CENTER FOR DRUG EVALUATION AND RESEARCH

APPLICATION NUMBER: 22-474

CLINICAL PHARMACOLOGY AND BIOPHARMACEUTICS REVIEW(S)

OFFICE OF CLINICAL PHARMACOLOGY ADDENDUM

NDA: 022474 Submission Dates: 10/15/2009, 1/19/2010, 4/05/2010, 05/11/2010, 06/29/2010, and 08/12/2010 Brand Name Ella Generic Name Ulipristal Acetate Reviewer Hyunjin Kim, Pharm.D., M.S. Team Leader Myong-Jin Kim, Pharm.D. **OCP** Division Division of Clinical Pharmacology 3 Division of Reproductive and Urologic Products OND Division (DRUP) HRA Pharma **Sponsor** Relevant IND 049381 Submission Type, Code Original, 1S Formulation; Strength Tablet; 30 mg Indication Emergency contraceptive for prevention of pregnancy following unprotected intercourse or a known or suspected contraceptive failure

Table of Contents

1	Executive Summary	2
1.1	Recommendation	2
	Phase IV Commitments	
	Final Agreed Unon Package Insert Labeling	3

1 Executive Summary

The Clinical Pharmacology review of original NDA 022474 (DARRTS, 07/09/2010) stated that the NDA 022474 was acceptable provided that agreement is reached between the sponsor and the Division regarding the language in the package insert labeling. The agreement on the language in the package insert labeling was reached on 08/12/2010. The highlights of the prescribing information and Clinical Pharmacology relevant sections of the final agreed upon package insert labeling are included in Section 2 of this addendum.

1.1 Recommendation

The Division of Clinical Pharmacology 3, Office of Clinical Pharmacology finds the NDA 022474 acceptable.

1.2 Phase IV Commitments

An *in vivo* drug-drug interaction trial of ulipristal acetate with CYP3A4 inducer should be conducted.

The sponsor agreed to conduct the study described under Section 1.2 with the following timelines (DARRTS, 08/12/2010).

- o Final Protocol Submission: 02/13/2011
- o *Trial Completion: 02/13/2013*
- o Final Report Submission: 08/13/2013

4 Page(s) of Draft Labeling have been withheld in full immediately following this page as B4 (CCI/TS)

Application Type/Number	Submission Type/Number	Submitter Name	Product Name
NDA-22474	ORIG-1	LABORATOIRE HRA PHARMA	Ella , Ulipristal Acetate
electronically signature.	/ and this page i		d that was signed on of the electronic
/s/			
HYUNJIN KIM 08/12/2010			
CHONGWOO YL 08/12/2010 Signing on behalf	of Dr. Myong Jin Kim	ı	
EDWARD D BAS 08/12/2010	HAW		

OFFICE OF CLINICAL PHARMACOLOGY ADDENDUM

NDA: 022474 Submission Dates: 10/15/2009, 1/19/2010,

4/05/2010, 05/11/2010, 06/29/2010

Brand Name Ella

Generic Name Ulipristal Acetate

Reviewer Hyunjin Kim, Pharm.D., M.S.

Team Leader Myong-Jin Kim, Pharm.D.

OCP Division Division of Clinical Pharmacology 3

OND Division Division of Reproductive and Urologic Products

(DRUP)

Sponsor HRA Pharma

Relevant IND 049381

Submission Type, Code Original, 1S

Formulation; Strength Tablet; 30 mg

Indication Emergency contraceptive for prevention of

pregnancy following unprotected intercourse or a

known or suspected contraceptive failure

This addendum pertains to an *in vivo* drug-drug interaction trial of ulipristal acetate with CYP3A4 inducer as a Post Marketing Requirement in the Clinical Pharmacology review of NDA 022474 (Dr. Hyunjin Kim, DARRTS, July 09, 2010).

The *in vivo* drug-drug interaction trial described above is to address potential decrease in efficacy of ulipristal acetate in presence of co-administration of CYP3A4 inducers. Therefore, this reviewer is requesting an *in vivo* drug-drug interaction study to be conducted under a Post Marketing Commitment instead. The section 1.2 Post Marketing Requirements of the Clinical Pharmacology Original NDA review of NDA 022474 should be revised to reflect this. *Strikes are used for deletion and underline is used for addition*.

1.2 Post Marketing Requirements Commitments

An in vivo drug-drug interaction trial of ulipristal acetate with CYP3A4 inducer needs toshould be conducted.

Application Type/Number	Submission Type/Number	Submitter Name	Product Name
NDA-22474	ORIG-1	LABORATOIRE HRA PHARMA	Ella,Ulipristal Acetate
			d that was signed on of the electronic
/s/			
HYUNJIN KIM 07/23/2010			
MYONG JIN KIM 07/23/2010			
EDWARD D BAS 07/23/2010	HAW		

OFFICE OF CLINICAL PHARMACOLOGY REVIEW

NDA: 022474 Submission Dates: 10/15/2009, 1/19/2010,

Ella

4/05/2010, 05/11/2010, 06/29/2010

Brand Name

Generic Name Ulipristal Acetate

Reviewer Hyunjin Kim, Pharm.D., M.S.

Team Leader Myong-Jin Kim, Pharm.D.

OCP Division Division of Clinical Pharmacology 3

OND Division Division of Reproductive and Urologic Products

(DRUP)

Sponsor HRA Pharma

Relevant IND 049381

01/301

Submission Type, Code Original, 1S Formulation; Strength Tablet; 30 mg

Indication Emergency contraceptive for prevention of

pregnancy following unprotected intercourse or a

known or suspected contraceptive failure

A Required Office-Level Clinical Pharmacology Briefing was held on June 14, 2010 in conference room 1211 of White Oak Bldg 51. Attendees included Drs'. Lisa Soule, Pamela K Lucarelli, Lesko J Lawrence, Nancy Hu, Bryant Tran, Gilbert Burckart, Sally Choe, Darrell Abernethy, Ritesh Jain, Manoj Khurana, Christian Grimstein, Dionna Green, Immo Zdrojewski, Sandhya Apparaju, LaiMing Lee, Lei K, Zhang, Julia Cho, Chongwoo Yu, Nam Atiqur Rahman, Lokesh Jain, Kellie S Reynolds, Chinmay Shukla, Edward D Bashaw, Hae Young Ahn, Ronald Orleans, Mehul U Mehta, Myong-Jin Kim and Hyunjin Kim

Table of Contents

1	Executive Summary	2
1.1	Recommendation	
1.2	Post Marketing Requirements	
1.3	Summary of Important Clinical Pharmacology and Biopharmaceutics Findings	
2	Question Based Review	
2.1	General Attributes	
2.2		
2.3	Intrinsic Factors	
2.4	Extrinsic Factors	27
2.5	General Biopharmaceutics	35
2.6	Analytical Section	
3	Detailed Labeling Recommendation	42

1 Executive Summary

The sponsor submitted an original NDA under 505(b)(1) for ulipristal acetate, a new molecular entity (NME) acting on a progesterone receptor. Ulipristal acetate is an orally administered drug, with a proposed indication for the prevention of pregnancy following unprotected intercourse or a known or suspected contraceptive failure. A single 30 mg tablet of ulipristal acetate should be taken as soon as possible, but no later than 120 hours after unprotected intercourse.

In support of this NDA, the sponsor submitted the two phase 3 studies evaluating the safety and efficacy of ulipristal acetate for the proposed indication. In addition, the sponsor submitted 16 Clinical Pharmacology related studies as following: 8 *in vitro* studies elucidating the distribution, metabolism, and drug interaction potential; 8 phase 1 pharmacokinetic (PK) and pharmacodynamic (PD) studies characterizing the PK and mechanism of action of ulipristal acetate; and 2 phase 2 studies.

Ulipristal acetate is highly (> 94 %) bound to plasma proteins. It is metabolized to monoand di-demethylated metabolites mainly by CYP3A4. In vitro studies suggest that inhibition or induction potential of ulipristal acetate on CYP enzymes is minimal. The proposed mechanism of action is that ulipristal acetate inhibits or delays ovulation, depending on the time of administration in the follicular phase and alters the endometrium in the luteal phase. These PD properties of ulipristal acetate are mediated by its binding to the progesterone receptor.

The results from a food effect study and two phase 3 studies showed that ulipristal acetate can be administered regardless of meal. There are two proposed manufacturing sites

(b) (4) and Leon Farma) for ulipristal acetate and the sponsor has conducted a single-dose bioequivalence (BE) study. Sponsor developed three different formulations, micronized tablet, micronized capsule, and unmicronized capsule. The to-be-marketed formulation is micronized tablet.

1.1 Recommendation

The Division of Clinical Pharmacology 3, Office of Clinical Pharmacology finds the clinical pharmacology information submitted in NDA 022474 acceptable provided that an agreement is reached between the sponsor and the Division regarding the language in the package insert.

1.2 Post Marketing Requirements

An in vivo drug-drug interaction trial of ulipristal acetate with CYP3A4 inducer needs to be conducted.

1.3 Summary of Important Clinical Pharmacology and Biopharmaceutics Findings

- Single Dose PK of Ulipristal Acetate
 - o Following a single dose administration of ulipristal acetate 30 mg micronized tablet in healthy women under fasting conditions, the maximum plasma concentrations (C_{max}) of ulipristal and its active metabolite, 3877A, were reached within 1 hour of administration (range, 0.5-2 hours). The mean (\pm SD) C_{max} values of ulipristal and metabolite 3877A were 176.0 \pm 51 and 68.6 \pm 38 ng/mL, respectively, The mean (\pm SD) area under the curve (AUC) values were 556.0 \pm 47 and 246.0 \pm 24, respectively. The C_{max} and AUC of ulipristal acetate were more than twice the values of those of the 3877A (HRA2914-504).
- o Formulation Comparison Micronized Tablet vs. Unmicronized Capsule
 - Earlier studies including the PD studies were conducted using the unmicronized capsules. The C_{max} and AUC of ulipristal acetate and 3877A following a single dose administration of 10 mg micronized tablet were higher compared to those from a 10 mg unmicronized capsule (HRA2914-501).
 - Ulipristal acetate
 - C_{max}: 56.7 vs. 29.1 ng/mL (95% higher in micronized tablet)
 - AUC_{0-∞}: 189.9 vs. 138.1 ng·h/mL (38% higher in micronized tablet)
 - **3877A**
 - C_{max}: 20.5 vs. 10.7 ng/mL (92% higher in micronized tablet)
 - AUC_{0-∞}: 77.5 vs. 62.8 ng·h/mL (23% higher in micronized tablet)
- Effect of Food
 - Administration of ulipristal acetate under a fed conditions reduced the absorption rate of ulipristal, as indicated by 40-45% lower C_{max} and delayed t_{max} of about 2 hours for both ulipristal acetate and 3877A (HRA2914-512). However, food intake increased the extent of absorption as indicated by 20-25% higher AUC of ulipristal and 3877A compared to fasting conditions (HRA2914-512). Phase 3 studies (HRA2914-509 and HRA2914-513) were conducted without restriction for food. Therefore, ulipristal acetate can be administered regardless of meal.
- Metabolism, Distribution, and Elimination
 - Ulipristal acetate is highly bound (> 94 %) to plasma proteins, including high density lipoprotein, α-acid glycoprotein, and non-esterified fatty acid (HRA2914-427, HRA2914-428, and HRA2914-475).
 - O Ulipristal acetate is metabolized to mono- and di- demethylated ulipristal acetate. The data indicated that this metabolism is predominantly mediated by CYP3A4. The mono-demethylated ulipristal acetate, 3877A, appeared to exert similar anti-progesterone activity to ulipristal acetate (HRA2914-429, HRA2914-430, and HRA2914-449).
- Drug Interaction Potential

- The *in vitro* studies show that ulipristal does not inhibit or induce CYP enzymes. Therefore, the sponsor did not conduct any *in vivo* studies to evaluate CYP inhibition or induction potential of ulipristal acetate (HRA2914-430, HRA2914-476, and HRA2914-477).
- o *In vitro* data indicate that the metabolism of ulipristal acetate is predominantly mediated by CYP3A4. Concomitant administration of CYP3A4 inhibitors may inhibit the metabolism of ulipristal acetate and cause increased plasma concentration of ulipristal acetate. In addition, concomitant administration of CYP3A4 inducers may reduce plasma concentrations of ulipristal acetate and may result in decrease in efficacy.
- o PD Effects of Ulipristal Acetate: Effects of single dose administration of ulipristal acetate were assessed during the different phases of women's menstrual cycle.
 - o Mid-follicular phase (10, 50, and 100 mg unmicronized capsule): Ulipristal acetate suppressed the growth of lead follicle and increased the time from dose to follicular collapse, therefore, delayed ovulation. In addition, it decreased the plasma concentration of estradiol.
 - Late follicular phase (30 mg micronized tablet): Ulipristal acetate reduced the occurrence of follicular rupture and decreased the luteinizing hormone (LH) surge occurrence. Administration of ulipristal acetate prior to ovulation suppressed the plasma concentration of progesterone, but not the plasma concentration of estradiol.
 - Early luteal phase (10, 50, and 100 mg unmicronized capsule): Ulipristal acetate reduced the endometrial thickness without affecting the menstrual cycle lengths.
 - Mid-luteal phase (1, 10, 50, 100, and 200 mg unmicronized capsule): No significant effect on lengths of luteal phase was observed. However, high dose (200 mg unmicronized capsule) ulipristal acetate caused early endometrial bleeding with shorter length of luteal phase which may have been resulted from its anti-progesterone activity.
- Use in Specific Populations
 - o The sponsor requested a waiver of pediatric studies for age groups of males and females from birth to 15 years and 11 months.
 - o No hepatic or renal impairment studies were conducted.
- Manufacturing sites
 - The to-be-marketed formulation of ulipristal acetate 30 mg micronized tablet will be manufactured at the two different sites; Leon Pharma (Spain) and (b) (4). A single dose BE study (HRA2914-516) showed that the products manufactured at these two sites are bioequivalent.

2 Question Based Review

2.1 General Attributes

Regulatory background

IND 049381 was opened by National Institute of Child Health and Human Development (NICHD) on December 1, 1995. There was a change of the sponsor on March 6, 2006 when HRA Pharma licensed ulipristal acetate from NICHD.

Following studies were submitted.

- In vitro
 - Distribution
 - HRA2914-427: *In vitro* binding of [¹⁴C]-ulipristal acetate to human plasma proteins and human blood distribution
 - HRA2914-428: *In vitro* binding of [¹⁴C]-ulipristal acetate to mouse, rat, rabbit, dog, monkey and human plasma
 - HRA2914-475: 3877A Extent of binding to rat, monkey and human plasma proteins and partitioning between the plasma and cell fraction of human blood
 - Metabolism
 - HRA2914-429: Metabolism of [¹⁴C]-ulipristal acetate in microsomes isolated from female mouse, rat, rabbit, dog, monkey and human
 - HRA2914-430: Identification of the cytochrome P450 enzymes responsible for the *in vitro* metabolism of [¹⁴C]-ulipristal acetate and the effect of ulipristal acetate on the activity of specific human cytochrome P450 enzymes
 - HRA2914-449: In vitro antiprogestational/antiglucocorticoid activity and progestin and glucocorticoid receptor binding of the putative metabolites and synthetic derivatives of ulipristal acetate and mifepristone
 - Drug Interaction
 - HRA2914-476: Inhibition of 3877A on CYP enzyme activities in pooled human liver microsomes
 - HRA2914-477: Induction effects of ulipristal acetate and 3877A on CYP1A2 and 3A4 activities in fresh human hepatocytes
- Phase 1
 - o PK
- HRA2914-501: Pharmacokinetic comparison of three preparations of the selective progesterone receptor modulator, ulipristal acetate
- HRA2914-504: Study of the pharmacokinetic profile of a single 30 mg oral dose of ulipristal acetate in healthy volunteers
- HRA2914-512: An open, randomized, crossover design study comparing the bioavailability of a single 30 mg oral dose of ulipristal acetate given in fed and fasting conditions in healthy volunteers
- HRA2914-516: A single-dose, open-label, randomized, 2-way crossover bioequivalence study of ulipristal acetate 30 mg tablets manufactured at Leon Farma (Spain) and (b) (4) under fasting conditions in healthy female volunteers
- o PD
- HRA2914-503: Luteal phase dose-response relationships of the antiprogestin ulipristal acetate in normally cycling women

- HRA2914-505: A single mid-follicular dose of ulipristal acetate, a new antiprogestin, inhibits folliculogenesis and endometrial differentiation in normally cycling women
- HRA2914-506: Endometrial effects of a single early-luteal dose of the selective progesterone receptor modulator, ulipristal acetate
- HRA2914-511: A prospective, randomized, double-blind, cross-over study to compare the capacity to prevent follicular rupture of ulipristal acetate with placebo, when administered after the ovulatory process has been triggered by the LH Surge
- HRA2914-510: A prospective randomized multi-center phase II study of the dose-response effects of continuous administration of low-dose ulipristal acetate parameters of the hypothalamic-pituitary-gonadal axis and the endometrium.

In study HRA2914-510, the study subjects were given 10 mg ulipristal acetate micronized tablets once daily for 3 months. Because the dosing regimen in study HRA2914-510 was different from the dosing regimen in phase 3 clinical studies (HRA2914-509 and HRA2914-513), study HRA2914-509 was not reviewed.

o Phase 2

- HRA2914-507: A Prospective, randomized, double blind, multi-center study to compare the efficacy, safety and tolerance of ulipristal acetate with levonorgestrel as emergency contraception
- o HRA2914-508: A prospective, randomized, double blind, multi-center study to compare the efficacy, safety and tolerance of 10 mg micronized ulipristal acetate to 50 mg ulipristal acetate as Emergency Contraception

Phase 3

- o HRA2914-509: A prospective, open-label, single arm, multi-center study to evaluate the efficacy, safety and tolerability of ulipristal acetate 30 mg as emergency contraception when taken between 48 hours and 120 hours of unprotected intercourse
- HRA2914-513: A prospective, randomized, single blind, multi-center study to compare the efficacy, safety and tolerability of ulipristal acetate with levonorgestrel as emergency contraception within 120 hours of unprotected intercourse
- 2.1.1 What are the highlights of the chemistry and physical-chemical properties of the drug substance, and the formulation of the drug product?

<Physico-chemical properties of ulipristal acetate>

o Structural formula:

Molecular weight: 475.619
 Molecular formula: C₃₀H₃₇NO₄

ο Chemical name: 17α -acetoxy- 11β -(4-N,N-dimethylaminophenyl)-19-norpregna-4,9-diene-3,20-dione

<Physico-chemical properties of 3877A, an active metabolite of ulipristal acetate>

o Structural formula:

o Molecular weight: 461.619

o Molecular formula: C₂₉H₃₅NO₄

O Chemical name: 17α-acetoxy-11β-(4-N-methylaminophenyl)-19-norpregna-4,9-diene-3,20-dione

<Drug Formulation>

The drug product (30 mg micronized tablet) is a white to off-white, round, 9 mm diameter tablet. Each tablet is packaged individually in a colorless transparent aluminum foil blister in a carton box.

Table 1. Composition of ulipristal acetate tablet

Component	Reference to quality standard	Function	Amount per tablet (mg)
Ulipristal acetate	Internal monograph	Drug substance	30.00
Lactose monohydrate	Current NF monograph		(b) (4)
Povidone K30	Current USP monograph		
1 ovidone 1830	Current OSI monograph		

			(b) (4)
Croscarmellose sodium	Current NF monograph	(b) (4)	(b)
Magnesium stearate	Current NF monograph	(b) (4)	(b)
Tablet weight	-	-	300.00

(b) (4) during the process.

There were three formulations (unmicronized capsule, micronized capsule, and micronized tablet) developed during the clinical phase of ulipristal acetate.

The clinical development of ulipristal acetate was initiated by NICHD. NICHD developed its own drug formulation which consisted of unmicronized capsules of various doses (10 – 200 mg). The initial phase 1 PD studies (HRA2914-503, HRA2914-505, and HRA2914-506) as well as the phase 2 studies (HRA2914-507 and HRA2914-508) were conducted with unmicronized capsule. When HRA Pharma became involved in the development of ulipristal acetate in 2001, micronization (micronized capsule and micronized tablet) was introduced as the last step of the manufacturing process to increase the bioavailability of ulipristal acetate. The phase 3 studies (HRA2914-509 and HRA2914-513) were conducted with 30 mg micronized tablet, manufactured at (b) (4).

The sponsor did not conduct a bridging study to bridge unmicronized capsule to 30 mg micronized tablet. Therefore, the two phase 2 studies (HRA2914-507 and HRA2914-508) were for descriptive purpose only and were not relied upon for approval of NDA 022474. However, the findings from the three phase 1 PD studies (HRA2914-503, HRA2914-505, and HRA2914-506) were relied upon for approval of NDA022474, since PD properties of 30 mg micronized tablet would be similar to those of unmicronized capsule without being influenced by the formulation difference. *See clinical review by Dr. Orleans Ronald for the review of phase 2 studies (HRA2914-507 and HRA2914-508).*

2.1.2 What is the proposed mechanism of action?

Ulipristal acetate inhibits or delays ovulation, depending on the time of ulipristal administration in the follicular phase, and alters the endometrium in the luteal phase. In addition, high dose ulipristal acetate (200 mg unmicronized capsule) appears to exert an anti-progesterone effect on the ovary and endometrium when it is given in the mid-luteal phase.

The effect of single doses of ulipristal acetate on ovulation and endometrial maturation was evaluated in four phase 1 studies in healthy women with regular menstrual cycles. Three of these four studies (HRA2914-503, HRA2914-505, and HRA2914-506) were sponsored by the NICHD and submitted to the agency in the form of literature. These three studies investigated single doses ranging from 0 to 200 mg of unmicronized ulipristal acetate capsules administered in different phases of the menstrual cycle (midfollicular, early luteal, or mid-luteal). Study HRA2914-511, sponsored by HRA Pharma (the current NDA holder), evaluated the effect of single dose of the to-be-marketed

formulation of ulipristal (30 mg micronized tablet) administered in the late follicular phase. Pertinent findings follow:

- Mid-follicular phase (HRA2914-505; placebo, 10, 50, and 100 mg unmicronized capsule): Mid-follicular phase was defined as time when the diameter of lead follicle is between 14 16 mm.; The size of follicles (by ultrasound) and estradiol concentrations were measured daily from menstrual cycle days 6-8 to follicular collapse in this parallel design study (n=44).
 - When ulipristal acetate (unmicronized capsule) was given in mid-follicular phase (Table 2),
 - growth of lead follicle was suppressed;
 - the time from dose to follicular collapse increased, therefore, ovulation was delayed;
 - the plasma concentration of estradiol decreased.

