CENTER FOR DRUG EVALUATION AND RESEARCH

APPLICATION NUMBER:

208437Orig1s000

STATISTICAL REVIEW(S)

U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research Office of Translational Sciences Office of Biostatistics

STATISTICAL REVIEW AND EVALUATION

CLINICAL STUDIES

NDA/BLA #: NDA 208-437

Drug Name: Lonhala Magnair (SUN-101; Glycopyrrolate Inhalation Solution administered

through eFlow nebulizer) 25 mcg twice daily or 50 mcg twice daily

Indication(s): Patients with chronic obstructive pulmonary disease (COPD) including chronic

bronchitis and/or emphysema

Applicant: Sunovion Respiratory Development Inc.

Date(s): Stamp Date: 7/29/2016

PDUFA date: 5/29/2017

Review Priority: Standard

Biometrics Division: Division of Biometrics II

Statistical Reviewer: Mingyu Xi, Ph.D.

Concurring Reviewers: Shanti Gomatam, Ph.D. (Acting Team Lead, DB II)

Medical Division: Division of Pulmonary, Allergy, and Rheumatology Products

Clinical Team: Erika Torjusen, M.D., Banu Karimi-Shah, M.D.

Project Manager: Sadaf Nabavian

Keywords: double-blind, longitudinal data analysis, mixed models, repeated measure ANCOVA, sensitivity analyses & subgroup analyses

Table of Contents

1 EXECUTIVE SUMMARY	6
2 INTRODUCTION	7
2.1 Overview	7
2.1.1 Background	
2.1.2 History of Drug Development	
2.1.3 Specific Studies Reviewed	
2.1.4 Statistical Issues	
2.2 Data Sources	9
3 STATISTICAL EVALUATION	9
3.1 Data and Analysis Quality	9
3.2 EVALUATION OF EFFICACY	
3.2.1 Study Design and Endpoints	9
3.2.2 Statistical Methodologies	
3.2.3 Patient Disposition, Demographic and Baseline Characteristics	
3.2.4 Results and Conclusions	
3.3 EVALUATION OF SAFETY	23
4 FINDINGS IN SPECIAL/SUBGROUP POPULATIONS	23
4.1 SEX, RACE, AGE, AND GEOGRAPHIC REGION	34
4.2 Baseline Disease Characteristics	35
5 SUMMARY AND CONCLUSIONS	36
5.1 Statistical Issues	36
5.1.1 Missing Data and Sensitivity Analysis	36
5.1.2 Subgroup Analysis	
5.2 COLLECTIVE EVIDENCE	
5.3 CONCLUSIONS AND RECOMMENDATIONS	42
APPENDICES	44

LIST OF TABLES

Table 1: List of Key Correspondences and Meeting Minutes	8
Table 2: List of Key Phase 2 and Phase 3 Studies in the Clinical Development Program	
Table 3: Primary and Secondary Endpoints of Studies 301 and 302	11
Table 4: Patient Disposition - Study 301	15
Table 5: Patient Disposition – Study 302	16
Table 6: Patient Demographic and Baseline Characteristics – Study 301	16
Table 7: Patient Demographic and Baseline Characteristics - Study 302	17
Table 8: Primary Efficacy Analysis (Study 301 and Study 302): Mean Change from Baseline	of
FEV ₁ at Week 12 (ITT Population: All Collected Data)	19
Table 9: Substudy of Study 301: Standardized Mean Change from Baseline in FEV ₁ AUC ₍₀₋₁₂	2hrs)
at Week 12 (ITT Population: All Collected Data)	
Table 10: Secondary Efficacy Analysis (Study 301 and Study 302): Mean Change from Base	
of FVC at Week 12 (ITT Population: All Collected Data)	19
Table 11: Secondary Efficacy Analysis (Study 301 and Study 302): Mean Change from Base	line
of SGRQ Total Score at Week 12 (ITT Population: All Collected Data)	20
Table 12: Secondary Efficacy Analysis (Study 301 and Study 302): Mean Change from Base	line
of Rescue Medication Puffs per Day Over the Double-blind Period (ITT Population: All	
Collected Data)	20
Table 13: Primary Efficacy Analysis of Study 04: Mean Change from Baseline of FEV ₁ at Da	ay
28	21
Table 14: Primary Efficacy Analysis of Study 201: Mean Change from Baseline of FEV1 at I	D ay
7	
Table 15: Study 301: Subgroup Analyses on Primary Endpoint of Change from Baseline of F	EV_1
at Week 12	24
Table 16: Substudy of Study 301: Subgroup Analyses on Secondary Endpoint of Change from	
Baseline of FEV ₁ AUC ₍₀₋₁₂₎ at Week 12	
Table 17: Study 301: Subgroup Analyses on Secondary Endpoint of Change from Baseline of	f
Trough FVC at Week 12	
Table 18: Study 302: Subgroup Analyses on Primary Endpoint of Change from Baseline of F	EV_1
	30
Table 19: Study 302: Subgroup Analyses on Secondary Endpoint of Change from Baseline of	
Trough FVC at Week 12	
Table 20: Missing Data in Studies SUN101-301 and SUN101-302	
Table 21: Tipping Point Analysis Results – Study 301 25 mcg arm	
Table 22: Tipping Point Analysis Results – Study 301 50 mcg arm	
Table 23: Tipping Point Analysis Results – Study 302 25 mcg arm	
Table 24: Tipping Point Analysis Results – Study 302 50 mcg arm	
Table 25: Results of SGRQ Responder Analysis of Study 301	
Table 26: Results of SGRQ Responder Analysis of Study 302	
Table 27: Summary of the Key Efficacy Test Results	
Table 28: Study 301: Subgroup Analyses on Secondary Endpoint of Change from Baseline of	
SGRQ Total Score at week 12	44

