually should be further delayed.

Mild to severe hyperkalemia was reported in 31% of kidney transplant recipients and in 45% and 13% of liver transplant recipients treated with Prograf in the U.S. and European randomized trials, respectively, and may require treatment (see ADVERSE **REACTIONS**). Serum potassium levels should be monitored and potassiumsparing diuretics should not be used during Prograf therapy (see PRECAUTIONS).

349 Neurotoxicity, including tremor, headache, and other changes in motor function, 350 mental status, and sensory function were reported in approximately 55% of liver transplant recipients in the two randomized studies. Tremor occurred more often in 351 352 Prograf-treated kidney transplant patients (54%) compared to cyclosporine-treated patients. The incidence of other neurological events in kidney transplant patients was 353 354 similar in the two treatment groups (see ADVERSE REACTIONS). Tremor and headache have been associated with high whole-blood concentrations of tacrolimus 355 and may respond to dosage adjustment. Seizures have occurred in adult and pediatric 356 patients receiving Prograf (see ADVERSE REACTIONS). Coma and delirium also 357 358 have been associated with high plasma concentrations of tacrolimus. As in patients 359 receiving other immunosuppressants, patients receiving Prograf are at increased risk 360 of developing lymphomas and other malignancies, particularly of the skin. The risk appears to be related to the intensity and duration of immunosuppression rather than 361 to the use of any specific agent. A lymphoproliferative disorder (LPD) related to 362 Epstein-Barr Virus (EBV) infection has been reported in immunosuppressed organ 363 transplant recipients. The risk of LPD appears greatest in young children who are at 364 365 risk for primary EBV infection while immunosuppressed or who are switched to Prograf following long-term immunosuppression therapy. Because of the danger of 366 oversuppression of the immune system which can increase susceptibility to infection, 367 368 combination immunosuppressant therapy should be used with caution.

A few patients receiving Prograf injection have experienced anaphylactic reactions. Although the exact cause of these reactions is not known, other drugs with castor oil derivatives in the formulation have been associated with anaphylaxis in a small percentage of patients. Because of this potential risk of anaphylaxis, Prograf injection should be reserved for patients who are unable to take Prograf capsules.

Patients receiving Prograf injection should be under continuous observation
for at least the first 30 minutes following the start of the infusion and at frequent
intervals thereafter. If signs or symptoms of anaphylaxis occur, the infusion
should be stopped. An aqueous solution of epinephrine should be available at
the bedside as well as a source of oxygen.

- 379 380
- 381
- 382

383 PRECAUTIONS:

May 5, 2004

384	General
385	Hypertension is a common adverse effect of Prograf therapy (see ADVERSE
386	REACTIONS). Mild or moderate hypertension is more frequently reported than
387	severe hypertension. Antihypertensive therapy may be required; the control of blood
388	pressure can be accomplished with any of the common antihypertensive agents.
389	Since tacrolimus may cause hyperkalemia, potassium-sparing diuretics should be
390	avoided. While calcium-channel blocking agents can be effective in treating Prograf-
391	associated hypertension, care should be taken since interference with tacrolimus
392	metabolism may require a dosage reduction (see Drug Interactions).
393	
394	Renally and Hepatically Impaired Patients
395	For patients with renal insufficiency some evidence suggests that lower doses should
396	be used (see CLINICAL PHARMACOLOGY and DOSAGE AND
397	ADMINISTRATION).
398	The use of Prograf in liver transplant recipients experiencing post-transplant
399	hepatic impairment may be associated with increased risk of developing renal
400	insufficiency related to high whole-blood levels of tacrolimus. The patients should be
401	monitored closely and dosage adjustments should be considered. Some evidence
402	suggests that lower doses should be used in these patients (see DOSAGE AND
403	ADMINISTRATION).
404	
405	Myocardial Hypertrophy
406	Myocardial hypertrophy has been reported in association with the administration of
407	Prograf, and is generally manifested by echocardiographically demonstrated
408	concentric increases in left ventricular posterior wall and interventricular septum
409	thickness. Hypertrophy has been observed in infants, children and adults. This
410	condition appears reversible in most cases following dose reduction or discontinuance
411	of therapy. In a group of 20 patients with pre- and post-treatment echocardiograms
412	who showed evidence of myocardial hypertrophy, mean tacrolimus whole blood
413	concentrations during the period prior to diagnosis of myocardial hypertrophy ranged
414	from 11 to 53 ng/mL in infants (N=10, age 0.4 to 2 years), 4 to 46 ng/mL in children
415	(N=7, age 2 to 15 years) and 11 to 24 ng/mL in adults (N=3, age 37 to 53 years).
416	In patients who develop renal failure or clinical manifestations of ventricular
417	dysfunction while receiving Prograf therapy, echocardiographic evaluation should be
418	considered. If myocardial hypertrophy is diagnosed, dosage reduction or
419	discontinuation of Prograf should be considered.