Table 2. Effect of ulipristal acetate (unmicronized capsule) when it was given in mid-follicular phase; HRA2914-505

	Approximate mean lead follicle diameter on the 4 days after dosing (SD not reported), mm	Days (mean ± SD) from dose to follicle collapse, days	Approximate mean estradiol concentration on the 4 days after dosing (SD not reported), pg/mL
Placebo (n=12)	21.5	5.8 ± 0.6	1,030
10 mg unmicronized capsule (n=11)	21	6.8 ± 1.0	699
50 mg unmicronized capsule (n=11)	17.5	10.3 ± 1.2	405
100 mg unmicronized capsule (n=10)	16.5	12.7 ± 1.0	276

^{*}Approximate mean estradiol concentration in each group (placebo, 10, 50, and 100 mg unmicronized capsule) prior to dosing measured on the day of dosing was between 405 and 423 pg/mL.

- o <u>Late follicular phase</u> (HRA2914-511; placebo and 30 mg micronized tablet): Late follicular phase was divided into periods of ovulation (when follicular rupture is imminent with lead follicle size ≥ 18 mm) and LH surge onset (when LH > 8 IU/L for the first time OR LH increased by at least 40% compared to the day before and > 6 IU/L).; The size of follicles (by ultrasound) and hormone concentrations were measured daily from menstrual cycle days 5-8 to 6 days after dosing in this cross over study (n=35).
 - When ulipristal acetate (30 mg micronized tablet) was given in late follicular phase (Table 3),
 - the occurrence of follicular rupture reduced;
 - the occurrence of LH surge reduced;
 - the plasma concentration of estradiol increased:
 - the plasma concentration of progesterone decreased.

Table 3. Effect of ulipristal acetate (30 mg micronized tablet) when it was given in

late follicular phase; HRA2914-511

iate ioniculai	ii phase; HKA2914-311				
	Adminis	Administration of ulipristal acetate (30 mg micronized) on the day of or after LH surge onset			
	Frequency of follicle rupture during the 6 days after dosing, % (n/n)	Frequency of LH surge onset during the 6 days after dosing, % (n/n)	Estradiol concentration during the 6 days after dosing, pmol/L (mean ± SD)	Progesterone concentration during the 6 days after dosing, nmol/L (mean ± SD)	Frequency of follicle rupture during the 6 days after dosing, % (n/n)
Placebo	100 (34/34)	97.1 (33/34)	370.4 ± 207.5	17.9 ± 19.0	100 (19/19)
30 mg micronized tablet	55.8 (19/34)	76.5 (26/34)	420.4 ± 246.6	13.9 ± 18.8	63.2 (12/19)

^{*}Approximate mean concentrations of estradiol and progesterone in each group (placebo and 30 mg micronized tablet) prior to dosing measured on the day of dosing were 530 pg/mL and 4 nmol/L, respectively.

In study HRA2914-505, administration of ulipristal acetate during the mid-follicular phase suppressed the size of lead follicular cell and decreased the plasma concentration of estradiol. These two findings from study HRA2914-505 support each other, since estradiol is mostly secreted by follicular cells. However, study HRA2914-511 showed that estradiol concentration was higher in ulipristal acetate arm when ulipristal acetate was administered in late follicular phase. This may have resulted from the delay of follicular rupture, which in turn increased the time for the follicular cell to produce estradiol

- <u>Early luteal phase</u> (HRA2914-506; placebo, 10, 50, and 100 mg unmicronized capsule): Early luteal phase was defined as one or two days after ovulation (The occurrence of ovulation was assessed by ultrasonography.).; Endometrial thickness and menstrual cycle length were measured in two cycles, cycle 1 for baseline and cycle 2 for treatment in this parallel design study (n=56).
 - When ulipristal acetate (unmicronized capsule) was given in early luteal phase (Table 4),
 - endometrial thickness reduced;
 - menstrual cycle length did not change (no statistical difference).

Table 4. Effect of ulipristal acetate (unmicronized capsule) when it was given in early luteal phase; HRA2914-506

Endometrial thickness on	Mean menstrual cycle
4-6 days after dosing, mm	length (pre- vs. post-
$(mean \pm SD)$	treatment), day

Placebo (n=15)	$+1.3 \pm 2.3$	28.3 vs. 29.6
10 mg (n=13), 50 mg		
(n=14), and 100 mg (n=14)		
unmicronized capsule (Data	-0.6 ± 2.2	27.8 vs. 28.2
for each dose is not		
available).		

^{*}Baseline endometrial thickness and mean menstrual cycle length were measured in cycle 1; Treatment effect was measured in cycle 2.

- o <u>Mid-luteal phase</u> (HRA2914-503; placebo, 1, 10, 50, 100, and 200 mg unmicronized capsule): Mid-luteal phase was defined as 6 8 days after LH surge in this parallel design study (n=36).
 - o When ulipristal acetate (unmicronized capsule) was given in mid-luteal phase (Table 5),
 - no significant effect on lengths of luteal phase was observed at doses up to 100 mg;
 - high dose (200 mg) ulipristal acetate caused early endometrial bleeding with shorter length of luteal phase which may have been resulted from its anti-progesterone activity.

Table 5. Effect of ulipristal acetate (unmicronized capsule) when it was given in mid-luteal phase; HRA2914-503

mid ideal pinos, iliaizoi	Lengths of luteal phase, day	Women with early bleeding,
	$(mean \pm SD)$	n/n
Placebo	13.4 ± 0.5	0/5
1 mg unmicronized capsule	13.7 ± 1.0	1/6
10 mg unmicronized capsule	13.5 ± 1.1	2/6
50 mg unmicronized capsule	11.8 ± 1.2	3/6
100 mg unmicronized capsule	13.1 ± 1.2	2/7
200 mg unmicronized capsule	9.7 ± 0.3	6/6

2.1.3 What are the proposed indication, dosage and route of administration?

The proposed indication of ulipristal acetate is the prevention of pregnancy following unprotected intercourse or a known or suspected contraceptive failure, not for routine use as a contraceptive. One tablet of ulipristal acetate can be taken orally as soon as possible within 120 hours (5 days) after unprotected intercourse or a known or suspected contraceptive failure. The tablet can be taken with or without food. Ulipristal acetate can be taken at any time during the menstrual cycle.

2.2 General Clinical Pharmacology

2.2.1 What are the design features of the clinical pharmacology and clinical studies used to support dosing?

Based on findings from three PD studies (HRA2914-503, HRA2914-505, and HRA2914-506; *See section 2.1.2.*), the sponsor decided that 50 mg unmicronized capsule should be developed as an emergency contraceptive. Subsequently the sponsor conducted study HRA2914-501 to compare the absorption profile of three formulations (10 mg unmicronized capsule, 10 mg micronized capsule, and 10 mg micronized tablet). Based on C_{max} and $AUC_{0-\infty}$ of 10 mg micronized tablet being 95 and 38 % higher, respectively, compared to C_{max} and $AUC_{0-\infty}$ of unmicronized capsule (HRA2914-501), the sponsor estimated that 30 mg (calculation based on C_{max} : 26 mg = 50 mg / 1.95; calculation based on $AUC_{0-\infty}$: 36 mg = 50 mg / 1.38) micronized tablet would achieve similar exposure as 50 mg unmicronized capsule.

HRA2914-501: PK comparison of three preparations of the selective progesterone receptor modulator, ulipristal acetate

- o Study objective
 - O Primary objective was to explore whether (b) (4) unmicronized ulipristal acetate (R) has reduced bioavailability as evaluated by plasma concentrations compared to micronized ulipristal acetate administered by capsule (T1) or tablet (T2) by using standard PK profiles obtained after administration of the three formulations at the same dose, 10 mg.
- Study design
 - Ten potential subjects underwent a screening visit with physical examination to determine eligibility prior to inclusion in the study and all ten entered the study. One subject was withdrawn after the first treatment period due to an adverse event (hyperthyroidism), so only nine subjects completed the study. Eligible subjects were either admitted to the hospital inpatient unit or reported to the hospital. Under fasting conditions, subjects were randomized according to a cross-over design for the first two treatment (R T1 or T1 R) periods; all subjects received the third treatment (T2) during the third period. Washout period between each treatment was at least 7 days.

Demographics

Parameter (N=9)	Mean (SD)	Range
Age (years)	34 (10.4)	19 - 47
BMI (kg/m ²)	25 (4.2)	17.7- 30.0
	5 Caucasian, 2 African Americans, 1	
Race	Asian,	
	1 Multiracial	

- o Results
 - o Ulipristal acetate (Figure 1, Figure 2, and Table 6)
 - Micronized capsule (T1) vs. unmicronized capsule (R)

- After administration of the micronized capsule, the mean C_{max} and AUC_{0-∞} of ulipristal acetate was higher by 20 and 40%, respectively, compared to the Reference unmicronized capsule. The median t_{max} of ulipristal acetate for both micronized and unmicronized capsules was similar (1.13 vs. 1.25 hours).
- Micronized tablet (T2) vs. unmicronized capsule (R)
 - After administration of the micronized tablet, the mean C_{max} and AUC_{0-∞} of ulipristal acetate was higher by 95 and 38%, respectively, compared to the Reference unmicronized capsule. The median t_{max} of ulipristal acetate was shorter for micronized tablet compared to unmicronized capsule (0.62 vs. 1.25 hours)

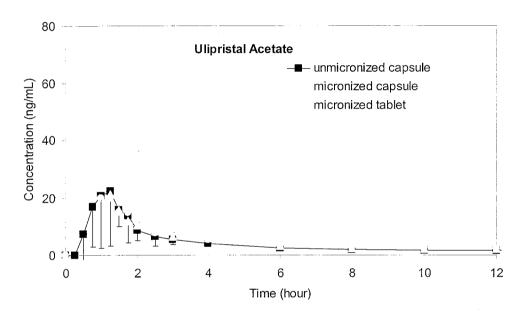


Figure 1. Arithmetic mean (± SD) concentration-time profiles of ulipristal acetate following administration of 10 mg ulipristal acetate (linear scale); HRA2914-501

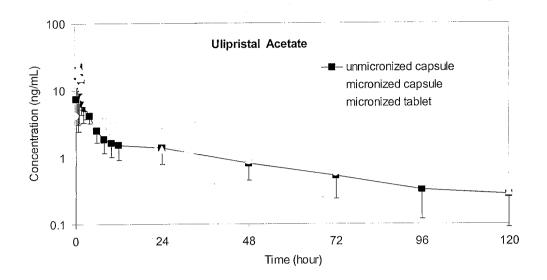


Figure 2. Arithmetic mean (\pm SD) concentration-time profiles of ulipristal acetate following administration of 10 mg ulipristal acetate (semi-logarithmic scale); HRA2914-501

Table 6. PK parameters of ulipristal acetate following single dose administration of ulipristal acetate 10 mg in three different formulations (unmicronized capsule, micronized capsule, and micronized tablet) to 8 healthy females under fasting conditions; HRA2914-501

D ,	Mean (CV%)						
Parameter	Unmicronized capsule	Micronized capsule	Micronized tablet				
C _{max} (ng/mL)	29.1 (59)	35.0 (57)	56.7 (51)				
t _{max} (h)*	1.25(0.50-1.50)	1.13(0.50 - 3.00)	0.62(0.50-2.00)				
AUC _{0-t} (ng·h /mL)	123.1 (49)	170.6 (49)	171.8 (50)				
$AUC_{0-\infty}$ (ng·h/mL)	138.1 (52)	193.4 (50)	189.9 (53)				

^{*}median (range)

o 3877A (Figure 3, Figure 4, and

Table 7)

- O Micronized capsule (T1) vs. unmicronized capsule (R)
 - After administration of the micronized capsule, the mean C_{max} of 3877A was higher by 20 % and the mean AUC_{0-∞} of 3877A was lower by 3% compared to unmicronized capsule. The median t_{max} of ulipristal acetate for both micronized and unmicronized capsules was similar (1.00 vs. 1.25 hours).
- o Micronized tablet (T2) vs. unmicronized capsule (R)
 - After administration of the micronized tablet, the mean C_{max} and AUC_{0-∞} of ulipristal acetate was higher by 92 and 23%, respectively compared to the Reference unmicronized capsule. The median t_{max} of 3877A was shorter for micronized capsule compared to unmicronized capsule (0.75 vs. 1.25 hours)

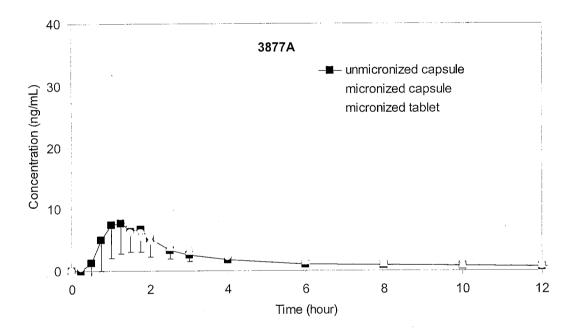


Figure 3. Arithmetic mean (\pm SD) concentration-time profiles of 3877A following administration of 10 mg ulipristal acetate (linear scale); HRA2914-501

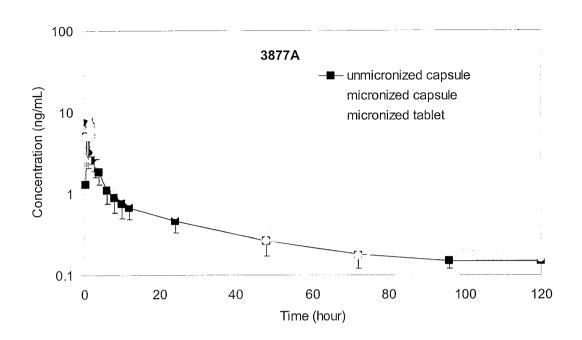


Figure 4. Arithmetic mean (\pm SD) concentration-time profiles of 3877A following administration of 10 mg ulipristal acetate (semi-logarithmic scale); HRA2914-501

Table 7. PK parameters of 3877A following administration of ulipristal acetate 10 mg in three different formulations (unmicronized capsule, micronized capsule, and micronized tablet) to 8 healthy females under fasting conditions: HRA2914-501

Parameter	Mean (CV%)						
Farameter	Unmicronized capsule	Micronized capsule	Micronized tablet				
C _{max} (ng/mL)	10.7 (40)	12.8 (40)	20.5 (49)				
t _{max} (h)*	1.25 (0.75 – 1.75)	1.00(0.50 - 2.00)	0.75(0.50-2.00)				
AUC _{0-t} (ng·h /mL)	56.5 (59)	54.1 (29)	70.6 (43)				
$AUC_{0-\infty}$ (ng·h /mL)	62.8 (55)	61.0 (32)	77.5 (44)				

^{*}median (range)

2.2.2 Are the active moieties in the plasma appropriately identified and measured to assess PK parameters?

Yes. Blood samples were withdrawn up to 192 hours for determination of plasma concentration of ulipristal acetate and 3877A.

2.2.3 What are the PK characteristics of the drug and its major metabolite, 3877A?

After administration of a single 30 mg oral dose of ulipristal acetate as a micronized tablet, the drug was absorbed with a median t_{max} of 0.88 hour and a mean C_{max} of 176 ng/mL. Half-life of ulipristal acetate averaged 32.4 hours. The 3877A peaked around 1 hour post-dose with a C_{max} of 68.6 ng/mL, and its half-life averaged 26.6 hours, and its peak concentration averaged 68.6 ng/mL (HRA2914-504).

HRA2914-504: Study of the pharmacokinetic profile of a single 30 mg oral dose of ulipristal acetate in healthy volunteers

o Study objectives

o To study the PK profile of ulipristal acetate and its principle active metabolite, 3877A after administration of 30 mg single dose micronized tablet.

Study design

This was a single-dose, one-treatment, one-period study under fasting conditions. 20 healthy women were included. The screening visit occurred within 2 weeks before the study drug administration. The subjects signed the informed consent form before any study-related assessment. The subjects entered the clinic on day -1. After an overnight fasting, the subjects were administered one 30-mg ulipristal acetate tablet on day 1. They were discharged from the clinic on the evening of day 1. Blood samples for ulipristal acetate and 3877A assay were taken up to 192 hours post-dose.

Demographics

Race	1 West Indian			
D	13 Caucasian, 6 African Americans,			
BMI (kg/m ²)	21.6 (2.0)	19.0 - 25.2		
Age (years)	25 (6.3)	18 - 35		
Parameter (N=20)	Mean (SD)	Range		

- o Results (Figure 5, Figure 6, and Table 8)
 - Ulipristal acetate and 3877A mean concentration reached a peak within 1 hour of administration. Maximum plasma concentration and exposure of ulipristal acetate was approximately half of the 3877A.

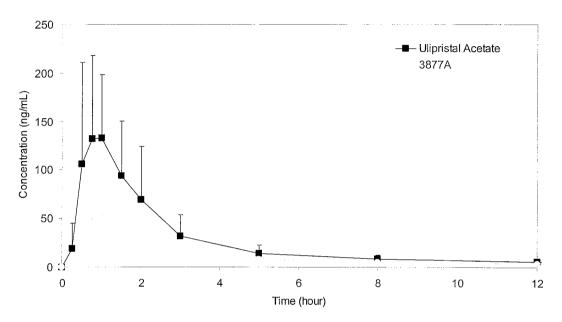


Figure 5. Arithmetic mean (\pm SD) concentration-time profiles following administration of 30 mg ulipristal acetate (linear scale); HRA2914-504

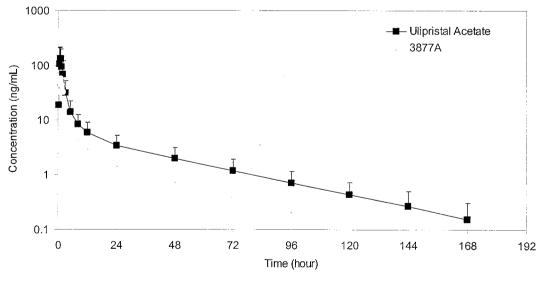


Figure 6. Arithmetic mean (± SD) concentration-time profiles following administration of 30 mg ulipristal acetate (semi-logarithmic scale); HRA2914-504

Table 8. PK parameters of ulipristal acetate and 3877A following single dose administration of ulipristal acetate 30 mg to 20 healthy females under fasting conditions: HRA2914-504

Domonoton	Me	Mean (CV%)				
Parameter	Ulipristal Acetate	3877A				
C _{max} (ng/mL)	176.0 (51)	68.6 (38)				
t _{max} (h)*	0.88 (0.50 - 2.00)	1.00 (0.75 - 2.00)				
AUC _{0-t} (ng·h/mL)	548.0 (47)	240.0 (24)				
AUC _{0-∞} (ng·h /mL)	556.0 (47)	246.0 (24)				
t _{1/2} (h)	32.4 (20)	26.6 (26)				

^{*}median (range)

2.2.3.1 What are the characteristics of drug absorption and elimination?

See section 2.2.3.

2.2.3.2 What are the characteristics of drug distribution?

Ulipristal acetate is shown to be highly bound (> 94 %) to plasma proteins, including, high density lipoprotein, α -acid glycoprotein, and non-esterified fatty acid (HRA2914-427, HRA2914-428, and HRA2914-475).

HRA2914-427: *In vitro* binding of [¹⁴C]-ulipristal acetate to human plasma proteins and human blood distribution

- o Study design
 - O The *in vitro* study was undertaken to evaluate the distribution of ulipristal acetate in blood and binding to human plasma proteins. [¹⁴C]-ulipristal acetate in concentrations ranging from 0.007 to 22 μM (3.3 10,500 ng/ml) was used in these experiments. Blood used in this experiment was obtained from three healthy female donors, 18-50 years old. Results of binding of ulipristal acetate to blood cells and plasma proteins are presented in Table 9.

Table 9. Relative binding of ulipristal acetate to blood cells and plasma proteins; HRA2914-427

Test system	Ulipristal acetate,	Simulated blood distribution (%)	
Unbound fraction (fu)		1.05	
Bound fraction:		$98.95(4.86 \pm 94.09)$	
-To blood cells	0.04-22	4.86	
	(19-10,500 ng/ml)		
-To plasma proteins	0.02-18.1	94,09	
	(9.5-8,600 ng/ml)		
% binding to individual plasma		∑ 94.09	
-HSA with NEFA (37.31 g/l)	0.02-18,1	15.51	
(HSA/NEFA=1.44)	(9.5-8,600 ng/ml)		
-AAG (1 g/l)	0.02-15.7	28.99	
	(9.5-7,500 ng/ml)		
-GG (11.5 g/l)	0.02-9.5	0,43	
	(9.5-4,500 ng/ml)		
-VLDL (0.5 g/l)	0.007-7.3	0.47	
	(3.3-3,500 ng/ml)		
-LDL (3 g/l)	0.02-20.7	19.26	
. 0 /	(9.5-9.800 ng/ml)		
-HDL (3.5 g/l)	0.02-20.6	29.44	
	(9.5-9,800 ng/ml)		

*HSA = human serum albumin; NEFA = non-esterified fatty acid; AAG = α -acid glycoprotein; GG: γ -globulins; VLDL = very low density lipoprotein; LDL = low density lipoprotein; HDL = high density lipoprotein

o Results

From these results it can be concluded that ulipristal acetate is highly bound in blood and plasma (4.9 % to blood cells and 94.1 % to plasma proteins), with a free fraction of 1.1 %.

HRA2914-428: *In vitro* binding of [¹⁴C]-ulipristal acetate to mouse, rat, rabbit, dog, monkey and human plasma (*Only the human data is presented here.*)

- Study design
 - O Human plasma was obtained from 3 healthy women donors aged 18-50 years. Equilibrium dialysis was used to determine the amount of plasma protein binding. The concentrations of [14 C]-ulipristal acetate tested were 0.03 20 μ M (14.3 9,500 ng/mL).
- Results
 - Mean (SD) protein binding fraction of ulipristal acetate was 98.24 (0.12).
 The % bound remained constant over the range of ulipristal acetate tested.

HRA2914-475: 3877A - Extent of binding to rat, monkey and human plasma proteins and partitioning between the plasma and cell fraction of human blood (*Only the human data is presented here.*)

- o Study design
 - O The amount of plasma protein binding at 0.15 and 1.5 μM 3877A was analyzed by LC-MS/MS using equilibrium dialysis methodology. Blood

partitioning analysis was performed and analyzed by LC-MS/MS to obtain the blood-to-plasma ratio.

o Results

o 3877A was highly bound (96.9%) to plasma proteins. 3877A had a blood cell: plasma ratio of 0.32 showing little binding to red cells compared to moderate and highly bound drugs.