Table 29: Study 301: Subgroup Analyses on Secondary Endpoint of Change from Baseline of	•
Rescue Medication Puffs per Day Over the Double-blind Period	44
Table 30: Study 302: Subgroup Analyses on Secondary Endpoint of Change from Baseline of	•
SGRQ Total Score at Week 12	45
Table 31: Study 302: Subgroup Analyses on Secondary Endpoint of Change from Baseline of	•
Rescue Medication Puffs per Day Over the Double-blind Period	45

LIST OF FIGURES

1 EXECUTIVE SUMMARY

This review considers the inhaled, nebulized long-acting muscarinic antagonist (LAMA) glycopyrrolate solution (SUN-101) administered using a portable PARI eFlow closed system (CS) device for maintenance treatment of airflow obstruction in patients with chronic obstructive pulmonary disease (COPD), including chronic bronchitis and/or emphysema. We focus in this review on two phase 3 studies and two phase 2 studies. The two phase 3 studies are multicenter, randomized, double-blind, parallel-group, placebo-controlled clinical trials designed to evaluate the efficacy of SUN-101 25 mcg and/or 50 mcg twice daily (BID) with respect to pulmonary function at week 12. These studies included patients with very severe disease, patients remaining on background long-acting beta2 agonists (LABA), and patients with a high-risk for cardiovascular (CV) disease. The two phase 2 studies are placebo-controlled dose finding studies with durations of 28 days and 7 days respectively.

There was statistical evidence of benefit for SUN-101 25 mcg and50 mcg BID with respect to the primary endpoint, change from baseline in trough FEV₁, in two independent phase 3 clinical trials. Treatment with SUN-101 25 mcg BID provided 0.10 L (95% confidence interval [CI]: 0.06, 0.13) and 0.08 L (95% CI: 0.04, 0.12) mean improvements over placebo in trough FEV₁ at week 12 in these two trials. Treatment with SUN-101 50 mcg BID provided 0.10 L (95% CI: 0.07, 0.14) and 0.07 L (95% CI: 0.04, 0.11) mean improvements over placebo in trough FEV₁ at week 12 in these trials, respectively. Estimated treatment effects for SUN-101 were largely consistent across subgroups of interest, including sex, age and race.

There was also statistical evidence of benefit for SUN-101 25 mcg BID or 50 mcg BID with respect to the secondary endpoint, change from baseline in trough FVC in both independent phase 3 clinical trials.

Evaluation of secondary endpoints of change from baseline of St. George's Respiratory Questionnaire (SGRQ) score compare to placebo and change from baseline in number of daily rescue medications used compared to placebo in phase 3 studies did not show consistent efficacy results for all dose levels in all studies.

Two independent phase 2 studies have also shown the benefit of SUN-101 25 mcg or 50 mcg BID with respect to the primary endpoint, change from baseline of FEV₁ at treatment day 28 and day 7 respectively.

Overall, the results of the Phase 2 and Phase 3 clinical development program provide evidence of the efficacy of SUN-101 25 mcg BID and 50 mcg BID in terms of primary endpoints. However, there is no statistically significant benefit for SUN-101 over placebo in terms of SGRQ.

2 INTRODUCTION

2.1 Overview

2.1.1 Background

Chronic obstructive pulmonary disease (COPD) is a common, progressive disease. It can cause coughing that produces large amounts of mucus, wheezing, shortness of breath, chest tightness, and other symptoms. It increases risks of disability and death. Most people who have COPD are smokers or used to be smokers. Patients with COPD may have chronic bronchitis and/or emphysema. Chronic bronchitis is the inflammation of the lining of bronchial tubes that leads to increased mucus formation and airflow obstruction. In emphysema, air is being trapped in the air sacs (alveoli) at the end of the smallest airways (bronchioles), causing air sacs to expand and rupture.

Medications used to treat patients with COPD include bronchodilators and steroids. Bronchodilators, usually administered through an inhaler, relax muscles around the airways in order to improve airflow and relieve symptoms. There are two major types of bronchodilators: $\beta 2$ agonists, which act on $\beta 2$ receptors, and muscarinic antagonists, which inhibit the action of cholinergic nerves. Bronchodilators may be either short-acting or long-acting, and many have been approved by FDA for treatment of airflow obstruction in COPD. Approved bronchodilators include but are not limited to the short-acting $\beta 2$ agonist salbutamol, short-acting muscarinic antagonist ipratropium, long-acting $\beta 2$ agonists (LABAs) salmeterol and formoterol, and long-acting muscarinic antagonists (LAMAs) tiotropium and aclidinium. FDA has also approved inhalers that combine a LABA and inhaled corticosteroid (ICS), such as Advair (salmeterol and fluticasone propionate), Symbicort (formoterol and budesonide), and Breo (vilanterol and fluticasone furoate).

This review considers the inhaled muscarinic antagonist Glycopyrrolate (SUN-101) for long-term, twice-daily, maintenance treatment of airflow obstruction in patients with COPD. Two doses of SUN-101, 25 mcg twice daily and 50 mcg twice daily were evaluated in the phase 3 clinical development programs; 25 mcg is proposed for approval. We often omit the mcg unit when referring to the dose of SUN-101 in this review.