- 419 420
- 421 *Information for Patients*

Patients should be informed of the need for repeated appropriate laboratory tests
while they are receiving Prograf. They should be given complete dosage instructions,
advised of the potential risks during pregnancy, and informed of the increased risk of
neoplasia. Patients should be informed that changes in dosage should not be
undertaken without first consulting their physician.

- 427
- 428

May 5, 2004

429 Patients should be informed that Prograf can cause diabetes mellitus and should be 430 advised of the need to see their physician if they develop frequent urination, increased 431 thirst or hunger. As with other immunosuppressive agents, owing to the potential risk of malignant skin changes, exposure to sunlight and ultraviolet (UV) light should be 432 433 limited by wearing protective clothing and using a sunscreen with a high protection 434 factor.

435

436 Laboratory Tests

437 Serum creatinine, potassium, and fasting glucose should be assessed regularly. 438 Routine monitoring of metabolic and hematologic systems should be performed as 439 clinically warranted.

440

441 **Drug** Interactions

442 Due to the potential for additive or synergistic impairment of renal function, care 443 should be taken when administering Prograf with drugs that may be associated with renal dysfunction. These include, but are not limited to, aminoglycosides, 444 amphotericin B, and cisplatin. Initial clinical experience with the co-administration 445 of Prograf and cyclosporine resulted in additive/synergistic nephrotoxicity. Patients 446 447 switched from cyclosporine to Prograf should receive the first Prograf dose no sooner 448 than 24 hours after the last cyclosporine dose. Dosing may be further delayed in the 449 presence of elevated cyclosporine levels.

450

451 **Drugs that May Alter Tacrolimus Concentrations**

452 Since tacrolimus is metabolized mainly by the CYP3A enzyme systems, substances 453 know to inhibit these enzymes may decrease the metabolism or increase bioavailability of tacrolimus as indicated by increased whole blood or plasma 454 455 concentrations. Drugs known to induce these enzyme systems may result in an 456 increased metabolism of tacrolimus or decreased bioavailability as indicated by 457 decreased whole blood or plasma concentrations. Monitoring of blood concentrations 458 and appropriate dosage adjustments are essential when such drugs are used 459 concomitantly.

> Macrolide Antibiotics clarithromycin erythromycin troleandomycin

460

461 462	*Drugs That May Increase Tacrolimus Blood Concentrations:			
463	Calcium	Antifungal		
464	Channel Blockers	Agents		
465	diltiazem	clotrimazole		
466	nicardipine	fluconazole		
467	nifedipine	itraconazole		
468	verapamil	ketoconazole		
469	*	voriconazole		
470				
471				
472	Gastrointestinal	Other		
473	Prokinetic Agents	Drugs		
474	cisapride	bromocriptine		
475	metoclopramide	chloramphenicol		
476		cimetidine		
477		cyclosporine		
478		danazol		
479		ethinyl estradiol		
		-		

May 5, 2004

480 481 482 483 484 485		methylprednisolone omeprazole protease inhibitors nefazodone magnesium-aluminum-hydroxide		
486	In a study of 6 normal	volunteers a significant increase in tacrolimus oral		
487	bioavailability $(14+5\%)$ vs	30+8%) was observed with concomitant ketoconazole		
488	administration (200 mg)	The apparent oral clearance of tacrolimus during		
489	ketoconazole administrati	on was significantly decreased compared to tacrolimus		
490	alone (0.430±0.129 L/hr/kg vs. 0.148±0.043 L/hr/kg). Overall, IV clearance of			
491	tacrolimus was not signifi	icantly changed by ketoconazole co-administration, although		
492	it was highly variable betw	ween patients.		
493 494	*Drugs That May Decrease Tacr	olimus Blood Concentrations:		
495 496	Anticonvulsants	Antimicrobials		
497	carbamazepine	rifabutin		
498	phenobarbital	caspofungin		
499 500	phenytoin	rifampin		
501 502	Howhal Proposations	Other Drugs		
503	St. John's Wort	sirolimus		
504 505				
506 507	*This table is not all inclusive.			
508	St. John's Wort (Hype	ericum perforatum) induces CYP3A4 and P-glycoprotein.		
509	Since tacrolimus is a subs	strate for CYP3A4, there is the potential that the use of St.		
510	John's Wort in patients re	ceiving Prograf could result in reduced tacrolimus levels.		
511	In a single-dose cross	over study in healthy volunteers, co-administration of		
512	tacrolimus and magnesiur	n-aluminum-hydroxide resulted in a 21% increase in the		
513	mean tacrolimus AUC and	d a 10% decrease in the mean tacrolimus C_{max} relative to		
514	tacrolimus administration	alone.		
515	In a study of 6 normal	volunteers, a significant decrease in tacrolimus oral		
516	bioavailability (14±6% vs	$5.7\pm3\%$) was observed with concomitant rifampin		
517	administration (600 mg).	In addition, there was a significant increase in tacrolimus		
518	clearance $(0.036\pm0.008 \text{ L})$	/hr/kg vs. 0.053±0.010 L/hr/kg) with concomitant rifampin		
519	administration			
520	Interaction studies wit	th drugs used in HIV therapy have not been conducted		
521	However care should be	exercised when drugs that are nephrotoxic (e.g. ganciclovir)		
522	or that are metabolized by	CYP3A (e.g. nelfinavir ritonavir) are administered		
523	concomitantly with tacrol	imus Based on a clinical study of 5 liver transplant		
525 524	recipients co-administrat	ion of tacrolimus with nelfinavir increased blood		
525	concentrations of tacrolin	hus significantly and as a result a reduction in the		
526	tacrolimus dose by an ave	erage of 16-fold was needed to maintain mean trough		
527	tacrolimus blood concent	rations of 9.7 mg/mL. Thus frequent monitoring of		
528	tacrolimus blood concent	rations and appropriate docage adjustment are essential		
520	when nelfingvir is used as	nations and appropriate dosage aujustificitit are essential		
529	of other drugs (a.g. phone	stroin and increase their concentration. Granefruit inice		
550	or other urugs (e.g., piteli	y company and mercase men concentration. Orapentul juice		

