CENTER FOR DRUG EVALUATION AND RESEARCH

APPLICATION NUMBER:
125338

PHARMACOLOGY REVIEW(S)

Tertiary Pharmacology Review

By: Paul C. Brown, Ph.D., ODE Associate Director for Pharmacology and Toxicology OND IO D Auil C-Buoun 12.23-09
BLA: 125338
Submission date:
Drug: Collagenase (Clostridium histolyticum) for injection
Applicant: Auxilium Pharmaceuticals Inc.
Indication: Patients with advanced Dupuytren's disease
Reviewing Division: Division of Anesthesia, Analgesia and Rheumatology Products
Introductory Comments: The pharm/tox reviewer and supervisor concluded that this BLA could be approved from a pharm/tox perspective. No additional nonclinical studies were recommended.

Reproductive and developmental toxicity:
A fertility and early embryonic development study and an embryofetal development study were conducted in rats by intravenous administration. There were no adverse effects noted in these studies. As noted in the supervisory pharm/tox memo, a complete battery of reproductive and developmental toxicity studies would also include an embryofetal development study in a second species and a pre/postnatal study. However, these were considered unnecessary due to the absence of adverse effects in the two rat studies and the absence of detectable systemic exposure to collagenase in the clinical setting.

The pharm/tox reviewer recommended pregnancy category C since the sponsor did not complete a pre/postnatal study so this would be an absence of animal data. The supervisor recommended category B since although the complete battery was not conducted, the complete battery was not required in this case.

Another issue that was raised is the possible interaction of antiproduct antibodies with human matrix metalloproteinases (MMP). Such an interaction could theoretically be detrimental to fetal development. Both animals and humans developed antiproduct antibodies. The presence of these antibodies appeared to have no adverse effect on animals including fetal development. Five different MMPs were tested for their ability to inhibit the binding of antibodies from sera from several patients to the two Auxilium collagenases (Aux I and Aux II). Some inhibition was noted from one patient for Aux II binding.

Carcinogenicity:

Long term carcinogenicity studies with the drug substance or product were not required since the clinical use is not considered chronic.

Conclusions and Recommendations:

I agree that the pregnancy labeling can be category B . While the complete battery of reproductive and developmental toxicity studies was not completed, this was acceptable
since the risk was considered low based on the lack of adverse effects and lack of systemic exposure. The potential for adverse developmental effects based on MMP inhibition is theoretical and no adverse effects were observed in animals in which antidrug antibodies were present. This issue does not appear to be sufficient to prohibit use of a pregnancy category of B.

I agree that the BLA can be approved from a pharm/tox perspective and that no additional nonclinical studies are needed at this time.

DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION CENTER FOR DRUG EVALUATION AND RESEARCH

SUPERVISOR'S SECONDARY REVIEW PHARMACOLOGY/TOXICOLOGY REVIEW AND EVALUATION

BLA NUMBER: 125338
SERIAL NUMBER: 000
DATE RECEIVED BY CENTER: 27-Feb-2009
PRODUCT:
XIAFLEX ${ }^{\text {M }}$
(Collagenase Clostridium histolyticum)for injection
INTENDED CLINICAL POPULATION: Patients with advanced Dupuytren's disease
SPONSOR:
Auxilium Pharmaceuticals Inc.
Division of Anesthesia, Analgesia, and
Rheumatology Products (HFD-170)
Asoke Mukherjee, Ph.D.
R. Daniel Mellon, Ph.D.R. Nam MellomBob A. Rappaport, M.D.9-18-2009
DIVISION DIRECTOR:
PROJECT MANAGER: Chris Hilfiger

Executive Summary

I. Recommendations

A. Recommendation on approvability

I concur with Dr. Mukherjee's recommendation that from a nonclinical pharmacology toxicology perspective, BLA 125338 (XIAFLEX) may be approved pending agreement on the final labeling.

B. Recommendation for nonclinical studies

I concur with Dr. Mukherjee, no further nonclinical studies are necessary at this time.
C. Recommendations on labeling

NOTE: Labeling recommendations below are being made prior to the review team discussions and prior to discussion with the sponsor. The reader is referred to the final labeling for specific wording.

Snonsor's Pronosed Labeling \quad Recommended Labeling \quad Rationale/Comment

II. Summary of nonclinical development program and key findings

XIAFLEX (AA4500) is a (b) mixture of AUX-I and AUX-II collagenases isolated from the culture medium of Clostridium histolyticum. AUX-I and AUX-II demonstrate substrate specificity characteristic of class I and class II collagenase enzymes, respectively, and therefore are both functionally and antigenically distinct proteins. The Applicant maintains that the mixture of the two enzymes, which have differential collagen cleavage sites work synergistically to provide broad hydrolyzing activity toward collagen. Dupuytren's disease is manifested as a fixed flexion contracture deformity of the hand caused by increased collagen deposition resulting in decreased finger mobility and impairment of function. The disorder was named after Baron Guillaume Dupuytren, the surgeon who described the surgical procedure employed to correct the affliction. XIAFLEX is being proposed as a nonsurgical means to reduce the contracture by enzymatically breaking down the collagen surrounding the Dupuytren's cord thereby improving mobility and function. The proposed clinical dose is 0.58 mg per treatment (injected over three sites within the contracted cord).

The nonclinical development program for XIAFLEX included reliance upon information in the published literature regarding the enzymatic activity, mechanism of action and clearance of the enzymes from the body. In addition, the Applicant conducted several single and repeat dose GLP local toxicity studies in dogs, IV toxicology studies in the rat, genetic toxicology studies, and both fertility and early embryonic development and embryo-fetal development studies in the rat. All of these studies were completed with drug product manufactured by Process 1 and/or Process 3, the intended commercial product manufacturing process. As noted in the review by Dr. Mukherjee, and in consultation with the Product Review Team, the drug product manufactured by these different processes is deemed comparable. Prenatal and postnatal development studies were not required for this product due to the lack of systemic exposures in the clinical setting. Chronic toxicology studies and carcinogenicity assessment was also not required due to the lack of chronic use of the product.

As noted in Dr. Mukherjee's review, there was no clear NOAEL noted in the local toxicology studies, as the collagenase enzymes demonstrated predicted pharmacodynamic effects on the local tissues. These effects were also not associated with clinical efficacy, as there is no animal model of Dupuytren's disease. Information on local efficacy was therefore provided via in vitro studies with explanted Dupuytren's cords or Peyronie's plaques.

The Applicant conducted two 16-day repeat-dose intravenous toxicology studies in the rat to characterize the potential systemic toxicity that might result from inadvertent systemic exposure to the product. Dr. Mukherjee concludes that the NOAEL from the study was 0.029 mg protein $/$ dose $(\sim 0.073-0.099 \mathrm{mg} / \mathrm{kg})$. Given the clinical dose of $0.58 \mathrm{mg} /$ treatment $(0.0097$
$\mathrm{mg} / \mathrm{kg}$ assuming a 60 kg person), the animal NOAEL is approximately 10 -times higher than the human dose if it were inadvertently injected intravenously. The toxicities at higher doses included injection site hemorrhage and inflammation, as well as significant liver changes including inflammation, necrosis, fibrosis, and bile duct hyperplasia. These findings are likely due to exaggerated pharmacodynamic effects of the collagenase enzymes acting in locations not intended due to the route of administration.

The Applicant conducted a standard battery of genetic toxicology studies. These studies were completed prior to international agreement that genetic toxicology studies are not necessary for large proteins which do not cross the cell membrane. Nonetheless, the data for the isolated enzymes exists and can be included in the label.

The Applicant conducted two intravenous reproductive and developmental toxicology studies using a rat model. There were no effects noted in the fertility and early embryonic development study or the embryo-fetal development study. The NOEL for these studies was the high dose of $0.13 \mathrm{mg} /$ dose. This dose is over 40 -times the human dose of $0.58 \mathrm{mg} /$ dose, if inadvertently administered intravenously. Although a standard reproductive and developmental toxicology program would also include a second species embryo-fetal development study and a prenatal and postnatal development study, the lack of detectable systemic levels of collagenase enzyme following local administration indicates that such studies are not necessary.

Based on the lack of significant findings in the embryo-fetal development study conducted in the rat, and the lack of detectable systemic exposure in the clinical setting, the Applicant has proposed a Pregnancy Category B. Dr. Mukherjee has recommended a Pregnancy Category C due to the lack of a standard ICH battery of nonclinical reproductive and developmental toxicology studies and the concern that anti-product antibodies could theoretically cross-react with endogenous matrix metalloproteinases (MMPs) in the body. As the Division has concluded that the full battery of reproductive and developmental toxicology studies are not needed for this product due to a lack of detectable systemic exposure, and is not requiring the remaining studies from this battery, I do not think that a Pregnancy Category C is justified. Although virtually all individuals who have received XIAFLEX have developed anti-product antibodies, and there are some data that these antibodies may interfere with endogenous MMP activity (see product immunogenicity review completed by Dr. Mills), this is a theoretical concern and the current options listed in 21CFR§201.57 do not support the designation of a Pregnancy Category C for a theoretical concern. Nonetheless, I do think that it is reasonable to include some language to specifically raise the unknown clinical impact of the anti-product antibodies on the fetus. The exact language and location of this language will be discussed further with the entire review team. It is my understanding that Dr. Mills will be requiring additional studies to clarify the data suggesting potential for anti-product antibodies to interfere with activity of endogenous MMPs. Therefore, if the Applicant can provide adequate data to eliminate the concern that treatment with XIAFLEX could resulting antiendogenous MMP proteins, the labeling could be adjusted accordingly.

FDA Center for Drug Evaluation and Research Division of Anesthesia, Analgesia, and Rheumatology Products 10903 New Hampshire Avenue, Silver Spring, MD 20993

Addendum to Supervisory Pharmacology Toxicology Secondary Review

Date:

October 21, 2009

To:
BLA 125338
From:

Subject: Addendum to Secondary Review

Dr. Mukherjee's primary review executive summary discussed a potential clinical implication of the nonclinical data as follows:

Although the applicant provided in vitro data to justify lack of interactions between anti-AA4500 and recombinant human matrix metalloproteinase, the role of antibody for future risks could not be determined in non-clinical models. Therefore, it is recommended that a user registry be develop to monitor the association of the antibodies to the development of systemic or local inflammatory diseases following the use of Xiaflex.

I concur with Dr. Mukherjee that the nonclinical data will not provide useful information regarding the potential clinical significance of anti-product antibodies, should they form in patients administered this product. The option of a user registry to monitor for a potential association of the antibodies to the development of systemic or local inflammatory diseases following use of Xiaflex should be based on the strength of the clinical data reviewed by product immunology reviewer and the existing clinical safety database. This suggestion has been discussed with the clinical review team.

DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION CENTER FOR DRUG EVALUATION AND RESEARCH

PHARMACOLOGY/TOXICOLOGY REVIEW AND EVALUATION

BLA NUMBER: 125338
SERIAL NUMBER: 000
DATE RECEIVED BY CENTER: 2/27/2009
PRODUCT:
INTENDED CLINICAL POPULATION:
SPONSOR:
DOCUMENTS REVIEWED:
REVIEW DIVISION:
PHARM/TOX REVIEWER:
PHARM/TOX SUPERVISOR:
DIVISION DIRECTOR:
PROJECT MANAGER:
Dupuytren's Disease
Auxilium Pharmaceuticals Inc.
Mi, M2, M3, M4
Division of Anesthesia, Analgesia, and
Rheumatology products (HFD-170)
Asoke Mukherjee Ph.D. Asoxe Muthesfee
Dan Mellon Ph.D. RDaul Melon 9-i1-200s $9 / 17 / 2009$
Bob Rappaport, M.D.
Margarita Toss

TABLE OF CONTENTS

EXECUTIVE SUMMARY 3
2.6 PHARMACOLOGY/TOXICOLOGY REVIEW 10
2.6.1 INTRODUCTION AND DRUG HISTORY 10
2.6.2 PHARMACOLOGY 12
2.6.2.1 Brief summary: 12
2.6.2.2 Primary pharmacodynamics 13
2.6.2.3 Secondary pharmacodynamics: 14
2.6.2.4 Safety pharmacology: 14
2.6.2.5 Pharmacodynamic drug interactions 14
2.6.3 PHARMACOLOGY TABULATED SUMMARY 14
2.6.4 PHARMACOKINETICS/TOXICOKINETICS 15
2.6.4.1 Brief summary: 15
2.6.4.2 Methods of Analysis 16
2.6.4.3 Absorption: 16
2.6.4.4 Distribution: 16
2.6.4.5 Metabolism 16
2.6.4.6 Excretion. 16
2.6.4.7 Pharmacokinetic drug interactions. 16
2.6.4.8 Other Pharmacokinetic Studies 16
2.6.4.9 Discussion and Conclusions 16
2.6.4.10 Tables and figures to include comparative TK summary 16
2.6.5 PHARMACOKINETICS TABULATED SUMMARY 16
2.6.6 TOXICOLOGY 18
2.6.6.1 Overall toxicology summary 18
2.6.6.2 Single-dose toxicity 19
2.6.6.3 Repeat-dose toxicity 19
OVERALL CONCLUSIONS AND RECOMMENDATIONS 56
2.6.6.4 Genetic toxicology 59
2.6.6.5 Carcinogenicity: No carcinogenicity study was conducted. 65
2.6.6.6 Reproductive and developmental toxicology 65
2.6.6.7 ocal tolerance. 77
2.6.6.8 Special toxicology studies 77
2.6.6.9 Discussion and Conclusions. 78
2.6.6.10 Tables and Figures: see below 86
2.6.7 TOXICOLOGY TABULATED SUMMARY 87
OVERALL CONCLUSIONS AND RECOMMENDATIONS 99
APPENDIX/ATTACHMENTS: NIL 99

EXECUTIVE SUMMARY

I. Recommendations

A. Recommendation on approvability: AA4500 (Xiaflex) can be approved based on non-clinical data and a lack of toxicity related to the interaction of anti-AA4500 antibodies with collagenase in non-clinical studies. AntiAA4500 antibodies did not induce any systemic hypersensitivity reactions in the species tested following local and systemic administration.
B. Recommendation for nonclinical studies: None
C. Recommendations on labeling: NOTE: the labeling recommendations below are preliminary and have not been discussed with the full review team or the Applicant. For final labeling, the reader is referred to the action letter.

Applicant Proposed	Reviewer's Recommendation	Comment

II. Summary of nonclinical findings

A. Brief overview of nonclinical findings:

AA4500 contains collagenase AUX-1 and AUX-2 at (b) proportion by mass. These collagenases have distinct catalytic activity and are expressed from different genes.

The collagenase activity was examined in surgically removed tissues in vitro up to 600 units as presented by the applicant from published literature. Two multidose toxicity studies were conducted in rats up to 16 days. The NOAEL was 0.029 mg protein/dose. Liver toxicity was noted at 0.13 and 0.29 mg protein/dose. Injection site perivascular inflammation and fibrosis were noted at all doses. Liver toxicity and injection site inflammation was non-reversible. Interestingly, inflammatory changes at the site of injection induces inflammatory cell migration. Theoretically, these cells also secrete collagenase that could extend the efficacy and safety of the drug.

Clostridial collagenase made by BTC, (b) (4) and Auxilium processes showed a similar toxicity profile and immunogenicity. Therefore, subsequent reproductive toxicity studies were conducted using the (b) (4) manufacturing process of the drug. AUX-1 and AUX-2 were transiently detected in the plasma. However, AUX-1 rapidly degraded in the plasma. Exposure to AUX-2 could be measured on days 1 and 7 of the study following IV injections in rats. Antibody formation to AUX-1 and AUX-2 was observed at all doses tested following IV injections (rats) and local injections (dogs).

A local toxicity study was conducted after injection of AA4500 in the dog penis. The study was conducted to support the safety of the drug in Peyronie's disease
(b) (4) and the study report was submitted with this BLA submission. Data showed injection site inflammation in the treated groups at single and multiple doses. Doses ranged from 0.8 to 14.9 $\mathrm{ug} / \mathrm{kg}$. Both AUX-1 and AUX-2 in the plasma was detectable only within 60 min after dosing, suggesting minimal bioavailability of the drug in systemic circulation following local administration. However, antibodies to AUX-1 and AUX-2 were present in the serum even at recovery day 28. The study clearly showed antigenicity to AA4500 in animals following local injections.

The applicant conducted sensitization experiments in guinea pigs and did not observe immediate hypersensitivity reactions in guinea pigs when challenged by AA 4500 by ip or intracardiac route.

The applicant conducted mutagenicity studies in Ames assay, in vitro chromosomal aberration in peripheral human lymphocytes and mouse micronucleus assay using clostridial collagenase prepared by BTC batches. The drug substance was not mutagenic in these assays. However, the batch used in the study was not intended for marketing under the BLA. In addition, mutagenicity study is generally not required for biologics because a large protein molecule does not have access into the cell. Mutagenicity studies to biologics may provide insights to process impurities that could be mutagenic. In terms of impurities, the genetic toxicology studies submitted in the BLA are not relevant to the proposed marketing batches.

The applicant provided data for fertility and early embryonic development and embryo-fetal development reproductive toxicology studies in rats. Male and female rats did not show any effect on fertility and early embryonic development up to 0.13 mg protein/dose by IV bolus injections of AA4500 manufactured by (b) (4) process 3. Pregnant rats also did not show developmental toxicity to pups when injected during organogenicity period. AUX-1 and AUX-2 antibodies were present in the fertility study. The applicant did not measure serum antibody titers in the embryo-fetal development study. However, antibodies to AUX-1 and AUX-2 were detected in a 16-day rat toxicity study and the fertility and early embryonic development study. Based on that, it is assumed that rats treated with AA4500 for developmental toxicity study would have developed antibodies to AUX-1 and AUX-2.

The applicant did not conduct prenatal and postnatal development study. The Agency's communication dated Sept 21, 2001 for end of Phase 2/Pre-Phase 3 Teleconference that stated, "Preclinical requirement for chronic toxicity, reproductive toxicity and carcinogenicity studies are waived due to the nature of the product, and its intended use in this specific clinical setting."

However, during the Pre-BLA meeting with the Division, the applicant was asked to provide justification why the segment 3 reproductive safety study would not be necessary to predict the effect of the drug on pre and post natal development. The applicant's response and reviewer's comments are provided in the review under the discussion section of the review. The applicant indicated that bioavailability of AA4500 following local injections was not measurable. The reviewer agreed with the applicant's position for not conducting the study based on the lack of systemic bioavailability of AA4500 in humans and results of the non-clinical toxicity studies. However, in the absence of segment 3 data, the reviewer recommends Pregnancy Category C
as opposed to Pregnancy Category B proposed by the applicant for the package insert.

The non-clinical data provided in the BLA clearly showed development of anti-product antibodies in the serum both after single and multiples injections irrespective of the route of administration. The immunogenicity to the product in the clinical setting has been reviewed by the product quality reviewer under a separate review. However, consequences of the anti-product antibody are unknown in the non-clinical studies. The clinical summary indicated that a similar anti-AA4500 antibody response was observed. The applicant stated, "Given the local mode of action of AA4500, it seems unlikely that neutralizing anti-AUX-1 or anti-AUX-2 antibodies would influence the clinical benefit-to-risk analysis." Based on the nonclinical data reviewed for the BLA, presence of an autoimmune response in animals was not evident. The accumulation of AUX-2 in the plasma also suggests that the AUX-2 perhaps was not cleared by its antibodies. In all cases injection site inflammation was noted that could be the result of collagenase activity as supported from the fact that rat tail collagen was used to assay for the potency of the drug substance. However, the role of the anti-product antibodies needs to be determined from the clinical observations because non-clinical toxicity studies did not indicate its relationship to the systemic toxicity and the lack of correlation between animal and human antigenicity data.

Based on above observations in the nonclinical studies, it is concluded that Xiaflex would contribute to injection site inflammation and antibody titers in humans. While the local inflammatory response and tolerance could be reduced in the patients because animal studies were conducted at higher multiples, the role of antibody to the long-term safety can only be determined after careful monitoring of clinical conditions of the patients. However, when Xiaflex was injected locally, nonclinical reports did not show any untoward systemic response that could be related to the antibody. The reviewer recommends approval of the product on the basis of nonclinical data.

B. Pharmacologic activity:

Dupuytren's disease is associated with collagen deposition between the skin and tendon in the hand that impairs extension of the finger. AA4500 contains clostridial collagenase 1 and 2 that would be injected locally to facilitate the extension of finger or other impaired conditions. There is no pharmacological model in experimental animals that could replicate the conditions of this disorder. The applicant conducted two in vitro studies using surgically removed tissues from human subjects diagnosed for Dupuytren's and Peyronie's diseases. The experimental efficacy was examined by tensile strength of the tissue to applied stress, release of amino acids and microscopic examination of thinning of the tissue. Up to 600 units of AA4500 was found effective for degrading collagen. No other secondary pharmacology and
safety pharmacology study was conducted due to lack of bioavailability of AA4500 in the systemic circulation. The product induces antibodies to AA4500 either by local or systemic administration. However, no pharmacodynamic effect related to the antibodies was reported in the animal testing.

C. Nonclinical safety issues relevant to clinical use:

Although the applicant provided in vitro data to justify lack of interactions between anti-AA4500 and recombinant human matrix metalloproteinase, the role of antibody for future risks could not be determined in non-clinical models. Therefore, it is recommended that a user registry be develop to monitor the association of the antibodies to the development of systemic or local inflammatory diseases following the use of Xiaflex. In addition, certain antibiotics like tetracycline possess collagenase inhibition. Therefore, uses of certain antibiotics with known effects on collagenase should be restricted following the treatment with AA4500.

2.6 PHARMACOLOGY/TOXICOLOGY REVIEW

2.6.1 INTRODUCTION AND DRUG HISTORY

BLA number: 125338
Review number: One
Sequence number/date/type of submission: 000 / Feb 27, 2009 / Original BLA Information to Applicant: Yes () No (x)
Applicant: Auxilium Pharmaceuticals, PA
Manufacturer for drug substance: Auxilium Pharmaceuticals Inc., 40 Valley Stream Parkway, Malvern, PA 19355

Reviewer name: Asoke Mukherjee, Ph.D.
Division name: Division of Anesthesia, Analgesia, and Rheumatology Products
HFD \#: 170
Review completion date: July 14, 2009

Drug:

Trade name: Xiaflex
Generic name: Clostridial Collagenase for injection
Code name: AA4500, Nucleolysin
Chemical name: Biologics does not have chemical name
CAS registry number: Nil
Molecular formula/molecular weight: Mixtures of AUX-1 and AUX-2 for collagenase 1 and collagenase 2, respectively at (b) (4), each enzyme had approximately 1000 amino acids and molecular weight between 110 to 120 kDa .

Structure: The applicant provided amino acid compositions but the structure was not provided in the BLA.

Relevant INDs/NDAs/DMFs:

IND \#	Drug	Status	Division	Indication	Stamp Date	Applicant
$\mathbf{5 7 8 0}$	Collagenase	Active	HFD-170	Dupuytren's disease	Sept 28, 1994	Auxilium Pharmaceuticals

Drug class: Biologic, therapeutic protein, recombinant collagenase enzymes
Intended clinical population: Dupuytren's Disease
Clinical formulation: Clinical formulations from the applicant's table is shown below.

Table 1: Composition of Drug Product Dosage Form

Component	Amount per Vial (mg)	5 wiw	Function	Quality Standard
Active Ingredient		(b) (4)		
A. 4500	0.9			HDSD. 001
Inactive Ingredients ${ }^{\text {2 }}$				
Sucrose	18.5			USPIEP
Tromethamine	1.1			USPIEP
Hydrochloric acid	0.5			USPIEP

Table 1: Composition of AAt500 Sterile Diluent

Ingredient	Concentration	Quality Standard
. Sodium Choloride	0.9%	USPFEP
Calcium Caloride diaydrate	0.03%	USP/EP
(b) (4)		

Route of administration: Locally into Dupuytren's cord
Disclaimer: Tabular and graphical information are constructed by the reviewer unless cited otherwise.

Studies reviewed within this submission:

1. Collagenase in the treatment of Dupuytren's disease: an in vitro study by Starkweather et al., J. Hand Surgery, 1996, 21A, 490-495.
2. Collagenase for Peyronie's disease experimental studies, Gelbard et al. Urol. Res. 1982, 10, 135-140.
3. AA4500 and BTC collagenase: A 16-day intravenous comparative toxicity and toxicokinetic study followed by a 14-day recovery period in Sprague Dawley rats.
4. A 16 -day, multiple-dose, intravenous toxicity study in rats comparing AA4500 with BTC collagenase and placebo.
5. Local Toxicity Study of AA4500 Injected into Dog Penis.
6. Micronucleus test, injectable collagenase ABC (Nucleolysin).
7. Reverse mutation in Salmonella typhimurium
8. Chromosome aberration in human lymphocytes cultured in vitro.
9. Intravenous fertility and general reproduction toxicity study of AA4500 in rats.
10. Intravenous developmental toxicity study of AA4500 in rats.
11. Guinea-pig sensitization study.
12. An exploratory study on the effect of injected Nucleolysin on the subcutaneous fat of female Zucker rats.

Studies not reviewed within this submission:

The reviewer gone through these reports. However, a written review of following study reports were not provided because full audited reports were not submitted in the BLA. These studies were also not conducted according to GLP.
(b) (4)

2.6.2 PHARMACOLOGY

2.6.2.1 Brief summary:

Clostridial collagenase (AUX) 1 and 2 obtained from Clostridium histolyticum contains type 1 and type 2 collagenase a ${ }^{(b)(4)}$ ratio in the drug substance, AA4500. The bacterial collagenase degrades type 1 and type 2 collagens. The enzymatic effect would reduce the contracture caused by the collagen deposition in Dupuytren's cord (disease). The
applicant provided two published reports to substantiate the pharmacodynamic effect of AA4500 in vitro as discussed below.

2.6.2.2 Primary pharmacodynamics

Mechanism of action: The primary pharmacological effect of the drug is due to enzymatic cleavage of type 1 and type 2 collagen. The applicant provided published literature using BTC batch or commercially purified clostridial collagenase for in vitro efficacy of the enzyme using surgically removed Dupuytren's cord containg collagen. The in vitro study was conducted due to unavailability of suitable animal model for Dupuytren's disease.

1. Collagenase in the treatment of Dupuytren's disease: an in vitro study by Starkweather et al., J. Hand Surgery, 1996, 21 A, 490-495.

Dupuytren's cord were obtained at surgery from male volunteers and incubated with collagenase at 150,300 and 600 units. The cord was tested by stress induced by mechanical load and stretching the cord up to the point it had ruptured. The force needed to rupture was the measurement of collagenase activity. Data suggested that 300 and 600 units of collagenase reduced the mechanical stress needed for the cord to rupture. The experiment indicated the efficacy of collagenase in the stretching the cord in vitro. Histopathology of the cord showed lysis of type 1 and type 2 collagen. Clostridial collagenase was obtained as Nucleolysin from Advance Biofactures, Lynbrook, NY.
2. Collagenase for Peyronie's disease experimental studies, Gelbard et al. Urol. Res. 1982, 10, 135-140.

Tissues from tunica albuginea from 3 patients with Peyronie's disease were treated with purified clostridial collagenase. Tissues were examined for the release of amino acids to probe collagenase activity in vitro. Collagenase activity was determined using a colorimetric method and thinning of tissues when examined microscopically at 200 and 400 units. The study was designed to investigate the role of collagenase treatment in Peyronie's disease and as an in vitro bioassay for collagenase activity.

Drug activity related to proposed indication: See above

2.6.2.3 Secondary pharmacodynamics: The applicant indicated that no systemic secondary pharmacological effect is expected due to the non-bioavailability of the enzyme in systemic circulation. No secondary pharmacology study was conducted. However, one issue raised in the literature as well as the BLA was the inhibitory effect of collagenase by certain antibiotics like tetracycline due to chelation of zinc. The sponsor did not provide data for the inhibition of clostridial collagenase in the presence of tetracycline. Therefore, the issue of treating patients with appropriate antibiotics that do not have collagenase inhibition needs to be addressed by the clinical review team as well as the package insert.
2.6.2.4 Safety pharmacology: No safety pharmacology study was conducted due to lack of systemic bioavailability of AA4500 following a local injection and lack of tissue distribution of the enzyme. AA4500 is also rapidly degraded upon systemic exposure due to the action of peptidase. It should be noted that dedicated safety pharmacology studies are not typically required for biologics due to their large molecular size, specificity, and the inability to transport across the biological membranes. A concern was raised for the development of anti-AA4500 antibodies that could contribute to the long-term safety of the drug. However, non-clinical studies reported in the BLA did not show any autoimmune response.

2.6.2.5 Pharmacodynamic drug interactions

The applicant did not conduct any pharmacodynamic drug interaction studies.

2.6.3 PHARMACOLOGY TABULATED SUMMARY

Following tabulated summary was provided by the applicant:

Table 3: Design and Endpoints of Tissue Explant Culture Studies Performed with AA 4500 or Purified Commerical Collagenase

Tissue(s) Evaluated	Collagenase and Doser Concentration Used	Route of Administration	Study Endpotuts	Reference
Peyronie's plaque Tunica albuginea Corpus cavernosum Pericardium	Purified commercial collagenase $\begin{aligned} & \text { (b) (b) (4) } \\ & 10-400 \mathrm{U} \end{aligned}$	Incubation (collagen digestion rate) Injection (histomorphology)	Amino acid release by ninhydrin reaction (collagen digestion rate) Light microscopy (histomorphology)	Geibard er al (1982)
Dupuyten's cord	$\begin{aligned} & \text { AA4500 (early } \\ & \text { BTC process) } \\ & 150-3600 \mathrm{U} \end{aligned}$	Injection	Mechanical loading (tensile modulus and breaking force determination) Light microscopy (histomorphology) Picrosirius red staining (collagen subtrpe characterization)	Starkweather et al. (1096)

2.6.4 PHARMACOKINETICS/TOXICOKINETICS

2.6.4.1 Brief summary: Pharmacokinetic data from individual toxicity studies in rats are reviewed under the specific study. Local injections were made into tunica albuginea, corpus covernosum or periurethral corpus spongiosum of testes in dogs at 140,430 and 1430 units/dose, 3 times per week every 4 weeks for a total 9 doses (b) (4) 520). The high dose was lowered to 1050 units/dose due to local inflammation. Additional animals were given 1430 or 2570 units as single doses. Plasma levels were determined on days 1 and 61 that represents first and last dose respectively. Plasma levels of AUX-1 and AUX-2 at $18-38 \mathrm{ng} / \mathrm{mL}$ were noted 5 minutes post injections, and in some occasions, within 5 minutes after the injections. Systemic exposure to AUX-1 and AUX-2 after the local injections was minimal in dogs. The applicant provided data for the individual plasma levels at specific time points indicated in the protocol. However, there was no summary table in the report that could be presented in the review. The applicant indicated that due to a short half-life of AUX-1 and AUX-2, PK parameters were not calculated.