2.2.3.3 What are the characteristics of drug metabolism?

Ulipristal acetate is shown to be metabolized to mono- (3877A) and di-demethylated ulipristal acetate. The data indicated that this metabolism is predominantly mediated by CYP3A4. The mono-demethylated ulipristal acetate appear to exert similar progesterone receptor binding affinity to ulipristal acetate, whereas di-demethylated ulipristal acetate show 10 times weaker progesterone receptor binding affinity compared to ulipristal acetate (HRA2914-429, HRA2914-430, and HRA2914-449).

HRA2914-429: Metabolism of [¹⁴C]-ulipristal acetate in microsomes isolated from female mouse, rat, rabbit, dog, monkey and human (*Only the human data is presented here*.)

Study design

O Liver microsomes from 10 female donors were purchased for use. A reaction contained 1 mg microsomal protein, 0.8 mM β-NADPH in Tris buffer and 10 μ M (4,750 ng/mL) ulipristal acetate. After stopping the reaction with acetonitrile, an aliquot of the sample was analyzed using liquid scintillation to determine recovery of radiolabel. Another aliquot was analyzed by radio-HPLC methodology to determine quantitative and qualitative amounts of parent compound and metabolites produced.

o Results

O The recoveries from incubations with 10 μM (4,750 ng/mL) ulipristal acetate showed recoveries ranging from 24.3 (incubation for 10 minutes) and 47.9 (incubation for 60 minutes) %. There were two metabolites of ulipristal acetate detected (Table 10). (*Identities of the two metabolites were not determined in this study; Some metabolites (1 to 7) were detected from microsomes of rat, rabbit, dog, monkey, and human.*)

Table 10. Metabolic profile resulting from incubation of 10 μM [¹⁴C]-ulipristal acetate in liver microsomes; HRA2914-429

Time	Ulipristal		Metabolites (mean %)						
(min)	acetate (mean %)	1	2	3	4	5	6	7	Mean % Recovery
0	99				1.1				101.1
10	75.7				18.4				103.2
60	52.1			19.2	28.2				100.3

HRA2914-430: Identification of the cytochrome P450 enzymes responsible for the *in vitro* metabolism of [¹⁴C]-ulipristal acetate and the effect of ulipristal acetate on the activity of specific human cytochrome P450 enzymes

Study HRA2914-430 addresses metabolism as well as drug interaction potential of ulipristal acetate. Therefore, only metabolism part of the study will be presented here. Drug interaction potential part is presented in section 2.4.2.

- Study design
 - o Incubations with CYP enzyme inhibitors
 - Experiments to determine the inhibition of ulipristal acetate metabolism were conducted using pooled human liver microsomes. Incubations comprised tris buffer (50 mM, pH 7.4), human liver microsomal protein (1 mg/mL), the selective chemical inhibitors and substrate (Table 11), and [¹⁴C]-ulipristal acetate. The total incubation volume was 0.2 mL and the reaction was terminated after 5 minutes.
 - o Incubation with cDNA expressed human CYP enzymes
 - Experiments to determine the degree of [14^C]-ulipristal acetate metabolism were conducted using microsomes obtained from insect cells transfected with over-expressed human CYP enzymes (supersome). Incubations comprised tris buffer (50 mM, pH 7.4), [14^C]-ulipristal acetate (20 μM) and supersome (either CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 or CYP3A4). The incubation mixture was pre-incubated at 37°C for 5 min prior to initiation with β-NADPH. Blank incubations contained no supersomes. Blank supersome is microsome obtained from insect cells infected with wild type baculovirus which expressed no enzyme activity. The total incubation volume was 0.2 mL and the reaction was terminated after 5 minutes.

Table 11. Human CYP enzymes tested for inhibition by ulipristal acetate and the enzyme-specific substrates

CYP	Substrate Used / Reaction (μM)	Control Inhibitor (µM)
CYP1A2	phenacetin / O-deethylation (30)	Furafylline (50)
CYP2C9	Tolbutamide / methyl-hydroxylation (100)	Sulfaphenazole (20)
CYP2C19	S-mephenytoin / 4-hydroxylation (80)	Tranylcypromine (100)
CYP2D6	bufuralol / 1-hydroxylation (10)	Quinidine (3)
CYP2E1	lauric acid / 11-hydroxylation (100)	Disulfiram (200)
CYP3A4	midazolam / 1-hydroxylation (10)	Ketoconazole (3)

o Results

- o Incubations with CYP enzyme inhibitors
 - Ulipristal acetate was metabolized to two metabolites designated as M1 and M2 in human liver microsomes. The definitive identification of these metabolites was not carried out in this study. Almost complete inhibition of ulipristal acetate metabolism to M1 and M2 occurred with incubation of CYP3A4 and CYP2E1 inhibitors. Minor inhibition to M1 occurred with CYP1A2 and CYP2D6 inhibitors (Table 12).

Table 12. Effects of selective inhibitors on *in vitro* M1 and M2 metabolite production from [¹⁴C]-ulipristal acetate in pooled human liver microsomes; HRA2914-430

СҮР		Human liver microsome			
Isozyme	Inhibitor	% Inhibition to M1	% Inhibition to M2		
Control (wi	thout any inhibitors)	0	0		
CYP1A2	furafylline	35.8	0		
CYP2A6	8-methoxypsoralen	37.5	0		
CYP2C9	sulfaphenazole	15.4	0		
CYP2C19	tranylcypromine	13.6	4.15		
CYP2D6	quinidine	2.96	6.73		
CYP2E1	disulfiram	100	87.8		
CYP3A4	ketoconazole	100	82.6		

- o Incubation with cDNA expressed human CYP enzymes
 - After incubation of ulipristal acetate with supersome expressing CYP3A4, M1 and M2 were produced.
 - The % radioactivity from M2 in supersome expressing CYP1A2, 2A6, 2C9, 2C19, 2D6, 2E1 were similar to control and blank supersome, which implied only CYP3A4 was involved in producing M2 (Table 13).

Since no CYP2E1 activity was implicated in ulipristal acetate metabolism with supersome expressing CYP2E1, the data observed with disulfiram in Table 12 may have been resulted from lack of selective inhibition of disulfiram in CYP2E1 activity.

Table 13. Metabolism of ulipristal acetate with microsomes expressing each CYP

enzyme; HRA2914-430

C	% Radioactivity				
Supersome	M1	M2			
CYP1A2	nd^1	1.08			
CYP2A6	nd	0.73			
CYP2C9	nd	1.00			
CYP2C19	nd	1.06			
CYP2D6	nd	1.79			
CYP2E1	nd	1.16			
CYP3A4	1.08	6.55			
Control ²	nd	0.88			
Blank supersome ³	nd	1.27			

¹ nd = not detected; ² Control contained microsomes obtained from insect cells infected with wild type baculovirus; ³Blank supersome contained no supersome

HRA2914-449: *In vitro* antiprogestational/antiglucocorticoid activity and progestin and glucocorticoid receptor binding of the putative metabolites, synthetic derivatives of ulipristal acetate, and mifepristone

Study design

O The relative binding affinities (RBAs) for progesterone receptors (PR) and glucocorticoid receptors (GR) of the mono- and di-demethylated metabolites of ulipristal acetate, mifepristone, and mono-demethylated mifepristone was determined. Competitive binding assays for steroid hormone receptors were performed using cytosolic preparations from tissues or cells. Cytosols containing PR or GR were prepared from uterus or thymus, respectively, of rabbits. Recombinant human PR-A or PR-B (rhPR-A, rhPR-B) were assayed in cytosolic extracts from insect cells infected with recombinant baculovirus expressing either human PR-A or human PR-B.

o Results

Table 14 summarizes the EC50 and relative binding affinities of these compounds for rhPR-A, rhPR-B, rabbit uterine PR and rabbit thymic GR. Mifepristone, ulipristal acetate, and their mono-demethylated metabolites bound with high affinity to rhPR-A, rhPR-B, and rabbit uterine PR. RBAs for rhPR-A, rhPR-B and rabbit uterine PR of di-demethylated ulipristal acetate were lower than ulipristal acetate and mono-demethylated ulipristal acetate. Mifepristone and its mono-demethylated metabolite showed the highest affinity for rabbit thymic GR, whereas didemethylated ulipristal acetate showed the lowest affinity.

Table 14. Binding of antiprogestins (mifepristone and ulipristal acetate) and its metabolites to progestin and glucocorticoid receptors

compound	rhPR-1	3	rhPR-A		rhPR-A Rabbit uterine PR		Rabbit thymic GR	
	EC50 (nM)	RBAª	EC50 (nM)	RBA	EC50 (nM)	RBA	EC50 (nM)	RBA ^b (%)

		(%)		(%)		(%)		
Progesterone	8.0 ± 0.3	100	7.7 ± 0.8	100	11.6 ± 0.4	100	-	-
Dexamethasone	-	-	_	-	_	-	8.2 ± 0.4	100
Mifepristone	9.5 ± 0.9	82	10.6 ± 1.3	84	11.5 ± 0.9	99	9.1 ± 0.8	88
Mono-demethylated mifepristone	9.7 ± 1.3	76	11.9 ± 1.3	70	7.7 ± 0.5	132	6.7 ± 0.7	105
Ulipristal acetate	7.7 ± 0.5	99	8.5 ± 0.6	101	13.6 ± 0.6	85	15.4 ± 1.3	53
Mono-demethylated ulipristal acetate	8.8 ± 0.2	78	11.6 ± 1.0	74	11.8 ± 0.9	101	14.7 ± 0.8	55
Di-demethylated ulipristal acetate	83.2 ± 11.9	9	108.5 ± 8.1	8	17.5 ± 2.5	60	73.9 ± 10.3	11

^aRBA: relative binding affinity = EC50 progesterone / EC50 test compound x 100

2.3 **Intrinsic factors**

Does race influence the PK of ulipristal acetate?

No definite PK study was conducted to study the potential effect of race/ethnicity. However, cross study comparisons of PK data from Asians, Caucasians, and African Americans indicate that the exposure of ulipristal acetate and 3877A may be higher in Asians.

The single dose PK data are available from 3 studies (HRA2914-504, HRA2914-512, and HRA2914-516). HRA2914-516 was conducted in Asians only, whereas two other studies (HRA2914-504 and HRA2914-512) were conducted in mostly Caucasians and African Americans (Table 15). Based on a cross study comparison, overall exposure (C_{max}, AUC_{0-t} , and $AUC_{0-\infty}$) of both ulipristal acetate and 3877A from study HRA2914-516 is approximately doubled compared to those from studies HRA2914-504 and HRA2914-512 (Table 16). Since there were no notable differences other than race in these studies which may have contributed to the PK differences, they suggest that exposure of ulipristal acetate and 3877A may be higher in Asians.

See sections 2.2.3 (for HRA2914-504), and 2.4.1 (for HRA2914-512), and 2.1.1 (for HRA2914-516) for detailed information.

There were two phase 3 clinical studies (HRA2914-509 and HRA2914-513) evaluating the safety and efficacy of ulipristal acetate. The race/ethnicity compositions for both study population and pregnancies observed were comparable (Table 17). Therefore, there was no effect of race/ethnicity on the efficacy of ulipristal acetate was observed.

Table 15. Comparison of demographics in three studies; HRA2914-504, HRA2914-512, and HRA2914-516

	HRA2914-504	
Parameter (N=20)	Mean (SD)	Range '
Age (years)	25 (6.3)	18 - 35

^bRBA: relative binding affinity = EC50 dexamethasone / EC50 test compound x 100

BMI (kg/m ²)	21.6 (2.0) 19.0 – 25.2		
Race	13 Caucasian, 6 African Americans, 1 West Indian		
	HRA2914-512		
Parameter (N=19)	Mean (SD) Range		
Age (years)	28 (5.2)	19 - 35	
BMI (kg/m ²)	22.2 (2.1) 19.0 – 24.9		
Race	13 Caucasians, 4 African Americans , 1 Asian, 1 Mauritian		
HRA2914-516			
Parameter (N=53)	Mean (SD)	Range	
Age (years)	29 (3.9)	20 – 37	
BMI (kg/m ²)	21.5 (2.0) 18.5 – 26.2		
Race	53 Asian		

Table 16. Comparison of PK parameters in three studies; HRA2914-504, HRA2914-512, and HRA2914-516

	HRA 2914-504			
Parameter	Mean (CV%)			
1 arameter	Ulipristal Acetate	3877A		
C _{max} (ng/mL)	176.0 (51)	68.6 (38)		
t _{max} (h)*	0.88 (0.50 - 2.00) 1.00 (0.75 - 2.00)			
AUC _{0-t} (ng·h/mL)	548.0 (47) 240.0 (24)			
$AUC_{0-\infty}$ (ng·h/mL)	556.0 (47) 246.0 (24)			
t _{1/2} (h)	32.4 (20) 26.6 (26)			
HRA2914-512				
Parameter	Mean (CV%)			
1 arameter	Ulipristal Acetate	3877A		
C _{max} (ng/mL)	173 (40) 86.5 (35)			
t _{max} (h)*	0.75 (0.50 - 1.50)	0.75 (0.50 – 1.50)		
AUC _{0-t} (ng·h/mL)	467 (52) 244 (34)			
AUC _{0-∞} (ng·h /mL)	474 (54) 265 (32)			
t _{1/2} (h)	37.2 (19) 30.0 (25)			
HRA2914-516				
Parameter -	Mean (CV%)			
	Ulipristal Acetate	3877A		
C _{max} (ng/mL)	315.7 (35) 118.5 (33)			
$t_{max}(h)^*$	1059.4 (46) 497.7 (34)			
$AUC_{0-t} (ng \cdot h/mL)$	1098.7 (49) 515.0 (35)			
$AUC_{0-\infty}$ (ng·h /mL)	0.75 (0.50 - 3.00) $1.00 (0.75 - 3.00)$			
$t_{1/2}(h)$	42.5 (26) 41.9 (48)			

^{*} Data presented as median (range)

Table 17. Comparison of study subjects and subjects who got pregnant in phase 3 clinical studies - 1: HRA2914-509 and HRA2914-513

	studies 1, 11	HRA2914-509		HRA2914-513	
		Study subjects (n=1533, ITT)	Pregnant subjects (n=27, FDA efficacy)	Study subjects (n=1104, ITT)	Pregnant subjects (n=16, FDA efficacy)
Age	(years)	24.4 ± 6.1	23.9 ± 5.2	24.5 ± 6.1	24.4 ± 2.6
BMI	(kg/m²)	25.3 ± 6.2	25.1 ± 5.2	25.3 ± 5.9	20.0 ± 14.2
Race, % (n)	Caucasian	60.3 (921)	66.7 (18)	72.8 (804)	75.0 (12)
	African American	21.5 (328)	22.2 (6)	19.0 (210)	25.0 (4)
	Asian	2.3 (35)	3.7(1)	1.2 (13)	0 (0)
	Other	13.9 (244)	7.4 (2)	7.0 (77)	0 (0)
Food intake, % (n)	Full meal	22.0 (272)*	14.8 (4)	48.3 (533)	31.3 (5)
	Snack	11.6 (143)*	18.5 (5)	34.8 (384)	50 (8)
	No data	66.4 (821)*	66.7 (18)	16.9 (186)	18.8 (3)

^{*}Study subjects for food intake in study HRA2914-509 is from mITT (n = 1241).

Table 18. Comparison of study subjects and subjects who got pregnant in phase 3 clinical studies – 2; HRA2914-509 and HRA2914-513

		Pooled FDA efficacy	Pooled pregnancy
		(HRA2914-509 & HRA2914-513);	(HRA2914-509 & HRA2914-513);
		n = 2182	n=43
Age (years),	< 18	1.6 (34)	0 (0)
% (n)	18 – 35	98.4 (2,148)	100 (43)
DMI (lear/m²)	< 25	60.9 (1,328)	55.8 (24)
BMI (kg/m²), - %, (n)	25 - 30	23.1 (504)	18.6 (8)
	> 30	16.0 (350)	25.6 (11)

2.3.2 Does body weight /BMI influence the PK of ulipristal acetate?

There was a trend of decreasing exposure of ulipristal acetate with increasing BMI (19 – 25; HRA2914 504 and HRA2914-512) which may have contributed to the higher pregnancy rate in subjects with BMI > 30 (HRA2914-509 and HRA2914-513).

Subjects with BMI > 30 showed higher pregnancy rate (3.14 %) compared to subjects with BMI \leq 30 (1.59 % for 25 < BMI \leq 30, 1.81 % for BMI \leq 25) in two phase 3 studies (HRA2914-509 and HRA2914-513). In these studies, subjects' BMIs were 25.3 \pm 6.2 (HRA2914-509) and 25.3 \pm 5.9 (HRA2914-513) kg/m². In addition, two phase 1 studies (HRA2914 504 and HRA2914-512) with subjects' BMIs between 19 and 25 showed a visual trend of decreasing exposure (AUC and C_{max}) of ulipristal acetate with increasing BMI, although no statistical significance was observed (for AUC_{0-\infty}: R² = 0.0592, P = 0.1468; for C_{max} : R² = 0.0541, P = 0.1599; Figure 7). Therefore, this trend (decreasing exposure with increasing BMI) may have contributed to the findings from phase 3 studies in which higher pregnancy rate was observed in subjects with BMI > 30.

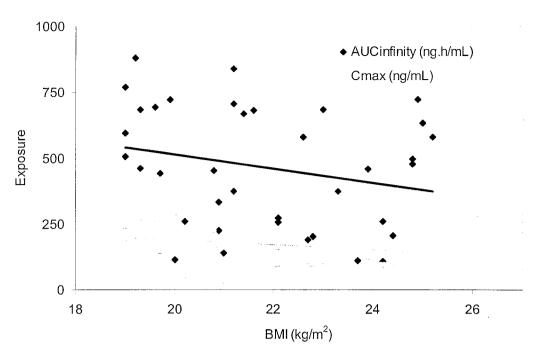


Figure 7. Ulipristal acetate exposure – BMI profiles in two studies, HRA2914-504 and HRA2914-512

2.3.3 Does hepatic disease influence the PK of ulipristal acetate?

No studies were conducted to evaluate the effect of hepatic disease on the PK of ulipristal acetate. However, ulipristal acetate may be poorly metabolized in patients with hepatic impairment.

For drugs intended for single dose administration, a hepatic impairment study will generally not be useful, unless clinical concerns suggest otherwise. (The guidance for industry: PK in patients with impaired hepatic function, FDA, May 2003).

2.3.4 Does renal disease influence the PK of ulipristal acetate?

No studies were conducted to evaluate the effect of renal disease on the PK of ulipristal acetate.

For drugs intended for single dose administration, a renal impairment study will generally not be useful, unless clinical concerns suggest otherwise. (The draft guidance for industry: PK in patients with impaired renal function, FDA, May 2010).

2.4 Extrinsic factors

2.4.1 Does food intake influence the bioavailability of ulipristal acetate?

The status of food intake changed the exposure of ulipristal acetate (decreased C_{max} and increased AUC). However, this finding may not have clinical relevance for efficacy and safety.

Following a single dose administration of ulipristal acetate in with food (high fat/high calorie breakfast), the absorption of ulipristal was reduced as indicated by 40 - 45 % lower C_{max} and delayed t_{max} of about 2 hours for both ulipristal and 3877A (HRA2914-512). However, food intake increased the extent of absorption as indicated by 20 – 25 % higher AUC of ulipristal and 3877A compared to fasting conditions (Table 19).

In the phase 3 clinical studies (HRA2914-509 and HRA2914-513), there was no food restriction, as subjects were dosed as they are in need of emergency contraception. Collection of data on last food intake prior to taking ulipristal acetate was recorded in Case Report Form (CRF). However, food intake status was available only in 33 % of the total study subjects in both studies (HRA2914-509 and HRA2914-513). Based on a limited food intake status data of phase 3 studies, there was no difference in pregnancy rate observed in groups with different food intake status (full meal vs. snack; Table 17). Therefore, ulipristal acetate can be taken regardless of meal.

HRA2914-512: An open, randomized, crossover design study comparing the bioavailability of a single 30 mg oral dose of ulipristal acetate given in fed and fasting conditions in healthy volunteers

- o Study objectives
 - o to evaluate the impact of concomitant food intake on the relative bioavailability of ulipristal acetate 30 mg tablet
- Study design
 - O The study was a randomized two-way cross-over, two treatments, two periods, two sequences, open, single dose study. The study duration was to be at least 36 days per subject (from Day 1 of treatment period 1 to the end-of-study visit) and included two treatment periods separated by a minimum of 21 days (interval between 2 drug administrations), and a follow-up visit at 15 days after the last study drug administration.

o Demographics

Parameter (N=19)	Mean (SD)	Range	
Age (years)	28 (5.2)	19 - 35	
BMI (kg/m ²)	22.2 (2.1)	19.0 - 24.9	
Race	13 Caucasians, 4 African Americans, 1 Asian, 1 Mauritian		

- o Results (Figure 8 Figure 9 and Table 19)
 - O Due to the observation of non-linear concentration time profile in semi-logarithmic scale, the terminal half-life (and consequently AUC_{0-∞}) could not be estimated in 1 subject (110) for ulipristal and in 3 subjects (001, 002, 110) for 3877A when dosed under fasting conditions, and in 2 subjects (009 and 110) for both ulipristal and 3877A.

- o C_{max} was lower under fed conditions, both for ulipristal (99.2 vs. 173 ng/mL) and for 3877A (54.0 vs. 86.5 ng/mL).
- \circ For both ulipristal and 3877A, the t_{max} was delayed following food intake (medians: 3 vs. 0.75 hour).
- O AUCs were slightly increased by food intake, for ulipristal (AUC_{0-t}: 566 vs. 467 ng·h/mL and AUC_{0-∞}: 608 vs. 474 ng·h/mL) as well as for 3877A (AUC_{0-t}: 294 vs. 244 ng·h/mL and AUC_{0-∞}: 310 vs. 265 ng·h/mL).
- The terminal elimination phase started approximately 24 hour post-dose for both treatments. Based on the log-linear mean profiles, the elimination rate seemed similar for both treatments. The terminal elimination half-life averaged around 36 hour for ulipristal and around 30 hour for 3877A, independently of the food conditions.
- \circ In fed conditions, C_{max} fell by approximately 40-45% and time to peak was delayed by approximately 1.25 hours. Administration after a high-fat breakfast resulted in an increase of the extent of absorption by 20-25% in comparison to the administration in fasting conditions.