May 5, 2004

531 532	affects CYP3A-mediated metabolism and should be avoided (see DOSAGE AND ADMINISTATION).
533	Following co-administration of tacrolimus and sirolimus (2 or 5 mg/day) in stable
534	renal transplant patients, mean tacrolimus $AUC_{0,12}$ and C_{min} decreased approximately
535	by 30% relative to tacrolimus alone. Mean tacrolimus AUC ₀₋₁₂ and C_{min} following
536	co-administration of 1 mg/day of sirolimus decreased approximately 3% and 11%.
537	respectively. The safety and efficacy of tacrolimus used in combination with
538	sirolimus for the prevention of graft rejection has not been established and is not
539	recommended
540	
541	Other Drug Interactions
542	Immunosuppressants may affect vaccination. Therefore, during treatment with
543	Prograf vaccination may be less effective. The use of live vaccines should be
544	avoided: live vaccines may include but are not limited to measles mumps rubella
545	oral polio BCG vellow fever and TV 21a typhoid ¹
546	orar pono, Deo, yenow rever, and i i 21a typnola.
547	Carcinogenesis Mutagenesis and Impairment of Fertility
548	An increased incidence of malignancy is a recognized complication of
540	immunosuppression in recipients of organ transplants. The most common forms of
550	neonlasms are non-Hodgkin's lymphomas and carcinomas of the skin. As with other
551	impunosuppressive therapies the risk of malignancies in Prograf recipients may be
557	higher than in the normal healthy nonulation
552	I umphonroliferative disorders associated with Enstein Barr Virus infection have
555	been seen. It has been reported that reduction or discontinuation of
555	immunosuppression may cause the logions to regress
555	No ovidence of constantiaty was seen in besterial (Salmonella and E. coli) or
550	mammalian (Chinaga hamster lung derived calls) in with assays of mutaganiaity, the
559	in witro CHO/HCDDT assay of mutagonicity, or in vivo alectogonicity assays
550	In vitio CHO/HOFKT assay of inutagenicity, of in vivo clastogenicity assays
559	henotoxytes
561	Carainaganiaity studies were carried out in male and female rate and miss. In the
562	Carcinogenicity studies were carried out in male and remain rats and mice. In the
302 562	so-week mouse study and in the 104-week rat study no relationship of tumor
303 574	incluence to tacrolimus dosage was found. The nighest doses used in the mouse and
564	rat studies were $0.8 - 2.5$ times (mice) and $3.5 - 7.1$ times (rats) the recommended
303 500	clinical dose range of $0.1 - 0.2 \text{ mg/kg/day}$ when corrected for body surface area.
566	No impairment of fertility was demonstrated in studies of male and female rats.
567	Lacrolimus, given orally at 1.0 mg/kg $(0.7 - 1.4X)$ the recommended clinical dose
568	range of $0.1 - 0.2 \text{ mg/kg/day}$ based on body surface area corrections) to male and
569	female rats, prior to and during mating, as well as to dams during gestation and
570	lactation, was associated with embryolethality and with adverse effects on female
571	reproduction. Effects on female reproductive function (parturition) and embryolethal
572	effects were indicated by a higher rate of pre-implantation loss and increased numbers
573	of undelivered and nonviable pups. When given at $3.2 \text{ mg/kg} (2.3 - 4.6 \text{X} \text{ the})$
574	recommended clinical dose range based on body surface area correction), tacrolimus
575	was associated with maternal and paternal toxicity as well as reproductive toxicity

May 5, 2004

578

593

599

including marked adverse effects on estrus cycles, parturition, pup viability, and pupmalformations.