PK data were presented for two toxicity studies in rats where AA4500 was injected intravenously. Systemic exposure to AUX-1 and AUX-2 was minimal on day one. However, on repeated administration of AA4500, AUX-2 exposure was increased. Data suggest that degradation of AUX-1 was faster than AUX-2.

Anti-AUX4500 data suggested negligible antibodies at pre-study samples. However, anti-AUX4500 (against AUX-1 and AUX-2) was present in the serum
in all animals treated with AUX4500 at the end of day 16 and longer and through the recovery period. One animal treated at $2.5 \mathrm{ug} / \mathrm{kg}$ also showed antibody after 8 days (two treatments). Although the applicant did not mention about neutralization of AUX by its antibodies in the non-clinical studies, increased exposure to AUX-2 upon repeated dosing despite the presence of anti-AUX-2 when compared to the exposure on day 1 may indicate that AUX-2 was not neutralized by its antibody.

2.6.4.2 Methods of Analysis
 [see under individual study reviews]

2.6.4.3 Absorption: the drug product was injected intravenously to determine the systemic toxicity. AA-4500 was injected locally in the dog penis to examine local toxicity. However, no systemic absorption following local injection was detected. Antibodies to AUX-1 and AUX-2 were present after the IV or local injections.
2.6.4.4 Distribution: The drug product is proteins and degraded following IV administration. In general, large molecular weight protein does not distribute to organs.
2.6.4.5 Metabolism: Metabolic fragments of AUX-1 and AUX-2 proteins were not determined.
2.6.4.6 Excretion: No excretion study was conducted.
2.6.4.7 Pharmacokinetic drug interactions: No pharmacokinetic drug interaction study was conducted.

2.6.4.8 Other Pharmacokinetic Studies: Nil

2.6.4.9 Discussion and Conclusions: AA4500 is comprised of AUX-1 and AUX-2 a (b) mass. These enzymes have collagenase type 1 and collagenase type 2 activities. Upon IV injections and local injections, AUX-1 plasma levels were minimal on day 1 and on day 16 in rats. Although plasma levels of AUX-2 was observed only within hrs after injections, exposure to AUX-2 was higher than AUX-1 after repeated IV administration. Antibodies to both AUX-1 and AUX-2 were present in rats and dogs. Data suggest that AA4500 is poorly bioavailable after the local injections.

2.6.4.10 Tables and figures to include comparative TK summary: see individual study review

2.6.5 PHARMACOKINETICS TABULATED SUMMARY

Following tabulated summaries were submitted by the applicant:
2.6.7.3. Toxicolinetics: Overview of Toxicokinetics Data

Iest Article:		Oververs of Toricolimetics Datan						
Sames	Dose: Vidose (mg proteinidosé)	Spacies: Rat				Study Duration	GLP Compliauce	Study Number
		Male		Female				
		AUX-I	A0x-II	AUS-I	AUS-II			
A $2+500$	$\begin{aligned} & 50 \\ & (0.0029) \end{aligned}$	$N C^{\prime \prime}$	$\begin{aligned} & C_{\text {max: }} 1.67 \\ & T_{\text {gax }}: 0.25 \\ & \text { ATC: } 0.63 \\ & \hline \end{aligned}$	NC ${ }^{\text {d }}$	$\begin{aligned} & C_{\text {maxr }}: 1.82 \\ & T_{\text {max }:} 0.25 \\ & A L C: 0.68 \end{aligned}$	168	GLE	$\begin{aligned} & \text { (b) } \\ & \text { (4) } \end{aligned}$
Ait500	$\begin{aligned} & 150 \\ & (0.0037) \end{aligned}$	NCl^{\prime}	$\begin{aligned} & C_{\text {max }}: 22.47 \\ & T_{\text {maxe }} 0.35 \\ & A \cup C: 14.34 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\text {max }}: \\ & \mathrm{I}_{\text {maxi }} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{man}}: 33.37 \\ & \mathrm{I}_{\mathrm{max}}=0.25 \\ & \mathrm{AUC}: 22.77 \end{aligned}$	154	GLF	00000
A.4500	$\begin{aligned} & 250 \\ & (0.0145) \end{aligned}$	$\mathrm{NC}^{\prime \prime}$	$\begin{aligned} & \mathrm{C}_{\mathrm{tixa}}: 24.3 \\ & \mathrm{~T}_{\text {Jax }}=0.25 \\ & \text { ATC: } 17.9 \end{aligned}$	NC ${ }^{\text {d }}$	$\begin{aligned} & C_{\text {max }}: 17.9 \\ & \mathrm{~T}_{\text {max }}: 0.5 \\ & \mathrm{ALC}: 13.4 \end{aligned}$	$\begin{aligned} & \mathrm{M}: \leq 54 \mathrm{~d} \\ & \mathrm{~F}: \leq 21 \mathrm{~d} \end{aligned}$	GLP	2002
		NA	NA°	$3 \mathrm{NC}^{\text {d }}$	$\begin{aligned} & C_{\text {nux }}: 12.1 \\ & \mathrm{~T}_{\text {naxu }}: 0.5 \end{aligned}$	10 d	GLP	0000
AS 4500	$\begin{aligned} & 500 \\ & 0.009 \% \end{aligned}$	$\begin{array}{ll} C_{\text {fuer }} & 9.17 \\ I_{v E K} & 0.25 \end{array}$	$\begin{aligned} & C_{\text {max }}: 105.47 \\ & T_{\text {max }}: 0.25 \\ & A V C: 76.56 \end{aligned}$	$\begin{aligned} & C_{\text {max }} 0.72 \\ & I_{\max } 0.25 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\text {пих }}: 135.27 \\ & \mathrm{~T}_{\text {nax }}: 0.25 \\ & \mathrm{ALC}: 93.91 \end{aligned}$	15 d	GLP	12006
		$\begin{aligned} & \mathrm{C}_{\text {tuax }}=212 \\ & \mathrm{I}_{\text {rax }}: 0.0 \end{aligned}$	$\begin{aligned} & C_{\text {maxe }} 328 \\ & \mathrm{~T}_{\text {maxe }} 0.00 \\ & \text { SVC: } 250 \end{aligned}$			16 d	GLP	1007-15:9
AAt500 (Process I)	$\begin{aligned} & 500 \\ & (0.039) \end{aligned}$	$\begin{aligned} & C_{\text {ruk }}: 2.97 \\ & T_{\text {rever }} 0.25 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\text {max }}: 25.41 \\ & \mathrm{~T}_{\text {دvx }}: 0.25 \\ & \mathrm{AD}: 25.97 \end{aligned}$	$\begin{aligned} & C_{\text {max }}: 4.32 \\ & I_{\text {mas: }} 0.25 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\text {nax }} 20.59 \\ & \mathrm{~T}_{\text {nax }} 0.25 \\ & \mathrm{nCC}: 18.28 \end{aligned}$	$16 d$	GLP	0006
		$\begin{aligned} & \mathrm{C}_{\text {zux: }}: 87 \\ & \mathrm{~T}_{\text {rase }}: 0.0 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\text {max: }} 46 \\ & \mathrm{~T}_{\text {sta: }} 0.0 \\ & \mathrm{ALC}: 117 \end{aligned}$			15 d	GLP	1007-15: ${ }^{\text {8 }}$

2.6.7.3. Toxicolinetics: Overvient of Toxicokinetics Data (Continued)

Test Article:		Overvien of Tosicolinetirs Data ${ }^{\text {a }}$						
Name ${ }^{\text {3 }}$	Do:e ${ }^{\text {: }}$ Cidose (mg protein'dosé)	Species: Rat				Study Duratiol	GLP Compliance	Study Sumber
		Male		Female				
		AUS-1	AUS゙-II	AUS-I	AUX-II			
A. 4500 (lot 7280)	$\begin{aligned} & 500 \\ & (0.029) \end{aligned}$	$\begin{aligned} & C_{\text {sax }}: 105 \\ & T_{\text {raxa }}: 0.0 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{Crsx}}: 613 \\ & \mathrm{~T}_{\text {Ius: }}: 0.0 \\ & \text { AUC: } 169 \\ & \hline \end{aligned}$			16 d	GLP	(b) $100 \div 15: 1$ (4)
A.t500	$\begin{aligned} & 750 \\ & (0.0435) \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\text {тuн }}: 11.0 \\ & \mathrm{~T}_{\text {raxa }}: 0.25 \end{aligned}$	$\begin{aligned} & C_{\mathrm{Hax}} 160 \\ & \mathrm{~T}_{\mathrm{Jum}}=0.25 \\ & \mathrm{AUC}: 160 \end{aligned}$	Wc.	$\begin{aligned} & \mathrm{C}_{\text {nas }}: 46.8 \\ & \mathrm{I}_{\text {naz }}: 0.50 \\ & A \mathrm{CC}: 173 \end{aligned}$	$\begin{aligned} & \mathrm{M}: \leq 64 \mathrm{~d} \\ & \mathrm{~F}: \underline{\mathrm{c}} \mathrm{~d} \end{aligned}$	GLP	002
		10.4	NA ${ }^{\text {d }}$	$\begin{aligned} & C_{\text {maxa }}: 2.03 \\ & I_{\text {max }}: 0.63 \end{aligned}$	$\begin{aligned} & C_{\max }: 55 \\ & I_{\max }: 0.63 \\ & A L C: 133 \end{aligned}$	10d	GLP	0000
$\begin{aligned} & A+4500 \\ & \text { (lor }: 280) \end{aligned}$	$\begin{aligned} & 22+0 \\ & 0.15\rangle \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\text {max: }}: 1454 \\ & \mathrm{~T}_{\mathrm{nxx}}: 0.0 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\max }: 4532 \\ & \mathrm{~T}_{\operatorname{zax}}=0.0 \\ & \mathrm{AUC}: 1229 \\ & \hline \end{aligned}$			16 d	GLP	[007-15: ${ }^{\text {a }}$
A 4.500	$\begin{aligned} & 2140 \\ & 0.133 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\max } 21.4 \\ & \mathrm{~T}_{\operatorname{mex}} 0.25 \\ & \text { AUC: } 16.4 \end{aligned}$	$\begin{aligned} & C_{\text {rax: }}: 30 \mathrm{~S} \\ & T_{\text {rum: }}: 0.25 \\ & 3 \mathrm{VC}: 261 \end{aligned}$	$\begin{aligned} & C_{\text {rax }}: 7.59 \\ & I_{\text {max }}: 0.25 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\text {max }}: 173 \\ & \mathrm{~T}_{\text {max: }}: 0.25 \\ & \mathrm{ACC}: 156 \end{aligned}$	$\begin{aligned} & \mathrm{M}: \leq 54 \mathrm{~d} \\ & \mathrm{~F}: \leq 21 \mathrm{~d} \end{aligned}$	GLP	002
		N. ${ }^{\text {d }}$	$\mathrm{NA}^{\text {d }}$	$\begin{aligned} & C_{\text {max }}: 11.3 \\ & T_{\text {max }}: 0.62 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\text {mav }}: 218 \\ & \mathrm{~T}_{\text {ruw }}: 0.62 \\ & \mathrm{ACC}: 446 \\ & \hline \end{aligned}$	10 d	GLP	0009
A $2+500$	$\begin{aligned} & 5000 \\ & (0.29) \end{aligned}$	$\begin{aligned} & C_{\text {max: }} 7075 \\ & T_{\text {max: }} 00 \end{aligned}$	$\begin{aligned} & C_{\text {Tras: }} 11932 \\ & T_{\text {susu }}=0.0 \\ & \text { AUC: } 4679 \\ & \hline \end{aligned}$			16 d.	GLP	107-15:3
$\begin{aligned} & A+i 500 \\ & \text { (lor } 7280) \end{aligned}$	$\begin{aligned} & 5000 \\ & (0.29) \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{maxa}}: 8.50 \\ & \mathrm{~T}_{\text {max }}: 0.0 \end{aligned}$	$\begin{aligned} & C_{\text {rax }}: 11665 \\ & T_{\text {man }}: 0.0 \\ & A U C: \$ 265 \end{aligned}$			10 d	GLP	1002-1532

 $t_{\text {max }}$ is inh .

(b) (4) ${ }^{\text {or }}$ 7200 was uranfactured by Frocess 3 in the Sponsorts Exsinm facility.

「Dasa were cornbined for rosicokinetic analysis and the results are preeerted in te "males" colwn, ALC $=$ area uider tee cure

2.6.6 TOXICOLOGY

2.6.6.1 Overall toxicology summary

General toxicology:

The applicant conducted local and systemic toxicity to AA4500 in rats and dogs. Intravenous injections of AA4500 showed liver toxicity e.g. bile duct hyperplasia, hepatocellular necrosis and fibrosis at 0.29 mg protein/dose/IV. The local injections in dogs did not show any systemic toxicity up to $6.1 \mathrm{ug} / \mathrm{kg}$. However, in all experimental studies, local inflammatory response and hemorrhage was noted. The NOEL for the injection site reactions could not be established due to the pharmacodynamic effect of the drug on collagen lysis. Guinea pig sensitization study did not show anaphylaxis like reaction and the repeat dose was tolerated without mortality. Injections of AA4500 either locally or systemically induced antibodies to collagenase-1 (AUX-1) and collagenase 2 (AUX-2). However, toxicity due to the presence of antibody was not evident.

Genetic toxicology: The applicant conducted an Ames assay, chromosome aberration in human lymphocytes and micronucleus tests in mice using collagenase made by BTC processes. However, the applicant changed the manufacturing process to Auxilium process and, in terms of potential impurities, the studies conducted for the BLA are not completely relevant. However, in general, mutagenicity studies for large proteins are not required for regulatory approval because these proteins do not transport across the cell membranes and induce mutagenicity.

Carcinogenicity: No carcinogenicity study was conducted due to a lack of systemic exposure and intermittent uses up to 3 injections in any Dupuytren's cord.

Reproductive toxicology: AA4500 does not have any effect on the fertility and early embryonic development or embryo-fetal development when administered up to 0.13 $\mathrm{mg} /$ dose/IV. The applicant did not conduct a pre- and postnatal development study. Pregnancy category C was recommended for the use of the drug in pregnant women.

Special toxicology: The applicant conducted a guinea pig sensitization test by IP injections of the protein. Guinea pigs did not show signs of hypersensitivity reactions following repeated dosing.

2.6.6.2 Single-dose toxicity

The applicant did not conduct single dose toxicity studies according to GLP and complete study reports were not submitted in the BLA. Study $\neq{ }^{\text {(b) }}{ }^{(4)} 00014$ showed death of a rat at 0.29 mg protein $/$ dose after a single IV injection.
LD_{50} in mice after IP injection was 57-80 units/mouse. In another report dated June 3 1976, deaths were reported at 80 and 104 units/mouse/IP. Autopsy showed hemorrhage in the pleural, peritoneal cavities, congestion in lungs, liver and kidneys. The LD_{50} after IM injection in mice was 1280 units/mouse. Local tissue injury was reported after the single dose study.

Nucleolysin lot\#N7903 showed transient erythema to guinea pigs at 300 units $/ \mathrm{kg}$ and it was concluded that the protein is an irritant. However, the study was not relevant to the BLA because the batch used will not be used for the approval and marketing of the product.

2.6.6.3 Repeat-dose toxicity

Study title: AA4500 and BTC collagenase: A 16-day intravenous comparative toxicity and toxicokinetic study followed by a 14-day recovery period in Sprague Dawley rats.

Key study findings: NOAEL for toxicity was 0.029 mg protein/dose. At higher dose, liver toxicity and mortality was noted. Injection site inflammation was observed at all doses tested. From the toxicity standpoint, .Auxilium and (b) (4) batches of AA4500 were comparable

Study no.: 1007-1671
Volume \#M4, and page \#: 1
Conducting laboratory and location:
Date of study initiation: Aug 17, 2007
GLP compliance: Yes
QA report: yes (x) no ()
Drug: AA4500 and BTC collagenase, lot \#NFF-0035 (b) (4) and 7280 (Auxilium-
Horsham process) for AA4500 and 992-7 for BTC batch

\% purity:

0.9 mg protein/vial as lyophilized powder for AA4500 (Auxilium)- 100% purity
$0.7 \mathrm{mg} /$ vial for BTC collagenase at 100% purity
$0.9 \mathrm{mg} / \mathrm{vial}$ (b) (4) process collagenase at 110% purity

Diluent containing 0.9% sodium chloride and 0.03% calcium chloride, Lot \# FIN-0265
Potency:

Lot	AUX-1	AUX-2
7280 (Auxilium)	0.93	0.95
NFF-0035 ((b) (4)	0.91	0.81
$992-7$ (BTC)	0.86	1.02

Methods

Doses: See study design below.

Treathent Groups	Test Article Ilot mumbert ${ }^{\prime}$	\qquad	Dose Conc. (my protein. mL.)	Dose Volune (mL animal)	Number of Animals					
					Afxin Study		fecorery		Taxicokinetiss	
					Males	Females	Males	Females	Males	Fentales
1. Diliert*	NiA	0	0	0.5	10	10	5	5	3	3
2. Low Dose	BIC collagezas (992-7)	0.029	0.053	0.5	10	10	5	5	12	12
3. Lew Dose	$\begin{gathered} A+4500 \\ (\mathrm{AFF}-6035) \end{gathered}$	0.029	0.058	0.5	10	10	5	5	12	12
4. Low Dose	A 4.4500 (7280)	0.029	0.053	0.5	10	10	5	5	12	12
5. 3vid Dose	A 47500 (3280)	0.93	026	0.5	10	10	-	-	12	12
6. Figh Dose	$\stackrel{A-4500}{\text { AFF-00353 }}$	0.29	0.58	0.5	10	10	5	5	12	12
7. Figh Dose	A44500 (7230)	0.29	0.58	0.5	10	$\vdots 0$	5	5	12	12
Note: A-4 4500 Lot XFF-0605 wss manfactured b (b) and A4+500 Lot 7830 was meruactured by Amilion *Control Arucle (AL4500 Dilizent).										

Species/strain: Male and female Sprague Dawley rats
Number/sex/group or time point (main study): See study design above
Route, formulation, volume, and infusion rate: The test substance was administered by bolus intravenous injections, once per 48 hours over 16 days. A total of 8 injections were made. The dose volume was 0.5 mL for each injection. The applicant indicated that in one occasion, one male from group 7 was injected with 0.29 mg protein/dose from a lot \#NNF-0035 instead of Lot \# 7280.

Following animals could not be dosed as scheduled due to the injection site abnormality:

Dose	Group, Dose	Animal\#
$0.29 \mathrm{mg} /$ dose	6	6502A, Main group, sacrificed on day 9
$0.29 \mathrm{mg} /$ dose	7	7511G, Recovery group, sacrificed on day $9 ; 7019 \mathrm{~K}$, TK group

The dosing solutions were analyzed to obtain the variability to the nominal dose. Data are shown below.

Group	Day	Batch	Conc, mg/mL	Recovery
2	$1,7,15$	BTC	0.058	$77,71,70 \%$

3	$1,7,15$	NFF-0035	0.058	$96,90,97 \%$
4	$1,7,15$	Auxilium	0.058	$95,87,90 \%$
5	$1,7,15$	Auxilium	0.26	$98,104,104 \%$
6	$1,7,15$	NFF-0035	0.58	$117,104,111 \%$
7	$1,7,15$	Auxilium	0.58	$105,106,103 \%$

Satellite groups used for toxicokinetics or recovery: As show on in the study design, 5 rats/sex except the mid dose, were allotted for a 14 -day recovery. Another group of 3-12 animals/sex/group was allotted for toxicokinetics.

Age: 12 to 15 weeks
Weight: 350 to 475 g male, 232 to 329 g for female rats
Sampling times: Approximately 0.75 mL of the blood samples were collected from 3 rats/sex/group/time point from groups 2 to 7 on days 1,7 and 15 . Samples were collected at $0.5,1,2,4,8$ and 24 hours after the injections. Blood samples were collected before and immediately after the injection from control animals in group 1 on day 1 . Samples were collected from jugular vein puncture or from sublingual vein. The sponsor did not indicate if samples were collected under anesthesia. AUX-1 and AUX-2 levels were determined in the rat plasma by an ELISA method and toxicokinetic parameters were determined using a limit of detection $5 \mathrm{ng} / \mathrm{mL}$. Toxicokinetics animals were euthanized under carbon dioxide inhalation and cervical dislocation.

Anti product antibody was determined from the blood samples collected from all main animals and recovery animals at predose, days $1,7,16$ and 30 (recovery only). Serum antibody titers for anti-AUX-1 and anti-AUX-2 antibodies was determined

Unique study design or methodology (if any): Nil

Observations and times: (these parameters can be captured separately here or described in connection with each endpoint under the results section.

Mortality: Mortality was checked once daily.
Clinical signs: Clinical signs were noted once a day. Detailed clinical examination was done once a week and on the day of necropsy.

Body weights: The body weight was recorded before dosing, once a week and at necropsy.
Food consumption: Food consumption was recorded on a weekly basis starting before dosing and during the study.
Ophthalmoscopy: Not conducted
EKG: Not recorded
Hematology: Standard hematology and coagulation parameters were determined at necropsy from the main study and recovery animals. Blood samples were collected from the abdominal aorta of fasted animals.
Clinical chemistry: Standard blood chemistry parameters were determined at necropsy from the main study group and recovery animals.
Urinalysis: Urine samples were collected for 16 hours before the necropsy and standard urine chemistry parameters were determined.

Gross pathology: Surviving animals were euthanized under isoflurane anesthesia on the study day 16 and recovery day 30 . Any gross external and internal changes were recorded and the organs were fixed for histopathology.
Organ weights (specify organs weighed if not in histopath table): Organ weights were recorded for following organs: adrenals, brain, heart, kidneys, liver, lungs, ovaries, pituitary, prostate, spleen, testes, thymus, thyroid and uterus.

Histopathology: Protocol specified tissues were fixed in 10% formalin for histopathological examinations. Protocol specified tissues from control (group 1), groups $2,3,4,6$ and 7 , dead or moribund animals, gross lesions from main or recovery animals were examined for histopathological changes.

In addition to tissues from above groups, histological changes in the injection site and liver from group 5 and recovery animals were examined.

Tissues were stained by hematoxylin and eosin-phloxin.
Adequate Battery: yes (x), no ()
Peer review: yes (x), no ()

Results

Mortality: Following animals were reported dead or sacrificed in moribund conditions:

Group	Dose	Batch	Male	Female	Observation
6	$0.29 \mathrm{mg} /$ dose	NFF-0035, (b)	600 C, Dead, day 10	6502 A, Moribund, day 9	Moribund animal showed deteriorating condition of the tail, histology showed hemorrhage in thymus
6	$0.29 \mathrm{mg} /$ dose	NFF-0035, (b)	6003 B, Dead, day 10	6504 B, Dead, day 11	Blood clot in abdominal cavity
6	$0.29 \mathrm{mg} /$ dose	NFF-0035, (b)		65141, Dead, day 9 (recovery)	Thymus congestion
7	$0.29 \mathrm{mg} /$ dose	7280, Auxilium	7509 E, Dead, day 10	Hemorrhage and hematoma in liver	
7	$0.29 \mathrm{mg} /$ dose	7280, Auxilium		Moribund animal showed deteriorating condition of the tail	

No adverse clinical signs were reported for above animals. However, blood clots, change in the color of liver and spleen was noted in the gross necropsy.

Clinical signs: Most of the clinical signs at $0.29 \mathrm{mg} /$ dose for (b) (4) and Auxilium batches in groups 6 and 7 were related to injection site changes e.g. redness, dark skin and wound after week one of the study. These changes could be related to collagenase activity also.

Male:
Thin and blue fur was noted in treated animals from most of the groups. Swelling of the skin was noted in groups 1, 2, 3, 4, 5, 6 and 7 rats.

Female:
Skin swelling was noted in the control, groups $2,3,4,5,6$ and 7
Since control animals also showed swelling of the skin, its relationship to the treatment with AA4500 is not known.

Body weights: Average body weight (g) data are shown below.

Day	Gr 1		Gr 2		Gr 3		Gr4		Gr5		Gr6			Gr7	
$\mathrm{N}=10-15$	M	F	M	F	M	F	M	F	M	F	M	F	M	F	
0,	422	272	429	262	416	279	424	273	424	273	419	272	434	269	
7	423	268	431	262	414	275	422	273	421	272	416	274	436	270	
14	429	266	436	263	425	279	428	273	427	275	423	277	440	270	
Gain $0-14$	7	-6	7	1	9	0	4	0	3	2	4	5	6	1	
$\mathrm{N}=5$, Recovery															
21	444	257	442	275	432	268	423	272	NR	NR	424	276	447	266	
28	471	266	460	285	451	276	442	281	NR	NR	448	283	470	274	
Gain 0- 28	49	-6	31	23	35	-3	18	8			29	11	36	5	

$N R=$ no recovery animal, $M=$ Male, $F=$ Female
Based on above data, there was no treatment related change in the body weight.
Food consumption:
The average food consumption in grams on a weekly basis is shown below.
Male:

Day	Gr 1	Gr 2	Gr 3	Gr 4	Gr 5	Gr 6	Gr 7
$1-8$	177	191	177	190	177	173	197
$8-5$	195	203	202	199	196	185	209
$15-22$	219	217	206	205	-	197	229
$22-29$	234	217	214	205	-	214	234

- = no recovery animal

Female:

Day	Gr 1	Gr 2	Gr 3	Gr 4	Gr 5	Gr 6	Gr 7
$1-8$	133	129	141	141	136	140	139
$8-15$	135	135	149	146	144	145	142
$15-22$	135	147	163	149	-	149	140
$22-29$	147	155	163	151	-	153	140

Based on above data, there was no treatment related change in the food consumption.
Ophthalmoscopy: No ophthalmological examination was conducted during the treatment to evaluate the effect of the drug in eyes.

EKG: EKG was not recorded.
Hematology: Male rats did not show treatment related change in the hematology parameters. Female rats showed a slight and statistically significant decrease in the RBC and hemoglobin levels in the plasma in groups 6 and 7 at the end of day 16. However, these changes are biologically not significant because a similar data are often observed in the untreated animals in the published reference. Recovery animals did not show any hematological change. Average data are shown below.

Female rats:

Group	RBC, $\times 10^{12} / \mathrm{L}$	$\mathrm{Hb}, \mathrm{g} / \mathrm{L}$	$\mathrm{HCT}, \mathrm{L} / \mathrm{L}$
1	7.24	147	0.38
2	7.14	142	0.38
3	7.16	143	0.38
4	7.08	142	0.37
5	7.12	141	0.37
6	6.70^{*}	135^{*}	0.35^{*}
7	6.63^{*}	135^{*}	0.36^{*}

Coagulation data did not show any treatment related effect.

Above data suggest that collagenase activity of AA4500 did not impact the circulating blood cell counts.

Clinical chemistry:

Clinical chemistry data did not show any treatment related change on day 16 and day 30 with the exception of changes in the transaminase activity in male rats was noted on day 16 in groups 6 and 7 as indicated below.

Highest AST and ALT activity in control male rats was 148 and $58 \mathrm{U} / \mathrm{L}$, respectively. Male \# 6010F, group 6 showed 303 and 103 AST and ALT, respectively. Male \# 7009E and 7010 F , group 7 had AST 225 and $235 \mathrm{U} / \mathrm{L}$, respectively. ALT for these rats was 172 and $163, \mathrm{U} / \mathrm{L}$, respectively.

Urinalysis:

Urine chemistry data did not show treatment related changes when compared to the control.

Gross pathology: Gross pathology changes were noted in the liver and injection sites mostly in groups 6 and 7 animals as shown in the table. However, these changes were not completely reversible within next two weeks.

Male							
Observation	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
Liver, mass						3	1
Recovery						3	3
Liver, raised area						4	1
Recovery						3	1
Injection site, dark					1		1
Recovery		1					3
Female							
Liver, mass						2	2
Recovery						2	2
Liver, raised area						2	2
Recovery						2	2
Injection site, dark		1			1	2	2
Recovery						1	1

Organ weights: Absolute organ weight of male rats showed a slight but statistically significant increase in the average weight of liver in groups 6 and 7 animals. The maximum weight of liver in group 1 male (control) was 11.3 g and 2.4% of the body weight. Male rats in groups 6 and 7 those showed higher than 11.3 g are shown below.

Group 6	Liver $(\mathrm{g}), \%$ BW	Group 7	Liver $(\mathrm{g}), \%$ BW
6002 A	$11.8,2.4 \%$	7002 A	$12.2,2.8 \%$
6008 E	$13.7,3.2 \%$	7003 B	$11.7,2.9 \%$
6009 F	$13.07,2.7 \%$	7004 B	$12.3,2.7 \%$
6010 F	$13.03,3.6 \%$	7007 D	$11.9,2.7 \%$

Male rats in the recovery groups did not show any change in the weight of the liver due to the treatment.

Female rats did not show any treatment related change.
Histopathology: Adequate Battery: yes (x), no ()-explain Peer review: yes (x), no ()

Histological changes were noted in the liver and injection site. Data for histological changes in the liver and injection site are shown in the table below.