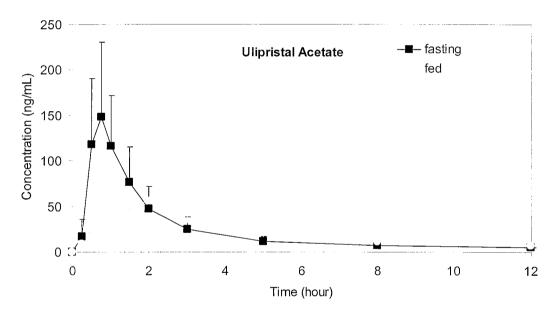


Figure 8. Arithmetic mean $(\pm SD)$ concentration-time profiles of ulipristal acetate following administration of 30 mg ulipristal acetate under fasting and fed conditions (linear scale); HRA2914-512

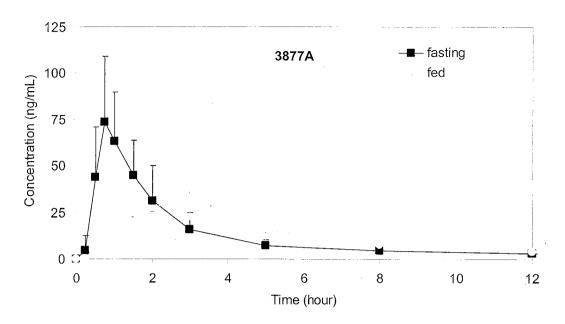


Figure 9. Arithmetic mean (\pm SD) concentration-time profiles of 3877A following administration of 30 mg ulipristal acetate under fasting and fed conditions (linear scale); HRA2914-512

Table 19. Comparative bioavailability of ulipristal acetate and 3877A following administration of ulipristal acetate 30 mg to 18 healthy females under fasting and fed conditions; HRA2914-512

icu conditions, iii(A2)14-312				
Parameter	Uliprist	Ulipristal Acetate		
1 arameter	fasting	fed	90% CI	
C_{max} (ng/mL)	173 (40)	99.2 (45)	47.9 – 66.1	
$t_{\text{max}}(h)^*$	0.75 (0.50 - 1.50)	3.00 (0.50 – 5.00)	_	
AUC_{0-t} (ng·h/mL)	467 (52)	566 (50) ^a	112.6 - 135.0	
AUC_{inf} (ng·h/mL)	474 (54) ^a	608 (48) ^b	115.7 – 137.6	
t _{1/2} (h)	37.2 (19) ^a	36.0 (22) ^b	-	
Parameter	3877A		90% CI	
Farameter	fasting	fed	90% CI	
C _{max} (ng/mL)	86.5 (35)	54.0 (41)	50.5 – 77.2	
$t_{\text{max}}(h)^*$	0.75 (0.50 - 1.50)	3.00(0.50-5.00)	_	
AUC_{0-t} (ng·h/mL)	244 (34)	294 (32) ^a	111.46 – 132.91	
AUC _{inf} (ng·h/mL)	265 (32)°	$310(30)^{b}$	108.09 - 130.42	
t _{1/2} (h)	30.0 (25)°	$28.9(24)^{b}$	_	

*median (range) N = 18 except ${}^{a}N = 17$, ${}^{b}N = 16$ and ${}^{c}N = 15$

2.4.2 Are there drug-drug interaction potentials with other drugs?

The effect of other drugs on ulipristal acetate

No *in vivo* drug-drug interaction studies were performed with ulipristal acetate. *In vitro* data indicate that the metabolism of ulipristal acetate is predominantly mediated by

CYP3A4 (See section 2.2.3.3.) Concomitant administration of CYP3A4 inhibitors may inhibit the metabolism of ulipristal acetate and cause increased plasma concentration of ulipristal acetate. However, there was no safety concern identified in the phase 3 studies (HRA2914-509 and HRA2914-513). In addition, concomitant administration of CYP3A4 inducers may reduce plasma concentrations of ulipristal acetate and may result in decrease in efficacy. Therefore, *in vivo* drug-drug interaction trial with CYP3A4 inducer needs to be conducted as post marketing requirements.

The effect of ulipristal acetate on other drugs

Based on the findings from three *in vitro* studies (HRA2914-430, HRA2914-476, and HRA2914-477), it is unlikely that the CYP inhibition and CYP induction (CYP1A2 and CYP3A4) by ulipristal acetate and 3877A detected *in vitro* had clinical relevance. Therefore, no further *in vivo* studies to evaluate inhibition or induction of CYP enzyme activity by ulipristal acetate or 3877A are warranted.

HRA2914-430: Identification of the cytochrome P450 enzymes responsible for the *in vitro* metabolism of [¹⁴C]-ulipristal acetate and the effect of ulipristal acetate on the activity of specific human cytochrome P450 enzymes

Study HRA2914-430 addresses drug interaction as well as metabolism of ulipristal acetate. Therefore, only drug interaction part of the study will be presented here. Metabolism part is presented in section 2.2.3.3.

- Study design
 - \circ For inhibition of CYP enzyme activity by ulipristal acetate, the human liver microsomes, the CYP-specific substrates (Table 11) at concentration near each Km, and [14 C]-ulipristal acetate (10 and 100 μ M) were incubated in 50 mM Tris buffer, pH 7.4 at 37°C. All reactions were stopped by the addition of methanol.
- Results
 - o Inhibition of CYP enzyme activity by ulipristal acetate
 - CYP activities mediated by CYP2C9, CYP2D6, and CYP3A4 were significantly inhibited by 100 μM ulipristal acetate (Table 20).

<Calculation of [I]/Ki to determine the need for in vivo CYP inhibition study> .

- 1. Since none of the % inhibition by 10 μ M ulipristal acetate was > 50%, IC₅₀ of ulipristal acetate for each CYP enzymes was expected to be > 10 μ M.
- 2. With substrate concentration near K_m , K_i was calculated to be > $IC_{50}/2$, which is 5 μM .
- 3. Based on mean C_{max} (176 ng/mL = 0.37 μ M) of ulipristal acetate from study HRA2914-512, [I]/Ki = 0.37/5 < 0.1. Therefore, no further in vivo CYP inhibition study with ulipristal acetate was warranted. (The draft guidance for industry: Drug interaction studies, FDA, September 2006).

Table 20. Inhibition of *in vitro* CYP-mediated Activities by ulipristal acetate in

pooled human liver microsomes; HRA2914-430

	% inhibition relative to CYP specific inhibitor				
CYP enzyme	CYP specific inhibitor	Ulipristal acetate (10 μΜ)	Ulipristal acetate (100 μM)		
CYP1A2	83.7	10.1	5.5		
CYP2C9	82.8	0.0	50.4		
CYP2C19	91.5	0.0	3.0		
CYP2D6	83.6	17.9	55.9		
CYP2E1	82.3	0.0	10.6		
CYP3A4	96.2	31.2	54.0		

HRA2914-476: Inhibition of 3877A on CYP Enzyme Activities in Pooled Human Liver Microsomes

- Study design
 - o For the pooled CYP cocktail inhibition assay, reactions contained 0.8 mg microsomal protein, 1 mM β-NADPH in 0.1 M KPO4 buffer, pH 7.4 with 5 mM MgCl₂, substrate at near K_m concentrations (Table 21) and with or without 4 μM 3877A with a 37°C pre-incubation for 5 min before addition of β-NADPH in triplicate. The reaction was incubated for 20 min. After stopping the reaction with acetonitrile, an aliquot of the sample was analyzed using LC-MS/MS methodology.

The concentration of 3877A, 4 μ M, equated to 1,844 ng/mL which was approximately 20 times higher than mean C_{max} of 3877A (86.5 ng.mL) observed in study HRA2914-512.

Table 21. CYP-specific substrates and metabolites

CYP	Substrate Used (µM)	Metabolite
CYP1A2	7-Ethoxyresorufin O-deethylation (0.85)	Resorufin
CYP2A6	Coumarin 7-hydroxylation (3.6)	7-OH coumarin
CYP2C9	Tolbutamide methyl-hydroxylation (166)	OH bupropion
CYP2C19	S-mephenytoin 4-hydroxylation (80)	6α-OH paclitaxel
CYP2D6	Bufuralol 1-hydroxylation (30)	OH tolbutamide
CYP2E1	Chlorzoxazone6-hydroxylation (100)	4'-OH mephenytoin
CYP3A4	Midazolam 1-hydroxylation (10)	1'-OH bufuralol
CYP3A4	Testosterone 6β-hydroxylation (20)	6-OH chlorzoxazone
CYP2B6	Bupropion hydroxylation (100)	1'-OH midazolam
CYP2C8	Paclitaxel 6α -hydroxylation (6)	6-βOH testosterone

o Results

3877A at 4 μM had minimal effect on *in vitro* inhibition of CYP enzyme activities in the cocktail inhibition study with only CYP2C19, CYP2E1, CYP2B6, and CYP2C8 demonstrating inhibition > 10%, and none > 40% (Table 22).

<Calculation of [I]/Ki to determine the need for in vivo CYP inhibition study>

- 1. Since none of the % inhibition by 4 μ M 3877A was > 50%, IC₅₀ of 3877A for each CYP enzymes was expected to be > 4 μ M.
- 2. With substrate concentration near K_m , Ki was calculated to be > $IC_{50}/2$, which is 2 μM .
- 3. Based on mean C_{max} (86.5 ng/mL = 0.18 μ M) of 3877A from study HRA2914-512, [I]/Ki = 0.18/2 < 0.1. Therefore, no further in vivo CYP inhibition study with 3877A was warranted. (The draft guidance for industry: Drug interaction studies, FDA, September 2006).

Table 22. Inhibition of 3877A on CYP enzyme activities; HRA2914-476

Table 22. Inhibition of 367/A on C11 enzyme activities, 11XA2514-470					
	Metabolite Formation				
CYP	(nM, mean (SD))		% control activity	% inhibition	
	Without	With 3877A	76 Control activity	70 1111110111011	
	3877A	WILLI SOTTA			
CYP1A2	103 (13)	112 (2.9)	109	0	
CYP2A6	3270 (164)	3063 (146)	94	6	
CYP2C9	1793 (331)	1683 (85)	94	6	
CYP2C19	634 (47)	544 (25)	86	14	
CYP2D6	871 (77)	799 (45)	92	8	
CYP2E1	3097 (338)	2453 (167)	79	21	
CYP3A4	2200 (506)	2557 (110)	116	0	
(Midazolam)	2200 (300)	2557 (110)	116	0	
CYP3A4	1550 (296)	1440 (255)	93	7	
(Testosterone)	1330 (290)	1440 (255)	93	7	
CYP2B6	411 (58)	257 (10)	63	37	
CYP2C8	547 (29)	329 (14)	60	40	

HRA2914-477: Induction Effects of ulipristal acetate and 3877A on CYP1A2 and CYP3A4 Activities in Fresh Human Hepatocytes

Based on the findings from liver microsome and supersome expressing CYP enzymes in study HRA2914-430, the sponsor conducted study HRA2914-477 to investigate whether ulipristal acetate and 3877A induced enzyme activity of CYP1A2 and CYP3A4. This reviewer considered enzyme induction study for CYP1A2 in HRA2914-477 unnecessary, since supersome expressing CYP enzyme showed no relevance of CYP1A2 activity for the metabolism of ulipristal acetate in study HRA2914-430. See section 2.2.3.3.

o Study design

O Fresh human hepatocytes from 2 donors were plated in triplicate at $150,000 \text{ cells/cm}^2$ and incubated with hepatocyte media for 24 h prior to experiments. Subsequently, the cells were treated with ulipristal acetate at 0.5 and 5 μM and 3877A at 0.2 and 2 μM. Positive control CYP inducers were β-naphthoflavone at $10 \mu M$ (CYP1A2 inducer) and rifampicin at $50 \mu M$ (CYP3A4 inducer).

- o CYP1A2 enzyme activity was determined using the O-deethylation reaction of 7-ethoxyresorufin to resorufin.
- CYP3A4 enzyme activity was determined using formation of 6β-hydroxytestosterone from the hydroxylation of testosterone.
- % positive control was calculated as following:
 (activity of test drug treated cells activity of negative control) × 100 /
 (activity of positive control activity of negative control)

Results

β-naphthoflavone (10 μM) increased the formation rate of resorufin by 7and 14-fold in comparison with those of the vehicle-treated controls, indicating that the CYP1A2 enzyme in the tested hepatocytes was active and inducible. Ulipristal acetate (0.5 and 5 μM) and 3877A (0.2 and 2 μM) did not demonstrate induction effect on CYP1A2 activity at any of the tested concentrations.

Since ulipristal acetate and 3877A were associated with induction of CYP1A2 activity less than 40% of the positive control (β-naphthoflavone), no further in vivo evaluation of ulipristal acetate and 3877A on the induction of CYP1A2 is warranted according to the FDA guidance (Guidance for industry: drug interaction studies, FDA, September 2006).

Table 23. Induction of CYP1A2 Activity by ulipristal acetate and 3877A in Human

Hepatocytes; HRA2914-477

Tropatoe	Trepatocytes, TIXA2914-4//					
Donor	Compound	Treatment	Resorufin Formation (fmol/well/min, mean(SD))	% positive control		
		Solvent	103 (3.7)	0		
	Control	β-naphthoflavone (1A2 inducer)	1452 (163)	100		
1	Ulipristal	0.5 μΜ	100 (5.7)	-0.2		
	acetate	5 μΜ	87 (3.8)	-1.2		
	3877A	0.2 μΜ	93 (5.6)	-0.8		
		2 μΜ	88 (4.6)	-1.1		
	Control	Solvent	77 (4.4)	0		
		β-naphthoflavone	545 (29)	100		
2	Ulipristal	· 0.5 μM	66 (5.7)	-2.5		
2	acetate	5 μΜ	75 (6.4)	-0.4		
	3877A	0.2 μΜ	66 (4.4)	-2.5		
	38//A	2 μΜ	76 (4.4)	-0.3		

 Rifampicin (50 μM) increased the formation rate of 6βhydroxytestosterone by 13- and 15-fold in comparison with those of the vehicle-treated controls, indicating that the CYP3A4 enzyme in the tested hepatocytes was active and inducible. Ulipristal acetate and 3877A did not demonstrate induction effect on CYP3A4 activity at any of the tested concentrations.

Since ulipristal acetate and 3877A were associated with induction of CYP3A4 activity less than 40% of the positive control (rifampin), no further in vivo evaluation of ulipristal acetate and 3877A on the induction of CYP3A4 is warranted according to the FDA guidance (Guidance for industry: drug interaction studies, FDA, September 2006).

Table 24. Induction of CYP3A4 Activity by ulipristal acetate and 3877A in Human

Hepatocytes: HRA2914-477

Donor	Compound	Treatment	6ß-hydroxytestosterone Formation (fmol/well/min, mean(SD))	% positive control
	Control	Solvent	4.6 (1.4)	0
	Control	Rifampin	59 (19)	100
1	Ulipristal	0.5 μΜ	1.4 (0.6)	-5.9
1	acetate	5 μΜ	0.5 (0.1)	-7.6
	3877A	0.2 μΜ	3.3 (0.8)	-2.4
	30//A	2 μΜ	2.6 (0.3)	-3.7
	Control	Solvent	27 (3.1)	0
	Control	Rifampin	415 (100)	100
2	Ulipristal	0.5 μΜ	18 (1.0)	-2.3
	acetate	5 μΜ	1.9 (0.0)	-6.5
	3877A	0.2 μΜ	25 (1.4)	-0.7
387	30//A	2 μΜ	8.8 (0.3)	-4.8

2.5 General Biopharmaceutics

The particle size distribution specification for 30 mg micronized tablet is as follows:

Particle size (um)	Distribution	
		(b) (4)

The phase 3 studies (HRA2914-509 and HRA2914-513) were conducted with 30 mg micronized tablet, manufactured at (b) (4). Subsequently, sponsor decided to manufacture 30 mg micronized tablet at two sites, (b) (4) and Leon Farma in Spain. The bioequivalence between ulipristal acetate tablets manufactured at (b) (4) and Leon Farma (Spain) was established in *in vivo* bridging study (HRA2914-516). *See section 2.1.1 for drug formulation.*

HRA2914-516: A single-dose, open-label, randomized, 2-way crossover bioequivalence study of ulipristal acetate 30 mg tablets manufactured at Leon Farma (Spain) and (b) (4) under fasting conditions in healthy female volunteers

- Study design
 - o It was a randomized, two-way crossover, two treatments, two periods, two sequences, single dose study performed in 54 healthy women, 18 35 years old and not pregnant. Treatment consisted of a single dose of ulipristal acetate 30 mg tablet from (b) (4) and from Leon Farma, separated by a wash-out period of at least 14 days. Blood sampling for ulipristal acetate and its main metabolite was performed over 168 hours. Fifty-four healthy women provided informed consent and were screened for enrollment into the study and 47 completed the study.
- Disposition of subjects
 - Among the 54 women screened volunteers, who signed informed consent and were enrolled into the study, 53 received at least one dose of the study product (one subject withdrawn her consent). Among the 53 treated subjects, 47 (88.7%) completed all scheduled study visits. Six subjects were withdrawn or discontinued from the study: three due to adverse event and three due to emesis.
 - Subject numbers

• Emesis: 1018, 1040, and 1041

Adverse events

Neutropenia: 1029 and 1036Low hemoglobin: 1008

Demographics

ograpines	· · · · · · · · · · · · · · · · · · ·		
Parameter (N=53)	Mean (SD)	Range	
Age (years)	29 (3.9)	20 - 37	
BMI (kg/m ²)	21.5 (2.0)	18.5 - 26.2	
Race	53 Asian		

- o Results
 - o Ulipristal acetate (Figure 10, Figure 11, and Table 25)
 - For both the Reference (b) (4)t) and Test products (Leon Farma), T_{max} occurred between 0.50 and 3.00 hour.
 - The mean C_{max} values of ulipristal acetate for Test and Reference products were similar (geometric mean: 293.4 vs. 315.7 ng/mL, respectively).
 - The mean AUC_{0-t} was similar to $AUC_{0-\infty}$ for the Test and Reference products ($AUC_{0-t}/AUC_{0-\infty} > 0.95$) indicating that the sampling time period was adequate to characterize the PK profile of the doses administered.
 - The results of study regarding ulipristal acetate presented in Table 25 showed that the criteria used to estimate bioequivalence between the Test and Reference products were all fulfilled. Therefore, the Test product, ulipristal acetate 30 mg tablet manufactured at Leon Farma, was bioequivalent to the Reference

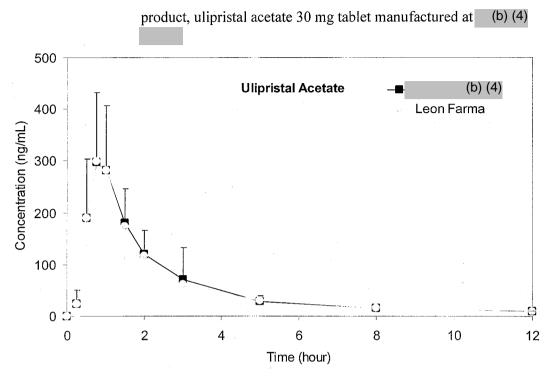


Figure 10. Arithmetic mean (± SD) concentration-time profiles of ulipristal acetate following administration of 30 mg ulipristal acetate (linear scale); HRA2914-516

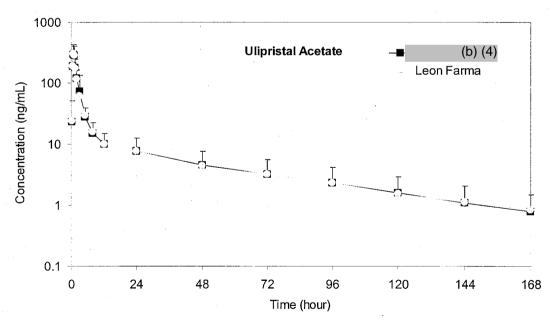


Figure 11. Arithmetic mean $(\pm SD)$ concentration-time profiles of ulipristal acetate following administration of 30 mg ulipristal acetate (semi-logarithmic scale); HRA2914-516

Table 25. Comparative bioavailability of ulipristal acetate following administration of ulipristal acetate 30 mg manufactured at Leon Farma (Test) and (b) (4)

(Reference) to 47 healthy females under fasting conditions; HRA2914-516

() , , , , , , , , , , , , , , , , , ,						
_	Geometric Mean [CV]		Ratio	90% Confidence		
Parameter	Leon Farma (Test)	(b) (4) (Reference)	(Test : Ref)	Interval		
C_{max} (ng/mL)	293.4 (44)	315.7 (35)	94.4	86.7 – 102.7		
AUC_{0-t} (ng·h/mL)	1041.8 (46)	1059.4 (46)	99.0	94.9 – 103.3		
AUC _{inf} (ng·h/mL)	1085.5 (48)	1098.7 (49)	99.4	95.3 – 103.7		
$t_{max}(h)^a$	0.75 (0.50 - 3.00)	0.75 (0.50 - 3.00)				
$t_{1/2} (h)^b$	44.6 (35)	42.5 (26)				

^a Data presented as median (range)

o 3877A (Figure 12, Figure 13, and Table 26)

Although the measurement of the parent drug is generally recommended for bioequivalence study, the sponsor measured both parent drug (ulipristal acetate) and active metabolite (3877A).

- Following a single oral administration of 30 mg tablet of ulipristal acetate manufactured at (b) (4) (Reference) and Leon Farma (Test) in 47 female healthy women, the main metabolite of ulipristal acetate, 3877A was measurable in plasma samples collected until 168 hour post-dosing.
- Plasma concentrations of 3877A increased to reach T_{max} between 0.75 and 3.00 hours for the Reference product and between 0.50 and 5.00 hours for the Test product.
- The C_{max} of 3877A was slightly higher in the Reference product than the Test product (geometric mean: 118.5 vs. 110.4 ng/ml).
- The mean AUC_{0-t} was similar to $AUC_{0-\infty}$ for the Test and Reference products ($AUC_{0-t}/AUC_{0-\infty} > 0.95$) indicating that the sampling time period was adequate to characterize the PK profile of the doses administered.
- The results of study regarding 3877A presented in Table 26 showed that the criteria used to estimate bioequivalence between the Test and Reference products were all fulfilled. Therefore, the Test product, ulipristal acetate 30 mg tablet manufactured at Leon Farma, was bioequivalent to the Reference product, ulipristal acetate 30 mg tablet manufactured at (b) (4).