579 **Pregnancy:** Category C

In reproduction studies in rats and rabbits, adverse effects on the fetus were observed 580 581 mainly at dose levels that were toxic to dams. Tacrolimus at oral doses of 0.32 and 582 1.0 mg/kg during organogenesis in rabbits was associated with maternal toxicity as 583 well as an increase in incidence of abortions; these doses are equivalent to 0.5 - 1X584 and 1.6 - 3.3X the recommended clinical dose range (0.1 - 0.2 mg/kg) based on body surface area corrections. At the higher dose only, an increased incidence of 585 586 malformations and developmental variations was also seen. Tacrolimus, at oral doses 587 of 3.2 mg/kg during organogenesis in rats, was associated with maternal toxicity and 588 caused an increase in late resorptions, decreased numbers of live births, and decreased pup weight and viability. Tacrolimus, given orally at 1.0 and 3.2 mg/kg (equivalent 589 590 to 0.7 - 1.4X and 2.3 - 4.6X the recommended clinical dose range based on body 591 surface area corrections) to pregnant rats after organogenesis and during lactation, 592 was associated with reduced pup weights.

No reduction in male or female fertility was evident.

There are no adequate and well-controlled studies in pregnant women.
Tacrolimus is transferred across the placenta. The use of tacrolimus during
pregnancy has been associated with neonatal hyperkalemia and renal dysfunction.
Prograf should be used during pregnancy only if the potential benefit to the mother

598 justifies potential risk to the fetus.

600 Nursing Mothers

601 Since tacrolimus is excreted in human milk, nursing should be avoided.

602 603

Pediatric Patients

Experience with Prograf in pediatric kidney transplant patients is limited. Successful
liver transplants have been performed in pediatric patients (ages up to 16 years) using
Prograf. Two randomized active-controlled trials of Prograf in primary liver
transplantation included 56 pediatric patients. Thirty-one patients were randomized
to Prograf-based and 25 to cyclosporine-based therapies. Additionally, a minimum of
pediatric patients were studied in an uncontrolled trial of tacrolimus in living
related donor liver transplantation. Pediatric patients generally required higher doses

- 611 of Prograf to maintain blood trough concentrations of tacrolimus similar to adult
- 612 patients (see **DOSAGE AND ADMINISTRATION**).
- 613

614 **ADVERSE REACTIONS:**

615 *Liver Transplantation*

- 616 The principal adverse reactions of Prograf are tremor, headache, diarrhea,
- 617 hypertension, nausea, and renal dysfunction. These occur with oral and IV
- 618 administration of Prograf and may respond to a reduction in dosing. Diarrhea was
- sometimes associated with other gastrointestinal complaints such as nausea and
- 620 vomiting.

May 5, 2004

Hyperkalemia and hypomagnesemia have occurred in patients receiving Prograf
therapy. Hyperglycemia has been noted in many patients; some may require insulin
therapy (see WARNINGS).

624 The incidence of adverse events was determined in two randomized comparative 625 liver transplant trials among 514 patients receiving tacrolimus and steroids and 515 patients receiving a cyclosporine-based regimen (CBIR). The proportion of patients 626 627 reporting more than one adverse event was 99.8% in the tacrolimus group and 99.6% 628 in the CBIR group. Precautions must be taken when comparing the incidence of 629 adverse events in the U.S. study to that in the European study. The 12-month posttransplant information from the U.S. study and from the European study is 630 presented below. The two studies also included different patient populations and 631 632 patients were treated with immunosuppressive regimens of differing intensities. 633 Adverse events reported in \geq 15% in tacrolimus patients (combined study results) are 634 presented below for the two controlled trials in liver transplantation:

LIVER TRANSPLANTATION: ADVERSE EVENTS OCCURRING IN ≥ 15% OF PROGRAF-TREATED PATIENTS				
	U.S. STUDY (%)		EUROPEAN STUDY (9	
	Prograf (N=250)	CBIR (N=250)	Prograf (N=264)	CBIR (N=265)
<u>Nervous System</u>				
Headache (See WARNINGS)	64	60	37	26
Tremor (See WARNINGS)	56	46	48	32
Insomnia	64	68	32	23
Paresthesia	40	30	17	17
Gastrointestinal				
Diarrhea	72	47	37	27
Nausea	46	37	32	27
Constipation	24	27	23	21
LFT Abnormal	36	30	6	5
Anorexia	34	24	7	5
Vomiting	27	15	14	11
<u>Cardiovascular</u> Hypertension (See PRECAUTIONS)	47	56	38	43
Urogenital				
Kidney Function Abnormal (See				
WARNINGS)	40	27	36	23
Creatinine Increased (See WARNINGS)	39	25	24	19
BUN Increased (See WARNINGS)	30	22	12	9
Urinary Tract Infection	16	18	21	19
Oliguria	18	15	19	12
Metabolic and Nutritional				
Hyperkalemia (See WARNINGS)	45	26	13	9
Hypokalemia	29	34	13	16
Hyperglycemia (See WARNINGS)	47	38	33	22
Hypomagnesemia	48	45	16	9
Hemic and Lymphatic				
Anemia	47	38	5	1
Leukocytosis	32	26	8	8
Thrombocytopenia	24	20	14	19