Male rats:

Lesion	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
Number of animal	10	10	10	10	10	10	10
Liver, inflammation	0	0	0	0	5, min	$\begin{aligned} & 8,3=\mathrm{min}, \\ & 2=\text { mild, } \\ & 2=\mathrm{mod} \end{aligned}$	$\begin{aligned} & 7, \\ & 4=\text { min, }, \\ & 2=\text { mild, }, \\ & 1=\text { mod } \end{aligned}$
Recovery	0	0	0	0	-	$\begin{aligned} & 4,1=\mathrm{min}, \\ & 3=\text { mild } \end{aligned}$	$3=$ min
Hepatocellular necrosis	0	0	0	0	0	$\begin{aligned} & 3,2-\mathrm{min}, \\ & 1=\bmod \end{aligned}$	$\begin{aligned} & 3, \\ & 1=\operatorname{mild}, \\ & 2=\bmod \end{aligned}$
Liver, fibrosis	0	0	0	0	0	$\begin{aligned} & 4,1=\min , \\ & 3=\bmod \end{aligned}$	$\begin{aligned} & \begin{array}{l} 2, \\ 1=\text { mild, }, \\ 1=\bmod \end{array} \end{aligned}$
Recovery	0	0	0	0	-	$\begin{aligned} & 5, \\ & 3=\text { mod, } \\ & 2=\text { marked } \end{aligned}$	$\begin{aligned} & 3, \\ & 1=\text { mild, } \\ & 2=\text { mod } \end{aligned}$
Liver, bile duct hyperplasia	0	0	0	0	0	$\begin{aligned} & 8,5=\mathrm{min} \\ & 3=\mathrm{mild} \end{aligned}$	$\begin{aligned} & 6, \\ & \text { min }=5, \\ & 1=\text { mild } \end{aligned}$
Injection site perivascular edema	1, min	$\begin{aligned} & \begin{array}{l} 7,6=\text { min } \\ 1=\text { mild } \end{array} \end{aligned}$	1,min	3, min	$\begin{aligned} & 3, \\ & 2=\min , \\ & 1=\bmod , \end{aligned}$	0	$\begin{aligned} & 5, \\ & 4=\mathrm{min}, \\ & 1=\text { mild } \end{aligned}$
Injection site, perivascular	1, min	4, min	3, min	1, min	$\begin{aligned} & 5, \\ & 2=\mathrm{min}, \end{aligned}$	0	2, min

Lesion	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
inflammation					$3=$ mild		
Injection site fibrosis	0	4, min	0	0	2, $1=$ mild, $1=$ mod	0	5, min
Recovery	0	0	1, min	0	-	$4,1=\mathrm{min}$, $3=$ mild	1, min
Injection site ulcer	0	0	0	0	1, mod	0	1, min

Min= minimal, mod= moderate
Summary of histopathology in male rats:
No hepatic lesions were noted at 0.029 mg protein/dose in the BTC, (b) (4). and Horsham Auxilium batches. However, inflammatory changes were noted in the liver starting 0.13 mg protein/dose. The severity of inflammatory changes in the liver progressed to show necrosis, fibrosis and bile duct hyperplasia at 0.29 mg protein/dose in both (b) (4) and Horsham batches. Injection site inflammation due to collagenase activity led to fibrosis, necrosis and ulceration at the injection site at the high dose (0.29 mg protein/dose). Inflammatory activity at the injection site could be ranked as BTC $>$ Auxilium> (b) (4) batches based on histopathology at 0.029 mg protein/dose.

Liver toxicity and injection site inflammation was non-reversible.
Based on the toxicity profile, it was concluded that the Process 3 used for (b) (4) and Auxilium was compatible with respect to repeat dose toxicity in male rats.

Female rats:

Similar to the male rats, female rats also showed toxicity in the liver and injection site as shown in the table below.

Lesion	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
Number of animal	10	10	10	10	10	11	11
Liver, inflammation	0	0	0	0	$\begin{aligned} & 5,3=\mathrm{min}, \\ & 2=\text { mild } \end{aligned}$	$\begin{aligned} & 7,4=\min , \\ & 3=\bmod \end{aligned}$	$\begin{aligned} & 7,4=\mathrm{min}, \\ & 3=\text { mild } \end{aligned}$
Recovery	0	0	0	0	-	1, min	$\begin{aligned} & 4,3=\mathrm{min}, \\ & 1=\text { mild } \end{aligned}$
Hepatocellular necrosis	0	0	0	0	0	$\begin{aligned} & 4,1=\mathrm{min}, \\ & 2=\text { mild }, \\ & 1=\text { mod } \\ & \hline \end{aligned}$	1, min
Liver, fibrosis	0	0	0	0	0	2, $2=\mathrm{mod}$	$\begin{aligned} & 3,2=\mathrm{mild}, \\ & 1=\bmod \end{aligned}$
Recovery	0	0	0	0	-	2, mild	$\begin{aligned} & 4,1=\min , \\ & 2=\text { mod, } \\ & 1=\text { marked } \end{aligned}$
Liver, bile duct hyperplasia	0	0	0	0	$\begin{aligned} & 4,3=\mathrm{min}, \\ & 1=\text { mild } \end{aligned}$	$\begin{aligned} & 7,5=\mathrm{min}, \\ & 2=\text { mild } \end{aligned}$	$\begin{aligned} & 6,4=\min , \\ & 2=\text { mild } \end{aligned}$

Lesion	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
Recovery	0	0	0	0	-	1, min	$\begin{aligned} & 4,3=\min \\ & 1=\text { mild } \end{aligned}$
Injection site perivascular edema	$\begin{aligned} & 3,2=\mathrm{min}, \\ & 1=\text { mild } \end{aligned}$	$\begin{aligned} & 7,5=\min , \\ & 2=\text { mild } \end{aligned}$	5,5=min	$1=\mathrm{min}$	$\begin{aligned} & 6,4=\min , \\ & 2=\text { mild }, \end{aligned}$	$\begin{aligned} & 7,1=\mathrm{min}, \\ & 3=\text { mild, } \\ & 2=\text { mod, } \\ & 1=\text { marked } \end{aligned}$	$\begin{aligned} & 8,2=\min , \\ & 3=\text { mild, } \\ & 3=\text { mod } \end{aligned}$
Injection site, perivascular inflammation	4, min	9, min	1, min	2, min	$\begin{aligned} & 5,3=\mathrm{min}, \\ & 2=\text { mild } \end{aligned}$	$\begin{aligned} & 7,3=\mathrm{min}, \\ & 2=\text { mild, } \\ & 2=\text { mod } \end{aligned}$	$\begin{aligned} & 9,5=\mathrm{min}, \\ & 4=\text { mild } \end{aligned}$
Recovery	1, min	1, min	1, min	0	-	1, min	1, min
Injection site fibrosis	0	0	0	1, min	2, min	$\begin{aligned} & 3,1=\mathrm{min}, \\ & 2=\text { mild } \end{aligned}$	$\begin{aligned} & 3,1=\text { mild, } \\ & 2=\bmod \end{aligned}$
Recovery	3, min	$\begin{aligned} & 3,2=2, \\ & 1=\text { mild } \end{aligned}$	$\begin{aligned} & 3,2=\mathrm{min}, \\ & 1=\text { mild } \end{aligned}$	0	-	$\begin{aligned} & 2,1=\min , \\ & 1=\bmod \end{aligned}$	$\begin{aligned} & 3,2=\mathrm{min}, \\ & 1=\text { mild } \end{aligned}$
Injection site ulcer	0	0	0	0	1, mild	1, mild	$1=\mathrm{min}$
Injection site, perivascular necrosis	0	0	0	0	0	$\begin{aligned} & 3,2=\min , \\ & 1=\bmod \end{aligned}$	2,2=mild

Min $=$ minimal, mod $=$ moderate
Above data suggest that minimal inflammation was present at the site of injections in the control and 0.029 mg protein/dose that could be related to the procedure. However, severity of inflammation at the injection site was increased at 0.13 to 0.29 mg protein/dose. With respect to ulcer, fibrosis, and necrosis of the injection site, both (b) (4) and Horsham batches were similar. BTC batch showed greater inflammatory changes than other two batches at 0.029 mg protein/dose.

Liver toxicity was also present at 0.13 and 0.29 mg protein/dose in female rats. Female rats showed greater toxicity in the liver than male rats.

Liver toxicity and injection site inflammation was non-reversible.
Based on the histopathology data, both (b) (4) and Horsham batches were comparable in male and female rats. The BTC batch showed higher incidences of inflammation at the site of injection at 0.029 mg protein/dose.

Toxicokinetics:

The average plasma levels of AUX-1 on day 1:

Group	T $1 / 2, \mathrm{hr}$	Cmax, ng/mL	AUC t0-t24, ng.hr/mL
1			
2		212	ND
3		147	ND
4		164	ND
5		1454	ND

6	0.10	7075	1831
7		8250	ND

ND, insufficient data to calculate, The quantitation limit was $5 \mathrm{ng} / \mathrm{mL}$
Majority of samples were below the limit of detection by 30 min post dose. There was no gender difference in the kinetics and the pooled data were shown above. Due to a rapid disappearance of AUX-1 in the plasma, kinetic parameters could not be determined on days 7 and 15. Based on the kinetic data and undetectable levels for quantitation, AUX-1 could not be distinguished between BTC, (b) (4) and Auxilium processes when kinetic parameters were used.

AUX-2:
AUX-2 plasma levels could be detected between one to two hours due to slow degradation of the product compared to AUX-1 and the PK parameters could be estimated for AUC. The half-life for most of batches was between 0.3 to 0.55 hrs . The calculated exposure (AUC ng.hr/mL) on day 1 and 7 are shown below.

Group	Day 1	Day 7
1	ND	ND
2	119	ND
3	225	158
4	172	155
5	1238	1054
6	4710	2654
7	4175	2294

The applicant stated that there was insufficient data to calculate AUC on day 15.
Summary of PK data: AA4500 as AUX-1 was degraded within 30 min after the IV administration. Therefore, exposure could not be calculated.

BTC batch showed lower plasma exposure when AUC data at $0.029 \mathrm{mg} /$ dose for AUX-2 was used. Both (b) (4) ${ }_{l}$ and Auxilium batches at $0.29 \mathrm{mg} /$ dose were comparable. The high dose showed lower rate of degradation and higher exposure than the low dose.

Other:
Antigenicity:
Male and female rats developed anti-product antibodies to AUX-1 treatment. Since AUX-1 exposure in rats was limited, the reviewer attempted to find out if there was a relationship between liver toxicity and AUX-2 antibody.

Anti-product antibodies to AUX-2 were detected on days 7, 16 and on day 30 in recovery animals. Following table summarizes the relationship between the liver toxicity and antiproduct antibody formation to AUX-2 in rats:

Male rats:

Group	Animal\#	Day sacrifice	Liver histology, major finding	AUX-2 antibody
6	6008 E	16	Fibrosis and necrosis	Positive on days 7, 16
6	6009F	16	Bile duct hyperplasia	Positive on day 16
6	6010F	16	Liver fibrosis and necrosis	Positive on days 7, 16
6	6007D	16	Liver fibrosis	Positive on days 7 and 16
6	6006C	10 (Found Dead)	No abnormal liver histology	Positive on day 7
6	6005C	16	Bile duct hyperplasia	Positive on day 16
6	6004B	16	Bile duct hyperplasia	Positive on days 7 and 16
6	6003B	10 (Found dead)	No abnormal liver histology	Negative on day 7
6	6002A	16	Bile duct hyperplasia	Positive on day 16
6	6001 A	16	Fibrosis and necrosis of liver	Positive on days 7 and 16
7	7001A	16	Bile duct hyperplasia	Positive on day 16
7	7002A	16	Minimal mixed cell infiltrate in liver	Positive on days 7 and 16
7	7003B	16	Fibrosis and necrosis of liver	Positive on days 7 and 16
7	7004B	16	Min mixed cell infiltrate in liver	Positive on day 16
7	7005C	16	Bile duct hyperplasia	Positive on days 7 and 16
7	7006C	16	No serious liver finding	Positive on days 7 and 16
7	7007D	16	Fibrosis and necrosis	Positive on days 7 and 16
7	7008D		Bile duct hyperplasia	Positive on days 7 and 16
7	7009 E	16	Hyperplasia bile duct	Positive on days 7 and 16
7	7010 F	16	necrosis	Positive on days 7 and 16

Above data in male rats in groups 6 and 7 suggest that most of rats with hepatotoxicity e.g. necrosis, fibrosis and bile duct hyperplasia had positive AUX-2 antibodies on days 7 and 16. However, few animals that died before the terminal sacrifice did not show above liver lesions despite the presence of antibodies. Necropsy data from these animals showed fragile liver conditions. These data suggest that the liver injury could have resulted from the exposure to AUX-2 or its antibodies towards the terminal phase of the treatment. However, animals in groups 2, 3 and 4 also showed positive titers in the absence of serious liver histology. Therefore, AA4500 induced liver damage could be due to the collagenase activity of the drug substance.

Female rats:

Group	Animal $\#$	Day sacrifice	Liver histology, major finding	AUX-2 antibody
5	5501 A	16	Hyperplasia of bile duct	Positive on days 7 and 16
5	5502 A	16	No major finding	Positive on days 7 and 16
5	5503 B	16	No major finding	Positive on days 7 and 16
5	5504 B	16	No major finding	Positive on days 7 and 16
5	5505 C	5505 C	No major finding	Negative on day 7 and positive on day 16
5	5506 D	16	Hyperplasia of bile duct	Positive on days 7 and 16
5	5507 E	16	Hyperplasia of bile duct	Positive on days 7 and 16
5	5508 E	16	No major finding	Positive on days 7 and 16
5	5509 F	16	Bile duct hyperplasia	Negative on day 7 and positive on day 14
6	6501 A	16	Bile duct hyperplasia	Positive on days 7 and 16
6	6502 A	9 (moribund sacrifice)	No major finding	Negative on day 7 6
6503 B	16	Hyperplasia of bile duct	Positive on days 7 and 16	
6	6504 B	11 (found dead)	No major finding	Negative on day 7 6
6505 C	16	Fibrosis and necrosis of liver	Positive on days 7 and 16	
6506 C	16	Hyperplasia of bile duct and necrosis	Negative on day 7 and positive on day 16	

6	6507D	16	Hepatocellular fibrosis and necrosis	Positive on days 7 and 16
6	6508 E	16	Hyperplasia of bile duct and necrosis	Positive on days 7 and 16
6	6509F	16	Bile duct hyperplasia	Positive on days 7 and 16
6	6510F	16	No serious liver finding	Positive on days 7 and 16
7	7501A	16	Not serious liver finding	Positive on day 16
7	7502A	16	Fibrosis of liver	Positive on days 7 and 16
7	7503B	16	Necrosis of liver	Positive on days 1 and 16 , no data for day 7
7	7504B	16	Bile duct hyperplasia	Day 7 positive, day 16 negative
7	7505C	16	Bile duct hyperplasia	Positive on days 7 and 16
7	7506 C	16	No serious liver finding	Positive on day 16
7	7507D	16	Fibrosis of liver	Positive on day 16
7	7508D	16	Bile duct hyperplasia	Positive on days 7 and 16
7	7509 E	$\begin{aligned} & \hline 10 \text { (Found } \\ & \text { dead) } \\ & \hline \end{aligned}$	No serious liver finding	Positive on day 7
7	7510F	16	No serious liver finding	Negative on day 7 and positive on day 16

Animals in groups 2, 3 and 4 have also shown positive titers for anti-AUX-2 in the absence of liver lesions. Above data in the female rats were similar to that observed for male rats in relation to the role of AA4500 on liver toxicity.

Titers for AUX antibodies were increased to a highest level by day 30 and there was no separation on the antigenicity to AA4500 for BTC, (b) (4) and Auxilium batches of AA4500.

Summary of the study:
A toxicokinetic study was conducted in rats at once every 48 hour IV injections of BTC, (b) (4) and Auxilium batches of clostridial collagenase. The comparative study was conducted at 0.029 mg protein/dose. No systemic toxicity was noted at this dose. Therefore, comparability of 3 sources of collagenase could not be determined at this dose if toxicity to the drug product was compared as the end point. The study was extended using 0.29 mg protein/dose of (b) (4) and Auxilium batches of AA4500 for comparability in the toxicity study. Both batches are considered to be comparable based on toxicity data.

From the toxicity point of view, 0.29 mg protein/dose of AA4500 is toxic to liver. Several rats died at this dose. Both AUX-1 and AUX-2 antibodies in the serum were detected. Based on the TK data, it appeared that the liver toxicity was related to the collagenase-2 activity. Injection site reactions were noted that could be due to collagenase activity as well as the procedure.

NOAEL for systemic toxicity was 0.029 mg protein/dose. Liver was the target organ of toxicity. However, injection site inflammation is expected at all doses tested.

Study title: A 16-day, multiple-dose, intravenous toxicity study in rats comparing AA4500 with BTC collagenase and placebo.

This study is similar to one reviewed above. The findings of the present study are summarized below.

Key study findings: (b) (4) and BTC batches of Clostridial collagenase did not show systemic toxicity up to 0.029 mg protein/dose. However, injection site hemorrhage and inflammation was noted in the control and treated animals. AUX-1 and AUX-2 antibodies were detected at necropsy.

Study no.: (b) (4) ${ }^{(00006}$
Module \# 1, and page \#: 1

Date of study initiation: July 3, 2006
GLP compliance: Yes
QA report: yes (x) no ()
Drug, lot \#, and \% purity:
(b) (4) AA4500 ($0.8 \mathrm{mg} / \mathrm{vial}$), Lot \# NFF-0035, potency AUX-1 was 0.91 , AUX-2 was 0.81, Reconstituted batch \# CTL2006\#08500, potency for AUX-1 was 2884 units/mg protein and AUX-2 was 30674 units/mg.

BTC Batch, Lot \#992-7, potency for AUX-1 was 0.86 and AUX-2 was 1.02

Methods

Doses: The study design is shown below.

Experimental Design for the Toxicity and Toxicokinetic Phases

Groxp No.	No. of Animals				Dos Material	Dose Level (ming idose)	Dose Volume (mL/dose)	Dose Concentration (meimL)
	Toxicity		Toxicokinetics					
	Males	Females	Males	Females				
1	10	10	--	-	Placebo	0	0.5	0.0
2	10	10	9	9	A.4500	0.0029	0.5	0.0058
3	10	10	9	9	AA4500	0.0087	0.5	0.0174
4	10	10	9	9	AA45c0	0.029	0.5	0.058
5	10	10	9	9	BTC Collagenase	0.029	0.5	0.058

"The dose lerels selected for $A 44500$ are mutiples ($1 \mathrm{x}, 3 \mathrm{x}$, and 10 x) of the intexded human dose by body weight. The dose level selected for BTC Collagenase is 10 times of the intended human dose by body weizht.

Groups 4 and 5 represent the low dose of (b) (4) and BTC batches for the study \# 10071671 already reviewed above. The applicant stated that the high dose of $0.029 \mathrm{mg} /$ dose was considered to be 10 x higher than the intended human dose ($0.0029 \mathrm{mg} /$ dose) as $\mathrm{mg} / \mathrm{kg}$. The applicant indicated that the high dose was intended for some toxic effects so that both (b) (4) and BTC batches could be compared.

Species/strain: Male and female Sprague Dawley rats
Number/sex/group or time point (main study): See study design above
Route, formulation, volume, and infusion rate: IV bolus injections Q48 hours for 16 days. A total of 8 injections were made into the lateral tail vein.

Satellite groups used for toxicokinetics or recovery: TK groups were allotted, recovery group was not added in the study.

Age: 8 Weeks at randomization (day -1)
Weight: $226-251 \mathrm{~g}$ (male), 177-201 g (female)
Sampling times: Blood samples for TK were collected from 3 animals/sex/group at each time point. Samples were collected up to 8 hours post dose on days 1 and 15 from jugular vein or orbital plexus under isoflurane anesthesia. Standard parameters of clinical pathology and urine chemistry were determined at necropsy.

Unique study design or methodology (if any): Serum antibody to the drug product was determined for immunogenicity before necropsy on days 17/18.

Observations and times: The experimental procedures for the study were similar to that reviewed above under study \# 1007-1671 and only results of the present study is summarized. The high dose of this study for both (b) (4) ${ }_{\llcorner }$and BTC batches was also included in study \# 1007-1671 reviewed above.

Results

The analysis of the dosing solutions showed degradation on storage. However, freshly prepared stocks and diluted solutions were used for the study and confirmed the required concentrations.

Mortality: No treatment related mortality was reported. Injection site discoloration was noted at $0.029 \mathrm{mg} /$ dose (male and female) in groups 4 and 5 . Some female rats in group 4 also showed injection site discoloration.

Body weight and food consumption:
There was no treatment-related change in the body weight and food consumption.
Clinical pathology: Hematology and coagulation parameters did not show any treatment related change. Clinical chemistry data showed a slight increase in the albumin and globulin levels in groups 4 and 5 female rats. However, biological significance of the change is not known. Data from the sponsor's table are shown below.

TXEIS: 7

diblent	CHO						
Lit	11^{1718}	HEX	3.85d	3.34	3.23	3. 3	3.47
		5.0.	0.183	0. 176	0.186	0.146	0.147
		N	0	10	10	10	10
	F dedacion we. ountrol			2.6	-0.7	3.8	E. 5
GIJBELJ:	Gibl						
[aid	1718	MEX	2.75	2. ${ }^{3}$	2.54	1.67\%	3.6\%
		5.0.	0.169	0.189	0.224	0.185	0.150
		N	10	10	10	IV	10
	Pide	ion wrs. omitol		4.6	6.2	11.0	11.3

Urinalysis: No treatment-related change in the urine chemistry was noted.
Gross pathology: No treatment-related change in the systemic organs was noted in male and female rats other than macroscopic changes in the injection site reported as clinical observations.

Organ weights (specify organs weighed if not in histopath table): Absolute organ weight data did not show any treatment related change.

Histopathology: Adequate Battery:
Peer review:
yes (x), no () -explain
yes (), no (x) Peer review: yes (), no (x)

Injection site peri-vascular hemorrhage was noted in groups 4 and 5 animals at higher incidence than other groups. Injection site inflammation was also noted in the control and treated animals. Therefore, the injection site inflammation and hemorrhage was partly due to the procedure. No other treatment related histological change was noted up to $0.029 \mathrm{mg} /$ dose in male and female animals.

Toxicokinetics:

The limit of detection was $2.5 \mathrm{ng} / \mathrm{mL}$ for AUX-1 and 4.08 for AUX-2, respectively. AUX-1 and AUX-2 levels were determined on days 1 and 15. AUC-1 was measured by an ELISA assay and AUC-2 was measured by a radio-immuno-assay. Both methods were validated.

Detectable levels of AUX-1 and AUX-2 were not achieved at 0.0029 mg protein/dose on day 1. However, detectable levels of AUX-1 and AUX-2 were present at $0.029 \mathrm{mg} /$ dose only within one-hour sampling time on day 1 .

On day 15 of the study, AUX-1 levels were undetectable or below the limit of detection at all doses as it was degraded or removed from the circulation. However, AUX-2 levels were detected at 0.0087 and $0.029 \mathrm{mg} /$ dose. AUX-2 from AA4500 (b) (4) and BTC collagenase accumulated in the plasma after repeated administration. The applicant indicated that the degradation for AUX-2 could be slower than AUX-1. The AUX-2 exposure in male and female rats on days 1 and 15 is shown below from the applicant's table. From the PK point of view, it is difficult to compare (b) (4). and BTC bathes at $0.029 \mathrm{mg} /$ dose due to a lower level of exposure of AUX-2 in male rats compared to female rats on day 15 . However, the toxicity point of view both batches were relatively devoid of systemic toxicity.

	Auxilium Pharmaceuticale: Inc. AUX-CO-PCO2			
	Table 4 : AUX.IITABC.II - ALC			
		Dose		
Gencer	Di\%	Group	Soivg	AUS
Female	1	AuxC029	0.09	0.68
		Auxcos 7	2.94	22.77
		AUX0290	12.12	93.91
		BTC0290	2.36	16.28
Female	15	AUX0029	485.05	11641.14
		AUXC087	1248.36	28960.71
		AUX0290	355.34	22926.08
		BTC0290	1603.60	3¢456.48
Male	1	AUx0029	0.08	0.63
		AUXC087	1.85	14.34
		A0X0290	9.92	76.86
		8700290	3.35	25.97
hiale	15	AUxC029	37.02	856.53
		aux00bs	440.90	10551.69
		AJXO290	593.52	14244.58
		BT00290	216.58	5797.98

Other: Immunogenicity to AUX-1 and AUX-2 at the end of dosing period showed antibody formation as shown in a table and graphically from the applicant's submission below.

Best Available Copy

Best Available Copy

Best Available Copy

Figure 1 Mean Titer Levels for Antibodies to AUX-1/ABC-I

Figure 2 Mean Titer Levels for Antibodies to AUX-II/ABC-II

The table indicated that serum titer levels for AUX-1 antibodies was greater than AUX-2 antibodies although AUX-1 level was lower than AUX-2 in the plasma. The discrepancy of differences is not known.

Data indicated that antibodies to both AUX-1 and AUX-2 were present at the end of 16 days of treatment with AA4500 (b) (4) and BTC Clostridial collagenase.

Summary of the study:

Both (b) (4) batch of AA4500 and BTC batch of clostridial collagenase did not show any systemic toxicity up to 0.029 mg protein/dose for 16 days. However, injection site hemorrhage and inflammation was present that could be related to the procedure and partly due to collagenase activity. No mortality and systemic toxicity was detected in the study. NOEL for systemic toxicity was 0.029 mg protein/dose. Pharmacokinetic data showed AUX-1 was transiently detectable on days 1 and 15 . However, AUX-2 exposure data showed accumulation on day 15. Antibody titers were present for anti-AUX-1 and anti-AUX-2 antibody.

Study results were similar to that reviewed for study \#1007-1671 except the high dose for this study was lower than the high dose used for \#1007-1671.

Histopathology inventory (optional)

Study	16-day, \#1007-1671
Species	Rat
Adrenals	X
Aorta	X
Bone Marrow smear	X
Bone (femur)	X
Brain	X
Cecum	X
Cervix	X
Colon	X
Duodenum	X
Epididymis	X
Esophagus	X
Eye	
Fallopian tube	X
Gall bladder	X
Gross lesions	X
Harderian gland	X
Heart	X
Ileum	X
Injection site	
Jejunum	
Kidneys	
Lachrymal gland	
Larynx	

	Liver
Lungs	X
Lymph nodes, cervical	
Lymph nodes mandibular	X
Lymph nodes, mesenteric	X
Mammary Gland	X
Nasal cavity	
Optic nerves	X
Ovaries	X
Pancreas	X
Parathyroid	
Peripheral nerve	X
Pharynx	X
Pituitary	X
Prostate	X
Rectum	X
Salivary gland	X
Sciatic nerve	X
Seminal vesicles	X
Skeletal muscle	X
Skin	X
Spinal cord	X
Spleen	X
Sternum	X
Stomach	X
Testes	X
Thymus	X
Thyroid	X
Tongue	X
Trachea	X
Urinary bladder	X
Uterus	
Vagina	
Zymbal gland	X
X,	

X, histopathology performed

The local toxicity to AA4500 in dog penis was submitted under IND (b) (4) and reviewed by Dr. Yangmee Shin, Pharmacologist, HFD-580, on (b) (4) The review was signed off by Pharmacology supervisor on \quad (b) (4) The copy of the review is presented below. The final study report was submitted to the BLA and there were no significant changes noted in the cover letter to the study.

Study title: Local Toxicity Study of AA4500 Injected into Dog Penis (audited draft)

Key study findings:
Study no.: \#520
Conducting laboratory and location:
Date of study initiation: 8/18/07
GLP compliance: yes
QA report: yes (x) no ()
Drug, lot \#, and \% purity: AA4500, \#NFF-0035 (Process 3), 99.6-100\%

Methods

Doses: 0, 0.8, 2.5, 8.3/6.1, $14.9 \mathrm{ug} / \mathrm{kg}$
Species/strain: Male beagle dogs from (b) (4)

Number/sex/group or time point (main study): Groups 1, 5, 8, 11 and 14 were comprised of 3 dogs, which received only control article and served as a procedural control. Groups 1 through 4 were administered 3 injections over a week for 3 dosing cycles (with 3 weeks between treatment cycles, an acceleration of the proposed clinical schedule of six weeks between treatment cycles). Treatment days were thus Study Days $1,3,5,29,31,33,57,59$ and 61 . Animals in groups 5-16 received only a single injection before termination. Two dogs from group 1 and four dogs from groups 2-4 were euthanized for necropsy approximately 24 hours following their last scheduled treatment. One dog from groups 5, 8, 11 and 14, and 3 dogs from groups 6, 7, 9, 10, 12, 13, 15 and 16 were euthanized for necropsy approximately 48 hours following their last scheduled treatment. Two dogs in groups $2-4,6,7,9,10,12,13,15$ and 16 , and 1 dog in groups 1 , $5,8,11$ and 14 were retained for recovery assessment 28 days following their last scheduled treatment. The study design is outlined in the following table:

${ }^{*}$ Dose level reduced because local effects prechaded repeated dosing of the majority of the animals during the first dosing cycle.

Route, formulation, volume, and infusion rate: Intralesional, $0.03 \% \mathrm{CaCl}_{2}$ in 0.9% NaCl .