2.1.2 History of Drug Development

During both IND 110663 development and the pre-NDA meeting, statistical advice regarding the design and analysis of the phase 3 trials was given to the applicant. Advice and comments from the Division were delivered through one end-of-phase 2 meeting, Protocol/SAP review written responses, and a pre-NDA meeting. Table 2 summarizes these interactions.

Table 1: List of Key Correspondences and Meeting Minutes

Document	Meeting Date/ Document Date	Торіс	Reference Number
Type B EOP2	17 Sept 2013/	Dose selection, inclusion criteria, study design	IND 110663
Meeting Minutes	17 Oct 2013		
iPSP (Seq.0038) Accepted PSP (Seq.0043)	6 Feb 2014	Agreement of initial Pediatric Study Plan	IND 110663
Type C	15 Sept 2014/	Discussion of estimand, missing data handling,	IND 110663
Teleconference	8 Oct 2014	retrieved drop outs, multiplicity adjustments,	
Minutes		sensitivity analysis, etc.	
Written Response	9 Jun 2015	ISE, ISS, SAP for SUN101-301 and SUN101-302, subgroup analyses by race and region	IND 110663
Conditional	May 27, 2016	Request for Proprietary Name Review: Lonhala	IND 110663
Acceptance Letter		Magnair	
Type B pre-NDA	12 Apr 2016/	Discussion of studies completed to support the	IND 110663
Meeting Minutes	11 May 2016	registration of NDA	

Several topics have been discussed during the development of the program:

- 1. The agency emphasized its interest of the ITT estimand, requests the applicant to continue collecting data after the patients discontinue treatment and to include these data in the analyses.
- 2. Sensitivity analysis comments were given to the applicant regarding cumulative responder analysis and responder/non-responder analysis.

2.1.3 Specific Studies Reviewed

The Applicant has submitted the results of three phase 2 studies (EP-101-03, EP-101-04, and SUN101-201) and three phase 3 studies (SUN101-301, SUN101-302, and SUN101-303). SUN 101-303 was a long-term safety study whose safety findings were consistent with the safety findings of the two phase 3 trials per the clinical reviewer's (Dr. E. Torjusen) review.

This review focuses on two placebo-controlled phase 3 clinical trials (SUN101-301, and SUN101-302), two placebo-controlled phase 2 studies (EP-101-04, and SUN101-201).

Studies SUN101-301 and SUN101-302 are identical in designs (with the exception that SUN101-301 included a substudy to define the FEV₁ AUC over a 12-hour period). Both studies had the same entry criteria, and enrolled patients from the US only. Both studies included patients with severe disease, patients remaining on background LABA use, and patients with high-risk of CV disease.

Studies EP-101-04 and SUN101-201 are the primary studies in the phase 2 program, they informed the selection of SUN-101 25 mcg and 50 mcg BID as the doses to be evaluated in the

phase 3 clinical studies. In our review, we will focus on the efficacy results in terms of the primary endpoint in these studies.

In this review, we will omit suffix SUN101 and EP-101 whenever referring the studies, retaining instead only the numerical references 04, 201, 301, and 302 when referring to these studies.

Table 2: List of Key Phase 2 and Phase 3 Studies in the Clinical Development Program

Study	Treatment Period	# of Randomized Subjects per Arm	Study Objectives
EP-101-04	28 days	PBO/12.5/25/50/100	Dose-ranging and
		57/55/54/57/59	safety and efficacy
SUN101-201	7 days (6-way cross-	PBO/3/6.25/12.5/50/Aclidinium 400	Dose-ranging and
	over with 5-7 day	92/91/92/90/92/94	safety and efficacy, PK
	washout)		
SUN101-301	12 weeks	PBO/25/50	Safety and efficacy
		218/217/218	
SUN101-302	12 weeks	PBO/25/50	Safety and efficacy
		212/214/214	

2.1.4 Statistical Issues

There were no statistical issues found in this application.

2.2 Data Sources

Data were submitted by the applicant to the CDER electronic data room in SAS transport format. Protocols, correspondence, data listings, and study reports were accessed under the network path \CDSESUB1\evsprod\NDA208437\208437.enx

3 STATISTICAL EVALUATION

3.1 Data and Analysis Quality

The submitted datasets were of acceptable quality and were adequately documented. We were able to reproduce the results of all key primary and secondary analyses.

3.2 Evaluation of Efficacy

3.2.1 Study Design and Endpoints

3.2.1.1 Studies SUN-101-301 and SUN-101-302

Two pivotal studies 301 and 302 were replicate phase 3, randomized, double-blind, placebo-controlled, parallel-group, multicenter studies of 12-week treatment duration to compare the efficacy and safety of SUN-101 to placebo in patients with COPD, with the exception that some

of the patients in study 301 were randomized in a substudy. Figure 1 presents the design scheme for studies 301 and 302

Figure 1: Design Scheme for Studies 301 and 302

Screen		Follow- up ^a				
Visit 1 Up to 3 weeks ^b	Visit 2 Week 0 Baseline/	Visit 3 Week 2	Visit 4 Week 4	Visit 5 Week 8	Visit 6 Week 12 End of Study	Telephone Contact
	Randomization Serial Spirometry ^c				Serial Spirometry ^c	

Note: Visit 6 (Week 12) is the end of treatment. All subjects should be followed for the full 12 weeks of the treatment period, regardless of discontinuation of study treatment. However, subjects who must discontinue the study prior to Visit 6 (Week 12) will undergo End of Study procedures and assessments at the time of study discontinuation.