May 5, 2004

<u>Miscellaneous</u>				
Abdominal Pain	59	54	29	22
Pain	63	57	24	22
Fever	48	56	19	22
Asthenia	52	48	11	7
Back Pain	30	29	17	17
Ascites	27	22	7	8
Peripheral Edema	26	26	12	14
Respiratory System				
Pleural Effusion	30	32	36	35
Atelectasis	28	30	5	4
Dyspnea	29	23	5	4
5 1				
Skin and Appendages				
Pruritus	36	20	15	7
Rash	24	19	10	4

636

637

638

639 Less frequently observed adverse reactions in both liver transplantation and kidney
 640 transplantation patients are described under the subsection Less Frequently
 641 Reported Adverse Reactions below.

642

643 *Kidney Transplantation*

644 The most common adverse reactions reported were infection, tremor, hypertension,
645 decreased renal function, constipation, diarrhea, headache, abdominal pain and
646 insomnia.

 $\begin{array}{ll} 647 & \text{Adverse events that occurred in } \geq 15\% \text{ of Prograf-treated kidney transplant} \\ 648 & \text{patients are presented below:} \end{array}$

KIDNEY TRANSPLANTATION: ADVERSE EVENTS OCCURRING IN ≥ 15% OF PROGRAF-TREATED PATIENTS			
	Prograf (N=205)	CBIR (N=207)	
Nervous System			
Tremor (see WARNINGS)	54	34	
Headache (see WARNINGS)	44	38	
Insomnia	32	30	
Paresthesia	23	16	
Dizziness	19	16	
<u>Gastrointestinal</u>			
Diarrhea	44	41	
Nausea	38	36	
Constipation	35	43	
Vomiting	29	23	
Dyspepsia	28	20	
Cardiovascular			

May 5, 2004

Hypertension (see PRECAUTIONS)	50	52
Chest pain	19	13
1 I		
Urogenital		
Creatinine increased (see WARNINGS)	45	42
Urinary tract infection	34	35
5		
Metabolic and Nutritional		
Hypophosphatemia	49	53
Hypomagnesemia	34	17
Hyperlipemia	31	38
Hyperkalemia (see WARNINGS)	31	32
Diabetes mellitus (see WARNINGS)	24	9
Hypokalemia	22	25
Hyperglycemia (see WARNINGS)	22	16
Edema	18	19
Hemic and Lymphatic		
Anemia	30	24
Leukopenia	15	17
Miscellaneous		
Infection	45	49
Peripheral edema	36	48
Asthenia	34	30
Abdominal pain	33	31
Pain	32	30
Fever	29	29
Back pain	24	20
Respiratory System		
Dyspnea	22	18
Cough increased	18	15
-		
<u>Musculoskeletal</u>		
Arthralgia	25	24
-		
<u>Skin</u>		
Rash	17	12
Pruritus	15	7

650 651

652 Less frequently observed adverse reactions in both liver transplantation and kidney

653 transplantation patients are described under the subsection Less Frequently Reported

- 654 Adverse Reactions shown below.
- 655

656 Less Frequently Reported Adverse Reactions

The following adverse events were reported in the range of 3% to less than 15%

658 incidence in either liver or kidney transplant recipients who were treated with tacrolimus659 in the Phase 3 comparative trials.

- 660 NERVOUS SYSTEM: (see **WARNINGS**) abnormal dreams, agitation, amnesia, 661 anxiety, confusion, convulsion, depression, dizziness, emotional lability, encephalopathy,
- hallucinations, hypertonia, incoordination, myoclonus, nervousness, neuropathy,
- 663 psychosis, somnolence, thinking abnormal; SPECIAL SENSES: abnormal vision,
- 664 amblyopia, ear pain, otitis media, tinnitus; GASTROINTESTINAL: anorexia,
- 665 cholangitis, cholestatic jaundice, dyspepsia, dysphagia, esophagitis, flatulence, gastritis,
- 666 gastrointestinal hemorrhage, GGT increase, GI perforation, hepatitis, ileus, increased