Satellite groups used for toxicokinetics or recovery: See Table above
Age: 8-14 months
Weight: $6.1-9.6 \mathrm{~kg}$
Unique study design or methodology: Under general anesthesia (Domitor $0.03 \mathrm{mg} / \mathrm{kg}$ and ketamine 3 to $5 \mathrm{mg} / \mathrm{kg}$ given IV), the penis of each dog, proximal to the os penis, was exposed, measured with calipers, and a single dose of AA4500 was injected into or around the anatomic sites specified (tunica albuginea, corpus cavernosum, vein-arterynerve complex and urethra). All injections were given using a 27 gauge, $1 / 2$ inch needle and an appropriately sized microliter Hamilton syringe. The needle was held in place for approximately 30 seconds before it was removed. Following withdrawal of the needle from all dosing sites, manual pressure was applied to the penis for 30 seconds to ensure hemostasis and to prevent extravasation of AA4500 from the
injection site. Antisedin ($5 \mathrm{mg} / \mathrm{mL}$; equal v / v with Domitor) was administered intramuscularly to the dogs following the dosing procedure to reverse the effects of the Domitor anesthesia. Dosing procedures for each site are depicted in Figure below:

Observation and times:

Observations	Times
Mortality	Twice daily
Clinical signs	Once daily at post-dosing
Body weights/Food consumption	Pre-study \& weekly thereafter
Water intake	Not conducted
Ophthalmology	Not conducted
Hemodynamics/ECG	Not conducted
Hematology/Clinical chemistry/Coagulation/Urinalysis	Pre-study, last dose \& at end of recovery
Antibody formation (ECL method)	Pre-study, prior to last dose \& at end of recovery for groups 1-4
Pathology (organ weights, gross/histopathology, injection site)	At 48 hrs post-dosing (acute) \& end of recovery (acute/repeat)
Toxicokinetics	$0,0.08,0.5,1,2,4,8 \& 24$ hrs post-dosing on Day 1 in Groups after $9,4,5,6,7,8,9,10,11,12,13,14,15 \& 16$ or on on Day 61

Results:

Mortality: one at $2.5 \mu \mathrm{~g} / \mathrm{kg}$ euthanized prematurely on day 8 after exhibiting decreased activity, lethargy and significant weight loss due to excessive local reactions at the injection site following 2 doses (painful prepuce and surrounding area, full thickness wound with purulent pink-colored discharge in the area extended into musculature and subcutaneous tissue adjacent to left side of the penis/prepuce)

Clinical signs:

Repeated dosing:

Tunica albuginea

- increased incidence and/or persistence of discoloration, bruising of the prepuce/penis/inguinal skin and thin appearance at $\geq 2.5 \mu \mathrm{~g} / \mathrm{kg}$
- increased incidence/severity and/or persistence of swelling of the penis at $\geq 0.8 \mu \mathrm{~g} / \mathrm{kg}$, resulting in a decrease to $6.1 \mu \mathrm{~g} / \mathrm{kg}$ prior to the $2^{\text {nd }}$ cycle (precluded dosing in $3 / 6$ dogs on day 3 and $4 / 6$ dogs on day 5 at $\geq 8.3 \mu \mathrm{~g} / \mathrm{kg}$); precluded dosing in $2 / 6$ dogs on days 31 and 33 at $6.1 \mu \mathrm{~g} / \mathrm{kg}$ in the $2^{\text {nd }}$ dosing week, but all receiving all doses in the $3^{\text {rd }}$ week
- thin appearance and masses on the penis/prepuce/bulbus on days 15-23 and 29 for one dog (blood on the opening penis, scab on the penis, an underlying red spot and swelling), and on days $5,8-13$ and 15 for the other at $8.3 / 6.1 \mu \mathrm{~g} / \mathrm{kg}$

Acute dosing:

Tunica albuginea

- increased incidence/severity and/or persistence of discoloration of penis/prepuce and swelling of penis at $\geq 8.3 \mu \mathrm{~g} / \mathrm{kg}$
- increased severity of bruising at $14.9 \mu \mathrm{~g} / \mathrm{kg}$

Corpus cavernosum

- increased incidence/severity and persistence of discoloration of penis/prepuce at ≥ 8.3 $\mu \mathrm{g} / \mathrm{kg}$, extending into scrotum at $14.9 \mu \mathrm{~g} / \mathrm{kg}$
- increased severity and persistence of swelling of penis at $\geq 8.3 \mu \mathrm{~g} / \mathrm{kg}$
- a mass in the bulbus area of penis in one animal starting on day 12 until the necropsy at $14.9 \mu \mathrm{~g} / \mathrm{kg}$

VAN complex

- increased incidence and persistence of discoloration of penis/prepuce and swelling of penis at $\geq 8.3 \mu \mathrm{~g} / \mathrm{kg}$
- increased incidence and/or severity of bruising at $\geq 8.3 \mu \mathrm{~g} / \mathrm{kg}$

Urethra

- increased severity and persistence of discoloration of penis $/$ prepuce at $\geq 8.3 \mu \mathrm{~g} / \mathrm{kg}$, affecting inguinal skin and scrotum in one animal at $14.9 \mu \mathrm{~g} / \mathrm{kg}$
- increased incidence/severity and persistence of swollen penis at $\geq 8.3 \mu \mathrm{~g} / \mathrm{kg}$
- increased incidence/severity of bruising at $\geq 8.3 \mu \mathrm{~g} / \mathrm{kg}$

Body weights: unremarkable

Food consumption: unremarkable
Ophthalmoscopy: not conducted
EKG: not conducted

Hematology: statistically significant increase in leukocytes, attributable to increased neutrophils and monocytes in the $14.9 \mu \mathrm{~g} / \mathrm{kg}$ VAN complex group, which was reversible during recovery

Clinical chemistry: unremarkable

Urinalysis: unremarkable

Gross pathology:

- thick/red pigmentation correlated with subcutaneous hemorrhage in inguinal skin and lymph node
- red pigmentation correlated with sinus erythrocytosis in inguinal lymph node
- enlarged inguinal lymph node correlated with lymphoid hyperplasia
- small thymus correlated with atrophy

Organ weights (adrenal glands, brain, epididymis, heart, kidneys, liver, lungs, pituitary gland, prostate gland, salivary glands, spleen, testes, thymus, thyroid/parathyroid glands): unremarkable

Histopathology: Adequate Battery: yes (x), no ()-explain Peer review: yes (x), no ()

The following tissues were processed for histologic evaluation:

Dose Groups	Injection Site	Main Study	Recovery
		Tissues	
$1,2,3,4$	Tunica albuginea (repeat dose)	All tissues	Injection site (penis) Inguinal lynph node All target tissues All gross lesions
$5,6,7$	Tunica albuginea (single dose)	Injection site (penis) Inguinal lymph node All target tissues All gross lesions	Injection site (penis) Inguinal lymph node All target tissues All gross lesions
$8,9,10$	Corpus cavernosum	Injection site (penis) Inguinal lymph node All target tissues All gross lesions	Injection site (penis) Inguinal lymph node All target tissues All gross lesions
$11,12,13$	VAN complex	Injection site (penis) Inguinal lymph node All target tissues All gross lesions	Injection site (penis) Inguinal lymph node All target tissues All gross lesions
$14,15,16$	Urethra	Injection site (penis) Inguinal lymph node All target tissues All gross lesions	Injection site (penis) Inguinal lymph node All targct tisues All gross lesions

Repeated dosing: see the following tables for details

Tunica albuginea

Systemic lesions:

- chronic perivascular inflammation in brain/spinal cord and heart at $8.3 / 6.1 \mu \mathrm{~g} / \mathrm{kg}$
- eosinophilic casts in kidney at $8.3 / 6.1 \mu \mathrm{~g} / \mathrm{kg}$
- chronic inflammation in salivary gland, pancreas and prostate at $8.3 / 6.1 \mu \mathrm{~g} / \mathrm{kg}$
- testes degeneration at $8.3 / 6.1 \mu \mathrm{~g} / \mathrm{kg}$
- increased incidence of crypt dilatation of duodenum at $\geq 2.5 \mu \mathrm{~g} / \mathrm{kg}$

Local lesions:

- increased severity of adventitial hemorrhage and neovascular proliferation attributable to the injection procedure
- adventitial chronic-active inflammation and extension of hemorrhage and/or chronicactive inflammation into the adjacent preputial/inguinal subcutaneous tissues at ≥ 0.8 $\mu g / \mathrm{kg}$ (partially reversible)
- increased incidence and severity of sinus erythrocytosis in inguinal lymph node at ≥ 2.5 $\mu \mathrm{g} / \mathrm{kg}$ secondary to hemorrhage at the injection site (partially reversible)
- pigmented macrophages in inguinal lymph node at $8.3 / 6.1 \mu \mathrm{~g} / \mathrm{kg}$ secondary to hemorrhage at the injection site (partially reversible)

Acute dosing:

Tunica albuginea

Systemic lesions: unremarkable

Local lesions:

- increased incidence and severity of inguinal/adventitial hemorrhage (partially reversible at $14.9 \mu \mathrm{~g} / \mathrm{kg}$)
- collagen lysis consisting of focal disruption of dense collagen fibers of advential surface of tunica albuginea with decreased staining/fiber diameter present in one animal at 8.3 $\mu \mathrm{g} / \mathrm{kg}$ (not extending through the full thickness of the tunica in trichrome sections)
- sinus erythrocytosis of inguinal lymph node in all treated groups, reflecting the presence of hemorrhage at the injection site

Corpus cavernosum

Systemic lesions: unremarkable

Local lesions:

- increased incidence and/or severity of subcutaneous hemorrhage in inguinal skin, stromal edema, stromal/adventitial necrosis and acute/subacute inflammation at $\geq 8.3 \mu \mathrm{~g} / \mathrm{kg}$
- replacement of chronic-active inflammation with chronic inflammation and accumulation of pigmented macrophages and hematoma formation, indicative of progression towards reversal at $14.9 \mu \mathrm{~g} / \mathrm{kg}$
- necrosis of venous wall, thrombosis and collagen lysis consisting of circumferential disruption of dense collagen fibers of tunica albuginea adjacent to corpus cavernosum with decreased staining/fiber diameter present in trichrome sections in one animal at 8.3 $\mu \mathrm{g} / \mathrm{kg}$
- increased incidence of sinus erythrocytosis of inguinal lymph node in all treated groups (partially reversible at $14.9 \mu \mathrm{~g} / \mathrm{kg}$)
- pigmented macrophages in inguinal lymph node at in one animal at $14.9 \mu \mathrm{~g} / \mathrm{kg}$

VAN complex

Systemic lesions: increased incidence and severity if sinus erythrocytosis of mediastinal lymph node

Local lesions:

- increased incidence and/or severity of adventitial/arterial wall/subcutaneous hemorrhage and neovascular proliferation in all treated groups with progression towards reversal evidenced by pigmented macrophage accumulation in the penis and inguinal lymph node, and hematoma formation (partially reversible)
- sinus erythrocytosis of inguinal lymph node accompanied by pigmented macrophage accumulation in all treated groups, reflecting hemorrhage and resolution of hemorrhage (partially reversible)
- increased incidence and/or severity of stromal/adventitial and venous wall necrosis in all treated groups

Urethra

Systemic lesions: thymus atrophy in treated groups only and interstitial hemorrhage in thymus at $14.9 \mu \mathrm{~g} / \mathrm{kg}$

Local lesions:

- increased incidence and severity of periurethral tissues
- increased incidence and severity of adventitial/arterial wall/subcutaneous hemorrhage and adventitial neovascular proliferation in all treated groups with partial recovery evidenced by pigmented macrophage accumulation in penis and inguinal lymph node, and hematoma formation
- increased incidence of acute/subacute inflammation of periurethral tissues in all treated groups with progression towards reversal evidenced by the change to chronic inflammation (partially reversible at $14.9 \mu \mathrm{~g} / \mathrm{kg}$)
- increased incidence of sinus erythrocytosis of inguinal lymph node accompanied by pigmented macrophage accumulation in all treated groups, reflecting hemorrhage and resolution of hemorrhage at the injection site (partial recovery)
- lymphoid hyperplasia in inguinal lymph node, stromal edema and venous wall necrosis at $14.9 \mu \mathrm{~g} / \mathrm{kg}$

Toxicokinetics: sporadic low plasma levels of AUX-I and AUX-II at ≤ 60 min following repeatdoses in tunica albuginea or acute injection highly in the vascular sites (corpus cavernosum or urethra)

Other: anti-AA4500 antibodies (see Tables below)

- high antibody titers against AUX-I and AUX-II in all repeat-dose treated animals at the end of the dosing and recovery period, anti-AUX-II antibodies being higher than anti-AUX-I antibodies
- detectable pre-study titers on day 1 (50 for anti-AUX-I and 250 for anti-AUX-II), and higher titers on day 8 (250 for anti-AUX-I and 1250 for anti-AUX-II) in the dog (\#1635) prematurely euthanized on day 8

Anti－AUX antibody titers：The following tables are taken directly from the sponsor＇s submission．

Best Available Copy
Anti－AUX－I antibodies

$\begin{gathered} \text { Samplt_ } \\ \text { No } \end{gathered}$	$\underset{\neq}{\text { Animal }}$	D2y	Timepnint	Date	Miser	Mean reld Bulfer （Fthin		$\begin{gathered} \text { Mrnn } \\ \text { RLU! } \\ \text { with } \\ \text { BSA } \\ \text { (RUGU) } \\ \hline \end{gathered}$		Itamacontpetition with BSA	Final Rexuls	EPT
2	1629	61	Pribs m lam dese	820103	Platmas Snt Mribeajy	418518	（9）（8）	4483 （3）				
\＄	1670	4	Prior to last dxse	s1707	Plasmatot Antibody	183755 （3）	62646 （ 3 ）	182214（3）	98.6 859	0812	positive	156230
8	1534	61	Prisx to last dose	3：24：07	1Pasma for Antibucy	$2 \mathrm{c}, 83$（8）	（ 73 （8）	23019（8）	897	0.839	pasitive	$=781250$
9	1634	89	Fnd of Recovery：	9a1\％7	Arlitody Decerminalisu Pliashts	5265 （8）	72 （8）	3180（8）	97.3	128 1.61	posilue	＞781250
10	1595	1	Pruar to dosing	81207	Plesrea for Antibody	11919 （3）	． 519 （3）	11705（ 3 ）	98.6 98.6	1.61	positwe	5781250
11	1635	${ }^{1}$	Price to meribund sacrifict	ET2507	Ptestar for Amiturdy	25597 （3）	6．22（3）	11705（3）	93.6	1.74 9.81	positive	50.0
12	1636	1	Price to fossing	6，1807	Prasma fod Anubiody	175 （1）	64 （3）	142 （3）	81.5	9.81 189	posilive	250
13	1636	$6]$	Pizas lo laxt dose	$8: 1707$	Masma for Amibody	32，94（8）	76 （8）	34014 （8）	809.8	18.9 -5.30	persitive	510.0
15	1637	61	Priner to lasi dose	$82^{2}-107$	Plasma fic Arsibady	254）（8）	${ }^{\text {a }} 4$（ 8 （ 3 ）	3599 （8）	9.8	－5．39	prsitive	\＄56250
17	1628	4	Pricer in last dose	8824107	Plasma for mutibudy	208 （3）	64 （3）	2599 （8） 245 （3）	96.7	－41．6	posisive	5781200
19	1699	61	Priot to last dixie	S1747	Plastosa for Antibedy	2156 （8）	72 （8）	4346（ x ）	99.7	－16．8	prsilive	\＄10．0
20	1699	89	End of Rewvery	9／1469	Aatibody Daterninaicm Plusm	5740 （8）	88 （8）	S 327 （3）		162 720	pusitive	2381250
22	1640	61	Price to last duse	82k 20	Plaina fot，Antibady	3102 （8）	81 （8）	3408 （8）	985	720 -4.86	postive	156250
0 \％ 24	1641	61	Price ca latt dose	$8{ }^{3} 7707$	Phatra for Antitody	46768 （8）	63 （\＄）	524t51（8）	99.9	S0．	posinic	3.781250 31250
（0） 25	1611	89	Erd of Recovery	$21+107$	Antibudy Descmanation Fiasma	21406 （8）	37 （s）	32443 （\％）	99.7	-51.6	positive	－ 3125250
27	1024	ai	Prikr to last dose	817707	Miesma for Antibosy	$37064(8)$	65131	47858 （8）	59.8	291	pesitive	156250 156230
51	1647	31 61	Prone talzat dose Prior to liar dose	8.1740 817077	Plame for Antibody	1535 （9）	103 （\％）	1472（）	93.3	4.10	poritive	3781250
32	16.4	5	End of Recovery	915：167	Autibudy Detiemixiotion Plasma	4312 （9） 2789 （9）	7919 $3610)$	5034（9）	95.2	16.7	positue	156250
3	｜fis］	61	Prior to last desie	3／24，413	Plarma for Antiowy	589 （9）	36（9）	$3535(9)$ 557 （9）	83.3	－6．7	positive	3781250
35	1652	$\stackrel{1}{4}$	－minute	62.5107	Anulibcay Eecentinulian	673 （4）	72）(19)	3719 617	88.1	0.723	prositios	＞781350
36	165%	61	Prior tolast dinse	S29．07	Plasmg for Antibudy	505 （9）	101 （9）	8459 89	88.3	3.32	maxitive	10.0
31	1653	89	End of Recorery	921007	Arilbady Desermination Plarma	552 （9）	86 （0）	8459	800	67.3	prosilive	＞731250
39	1655	6	Price to tast dose	8 El 150 O	Plapms for Antitaty	3605 （ ${ }^{\text {a }}$	89 （9）	63255	${ }^{39} 4$	－32．5	positive	2781250
41	1658	61	Priow to last dose	81707	Plama for Antiondy	183929 （5）	67207（5）	176948（5）		69.9	positive	2731250
46	1654	61	Prier to last riose	811707	Pramm for Antiluly	1870 （9）	73 （9）	7383（G）	63.5	3.50	positive	11750
17	1654	89	End af Recowery	91407	Araibody Delermimation plazuz	1621 （9）	73 （9）	2183 （\％）	90．	-16.7	jositive	156250
4	160is	6）	Prixir te lasidose	811707	Prastio fer Anthody	1244519		4214（9）	25.5	－160	presitive	156330
						1244 ${ }^{\text {a }}$	（0）	12Jtss（5）	9， 4	－2．59	nositive	156250

Anti－AUX－II antibodies

SAMPLIM	Atanate	nak	Tharywint	Dale	Hise．	$\begin{gathered} \text { Men RLLU } \\ \substack{\text { twifer } \\ \text { fRum } \\ \hline} \\ \hline \end{gathered}$					Fiand Rexims	VPT^{2}
2	$1 \mathrm{H}_{2} \mathrm{y}$	4	Prate to lost dee	82积	Prame fac Araibody	41990	57	47.12 （6）	488	－561		
4	1530	al	Prow in las dess	84194	Piemme fix matitady	9avors（t）	， 6 dit	（20ise so）	89.9	（1）18	Eornive	103840
5	162	I	Ptica to josing	6， 6 敢		329 （11）	－	k31（1）	817	-123	Pnsitio	50
1	1 lit 2	81	Prim to last dose			524（11）	极！	513（1i）	45^{3}	4.3	［rasibior	5
${ }^{8}$	11.7	61	Print is tast dese	$2 \mathrm{EL67}$	Plathes fer Antitesty		43 ll	（aty ${ }^{\text {a }}$	\＄8	0.	Postere	－38129
9	$1 \mathrm{~m} / 5$	＊	End af Recrutroy	W2207	antitody Detentuation mama	（5971（11）	35（11）	10940（1）	950	18.3	Р¢¢\％	－751259
14	168	；	Fries radosinm	50897	Plisior for Antikcor．	1180 （j）	33k13）	97131	82.7	$1: 3$	Protive	2.59
11	1075	k		58307		3932（3）	65313	455015	590	163	Probive	120
12	1516	1	Prour codaring	618x	Plasme Sor mutritary	119131	42（3）	22，5	435	3.15	Nemitioe	1.
13	168	6		837867	Plasmatser Antilaxty	200st（lit		276tifli；	4%	＋1	Prshas：	－31301
18		0	Primitialasi citce	S23．07	Hemma Lor Amibaty	11687 ill	83， 117		\％3	11.6	Pritios	－81206
19	169% 1,593	$\stackrel{18}{81}$	Priar to lass cose	814.417	Pkstur fot intibndy	1929114	91：1\％	1gerill	959	11.8	Positiout	
\cdots	16：39	87	Line ofkravery	9014n ${ }^{\text {a }}$	Ablbods Diciminetina Plasma	1293all	2911\％		98.5	－3	Pomitive	2781250
\％	1030	1	Frand in lise dose	8 Sc 18107			\％ 111	33291111	29.6	，	Jusitive	－3izs
2	10.4	61 89	Pratrinlias dose	517，07	－Enemin far Antioudy	15S011（1）	8－171）	168sen［11；	\％os	.572	Jostire	\％ 3
3	7m， 1	89	Cod orRawhrs	wind	Amitody Destemiman Piasay	71199119	31 ［1］	718F111	（9） 19	－1．983	Pomitiog	－28：3
4	36.2	51	Prave tolne dose	8130%	Pbismaror c－libindy	thene（12）	50，	3）Whatisi	509	－it F	Herates	0.7315
17	58.4	91	Frose calser these	01709	Presma foit Antbody	4397141	83 （13）	W5） 135	38.1	O 8	Pusitive	\rightarrow TR12c
71	0817	a！		Anl3ib	Hxemin ior Antiody	1620：112）	Lf）（I）	15909 （12）	94，	．1．1	Pestitive	\＄T8123
3		8%	Fad of Recoutis	912ing	Antibuly Dematanian mata	［48\％（12）	73 （12）	16．513（12）	＋45	｜is．｜	Prative	－ 34231
3	0	3		s，	Masmafer amibody	2854（12）		2383138	9\％ 5	15\％	Pastue	－781234
33		1	${ }^{5}$ nimince	E25097	Mratedy Lowemisationt	139（4）	68.63	fisti	50.4	98	Presilios：	－T81290
3	W2	8	Prive to fand dxat	mesin	Ferma for degitoly	2089（E2）	＊）（12）	9\％\％（12）	3%	x， $5 x$	Prexilis	－761250
\because	165	${ }^{14}$	Fand is Rucsiosy	mplat		41蚛引ぎ	\＄（1）	11831178	－x $0^{\text {，}}$	588	Puastise：	$\therefore 791200$
11	16.5	61	Portiolaidure		Ftastia fix allitasty	12174 ¢53	74，（13）	1161012）	\％）	6.93	Pxisule	
11	1988	\cdots	Prar iz tabl das	firm	Mation lix muthoty	3250102		341208）	50） 4	－12．8		578120
1：3	118	9	Prent bizil the	8150\％	Mama for Antiboty	3153（12）	Tilla	512812！	4×3	3 x	Pritioz	－7912i9
17	Hix	（3）	Ind of feceners	914ict		1348（12）	50123	19x？${ }^{\text {a }}$		－0．61	Poxilue	P7aves
1	Ms	61	Priwe to fat ders	8177017	Hisme for Authexy	20634， 13	5013）	2uldibl	∞	－150	19未me	－7ats\％

[^0]Tables below summarize the observations made for the repeat- and acute-dosing phases in dogs.

Repeated dosing: Tunica albuginea

\begin{tabular}{|c|c|c|c|c|}
\hline Observations Dose, \(\mu \mathrm{g} / \mathrm{kg}\) \& \[
\begin{gathered}
\hline \mathbf{0} \\
3 \mathrm{M} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\mathbf{0 . 8} \\
6 \mathrm{M}
\end{gathered}
\] \& \[
\begin{array}{r}
\mathbf{2 . 5} \\
6 \mathrm{M}
\end{array}
\] \& \[
\begin{gathered}
\hline 8.3 / 6.1^{2} \\
6 \mathrm{M} \\
\hline
\end{gathered}
\] \\
\hline Mortality, moribund sacrifice, day 8 \& \& \& \(1^{\text {b }}\) \& \\
\hline \begin{tabular}{l}
Clinical signs, \\
Discoloration, prepuce penis groin \\
Swollen, penis \\
Bruising, mild/severe \\
Nodule, penis, red Mass, penis/prepuce/bulbus \\
Scab/red spot, penis Swelling around red spot Blood on opening of penis Thin appearance
\end{tabular} \& 1 \& \[
\begin{aligned}
\& 1 \\
\& 2 \\
\& 1
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \\
\& 3
\end{aligned}
\] \& \[
\begin{aligned}
\& 6 \\
\& 1 \\
\& 2 \\
\& 6 \\
\& 4 \\
\& 2 \\
\& 2 \\
\& 1 \\
\& 1 \\
\& 1 \\
\& 1 \\
\& 2
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Histopathology, main/recovery \\
Systemic lesions \\
Brain, inflammation, chronic, perivascular
\end{tabular} \& \(\mathrm{N}=2 / 1\) \& \[
\begin{gathered}
\mathrm{N}=4 / 2 \\
1(+1)
\end{gathered}
\] \& \(\mathrm{N}=3 / 2\) \& \[
\begin{aligned}
\& \mathrm{N}=4 / 2 \\
\& 2(+1)
\end{aligned}
\] \\
\hline Spinal cord, cervical, inflammation, chronic, perivascular \& \& \& \& \(1(+1)\) \\
\hline Kidney, eosinophilic casts \& \& \(1(+1)\) \& \& \(2(+1)\) \\
\hline Heart, inflammation, chronic, perivascular \& \& \& \& 1(+1) \\
\hline Salivary gland, inflammation, chronic \& \& 1(+1) \& \& \(1(+1)\) \\
\hline Small intestine, duodenum, dilatation, crypt \& \& \(2(+1)\) \& 2(+1) \& \(4(+1)\) \\
\hline Pancreas, inflammation, chronic \& \& \& \& 1(+1) \\
\hline Testes, degeneration \& \& \& \& 1(+1) \\
\hline Prostate, inflammation, chronic \& \& \& \& \(2(+1)\) \\
\hline Lymph node, mandibular, sinus erythrocytosis inguinal, sinus erythrocytosis pigmented macrophages hyperplasia, lymphoid inflammation, acute \& \(1(+1)\) \& \(3(+1,+2)\) \& \[
\begin{gathered}
3(+1,+2) \\
2(+2) / 1(+2)
\end{gathered}
\] \& \[
\begin{gathered}
1(+1) \\
4(+1,+2 .+3) \\
3(+1,+2) \\
2(+2) / 1(+2) \\
1(+1) \\
\hline
\end{gathered}
\] \\
\hline Skin, inguinal, hemorrhage, subcutaneous
\(\qquad\) pigmented macrophages \& \& 2(\(+2,+3\)) \& \& \[
\begin{aligned}
\& 1(+3) \\
\& 1(+3)
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Injection site, penis \\
Neovascular proliferation, adventitial/tunica \\
Inflammation, acute/chronic-active, adventitial/tunica
\end{tabular} \& \[
\begin{gathered}
\mathrm{N}=2 / 1 \\
2(+3)
\end{gathered}
\] \& \[
\begin{aligned}
\& \mathrm{N}=3 / 2 \\
\& 1(+1) \\
\& 1(+1) \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
\mathrm{N}=4 / 2 \\
2(+1,+2) / 1(+1) \\
1(+2)
\end{gathered}
\] \& \[
\begin{aligned}
\& \mathrm{N}=3 / 2 \\
\& 0 / 1(+1)
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Toxicokinetics, AUX-I \\
C, ng/mL, 0 hr , Day 1 0.5 hr , Day 1 \\
AUX-II \\
C, ng/mL, 0 hr , Day 1 \\
0.5 hr , Day 1 \\
1 hr , Day 1
\end{tabular} \& 54.9

157 \& $$
\begin{aligned}
& 60.9^{\mathrm{d}} \\
& \\
& 141^{\mathrm{d}} \\
& 24.2^{\mathrm{d}} \\
& 25.5^{\mathrm{d}}
\end{aligned}
$$ \& - \& -

\hline
\end{tabular}

${ }^{\text {a }}$ reduced to $6.1 \mu \mathrm{~g} / \mathrm{kg}$ prior to the $2^{\text {nd }}$ dosing cycle due to significant irritation and swelling during the $1^{\text {st }}$ cycle
${ }^{\text {b }}$ euthanized prematurely on day 8 after exhibiting decreased activity, lethargy and significant weight loss due to excessive local reactions at the injection site following 2 doses (painful prepuce and surrounding area, full thickness wound with purulent pinkcolored discharge in the area extended into musculature and subcutaneous tissue adjacent to left side of the penis/prepuce)
${ }^{\text {c animal \#1632 }}$
danimal \#1658
$\mathrm{BLQ}=$ below the limit of quantitation at $0.25-16 \mathrm{ng} / \mathrm{mL}$ for AUX-I \& $0.75-48 \mathrm{ng} / \mathrm{mL}$ for AUX-II in 2% plasma Severity grade in parentheses; +1 minimal, +2 mild, +3 moderate, +4 marked
$-;$ not available

Acute dosing: Tunica albuginea

Dose, $\mu \mathrm{g} / \mathrm{kg}$ Observations	$\begin{gathered} 0 \\ 3 \mathrm{M} \end{gathered}$	$\begin{gathered} 8.3 \\ 5 M \end{gathered}$	$\begin{array}{r} \mathbf{1 4 . 9} \\ 5 \mathrm{M} \end{array}$
Clinical signs, Discoloration, prepuce Swollen, penis Bruising, mild/moderate	1(+2)	$\begin{aligned} & 4 \\ & 1 \end{aligned}$	$\begin{aligned} & 5 \\ & 4 \\ & 1(+3) \\ & \hline \end{aligned}$
Coagulation, day 2 Fibrinogen, mg/dL	224	258	267
Histopathology, main/recovery Systemic lesions Lymph node, inguinal, sinus erythrocytosis	$\mathrm{N}=1 / 1$	$\begin{aligned} & \mathrm{N}=3 / 2 \\ & 3(+3,+4) \end{aligned}$	$\begin{gathered} \mathrm{N}=3 / 2 \\ 3(+3,+4) \end{gathered}$
Skin, inguinal, hemorrhage, subcutaneous		$2(+3,+4, \mathrm{~N}=2)$	$3(+3)$
Injection site, penis Hemorrhage, adventitial subcutaneous	$\mathrm{N}=2 / 1$	$\begin{aligned} & \mathrm{N}=3 / 2 \\ & 3(+2) \\ & 2(+3,+4) \end{aligned}$	$\begin{gathered} \mathrm{N}=3 / 2 \\ 2(+2,+3) / 2(+1,+2) \\ 3(+3,+4) \end{gathered}$
Inflammation, chronic-active, adventitial/tunica		$1(+2)$	
Collagen lysis, tunica albuginea		$1(+3)$	
Neovascular proliferation, corpus cavernosum			0/2(+1, +2)
Toxicokinetics	\cdots	-	-