Source: Figure 1 in Applicant's Study 301 and 302 protocols.

Subjects who qualified for the studies were randomized in a double-blind manner in a 1:1:1 ratio to the three treatment arms:

- SUN-101 25 mcg BID
- SUN-101 50 mcg BID
- PBO BID

Randomization in these two studies was stratified by two characteristics:

- Baseline cardiovascular risk (high risk vs low risk)
- Background long-acting beta2 agonist (LABA) use (yes/no) during the study

The patients in the trials are male or female aged greater than or equal to 40 years, diagnosed with COPD according to the GOLD 2014 guidelines, and whose post-bronchodilator FEV₁ was less than 80% of predicted normal and greater than 0.7 L during screen, and whose post-bronchodilator FEV₁/FVC ratio was less than 0.70 during screening.

LABAs, inhaled corticosteroid (ICS), fixed dose combination of LABA and ICS use were permitted during the study. But the number of such patients was capped at 30% of randomized

^a All subjects will be contacted by telephone 5-7 days after the last study visit (ie, Visit 6 or End of Study visit) for a safety assessment unless seen in the clinic in the same time frame.

b Visit 1 may occur over more than one clinic visit and may be up to 3 weeks, but must be a minimum of 1 week prior to randomization (Visit 2) to ensure that at least 1 week of rescue medication use and COPD symptoms are recorded prior to randomization.

^c Serial spirometry will be performed in the Substudy Population at 5, 15, 30 and 60 minutes, and at 2, 3, 6, and 12 hours after the morning dose, and at 23 hours and 15 minutes and 23 hours and 45 minutes after the previous morning dose. Serial spirometry at Visit 6 (Week 12) is to be performed only in subjects who complete the 12 weeks of study treatment.

patients. All the other patients were required to withhold their LABA or LABA/ICS treatment for 48 hours prior to spirometry assessments during the whole study.

The treatment duration was 12 weeks. Some of the patients in study 301 were randomized to participate in a substudy. These patients were required to take additional spirometry measurements at visit 2 and visit 6.

Patients were to receive a follow-up call 5-7 days after the last visit. The rescue medication used in the studies was Albuterol.

Table 3 lists the key endpoints used in these two studies.

Table 3: Primary and Secondary Endpoints of Studies 301 and 302

	Study 301	Study 302
Primary Endpoint	Change from baseline in trough FEV1 at	Change from baseline in trough FEV1 at
	week 12	week 12
	Standardized change from baseline at week	
	12 in FEV1 AUC0-12 in the substudy	
	population	
	Change from baseline in trough FVC at week	Change from baseline in trough FVC at week
Key Secondary	12	12
Endpoints	Change from baseline in health status	Change from baseline in health status
	measured by SGRQ* at week 12	measured by SGRQ* at week 12
	Change in number of rescue medication	Change in number of rescue medication puffs
	puffs per day over the 12-week period	per day over the 12-week period

^{*:} Saint George's Respiratory Questionnaires

3.2.1.2 Study 04

Study 04 is a phase 2b, randomized, double-blind, placebo-controlled, dose-ranging study of the efficacy and safety of SUN-101 in subjects with moderate-to-severe COPD.

Subjects who qualified for the studies were randomized in a double-blind manner in a 1:1:1:1:1 ratio to the five treatment arms:

- SUN-101 12.5 mcg BID
- SUN-101 25 mcg BID
- SUN-101 50 mcg BID
- SUN-101 100 mcg BID
- PBO BID

Randomization was stratified by two characteristics:

- Inhaled corticosteroid (ICS) use (current ICS users versus non-ICS users)
- Extended spirometry assessments (yes/no)

The treatment duration for this study is 28 days.

The primary efficacy endpoint for this study is change from baseline in trough FEV₁ on day 28.

3.2.1.3 Study 201

Study 201 is a phase 2, dose-ranging study of SUN-101 in subjects with moderate to severe COPD. It was a randomized, 6-way crossover study. The study was double-blind for SUN-101 and placebo and open-label for aclidinium bromide (hereafter also referred to as aclidinium).

Each subject was to receive each of the following 6 treatments in a random order, BID:

- SUN-101 placebo
- SUN-101 3 mcg
- SUN-101 6.25 mcg
- SUN-101 12.5 mcg
- SUN-101 50 mcg
- Aclidinium 400 mcg

SUN-101 and placebo were administered using eFlow CS nebulizer, Aclidinium was given using the PRESSAIR inhaler device.

For each subject, there is a 5-7 days wash out period between two treatment periods.

The primary efficacy endpoint for this study is change from baseline in trough FEV_1 on treatment visit day 7.

3.2.2 Statistical Methodologies

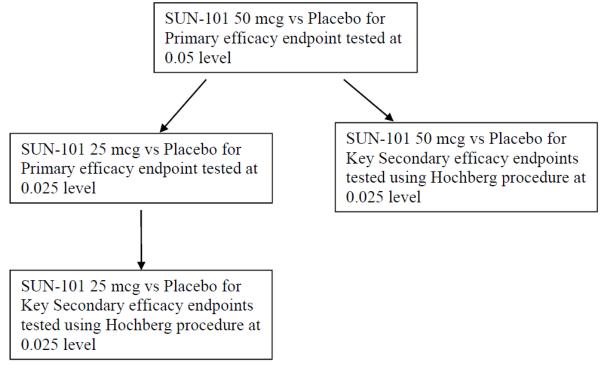
3.2.2.1 Studies 301 and 302

The efficacy analyses were conducted on the ITT population, using all collected data regardless of whether the subject remained on randomized treatment or not, and regardless of potential effects of other therapies.