^b Data presented as arithmetic mean (CV)

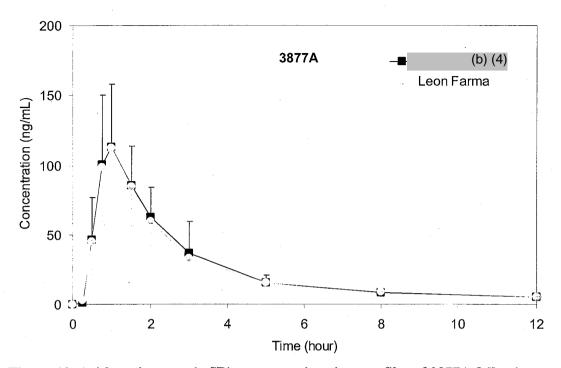


Figure 12. Arithmetic mean (\pm SD) concentration-time profiles of 3877A following administration of 30 mg ulipristal acetate manufactured at Leon Farma (linear scale); HRA2914-516

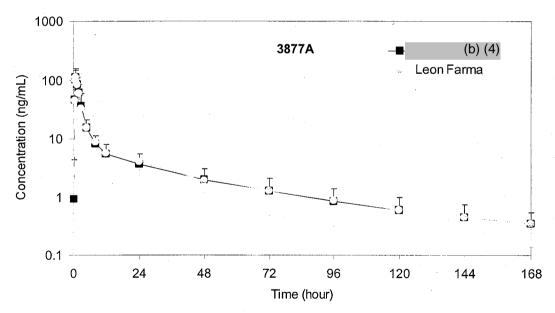


Figure 13. Arithmetic mean (\pm SD) concentration-time profiles of 3877A following administration of 30 mg ulipristal acetate manufactured at Leon Farma (semi-logarithmic scale); HRA2914-516

Table 26. Comparative bioavailability of 3877A following administration of ulipristal acetate 30 mg manufactured at Leon Farma (Test) and (b) (4) (Reference) to 47 healthy females under fasting conditions; HRA2914-516

	Geometric Mean [CV]		Ratio	90% Confidence
Parameter	Leon Farma (Test)	(b) (4) (Reference)	(Test : Ref)	Interval
$\begin{array}{c} C_{max} \left(ng/mL \right) \\ AUC_{0\text{-tldc}} \left(ng \cdot h \ /mL \right) \\ AUC_{inf} \left(ng \cdot h \ /mL \right) \\ t_{max} \left(h \right)^a \\ t_{1/2} \left(h \right)^b \end{array}$	110.4 (35) 495.4 (36) 512.2 (37) 1.00 (0.50 – 5.00) 40.1 (28)	118.5 (33) 497.7 (34) 515.0 (35) 1.00 (0.75 – 3.00) 41.9 (48)	94.3 100.0 100.0	87.7 – 101.3 96.1 – 104.0 96.1 – 104.0

^a Data presented as median (range)

2.5.1 Are the clinical trial and the to-be-marketed formulations the same?

Yes. The formulation of ulipristal acetate (30 mg micronized tablet) used in clinical studies is identical to the "to-be-marketed" formulation.

2.6 Analytical Section

o Studies HRA2914-501, HRA2914-504, HRA2914-510, HRA2914-512 Ulipristal acetate and its main metabolite, 3877A, were determined using LC-MS/MS method. The method validation report, CP005404, satisfied the requirements of Bioanalytical Method Validation (Guidance for industry – Bioanalytical method validation, FDA, May 2001).

Component to	measure	Ulipristal acetate	3877A
Type of Biolo	gical Fluid	Human plasma	Human plasma
Range of Standard Curve		0.1 – 20 ng/mL	0.1 – 20 ng/mL
Linearity (R ²))	0.9955 ± 0.0034	0.9950 ± 0.0030
QC Sample	Intra- assay	81.5 – 105.6 %	83.7 – 110.0 %
Accuracy	Inter- assay	101.3 – 112.0 %	100.0 – 111.8 %
QC Sample	Intra- assay	2.2 – 4.7 %	4.5 – 6.7 %
Precision	Inter- assay	4.5 – 8.8 %	2.8 – 12.1 %
Stability		116 hrs at room temperature; 12.5 months at -6°C; 3 cycles of freezing/thawing	116 hrs at room temperature; 12.5 months at -6°C; 3 cycles of freezing/thawing
Recovery		(b) (4)	(b) (4)

^b Data presented as arithmetic mean (CV)

All human (female) samples of studies HRA2914-501, HRA2914-504, HRA2914-510 and HRA2914-512 were analyzed for the content of ulipristal acetate and 3877A according to the validated method validation report, CP005404, as reported in bioanalytical reports, CP035139 (for a study HRA2914-501), CP070186 (for a study HRA2914-504), CP035445 (for a study HRA2914-510), and CP070223 (for a study HRA2914-512).

o Study HRA2914-516

Ulipristal acetate and its main metabolite, 3877A, were determined using LC-MS/MS method. The method validation report, API4000, satisfied the requirements of Bioanalytical Method Validation (Guidance for industry – Bioanalytical method validation, FDA, May 2001).

Component to	o measure	Ulipristal acetate	3877A
Type of Biolo	ogical Fluid	Human plasma	Human plasma
Range of Standard Curve		0.1 – 250 ng/mL	0.1 - 100 ng/mL
Linearity (R ²))	0.9952 - 0.9998	0.9958 - 0.9994
QC Sample	Intra- assay	85.1 – 113.9 %	84.7 – 97.1 %
Accuracy Interassay		91.0 – 106.4 %	90.4 – 95.5 %
QC Sample	Intra- assay	1.8 – 15.3 %	1.5 – 11.3 %
Precision	Inter- assay	2.9 – 9.7 %	2.5 – 9.2 %
Stability		9 hrs at room temperature; 66 days at -22 ± 5°C; 3 cycles of freezing/thawing	9 hrs at room temperature; 66 days at -22 ± 5°C; 3 cycles of freezing/thawing
Recovery		(b) (4)	(b) (4)

All human (female) samples of study HRA2914-516 were analyzed for the content of ulipristal acetate and 3877A according to the validated method validation report, API4000, as reported in bioanalytical report, 016-09.

Studies HRA2914-503 and HRA2914-503b

The studies HRA2914-503 and HRA2914-503b correspond to a scientific publication of a PK/PD study performed by the National Institute of Child Health and Human Development. During this study, radioimmunoassay (RIA) method was used but the sponsor does not have any data other than those published in the article. The sponsor has neither a study-specific analytical report nor a method validation report for the RIA method that was used in these studies.

4 Page(s) of Draft Labeling have been withheld in full immediately following this page as B4 (CCI/TS)

Application Type/Number	Submission Type/Number	Submitter Name	Product Name
NDA-22474	ORIG-1	LABORATOIRE HRA PHARMA	Ella , Ulipristal Acetate
electronically signature.	/ and this page i		d that was signed on of the electronic
/s/		_	
HYUNJIN KIM 07/08/2010			
MYONG JIN KIM 07/09/2010			
EDWARD D BAS 07/09/2010			

INDIVIDUAL CLINICAL STUDY REVIEW

Submission Dates: 10/15/2009, 1/19/2010, NDA: 022474 4/05/2010, 05/11/2010 Ella **Brand Name** Generic Name Ulipristal Acetate Hyunjin Kim, Pharm.D., M.S. Reviewer Myong-Jin Kim, Pharm.D. Team Leader **OCP** Division Division of Clinical Pharmacology 3 Division of Reproductive and Urologic Products OND Division (DRUP) HRA Pharma Sponsor 049381 Relevant IND Submission Type, Code Original, 1S Formulation; Strength Tablet; 30 mg Emergency contraceptive for prevention of Indication pregnancy following unprotected intercourse or a known or suspected contraceptive failure

1	HRA-2914-501	
2	HRA-2914-504	<i>-</i>
	HRA-2914-512	
-	HRA-2914-516	
	HRA-2914-511	

HRA2914-501: Pharmacokinetic comparison of three preparations of the selective progesterone receptor modulator, ulipristal acetate

- o Study objective
 - o Primary objective is to explore whether (b) (4) unmicronized ulipristal acetate (R) has reduced bioavailability as evaluated by plasma concentrations compared to micronized ulipristal acetate administered by capsule (T1) or tablet (T2) by using standard pharmacokinetic profiles obtained after administration of the three formulations at the same dose, 10 mg.
- Study design
 - O Ten potential subjects underwent a screening visit with physical examination to determine eligibility prior to inclusion in the study and all ten entered the study. One subject was withdrawn after the first treatment period due to an adverse event (hyperthyroidism), so only nine subjects completed the study. Eligible subjects were either admitted to the hospital

inpatient unit or reported to the hospital for pharmacokinetic testing. Subjects were randomized according to a cross-over design for the first two treatment (R-T1 or T1-R); see below for "study drug formulations".) periods; all subjects received the third treatment (T2) during the third period. Washout period between each treatment was at least 7 days.

- Study drug formulations
 - o R: 10 mg unmicronized powder in capsule supplied by NIH Pharmaceutical Development Service
 - T1: 10 mg micronized powder in capsule supplied by NIH Pharmaceutical Development Service
 - o T2: 10 mg micronized tablet supplied by HRA Pharma
- Disposition of subjects
 - The study population consisted of 10 healthy female volunteers between the ages of 18 and 50, of whom 9 completed the study.
 - One subject did not complete the study: The subject 36-90-21-0 was screened and performed the first period of the study but was thereafter excluded because of hyperthyroidism found 48 hours after the administration of the drug.
 - Out of 9 subjects who completed the study, subject 31-90-75-4's concentrations of ulipristal acetate and 3877A at 3 hours post-dose were below limit of quantification. Therefore, this subject was excluded for calculation of PK parameters.
 - A total of 8 subjects' data were used for calculation of PK parameters of ulipristal acetate and 3877A.
- o Inclusion criteria
 - o Female volunteers between 18 and 50 years of age
 - o Female gender to evaluate effects in the target population for clinical trials
 - O In good health. Chronic medication use was acceptable except for glucocorticoid use. Other chronic medication use may have been acceptable at discretion of the principle investigator. Interval use of over the counter drugs was acceptable but must be recorded.
 - o Hemoglobin > 10 g/dl
 - Willing and able to comply with requirements
 - Using mechanical (condoms, diaphragms), abstinence, oral contraceptive, intrauterine device or sterilization methods of contraception for the duration of the study
 - Negative urine pregnancy test within one week of the first study
- Exclusion criteria
 - o Significant abnormalities in the history, physical or laboratory examination
 - o Pregnancy
 - o Lactation
 - Use of oral, injectable or inhaled glucocorticoids or megestrol within the last year
 - Unexplained vaginal bleeding

- History of malignancy within the past 5 years
- Use of estrogen or progesterone-containing compounds, such as oral contraceptives and hormone replacement therapy
- Use of anti-epileptic agents
- Dosing conditions
 - Dosing on study days occurred between 7 and 9 am for all subjects.
 Subjects fasted the evening of the day before the drug administration.
 Tablets/capsules were taken with a glass of water. Subjects were kept on site under supervision for at least the first 12 hours after dosing.
- o PK measurements and blood samples
 - o Ulipristal acetate and its principle metabolite, 3877A were assayed in the plasma samples.
 - On the morning of dosing, a blood test for pregnancy was performed. All women had a negative result, allowing them to continue. Blood was drawn at -5 and -1 minutes before ulipristal acetate was given, and at the following time points after the drug was taken: 15, 30, 45, 60, 75, 90, 105, 120, 150, 180 minutes and 4, 6, 8, 10, 12, 24, 48, 72, 96, 120 hours.

Demographics

5		
Parameter (N=9)	Mean (SD)	Range
Age (years)	34 (10.4)	19 - 47
BMI (kg/m ²)	25 (4.2)	17.7- 30.0
	5 Caucasian, 2 Af	rican Americans, 1
Race		ian,
	1 Mul	tiracial

o Results

- O Ulipristal acetate (Figure 1, Figure 2, and Table 1)
 - Micronized capsule vs. unmicronized capsule
 - After administration of the micronized capsule, the mean C_{max} and AUC_{0-∞} of ulipristal acetate was higher by 20 and 40%, respectively, compared to the reference unmicronized capsule. The median t_{max} of ulipristal acetate for both micronized and unmicronized capsules was similar (1.13 vs. 1.25 hours).
 - Micronized tablet vs. unmicronized capsule
 - After administration of the micronized tablet, the mean C_{max} and AUC_{0-∞} of ulipristal acetate was higher by 95 and 38%, respectively, compared to the reference unmicronized capsule. The median t_{max} of ulipristal acetate was shorter for micronized tablet compared to unmicronized capsule (0.62 vs. 1.25 hours)



Figure 1. Arithmetic mean $(\pm SD)$ concentration-time profiles of ulipristal acetate following administration of 10 mg ulipristal acetate (linear scale); HRA2914-501

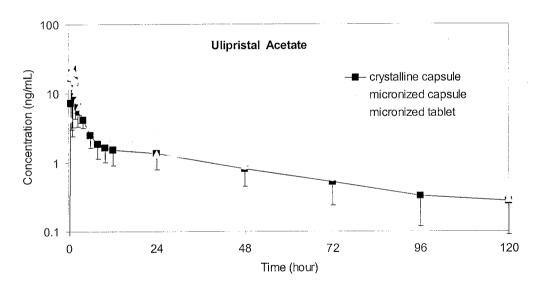


Figure 2. Arithmetic mean $(\pm SD)$ concentration-time profiles of ulipristal acetate following administration of 10 mg ulipristal acetate (semi-logarithmic scale); HRA2914-501

Table 1. PK parameters of ulipristal acetate following single dose administration of ulipristal acetate 10 mg in three different formulations (unmicronized capsule, micronized capsule, and micronized tablet) to 8 healthy females under fasting conditions; HRA2914-501

Parameter	Mean (CV%)

	Unmicronized capsule	Micronized capsule	Micronized tablet
C _{max} (ng/mL)	29.1 (59)	35.0 (57)	56.7 (51)
t _{max} (h)*	1.25 (0.50 – 1.50)	1.13 (0.50 - 3.00)	0.62(0.50-2.00)
AUC _{0-t} (ng·h /mL)	123.1 (49)	170.6 (49)	171.8 (50)
$AUC_{0-\infty}$ (ng·h/mL)	138.1 (52)	193.4 (50)	189.9 (53)

 $C_{max} = maximum concentration$

 t_{max} = time to maximum concentration

 AUC_{0-t} = area under the drug concentration curve from time 0 to time of last determinable concentration

 $AUC_{0-\infty}$ = area under the drug concentration curve from time 0 to infinity *median (range)

- o 3877A (Figure 3, Figure 4, and Table 2)
 - Micronized capsule vs. unmicronized capsule
 - After administration of the micronized capsule, the mean C_{max} of 3877A was higher by 20 % and the mean $AUC_{0-\infty}$ of 3877A was lower by 3% compared to unmicronized capsule. The median t_{max} of ulipristal acetate for both micronized and unmicronized capsules was similar (1.00 vs. 1.25 hours).
 - Micronized tablet vs. unmicronized capsule
 - After administration of the micronized tablet, the mean C_{max} and AUC_{0-∞} of ulipristal acetate was higher by 92 and 23%, respectively compared to the reference unmicronized capsule. The median t_{max} of 3877A was shorter for micronized capsule compared to unmicronized capsule (0.75 vs. 1.25 hours)

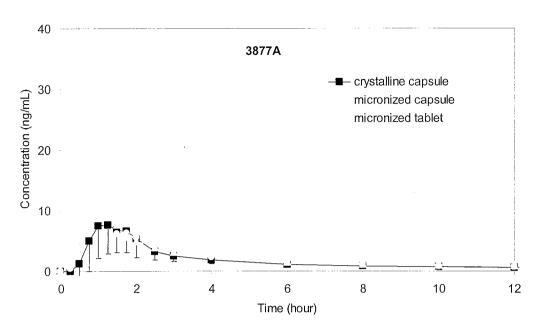


Figure 3. Arithmetic mean (± SD) concentration-time profiles of 3877A following administration of 10 mg ulipristal acetate (linear scale); HRA2914-501

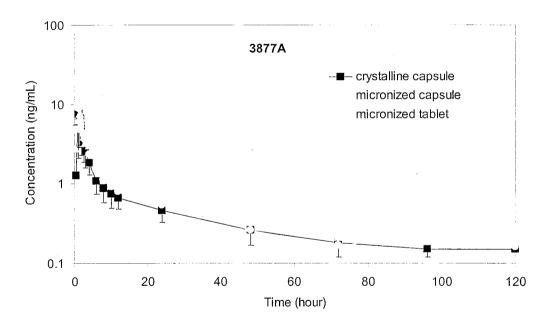


Figure 4. Arithmetic mean (\pm SD) concentration-time profiles of 3877A following administration of 10 mg ulipristal acetate (semi-logarithmic scale); HRA2914-501

Table 2. PK parameters of 3877A following administration of ulipristal acetate 10 mg in three different formulations (unmicronized capsule, micronized capsule, and micronized tablet) to 8 healthy females under fasting conditions; HRA2914-501

	g
Parameter	Mean (CV%)

	Unmicronized capsule	Micronized capsule	Micronized tablet
C _{max} (ng/mL)	10.7 (40)	12.8 (40)	20.5 (49)
t _{max} (h)*	1.25(0.75-1.75)	1.00(0.50 - 2.00)	0.75(0.50 - 2.00)
AUC _{0-t} (ng·h /mL)	56.5 (59)	54.1 (29)	70.6 (43)
$AUC_{0-\infty}$ (ng·h/mL)	62.8 (55)	61.0 (32)	77.5 (44)

 $C_{\text{max}} = \text{maximum concentration}$

 t_{max} = time to maximum concentration

 AUC_{0-t} = area under the drug concentration curve from time 0 to time of last determinable concentration

 $AUC_{0-\infty}$ = area under the drug concentration curve from time 0 to infinity *median (range)

Conclusion

O The three formulations differed in bioavailability for both the parent compound, ulipristal acetate and its primary metabolite, 3877A. The results showed that in comparison with the other two formulations (unmicronized capsule and micronized capsule), the micronized tablet formulation was absorbed faster, had a higher plasma concentration peak, and had a similar or greater bioavailability both the parent compound and metabolite.

HRA2914-504: Study of the pharmacokinetic profile of a single 30 mg oral dose of ulipristal acetate in healthy volunteers

- o Study objectives
 - To study the PK profile of ulipristal acetate and its principle active metabolite, 3877A after administration of 30 mg single dose micronized tablet.
- Study design
 - o This was a single-dose, one-treatment, one-period study under fasting conditions. 20 healthy women were included. The screening visit occurred within 2 weeks before the study drug administration. The subjects signed the informed consent form before any study-related assessment. The subjects entered the clinic on day -1. After an overnight fasting, the subjects were administered one 30-mg ulipristal acetate tablet on day 1. They were discharged from the clinic on the evening of day 1. Blood samples for ulipristal acetate and 3877A assay were taken up to 192 hours post-dose.
- Study drug formulation
 - Ulipristal acetate 30 mg micronized tablet (to-be-marketed strength and formulation) manufactured at (b) (4)
- Disposition of subjects
 - The study population consisted of 20 healthy female volunteers between the ages of 18 and 35. All 20 females completed the study.
- Inclusion criteria
 - o Healthy female subjects 18 to 35 years old (inclusive)

- \circ BMI within 18.5 25 kg/m² (inclusive)
- o Regular menstruation cycles of 24 to 35 days
- Not currently using hormonal contraception and having had at least one complete menstrual cycle (2 menses) since having stopped hormonal contraception
- Willing to not use hormonal methods of contraception until study completion
- o having had at least one complete menstrual cycle (2 menses) post delivery, miscarriage, or abortion
- Having given voluntary, written informed consent, and agreeing to observe all study requirements (the subject needs to be available for follow-up over the next 6 weeks)
- Willing to abstain from any acts of unprotected intercourse during participation in the study
- Non-smoker

Exclusion criteria

- Evidence of psychiatric disorder, antagonist personality, poor motivation, or emotional or intellectual problems likely to limit the validity of consent to participate in the study or limit the ability to comply with protocol requirements
- History of or current compulsive alcohol abuse (> 10 drinks weekly), or regular exposure to other substances of abuse
- O Use of any medication, prescribed or over-the-counter, within 2 weeks before the first administration of study medication, except if this did not affect the outcome of the study in the opinion of the investigator
- Impaired hypothalamic-pituitary-adrenal reserve or history of oral glucocorticoids replacement therapy in the year before screening and enrollment
- O Participation in another study with an experimental drug within 8 weeks before the first administration of study medication or participation to more than 3 experimental drug studies within 12 months before the beginning of the study
- o Major illness during the 3 months before start of the screening period;
- Undiagnosed genital bleeding
- Relevant history of laboratory or clinical findings indicative of acute or chronic disease likely to influence the study outcome (results from screening hematological and clinical chemistry investigations with one or more variables outside the normal ranges did not necessarily lead to exclusion of a subject from the study. At the discretion of the investigator, the investigations of certain variables outside the normal ranges could be repeated 3 times. If the variables return to within the normal range for the particular laboratory test, or if the investigator considered the variable to be at an acceptable level, the subject was considered eligible, with respect to hematological and clinical chemistry criteria, to participate in the study
- Donation or loss of blood equal to or exceeding 500 mL during the 8 weeks before the first administration of study medication, or donation of

- more than 1.5 L of blood within the 10 months before the beginning of the study
- O Diagnosis of hypertension made during the screening period or current diagnosis of hypertension
- o Resting pulse rate of > 100 bpm or < 45 bpm during the screening period, either supine or standing
- o Current pregnancy as confirmed by positive urine β-HCG test, or test not performed
- o Current breast-feeding
- o Current use of hormonal contraception
- o Current use of progesterone intrauterine system

o Dosing conditions

- After an overnight fast of at least 10 hours, subjects received 30 mg ulipristal acetate (1 tablet) with 240 mL of water. No food was allowed for at least 4 hour post-dose. Water was allowed as desired except for 1 hour before and after drug administration.
- o PK measurements and blood samples
 - o Ulipristal acetate and its principle metabolite, 3877A were assayed in the plasma samples.
 - o Blood samples were collected at pre-dose, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 5, 8, 12, 24, 48, 72, 96, 120, 144, 168, and 192 hours post-dose.

o Demographics

Parameter (N=20)	Mean (SD)	Range
Age (years)	25 (6.3)	18 - 35
BMI (kg/m ²)	21.6 (2.0)	19.0 - 25.2
Race	· ·	African Americans, t Indian

- o Results (Figure 5, Figure 6, and Table 3)
 - Ulipristal acetate and 3877A mean concentration reached a peak within 1 hour of administration. Maximum plasma concentration and exposure of ulipristal acetate was approximately half of the 3877A.