May 5, 2004

667 appetite, jaundice, liver damage, liver function test abnormal, oral moniliasis, rectal 668 disorder, stomatitis; CARDIOVASCULAR: angina pectoris, chest pain, deep 669 thrombophlebitis, abnormal ECG, hemorrhage, hypotension, postural hypotension, peripheral vascular disorder, phlebitis, tachycardia, thrombosis, vasodilatation; 670 671 UROGENITAL: (see WARNINGS) albuminuria, cystitis, dysuria, hematuria, 672 hydronephrosis, kidney failure, kidney tubular necrosis, nocturia, pyuria, toxic 673 nephropathy, oliguria, urinary frequency, urinary incontinence, vaginitis; 674 METABOLIC/NUTRITIONAL: acidosis, alkaline phosphatase increased, alkalosis, ALT 675 (SGPT) increased, AST (SGOT) increased, bicarbonate decreased, bilirubinemia, BUN increased, dehydration, GGT increased, healing abnormal, hypercalcemia, 676 hypercholesterolemia, hyperlipemia, hyperphosphatemia, hyperuricemia, hypervolemia, 677 678 hypocalcemia, hypoglycemia, hyponatremia, hypophosphatemia, hypoproteinemia, lactic 679 dehydrogenase increase, weight gain; ENDOCRINE: (see PRECAUTIONS) Cushing's 680 syndrome, diabetes mellitus; HEMIC/LYMPHATIC: coagulation disorder, ecchymosis, 681 hypochromic anemia, leukocytosis, leukopenia, polycythemia, prothrombin decreased, serum iron decreased, thrombocytopenia; MISCELLANEOUS: abdomen enlarged, 682 683 abscess, accidental injury, allergic reaction, cellulitis, chills, flu syndrome, generalized edema, hernia, peritonitis, photosensitivity reaction, sepsis, MUSCULOSKELETAL: 684 685 arthralgia, cramps, generalized spasm, joint disorder, leg cramps, myalgia, myasthenia, osteoporosis; RESPIRATORY: asthma, bronchitis, cough increased, lung disorder, 686 687 pneumothorax, pulmonary edema, pharyngitis, pneumonia, respiratory disorder, rhinitis, 688 sinusitis, voice alteration; SKIN: acne, alopecia, exfoliative dermatitis, fungal dermatitis, 689 herpes simplex, hirsutism, skin discoloration, skin disorder, skin ulcer, sweating.

There have been rare spontaneous reports of myocardial hypertrophy associated
 with clinically manifested vertricular dysfunction in patients receiving Prograf therapy
 (see PRECAUTIONS-Myocardial Hypertrophy).

693

694 **Post Marketing**

The following have been reported: increased amylase including pancreatitis, hearing loss
including deafness, leukoencephalopathy, thrombocytopenic purpura, hemolytic-uremic
syndrome, acute renal failure, Stevens-Johnson syndrome, stomach ulcer, glycosuria,
cardiac arrhythmia, QT prolongation, Torsade de Pointes and gastroenteritis.

699

700

701

702 **OVERDOSAGE:**

703 Limited overdosage experience is available. Acute overdosages of up to 30 times the 704 intended dose have been reported. Almost all cases have been asymptomatic and all 705 patients recovered with no sequelae. Occasionally, acute overdosage has been followed 706 by adverse reactions consistent with those listed in the ADVERSE REACTIONS 707 section except in one case where transient urticaria and lethargy were observed. Based 708 on the poor aqueous solubility and extensive erythrocyte and plasma protein binding, it is 709 anticipated that tacrolimus is not dialyzable to any significant extent; there is no 710 experience with charcoal hemoperfusion. The oral use of activated charcoal has been 711 reported in treating acute overdoses, but experience has not been sufficient to warrant

May 5, 2004

712 recommending its use. General supportive measures and treatment of specific symptoms 713 should be followed in all cases of overdosage.

714 In acute oral and IV toxicity studies, mortalities were seen at or above the following doses: in adult rats, 52X the recommended human oral dose; in immature rats, 715 716 16X the recommended oral dose; and in adult rats, 16X the recommended human IV dose 717 (all based on body surface area corrections).

- 718
- 719

720 721

722 **DOSAGE AND ADMINISTRATION:**

723 **Prograf injection (tacrolimus injection)** 724

725 For IV Infusion Only

726

727 NOTE: Anaphylactic reactions have occurred with injectables containing castor oil derivatives. See WARNINGS. 728

729

730 In patients unable to take oral Prograf capsules, therapy may be initiated with Prograf injection. The initial dose of Prograf should be administered no sooner than 6 hours after 731 732 transplantation. The recommended starting dose of Prograf injection is 0.03-0.05 mg/kg/day as a continuous IV infusion. Adult patients should receive doses at the lower 733 end of the dosing range. Concomitant adrenal corticosteroid therapy is recommended 734 735 early post-transplantation. Continuous IV infusion of Prograf injection should be 736 continued only until the patient can tolerate oral administration of Prograf capsules.

737

738 **Preparation for Administration/Stability**

739 Prograf injection must be diluted with 0.9% Sodium Chloride Injection or 5% Dextrose 740 Injection to a concentration between 0.004 mg/mL and 0.02 mg/mL prior to use. Diluted infusion solution should be stored in glass or polyethylene containers and should be 741 discarded after 24 hours. The diluted infusion solution should not be stored in a PVC 742 743 container due to decreased stability and the potential for extraction of phthalates. In 744 situations where more dilute solutions are utilized (e.g., pediatric dosing, etc.), PVC-free 745 tubing should likewise be used to minimize the potential for significant drug absorption onto the tubing. Parenteral drug products should be inspected visually for particulate 746 matter and discoloration prior to administration, whenever solution and container permit. 747 748 Due to the chemical instability of tacrolimus in alkaline media, Prograf injection should 749 not be mixed or co-infused with solutions of pH 9 or greater (e.g., ganciclovir or 750 acyclorvir).