The primary efficacy endpoint was change from baseline in trough FEV₁ at week 12. It was analyzed by means of mixed model repeated measures (MMRM). The response variable in the model is change from baseline in trough FEV₁, the model included factors of treatment group, CV risk (high/low), background LABA use (yes/no), visit week, and visit week by treatment group interaction, and baseline FEV₁ as covariates. For tests of fixed effects, an unstructured (UN) covariance matrix and the Kenward and Roger correction to the degrees of freedom was used.

The primary interest of these studies was the comparisons of the changes from baseline in trough FEV₁ at week 12 between each SUN-101 dose and placebo.

Statistical significance was evaluated using a two-sided hypothesis test at the 5% significance level.


Analyses of secondary efficacy endpoint of standardized FEV_1 area under the change from baseline curves from 0-12 hours ($AUC_{(0-12)}$) and endpoint of change from baseline trough FVC use the same analysis methods as for the primary endpoint.

Analyses of secondary endpoint of change from baseline of SGRQ total score at Week 12/EOS, is based on the ITT population, is via an ANCOVA, with change from baseline in SGRQ total score as the response variable including factors for treatment group, cardiovascular risk (high/low), background LABA use (yes/no), and baseline SGRQ as model covariates.

Analyses of the secondary endpoint of change from baseline rescue medication puffs per day is based on the ITT population and is carried out by means of an ANCOVA, with change from baseline in the average number of rescue medication puffs per day as the response variable and with factors for treatment group, cardiovascular risk (high/low), background LABA use (yes/no), and baseline rescue medication puffs per day included as model covariates.

To control the family-wise Type I error rate, a tree-structured gatekeeping procedure was used for comparisons of the primary efficacy endpoint and the key secondary efficacy endpoints. Figure 2 illustrates this testing procedure.

Figure 2: Applicant's Testing Procedure to Adjust for Multiplicity

Source: Figure 1 of Applicant's Draft SAP.

3.2.2.2 Study 04

The primary efficacy endpoint was change from baseline in trough FEV_1 at day 28, it was analyzed using the ITT population by means of a mixed model repeated measures analysis (MMRM), with change from baseline in trough FEV_1 as the response variable and with factors for treatment group, ICS use, subject participation in extended spirometry assessments (yes/no), visit day, and visit day by treatment group interaction, and baseline FEV_1 included as covariates. An unstructured covariance model was used to model intra-subject correlation in conjunction with treating subject as a random effect

3.2.2.3 Study 201

The primary efficacy endpoint was change from baseline in trough FEV_1 at day 7; it was analyzed by means of an analysis of covariance (ANCOVA) model, with change from baseline in trough FEV_1 as the response variable and with factors for treatment group, period, treatment sequence, and first-order carry-over as fixed effects, and baseline FEV_1 as a covariate. Subject nested within sequence was included as a random effect. If the first-order carry-over was not significant at the 0.10 level, it was to be removed from the model.

3.2.3 Patient Disposition, Demographic and Baseline Characteristics

3.2.3.1 Patient Disposition

In this application, among the two phase 3 studies, the main reasons for study discontinuation were withdrawal by subject and loss to follow-up. Among the three treatment arms, placebo arm had the largest study discontinuation rate. The patient dispositions for these studies are summarized in Table 4 and Table 5.

In study 301, there were about 11% to 19% patients discontinuing the treatment, with a higher rate of discontinuation in the placebo arm. However, patients discontinuing the treatment were followed and spirometry measurements continued to be taken, so at the end there are about 7% to 12% patients discontinue the study.

In study 302, there were about 11% to 17% patients discontinuing the treatment, with a higher rate in the placebo arm. However, patients discontinuing the treatment still being followed and spirometry measurements continue being taken, so at the end there are about 7% to 11% patients discontinue the study.

Table 4: Patient Disposition - Study 301

	PBO n (%)	SUN-101 25 mcg BID n (%)	SUN-101 50 mcg BID n (%)	Total n (%)
Screened		II (70)	n (70)	974
Randomized				653
ITT	218	217	218	653
Safety	218 (100)	217 (100)	218 (100)	653 (100)
Substudy	42 (19.3)	49 (22.6)	62 (28.4)	153 (23.4)
Completed On-	176 (80.7)	194 (89.4)	191 (87.6)	561 (85.9)
Study Treatment				
Period				
Completed Study	191 (87.6)	203 (93.5)	201 (92.2)	595 (91.1)
Participation				
Withdrawal by	22 (10.1)	11 (5.1)	11 (5.0)	44 (6.7)
Subject				
Lost to Follow-up	3 (1.4)	2 (0.9)	3 (1.4)	8 (1.2)
Death	0 (0)	0 (0)	1	1 (0.2)
Other	2 (0.9)	1 (0.5)	2 (0.9)	5 (0.8)

Table 5: Patient Disposition – Study 302

	PBO	SUN-101 25 mcg BID	SUN-101 50 mcg BID	Total
Screened				1082
Randomized	213	214	214	641
ITT	212	214	214	640
Safety	212	214	214	640
Completed On- Study Treatment Period	177 (83.5)	183 (85.5)	190 (88.8)	550 (85.9)
Completed Study Participation	188 (88.7)	193 (90.2)	199 (93.0)	580 (90.6)
Withdrawal by Subject	15 (7.1)	9 (4.2)	8 (3.7)	32 (5)
Lost to Follow-up	2 (0.9)	6 (2.8)	3 (1.4)	11 (1.7)
Other	7 (3.3)	6 (2.8)	4 (1.9)	17 (2.7)

3.2.3.2 Patient Demographic and Baseline Characteristics

Demographics and baseline characteristics data for the ITT population are summarized in Table 6 and Table 7. As expected, due to the random treatment assignment, the treatment arms are fairly balanced with respect to each factors considered.