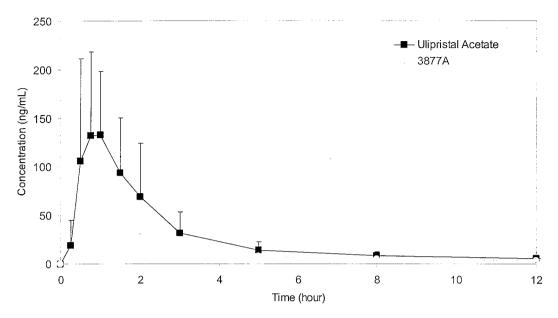


Figure 5. Arithmetic mean (\pm SD) concentration-time profiles following administration of 30 mg ulipristal acetate (linear scale); HRA2914-504

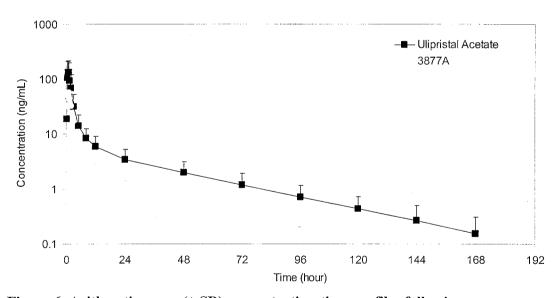


Figure 6. Arithmetic mean (\pm SD) concentration-time profiles following administration of 30 mg ulipristal acetate (semi-logarithmic scale); HRA2914-504

Table 3. PK parameters of ulipristal acetate and 3877A following single dose administration of ulipristal acetate 30 mg to 20 healthy females under fasting conditions; HRA2914-504

Parameter	Mean (CV%)	
1 arameter	Ulipristal Acetate	3877A

C _{max} (ng/mL)	176.0 (51)	68.6 (38)
t _{max} (h)*	0.88 (0.50 - 2.00)	1.00 (0.75 - 2.00)
AUC _{0-t} (ng·h/mL)	548.0 (47)	240.0 (24)
$AUC_{0-\infty}$ (ng·h/mL)	556.0 (47)	246.0 (24)
t _{1/2} (h)	32.4 (20)	26.6 (26)

 $C_{max} = maximum concentration$

 t_{max} = time to maximum concentration

 AUC_{0-t} = area under the drug concentration curve from time 0 to time of last determinable concentration

AUC_{0- ∞} = area under the drug concentration curve from time 0 to infinity $t_{1/2}$ = elimination half life

*median (range)

Conclusion

After administration of a single 30-mg oral dose of ulipristal acetate as a micronized tablet, the drug was rapidly absorbed (median t_{max}: 0.88 hour). Half-life averaged 32.4 hours and peak concentration averaged 176.0 ng/mL. The 3877A peaked around 1 hour post-dose, its half-life averaged 26.6 hours, and its peak concentration averaged 68.6 ng/mL.

HRA2914-512: An Open, Randomized, Crossover Design Study Comparing the Bioavailability of A Single 30 mg Oral Dose of Ulipristal Acetate Given in Fed and Fasting Conditions in Healthy Volunteers

- Study objectives
 - o to evaluate the impact of concomitant food intake on the relative bioavailability of ulipristal acetate 30 mg tablet
- Study design
 - The study was a randomized two-way cross-over, two treatments, two periods, two sequences, open, single dose study. The study duration was to be at least 36 days per subject (from Day 1 of treatment period 1 to the end-of-study visit) and included two treatment periods separated by a minimum of 21 days (interval between 2 drug administrations), and a follow-up visit at 15 days after the last study drug administration.
- Study drug formulation
 - Ulipristal acetate 30 mg micronized tablet (to-be-marketed strength and formulation) manufactured at (b) (4)
- Disposition of subjects
 - Nineteen subjects were screened, randomized and included in the study. Eighteen subjects completed the study. Subject 010 discontinued due to a pilonidal cyst during the first period when the drug was administered under fasting conditions.
- Inclusion criteria
 - o Healthy female subjects 18 to 35 years old (inclusive)
 - o Body mass within 10% of the ideal mass in relation to height and age, according to the BMI (normal range for BMI: $18.5 25 \text{ kg/m}^2$)
 - Regular menstruation cycles of 24 to 35 days

- Not current use of hormonal contraception and having had at least one complete menstrual cycle (2 menses) since having stopped hormonal contraception
- Willingness to not use hormonal methods of contraception until study completion
- At least one complete menstrual cycle (2 menses) post delivery, miscarriage, or abortion
- Having given voluntary, written informed consent, and agreeing to observe all study requirements (the subject needed to be available for follow-up over the next 6 weeks)
- Willing to abstain from any acts of unprotected intercourse during participation in the study
- o Non-smoker
- o Registered with the French Social Security in agreement with the French law on biomedical experimentation
- Subjects must consent to come to the clinical unit for a screening visit, to return to the unit to take the drug and to give blood samples for 8 days, to follow all dietary restrictions stipulated in the protocol and to restrain from unprotected sexual intercourse and use a reliable barrier method of contraception throughout the study.

Exclusion criteria

- Evidence of psychiatric disorder, antagonist personality, poor motivation, or emotional or intellectual problems likely to limit the validity of consent to participate in the study or limit the ability to comply with protocol requirements
- History of or current compulsive alcohol abuse (> 10 drinks weekly), or regular exposure to other substances of abuse
- O Use of any medication, prescribed or over-the-counter, within 2 weeks before the first administration of study medication, except if this did not affect the outcome of the study in the opinion of the investigator
- Impaired hypothalamic-pituitary-adrenal reserve or history of oral glucocorticoids replacement therapy in the year before screening and enrollment
- Participation in another study with an experimental drug within 8 weeks before the first administration of study medication or participation to more than 3 experimental drug studies within 12 months before the beginning of the study
- o Major illness during the 3 months before start of the screening period
- o Undiagnosed genital bleeding
- Relevant history of laboratory or clinical findings indicative of acute or chronic disease likely to influence the study outcome
- Donation or loss of blood equal to or exceeding 500 mL during the 3 weeks before the first administration of study medication, or donation of more than 1.5 L of blood within the 10 months before the beginning of the study

- O Diagnosis of hypertension made during the screening period or current diagnosis of hypertension
- Resting pulse rate of > 100 bpm or < 45 bpm during the screening period, either supine or standing
- O Current pregnancy as confirmed by positive urine β-Human Chorionic Gonadotropin (HCG) test, or test not performed
- o Current breast-feeding
- o Current use of hormonal contraception
- o Current use of progesterone intrauterine system
- Congenital galactosemia, glucose and galactose malabsorption syndrome or lactase deficiency

Dosing conditions

- On the morning of Day 1 of each treatment period, subjects received one of the following treatments:
 - Treatment A: single oral dose of 30 mg ulipristal, consisting of 1 micronized tablet containing 30 mg of ulipristal acetate, under fasting conditions.
 - Treatment B: single oral dose of 30 mg ulipristal, consisting of 1 micronized tablet containing 30 mg of ulipristal acetate, under fed conditions.
- Prior to each administration of each treatment period, subjects were fasted overnight for a minimum of 10 hours. The timings of food and fluid intake up to 12 hours post-dose are detailed in Table 4 and Table 5, for treatments A and B, respectively.

Table 4. Timing and description of food and fluid intake with Treatment A

	8 L	
	Time	Treatment A
	Evening of Day -1	Evening meal
	From 22:00 on Day -1	Fast from food and fluids except water
	From 1 h predose	No fluids allowed including water
-	At dosing	240 mL water administered with the oral dose of ulipristal
	From 2 h post-dose	Free access to water
	Approximately 4 h post-dose	Lunch – Day 1
	Approximately 11 h post-dose	Evening meal – Day 1

Table 5. Timing and description of food and fluid intake with Treatment B

Time	Food and fluid details
Evening of Day –1	Evening meal
From 22:00 on Day -1	Fast from food and fluids except water
From 1 h predose	No fluids allowed including water
From 30 min predose	Breakfast (see Table 3)
At dosing	240 mL water administered with the oral dose of ulipristal
From 2 h post-dose	Free access to water
Approximately 4 h post-dose	Lunch – Day I
Approximately 11 h post-dose	Evening meal – Day I

On Day 1 of treatment B, a high-fat breakfast was provided 30 minutes before ulipristal administration. It was to be ingested at a steady rate over

a 25 minute period to be completed by 5 minutes before dosing. The content of the breakfast is detailed in Table 6.

Table 6. Description of the high-fat breakfast

High-fat breakfast menu		
Two eggs (fried in blended oil)		
Two rashers of bacon (grilled)		
One slice of white toast with 10 g butter (2 pats)		
120 g of hash brown potatoes		
240 mL full-fat milk		
Total energy content:	963 Kçal	
Total fat content:	75 g (62% of total calories)	
Total protein: 42 g (17% total calories)		
Total carbohydrate:	53 g (21% of total calories)	

- PK measurements and blood samples
 - o PK sampling for ulipristal acetate and 3877A was conducted.
 - O Blood samples were drawn at pre-dose and 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 5, 8, 12, 24, 48, 72, 96, 120, 144, and 168 hours post-dose.

Demographics

Parameter (N=19)	Mean (SD)	Range	
Age (years)	28 (5.2)	19 - 35	
BMI (kg/m ²)	22.2 (2.1)	19.0 - 24.9	
Race	13 Caucasians, 4 African Americans,		
	1 Asian, 1 Mauritian		

- o Results (Figure 7 Figure 10 and Table 7)
 - O Due to the observation of non-linear concentration time profile in semi-logarithmic scale, the terminal half-life (and consequently AUC_{0-∞}) could not be estimated in 1 subject (110) for ulipristal and in 3 subjects (001, 002, 110) for 3877A when dosed under fasting conditions, and in 2 subjects (009 and 110) for both ulipristal and 3877A.
 - o C_{max} was lower under fed conditions, both for ulipristal (99.2 vs. 173 ng/mL) and for 3877A (54.0 vs. 86.5 ng/mL).
 - \circ For both ulipristal and 3877A, the t_{max} was delayed following food intake (medians: 3 vs. 0.75 hour).
 - AUCs were slightly increased by food intake, for ulipristal (AUC_{0-t}: 566 vs. 467 ng·h/mL and AUC_{0-∞}: 608 vs. 474 ng·h/mL) as well as for 3877A (AUC_{0-t}: 294 vs. 244 ng·h/mL and AUC_{0-∞}: 310 vs. 265 ng·h/mL).
 - O The terminal elimination phase started approximately 24 hour post-dose for both treatments. Based on the log-linear mean profiles, the elimination rate seemed similar for both treatments. The terminal elimination half-life averaged around 36 hour for ulipristal and around 30 hour for 3877A, independently of the food condition.
 - In fed condition, C_{max} fell by approximately 40-45% and time to peak was delayed by approximately 1.25 hours. Administration after a high-fat

breakfast resulted in an increase of the extent of absorption by 20-25% in comparison to the administration in fasting condition.

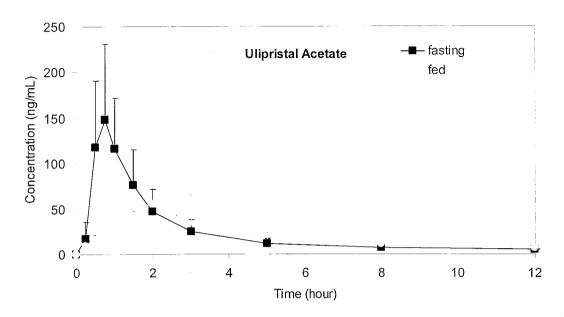


Figure 7. Arithmetic mean $(\pm SD)$ concentration-time profiles of ulipristal acetate following administration of 30 mg ulipristal acetate under fasting and fed conditions (linear scale); HRA2914-512

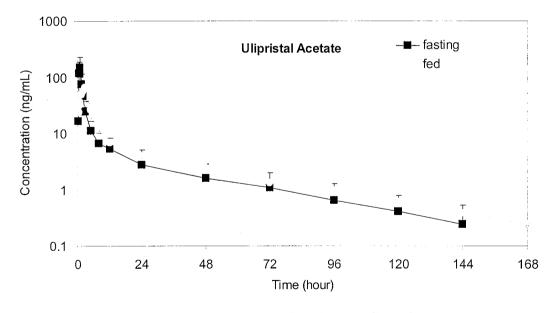


Figure 8. Arithmetic mean $(\pm$ SD) concentration-time profiles of ulipristal acetate following administration of 30 mg ulipristal acetate under fasting and fed conditions (semi-logarithmic scale); HRA2914-512

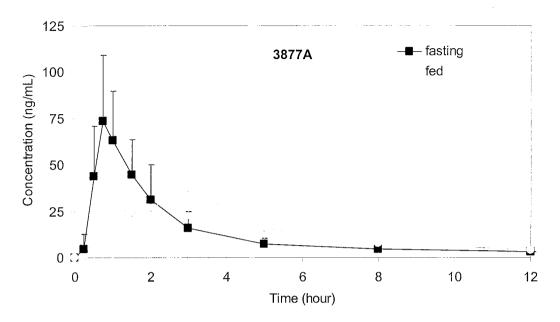


Figure 9. Arithmetic mean (\pm SD) concentration-time profiles of 3877A following administration of 30 mg ulipristal acetate under fasting and fed conditions (linear scale); HRA2914-512

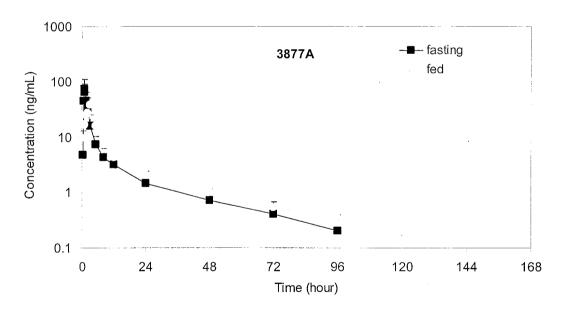


Figure 10. Arithmetic mean (\pm SD) concentration-time profiles of 3877A following administration of 30 mg ulipristal acetate under fasting and fed conditions (semi-logarithmic scale); HRA2914-512

Table 7. Comparative bioavailability of ulipristal acetate and 3877A following administration of ulipristal acetate 30 mg to 18 healthy females under fasting and fed conditions: HRA2914-512

Parameter	Ulipristal Acetate		3877A		
	fasting	fed	fasting	fed	
C_{max} (ng/mL)	173 (40)	99.2 (45)	86.5 (35)	54.0 (41)	
$t_{max}(h)^*$	0.75 (0.50 - 1.50)	3.00(0.50-5.00)	0.75 (0.50 - 1.50)	3.00(0.50-5.00)	
AUC_{0-t} (ng h/mL)	467 (52)	566 (50) ^a	244 (34)	$294 (32)^a$	
AUC_{inf} (ng h/mL)	$474 (54)^{a}$	$608 (48)^{b}$	265 (32) ^c	$310 (30)^{b}$	
$t_{1/2}(h)$	$37.2(19)^{a}$	$36.0(22)^{b}$	$30.0(25)^{c}$	$28.9 (24)^{b}$	

 $C_{max} = maximum concentration$

 t_{max} = time to maximum concentration

AUC_{0-t} = area under the drug concentration curve from time 0 to time of last determinable concentration

 $AUC_{0-\infty}$ = area under the drug concentration curve from time 0 to infinity $t_{1/4}$ = elimination half life

*median (range)

N = 18 except ${}^{a}N = 17$, ${}^{b}N = 16$ and ${}^{c}N = 15$

o Conclusion

O Dosing with food reduced the absorption rate of ulipristal, as indicated by 40-45% lower C_{max} and by a delay in t_{max} of about 1.5 hour for both ulipristal and 3877A. On the other hand, food intake increased the extent of absorption as indicated by 20-25% higher AUC of ulipristal and 3877A compared to when doses under fasting conditions.

HRA2914-516: A Single-Dose, Open-Label, Randomized, 2-Way Crossover Bioequivalence Study of Ulipristal Acetate 30 mg Tablets Manufactured at Leon Farma (Spain) and (b) (4) Under Fasting Conditions in Healthy Female Volunteers

- Study objectives
 - o to compare the bioavailability of 30 mg tablets of ulipristal acetate manufactured at Leon Farma (Spain) with 30 mg micronized tablets of ulipristal acetate manufactured at (b) (4) in female healthy subjects under fasting conditions and to assess the bioequivalence.
- Study design
 - o It was a randomized, two-way crossover, two treatments, two periods, two sequences, single dose study performed in 54 healthy women volunteers, 18-35 years old and not pregnant. Treatment consisted of a single dose of ulipristal acetate 30 mg tablet from (b) (4) and from Leon Farma, separated by a wash-out period of at least 14 days. Blood sampling for ulipristal acetate and its main metabolite was performed over 168 hours. Fifty-four healthy women volunteers provided informed consent and were screened for enrollment into the study and 47 completed the study.
- Study drug formulations
 - Ulipristal acetate 30 mg micronized tablet (to-be-marketed strength and formulation) manufactured at
 (b) (4)

- O Ulipristal acetate 30 mg tablet manufactured at Leon Farma
- o Disposition of subjects
 - O Among the 54 women screened volunteers, who signed informed consent and were enrolled into the study, 53 received at least one dose of the study product (one subject withdrawn her consent). Among the 53 treated subjects, 47 (88.7%) completed all scheduled study visits. Six subjects were withdrawn or discontinued from the study: three due to adverse event and three due to emesis.
 - Subject numbers

• Emesis: 1018, 1040, and 1041

Adverse events

Neutropenia: 1029 and 1036Low hemoglobin: 1008

- o Inclusion criteria
 - o Healthy, female subjects 18 to 35 years of age (inclusive)
 - o Body mass within 10% of the ideal mass in relation to height and age, according to the BMI (normal range for BMI: $18.5 25 \text{ kg/m}^2$)
 - o Regular menstruation cycles of 25 to 31 days
 - No current use of hormonal contraception and having had at least one complete menstrual cycle (2 menses) since having stopped hormonal contraception
 - Willing to not use hormonal methods of contraception until study completion
 - At least one complete menstrual cycle (2 menses) post delivery, miscarriage or abortion
 - Able to read and give voluntary, written informed consent, and agree to observe all study requirements (the subject needs to be available for follow-up over the next 6 weeks)
 - Willing to abstain from any acts of unprotected intercourse or having a valid non-hormonal IUD in place during participation in the study
 - o Non-smoker
- o Exclusion criteria
 - Evidence of psychiatric disorder, antagonist personality, poor motivation, emotional or intellectual problems likely to limit the validity of consent to participate in the study or limit the ability to comply with protocol requirements
 - History of, or current compulsive alcohol abuse (> 10 drinks weekly), or regular exposure to other substances of abuse
 - Use of any medication, prescribed or over-the-counter, within two weeks prior to the first administration of study medication except if this will not affect the outcome of the study in the opinion of the investigator
 - o Impaired hypothalamic-pituitary-adrenal reserve
 - Participation in another study with an experimental drug within eight weeks before the first administration of study medication. Participation to

- more than 3 experimental drug studies within 12 months before the beginning of the study
- A major illness during the three months before commencement of the screening period
- Undiagnosed genital bleeding
- Relevant history or laboratory or clinical findings indicative of acute or chronic disease, likely to influence the study outcome
- Donation or loss of blood equal to or exceeding 500 ml during the eight weeks before the first administration of study medication. Donation of more than 1.5 L of blood within the 10 months before the beginning of the study
- Diagnosis of hypertension made during the screening period or current diagnosis of hypertension
- Resting pulse rate of > 100 beats per minute or < 45 beats per minute during the screening period, either supine or standing
- Currently pregnant as confirmed by positive urine pregnancy test either positive or not performed or lactation
- Currently breast-feeding
- o Current use of hormonal contraception
- o Current use of progesterone intrauterine device (IUD)
- o Positive urine screen for drugs of abuse

Dosing condition

- Each subject received orally, under fasting conditions, one 30 mg tablet of ulipristal acetate from each manufacturer (Leon Farma and (b) (4)
 (b) (4); the two drug administrations being separated by an interval of at least 14 days.
- o PK measurements and blood samples
 - o PK sampling for ulipristal acetate and 3877A was conducted.
 - O Blood samples were drawn at pre-dose and 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 5, 8, 12, 24, 48, 72, 96, 120, 144, and 168 hours post-dose.

o Demographics

Parameter (N=53)	Mean (SD)	Range	
Age (years)	29 (3.9)	20 - 37	
BMI (kg/m ²)	21.5 (2.0)	18.5 - 26.2	
Race	53 Asian		

Results

- O Ulipristal acetate (Figure 11, Figure 12, and Table 8)
 - Ulipristal acetate plasma concentrations increased for the reference product
 (b) (4) and for the test product (Leon Farma) to reach a peak between 0.50 and 3.00 hour.
 - The mean C_{max} of ulipristal acetate for test and reference products was similar (geometric mean: 293.4 vs. 315.7 ng/mL, respectively).
 - The mean AUC at the last quantifiable concentration (AUC_{0-t}) is similar to that extrapolated to infinity (AUC_{0- ∞}) for the test and

- reference products (AUC_{0-t}/AUC_{0- ∞} > 0.95) indicating that the sampling time period was adequate to characterize the pharmacokinetic profile of the doses administered.
- The mean $t_{1/2}$ was 44.6 and 42.5 hours for the test and the reference products.
- The median t_{max} was 0.75 hour post-dose for the test and reference products.
- The primary objective of this study was to assess the bioequivalence between the test product manufactured at Leon Farma and the reference product manufactured at (b) (4). The results of study regarding ulipristal acetate presented in Table 8 showed that the criteria used to estimate bioequivalence between the test product and the reference product were all fulfilled. The 90% confidence interval for the ratio of the geometric least square mean for log-transformed C_{max}, AUC_{0-t} and AUC_{0-∞} were within the acceptance range of 80 to 125%. Therefore, the test product, ulipristal acetate 30 mg tablet manufactured at Leon Farma, was bioequivalent to the reference product, ulipristal acetate 30 mg tablet manufactured at

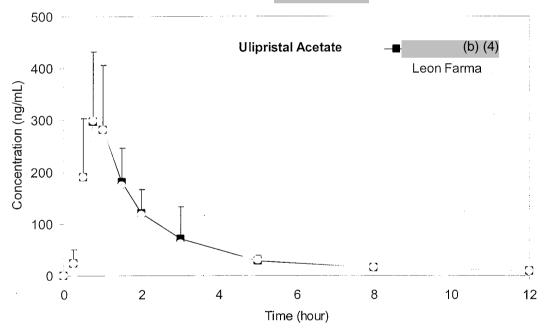


Figure 11. Arithmetic mean (\pm SD) concentration-time profiles of ulipristal acetate following administration of 30 mg ulipristal acetate (linear scale); HRA2914-516

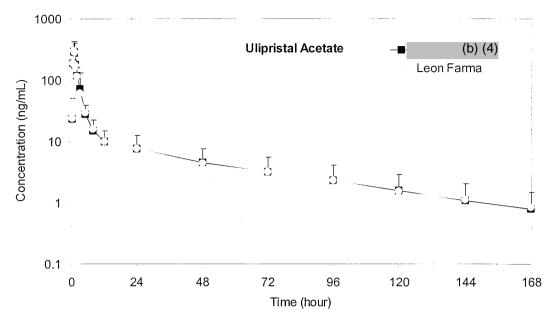


Figure 12. Arithmetic mean (\pm SD) concentration-time profiles of ulipristal acetate following administration of 30 mg ulipristal acetate (semi-logarithmic scale); HRA2914-516

Table 8. Comparative bioavailability of ulipristal acetate following administration of ulipristal acetate 30 mg manufactured at Leon Farma (Test) and (b) (4) (Reference) to 47 healthy females under fasting conditions; HRA2914-516

Daramatar	Geometric Mean [CV] (b) (4)		Ratio	90% Confidence
Parameter	Leon Farma (Test)	(Reference)	(Test : Ref)	Interval
C_{max} (ng/mL)	293.4 (44)	315.7 (35)	94.4	86.7 - 102.7
AUC_{0-t} (ng·h/mL)	1041.8 (46)	1059.4 (46)	99.0	94.9 - 103.3
$AUC_{inf} (ng \cdot h / mL)$	1085.5 (48)	1098.7 (49)	99.4	95.3 - 103.7
$t_{\text{max}} (h)^a$	0.75(0.50 - 3.00)	0.75(0.50 - 3.00)		,
$t_{1/2} (h)^b$	44.6 (35)	42.5 (26)		

 $C_{max} = maximum concentration$

 AUC_{0-t} = area under the drug concentration curve from time 0 to time of last determinable concentration

 $AUC_{0-\infty}$ = area under the drug concentration curve from time 0 to infinity

 t_{max} = time to maximum concentration

 $t_{1/2}$ = elimination half life

^aData presented as median (range)

- o 3877A (Figure 13, Figure 14, and Table 9)
 - Following a single oral administration of 30 mg tablet of ulipristal acetate manufactured at reference product (b) (4) and test product (Leon Farma) in 47 female healthy women, the main metabolite of ulipristal acetate, 3877A was measurable in plasma samples collected until 168 hour post-dosing.