Severity grade in parentheses; +1 minimal, +2 mild, +3 moderate, +4 marked
$\mathrm{BLQ}=$ below the limit of quantitation at $0.25-16 \mathrm{ng} / \mathrm{mL}$ for $\mathrm{AUX}-\mathrm{I} \& 0.75-48 \mathrm{ng} / \mathrm{mL}$ for $\mathrm{AUX}-\mathrm{II}$ in 2% plasma
-; not available

Acute dosing: Corpus cavernosum

Observations Dose, $\mu \mathrm{g} / \mathrm{kg}$	$\begin{gathered} \hline 0 \\ 3 \mathrm{M} \end{gathered}$	$\begin{aligned} & 8.3 \\ & 5 \mathrm{M} \end{aligned}$	$\begin{gathered} 14.9 \\ 5 \mathrm{M} \end{gathered}$
Clinical signs, Discoloration, prepuce Swollen, penis Scrotum, discolored Bruising, mild/severe Mass, bulbus base/penis, large		$\begin{aligned} & 4 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 1 \\ & 2 \\ & 1 \end{aligned}$
Histopathology, main/recovery Systemic lesions Lymph node, inguinal, sinus erythrocytosis pigmented macrophages	$\begin{array}{r} \mathrm{N}=2 / 1 \\ 1(+3) \end{array}$	$\begin{gathered} \mathrm{N}=3 / 2 \\ 2(+2,+3) \end{gathered}$	$\begin{gathered} \mathrm{N}=3 / 2 \\ 3(+3) / 1(+3) \\ 0 / 1(+3,+4) \end{gathered}$
Skin, inguinal, hemorrhage, subcutaneous Injection site, penis Penis, hemorrhage, preputial, subcutaneous		$1(+4, N=1) / 1(+4)$	$\begin{aligned} & 1(+4, \mathrm{~N}=1) / 1(+4) \\ & 1(+4, \mathrm{~N}=1) \end{aligned}$
Hemorrhage, stromal/adventitial subcutaneous hematoma, subcutaneous		$\begin{aligned} & 2(+2,+4) \\ & 1(+4) \end{aligned}$	$\begin{gathered} 3(+1,+2,+4) / 2(+1,+2,+4) \\ 2(+4) \\ 0 / 1(+2,+4) \end{gathered}$
Edema, stromal		$3(+1,+2,+3)$	1(+2)
Inflammation, acute/subacute, stromal/adventitial chronic, adventitial/tunica		$2(+1,+2,+3)$	$\begin{aligned} & 3(+1,+2,+3) \\ & 1(+2) / 1(+2) \end{aligned}$
Neovascular proliferation, adventitial		1(+2)	$0 / 2(+1,+2)$
Collagen lysis, tunica albuginea		$1(+2,+4)$	
Necrosis, venous wall stromal/adventitial		$\begin{aligned} & 1(+4) \\ & 2(+3,+4) \end{aligned}$	$3(+1,+2,+3)$
Thrombosis		$1(+4)$	
Pigmented macrophages			$0 / 1(+3,+4)$
Toxicokinetics, AUX-I, C, ng/mL, 5 min, Day 1 AUX-II C, ng/mL, 5 min, Day 1		-	$\begin{aligned} & 27.7^{\mathrm{b}} \\ & 37.7^{\mathrm{b}} \\ & \hline \end{aligned}$

banimal \#1653
$\mathrm{BLQ}=$ below the limit of quantitation at $0.25-16 \mathrm{ng} / \mathrm{mL}$ for AUX-I \& $0.75-48 \mathrm{ng} / \mathrm{mL}$ for AUX-II in 2% plasma Severity grade in parentheses; +1 minimal, +2 mild, +3 moderate, +4 marked -; not available

Acute dosing: VAN complex

Observations Dose, $\mu \mathrm{g} / \mathrm{kg}$	$\begin{array}{r} 0 \\ 3 \mathrm{M} \end{array}$	$\begin{gathered} 8.3 \\ 5 \mathrm{M} \end{gathered}$	$\begin{gathered} \mathbf{1 4 . 9} \\ 5 \mathrm{M} \\ \hline \end{gathered}$
Clinical signs, Discoloration, prepuce Swollen, penis Bruising, mild/moderate		$\begin{aligned} & 4 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 4 \\ & 1 \end{aligned}$
Hematology, day 2 WBC, $10^{\wedge} 3 / \mathrm{mm}^{\wedge} 3$ Neutrophils, $10^{\wedge} 3 / \mathrm{mm}^{\wedge} 3$ Monocytes, $10^{\wedge} 3 / \mathrm{mm}^{\wedge} 3$	$\begin{aligned} & 9.26 \\ & 6.0 \\ & 0.44 \\ & \hline \end{aligned}$	$\begin{gathered} 10 \\ 6.6 \\ 0.58 \end{gathered}$	$\begin{gathered} 13.52^{*} \\ 9.8^{*} \\ 0.72^{*} \end{gathered}$
Histopathology, main/recovery Systemic lesions Lymph node, inguinal, sinus erythrocytosis pigmented macrophages lymphoid hyperplasia mediastinal, sinus erythrocytosis	$\mathrm{N}=2 / 1$ $1(+2)$ $1(+2)$	$\begin{gathered} \mathrm{N}=3 / 2 \\ 3(+3) / 1(+2) \\ 0 / 1(+3) \\ 1(+4) \end{gathered}$	$\begin{aligned} & \mathrm{N}=3 / 2 \\ & 3(+3,+4) / 2(+1) \\ & 0 / 1(+3) \\ & 1(+2) / 1(+2) \\ & 3(+3,+4) \end{aligned}$
Injection site, penis Hemorrhage, stromal/adventitial arterial wall subcutaneous		$\begin{gathered} 3(+1,+2,+3,+4) \\ 1(+3) \\ 2(+3,+4) \end{gathered}$	$\begin{aligned} & 3(+2,+3,+4) \\ & 2(+2,+3) \\ & 3(+4) \end{aligned}$
Hemorrhage/hematoma, adventitial		$0 / 1(+3)$	
Inflammation, acute/subacute, stromal/adventitial		$3(+1,+2,+3)$	$3(+1,+2,+3)$
Neovascular proliferation, adventitial		$1(+2) / 1(+2)$	$3(+2) / 2(+1,+2)$
Necrosis, venous wall stromal/adventitial		$\begin{gathered} 1(+3) \\ 3(+1,+2,+3) \end{gathered}$	$\begin{aligned} & 2(+3,+4) \\ & 3(+2,+3) \\ & \hline \end{aligned}$
Pigmented macrophages		0/1(+2)	
Toxicokinetics		-	-

$\mathrm{BLQ}=$ below the limit of quantitation at $0.25-16 \mathrm{ng} / \mathrm{mL}$ for AUX-I \& $0.75-48 \mathrm{ng} / \mathrm{mL}$ for AUX-II in 2% plasma
Severity grade in parentheses; +1 minimal, +2 mild, +3 moderate, +4 marked
Statistically significant from controls at $\mathrm{p}=0.05^{*}$
-; not available

Acute dosing: Urethra

Dose, $\mu \mathrm{g} / \mathrm{kg}$ Observations	$\begin{gathered} \hline \mathbf{0} \\ 3 \mathrm{M} \end{gathered}$	$\begin{gathered} 8.3 \\ 5 M \end{gathered}$	$\begin{aligned} & 14.9 \\ & 5 \mathrm{M} \end{aligned}$
Clinical signs, Discoloration, prepuce scrotum/groin Swollen, penis Bruising, mild/severe prepuce	1	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 4 \\ & 1 \\ & 4 \\ & 3 \\ & 2 \\ & \hline \end{aligned}$
Coagulation, day 2 Fibrinogen, mg/dL	185	254*	$260 *$
Histopathology, main/recovery Systemic lesions Thymus, atrophy hemorrhage, interstitial	$\mathrm{N}=2 / 1$	$\begin{gathered} \mathrm{N}=3 / 2 \\ 1(+3, \mathrm{~N}=1) \end{gathered}$	$\begin{aligned} & \mathrm{N}=3 / 2 \\ & 2(+3, \mathrm{~N}=2) \\ & 1(+3, \mathrm{~N}=2) \end{aligned}$
Lymph node, inguinal, sinus erythrocytosis hyperplasia, lymphoid necrosis, focal inflammation, acute pigmented macrophages	$1(+1) / 0$	$2(+3,+4) / 1(+2)$ $0 / 1(+3)$	$\begin{gathered} 3 / 2(+1,+2) \\ 1(+1) \\ 1(+3) \\ 1(+3) \\ 0 / 2(+3) \end{gathered}$

Injection site, penis Hemorrhage/hematoma, stromal, adventitial	1(+2)	$3(+1,+4) / 1(+2,+4)$	$3(+2,+3,+4) / 1(+4)$
Hemorrhage, arterial wall subcutaneous		$\begin{aligned} & 2(+2,+3) \\ & 2(+4) \end{aligned}$	$\begin{aligned} & 2(+2,+3) \\ & 3(+2,+4) \\ & \hline \end{aligned}$
Edema, stromal			$2(+2)$
Inflammation, acute/subacute, periurethral chronic, adventitial	$1(+1)$	$3(+1,+2,+3)$	$\begin{aligned} & 3(+1,+2,+3) \\ & 0 / 1(+1) \end{aligned}$
Neovascular proliferation, adventitial		$1(+1,+2) / 1(+1,+3)$	$2(+2) / 1(+2)$
Necrosis, venous wall stromal/adventitial		$1(+2,+3)$	$\begin{aligned} & 1(+2) \\ & 3(+2,+3) \end{aligned}$
Pigmented macrophages			$0 / 1(+4)$
Toxicokinetics, AUX-I C, ng /mL, 5 min, Day 1		$\begin{aligned} & 26.3^{b} \\ & 31.2^{\mathrm{c}} \\ & 17.9^{\mathrm{d}} \end{aligned}$	-

banimal \#1841
${ }^{c}$ animal \#1850
animal \#1851
$\mathrm{BLQ}=$ below the limit of quantitation at $0.25-16 \mathrm{ng} / \mathrm{mL}$ for AUX-I \& $0.75-48 \mathrm{ng} / \mathrm{mL}$ for AUX-II in 2% plasma
Severity grade in parentheses; +1 minimal, +2 mild, +3 moderate, +4 marked
Statistically significant from controls at $p=0.05^{*}$

- ; not available

Summary and Conclusions: AA4500 was injected into the dog penis including the tunica albuginea, corpus cavernosum, urethra and subcutaneous tissue adjacent to the main vein, artery and nerve of the penis (VAN complex) either on a single- or a repeat-dosing schedule. The intended site of administration under clinical use, tunica albuginea was administered 3 injections over a week for 3 dosing cycles with 3 weeks between treatment cycles. The potential inadvertent sites (i.e., corpus cavernosum, urethra and VAN complex) were administered a single-dose design to allow for an evaluation of the effects of higher doses than could be reliably repeated. This approach was considered more relevant to the clinical situation since repeated inadvertent injection is not anticipated in patients.

The dosing regimen of 3 injections over a week for 3 dosing cycles with 3 weeks between treatment cycles is an acceleration of the proposed clinical schedule of 6 weeks between treatment cycles. However, it cannot be determined if the dosing frequency in dogs is relevant to the intended clinical dosing regimen in the absence of an appropriate PK measure. The administered doses of $0.8,2.5,8.3 / 6.1$ and $14.9 \mu \mathrm{~g} / \mathrm{kg}$ correspond to the human doses of $0.1-, 0.4-$, 1.5/1.1- and 2.7 -fold on a mg $/ \mathrm{kg}$ basis or $0.04-, 0.14-, 0.46 / 0.34$ - and 0.83 -fold on a mg $/ \mathrm{m}^{2}$ basis, respectively. The doses were selected based on the severity and/or persistence of the local effects noted in all treated animals in pilot studies (see previous review).

In the repeat-dose portion of the study, dogs initially dosed at $8.3 \mu \mathrm{~g} / \mathrm{kg}$ were unable to receive all of the scheduled doses due to excessive swelling that prevented access to the dosing site; 4 received 2 doses and 2 received only 1 dose during the $1^{\text {st }}$ cycle. During the $2^{\text {nd }}$ cycle after lowering the dose to $6.1 \mu \mathrm{~g} / \mathrm{kg}$, 4 out of 6 dogs received all 3 doses, and the remaining 2 doses received only 1 dose. All dogs at $6.1 \mu \mathrm{~g} / \mathrm{kg}$ received all 3 doses in the $3^{\text {rd }}$ week.

One premature euthanasia occurred in the repeat-dosing study. One animal at $2.5 \mu \mathrm{~g} / \mathrm{kg}$ had significant weight loss resulting from severe local reactions at the injection site (severe bruising, swelling, pain on manipulation and a full-thickness ulcer involving the prepuce) following the $2^{\text {nd }}$ dose. The dog was euthanized on Day 8, and had detectable anti-AA4500 titers on day 1 at prestudy and day 8 prior to sacrifice.

Clinical signs related to AA4500 treatment consisted of discoloration/bruising of the penis and/or adjacent skin and swelling of the penis. Most of the findings were seen in treated groups, but not in controls and all injection sites with the increased incidence/severity and persistence with increasing dose levels, reflecting the treatment-related findings rather than the procedure-related phenomena.

Injection-site findings following the repeated injection of AA4500 into the tunica albuginea were manifested as hemorrhage and inflammation (affecting both into the adventitial tissue of the penis and the surrounding subcutaneous tissue of the prepuce or inguinal skin), and neovascular proliferation (granulation tissue) in the penile adventitial tissue, being more severe or extensive in treated animals. The primary findings at all dose levels and all injection sites in the single-dose phase of the study were hemorrhage, edema, necrosis, inflammation and neovascular proliferation with the increased severity and extent. Histopathology measures indicated that resolution was generally in progress, but incomplete at the end of the treatment-free period of 28 days. Gross necropsy observations corresponding to the discoloration of the inguinal skin and/or inguinal lymph node correlated to the histologic findings of subcutaneous hemorrhage and sinus erythrocytosis and/or pigmented macrophages.

There was no significant systemic toxicity (i.e., changes in body weight, food consumption, hematology, clinical chemistry, urinalysis or organ weights) following intrapenile administration of single- or repeat-doses of AA4500. Inflammatory signs, however, were noted in multiple systemic organs including the brain, kidney, small intestine and prostate in treated groups upon repeat-dosing into the tunica albuginea, although the severity is minimal. The findings in draining lymph nodes (e.g., lymphoid hyperplasia, pigmented macrophages, sinus erythrocytosis) indicate the extension of the local inflammation to the systemic inflammatory reaction. Considering the large size of collagenase, AA4500 and/or its degraded products may have also entered the systemic circulation through the lymphatic system, which drains into the regional lymph nodes. It is unknown if the systemic findings are due to an immune-mediated response consequent to an immune complex-reaction or a non-specific systemic inflammatory response secondary to the injection site reaction.

Necrosis was noted in stromal/adventitial and venous wall at the injection sites. It was stated that necrosis did not affect the non-collagenous structures within or adjacent to the injected tissue, nor was there any evidence of residual affects on these structures in recovery animals in all phases of the study. In particular, arteries, nerves and large veins were unaffected, with lysis (necrosis) seen only in smaller veins comprised mostly of collagen and minimal smooth muscle. Collagen lysis quantified using trichrome stain was detected in one each animal injected into the tunica albuginea at 8.3 and $14.9 \mu \mathrm{~g} / \mathrm{kg}$ dose, and in one animal injected into the corpus cavernosum at $8.3 \mu \mathrm{~g} / \mathrm{kg} /$ dose on day 3 , and was detected in a subset of tissues ($1-3$ sections) from the injected areas, not extending to the full thickness of the tunica, and was reversible by the study day 62 .

Low levels of AUX-I and/or AUX-II ($\leq 40 \mathrm{ng} / \mathrm{mL}$) were seen at 5 minutes post-dosing on day 1 in a few dogs in which AA4500 was injected into highly vascular tissue (corpus cavernosum or urethra, with extravasation into the corpus spongiosum) following a single dose. Upon repeatdosing, low levels of AUX-I at pre-dose ($60.9 \mathrm{ng} / \mathrm{mL}$) and AUX-II (LLOQ of $\leq 22.5 \mathrm{ng} / \mathrm{mL}$) at 30 minutes ($24.2 \mathrm{ng} / \mathrm{mL}$) and 60 minutes ($25.5 \mathrm{ng} / \mathrm{mL}$) were also reported on Day 1 for one dog injected with $0.8 \mu \mathrm{~g} / \mathrm{kg} /$ dose into the tunica albuginea, but no detectable exposure was noted for this dog on day 62 . No further PK analysis could be performed on the plasma sample data due to lack of sufficient drug levels over time in the plasma at any dose level, injection site or treatment
schedule. The reason for the detectable levels of AUX-I ($54.9 \mathrm{ng} / \mathrm{mL}$) and AUX-II ($157 \mathrm{ng} / \mathrm{mL}$) for one vehicle animal in the 30 minute sample is unknown. The sponsor stated that the lack of stability of AUX-I (up to 24 days) and AUX-II (up to 132 days) in plasma samples stored at $80^{\circ} \mathrm{C}$ precluded analysis of samples from additional time points taken from the animal to determine the source of these values.

Antibodies to AA4500 components were detected in all repeat-dose dogs following their last dose on Day 61. Titers were high (ranging from 31,250 to $>781,250$ for anti-AUX-I and 131,720 to $>781,250$ for anti-AUX-II), and either persisted or increased in most dogs until the end of drugfree period of 28 days after the last dose, suggesting that the accumulation of antibodies on prolonged therapy. Plasma samples from vehicle and pre-study animals were mostly negative for anti-AUX-1 and anti-AUX-II antibodies. One vehicle (prior to dosing and prior to last dose) and one from at $8.3 / 6.2 \mu \mathrm{~g} / \mathrm{kg}$ dose group (on day 1) had detectable levels of anti-AUX-1 and/or anti-AUX-II antibody titers, suggesting some cross-reactivity between the clostridial species. The consequences of the antibody formation with respect to PK, PD and/or toxicity are unknown. The sponsor stated that the presence of antibodies did not result in any apparent adverse systemic effects. Nor did production of antibodies appear to alter the toxicokinetics or pharmacodynamic effects of AA4500; plasma levels on day 1 were comparable to those on day 62 and clinical signs related to AA4500 administration occurred with approximately equal frequency and severity during all dosing weeks in the study. The higher tolerance of the high dose group to the dosing regimen in the $3^{\text {rd }}$ cycle versus the $2^{\text {nd }}$ cycle was attributed to the result of an improvement in technique or additional recovery from lesions developed following the first dosing cycle that had not completely resolved. However, it is unknown if the interpretation of the data is compromised by immune responses consequent to the deposition of anti-AA4500 antibodies.

The NOAEL for the repeated administration of AA4500 into the tunica albuginea would be <0.8 $\mu \mathrm{g} / \mathrm{kg}$ rather than the sponsor's NOAEL of $0.8 \mu \mathrm{~g} / \mathrm{kg}$ due to the increased incidence and severity of sinus erythrocytosis in inguinal lymph node noted in all treated groups. No NOAEL was identified in the single dose study phase due to the injection-site toxicity. The LOAEL of 0.8 $\mu \mathrm{g} / \mathrm{kg}$ (HED $=1.44 \mu \mathrm{~g} / \mathrm{kg}, 2.66 \mathrm{mg} / \mathrm{mL}$) is approximately 0.1 -fold the proposed human dose of $0.58 \mathrm{mg}(9.6 \mu \mathrm{~g} / \mathrm{kg}, 2.32 \mathrm{mg} / \mathrm{mL})$ on a $\mathrm{mg} / \mathrm{kg}$ basis.

OVERALL CONCLUSIONS AND RECOMMENDATIONS

The intralesional administration of the Auxilium's collagenase, AA4500 into the tunica albuginea, corpus cavernosum, urethra and subcutaneous tissue adjacent to the main vein, artery and nerve of the penis in the dog produced local toxicity with a primary inflammatory response (hemorrhage, edema, necrosis, inflammation, neovascular proliferation, lymphoid hyperplasia) in treated groups following single- or repeat-dosing. The local inflammatory response was doserelated with respect to the incidence, severity and/or persistence, and was of an extended duration following dosing cessation. One treated dog was euthanized in extremis due to excessive local reactions at the injection site of tunica albuginea following 2 doses. The systemic inflammatory signs observed following repeated dosing of AA4500 probably result from the regional and disseminated inflammatory process originating at the injection sites. The injection-site reactions may have been consequent to the anti-AA4500 antibody formation that may lead to the systemic reactions. In addition, the potential to trigger subsequent effects for degraded fragments from the fibrotic plaque due to the enzymatic breakdown of collagenase cannot be dismissed, considering the involvement of collagen in inflammatory process and wound repair. The persistence of the local response could result from collagen remodeling in chronic inflammatory process.

The low systemic bioavailability of AA4500 via the intrapenile route could be due to rapid renal clearance and degradation to small peptides and amino acids by proteolytic enzymes. The low levels of AA4500 were seen in a few dogs, in which AA4500 was injected into highly vascular tissue (i.e., corpus cavernosum or urethra with extravasation into the corpus spongiosum) may have been due to the systemic circulation of its degradation products that were not detected by the current method. The potential exposure to the systemic circulation of the intralesional collagenase still exists, given that the affected tissue (tunica albuginea) is surrounding the corpora carvenosa, in which sinusoidal spaces are rich in vascular supply.

Collagen lysis was noted in some animals injected into the adjacent tunica albuginea at higher doses. Necrosis was noted in stromal/adventitial and venous wall at the injection sites, suggesting that a rupture of the tunica albuginea wall may occur with AA4500. Although a direct extrapolation of the animal findings to humans would be difficult, the potential risk of the collagenase leakage into the adjacent normal structures cannot be dismissed depending on the size and the location of the plaque within the penis that may lead to collagen digestion of healthy tissues.

Antibodies against AUX-I and AUX-II were detected in all treated animals following repeat doses on day 61 and at the end of recovery. The antibody responses have not been characterized. The higher serum antibody titers could be due to the increased immunogenicity of protein aggregates and/or precipitates at the injection sites. Considering the high incidence and the persistent nature of antibodies seen in the study, repeated injection of AA4500 may have immunological consequences if a booster dosing is given in the presence of substantial antibody titers following a repetitive dosing schedule in humans. Auxilium collagenase would be expected to be immunogenic in man, given the large size and the nature of the product derived from nonhuman origin. Inadvertent injection of collagenase into the surrounding highly vascular tissues may also release into the blood/lymphatic vessels, and trigger immune responses.

Overall, the results from the local toxicity study in dogs suggest that intrapenile administration of AA4500 produces inflammatory responses at all injection sites with incomplete recovery following single- and/or repeated doses at doses comparable to or lower than the clinical dose. The repeat-dose of intrapenile injection of AA4500 appears to activate the local inflammatory process that may lead to the stimulation and release of inflammatory mediators responsible for the systemic inflammatory effects, probably due to the increased immunogenicity at the injection site. Anti-product antibodies were formed in all repeated-dosing dogs with unknown consequences. Collagen lysis/necrosis affecting the adjacent tunica albuginea and stromal/adventitial/venous wall at the injection sites was observed in some animals, implying the potential damage of normal structures by enzymatic digestion of collagenase.

Conclusions: The submitted local toxicity data do not ensure the safe use of the intralesional collagenase in humans. The localized inflammatory response induced by collagenase injection that may lead to the systemic reaction is of concern, considering the possible consequence of antibody formation. The potential to rupture the injection site wall and/or damage normal structures surrounding the plaque exists following the intrapenile collagenase. The fate of breakdown fragments from the fibrotic plaque that may trigger subsequent effects is unknown.

Recommendations: Pharmacology/Toxicology defers to the medical team for the safe use of intrapenile collagenase in humans. The submitted dog data suggest that the intralesional injection of collagenase have a potential to induce systemic as well as local inflammatory reactions
possibly consequent to immune responses, and lack assurance that the intrapenile collagenase is confined to the plaque with no extension to adjacent/attached sites.

2.6.6.4 Genetic toxicology

Genetic toxicity of biologics is not generally required unless it is deemed necessary to study the potential toxicity of an impurity in the drug product formulation or unless there is a specific cause for concern related to the specific protein in question. The Applicant conducted genetic toxicology studies for the collagenase enzymes using batches that do not represent the commercial batches. These studies were conducted prior to the general acceptance that such studies are not necessary. Therefore, only summary and major findings of genotoxicity studies are presented in the review.

Study title: Micronucleus test, injectable collagenase ABC (Nucleolysin)

Key findings: Collagenase ABC was not mutagenic in the mouse micronucleus assay.
Study no.: 200002-M-00491
Volume \# M4, and page \#: 1 Conducting laboratory and location

Date of study initiation: Jan 31, 1991
GLP compliance: Yes
QA reports: yes (x) no ()
Drug: Collagenase 3, Nucleolysin, lot \#587/88/89/90, and \% purity: $2.1 \mathrm{mg} / \mathrm{mL}$ protein

The concentration of the test material was prepared immediately before the use and it contained 17000 ABC units $/ \mathrm{mL}$. The applicant stated that the stability and homogeneity of the test substance was not determined.

Methods

Micronucleus test was conducted in bone marrow erythrocytes from CD-1 mice. The dose levels are shown from the sponsor's table below.

Group code (Label)	Dose-level (U / kg)	$\frac{\text { Animal numbers }}{\text { Males Females }}$	Sampling time
$\stackrel{1}{(W H I T E)}$	$\begin{aligned} & \text { Vehicle } \\ & 0.00 \end{aligned}$	$\begin{array}{cc} 2-10 & 1-9 \\ 42-50 & 41-49 \\ 82-90 & 81-89 \end{array}$	$\begin{array}{ll} 24 & \text { hrs } \\ 48 & \text { hrs } \\ 72 & \text { hrs } \end{array}$
$\stackrel{2}{\text { (YELLOW) }}$	NUCLEOLYSINR 1070	$12-20$ $11-19$ $52-60$ $51-59$ $92-100$ $91-99$	24 hrs 48 hrs 72 hrs
$\stackrel{3}{(B L U E)}$	NUCLEOLYSINR 2140	$\begin{array}{cc} 22-30 & 21-29 \\ 62-70 & 61-69 \\ 102-110 & 101-109 \end{array}$	24 hrs 48 hrs 72 hrs
$\begin{gathered} 4 \\ \text { (RED) } \end{gathered}$	Mitomycin-C $2.00 \mathrm{mg} / \mathrm{Kg}$	$\begin{array}{cc} 32-40 & 31-39 \\ 72-80 & 71-79 \\ 112-120 & 111-119 \end{array}$	24 hrs 48 hrs 72 hrs

The treatment was given once by ip injection and animals were sacrificed at 24,48 and 72 hours post dose. The dose was selected on the basis of LD 50 at 80.2 units/mouse/ip. The procedure of the assay was standard. The summary of results is shown from the
applicant's table below. Incidences of micronucleated cells per 1000 erythrocytes were scored.

Based on the data, Clostridial collagenase (Nucleolysin) given by ip route was considered to be non-genotoxic. However, the process and the batch used in the study are different from the intended clinical batch manufactured under Auxilium batches. Therefore, relevance of the study is unknown.

Study title: Reverse mutation in Salmonella typhimurium

Key findings: Collagenase 3 is not mutagenic in Ames assay in the absence and presence of S-9 mixtures

Study no.: 200003-M-00591

Volume \#M4, and page \#: 1
 Conducting laboratory and location: ~ . - . . - .

Date of study initiation: Jan 18, 1991
GLP compliance: Yes
QA reports: yes (x) no ()
Drug: Collagenase 3, Collagenase ABC, Nucleolysin, lot \# 587/88/89/90, and \% purity: $2.1 \mathrm{mg} / \mathrm{mL}, 17000 \mathrm{ABC}$ units $/ \mathrm{mL}$

Methods

Strains/species/cell line: Salmonella typhimurium strains TA1535, TA1537, TA 98, and TA 100 were used with or without rat S-9 liver homogenates.

Doses used in definitive study: $213,425,850,1700$ and 3400 units/plate, the test substance was made fresh for the assay and the applicant did not assay for the test substance for its stability.

Basis of dose selection: Preliminary cytotoxicity was conducted. However, no cytotoxicity was detected in the assay. The applicant chose to use the maximum concentration of the protein possible.

Negative controls: Distilled water, DMSO
Positive controls: Sodium azide, 9-aminoacridine, 2-nitrofluorene and 2aminoanthracene

Incubation and sampling times: Plates were incubated for the growth of revertant colony for 72 hours at 37 C .

Results

Study validity (comment on replicates, counting method, criteria for positive results, etc.): Two fold or greater increase in the revertant colonies at two consecutive doses was considered for a positive response.

Study outcome: Data did not show any increase of the revertant colonies in the absence and presence of S-9 mixtures. Based on the study criteria, the test material was considered negative for the Ames assay.

Study title: Chromosome aberration in human lymphocytes cultured in vitro
Key findings: Collagenase 3 was not mutagenic in this assay.

Study no.: 200001-M-00391
Volume \#M4, and page \#: 1
Conducting laboratory and location:
Date of study initiation: March 6, 1991
GLP compliance: Yes
QA reports: yes (x) no ()
Drug: Collagenase 3, lot \# 587/88/89/90, and \% purity: $2.1 \mathrm{mg} / \mathrm{mL}$ (17000 units $/ \mathrm{mL}$)

Methods

Strains/species/cell line: S-9 liver homogenates were prepared from Sprague Dawley rats for the induction of metabolism. The study was conducted with or without metabolic activation systems. Peripheral blood from a 31 -year-old male volunteer was collected and lymphocyte cultures were prepared for the chromosomal aberration study. Cells were stimulated with PHA for replication and cells were treated after 48 hours after the addition of PHA to maximize replications.

Doses used in definitive study: $210,97.4,45.2,21.0,9.74,4.52,2.10$, and $0.97 \mathrm{ug} / \mathrm{mL}$ in the absence and presence of S-9 mixtures. Cells were score at $210,97.4$ and $45.2 \mathrm{ug} / \mathrm{mL}$ in the absence and presence of S-9 mixtures.