Table 6: Patient Demographic and Baseline Characteristics – Study 301

		PBO	SUN-101 25	SUN-101 50	Total
			mcg BID	mcg BID	
Sex		218	217	218	653
	F	107 (49.1)	99 (45.6)	98 (45.0)	304 (46.6)
	M	111 (50.9)	118 (54.4)	120 (55)	349 (53.4)
Age (yrs)		218	217	218	653
	< 65 years	109 (50.0)	122 (56.2)	135 (61.9)	366 (56.0)
	65 – 74 years	93 (42.7)	73 (33.6)	66 (30.3)	232 (35.5)
	>= 75 years	16 (7.3)	22 (10.1)	17 (7.8)	55 (8.4)
Race		218	217	218	653
	White	196 (89.9)	200 (92.1)	198 (90.8)	594 (90.9)
	Black or African American	20 (9.1)	15 (6.9)	18 (8.2)	53 (8.1)
	Asian	1 (0.5)	1 (0.5)	0 (0)	2 (0.3)
	American Indian or Alaska Native	1 (0.5)	1 (0.5)	1 (0.5)	3 (0.4)
	Native Hawaiian or Other Pacific Islander	0 (0)	0 (0)	1 (0.5)	1 (0.2)
Ethnic Group		218	217	218	653
	Hispanic or Latino	6 (2.8)	7 (3.2)	6 (2.8)	19 (2.9)

CV Risk		218	217	218	653
	Low	76 (34.9)	78 (35.9)	77 (35.3)	231 (35.4)
	High	142 (65.1)	139 (64.1)	141 (64.7)	422 (64.6)
Background		218	217	218	653
LABA Use					
	Yes	63 (28.9)	66 (30.4)	68 (31.2)	197 (30.2)
	No	155 (71.1)	151 (69.6)	150 (68.8)	456 (69.8)
ICS Use		218	217	218	653
	Yes	60 (27.5)	62 (28.6)	63 (28.9)	185 (28.3)
	No	158 (72.5)	155 (71.4)	155 (71.1)	468 (71.7)

Table 7: Patient Demographic and Baseline Characteristics - Study 302

		PBO	SUN-101 25	SUN-101 50	Total
			mcg BID	mcg BID	1 2 4 4 4 4
Sex		212	214	214	640
	F	88 (41.5)	90 (42.1)	87 (40.7)	265 (41.4)
	M	124 (58.5)	124 (57.9)	127 (59.3)	375 (58.6)
Age		212	214	214	640
(years)					
	< 65 years	111 (52.4)	109 (50.9)	119 (55.6)	339 (53.0)
	65 – 74 years	76 (35.8)	80 (37.4)	74 (34.6)	230 (35.9)
	>= 75 years	25 (11.8)	25 (11.7)	21 (9.8)	71 (11.1)
Race		212	214	214	640
	White	192 (90.6)	185 (86.4)	188 (87.9)	565 (88.3)
	Black or African	19 (9.0)	27 (12.6)	26 (12.1)	72 (11.3)
	American				
	Asian	0 (0)	1 (0.5)	0 (0)	1 (0.2)
	American Indian or	1 (0.5)	0 (0)	0 (0)	1 (0.2)
	Alaska Native				
	Native Hawaiian or	0 (0)	1 (0.5)	0 (0)	1 (0.2)
	Other Pacific Islander				
Ethnic		212	214	214	640
Group					
	Hispanic or Latino	3 (1.4)	2 (0.9)	3 (1.4)	8 (1.3)
CV Risk		212	214	214	640
	Low	76 (35.8)	78 (36.4)	80 (37.4)	234 (36.6)
	High	136 (64.2)	136 (63.6)	134 (62.6)	406 (63.4)
Background LABA Use		212	214	214	640
LADA USE	Vac	60 (22.5)	60 (22.2)	67 (21.2)	205 (22)
	Yes	69 (32.5)	69 (32.2)	67 (31.3)	205 (32)
ICC II	No	143 (67.5)	145 (67.8)	147 (68.7)	435 (68)
ICS Use	V	212	214	214	640
	Yes	67 (31.6)	64 (29.9)	59 (27.6)	190 (29.7)
	No	145 (68.4)	150 (70.1)	155 (72.4)	450 (70.3)

3.2.4 Results and Conclusions

Primary and secondary endpoints and analysis methods were introduced in section 3.2.2.

For the two pivotal studies 301 and 302, both the SUN-101 25 mcg and 50 mcg BID doses produced statistically significant improvements in trough FEV_1 at Week 12. However, there was no separation of doses. For the key secondary endpoint of change from baseline of FVC at Week 12, both studies showed statistically significant improvement over the placebo. In terms of secondary endpoints of change from baseline of SGRQ total score and change from baseline of rescue medication puffs per day at Week 12, there was no statistically significant benefit of SUN-101 over the placebo. For the substudy of study 301, results of change from baseline of trough FEV_1 AUC_(0-12 hrs) at Week 12 were not significantly better than the placebo in both SUN-101 doses.