^bData presented as arithmetic mean (CV)

- Plasma concentrations of 3877A increased to reach a peak between 0.75 and 3.00 hours for the reference product and between 0.50 and 5.00 hours for the test product.
- The C_{max} of 3877A were higher in the reference product than the test product (geometric mean: 118.5 vs. 110.4 ng/ml, respectively).
- The mean AUC at the last quantifiable concentration (AUC_{0-t}) is similar to that extrapolated to infinity (AUC_{0-∞}) for the test and reference products (AUC_{0-t}/AUC_{0-∞} > 0.95) indicating that the sampling time period was adequate to characterize the pharmacokinetic profile of the doses administered.
- The mean $t_{1/2}$ was 40.1 and 41.9 hours for the test and reference products.
- The median t_{max} was 1.00 hour post-dose for the test and the reference products.
- The results of study regarding 3877A presented in Table 9 showed that the criteria used to estimate bioequivalence between the test and reference products were all fulfilled. The 90% confidence interval for the ratio of the geometric least square mean for log-transformed C_{max}, AUC_{0-t}, and AUC_{0-∞} were within the acceptance range of 80 to 125%. Therefore, the test product, ulipristal acetate 30 mg tablet manufactured at Leon Farma, was bioequivalent to the reference product, ulipristal acetate 30 mg tablet manufactured at (b) (4)

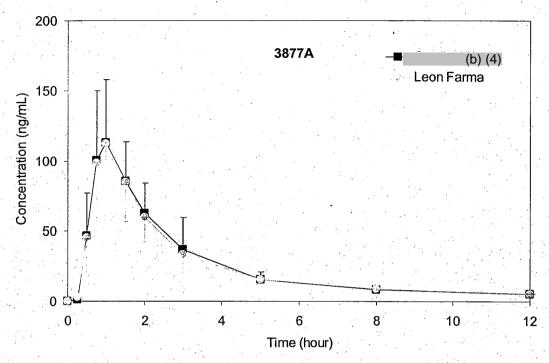


Figure 13. Arithmetic mean (\pm SD) concentration-time profiles of 3877A following administration of 30 mg ulipristal acetate manufactured at Leon Farma (linear scale); HRA2914-516

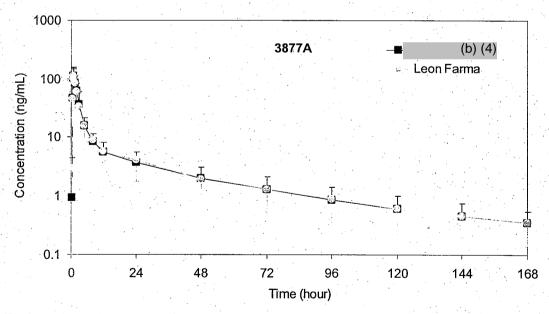


Figure 14. Arithmetic mean $(\pm SD)$ concentration-time profiles of 3877A following administration of 30 mg ulipristal acetate manufactured a Leon Farma (semi-logarithmic scale); HRA2914-516

Table 9. Comparative bioavailability of 3877A following administration of ulipristal acetate 30 mg manufactured at Leon Farma (Test) and (b) (4) (Reference) to 47 healthy females under fasting conditions; HRA2914-516

Parameter	Geometric N	Iean [CV]	Ratio	90% Confidence
	Leon Farma (Test)	(b) (4) (Reference)	(Test : Ref)	Interval
C_{max} (ng/mL)	110.4 (35)	118.5 (33)	94.3	87.7 - 101.3
AUC _{0-tldc} (ng·h/mL)	495.4 (36)	497.7 (34)	100.0	96.1 - 104.0
$AUC_{inf} (ng \cdot h / mL)$	512.2 (37)	515.0 (35)	100.0	96.1 - 104.0
$t_{max}(h)^a$	1.00(0.50-5.00)	1.00(0.75 - 3.00)		
$t_{1/2} (h)^b$	40.1 (28)	41.9 (48)		

 $C_{max} = maximum concentration$

 AUC_{0-t} = area under the drug concentration curve from time 0 to time of last determinable concentration

 $AUC_{0-\infty}$ = area under the drug concentration curve from time 0 to infinity t_{max} = time to maximum concentration

 $t_{\frac{1}{2}}$ = elimination half life

^a Data presented as median (range)

^b Data presented as arithmetic mean (CV)

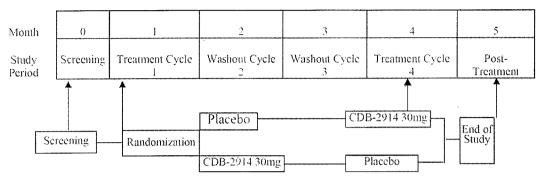
Conclusion

- o The bioequivalence between the 30 mg ulipristal acetate micronized tablets manufactured at Leon Farma and (b) (4) was demonstrated. The criteria used to estimate bioequivalence between the two products were all fulfilled. The 90% confidence interval for the ratio of the geometric least square mean for log-transformed pharmacokinetic parameters was within the acceptance range of 80 to 125%.
- The criteria used to estimate bioequivalence between the two products (30 mg tablet manufactured at Leon Farma and metabolite of ulipristal acetate, 3877A was also fulfilled.
- O Therefore, 30 mg ulipristal acetate micronized tablets manufactured at Leon Farma and (b) (4) are bioequivalent.

HRA2914-511: A Prospective, Randomized, Double-Blind, Cross-Over Study to Compare the Capacity to Prevent Follicular Rupture of Ulipristal Acetate With Placebo, When Administered After the Ovulatory Process has been Triggered by the LH Surge

- Study objectives
 - o Primary
 - To assess the effect of a single oral dose of ulipristal acetate in comparison to placebo on the outcome of the leading follicle and more specifically assess inhibition of follicular rupture
 - Secondary objectives to compare ulipristal acetate and placebo with respect to the following:
 - Inhibition of follicular rupture in the subgroup of subjects that were treated after the onset the LH surge in both cycles (ulipristal acetate and placebo)

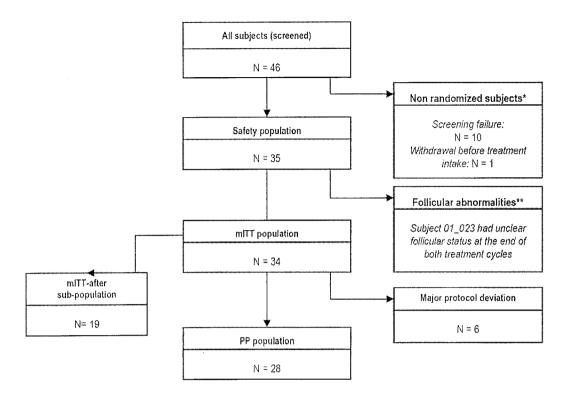
- Inhibition of follicular rupture at various time points post-treatment (4 days, 5 days, 9 days, and end of the treatment cycle)
- Time (in days) from treatment administration to follicular rupture (observed disappearance of the follicle)
- Time from treatment administration to follicular rupture in the subgroup of subjects that were treated after the onset of the LH surge in the ulipristal acetate cycle
- Occurrence of ovulation
 - Ovulation was assessed by transvaginal ultrasound and confirmed by
 - 1. the appearance of corpus luteum
 - 2. the occurrence of LH surge
 - 3. progesterone concentrations indicative of luteal phase
 - All 3 conditions need to be fulfilled in order to consider that ovulation took place.
- Growth pattern of the leading follicle observed between treatment intake and follicular rupture (or end of cycle if no rupture is observed)
- Serum concentrations of LH, estradiol, and progesterone


o Definitions

- o Growth pattern of leading follicle (follicle size comparison at the time of study medication administration and follicular rupture)
 - continued growth (diameter increase $\geq 25\%$)
 - unchanged (size change < 25%)
- o LH
- defined as an LH surge onset when either:
 - it increased by at least 40% compared to the day before and was greater than 6 IU/L
 - LH was over 8 IU/L for the first time
- defined as an LH peak when LH \geq 15.6 IU/L
- o Progesterone
 - Luteal phase when at least 2 consecutive concentrations ≥ 10 nmol/L
 - Anovulatory when concentrations were constantly under 10 nmol/L

Study design

This was a double-blind, cross-over, randomized, placebo-controlled study designed to evaluate the effect of a single dose of 30 mg ulipristal acetate on the outcome of the leading ovarian follicle when administered immediately before ovulation, i.e. when the follicle reaches 18 mm in diameter. Following a screening visit, eligible women were followed for five complete menstrual cycles: a first treatment cycle (cycle 1) followed by 2 wash-out cycles (cycles 2 and 3), a second treatment cycle (cycle 4) and a post-treatment cycle (cycle 5). Women were randomized to receive ulipristal acetate or placebo in a cross-over fashion in the treatment cycles.


Design

*CDB-2914 = ulipristal acetate

- In each treatment cycle, there are four phases with different clinic visit schedule.
 - Phase 1: 3 visits per week starting on day 5-8 of cycle 1, until one follicle has reached 15 mm
 - Phase 2: daily visits once a follicle has reached 15 mm, and until lead follicle is > 18mm
 - Phase 3: Treatment administration followed by daily visits for 6 consecutive days
 - Phase 4: twice a week visit from the 6th day after treatment intake until menses
- O Women in good general health, with normal regular cycles, not using any hormonal contraception but not at risk of pregnancy, were screened for inclusion. If they satisfied all inclusion/exclusion criteria, they entered the study and underwent ultrasound monitoring starting from days 5-8 of their next menstrual cycle (cycle 1) until such time as the lead follicle reached ≥ 18 mm, at which time they were randomized and treatment was given. From that time on they were monitored daily by ultrasound and hormone assays until the 6th day following treatment. Following two washout cycles, the same procedure was repeated in cycle 4.
- Study drug formulations
 - Ulipristal acetate 30 mg micronized tablet (to-be-marketed strength and formulation) manufactured at (b) (4)
 - Placebo tablet
- Disposition of subjects
 - Out of the 46 volunteering subjects screened for the trial (Study Population), 10 subjects (01-016, 01-019, 02-003, 02-005, 02-006, 02-009, 02-011, 02-014, 02-018, and 02-022) did not fulfill the eligibility criteria and one subject (02-004) was not randomized because ovulation occurred before the follicle reached the size of 18 mm. The remaining 35 subjects were randomized, received the study medication and completed the study. This entire ITT group (35 subjects) constitutes the Safety Population and was used for safety analysis.
 - Populations

- mITT (population for efficacy analysis): 34 subjects
 - 35 subjects in ITT population 1 (01-012) subjects
 - o Subject 01-012: unclear follicular status at the end of both cycles 1 and 4
 - Subjects who
 - o completed both treatments in cycles 1 and 4; and
 - o Had a known follicular status after treatment intake in cycles 1 and 4
- mITT-after: 19 subjects
 - Subjects who took study medication on the day or after LH surge onset
- PP population: 28 subjects
 - 34 subjects in mITT population 6 subjects with protocol deviations
 - o protocol violations in 6 subjects
 - 01-021 and 01-022: received treatment at 21 and 20 mm of follicular size on day 21 and 9 of their first treatment cycle, respectively, with no previous ultrasound follicle measurement.
 - 01-003, 01-006, 01-007 and 01-014: underwent only five daily ultrasound examinations and blood withdrawals after treatment intake in Cycle 1.
 - Subjects 01-003, 01-006 and 01-014 had an unknown follicular status on day 6 post-treatment, with the lead follicle rupture occurring somewhere between day 5 and day 9.

Inclusion criteria

- O Women of good general health aged 18 35 years
- o Not at risk of pregnancy because either
 - 1. surgical sterilization (tubal ligation)
 - 2. monogamous subject living with a vasectomized partner
 - 3. subject using a non-hormonal IUD
 - 4. sexually inactive subject
 - 5. subject agreed to abstain from sexual intercourse during the study treatments cycles
- o Regular menstrual cycles of 24-35 days duration
- Not pregnant (negative hCG at screening and at the beginning of the cycle
 4)
- o Intact uterus and ovaries
- o Hemoglobin ≥ 11 g/dl
- Normal laboratory tests (liver and renal function, electrolyte profile, blood glucose, total cholesterol and triglycerides) and normal TSH, measured at screening
- Willing to abstain from any use of hormonal contraception until study completion
- O No current use of hormonal contraception and having had at least one complete menstrual cycle (2 menses) since termination of previous hormonal contraception

- o For women with a recent history of Depo Provera use, the most recent injection must have been applied at least 9 months before study entry and followed by at least one complete menstrual cycle (2 menses)
- o Had at least one complete menstrual cycle (2 menses) following delivery, miscarriage or induced abortion
- Able to give voluntary, written informed consent, and agreeing to observe all study requirements for 5 complete menstrual cycles

Exclusion criteria

- O Current participation in any other trial of an investigational medicine
- Known hypersensitivity to the ingredients of the test active substances or excipients
- O Suspected hyperplasia or carcinoma of the endometrium
- o Current pregnancy as confirmed by positive serum beta-hCG at screening
- O Desire to get pregnant before the planned end of the study participation
- Currently breastfeeding
- O Abnormal Pap smear Cancer (past history of any carcinoma or sarcoma)
- o Known or suspected alcoholism or drug abuse
- Abnormal thyroid status
- \circ BMI > 32
- o Current use of hormonal contraception
- O Use of hormonal emergency contraception since last menstrual period
- o Severe asthma insufficiently controlled by oral glucocorticoids
- o Hereditary galactose intolerance, Lapp lactase deficiency, or glucosegalactose malabsorption

Dosing conditions

- The study medication was administered according to a flexible dosing schedule depending on the follicle size
 - during Cycles 1 and 4: on the day when the lead follicle has reached = 18 mm
- No specific instructions were provided with respect to time of treatment or food intake before treatment.

o Demographics

Parameter (N=35)	Mean	Range
Age (years)	31	22 - 35
BMI (kg/m ²)	25.5	19.0 - 32.0
Race	22 Caucasian	s, 13 Hispanics

Results

- o Follicle rupture inhibition (Table 10)
 - In all placebo cycles, the dominant follicle had disappeared within 6 days after treatment.
 - In contrast, the dominant follicle persisted for at least 6 days in 15 out of 34 (44.1%) ulipristal acetate cycles in mITT population.

Table 10. Frequency of follicle rupture inhibition during 6 days after treatment; HRA2914-511

Population	mIT	Γ (N=34)	mITT-after (N=19)		
Number of subjects with follicle rupture inhibition (%)	Placebo	CDB-2914	Placebo	CDB-2914	
	0 (0.0%)	15 (44.1%)*	0 (0.0%)	7 (36.8%)	
p-value*	0.	.0001	0.0082		

- o Time from treatment to follicular rupture
 - The rate of follicular rupture inhibition was higher following ulipristal acetate treatment up to day 9 after treatment intake in both mITT and mITT-after populations (Table 11).

Table 11. Frequencies of follicular rupture inhibition observed during treatment periods; HRA2914-511

Population		mlTT		mlTT-after		
Frequency (<i>Percent</i> *)	Placebo	CDB-2914	p-value [†]	Placebo	CDB-2914	p-value [†]
No rupture observed during 4 days post-treatment	2 (5.9%)	23 (67.7%)	<.0001	0 (0.0%)	10 (52.6%)	0.0016
No rupture observed during 5 days post-treatment	0 (0.0%)	20 (58.8%)	<.0001	0 (0.0%)	8 (42.1%)	0.0047
No rupture observed during 6 days post-treatment	0 (0.0%)	15 (44.1%)	0.0001	0 (0.0%)	7 (36.8%)	0.0082
No rupture observed during 9 days post-treatment	0 (0.0%)	10 (29.4%)	0.0016	0 (0.0%)	5 (26.3%)	0.0253
No rupture observed until the end of phase 4	0 (0.0%)	3 (8.8%)	0.0833	0 (0.0%)	3 (15.8%)	0.0833
Total subjects	34	34		19	19	

The mean time elapsed from treatment intake to the follicle rupture was 2.41 ± 1.31 and 6.03 ± 3.86 days in the placebo and ulipristal cycles, respectively. In the mITT-after population, the mean time elapsed from treatment intake to the follicle rupture was 1.79 ± 0.92 and 4.25 ± 3.53 days in the placebo and ulipristal acetate cycles, respectively (Table 12).

Table 12. Descriptive statistics for time from treatment intake to follicular rupture; HRA2914-511

		Analysis Variable : Days since treatment intake										
Population	Treatment	N obs	N miss	Median	Mean	Std Dev	Std Error	Min	Max	Lower 95% CI	Upper 95% CI	p-value*
mlTT	Placebo	34	0	2.00	2.41	1.31	0.22	1.00	5.00	1.96	2.87	< 0.0001
111111	CDB-2914	34	3	6.00	6.03	3.86	0.69	1.00	13.00	4.62	7,45	~ 0.0001
mITT-after	Placebo	19	. 0	2.00	1.79	0.92	0.21	1.00	4.00	1.35	2.23	0.0507
।।।।।-समस	CDB-2914	19	3	2.00	4,25	3.53	0.88	1.00	11.00	2.37	6.13	0.0001

- o Follicular rupture pattern
 - Overall, ulipristal acetate promotes the growth of follicle compared to placebo in mITT and mITT-after populations (Table 13).

Table 13. Lead follicle growth patterns observed from treatment administration to follicular rupture; HRA2914-511

Population		ml	TT	mITT-after		
Pattern		Placebo CDB-2914		Placebo	CDB-2914	
Continued	n	6	18	1	7	
growth	%	25.00	75.00	12.50	87.50	
11	n	28	16	18	12	
Unchanged	%	63.64	36.36	60.00	40.00	
Total	n	34	34	19	19	
p-value ¹		0.0	013	0.0143		

- o Menstrual cycle length
 - The mean menstrual cycle length in ulipristal acetate cycles was higher than placebo cycles in mITT population (Table 14).

Table 14. Cycle length by treatment; HRA2914-511

		Length of treatment cycle [days]							
Population	Treatment	11	Mean	Std Dev		[Median	LS Mean	p-value*
miTT	Placebo		30,18	4.11		37.0	30.0	30.18	0 0024
	CDB-2914		32.68	3.75		41.0	32.5	32.68	0.0024

- Hormonal concentrations
 - LH

- The % of subject with LH surge onset was similar in both placebo and ulipristal acetate cycles (97.1 vs. 91.2 %, respectively in mITT population (Table 15).
- In contrast, LH peak was detected in 97.1 % of placebo cycles but only in 76.5 % of ulipristal acetate cycles in mITT population (Table 16).

Table 15. Frequency of LH surge onset by treatment; HRA2914-511

Population	mITT	mITT-after (N=19)		
N	Placebo	CDB-2914	Placebo	CDB-2914
Number of subjects with LH	33 (97.1%)	31 (91.2%)	19 (100%)	19 (100%)
surge onset (%)	95% CI: [84.7 – 99.9]	95% CI: [76.3 – 98.1]	_	_

Table 16. Frequency of LH peaks by treatment; HRA2914-511

Population	mITT ((N=34)	mITT-after (N=19)		
	Placebo	CDB-2914	Placebo	CDB-2914	
Number of subjects with LH peak (%)	33 (97.1%)	26 (76.5%)	19 (100.0%)	17 (89.5%)	
With Et i peak (76)	95% CI: [84.7 - 99.9]	95% CI: [58.8 - 89.3]	<u>.</u>	95% CI: [66.9 - 98.7]	

• LH concentrations were higher in placebo cycles than ulipristal acetate cycles (14.45 ± 19.17 and 11.96 ± 15.73 IU/L, respectively in mITT population (Table 17).

Table 17. Mean concentration of serum LH; HRA2914-511

		Serum levels of LH [U/L]							
Population	Treatment	N	Mean	Std Dev	Min	Max	Median	LS Mean	p-value*
mITT	Placebo	292	14.45	19.17	0.2	131.3	7.9	14.61	0.1672
111111	CDB-2914	306	11.96	15.73	1,1	103.8	6.4	11.87	0.1072

Estradiol

• Estradiol concentrations during placebo cycles were 370.4 \pm 207.5 and 420.4 \pm 246.6 pmol/L across ulipristal acetate cycles.

Progesterone

- Progesterone concentrations during placebo cycles were 17.9 ± 19.0 and 13.9 ± 18.8 nmol/L across ulipristal acetate cycles
- However, progesterone concentrations were classified as ovulatory in 94 and 100% in the ulipristal acetate and

placebo cycles, respectively, which was not statistically different.

Ovulation

Table 18 displays the frequencies of three different markers for ovulation (visible corpus luteum, occurrence of LH surge and luteal concentrations of progesterone), by treatment. There was no statistical difference between treatments for ovulation markers other than LH surge. The majority of subjects ovulated after treatment with ulipristal acetate, and when ovulation did not occur, the unruptured or persistent follicle was luteinized.