Basis of dose selection: Maximum feasible dose
Negative controls: Culture medium
Positive controls: Mitomycin C and cyclophosphamide (for metabolic activation system) were dissolved in distilled water of injectable grade for the use as positive controls.

Incubation and sampling times: Cells were incubated for 24 hours in the absence of metabolic activation systems. Cells were treated with the test substance for 2 hours in the presence of S-9 mixtures and harvested after 12 or 24 hours. Cell mitosis was arrested by the addition of Colcemid two hours before harvesting cells. The cells were prepared for aberration following staining with Giemsa stain. Mitotic index was determined as a measure of cytotoxicity. The sponsor stated that they did not conduct any test to determine the stability of the test substance during the incubation. Duplicate samples were tested at each concentration.

Results

Study validity (comment on replicates, counting method, criteria for positive results, etc.): The cytotoxicity was determined by mitotic index. The sponsor intended to choose the highest concentration corresponding to 50% inhibition of mitotic index. If cytotoxicity was not observed, the highest feasible concentration was used for the assay. Validity of the study was based on statistically significant increase in the aberration
compared to the control and aberration at above the historical control. Also, the increase in aberration could be duplicated in the study. Cells were scored without gaps.

Study outcome: One hundred metaphase cells per culture were scored. The mitotic index at $210 \mathrm{ug} / \mathrm{mL}$ was 71% and 65% in the absence of S-9 and presence of S-9 mixtures, respectively. Results of the aberration study in the absence and presence of S-9 is shown below from the sponsor's table.

Key:
$\% \mathrm{CA}$: Percentage of cells bearing aberrations (excluding gaps)
Rel.MI : Mitotic :ndex relative to negative controls (percent).

- : Not tested or not selected for the scoring of aberrations
$* \quad \vdots$ stat. sig. at $P<0.05$ after correction for multiple comparisons
** $\quad:$ Stat. sig. at $P<0.01$ after correction for multiple comparisons
*** : Stat. sig. at P<0.001 after correction for multiple comparisons

Above data suggest that the test substance did not cause aberrations in the peripheral blood lymphocytes from a human donor.

Summary of mutagenicity: Mutagenicity was conducted according to ICH guidelines for Nucleolycin (Collagenase 3) that was made by a BTC process. The genotoxicity studies for biologics are not a regulatory requirement because the large proteins do not enter the cell. However, results of tests could reflect process impurities. Since the proposed marketing batches would be made by a process different from that used for Nucleolysin, the relevance of these studies is not known.
2.6.6.5 Carcinogenicity: No carcinogenicity study was conducted.

2.6.6.6 Reproductive and developmental toxicology

Fertility and early embryonic development

Study title: Intravenous fertility and general reproduction toxicity study of AA4500 in rats

Key study findings: AA4500 did not show any abnormality in the sperm counts, motility, fertility and early embryonic development in rats up to $0.13 \mathrm{mg} /$ dose. NOEL was $0.13 \mathrm{mg} /$ dose for fertility and early embryonic development.

Study no.: (b) (4) 300012
Volume \#M4, and page \#: 1
Conducting laboratory and locatior
Date of study initiation: Nov 28, 2008
GLP compliance: Yes
QA reports: yes (x) no ()
Drug: AA4500, lot \#NFF-0035, and \% purity: 100\% by HPLC assay for AUX-1 and AUX-2 based on the certificate of analysis from (b) (4) for process 3

Vehicle Lot \#J6H560, J6K462, J6K548, C711127, Placebo lot\#FIN0251, Diluent containg 2 mM calcium chloride in $0,9 \%$ saline Lot\# FIN-0206, FIN-0265

Methods

Doses: The study design is shown below from the applicant's table.
Male rats for spermatogenesis and mating:

Dose Group	Dose (mg protein' close)	Concentration (mg protein mL)	Dose Volume ($\mathrm{mL} / \mathrm{rat}$)	Injection Rate (mLimin)	Number of Rats	Assigned Numbers	
						Main Study	Toxicokinetic Study
I	0 (Placebo)	0.0	0.5 mL	Bolus	25	29801-29825	N/A
II	0.0145	0.029	0.5 mL	Bolus	$25 \div 6^{3}+6^{3}$	29826-29850	$\begin{gathered} 29281-29286^{8} \\ 6281-6286^{6} \end{gathered}$
III	0.0435	0.087	0.5 mL	Bolus	$25 \div 6^{4}+6^{3}$	29851-29875	$\begin{gathered} 29287-29292^{\mathrm{d}} \\ 6287-6292^{\mathrm{b}} \end{gathered}$
IV	0.13	0.26	0.5 mL	Bolus	$25 \div 6^{4}+6^{3}$	29876-29900	$\begin{gathered} 29293-29298^{\mathrm{a}} \\ 6203-6298^{\mathrm{b}} \end{gathered}$

The test article was considered 100% active/pure for the purpose of dose calculations. All dose calculations were based on the vial conten of AA4500 or AA4500 Placebo provided in each Certificate of Analysis.
a. Six rats assigned to the initial study for use in toxicokinetic sample collection.
b. Six rats assigned to the study extension for use in toxicokinetic sample collection.

N/A - Not Applicable
Female rats for fertility and early gestational effect:

Dose Group	Dose (mg protein/ dose)	Concentration (mg protein' mL)	Dose Volume ($\mathrm{mL} / \mathrm{rat}$)	Injection Rate (mL/min)	Number of Rats Per Sex	Assigned Numbers	
						Main Study	Toxicokinetic Stucy
I	0 (Placebo)	0.0	0.5 mL	Bolus	25	21801-21825	N/A
II	0.0145	0.029	0.5 mL	Bolus	$25+6^{2}+6^{6}$	21826-21850	$\begin{gathered} 21951-21956^{10} \\ 6381-6386^{6} \end{gathered}$
III	0.0435	0.087	0.5 mL	Bolus	$25 \div 6^{3}+6^{3}$	21851-21875	$\begin{gathered} 21957-21962^{\mathrm{d}} \\ 6387-6392^{\mathrm{b}} \end{gathered}$
N	0.13	0.26	0.5 mL	Bolus	$25+6^{3}+6^{3}$	21876-21900	$\begin{gathered} 21963-21968^{\mathrm{a}} \\ 6393-6398^{b} \end{gathered}$

The test article was considered 100% active pure for the purpose of dose calculations. All dose calculations were based on the vial content of AA4500 or AA4500 Placebo provided in each Certificate of Analysis.
a. Six rats assigned to the initial study for use in toxicokinetic sample collection.
b. Six rats assigned to the study extension for use in toxicolinetic sample collection.

The high dose was selected on the basis of the pilot study and based on the tolerability of the drug. The rationale was discussed for the segment 2 study reviewed below.

Species/strain: Male and female Crl:CD (SD) rats.
Number/sex/group: See the study design above
Route, formulation, volume, and infusion rate: Solutions of the drug product were made on each day of the administration of dose. The stability of the dose solution was tested. The solution containing $0.029 \mathrm{mg} / \mathrm{mL}$ AA4500 showed $39-76 \%$ of the nominal concentration. The solution containg $0.087 \mathrm{mg} / \mathrm{mL}$ AA4500 showed $56-101 \%$ of the nominal concentration and the solution containing $0.26 \mathrm{mg} / \mathrm{mL}$ AA4500 showed $84-110 \%$ of the nominal concentration. Stability data for the solution at $0.025 \mathrm{mg} / \mathrm{mL}$ on ice for 8 hours and $-80^{\circ} \mathrm{C}$ were within 94 to 100%. Similarly, stability data for 0.3 $\mathrm{mg} / \mathrm{mL}$ solution stored in the ice for 8 hours and $-80^{\circ} \mathrm{C}$ showed $109-110 \%$ recovery. Based on the high recovery data for $0.26 \mathrm{mg} / \mathrm{mL}$ solution in the analytical study and presence of antibodies to the drug, it was concluded that the study was conducted up to a maximum feasible exposure in rats.

As shown in the study design, the treatment was given by IV bolus injections to maximize the exposure. The applicant also wanted to examine immunogenicity to the treatment.

Male rats were treated with AA4500 once every other day beginning 28 days before the mating, during the mating period and up to euthanasia days 61-64 by IV route.
Female rats were treated once every other day beginning 15 days before mating, during mating, gestation days $0,3,5$ and 7 by IV route. Injections were made into the lateral caudal vein.

Satellite groups used for toxicokinetics: Six rats/sex/drug treatment group were assigned for the toxicokinetics and $6 \mathrm{rats} / \mathrm{sex} / \mathrm{drug}$ treatment groups were assigned as extension groups to replace the toxicokinetic animals if needed. Blood samples were collected at several time points from 3 rats/sex/time point on dosing day 1 from treated rats, study day 55 in male treated rats and gestation day 7 in female treated rats for the determination of plasma AUX-1 and AUX-2 levels by a validated enzyme linked immunosorbent Assay (ELISA assay). Blood samples were collected from the lateral tail vein or jugular vein. Satellite animals were sacrificed by carbon dioxide inhalation. The applicant stated that TK study was repeated because the original samples were not stable. Serum anti-AUX-1 and AUX-2 antibody was determined by ELISA assay at necropsy in which antigen-antibody reactive samples were quantitated by the displacement with unlabelled AUX-1 and AUX-2.

Study design: Male and female rats were cohabitated at 1:1 ratio from the same group for a total of 21 days. Female rats that were not mated during 14 days were cohabitated with a male with proven fertility from the same group for another 7 days. Unmated female rats were considered to be gestation day 0 also. Estrus cycle was monitored during pre-mating and mating period. Copulation was confirmed by the presence of spermatozoa in the vaginal smears and it was considered as gestation day 0 .

Animals were observed twice daily for viability and clinical signs. Animals were also examined once a week for any gross changes on the body surface. The body weight of male rats was recorded daily during the treatment period up to the day of necropsy. The body weight of female rats was recorded daily during the treatment, gestation day 0,7 , daily during the post dose period and on the day of euthanasia. The food consumption was recorded weekly for male rats except during the cohabitation period. The food consumption was recorded weekly until cohabitation, gestation day $0,7,8$ and 13. The food consumption was calculated as $\mathrm{g} / \mathrm{day}$.

Male rats were euthanized after cohabitation between study days 64 to 67 . Gross visceral changes were noted. Reproductive organs were weighed and fixed for histopathology, sperm counts, motility and sperm/gm of tissue were recorded. Testes were fixed in Bouin's solution and other reproductive tissues were fixed in 10% formalin.

Female rats were euthanized on the gestation day 13 by carbon dioxide asphyxiation.

Gross changes in the visceral organs were recorded. Following caesarean sections on gestation day 13 , uteri were examined for the pregnancy status. Both uteri and ovaries from each rat were fixed in formalin for histopathology if needed.

Parameters and endpoints evaluated: Number of corpora lutea, pregnancy, implantation sites, viable and non-viable embryos and placentas were examined.

Results

Mortality: Two male rats died on the study day 15 at 0.0435 (\#29865) and $0.13 \mathrm{mg} /$ dose (\#29880) groups, respectively. No female rats were found dead due to the treatment. Histological data showed acute congestion in the liver, kidneys and lungs in animal\# 29865. A similar finding was noted in rat \# 29880. Relationship of the treatment to these acute changes is unknown due to a small number of rats that showed above changes and lack of a similar finding at a higher dose.

Clinical signs: Soft feces, purple color at the injection sites and swollen injection sites were observed at mid and high doses in male rats. Swollen injection sites were noted at low, mid and high doses in female rats. Purple coloration at the injection site was evident with significantly higher incidences at the high dose compared to the control in female rats.

Body weight:
Male rats (g):

Day	Group 1	Group 2	Group 3	Group 4
1	361	359	357	358
28	457	457	463	452
43	493	492	500	485
63	536	533	543	527
Weight gain	175	174	186	169

Based on above data, the treatment related effect on the body weight gain was not biologically significant.

Female rats (g):

Day	Group 1	Group 2	Group 3	Group 4
1 (premating)	255	254	257	255
15 (premating)	267	269	270	268
Gestation day 1	269	267	267	267
Gestation day 7	296	295	296	288
Gestation day 13	332	331	329	328
Weight gain day 1 to gestation	77	77	72	73

Day	Group 1	Group 2	Group 3	Group 4
day 13				

Overall decrease in the body weight gain was reduced by about 6% in mid and high dose animals. Based on these data, female rats showed a slight decrease in the body weight gain compared to the control in groups 3 and 4 animals that could be due to lower food consumption as discussed below.

Food consumption:
Male rats (g/day):

Day	Group 1	Group 2	Group 3	Group 4
$1-7$	27.2	26.6	27.0	27.1
$21-28$	26.8	26.6	27.1	26.6
$37-45$	28.2	27.8	28.7	27.6
$57-64$	28.3	27.4	28.6	27.3
$1-64$	27.7	27.4	28.4	27.4

Based on above data, there was no treatment related effect on the food consumption.
Female rats (g/day)

Day	Group 1	Group 2	Group 3	Group 4
$1-7$	17.1	17.7	17.6	16.9
$7-15$	17.8	17.4	17.8	17.7
Gestation days $0-8$	22.2	22.0	21.8	20.0^{*}
Gestation days $0-13$	22.4	22.6	22.2	21.3

* Statistically significant compared to control.

When compared to the control, food consumption was slightly (5\%) but significantly reduced during gestation in group 4 animals on week 1 . However, the food consumption was similar at the end of gestation day 15 .

Toxicokinetics:

PK information for AUX-1 and AUX-2 is shown below from the applicant's table.

AUX-I TK Parameters (DS 1)							
Dose Level (mg protein/dose)	Parameter						
Males	$\begin{gathered} \mathrm{AUC}_{\operatorname{lsss}}=\mathrm{SE} \\ (\mathrm{ng} \cdot \mathrm{hr} / \mathrm{mL}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CL} \\ (\mathrm{~mL} / \mathrm{h}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{o}} \\ (\mathrm{ng} / \mathrm{mL}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{max}} \pm \mathrm{SE} \\ (\mathrm{ng} / \mathrm{mL}) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{t}_{1: 2} \\ & (1 \mathrm{i}) \\ & \hline \end{aligned}$	$\mathfrak{t}_{12 x a x}$ (h)	$\begin{gathered} \text { Vss } \\ (\mathrm{mL}) \end{gathered}$
0.0145	NC^{3}	$\mathrm{NC}^{\text {a }}$	NC^{8}	$\mathrm{NC}^{\text {a }}$	$\mathrm{NC}^{\text {a }}$	NC ${ }^{\text {a }}$	$\mathrm{NC}^{\text {a }}$
0.0435	$\mathrm{NC}^{\text {a }}$	$\mathrm{NC}^{\text {a }}$	11.0	11.0 ± 0.68	NC^{2}	0.25	$\mathrm{NC}^{\text {a }}$
0.13	16.4 ± 1.85	$\mathrm{NC}^{\text {a }}$	69.1	21.4 ± 2.37	$\mathrm{NC}^{\text {a }}$	0.25	$\mathrm{NC}^{\text {a }}$
Females							
0.0145	NC^{3}	$\mathrm{NC}^{\text {a }}$	$\mathrm{NC}^{\text {a }}$	$\mathrm{NC}^{\text {a }}$	$\mathrm{NC}^{\text {2 }}$	$\mathrm{NC}^{\text {a }}$	NC^{19}
0.0435	$\mathrm{NC}^{\text {a }}$	NC: ${ }^{\text {a }}$	NC^{3}	$\mathrm{NC}^{\text {a }}$	$\mathrm{NC}^{\text {a }}$	NC^{3}	$\mathrm{NC}^{\text {a }}$
0.13	NC^{2}	$\mathrm{NC}^{\text {a }}$	7.99	7.99 ± 4.06	$\mathrm{NC}^{\text {a }}$	0.25	$\mathrm{NC}^{\text {a }}$
AUX-II TK Parameters (DS 1)							
Dose Level (mg protein/dose)	Parameter						
Males	$\begin{gathered} \mathrm{AUC}_{\mathrm{lass}}-\mathrm{SE} \\ (\mathrm{ng} \cdot \mathrm{hr} \mathrm{~mL}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CL} \\ (\mathrm{~mL} / \mathrm{h}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{o}} \\ (11 \mathrm{gmL}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{\max } \pm \mathrm{SE} \\ (\mathrm{ng} / \mathrm{mL}) \\ \hline \end{gathered}$	$\begin{aligned} & t_{12} \\ & (11) \\ & \hline \end{aligned}$	$t_{\text {bask }}$ (h)	$\begin{gathered} \hline \text { Vss } \\ \text { (mL) } \\ \hline \end{gathered}$
0.0145	17.9 ± 4.45	$\mathrm{NC}^{\text {a }}$	46.6	24.3 ± 12.8	$\mathrm{NC}^{\text {a }}$	0.25	$\mathrm{NC}^{\text {a }}$
0.0435	160 ± 6.24	130	588	160 ± 5.96	0.59	0.25	55.9
0.13	261 ± 16.9	$\mathrm{NC}^{\text {a }}$	430	308 ± 46.4	$\mathrm{NC}^{\text {3 }}$	0.25	$\mathrm{NC}^{\text {d }}$
Females							
0.0145	13.4 ± 2.08	NC^{3}	13.5	17.9 ± 4.11	$\mathrm{NC}^{\text {3 }}$	0.50	$\mathrm{NC}^{\text {a }}$
0.0435	42.1 ± 8.46	$\mathrm{NC}^{\text {a }}$	35.3	46.8 ± 9.51	$\mathrm{NC}^{\text {a }}$	0.50	$\mathrm{NC}^{\text {a }}$
0.13	166 ± 24.7	378	559	173 ± 87.3	0.52	0.25	161

Above data suggest that AUX-1 degrades or neutralizes faster than AUX-2 on the first day of dosing and there was no accumulation. Biological half-lives of AUX-1 and AUX2 were very short. No AUX-1 and AUX-2 was detected at predose indicating there was no measurable collagenase from bacterial sources was present in the rats. Elimination of AUX-1 and AUX-2 in the plasma was rapid.

The sponsor stated that clostridial collagenase was detected only in one animal at 0.13 $\mathrm{mg} /$ dose at one time point of each sex in samples collected on subsequent study days.

Above kinetic data indicate that AUX-1 and AUX-2 from AX4500 degrades in vivo spontaneously and the drug had minimal exposure after IV administration.

Data for antibody titers at necropsy are shown from the applicant's table below.

Dose Level (mg protein' dose)	Ses	Anti-AUX-I Responses			Anti-AUX-II Responses			$\begin{aligned} & \text { AUX-I/ } \\ & \text { AUX-II } \end{aligned}$
		Titer Range	Median Titer	Percent Positive	Titer Range	Median Titer	Percent Positive	
0.00	M	(b) (4)	0.00	28\%	(b) (4)	65.8	72\%	$\mathrm{NC}^{\text {b }}$
	F	(b) (4)	0.00	28\%	(b) (4)	0.00	8\%	1.00
0.0145	M	$\begin{aligned} & \text { (b) (4) }- \\ & \text { (b) }(4) \end{aligned}$	197000	100\%	$\begin{aligned} & \text { (b) (4) } \\ & \text { (b) }(4) \end{aligned}$	38400	100\%	5.13
	F	$\begin{aligned} & \text { (b) (4) } \\ & \text { (b) (4) } \end{aligned}$	73500	100\%	$\begin{aligned} & \text { (b) (4) } \\ & \text { (b) }(4) \end{aligned}$	61400	100\%	1.20
0.0435	M	(b) (4). (b) (4)	235000	100\%	$\begin{aligned} & \text { (b) (4) } \\ & \text { (b) }(4) \end{aligned}$	27050	100\%	8.69
	F	$\begin{aligned} & \text { (b) (4) } \\ & \text { (b) }(4) \end{aligned}$	120000	100\%	$\begin{aligned} & \text { (b) (4) } \\ & 1 \text { (b) (4) } \end{aligned}$	32300	100\%	3.72
0.13	M	$\begin{aligned} & \text { (b) (4) } \\ & \text { (b) }(4) \end{aligned}$	252500	100\%	(b) (4)- (b) (4)	24400	100\%	10.35
	F	$\begin{aligned} & \text { (b) (4) } \\ & \text { (b) (4) } \end{aligned}$	237000	100\%	(b) (4)	22300	100\%	10.63

a. ALX-LAUX-II = ratio of group median anti-AUX-I titer to group median anti-AUX-II titer
b. $\quad \mathrm{NC}=$ not calculated (denominator $=0$)

Anti-AA4500 antibodies were detected at the end of the treatment in all rats. However, a slight positive response for the presence of antibody was also reported in the control.

Necropsy: Necropsy of female rats did not show any abnormality.
Fertility parameters (mating/fertility index, corpora lutea, preimplantation loss, etc.):
Mating and fertility summary for male rats are shown below.

Parameter	Group 1	Group 2	Group 3	Group 4
\# Cohabitated	25	25	24	24
\#Rats mated	25	25	24	24
\# rats with confirmed mating	25	24	24	24
\#Rats Pregnant/\# in cohabitation	25	25	24	24
Necropsy findings normal	24	25	25	93
\% sperm motility	93	93	153	155
Sperm count in ten fields	136	138		

One male in the control and one male at high dose showed small epididymides. However, average organ weight data did not show any treatment related change in the reproductive organs.

Based on above data, it was concluded that the treatment had no effect on fertility, sperm counts and sperm motility in rats.

Female mating and fertility:
Female rats in the control showed 3.3 to 3.4 days of average estrus cycle that was not significantly altered in the AA4500 treated rats. Female rats co-habited with the first male from the same group, mated within two and half days. Fertility index, percent pregnant, corpora lutea, implantations, live embryos for the control and treated rats were comparable and did not change significantly as shown in the table below.

Parameter	Group 1	Group 2	Group 3	Group 4
\# Rats in cohabitation	25	25	25	25
\# rats mated	25	25	25	25
Fertility index (\%)	96	88	88	92
Pregnant (\%)	96	88	88	92
Average corpora lutea	16.4	16.3	15.6	16.5
Implantations	15.4	15.1	14.8	15.7
Litter sizes	15.4	15.1	14.8	15.7
Live embryos	340	315	294	335
Dams with viable embryos	24	22	22	23

Fertility Index= \# rats pregnant / \# rats mated
Conclusion: Male and female rats treated up to $0.13 \mathrm{mg} /$ dose did not show any abnormal effect on fertility and early embryonic development. AA4500 degraded rapidly after the IV injection and anti-AUX antibodies were detected at the terminal sacrifice. Injection site swelling was present at 0.0435 and $0.13 \mathrm{mg} /$ dose.

Embryofetal development

Study title: Intravenous developmental toxicity study of AA4500 in rats

Key study findings: No developmental toxicity was noted in the study. NOEL for the developmental toxicity was 0.13 mg protein/day.

Study no.: (b) (4) 10009
Module \#4, and page \#: 1
Conducting laboratory and location:
Date of study initiation: Dec 17, 2006

GLP compliance: Yes
QA reports: yes (x) no ()
Drug: AA4500 - (b) (4) batch), lot \# NFF0035, and \% purity: 100\% by HPLC system; Placebo lot \# FIN-0251, Auxilium Pharmaceuticals; the drug product solution was made once daily. The analytical determinations of the sample for its stability and concentrations are shown below from the applicant's appendix 4.

Concentration	Recovered concentration	\% Claim
$0.029 \mathrm{mg} / \mathrm{mL}$	$0.023-0.025 \mathrm{mg} / \mathrm{mL}$	$78-85 \%$
$0.087 \mathrm{mg} / \mathrm{mL}$	$0.076-0.88 \mathrm{mg} / \mathrm{mL}$	$87-99 \%$
$0.26 \mathrm{mg} / \mathrm{mL}$	$0.25-0.29 \mathrm{mg} / \mathrm{mL}$	$98-114 \%$

Although some of the solutions at 0.029 and $0.087 \mathrm{mg} / \mathrm{mL}$ concentrations showed lower than the target concentration, most of the high dose solutions confirmed the target concentration and the study is acceptable to determine the reproductive risk under the given conditions.

Methods

Doses: The study design is shown below from the applicant's table.

Dose Group	Dose (mg proteiniday)	Concentration (mginL)	Dose Volume (mL/rat)	Number of Rats	Injection Rate	Assigned Rat Numbers
I	0 (Placebo)	0.0	0.5	25	Bolus	23701-23725
II	0.0145	0.029	0.5	$25+6^{1}+6^{6}$	Bolus	$\begin{gathered} 23726-23750 \\ 1676-1681^{1}: 2181-2186^{6} \end{gathered}$
III	0.0435	0.087	0.5	$25+6^{7}+6^{6}$	Bolus	$\begin{gathered} 23751-23775 \\ 1682-1687^{1}: 2187-2192^{6} \end{gathered}$
IV	1). 13	0.26	0.5	$25+6^{2}+6^{6}$	Bolus	$\begin{gathered} 23776-23800 ; \\ 1688-1693^{\mathrm{s}}: 28800,2194-2198^{\mathrm{h}} \end{gathered}$

The test article was considered 100% active pure for the purpose of dose calculations. All dose calculations were based on the vial content of AA4500 or AA4500 Placebo provided in each Certificate of Analysis.
Bolded numbers represent rats assigned to the toxicokinetic portions of the study,
a. Six rats assigned for use in toxicokinetic sample collection for the initial study
b. Six rats assigned for use in toxicokinetic sample collection for the study extension.

The high dose were selected on the basis of pilot study (b) (4) 000014) in which 0.29 $\mathrm{mg} /$ day showed sloughing of tail. Mortality was noted at higher dose. However, a dose of 0.13 mg protein/day was tolerated (b) (4) 10018).

Species/strain: Rats, $\mathrm{Crl}: \mathrm{CD}(\mathrm{SD})$ from
(b) (4)

Number/sex/group: See study design above
Route, formulation, volume, and infusion rate: The drug product or placebo was injected intravenously as bolus injections once a day between gestation days 7 and 17 . AA4500 was reconstituted with sterile 0.9% sodium chloride and 0.03% calcium chloride solutions. The route of administration was chosen to maximize systemic exposure and to induce immunogenicity to the treatment.

Satellite groups used for toxicokinetics: 6/group, see study design above. Initial TK samples were not appropriate to measure the drug substance due to degradation of the
enzyme. Further samples were collected from animals assigned as extension of the TK study as indicated in the study design.

Study design: Male and female rats were mated. Pregnant rats were used for the organogenicity study. The body weight was recorded daily and food consumption was recorded on days $0,7,10,12,15,18$ and 21 . Blood samples (0.2 mL) were collected from the tail or jugular vein at predose, $30 \mathrm{~min}, 2,4,8,24,48,72$ hours post dose on gestation days 7 and 17 for the determination of plasma levels of AUC-1 and AUX-2 using validated ELISA assay. Blood samples were taken from three rats at each time point.

Any gross lesions, heart, lungs, liver, kidneys, stomach and spleen were fixed in 10\% formalin and retained for histological evaluation if needed. Surviving TK animals were euthanized on gestation days 19 and 20 via carbon dioxide inhalation. Surviving animals from the main study group were euthanized by carbon dioxide inhalation on gestation day 21. Caesarean section and gross necropsy was conducted on each rat.

Parameters and endpoints evaluated: Following parameters were recorded from pregnant rats:

Pregnancy status, corpora lutea, implantation sites, early (pre-organogenesis) and late resorption, live and dead fetuses, placental size and color will be recorded. Fetal weights, sex, gross lesions were recorded. Live fetuses were euthanized by sodium pentobarbital. Half of fetuses were fixed in Bouin's solution for determination of soft tissue alterations and variations. Remaining half was digested with alcohol and stained with Alizarin red for the examination of skeletal alterations.

Results

Mortality (dams): One dam at 0.0435 (satellite) and one dam at $0.13 \mathrm{mg} /$ day ($\# 23786$) were sacrificed due to decreased motor activity and injection site swelling, respectively.

Clinical signs (dams): Swelling at the injection site was noted dose dependently at 0.0435 and $0.13 \mathrm{mg} /$ day. The applicant stated that most of the swelling were in the base of the tail and hind leg related to the injection in groups 3 and 4 animals. The applicant did not mention in the method section where the injections were given. Assuming that the injections were given into the caudal vein, swelling in the hind leg was noted following the first injection at $0.13 \mathrm{mg} / \mathrm{day}$. In the absence of further characterization of hind leg swelling, it is not possible to conclude that the swelling was due to an autoimmune response. However, a similar change was not observed in the toxicity studies.

Body weight (dams): The treatment did not have any effect on the overall body weight gain of animals through out the gestation. The body weight data (g) on selected days of gestation are shown below.

Gestation Day	Group 1	Group 2	Group 3	Group 4
0	233	233	233	233

Gestation Day	Group 1	Group 2	Group 3	Group 4
7	270	270	270	270
17	334	328	335	338
21	414	404	411	411
BW change	181	171	178	178

Food consumption (dams): The average food consumption (g/day) between days 0 to 21 was $25 \mathrm{~g} /$ day across the groups. Therefore, the treatment had no effect on the food consumption.

Toxicokinetics: Most of the plasma samples showed below the quantitation limit of 5 $\mathrm{ng} / \mathrm{mL}$ for AUX-1 or AUX-2 with some exceptions. Calculated AUX-1 and AUX-2 data for PK parameters on day 7 showed very short half-life of the protein. The plasma levels were measurable transiently in few samples. Examples of AUX-2 levels in animal \# 28800, \#2194, \# 2195 from group 4 at 2- hour post dose on gestation day 7 showed $32.13,17.73,13.68 \mathrm{ng} / \mathrm{mL}$, respectively. Animal \# 2190, \#2191, from group 3 at $3,0.5$ hour post dose on gestation day 7 showed AUX-2 levels of $76.55,10.25 \mathrm{ng} / \mathrm{mL}$, respectively. Overall, the PK data suggest minimal systemic exposure in pregnant rats up to 0.5 hour post dose. The applicant's summary table is shown below.

Clearance of AUX-1 was faster than AUX-2. The sponsor stated that AUX-1 and AUX2 were only detected on gestation day 7.

Terminal and necroscopic evaluations: C-section data (implantation sites, pre- and postimplantation loss, etc.): At necropsy, swelling at the injection site was noted. No other gross change in the dams was noted. Caesarean data are shown below.