Table 8 summarizes the analysis results of the primary endpoint of studies 301 and 302. Table 9 to Table 12 summarizes the analysis results of the key secondary endpoints of studies 301 and 302. All the p-values reported here were adjusted p-values (unless otherwise stated) according to pre-specified testing procedures. Please refer to section 3.2.2 for these pre-specified testing procedures. The p-values should be compared to 0.05; if a p-value is less than 0.05, then the SUN-101 arm is significantly different from the placebo arm.

In the analyses using MMRM model, the missing data were imputed by SAS using missing at random assumption. This assumption may not hold, subjects who discontinue treatment tend to have worse outcome than subjects who stay on treatment. However, notice that in both studies 301 and 302, the placebo arms have higher rate of missingness, the overall missingness rate is not very high (7% to 13%). The percentage of missing data in study 301 is 12.4%, 6.5% and 7.8% in placebo arm, 25 mcg arm and 50 mcg arm respectively. The percentage of missing data in study 302 is 11.3%, 9.8% and 7.0% in placebo, 25 mcg arm and 50 mcg arm.

To assess the impact of missing data on efficacy results, tipping point analyses assuming missing not at random were conducted; these analyses are discussed in Section 5. These results showed that it is highly unlikely that the efficacy results will be changed from significantly effective to not significantly effective.

Table 13 and Table 14 summarize the primary efficacy results of the two phase 2 studies of change from baseline of trough FEV_1 at treatment day 28 and day 7 respectively. The results indicated that SUN-101 25 mcg arm or 50 mcg arm in both studies have improvements over placebo in trough FEV_1 at day 28 and day 7.

For Study 04, analyses of mean change from baseline in FEV_1 over 0-24 hours post dose were also conducted on treatment day 1 and treatment day 28. These analyses demonstrated a dose-response effect on peak and trough FEV_1 over 24-hour dosing period. Please refer to Figures 3 and 4.

3.2.4.1 Studies 301 and 302

Table 8: Primary Efficacy Analysis (Study 301 and Study 302): Mean Change from Baseline of FEV₁ at Week 12 (ITT Population: All Collected Data)

		Study 301			Study 302	
	PBO	SUN-101 25 mcg BID	SUN-101 50 mcg BID	PBO	SUN-101 25 mcg BID	SUN-101 50 mcg BID
ITT Population	N = 218	N = 217	N = 218	N = 212	N = 214	N = 214
Mean change from baseline FEV ₁ at week 12: L	-0.007	0.089	0.096	0.011	0.092	0.085
Difference from PBO: L (95% CI)		0.096 (0.059,0.133)	0.104 (0.066,0.141)		0.081 (0.042,0.12)	0.074 (0.035,0.113)
Adj. p-value compare to PBO		< 0.0001	< 0.0001		0.0001	0.0002

Table 9: Substudy of Study 301: Standardized Mean Change from Baseline in FEV_1 $AUC_{(0-12hrs)}$ at Week 12 (ITT Population: All Collected Data)

		Study 301	
	PBO	SUN-101 25 mcg BID	SUN-101 50 mcg BID
ITT Population Substudy	N = 42	N = 49	N = 62
Mean change from baseline FEV ₁ AUC _{0-12 hrs}	-0.047	0.058	0.075
Difference from PBO: L		0.105	0.122
(95% CI)		(0.022, 0.189)	(0.043, 0.201)
Adj. p-value compare to PBO		0.055	0.016

Table 10: Secondary Efficacy Analysis (Study 301 and Study 302): Mean Change from Baseline of FVC at Week 12 (ITT Population: All Collected Data)

		Study 301			Study 302		
	PBO	SUN-101 25	SUN-101 50	PBO	SUN-101 25	SUN-101 50	
		mcg BID	mcg BID		mcg BID	mcg BID	
ITT	N = 218	N = 217	N = 218	N = 212	N = 214	N = 214	
Population							
FVC CFB: L	0.015	0.152	0.148	0.016	0.135	0.109	
Difference		0.137	0.133		0.119	0.093	
from PBO: L		(0.076, 0.197)	(0.072, 0.194)		(0.058, 0.180)	(0.033, 0.154)	
(95% CI)							
Adj. p-value		< 0.0001	0.0002		0.0008	0.0101	
compare to							
PBO							

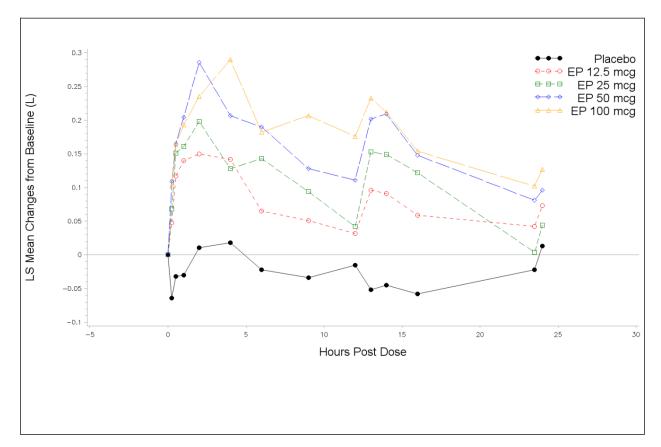
Table 11: Secondary Efficacy Analysis (Study 301 and Study 302): Mean Change from Baseline of SGRQ Total Score at Week 12 (ITT Population: All Collected Data)