Table 18. Occurrence of ovulation – frequency characteristics by treatment and cycles for ovulation markers (occurrence of Corpus Luteum, LH surge, Progesterone concentrations); HRA2914-511

Popula	Population		nITT (N=34)		mITT-after (N=19)		
Frequency (F	Frequency (Percent*)		CDB-2914	p-value**	Placebo	CDB-2914	p-value**
Corpus luteu	Corpus luteum visible		25 (73.5%)	0.4372	10 (52.6%)	11 (57.9%)	1.0000
Occurrence o	f LH surge	33 (97.1%)	26 (76.5%)	0.0272	19 (100.0%)	17 (89.5%)	0.4865
Progesterone	Anovulatory	0 (0.0%)	2 (5.9%)	0.4005	0 (0.0%)	1 (5.3%)	4.0000
level	Luteal	34 (100.0%)	32 (94.1%)	0.4925	19 (100.0%)	18 (94.7%)	1.0000

o Conclusion

- O The study shows that ulipristal acetate, if administered close to the LH surge onset, inhibits the rupture of dominant follicle in 44 % of cycles with an intact follicle still present 6 days following ulipristal administration. None of the placebo cycle exhibited rupture inhibition 6 days after treatment. Rupture of the dominant follicle occurred on average 2.4 and 6.0 days following placebo or ulipristal acetate administration, respectively.
- O The study design also allowed analysis of a separate subgroup of subjects in which the treatment was administered on the day of or after onset of the LH surge. Nineteen subjects received both placebo and ulipristal acetate after LH onset. In 37% of the ulipristal acetate cycles, the lead follicle was still present 6 days after treatment. In this particular subgroup, the average time from ulipristal acetate intake to follicular rupture was 4.3 days, compared to 1.8 days following placebo administration
- o Five days after ulipristal acetate intake, in 59% of all mITT subjects the lead follicle was still present, versus 0% for the same subjects following placebo intake. In mITT-after population treated with ulipristal acetate, 8 subjects (42%) still had a visible lead follicle on day 5 after treatment.
- Ulipristal acetate decreases the LH surge occurrence (76 % vs. 97%) compared to placebo. The mean (± SD) estradiol concentrations during placebo cycles were lower in placebo cycles (370.4 ± 207.5 pmol/L) than in ulipristal acetate cycles (420.4 ± 246.6 pmol/L) in the mITT population.

O The mean (\pm SD) progesterone concentrations during placebo cycles were higher (17.9 \pm 19.0 nmol/L) than in ulipristal acetate cycles (13.9 \pm 18.8 nmol/L) in the mITT population. However, it remained ovulatory in both cycles. In other words, when follicular ruptured was delayed or even inhibited completely, progesterone concentrations above the ovulatory threshold could still be detected.

1.1 Cover Sheet and OCP Filing

Application Type/Number	Submission Type/Number	Submitter Name	Product Name
NDA-22474	ORIG-1	LABORATOIRE HRA PHARMA	Ella , Ulipristal Acetate
This is a represent electronically signature.	esentation of an and this page i	electronic records the manifestation	d that was signed on of the electronic
/s/			
HYUNJIN KIM 07/08/2010			
MYONG JIN KIM 07/09/2010			

NDA/BLA Number: 22-474

Applicant: HRA Pharma

Stamp Date: 10/15/2009

Drug Name: Ulipristal acetate NDA/BLA Type: Original

submission

On **initial** overview of the NDA/BLA application for filing:

	Content Parameter	Yes	No	Comment
Crit	eria for Refusal to File (RTF)			
1	Has the applicant submitted bioequivalence data comparing to-be-marketed product(s) and those used in the pivotal clinical trials?	X		
2	Has the applicant provided metabolism and drug-drug interaction information?	X		
Crit	eria for Assessing Quality of an NDA		•	
	Data			
3	Are the data sets, as requested during pre-submission discussions, submitted in the appropriate format (e.g., CDISC)?	X		
4	If applicable, are the pharmacogenomic data sets submitted in the appropriate format?	:		N/A
	Studies and Analyses			
5	Has the applicant made an appropriate attempt to determine the reasonable dose individualization strategy for this product (i.e., appropriately designed and analyzed dose-ranging or pivotal studies)?	X		
6	Did the applicant follow the scientific advice provided regarding matters related to dose selection?			N/A
7	Are the appropriate exposure-response (for desired and undesired effects) analyses conducted and submitted in a format as described in the Exposure-Response guidance?	X		
8	Is there an adequate attempt by the applicant to use exposure-response relationships in order to assess the need for dose adjustments for intrinsic/extrinsic factors that might affect the pharmacokinetic or pharmacodynamics?	X		
9	Are the pediatric exclusivity studies adequately designed to demonstrate effectiveness, if the drug is indeed effective?			N/A
10	Did the applicant submit all the pediatric exclusivity data, as described in the WR?			N/A
11	Is the appropriate pharmacokinetic information submitted?	X		
12	Is there adequate information on the pharmacokinetics and exposure-response in the clinical pharmacology section of the label?	X		
	General			
13	On its face, is the clinical pharmacology and	X		

	biopharmaceutical section of the NDA organized in a manner to allow substantive review to begin?			
14	Is the clinical pharmacology and biopharmaceutical section of the NDA indexed and paginated in a manner to allow substantive review to begin?	X		
15	On its face, is the clinical pharmacology and biopharmaceutical section of the NDA legible so that a substantive review can begin?	X		
16	Are the clinical pharmacology and biopharmaceutical studies of appropriate design and breadth of investigation to meet basic requirements for approvability of this product?	X		
17	Was the translation from another language important or needed for publication?		X	

^{*}Abbreviation: N/A = Not Applicable

IS THE CLINI	CAL PHARMACOLOGY SECTION O	F THE APPLICATION
FILEABLE?	Yes	

Background:

The sponsor submitted an NDA under 505(b)(1) to seek an approval of 30 mg ulipristal acetate micronized tablet as an emergency contraceptive to be taken within 120 hours of unprotected intercourse. Ulipristal acetate, a new molecular entity (NME), is a selective progesterone receptor modulator (SPRM) that reversibly blocks the progesterone receptors in target tissues.

There are a total of 14 trial reports submitted including 10 phase 1, 2 phase 2 and 2 phase 3 trial reports as summarized in the following tables:

Table 1 Tabular Listing of All Clinical Studies

Type of Study	Study Identifier	Location of Study Report	Objective(s) of the Study	Study Design and Type of Control	Test Product(s): Dosage Regimen: Route of Administration	Number of Subjects	Healthy Subjects or Diagnosts of Patients	Duration of Treatment	Study Status; Type of Report
BA	02-CH-0219	5.3.7.2.1 and 5.3.3.3.3	To compute the absorption profile of three dosage forms (by LC-MS/MS)	Cross-over design	Ulipristal acctate 16 ing unnicronized in gelatin copsules 10 ing micronized in gelatin capsules 10 micronized in tables; Oral		Healthy women volunteers	Single dose	Final Study Report 02-CH-9219 April 2006 HRA2914-591
ĐE.	2914-011	93.12.2	To compare the bioavailability of 30 mg-tablets of ollipristal acctate manufactured at LEON Farma (Spain) with 30 mg-tablets of alipristal acctate manufactured (b) (d) ih	Rondomised two-way cross- over, 2 treaments, 2 perfods, 2 sequences, open (blind for the hismalysis), single dose study.	Ulipristal acetate 30 me Tehler (Lance (4) Luipristal acetate 30 mg Tablet 1.600 Farsus, Spain Oral	94	Healthy women volunteers	Single dasc	Final Study Report 2914-011 16 September 2009 HRA2914-\$16
PK/PD	95-CH-168	5.8.3.2.1 and 5.3.4.3.1	To determine the PK- PD profile of escalating desea with tate linear-phase treatment (by RIA)	Prospective, randomized placebo- controlled dose escalation	Utipristal acetate 0. 1, 10, 30, 100 or 200 mg manicronise in gelatin enpanies Orial	37	Healthy normally cycling women volunteers	Single dose	Publication Posture M. Human Reproduction, 2003 HRA2914-303
PK/PD	95-CH-168	3.33.23	To determine the PK-PD pintile of escalating doses with fate luteal-phase treatment (by RIA)	Prospective, randomized placebo- controlled dose esculation	Ulipristud acessts 9, 1, 10, 50, 100 or 200 mg usmicronized in gelatia capsoles Oral	37	Healthy normally cycling women volunteers	Single dose	Pharmacokinetic report Hamberg AK, HRA2914-503b

Table 2 Tabular Listing of All Clinical Studies (continued from Table 1)

Type of Study	Study Identifier	Location of Study Report	Objective(s) of the Study	Study Design and Type of Control	Test Product(s): Dosage Regimen; Route of Administration	Number of Subjects	Healthy Subjects or Diagnosis of Patients	Doration of Treatment	Study Status: Type of Report
РК	2914-696		To determine the PK profite of a single dose in tables	Single treatment Single ceizer	Ulipricul acezate 30 mg niblet Oral	20	Ifealthy women volunteers	Single dose	Final Stody report N° B167879 30 April 2008 HRA2914-504
PD	95-CH-168 Amendment A	33422	To determine the PD profile of different doses with mid- folicular-phase treasurent	Prospective, randomized placeho- controlled	Ulipristal acetate 0, 10, 50 or 190 mg unmicronizd in gelathr capsules Oral	45	Healthy normally oveling women volunteers	Single dose	Publication Sunton P. Human Reproduction, 2000 HRA2014-505
PD	95-CH-168 Amendment B	5.3,4.1.8	To determine the PD profile of different doses with early latent phase treatment	Prospective, randomized placeho- controlled	Ulipristal acetate 0, 10, 30 or 100 mg unwicronized in getatin copsules Oral	71	Healthy normally cycling women volunteers	Single dose	Manuscript for Publication Stratton P, 2008
PD	2914-602	5.3.4.1.4	To determine PED profile with continuous stimulation over 3 months	Prospective, randomized, double-blind, multicenter, placebo- contolled	Ulipristal acetate 0, 2.5, 5 or 10 mg observatived in tablet Oral	46	Healthy normally cycling wearen volunteers	Daily for 12 weeks	Final Study report 24 April 2008 HRA2914-510
PD	2914-4817	5.8.4.1.5	To compare the effect of a single and close of CDB-2914 and placeho as the cutoense of the leading folified; and more specifically look for inhibition of follicle reptore	Double-blind, randomized, eross-over, placebu- controlled	Ulipristal acetate 30 mg raicronized tablet Piacebo tablet Oral	\$4 34	Healthy normally cycling women volunteers	Single dose	First Study report 28 July 2009 HRA2914-511

Table 3 Tabular Listing of All Clinical Studies (continued from Table 2)

Type of Study	Study Identifier	Location of Study Report	Objective(s) of the Study	Study Design and Type of Control	Test Product(s): Dosage Regimen: Route of Administration	Number of Subjects	Healthy Subjects or Diagnosis of Pattents	Duration of Treatment	Study Status: Type of Report
PK	2914-008	8.84.7	To evaluate the impact of concominant fixed inacks on the relative bioavailability of ulipristal acetate (30 mg, tablet)	Rasilomised two-way cross- over, two treatments, two periods, two sequences, open (blind for the biostalysis), single dose study	Ulipristal acetate 30 mg tablet, p.o., administered in fasted or fed conditions	18	Healthy subjects	Single dose	Final Study report 28 Oktober 2008 HRA2914-S12
Efficiely and Safety	CCN892-01	53.57.1	To study the efficacy, safety and tolerance in comparison to levonorgestral for emergency contraception	Prospective, randamized double-bliral, raudicenter, active-controlled (Phase II)	Ulipristal acetate 50 mg unnitronized in gelatin capsules (taken up so 72h of usprotected intercosmes/LPf) Levonorgested 2 x 0.75 mg 12 hours apan Oral	872	Healthy women requesting entergency contraception within 72h after intercourse group	Single Dose	Pinal Study Report CC N002 7 August 2006 MRA2914-507
Efficacy and Safety	CCN002-2	335/2	To study the efficacy, safety and tolerance of two different deses for emergency continueption	Prospective, randomized double-blod, multicenter, native-controlled (Phase II)	Injuristal accetate 50 mg unmicronitred in getetin capsule 10 mg enerosized in getetin capsule (taken up to 72h Oral	. ब्राप्त	Healthy women requesting energency contraception within 7th after intercourse group	Single disc	Final Study Report CCN002-2 5 March 2004 HRA2914-508
Efficacy and Sufery	2914-065	5.3.5.2. <i>1</i>	To suply the efficacy, safety and tolerance of a single dose for emergency contraception	Prospective, open-label, single arm, multicenter, (Phase III)	Ulipristal accusic 30 mg micronized in tablet (taken between 48h and 120h of Unprotected interessurse)	1533 strated 1241 mITT	Women aged 18 year of age or older enrolled for emergency contraception	Single dose	Final Study Repost HRA Pharma, LLC 5 May 2008 HRA2914-509

Table 4 Tabular Listing of All Clinical Studies (continued from Table 3)

Type of Study	Study Identifier	Location of Study Report	Objective(s) of the Study	Study Design and Type of Control	Test Product(s): Dosage Regimen; Route of Administration	Number of Subjects	Healthy Subjects or Diagnosis of Patients	Duration of Treatment	Study Status; Type of Report
Efficacy and Safety	2914-064	5.4.5.1. 3	To demonstrate that the pregnancy rate observed after taking CDB-2914 (30 mg) within 21 hours of approtected intercourse (1PT) is statistically significantly lower than the estimated expocted pregnancy rate in the absence of emergency contracteption (BC)	Prospective, single-blind, randomized, multicenter, 2- um parallel comparative study design (Phase III)	(Hipristal ucetate: 30 mg tablet Oral, single dose Levonorgeatrol 1.5 mg tablet Oral, single dose	1104 treated 1913 mTTT 1117 treated 1946 mTTT	Weenon aged 16 year of age or older concolled for emergeacy contraception	Single dose	Final Study Report HRA Pharma, Faunce 5 June 2009 HRA2914-513

In addition, there are 9 in vitro study reports addressing the CYP enzyme inducing/inhibiting potential, distribution and metabolism of ulipristal acetate as listed below:

Drug Interaction

- HRA2914-476: Inhibition of PGL4002 on CYP Enzyme Activities in Pooled Human Liver Microsomes
- HRA2914-477: Induction Effects of PGL4001 and PGL4002 on CYP1A2 and 3A4 Activities in Fresh Human Hepatocytes

Distribution

- HRA2914-427: In vitro binding of [¹⁴C]-VA 2914 to human plasma proteins and human blood distribution
- HRA2914-428: In vitro binding of [14C]-VA2914 to mouse, rat, rabbit, dog, monkey and human plasma

 HRA2914-475: PGL4002 - Extent of binding to rat, monkey and human plasma proteins and partitioning between the plasma and cell fraction of human blood

Metabolism

- HRA2914-429: Metabolism of [¹⁴C]-VA 2914 in microsomes isolated from female mouse, rat, rabbit, dog, monkey and human
- HRA2914-430: Identification of the cytochrome P450 enzymes responsible for the in vitro metabolism of [¹⁴C]-VA 2914 and the effect of VA 2914 on the activity of specific human cytochrome P450 enzymes
- HRA2914-449: In vitro antiprogestational/antiglucocorticoid activity and progestin and glucocorticoid receptor binding of the putative metabolites and synthetic derivatives of CDB-2914, CDB-4124, and mifepristone
- HRA2914-450: Biological activity of the monodesmethyl (CDB3877) and didesmethyl (CDB3963) metabolites of CDB2914

The following information is available in the meeting minutes (DARRTS, December 12, 2008)

• The Sponsor agreed to address ADME, mass balance and drug-drug interactions in the NDA submission. The formulation used in phase 2 is no longer available, so a direct BE study cannot be conducted to link the phase 2 and phase 3 formulations. The Sponsor suggested that plasma concentration data are available on both the phase 2 and phase 3 formulations, and should provide comparative exposure data to allow some reliance on safety data obtained in phase 2. Although different bioanalytical methods were used in the clinical trials, there is at least one trial that used both the RIA and LC/MS assays to measure drug concentration in the same clinical samples and that may provide a link between the assays. The Sponsor agreed to describe the different assays, and how they can be bridged, in the NDA submission. The summary table will also list the bioanalytical method used in each PK study.

The sponsor did not conduct the mass balance study as discussed above.

- The Division noted that the only approved progesterone receptor modulator, mifepristone, was approved for use as an abortifacient under restrictive conditions. Given that ulipristal may have similar abortifacient potential, the Sponsor should address in the NDA application how ulipristal can be safely made available under a more open plan, and how the Sponsor will guard against off-label use as an abortifacient. The Division inquired as to the relative abortifacient potency of ulipristal as compared to mifepristone; the Sponsor noted that of 29 on-treatment pregnancies, only six terminated spontaneously, and six were ongoing (the remainder terminated electively).
- Details of the effect of food were requested; the Sponsor indicated that taking ulipristal with food resulted in a statistically significant decrease in Cmax (about 40%), increased Tmax by about one hour, and caused a 20-

25% increase in AUC. Overall, the Sponsor believes there will be no clinical impact of taking with food.

The sponsor conducted food effect study (HRA2914-512). They collected the type of the last food (full meal vs. snack) and the hours from last food intake to ulipristal intake in two phase 3 trials (HRA2914-509 and HRA2914-513).

Request for waiver of pediatric studies

The sponsor requested a waiver of pediatric studies for age groups of males and females from birth to 16 years of age.

Formulations

Three different formulations (unmicronized in capsule, micronized in capsule, micronized in tablet) were used in clinical trials. 30 mg micronized tablets manufactured in (b) (4): were used in two phase III studies (HRA2914-509 and HRA2914-513) and are to-be-marketed formulation.

Manufacturers

There are two manufacturers produce to-be-marketed formulation of ulipristal acetate tablets: Leon Farma, Spain and (b) (4)

A bioequivalence study (HRA2914-011) was conducted employing ulipristal acetate manufactured in two manufacturers, Leon Farma, Spain and (b) (4)

Metabolites

Ulipristal acetate is extensively metabolized to mono-demethylated (3877A) and didemethylated (3963) metabolites. In vitro data indicate that this is predominantly mediated by CYP3A4 (HRA2914-430). Enzymes responsible for the elimination of 3877A and 3963 are not reported. Both compounds (3877A and 3963) were found to bind to human progesterone receptors (PR). Per sponsor, 3963 binding affinities for both PR-A and PR-B isoforms were 10 fold lower than those of ulipristal acetate and 3877A (HRA2914-449). Both compounds (3877A and 3963) were also found pharmacologically active when tested in functional assays in vitro, but with 3877A displaying potency of similar magnitude compared to ulipristal acetate, whereas 3963 exhibited 15- to 100-fold lower potency than the parent compound (HRA2914-449). Since data suggest that metabolite 3877A may contribute to the overall efficacy following dosing with ulipristal acetate, 3877A was measured together with ulipristal acetate in PK studies (HRA2914-516).

Reviewer's comments

- The sponsor provided literature, in which serum concentration of ulipristal acetate of rhesus monkey was measured, as a method validation report (HRA2914-417).
 - The literature provided as a method validation report does not contain raw data to support the criteria to validate the method validation report.

- o Applicability of method to measure serum concentration of ulipristal acetate of rhesus monkey in measuring serum concentration of ulipristal acetate is not clear.
- The sponsor did not conduct the mass balance study as requested during the sponsor meeting on December 12, 2008.

Information Request from Office of Clinical Pharmacology:

- Locate or provide the study specific analytical reports (HRA2914-516, HRA2914-503b, and HRA2914-510).
- Reference is made to the meeting minutes (meeting date: December 12, 2008). Formulation and assay to measure ulipristal acetate in two phase 2 studies (HRA2914-507 and HRA2914-508) were different from those (formulation and assay to measure ulipristal acetate) in phase 3 studies. If you decide to rely on safety findings from those two phase 2 studies, locate or provide your plan addressing how the different assays can be bridged as requested in the meeting on December 12, 2008.
- Study report of HRA2914-450 includes only protocols and tables. Provide the full report of HRA2914-450.

Clinical Pharmacology comments to be included in the 74-day letter

• The effects of other drugs, especially drugs affecting the CYP3A4 activity, on the exposure of ulipristal acetate were not addressed. This is a review issue.

Hyunjin Kim		
Reviewing Pharmacologist	Date	
Myong-Jin Kim		
Team Leader/Supervisor	Date	

Application Type/Number	Submission Type/Number	Submitter Name	Product Name
NDA-22474	ORIG-1	LABORATOIRE HRA PHARMA	Ella , Ulipristal Acetate
			d that was signed on of the electronic
/s/		****************	
HYUNJIN KIM 12/03/2009			
MYONG JIN KIM 12/04/2009			

ONDQA (Biopharmaceutics) Review

NDA: 22-474

Submission Date: 10/14/09

Product: EllaTM (Ulipristal Acetate 30 mg Tablet)

Type of Submission: Original NDA

Sponsor: HRA Pharma

Reviewer: Tapash K. Ghosh, Ph.D.

Background: Ulipristal acetate is a New Molecular Entity (NME). The drug product is a white to off-white, round, 9 mm diameter tablet engraved on both faces with "ella". Each immediate release tablet is packaged individually in a colorless transparent (b) (4) aluminum foil blister, itself in a carton box.

The drug product is indicated for emergency contraception up to 120 hours (5 days) after unprotected intercourse.

This review will address the dissolution methodology and specification proposed by the sponsor. The sponsor also has submitted two different drug product manufacturing sites which are linked by comparative dissolution and a Bioequivalence study.

Recommendation: Based on the information provided, the sponsor's proposed dissolution methodology is acceptable. However, ONDQA proposes the dissolution specification as $Q = \langle (b) \rangle$ at 15 min following the condition described below:

Apparatus II (Paddle)

Dissolution medium: 0.1N HCl Medium volume: 900.0 mL Rotation speed: 50 rpm Temperature: $37^{\circ}\text{C} \pm 0.5^{\circ}\text{C}$

Detection: UV spectrophotometer at 260 nm.

Tapash K.	Ghosh,	Ph.	D.
Primary R	eviewer		

Dissolution Specification: Based on the dissolution data, the sponsor proposed the dissolution specification for ulipristal acetate tablets as Q = (b) at 30 min, in 0.1N HCl. However, ONDQA proposes the dissolution specification as $\hat{Q} = (b)$ (4) at 15 min, in 0.1N HCl.

Application Type/Number	Submission Type/Number	Submitter Name	Product Name
NDA-22474	IDA-22474 ORIG-1 LABORATO HRA PHARI		Ella , Ulipristal Acetate
			d that was signed on of the electronic
/s/			
TAPASH K GHOS 12/07/2009	SH		
PATRICK J MAR 12/07/2009	ROUM		