751

752

753

754

755

Prograf capsules (tacrolimus capsules) – Summary of Initial Oral Dosage	?
Recommendations and Typical Whole Blood Trough Concentrations	

Patient Population Recommended Initial Typical Whole Blood Trough Oral Dose* Concentrations

May 5, 2004

Adult kidney transplant patients	0.2 mg/kg/day	month 1-3 : 7-20 ng/mL month 4-12 : 5-15 ng/mL
Adult liver transplant patients	0.10-0.15 mg/kg/day	month 1-12 : 5-20 ng/mL
Pediatric liver transplant patients	0.15-0.20 mg/kg/day	month 1-12 : 5-20 ng/mL
*Note: two divided doses, a12h		

756

757

758 *Liver Transplantation*

759 It is recommended that patients initiate oral therapy with Prograf capsules if possible. If 760 IV therapy is necessary, conversion from IV to oral Prograf is recommended as soon as 761 oral therapy can be tolerated. This usually occurs within 2-3 days. The initial dose of Prograf should be administered no sooner than 6 hours after transplantation. In a patient 762 763 receiving an IV infusion, the first dose of oral therapy should be given 8-12 hours after 764 discontinuing the IV infusion. The recommended starting oral dose of Prograf capsules is 0.10-0.15 mg/kg/day administered in two divided daily doses every 12 hours. Co-765 766 administered grapefruit juice has been reported to increase tacrolimus blood trough 767 concentrations in liver transplant patients. (See *Drugs that May Alter Tacrolimus* 768 Concentrations).

Dosing should be titrated based on clinical assessments of rejection and
 tolerability. Lower Prograf dosages may be sufficient as maintenance therapy. Adjunct
 therapy with adrenal corticosteroids is recommended early post transplant.

Dosage and typical tacrolimus whole blood trough concentrations are shown in
the table above; blood concentration details are described in **Blood Concentration Monitoring:** *Liver Transplantation* below.

775

776 Kidney Transplantation

777 The recommended starting oral dose of Prograf is 0.2 mg/kg/day administered every 12 hours in two divided doses. The initial dose of Prograf may be administered within 24 778 779 hours of transplantation, but should be delayed until renal function has recovered (as 780 indicated for example by a serum creatinine $\leq 4 \text{ mg/dL}$). Black patients may require 781 higher doses to achieve comparable blood concentrations. Dosage and typical tacrolimus 782 whole blood trough concentrations are shown in the table above; blood concentration 783 details are described in Blood Concentration Monitoring: Kidney Transplantation 784 below.

The data in kidney transplant patients indicate that the Black patients required a
 higher dose to attain comparable trough concentrations compared to Caucasian patients.

Time After	Caucasian		Black	
Transplant	n=114		n=56	
	Dose (mg/kg)	Trough Concentrations (ng/mL)	Dose (mg/kg)	Trough Concentrations (ng/mL)

May 5, 2004

Day 7	0.18	12.0	0.23	10.9
Month 1	0.17	12.8	0.26	12.9
Month 6	0.14	11.8	0.24	11.5
Month 12	0.13	10.1	0.19	11.0

788

789

790 Pediatric Patients

Pediatric liver transplantation patients without pre-existing renal or hepatic dysfunction
 have required and tolerated higher doses than adults to achieve similar blood

concentrations. Therefore, it is recommended that therapy be initiated in pediatric

patients at a starting IV dose of 0.03-0.05 mg/kg/day and a starting oral dose of 0.15-0.20

795 mg/kg/day. Dose adjustments may be required. Experience in pediatric kidney

796 transplantation patients is limited.

797

798 Patients with Hepatic or Renal Dysfunction

799 Due to the reduced clearance and prolonged half-life, patients with severe hepatic 800 impairment (Pugh ≥ 10) may require lower doses of Prograf. Close monitoring of blood 801 concentrations is warranted. Due to the potential for perhapsion patients with renal

801 concentrations is warranted. Due to the potential for nephrotoxicity, patients with renal 802 or hepatic impairment should receive doses at the lowest value of the recommended IV

and oral dosing ranges. Further reductions in dose below these ranges may be required.
 Prograf therapy usually should be delayed up to 48 hours or longer in patients with post operative oliguria.

806

807 Conversion from One Immunosuppressive Regimen to Another

808 Prograf should not be used simultaneously with cyclosporine. Prograf or cyclosporine 809 should be discontinued at least 24 hours before initiating the other. In the presence of 810 elevated Prograf or cyclosporine concentrations, dosing with the other drug usually 811 should be further delayed.

812

813 Blood Concentration Monitoring

814 Monitoring of tacrolimus blood concentrations in conjunction with other laboratory and

815 clinical parameters is considered an essential aid to patient management for the

816 evaluation of rejection, toxicity, dose adjustments and compliance. Factors influencing

817 frequency of monitoring include but are not limited to hepatic or renal dysfunction, the

818 addition or discontinuation of potentially interacting drugs and the posttransplant time.