Parameter	Control	$\mathbf{0 . 0 1 4 5}$	$\mathbf{0 . 0 4 3 5}$	$\mathbf{0 . 1 3} \mathbf{~ m g} /$ day
Pregnant	$24(96 \%)$	$25(100 \%)$	$24(96 \%)$	$25(100 \%)$

\# Caesarean	24	25	24	24
Live fetuses	346	346	338	348
Dams with viable fetuses (\%)	100	100	100	100
\% Male	49.6	49.5	49.2	49.4
Dead fetuses	0	0	0	0
Early resorption	10	15	14	16
Late resorption	0	0	0	0
\% fetuses with any alteration/litter	3.8	2.9	2.3	1.7

Offspring (malformations, variations, etc.): Variation data in fetuses are shown below.

Parameter	Control	0.0145	0.0435	$0.13 \mathrm{mg} / \mathrm{day}$
Cleft palate, \% fetuses	0.6	0	0.6	0
Folded retina, \% fetuses	0	0.6	0	0
Skull, incomplete ossification, \% fetuses	0	0	0.6	0

Above data showed no variations or abnormalities in fetuses up to $0.13 \mathrm{mg} /$ day IV dose. PK data showed AUX-1 and AUX-2 degraded shortly after the IV injections. Injection site reactions were noted at mid and high doses. The NOEL for developmental toxicity was $0.13 \mathrm{mg} / \mathrm{kg}$. The sponsor did not determine anti-AUX-1 and anti-AUX-2 antibodies in this study. Although no teratogenicity or maternal toxicity (except local reactions) at $0.13 \mathrm{mg} /$ day (equivalent to 1.1 mg in a 60 kg humans) was noted in the study, it is necessary to verify if IV injections developed antibodies in rats from other studies so as to justify that the developmental effect or organogenicity in rats was also not impaired by the presence of antiAUX-1 and AUX-2 antibodies. The reviewer compared data for antibody formation in other toxicity studies in rats and concluded that the AA4500 antibodies could present in the plasma in the present study.

Prenatal and postnatal development

The applicant did not conduct a prenatal and postnatal reproductive safety study because the Division agreed that such a study would not be necessary due to lack of plasma bioavailability of the drug after a local injection. However, the Division asked the applicant to discuss the issue with respect to necessity of the study if the antibody
neutralized AA4500. See discussion and conclusion section of the review below for a response to Pre BLA issues and the rationale for not conducting the study.

2.6.6.7 Local tolerance:

Study Title: An exploratory study on the effect of injected Nucleolysin on the subcutaneous fat of female Zucker rats, \# 95-2384.

The study was conducted in May 9, 1995. The lot \# was 42901 for lyophilized collagenase. The drug substance was reconstituted with $0.9 \% \mathrm{NaCl}$ and 2 mM calcium chloride solutions.

The study was conducted to determine the effect of local injection of collagenase into inguinal fat pad using obese Zucker rats. Injections were given into each inguinal fat pad. The method indicated that 5 injections were given in each fat pad spreading over several edges of the fat pad. The average body weight of rats was 395 g . Nucleolysin was injected at 500 and 1000 units/dose as a single dose and control animals received the vehicle. Animals were sacrificed forty-eight hours after the injection and histopathology of left and right fat pads was conducted in all animals. The study design is shown from the applicant's table below.

Group	Test. Material	Compound Administration			Number of Females		
		Dose	Concentration	Volume ${ }^{\text {a }}$	Initial	Necropsy	Microscopic Pathology
		$\frac{\text { units }}{\text { fat pad }}$	units/mL	$\frac{\mathrm{mL}}{\text { fat pad }}$			
1	diluent for Nucleolysin	0	0	1	7	7	7
II	Nucleolysin ${ }^{\text {d }}$	500	500	1	7	7	7
111	Nucleolysin ${ }^{\text {® }}$	1000	1000	1	7	7	7

${ }^{\text {a }}$ The 1 mL volume was divided into 5 injections of approximately $0.2 \mathrm{~mL} /$ injection per fat pad. Only the inguinal fat pads were injected.
$b_{\text {Microscopic pathology of the inguinal fat pads only were performed for all animals. }}$

All animals survived following the treatment. Hemorrhage and inflammation was noted in all drug treated animals. Data also suggest fat cell disruption associated with red blood cells, inflammatory cells and fibrin accumulation around fat cells at 1000 units/dose.

The study indicates presence of inflammatory response following subcutaneous injection in rats and no NOEL was established.

2.6.6.8 Special toxicology studies

Study title: Guinea-pig sensitization study

Key study findings: Guinea pigs did not show evidence of sensitization to Nucleolysin when given by ip or intra-cardiac route within 2 weeks.

Study no.: Not provided
Volume \# M4, and page \#: 1
Conducting laboratory and location: Not provided
Date of study initiation: Not provided
GLP compliance: No
QA reports: yes () no (x)
Drug: Nucleolysin, lot \# N7903, and \% purity: 590 units $/ \mathrm{mL}$
Formulation/vehicle: Physiological saline containing $2 \mathrm{mM} \mathrm{CaCl}_{2}$

Methods

Study design and results:
Doses: Four ip injections of $0.1 \mathrm{~mL}(300 \mathrm{U} / \mathrm{kg})$ of the test substance were given to guinea pigs. Animals were challenged 2 weeks after the first sensitizing injection by $300 \mathrm{U} / \mathrm{kg}$ dose of Nucleolysin by ip route. No clinical sign was reported subsequent to the challenging dose given by ip route.

Another study was conducted in guinea pigs at ${ }^{(b)}{ }^{(4)}$ New York. Animals were immunized by 4 ip injections of collagenase form 3 . Three injections were given on alternate days and the forth injection was given on day 7. Seven days after the last injection, animals were challenged with intracardial injection of the test material. Animals were observed for next one hour for symptoms of antigen challenge. Each dose was 300 units $/ \mathrm{kg}$ that was about LD_{10} for mice. The LD_{50} in mice was 3000 units $/ \mathrm{kg} / \mathrm{ip}$.

No mortality or other treatment related clinical sign was observed following the antigen challenged.

Results of two studies showed that repeated doses for two weeks given by parenteral routes did not cause hypersensitivity reactions in the guinea-pig model.

2.6.6.9 Discussion and Conclusions:

AA4500 is a fixed combination of collagenase 1 and collagenase 2 at (b) on weight basis. Collagenase was obtained from Clostridium histolyticum. Several toxicity studies were conducted in rats and dogs to determine its systemic toxicity, local toxicity and reproductive toxicities. AA4500 was manufactured using BTC, (b) (4) and Auxilium processes. Comparability studies were also conducted in rats for toxicity, analytical purity and potency. However, potency and impurity profiles of several batches of the drug substance, as well as immunogenicity to AA4500, will be reviewed by the product quality reviewer in a separate review.

AA4500 showed local toxicities at the site of injection in dogs and rats at equal or lower than human doses on $\mathrm{mg} / \mathrm{kg}$ basis. NOEL for the effect was difficult to establish due to the procedural effects and due to collagen-lytic effect of the drug. Repeat dose toxicity in rats showed liver toxicity at $0.29 \mathrm{mg} /$ dose/IV that is about 100 times higher than 0.58 $\mathrm{mg} /$ dose injections in humans at $\mathrm{mg} / \mathrm{kg}$ basis. The applicant conducted segment 1 and segment 2 toxicity studies in rats following IV injections. However, the treatment did not show any deleterious effect for fertility and embryofetal development. The applicant conducted a battery of mutagenicity studies that showed no mutagenicity to AA4500 manufactured by the BTC process. Since the drug product for the clinical use would be made by Auxilium process and large molecular proteins do not transport across the cell membrane, mutagenicity study for the product is not a regulatory requirement. The applicant addressed several issues discussed in the Pre-BLA meetings and these items are referenced below. One of the issues was related to the role of anti-product antibodies formed after the systemic or local injections in animals. Data submitted in the BLA did not show any neutralization of the drug substance by its antibodies based on the toxicity data. The antibodies also did not cross-react with the recombinant human collagenase in vitro. However, these data would be further reviewed by the immunologist to comment on the applicant's position. Based on the non-clinical data and response of the applicant for the Pre-BLA issues, the reviewer does not recommend that any additional non-clinical study for the approval of this biologic. The BLA can be approved for the treatment of Dupuytren's disease from the non-clinical point of view. The Pharm/Tox recommendations for the package insert are provided in the executive summary.

The response of the applicant on issues discussed in Pre-BLA meeting:

During the Pre-BLA meeting dated Sept 15, 2008, the Division responded with following remarks:
A. "The Division notes that your GLP toxicology study in the dog does not demonstrate a clear NOAEL. In the absence of a clear NOAEL, your BLA submission should include rationale for why the histological findings in the dog do not raise safety concerns for your drug product. Final determination of the adequacy of the existing nonclinical toxicology studies can only be provided once a final determination of the comparability of the nonclinical batches to the clinical formulation is made"

Applicant's response:

The applicant provided the response in M1 as shown below:

1. The GLP toxicology study in the dog combined two different study designs. A single dose local tolerance study and repeat dose general toxicology study.
2. A clear NOAEL was demonstrated for local, systemic, and antibody-mediated effects in the repeat dose toxicology study.
3. The absence of a clear NOAEL (based on injection site findings) in the single dose (local tolerance) study is considered neither adverse nor of concern for the safe clinical use of AA4500 for the following reasons:
It was designed to characterize the effects and reversibility of maximum tolerable dose, tissue responses at the injection site with no clear NOEL/NOAEL were expected. No systemic toxicity or damage to tissue elements critical to the structural or functional integrity of the injected tissue sites resulted from AA4500 injection at any dose level. The injection site reactions were expected secondary manifestations of the primary pharmacologic activity of AA4500 (degradation of collagen into biologically active peptide fragments), and all injection site changes reversed partially to completely following cessation of dosing.

Reviewer's response: The reviewer agreed with the applicant's position that the local changes at the injection site were combination of the procedure and pharmacodynamic effects (collagen lysis). Additionally, collagen from the tail (injection sites in many studies) was also used for determination of the potency of the drug. Therefore, a clear NOEL would be difficult to establish. The injection site reactions were not fully reversible within next 28 days as stated by the applicant. Based on the pharmacodynamic properties and absence of systemic pharmacological effects and toxicities following the local injections in dogs, the response of the applicant is acceptable to the reviewer. However, the reviewer fails to understand the statement by the applicant as "role of pharmacological activity of AA4500 (degradation of collagen into biologically active peptide fragments)". Antibodies to AUX-1 and AUX-2 were also observed in human and non-clinical studies. The toxicity to the antibodies is not predictable based on the results of local and systemic injections to AA4500. From the regulatory point of view, the reviewer does not recommend further actions on this issue.
B. "Your BLA submission should contain a summary table outlining the impurity specifications in all nonclinical and clinical batches in order to document the applicability of the nonclinical studies conducted to support your proposed clinical studies".

Applicant's response: The sponsor provided specifications of the proposed drug product in Module 2 in a tabular form. The batches used for the IV toxicity studies, local toxicity study and reproductive toxicity studies met the specifications.

Reviewer's Response: The reviewer agreed on the applicant's response that AA4500 used for the non-clinical studies met the proposed specifications for the drug product. No regulatory action is needed for the non-clinical studies with this respect.
C. "If comparability is not demonstrated, your BLA submission must include a 3-month repeat dose toxicology study with the clinical formulation that demonstrates a clear NOAEL and evidence of complete reversibility of the histopathological changes."
Applicant's response: The applicant provided analytical and toxicity comparability for AA4500 manufactured by different processes. The toxicity study in rats showed comparability to several manufacturing processes of the drug. In addition, the applicant indicated analytical comparability data submitted on Feb 11, 2009 was acceptable to the FDA.

The reviewer's response: Non-clinical toxicity studies used for comparing BTC,(b) (4) ${ }_{\text {L }}$ and Auxilium batches of AA4500 showed comparable toxicity. From the regulatory point of view, further non-clinical bridging toxicity studies are not required.
D. "Your BLA submission should address the potential for general and reproductive and developmental toxicity, if anti-product antibodies form which cross react with self-antigens. This must include a discussion of the potential for anti-product antibodies to bind to and neutralize endogenous collagenase."

Applicant's response: The response from the applicant's submission is shown below.

1. The potential for anti-product antibodies to cross-react withnentralize endogenous collagemase is considered highty umlikely based on the following:

Mammalian endogencus collagenasen, matriv metalloproteinases (MIMPs), are substantially different from clostridial collagenase in terms of size, amino acid homology, structure and organization of the entalytic and collagen binding domains.
Recombinant human NMPs were unable to act as effective competing ligands in the human anti-AUX-I ned anti-ATIX-IF natibody assays. indicating a lack of antigenic cross reactivity.
2. Anti-AUX-I and anti-AUX-II antibody responser were evaluated in all repeat dose general and reproductive toxicity studies (except (b) (4),00009). The regonses had the following characteristics:

The onset, percent of animals responding and magnitude of titers were comparable beween rats and dogs, and between IV and local administration
Positive titerz occured rapidly, following as few as two doses of A.A4500

Positive responses hien titers occumed in the majority ($70-100 \%$) of the animals at the end of dosimg and in 100% of the animals at the end of recovery.
Titers were persistent and also increased in magnitude following cessation of dosing (recovery periods of up to 30 days).
3. The presence of early onset, sustained high titer responses in the majority of the animals allowed them to be useful in evaluating responses atributable to either AA4500 or anti-proctuct antibodies in both the general and reproduction toxicity sadies and to discrimanate between the cause of my effects seen as follows:

No effects on fertility, mating, implantation placemsation or embryofetal development were seen in the reproduction toxicity studies, in the face of high anti-product antibody titers.

Systemic MrIP inhibition in rodents zesults in characteristic adwerse effects on implantarion and placental development and ermbryo-fetal anomaties: the absence of these effects in the reproduction tovictry smodies with A 4500 supports a lack of physiologically relevant crossreactive with or meutralization of endogencur wiriPs by andi-product antibodies.
Effects directly atributable to $A \rightarrow 4500$ were expected to show clear dose responses and to diminish in incidence andior severity at che end of the recovery period
Effects atributable to anti-product antibody fomation were expected to show less clear dose respouses and were not expected to reverse, but instead were expented to persist and or increase in incidenceiseverity at the end of the recovery period.
Effects antribunable to physiologicaily relewant cross-reactivity with or mentralization of endogenous collagemase (MOUPs) were expected to aesemble those resulting fom phammeologically-mediated wiviP inhibition, as described in the biterature.
4. Mone of the effects seen in either the gemeral or reproductive toxicity studies could be atributed to anti-product antibody fonmarion andor crossreactuity wirh or meutatizetion of endogenous collagenase:

All of the STSTE 4 GC and LOCAL Effecte seen following A $A 4500$ administration showed dose responses and reversed partially to coupletely following cessation of treatment.
The systemic effects noted in the general toxicity sadies were not consistex with the wrefl-characterized effects of boad apectum systemic MMP inbibition in rodents, further supporting a lack of physiolagically relewant cross-reactivity with or nearalization of endogenomas MuIPs by anti-product antiboodies.

Reviewer's response: Anti-AUX-1 and anti-AUX-2 antibodies were detected in the local and systemic toxicity studies. The summary of clinical safety data also showed the presence of antibodies. In several instances, the antibody was present in the absence of the drug substance in the nonclinical studies. However, there is no clear evidence in the toxicity data that systemic toxicity resulted from the antigen-antibody reactions. An analysis of data related to the liver toxicity, the reviewer analyzed the association of liver toxicity to the antibodies. However, data failed to show any relationship in rats. The applicant further characterized the recombinant stromelysins ability to become a catalyst for the degradation of AUX-1 and AUX-2 antibodies. Data showed minimal affinity of the antibodies to several recombinant human stromelysin. A schematic of the MMPs or free AUX competition with anti-AUX-1 or anti-AUX-2 antibodies are shown from the applicant's submission below.

Figure 1: Bridging ELISA Format for Testing Cross-Reactivity of Human Anti-AUX-I or Anti-AUX-II Antibodies versus Different Human MMPs

Principle of the assay:

Similarly, data for the AUX antibodies and collagenase interactions are shown from the applicant's submission below.

Table 4: Percent Inhilition of Biuding of Human Anti-AUX-I by Competing Autigen

Sample ID	$\begin{gathered} \text { Reference } \\ \text { OD }^{9} \end{gathered}$	Percent Inhibition by $\mathbf{l} \mu \mathrm{g} / \mathrm{mL}$ of:					
		AUX-I	MMP-1	MMP-2	MMP-3	MMP-8	M.1P-13
(b) (4) 3 35	1.001	86.71\%	3.80\%	-3.30\%	- 1.80%	0.60\%	0.010%
552	0.848	83.02\%	-0.71\%	0.83\%	0.94\%	2.33\%	2.8\%
535	0.796	83.29\%	1.51\%	2.51\%	3.89\%	1.51\%	-0.25\%
544	0.783	82.12\%	2.43\%	2.30\%	3.32\%	- 2.17%	-0.13\%
493	1.050	87.03\%	5.40\%	-0.57\%	2.46\%	-0.38\%	-1.89\%
Positive control ${ }^{\text {b }}$	0.783	80.20\%	0.38\%	2.43\%	5.62\%	-4.21\%	-1.28\%

Data source: Section 5.3.1.4; Report A4.74233CF-EB. Table 4a
? Mean OD value in absence of added compering ligand.

- Affinity purified rabbit polyclonal anti-AUX-I antibody.

Table 5: \quad Percent Inhibition of Binding of Human Anti-AUX-II by Competing Antigen

Sample ID	$\begin{gathered} \text { Reference } \\ O D^{2} \end{gathered}$	Percent Inhibition by $1 \mu \mathrm{~m} / \mathrm{mL}$ of:					
		AUX-II	MLIP-I	MMP-2	MMP-3	MMP-8	M.MP-13
(b) (4) 345	0.709	74.47\%	-4.09\%	-14.25\%	-7.76\%	-21.16\%	0.00\%
552	0.676	75.00\%	-2.81\%	-6.66\%	-0.74\%	-4.14\%	-8.88\%
535	1.102	83.67\%	8.89\%	11.16\%	6.81\%	13.43\%	10.62\%
344	0.914	81.95\%	-3.06\%	-13.68\%	-10.94\%	0.77\%	2.63\%
493	0.743	79.95\%	-3.77\%	- -8.34%	-13.73\%	-7.40\%	-17.90\%
Positive control ${ }^{3}$	0.859	70.43\%	-2.10\%	1.05\%	10.13\%	11.41\%	8.03\%

Data source: Section 531.4: Repon A474333CF-EE, Table th
? Mean OD value in absence of added competing ligand
Affinty puried rabbit polyclonal anti-AUX-II antibody.

Above in vitro data suggest that several recombinant MMPs had poor affinity to the AUX antibodies, whereas, the drug substance AUX-1 and AUX-2 competed with the positive control. The applicant provided amino acid sequences for AUX-1, AUX-2 and several MMPs to support that there was no cross-reactivity between human MMPs and anti-AUX antibodies.

Table 1: Amino Acid Sequence Homology of AUX-I and AUX-II Versus Human MMPs

Major Collagenolytic Human MMPs		Primary Substrate(s)	\% Sequence Homology rs.	
Protein name	Alternative Name		AUS-I	AUX-II
MMP-1	Collagenase-1	Fibrillar coilagen	37	35
MMP-2	Gelantinase-A	Gelatin	28	42
MMP-3	Stromelysin-1	Non-îbrillar collagen MMP proenzymes	24	24
MMP-8	Collagenase-2	Fibrillar collagen	50	53
MMP-9	Gelatinase-B	Gelatin	39	39
MMP-13	Collagenase-3	Fibrillar collagen	34	29
MMP-14	MTI-MMP	Fibrillar collagen MhP proenzynes	44	32

Based on the in vitro data and non-clinical toxicity data, the reviewer concluded that antiproduct antibodies were present but there was no evidence of neutralization and other deleterious effect related to anti-AUX-1 and anti-AUX-2 in animals tested. However, the immunogenicity data presented in Module 5 needs to be reviewed by the immunologist from product quality to reaffirm that the antibody was non-neutralizing in humans.
D. "Based on the information submitted to date documenting the lack of systemic exposure to AA4500, further reproduction and developmental toxicology studies will not be required."

Applicant's response: No action needed
Reviewer's response: The reviewer agreed with the sponsor that no systemic toxicity was noted in dogs after local injections. Clinical summary also indicated a lack of systemic exposure to AA4500. The other issue is related to neutralizing anti-product antibodies. As discussed above for item \# C, due to a lack of evidence of neutralizing antibodies in animal studies, the reviewer does not recommend further reproduction studies. The product reviewer opinion on neutralization on the neutralization of AA4500 by its antibodies would be further discussed for the product label. See further recommendation for reproduction information for the package insert.

2.6.6.10 Tables and Figures: see below

The comparative toxicity table for human and animals is shown below.

Species	Dose, mg protein/dose	Average body weight	Dose,	Animal dose : Human dose	Toxicity	Presence of antibody
Human	0.58 local injection	60 kg	$\begin{aligned} & 0.0096, \\ & \mathrm{mg} / \mathrm{kg} \\ & (9.6 \mathrm{ug} / \mathrm{kg}) \end{aligned}$		Peripheral edema, contusion, injection site pain and hemorrhage, pain in extremity	Yes
Rat	0.0029/IV	0.3 kg	$\begin{aligned} & 0.0096 \\ & \mathrm{mg} / \mathrm{kg} \end{aligned}$	1	Injection site inflammation	Yes
Rat	0.029/IV	0.3 kg	$\begin{aligned} & 0.096 \\ & \mathrm{mg} / \mathrm{kg} \end{aligned}$	10	Injection site inflammation	Yes
Rat	0.29/IV	0.3 kg	$0.96 \mathrm{mg} / \mathrm{kg}$	100	Injection site Inflammation and liver toxicity	Yes
$\begin{aligned} & \hline \text { Rat, } \\ & \text { seg } 1 \end{aligned}$	0.13/IV	0.3	$0.43 \mathrm{mg} / \mathrm{kg}$	45	Injection site swelling	Yes
Rat, seg 2	0.13/IV	0.3	$0.43 \mathrm{mg} / \mathrm{kg}$	45	Injection site swelling	Not determined
Dog	Local injection at Tunica Albuginea in penis	8 kg	$\begin{aligned} & 0.8 \mathrm{ug} / \mathrm{kg}, \\ & 9 \text { doses } \end{aligned}$	0.08	Local inflammation at tunica albuginea; minimal perivascular inflammation in brain and inflammation in salivary gland	Yes
Dog	Local injection at Tunica Albuginea in penis	8 kg	$\begin{aligned} & 2.5 \mathrm{ug} / \mathrm{kg}, \\ & 9 \text { doses } \end{aligned}$	0.26	Local inflammation At tunica albuginea;	Yes
Dog	Local injection at Tunica Albuginea in penis	8 kg	$6.1 \mathrm{ug} / \mathrm{kg}$, maximum 9 doses	0.63	Local inflammation at tunica albuginea; minimal inflammation in brain, spinal cord, heart, salivary gland, pancreas and prostate	Yes
Dog	Local injections at at Tunica Albuginea, corpus cavernosum, van complex in penis and urethra	8 kg	8.3 and $14.9 \mathrm{ug} / \mathrm{kg}$ single dose	$\begin{aligned} & 0.86 \\ & \text { and } 1.5 \end{aligned}$	Hemorrhage, edema, inflammation of injection site. Thymus atrophy was observed when injected into urethra	Antibodies were not determined

2.6.7 TOXICOLOGY TABULATED SUMMARY

The applicant presented following tabulated toxicity summaries in the BLA:
Drug Product Specifications:
2.6.7.4. Toxicology

2.67.4. Tosicology (Continued)

Drug Product Specifications for Batches Esed in Toxicology Studies

[^1]2.6.7.7A Repeat-Dose Toricity: Pivotal Studies

Report Title: A 16-Day, Multiple-Dose, Intrarenous Toxicity Study in Rats Comparing AA4500 with BTC Collagenase and Placebo					Test Articles: AAt500 (lot NFF-0035) and AA+500 (Process 1) (Lot 992-7) Note: At4500 (Process 1) $=$ BTC collagemase					
Species/Strain: Rats/Sprague-Dawley		Duration of Dosing: 16 days					Study No. (b) ${ }^{10006}$			
Initial Age: 8 wks at study start		Duration of Postdose: 0 days								
Date of Eirst Dose: 03Jul2006		Method of Administration: IF bolus (0.5 mLianimal)								
		Vehicle/Fonnulation: $2 \mathrm{mM} \mathrm{CaCl}_{2}$ in 0.9% NaCl (used to make $17,241 \mathrm{U} \mathrm{hL}$ stock solution; final concentrations made by further dilution with Sterile Water for Injection)/ 0, 100, 300 and $500 \mathrm{C} / \mathrm{mL}$					GLP Compliance: GLP			
Special Fentures: Animals were dosed $q+8 \mathrm{~h}$ (every other day). TK samples (serum) collected on Days 1 and 15 from satellite dose groups ($9 /$ sex'dose from AA4500 treated groups only). Control article was placebo used in clinical studies (10 mM TRIS, 60 m . M sucrose, diluted in 2 mMCaCl in $0.9 \% \mathrm{NaCl}$.										
No Observed Adverse Effect Level: 500 U/dose (0.029 mg protein/dose) for s systemic toxicity (150 U/dose (0.0087 mg protein/dose) for injection site findings)										
Dose Level (U/dose) (mg proteindore)	0 (0)		$50(0.0029)$		$150(0.0087)$		$\begin{array}{\|l} 500(0.029) \\ \text { (AFF-0035) } \\ \hline \end{array}$		$\begin{aligned} & 500(0.029) \\ & (99 \approx 7) \\ & \hline \end{aligned}$	
Number of Animals ${ }^{\text {a }}$	M:10	F:10	M: $10+9$	$\begin{aligned} & \mathrm{F}: \\ & 10+9 \end{aligned}$	M: $10+9$	$\begin{aligned} & \text { F: } \\ & 10+9 \end{aligned}$	$\begin{aligned} & \mathrm{M}: \\ & 10+9 \end{aligned}$	$\begin{aligned} & F: \\ & 10 \div 9 \end{aligned}$	M: $10+9$	$\begin{aligned} & \mathrm{F}: \\ & 10+9 \end{aligned}$
Toxicolinetics: $\mathrm{AVC}(\mathrm{ng} \cdot \mathrm{h} / \mathrm{mL})$										
ALX-I (Dayl)			0.00	0.00	1.26	1.71	3.44	3.65	1.11	1.62
AWX-I (Day 15)			0.00	0.00	9.32	0.00	0.00	0.00	0.00	0.00
ALX-II (Day 1)			0.63	0.68	14.3	22.7	76.9	93.9	26.0	18.3
AUX-II (Day lis)			888.5	11641	10582	29961	14245	22928	5198	38486

2.6.7.7A Repent-Dose Toxicity: Pirotal Studies (Continued)

Dose Level (Chdose) (ing proteindose)	0 (0)		50 (0,0029)		150 (0,0087)		$\begin{aligned} & 500(0.029) \\ & \text { NFF-0035) } \end{aligned}$		$\begin{aligned} & 500(0.029) \\ & (992-7) \\ & \hline \end{aligned}$	
Sumber of Animals ${ }^{\text {a }}$	M:10	F:10	$\begin{aligned} & \mathrm{M}: \\ & 10+9 \end{aligned}$	$\begin{aligned} & \hline \mathrm{F}: \\ & 10+9 \end{aligned}$	$\begin{aligned} & \mathrm{M}: \\ & 10 \div 9 \end{aligned}$	$\begin{aligned} & F: \\ & 10+9 \end{aligned}$	$\begin{aligned} & \mathrm{M}: \\ & 10+9 \end{aligned}$	$\begin{aligned} & \mathrm{F}: \\ & 10 \div 9 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{Mi} \\ 10+9 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{F}: \\ & 10+9 \end{aligned}$
Yoterorthy Findings:										
Cliuical Observations (frequencyincidence) ${ }^{3}$										
Tail discoloration	0.0	0.0	$0: 0$	00	000	21	$6 / 4$	8.6	6.5	148
Gross Pathology										
Injection site disoloration	010	0,10	010	$0 / 10$	0:10	0110	$1 / 10$	$0: 10$	$0: 10$	210
Histopatholog:										
İjection site:										
Hemorthage, perivaschar										
Minimal	110	1:10	110	1110	110	210	510	1.10	310	210
Mild	110	$0: 10$	$1: 10$	$0: 10$	110	0.10	010	$1 / 10$	Lio	410
Inflammation, chronic, perivascular										
Miximal	3110	310	210	0110	310	210	510	210	$3: 10$	1:10
Mild	$0: 10$	$1 / 10$	0.10	$0: 10$	$0: 10$	$0: 10$	410	$6: 10$	3.10	910
Median antibody titers (Day 15):										
Auti-AUX-I(\% respmaie)	0 (0\%)	0 (0\%)	$\begin{array}{\|l\|} \hline 903 \\ (100 \%) \end{array}$	$\begin{aligned} & 4085 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 9225 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 15200 \\ & 100 \%) \end{aligned}$	$\begin{aligned} & 10050 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 28650 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 11950 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 15984 \\ & (100 \%) \end{aligned}$
Anti AUX-II (\%\% responie)	0 (0\%)	0 (0\%)	$\begin{aligned} & \hline 111 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 489 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 946 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 1190 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 1542 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 3325 \\ & 100 \%) \end{aligned}$	$\begin{aligned} & 1950 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 2340 \\ & (100 \%) \end{aligned}$

${ }^{1} \mathrm{M}=$ males. $\mathrm{F}=$ females
${ }^{\text {B }}$ Frequency $=$ punkes of sudy days on which de observation was made; incidence $=$ number in dose group with the finding
$B T C=$ early $B T C$ process
$A C C=$ aren under the curve
2.6.7.7B Repeat-Dose Toxicity: Pivotal Studies