819 Blood concentration monitoring is not a replacement for renal and liver function 820 monitoring and tissue biopsies.

Two methods have been used for the assay of tacrolimus, a microparticle enzyme immunoassay (MEIA) and ELISA. Both methods have the same monoclonal antibody for tacrolimus. Comparison of the concentrations in published literature to patient concentrations using the current assays must be made with detailed knowledge of the

825 assay methods and biological matrices employed. Whole blood is the matrix of choice

May 5, 2004

826 and specimens should be collected into tubes containing ethylene diamine tetraacetic acid 827 (EDTA) anti-coagulant. Heparin anti-coagulation is not recommended because of the

828 tendency to form clots on storage. Samples which are not analyzed immediately should

829 be stored at room temperature or in a refrigerator and assayed within 7 days; if samples

830 are to be kept longer they should be deep frozen at -20° C for up to 12 months.

831

832 Liver Transplantation

833 Although there is a lack of direct correlation between tacrolimus concentrations and drug 834 efficacy, data from Phase II and III studies of liver transplant patients have shown an 835 increasing incidence of adverse events with increasing trough blood concentrations. 836 Most patients are stable when trough whole blood concentrations are maintained between

837 5 to 20 ng/mL. Long-term post-transplant patients often are maintained at the low end of 838 this target range.

839 Data from the U.S. clinical trial show that tacrolimus whole blood concentrations, 840 as measured by ELISA, were most variable during the first week post-transplantation. 841 After this early period, the median trough blood concentrations, measured at intervals 842 from the second week to one year post-transplantation, ranged from 9.8 ng/mL to 19.4

843 ng/mL.

844 Therapeutic Drug Monitoring, 1995, Volume 17, Number 6 contains a consensus 845 document and several position papers regarding the therapeutic monitoring of tacrolimus 846 from the 1995 International Consensus Conference on Immunosuppressive Drugs. Refer 847 to these manuscripts for further discussions of tacrolimus monitoring.

848

849 **Kidney Transplantation**

850 Data from the Phase III study indicates that trough concentrations of tacrolimus in whole blood, as measured by IMx[®] were most variable during the first week of dosing. During 851 the first three months, 80% of the patients maintained trough concentrations between 7-852

853 20 ng/mL, and then between 5-15 ng/mL, through one-year. 854

The relative risk of toxicity is increased with higher trough concentrations.

Therefore, monitoring of whole blood trough concentrations is recommended to assist in 855 856 the clinical evaluation of toxicity.

857

858 **HOW SUPPLIED:**

859 **Prograf capsules (tacrolimus capsules)**

860 0.5 mg

607 861 Oblong, light yellow, branded with red "0.5 mg" on the capsule cap and f

- 862 on the capsule body, supplied in 100-count bottles
- 863 (NDC 0469-0607-73).
- 864
- 865 **Prograf capsules (tacrolimus capsules)**
- 866 1 mg
- 867 Oblong, white, branded with red "1 mg" on the capsule cap and
- 868 on the capsule body, supplied in 100-count bottles
- 869 (NDC 0469-0617-73)
- 870 and 10 blister cards of 10 capsules (NDC 0469-0617-11), containing the equivalent of 1
- 871 mg anhydrous tacrolimus.

f

May 5, 2004

077	
072 872	Drograf consulos (tagralimus consulos)
873	5 mg
875	Oblong gravish/red branded with white "5 mg" on the cansule can and $\begin{bmatrix} f \end{bmatrix}$ 657
876	on the capsule body supplied in 100-count bottles
877	(NDC 0469-0657-73)
878	and 10 blister cards of 10 cansules (NDC 0469-0657-11) containing the equivalent of 5
879	mg anhydrous tacrolimus
880	ing unitydrous ucronnius.
881	Made in Japan
882	
883	Store and Dispense
884	Store at 25°C (77°F): excursions permitted to 15°C-30°C (59°F-86°F)
885	
886	Prograf injection (tacrolimus injection)
887	5 mg (for IV infusion only)
888	Supplied as a sterile solution in 1 mL ampules containing the equivalent of 5 mg of
889	anhydrous tacrolimus per mL, in boxes of 10 ampules (NDC 0469-3016-01).
890	
891	Made in Ireland
892	
893	Store and Dispense
894	Store between 5°C and 25°C (41°F and 77°F).
895	
896	Rx only
897	Manufactured for:
898	Fujisawa Healthcare, Inc.
899	Deerfield, IL 60015-2548
900	
901	
902	REFERENCE:
903	1. CDC: Recommendations of the Advisory Committee on Immunization Practices:
904	Use of vaccines and immune globulins in persons with altered
905	immunocompetence. MMWR 1993;42(RR-4):1-18.
906	
907	Revised: March 2004
908	
909	