Dose : TV/dose (ing protein/dose) (AA4500 Lor Sumber)	0 (0)		$\begin{aligned} & 500(0.29) \\ & (992-7) \end{aligned}$		$\begin{aligned} & 500(0.29) \\ & \text { AFF-0035) } \end{aligned}$		$\begin{aligned} & 500(0.29) \\ & (7280) \end{aligned}$		$\begin{aligned} & 22.40(0.13) \\ & (7280) \end{aligned}$		$\begin{aligned} & 5000(0.29) \\ & \text { (NFF-0035) } \end{aligned}$		$\begin{aligned} & 5000(0.29) \\ & (7280) \end{aligned}$	
Sumber of Animals ${ }^{\text {c }}$	$\begin{aligned} & \text { M: } \\ & \text { is } \end{aligned}$	$\begin{aligned} & \mathrm{F}: \\ & 18 \end{aligned}$	$\begin{array}{\|l} \text { M: } \\ 27 \end{array}$	$\begin{aligned} & \mathrm{F}: \\ & 27 \end{aligned}$	$\begin{array}{\|l} \text { M: } \\ 27 \end{array}$	$\begin{aligned} & \text { F: } \\ & 27 \end{aligned}$	$\begin{aligned} & \text { M: } \\ & 27 \end{aligned}$	$\begin{aligned} & F: \\ & 27 \end{aligned}$	$\begin{aligned} & \mathrm{M}: \\ & 22 \end{aligned}$	$\begin{aligned} & \mathrm{F}: \\ & 22 \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & 27 \end{aligned}$	$\begin{aligned} & \text { F: } \\ & 27 \end{aligned}$	$\begin{aligned} & \text { M: } \\ & 27 \end{aligned}$	$\begin{aligned} & \text { F; } \\ & 27 \end{aligned}$
Notevorthy Findings:														
Died or Premature Euthanasia	018	0/18	027	027	$0 / 27$	0127	027	0127	022	0122	$2: 27$	4:27	127	$3: 27$
Clinical Observations (frequencyíincidence):														
Inj. Site discoloration	11/6	149	147	33:8	$21 / 8$	197	14;6	16/7	36.6	$28 / 7$	2066	45.13	$26: 10$	66/12
Hematology														
RBC count (X10:2 ${ }^{\text {a }}$)	8.10	7.24	7.79	7.14	8.11	7.16	8.12	7.08	7.79	7.12	7.71	6.70°	7.99	6.63'
Hemoglobin (g / L)	152	147	151	142	154	143	155	142	151	141	148	135°	153	135'
Hematocrit (LI)	0.40	0.38	0.40	0.38	0.41	0.38	0.41	0.37	0.40	0.37	0.39	$0.35{ }^{\circ}$	0.40	$0.36{ }^{\circ}$
Reticulocyte (X10 $0^{\circ} \mathrm{L}$)	2220	196.8	243.2	229.7	244.1	194.6	246.2	211.3	253.0	198.2	372.7	270.3	226.9	3534
Reticulocyte (\%)	2.7	2.7	3.1	3.2	3.0	2.7	3.1	3.0	3.3	2.8	5.1	4.1°	2.9	$5.7{ }^{*}$
RDW (\%)	13.3	12.6	13.2	12.9	13.0	12.6	13.2	12.7	13.8	12.6	15.1	13.1	12.9	14.8
RBC Morphology:														
Andsocytosis - 1	0.10	$0 / 10$	0.10	$0 / 10$	$0 / 10$	010	101	$0 / 10$	1/10	$0: 10$	110	0.10	$0: 10$	$1: 10$
Auisocytosis -2	$0 / 10$	$0: 10$	0.10	$0: 10$	$0 / 10$	0.10	$0: 10$	0110	$0: 10$	0110	$0 / 10$	$0: 10$	$0: 10$	1/10
Polychromasia +1	0.10	$1 / 10$	0.10	1110	0.10	$0: 10$	210	$0 \cdot 10$	1/10	0110	$1 / 10$	2:10	2310	$3: 10$
Polychiomasia +2	0.10	$0 / 10$	0.10	$0 / 10$	040	0110	$0: 10$	0110	0.10	$0: 10$	2210	$0: 10$	$0 / 10$	1.10
NRBC	010	0:10	$0 / 10$	0:10	$0: 10$	0:10	0.10	$0 / 10$	$0: 10$	$0 \cdot 10$	$1 / 10$	0:10	0.10	$1 / 10$

2.6.7.7B Repeat-Dose Toxicity: Pirotal Studies (Continued)

Dose : U/dose (ing protein'dose) (A. 14500 Lot Sumber)	0 (0)		$\begin{aligned} & 500(0.29) \\ & (992-7) \end{aligned}$		$\begin{aligned} & 500(0.29) \\ & (A F F-0035) \end{aligned}$		$\begin{aligned} & 500(0.29) \\ & (7280) \end{aligned}$		$\begin{aligned} & 2240(0.13) \\ & (7280) \end{aligned}$		$\begin{aligned} & 5000(0.29) \\ & (\text { NFF-0035) } \end{aligned}$		$\begin{aligned} & 5000(0.29) \\ & (7280) \end{aligned}$	
Number of Animals ${ }^{\text {a }}$	$\begin{aligned} & \text { M: } \\ & 18 \end{aligned}$	$\begin{aligned} & \mathrm{F}: \\ & 18 \end{aligned}$	$\begin{aligned} & \mathrm{M}: \\ & 27 \end{aligned}$	$\begin{aligned} & \mathbf{F :} \\ & 27 \end{aligned}$	$\begin{aligned} & \text { M: } \\ & 27 \end{aligned}$	$\begin{aligned} & F: \\ & 27 \end{aligned}$	$\begin{aligned} & \text { U: } \\ & 27 \end{aligned}$	$\begin{aligned} & \mathrm{F}: \\ & 27 \end{aligned}$	$\begin{aligned} & \mathrm{M}: \\ & 22 \end{aligned}$	$\begin{aligned} & \text { F: } \\ & 22 \end{aligned}$	$\begin{aligned} & \mathrm{M}: \\ & 27 \end{aligned}$	$\begin{aligned} & \mathrm{F}: \\ & 27 \end{aligned}$	17	$\begin{aligned} & \mathrm{F}: \\ & 27 \end{aligned}$
Serum Chemistry														
ALT (UL)	41	30	39	30	38	28	37	45	47	30	63	37	88	37
AST (UL)	118	105	111	97	98	92	110	168	140	05	157	119	153	102
Organ Weights (\%)														
Absolute liver wi. g)	9.64	6.50	10.2	6.12	9.79	6.79	10.1	6.50	9.71	6.98	11.4*	7.23	11.2^{*}	7.34
Relative liver wL (\%BWW)	234	2.50	2.40	2.50	2.39	2.50	2.41	2.50	2.38	2.70	2.77°	2.73	3.60°	3.80
Absolute spleen wt (g)	0.74	0.54	0.70	0.51	0.81	0.56	0.81	0.53	0.90	0.56	0.90	0.57	0.86	0.69°
Rel. spleen wi (\%BW)	0.18	0.21	0.10	0.21	0.30	0.20	0.19	0.20	0.22	0.22	0.22	0.22	0.20	0.26°
Gross Pathology														
Liver -- mass	0110	010	0.10	010	$0: 10$	0110	0110	010	$0: 10$	0110	3.10	2111	110	211
Liver-raiseddark pale focusiasea	0.10	0110	$0: 10$	010	$0: 10$	010	0110	010	0110	$0: 10$	5110	411	410	211
Inj. Siee -- discoloration	010	0110	110	110	$0: 10$	010	0110	010	310	1110	0110	2110	110	210
Histopathology														
Liver:														
Hemormage hematoma	0110	010	0110	0.10	$0: 10$	$0 / 10$	010	010	010	010	5110	311	410	411
Necrosis, lepatocellular	010	010	010	010	$0: 10$	010	010	$0: 10$	010	0110	3.10	411	310	1/11
- Intam, chrou-active	0110	$0: 10$	0110	010	0110	010	010	0110	510	5110	810	711	710	711
Fibrosis	0,10	0110	010	010	$0: 10$	0110	$0: 10$	$0: 10$	0.10	0110	410	2111	2110	3111

9.6.7.7B Repeat-Dose Toricity: Pivotal Srudies (Continued)

Dose : Uidose (ing protein/dose) (A. 14500 Lot Number)	0 (0)		$\begin{aligned} & 500(0.29) \\ & (991-7) \end{aligned}$		$500(0.29)$ (NFF-0035)		$\begin{aligned} & 500(0.29) \\ & (7280) \end{aligned}$		$\begin{aligned} & 2240(0.13) \\ & (7280) \end{aligned}$		$5000(0.29)$ (AFF-0035)		$\begin{aligned} & 5000(0.29) \\ & (7280) \end{aligned}$	
Number of Animals ${ }^{\text {a }}$	$\begin{aligned} & \mathrm{M}: \\ & 18 \end{aligned}$	$\begin{aligned} & E: \\ & 18 \end{aligned}$	$\frac{11:}{27}$	$\begin{aligned} & \mathrm{F}: \\ & 27 \end{aligned}$	$\begin{aligned} & \text { M: } \\ & 27 \end{aligned}$	$\begin{aligned} & \mathrm{F}: \\ & 27 \end{aligned}$	$\begin{aligned} & \mathrm{M}: \\ & 27 \end{aligned}$	$\begin{aligned} & \mathrm{F}: \\ & 27 \end{aligned}$	$\begin{aligned} & \mathrm{M}: \\ & 22 \end{aligned}$	$\begin{aligned} & \mathrm{F}: \\ & 22 \end{aligned}$	$\begin{aligned} & \mathrm{M}: \\ & 27 \end{aligned}$	$\begin{aligned} & \mathrm{F}: \\ & 97 \end{aligned}$	$\begin{aligned} & \mathrm{M}: \\ & 97 \end{aligned}$	$\begin{aligned} & \mathrm{F}: \\ & 27 \end{aligned}$
Hypendasia, bile duct	0.10	010	010	010	0.10	0110	010	010	010	+10	810	311	610	611
Injection site: (Severity rauge $)^{\text {a }}$														
Edeuabemorrhage	$\begin{aligned} & 1 / 19 \\ & (1) \end{aligned}$	$\begin{aligned} & 3110 \\ & (1-2) \end{aligned}$	$\begin{aligned} & 710 \\ & (1.2) \end{aligned}$	$\begin{aligned} & 7 / 10 \\ & (1-2) \end{aligned}$	$\begin{aligned} & 1: 10 \\ & (\mathbf{3}) \end{aligned}$	510 (1)	$3,0$ (l)	$\begin{aligned} & \hline 110 \\ & \hline(1) \\ & \hline \end{aligned}$	$\begin{aligned} & 310 \\ & (1.3) \end{aligned}$	$\begin{aligned} & 610 \\ & (1-2) \end{aligned}$	0110	$\begin{aligned} & 711 \\ & (1-4) \end{aligned}$	$\begin{array}{\|c} 510 \\ (1-2) \end{array}$	$\begin{aligned} & 8.11 \\ & (1.3) \\ & \hline \end{aligned}$
Infanmation	$\begin{aligned} & 210 \\ & \text { (1) } \\ & \hline \end{aligned}$	$\begin{aligned} & 510 \\ & \text { (I) } \end{aligned}$	$\begin{aligned} & 5110 \\ & 11) \end{aligned}$	$\begin{aligned} & 910 \\ & \text { (I) } \\ & \hline \end{aligned}$	$\begin{aligned} & 370 \\ & \text { (1) } \end{aligned}$	$\begin{aligned} & 110 \\ & \text { (I) } \end{aligned}$	$\begin{array}{\|l} 210 \\ \text { (1) } \end{array}$	$\begin{aligned} & 310 \\ & (1-2) \end{aligned}$	$\begin{aligned} & 540 \\ & (1-3) \end{aligned}$	$\begin{aligned} & \hline 510 \\ & (1-2) \\ & \hline \end{aligned}$	0110	$\begin{aligned} & 711 \\ & (1-3) \end{aligned}$	$\begin{array}{\|l\|} \hline 210 \\ (1-3) \\ \hline \end{array}$	$\begin{aligned} & 9111 \\ & (1-4) \end{aligned}$
Fibrosis, paivascular	0110	010	410 (1)	010	010	010	010	$\begin{aligned} & 1110 \\ & (1) \end{aligned}$	$\begin{aligned} & 270 \\ & 2-3\rangle \end{aligned}$	$\begin{aligned} & \hline 210 \\ & (\mathrm{l}) \end{aligned}$	0110	$\begin{aligned} & 3: 1! \\ & (1-2) \\ & \hline \end{aligned}$	5100 (1)	$\begin{aligned} & 3: 1] \\ & (2-3) \end{aligned}$
Necrosis perivascular	010	010	010	$0: 10$	0.10	010	$0: 10$	010	010	010	010	$\begin{aligned} & 3 n 1 \\ & (1-3) \\ & \hline \end{aligned}$	010	$\begin{aligned} & 211 \\ & (2) \end{aligned}$
Median antibody titers														
Ani-AUX-1 (Day 7) (\% respone)	0 (6\%)	0 (0\%)	$\begin{aligned} & 4.6 \\ & (40 \%) \end{aligned}$	$\begin{aligned} & 19.1 \\ & (52 \%) \end{aligned}$	$\begin{aligned} & 74.7 \\ & (6.756) \end{aligned}$	$\begin{aligned} & 53.4 \\ & (13 \%) \end{aligned}$	$\begin{aligned} & 20.2 \\ & (20 \%) \end{aligned}$	$\begin{aligned} & 124 \\ & (40 \%) \end{aligned}$	$\begin{aligned} & 17.2 \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 48.0 \\ & (100 \% 6) \end{aligned}$	$\begin{aligned} & 110 \\ & 60 \% 6 \end{aligned}$	$\begin{aligned} & 460.5 \\ & (4076) \end{aligned}$	$\begin{aligned} & 190 \\ & (46 \%) \end{aligned}$	$\begin{aligned} & 24.6 \\ & (20 \%) \end{aligned}$
Anti-AUXI (Day 16) (\% response)	0 0,0\%)	00%	$\begin{aligned} & 15100 \\ & (93 \%) \end{aligned}$	$\begin{aligned} & 48600 \\ & (93 \%) \end{aligned}$	$\begin{aligned} & 9980 \\ & (10 \%) \end{aligned}$	$\begin{aligned} & 11700 \\ & 10068) \end{aligned}$	$\begin{aligned} & 11350 \\ & (3 \times 8) \end{aligned}$	$\begin{aligned} & 148010 \\ & (80 \%) \end{aligned}$	$\begin{aligned} & 13500 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 12800 \\ & 100 \%) \end{aligned}$	$\begin{aligned} & 13950 \\ & \left(100^{\circ} 0\right) \end{aligned}$	$\begin{aligned} & 13350 \\ & 100 \% \text {) } \end{aligned}$	$\begin{aligned} & 14700 \\ & (100 \% \%) \end{aligned}$	$\begin{aligned} & 14200 \\ & 100 \% \end{aligned}$
Anti-AUK-II (Day) (eresponse)	$010 \%)$	$0(03)$	0) $0 \% \%$	$\begin{aligned} & 4.6 \\ & (47 \%, 6) \end{aligned}$	$\begin{aligned} & \hline 11.9 \\ & (33 \%) \end{aligned}$	$\begin{aligned} & 43 \\ & (6 \%) \end{aligned}$	$\begin{aligned} & 22.6 \\ & (33 \%) \end{aligned}$	$\begin{aligned} & 4.6 \\ & (47 \%) \end{aligned}$	$\begin{aligned} & 18.0 \\ & (52 \%) \end{aligned}$	$\begin{aligned} & 250 \\ & \left(80^{\circ} \%\right) \end{aligned}$	$\begin{aligned} & 121.5 \\ & (73 \%) \end{aligned}$	$\begin{aligned} & 93.0 \\ & (73 \%) \end{aligned}$	$\begin{aligned} & 22.3 \\ & (99 \%) \end{aligned}$	$\begin{aligned} & 99.8 \\ & (50 \%) \end{aligned}$
Anil-ALX-I (Day 16) (\% responre)	0, 00%	O(0\%)	$\begin{aligned} & 3420 \\ & 33 \% \end{aligned}$	$\begin{aligned} & 2940 \\ & (87 \%) \end{aligned}$	$\begin{aligned} & 2430 \\ & \left(100^{\circ} \mathrm{i}\right) \end{aligned}$	$\begin{aligned} & 2825 \\ & (93 \% \end{aligned}$	$\begin{aligned} & 2430 \\ & 100 \% 9) \end{aligned}$	$\begin{aligned} & 2410 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 2000 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 6305 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 1625 \\ & (92 \%) \end{aligned}$	$\begin{aligned} & 1150 \\ & 100 \% \end{aligned}$	$\left\lvert\, \begin{aligned} & 533 \\ & (100 \% 6) \end{aligned}\right.$	$\begin{aligned} & 1042 \\ & (92 \%) \end{aligned}$
Postdose Evaluation: Sumber Evaluated	5	;	5	5	5	5	5	5	0	0	5	5	5	5

2.6.7.7B Repeat-Dose Toxicity: Pivotal Studies (Continued)

Dose : U/dose (ing protein'dose) (AA1500 Lot Tumber)	0 (0)		$\begin{aligned} & 500(0.29) \\ & (992-7) \end{aligned}$		300 (0.29) (AFF-0035)		$\begin{aligned} & 500(0.29) \\ & (7280) \end{aligned}$		$\begin{aligned} & 2240(0.13) \\ & (7280) \end{aligned}$		5000 (0.29) (NFF-0035)		5000 (0.99) (7280)	
Yunber of Animals ${ }^{2}$	$\begin{aligned} & \hline \mathrm{M}: \\ & 18 \end{aligned}$	$\begin{aligned} & \mathrm{F}: \\ & 18 \end{aligned}$	$\begin{aligned} & \hline \mathrm{M}: \\ & 27 \end{aligned}$	$\begin{aligned} & \mathrm{F}: \\ & 27 \end{aligned}$	$\begin{aligned} & \text { II: } \\ & 27 \end{aligned}$	$\begin{aligned} & \mathrm{F}: \\ & 27 \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{M}: \\ 27 \end{array}$	$\begin{aligned} & \mathrm{F}: \\ & 17 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{M}: \\ 22 \end{array}$	$\begin{aligned} & \mathrm{F}: \\ & 22 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M: } \\ 27 \end{array}$	$\begin{aligned} & \mathrm{F}: \\ & 37 \end{aligned}$	$\begin{array}{\|l} \hline \text { M: } \\ 27 \end{array}$	$\begin{aligned} & \mathrm{F}: \\ & 27 \end{aligned}$
Clinical Observations (frequencyiucidence)														
Inj. Site discoloration	0.0	000	00	000	132	31	0.0	11	00	0.0	222	251	1.1	$16 ?$
Gross Pathology														
Liver-mass	0.5	05	015	05	015	0.5	0.5	05	00	00	35	04	35	214
Liver-raised darkpale focusiarea	05	0.5	05	05	0.5	05	0.5	0.5	00	$0: 0$	45	24	35	314
Liver-malformation	0.5	05	015	015	015	015	05	05	00	$0: 0$	26	04	$1 / 5$	24
Liver - atheion	0.5	05	015	0.5	05	0.5	05	015	00	000	25	0.4		14
Inj. Site - discoloration	0.5	05	15	015	05	05	05	05	00	000	35	14	0.5	$1: 4$
Histopathology														
Liver:														
Hemortage hewatema	05	015	06	05	015	0.5	03	05	NA'	N:	45	24	3.5	$3 / 4$
Infanmation, chronic	0.5	05	05	05	015	0.5	0.5	015	Ns.	NA	45	$1 / 4$	3.5	4.4
Filrosis	0.5	05	0.5	05	015	05	0.5	05	VA ${ }^{9}$	N: ${ }^{\text {a }}$	55	24	35	4.4
Pigmeut, brownigrea	05	05	015	015	05	05	0.5	05	Nas	NA^{F}	55	24	35	$4: 4$
Mineralization	015	05	0.5	05	05	$0 \cdot 5$	05	05	$\mathrm{Na}{ }^{\circ}$	Na°	45	0.4	25	24
Hiperplasis, bile ducs	0.5	05	$0 \cdot 5$	05	015	05	05	015	NH°	NA^{8}	015	14	015	4.4
Injection site:														
Infaumation chronic	05	115	05	15	15	15	05	05	Xes	Na°	$1 / 5$	1.4	0.5	$1: 4$

2.6.7.7B Repeat-Dose Toxicity: Pivotal Studies (Continued)

Dose : Thilose (mg protein'dose) (A.tis 60 Lot Sunber)	0 (0)		$\begin{aligned} & 500(0.29) \\ & \left(991.7^{2}\right) \end{aligned}$		500 (0.29) (NFF-1035)		$\begin{aligned} & 500(0.29) \\ & (7280) \end{aligned}$		$\begin{aligned} & 2240(0.13) \\ & (7280) \end{aligned}$		$5000(0.29)$ (NFF-0035)		$\begin{aligned} & 5000(0.29) \\ & (7880) \end{aligned}$	
Sunber of Aumals ${ }^{\text {a }}$	$\begin{aligned} & \mathrm{M}: \\ & 18 \end{aligned}$	$\begin{aligned} & \mathrm{F}: \\ & 18 \end{aligned}$	$\begin{aligned} & \mathrm{II}: \\ & 17 \end{aligned}$	$\begin{aligned} & \mathrm{F}: \\ & 27 \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & 77 \end{aligned}$	$\begin{aligned} & \mathrm{F}: \\ & 17 \end{aligned}$	$\begin{aligned} & \mathrm{M}: \\ & 17 \end{aligned}$	$\begin{aligned} & F_{i} \\ & 27 \end{aligned}$	$\begin{aligned} & \mathrm{M}: \\ & 12 \end{aligned}$	$\begin{aligned} & \text { F: } \\ & 2 ? \end{aligned}$	$\begin{aligned} & \mathrm{Hi} \\ & 27 \end{aligned}$	$\begin{aligned} & F_{i} \\ & 27 \end{aligned}$	$\begin{aligned} & \mathrm{M}: \\ & 27 \end{aligned}$	$\begin{aligned} & \mathrm{F}: \\ & 27 \end{aligned}$
Fibrosis	05	315	0.5	35	16	315	015	05	NA	NA ${ }^{\text {e }}$	45	24	15	3.4
Median anitbody titers														
Auti-AUXI (Day 30) (\% reponse)	$\begin{aligned} & 0 \\ & (0 \%) \end{aligned}$	$\begin{aligned} & 0 \\ & (09) \end{aligned}$	$\begin{aligned} & 7500 \\ & (10090) \end{aligned}$	$\begin{aligned} & 301000 \\ & (100 \% 0) \end{aligned}$	33700 (10\%)	$\begin{array}{\|l\|} \hline 31150 \\ (10636) \end{array}$	$\begin{aligned} & 77200 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 35500 \\ & (1000 \mathrm{C}) \end{aligned}$	NA ${ }^{\text {c }}$	M ${ }^{\text {c }}$	$\begin{aligned} & 94200 \\ & (1003) \end{aligned}$	$\begin{aligned} & 6: 800 \\ & (\$ W: 0) \end{aligned}$	$\begin{aligned} & 303900 \\ & (000 \% \end{aligned}$	$\begin{aligned} & 27120 \\ & (10000) \end{aligned}$
Anti-AUX-II (Day 30) (\% respone:)	$0(0 \%)$	O(0\%)	$\begin{aligned} & 36200 \\ & (908 \%) \end{aligned}$	$\begin{aligned} & 60200 \\ & (100 \% 0) \end{aligned}$	$\begin{aligned} & 31700 \\ & 10059 \end{aligned}$	$\begin{aligned} & 60200 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 26000 \\ & (1000 \%) \end{aligned}$	$\begin{aligned} & 5750 \\ & (160 \%) \end{aligned}$	Na ${ }^{\text {c }}$	Na ${ }^{\text {c }}$	$\begin{aligned} & 1970 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 13150 \\ & \left(W_{6}^{6}\right) \end{aligned}$	$\begin{aligned} & 21900 \\ & (100 \%) \end{aligned}$	$\begin{aligned} & 43350 \\ & (6000) \end{aligned}$

${ }^{2} \mathrm{M}=$ males, $\mathrm{F}=$ fenales
*AUC was Lot calouated for AUX. Ine to limited exposire. Parameters for AUX-II were calcusted using the data combined for both zemes (since exposure was no different between the sexes, this ensured adeguate data points for calculation of $T \mathrm{R}$ parameers). When value is preceded by "e" the AUC represents all estinated posible $\mathrm{ALC}_{\mathrm{C}}^{\mathrm{C}} \mathrm{x}$

- Frequacy = number of study days on which the obseration was made: incidence $=$ total mumber in dose group aftected
${ }^{4}$ Severity sores; $1=$ minimal, $2=$ mild $3=$ moderate, $4=$ marked
- $\mathrm{NA}=\mathrm{Not}$ applicable (no recovery animals at this dose level)

Siguificanty $(\mathrm{p} \leq 0.0 \mathrm{0})$ difierem fiom 0 Uidose mean walue
BTC = early BTC process
RBC $=$ Red Blood Count
RDW $=$ red cell distibution width
$A C C=$ ara under the curse
2.6.7.7C Repeat-Dose Toxicity: Pirotal Studies

Report Title: Local Toricitr Stuly of AAt500 Injected into Dog Peuis				Test Article: AA4500 (NFF-0035)		
Species/Strain: Dog/Beagle (Males ouly)		Duration of Dosing: 61 days (3Xiweek q 4 weeks)			Study No. (b) (4)	
Initial Age: 10-14 months		Duration of Postdose: 30 days				
Dite of First Dose: 18Juns007		Method of Administration (b) (4) injection \square				
		VehicleFormulation: 3 in ICCCl_{2} in 0.9% $\mathrm{YaCl} / 40,000 \mathrm{U} / \mathrm{mL}$			GLP Compliance: GLP	
Special Features: Repeated injections into the tunica albuginea, $3 \mathrm{X}(q 481)$ per weel, mith three weeks between treatnent cycles, for three cycles (62 days total dosing)						
Yo Observed Adverse Effect Level: ~ 140 C/dose (0.3 mg proteinig/dose)						
-U/Dose (mg proteinikgidose)	0 (0)		-140 (0.8)		- $-300(2,5$)	$\sim 14301-1050(8.3 / 6.1)$
Number of Animals	M: 2		M1: 4		M: 4	M: 4
Xoteworthy Findings:						
Died or Premature Euthamasia		$0: 2$		4	$1 / 4$	04
Clinical Observations (frequencyincidence) ${ }^{\text {a }}$						
Discoloration buising (penisprepucestin)		311		12	263	$87 / 6$
Sweiling (penis)		00		1	311	4716
Massinoduleired spot on penis		00		0	00	373
Gross Pathology						
Discoloration, prepuce inguinal : tin		$0: 0$		4	04	14

2.6.7.7C Repeat-Dose Tosicity: Pivotal Studies (Continued)

-UDose (mg proteinkgidose)	0 (l)	-140(0.8)	$\checkmark 30(2.5)$	-14301-1050 (8.36.1)
Number of Animals	M:	M: 4	M: 4	M: 4
Discoloration enlargement. inguinal lymph node	02	$1 / 4$	0.4	24
Histopathology				
Injection site (severity range) ${ }^{\text {b }}$				
Hemorthage, adreutitial	$22(+1-2)$	$2 / 4$ (+1)	1.4 (+1)	$3.4(+1-+2)$
Neovascular proliferation	$212(-1)$	$1.4(+2)$	$24(-1-+2)$	0.4
Intlammation	04	$24(+2)$	$1 / 4(+2+3)$	0.4
Median antibody titers (\% response)				
Anti-ALX-I (Day 62)	0 (33\%)	156250 (100\%)	468750 (100\%)	718250 (100\%)
Anti ALX-II (Day 62)	0 (33\%)	781250 (100\%)	$7182 \% 0$ (100\%)	718250 (100\%)
Postdose Evaluation: Number Eraluated	1	2	2	2
Histopathology:				
Hemornage, adventitial	0.1	$12(+1)$	012	027
Neovascular proliferation	01	$112(+1)$	122 (+1)	$12(+1)$
Median antibody titers (\% response)				
Anti-AUX.I (Day 90)	0 (0\%)	468250 (100\%)	136250 (100\%)	718250 (100\%)
Anti AUX-11 (Day 90)	0 (0\%)	781250 (100\%)	718250 (100\%)	718250 (100\%)

[^2]
OVERALL CONCLUSIONS AND RECOMMENDATIONS

Conclusions: AA4500 is a mixture of collagenase from bacterial sources. AA4500 showed collagenolytic effect in the in vitro pharmacodynamic studies in human tissues and nonclinical toxicity studies. These effects were related to the injection site inflammation and hemorrhage, and liver toxicity when injected intravenously. AA4500 also showed local inflammatory effect in dogs. Reproductive data did not show any effect on fertility and early embryonic development. Pregnancy category C was recommended for Xiaflex. Bioavailability and exposure to AA4500 in the systemic circulation was minimal. However, antibodies to AUX-1 and AUX-2 were detected in nonclinical studies. The role of the antibodies is not known. However, non-clinical data in the presence of the antibody did not show any toxicity concerns.

Unresolved toxicology issues (if any): Nil
Recommendations: The reviewer recommends approval of Xiaflex for the treatment of Dupuytren's disease on the basis of the non-clinical data and recommendations for the package insert.

Suggested labeling: See labeling recommendations in the executive summary
Signatures (optional):
Reviewer Signature \qquad
Supervisor Signature \qquad Concurrence Yes \qquad No \qquad

APPENDIX/ATTACHMENTS: NIL

[^0]:

 Ef1－bat worl lits．

[^1]: ${ }^{3}$ Dug Product mas used for all ioxicology stadies
 ${ }^{*} \mathrm{ND}$ =1tot detemined
 (b) (4)

[^2]: ${ }^{3}$ Frequency $=$ number of sudy days on which observation made; incidence $=$ mububer of auimals in dose ęoup affecied
 ${ }^{3}$ Numerical severity scores (scale of $1-4$) were used in this study. Score range indicres sererity rabge both betvern anmals and across the length of the examined tissue within each ammal.