		Study 301		Study 302					
	PBO	SUN-101 25	SUN-101 50	PBO	SUN-101 25	SUN-101 50			
		mcg BID	mcg BID		mcg BID	mcg BID			
ITT	N = 218	N = 217	N = 218	N = 212	N = 214	N = 214			
Population									
SGRQ CFB	-0.884	-4.250	-2.363	-0.138	-3.225	-3.825			
Difference		-3.366	-1.479		-3.086	-3.687			
from PBO: L		(-5.56, -1.171)	(-3.700, 0.741)		(-5.253, -0.920)	(-5.836, -1.538)			
(95% CI)									
Adj. p-value		0.016	0.553		0.0212	0.0048			
compare to									
PBO									

Table 12: Secondary Efficacy Analysis (Study 301 and Study 302): Mean Change from Baseline of Rescue Medication Puffs per Day Over the Double-blind Period (ITT Population: All Collected Data)

		Study 301		Study 302					
	PBO	SUN-101 25	SUN-101 50	PBO	SUN-101 25	SUN-101 50			
		mcg BID	mcg BID		mcg BID	mcg BID			
ITT	N = 218	N = 217	N = 218	N = 212	N = 214	N = 214			
Population									
Rescue Med	-0.632	-0.609	-0.815	-0.678	-0.959	-0.845			
CFB									
Difference		0.024	-0.183		-0.281	-0.167			
from PBO: L		(-0.310, 0.357)	(-0.512, 0.147)		(-0.634, 0.072)	(-0.520, 0.186)			
(95% CI)									
Adj. p-value		> 0.999	0.553		0.2371	0.7087			
compare to									
PBO									

3.2.4.2 Studies 04 and 201


Table 13: Primary Efficacy Analysis of Study 04: Mean Change from Baseline of ${\rm FEV_1}$ at Day 28

		Study 04			
	PBO	SUN-101 12.5	SUN-101	SUN-101	SUN-101
		mcg BID	25 mcg BID	50 mcg BID	100 mcg BID
ITT Population	N = 57	N = 55	N = 54	N = 57	N = 59
Change from baseline	0.001	0.106	0.133	0.134	0.179
to morning trough on					
day 28: L					
Difference from PBO:		0.117	0.128	0.146	0.177
L (95% CI)		(0.037, 0.197)	(0.048, 0.209)	(0.067, 0.226)	(0.099, 0.255)
Adj. p-value compare		0.0043	0.0019	0.0004	< 0.0001
to PBO					

Table 14: Primary Efficacy Analysis of Study 201: Mean Change from Baseline of FEV_1 at Day 7

		Study 201				
	PBO	SUN-101 3 mcg BID	SUN-101 6.25 mcg BID	SUN-101 12.5 mcg BID	SUN-101 50 mcg BID	ACL 400 mcg BID
ITT Population	N = 92	N = 91	N = 92	N = 90	N = 92	N = 94
Change from baseline to morning trough on day 7: L	-0.034	-0.012	0.063	0.097	0.101	0.120
Difference from PBO: L (95% CI)		0.013 (-0.032, 0.057)	0.082 (0.038, 0.126)	0.109 (0.064, 0.153)	0.138 (0.093, 0.182)	0.157 (0.112, 0.201)
Un-adj. p-value compare to PBO		0.5773	0.0003	< 0.0001	< 0.0001	< 0.0001

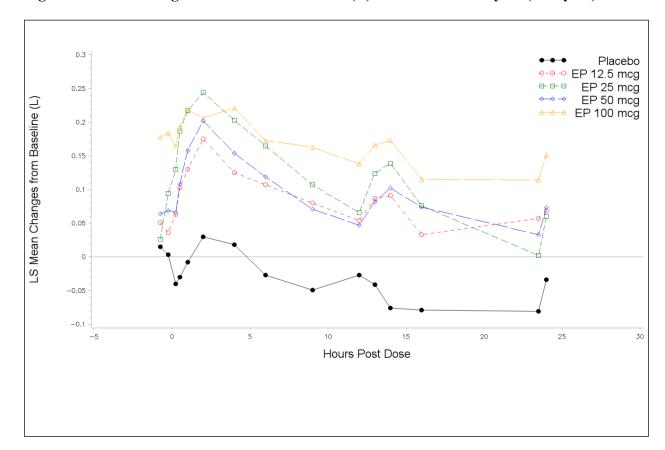


Figure 4: Mean Change from Baseline in FEV1 (L) Over Time on Day 28 (Study 04)

3.3 Evaluation of Safety

Please refer to the evaluation of safety in the clinical review by Dr. E. Torjusen.

4 FINDINGS IN SPECIAL/SUBGROUP POPULATIONS

In this review, subgroup analyses were conducted for all primary and secondary endpoints for both Study 301 and Study 302.

For the primary endpoint, subgroup analyses were performed for the following factors:

- 1. Three demographic factors: age (< 65, 65-74, >=75), sex (F, M), and race (White, Non-White).
- 2. Four baseline disease characteristics: baseline in-check PIFR (< 30, 30-60, 60-90, > 90), spirometry PIFR (<= 60, > 60-90, > 90-120, > 120-150, > 150-180, > 180-210, > 210), background LABA use (yes, no), and baseline COPD severity (< 30% Predicted, >= 30% to 50 % Predicted, >= 50% Predicted)

For the secondary endpoints, subgroup analyses were performed for the following factors:

1. Three demographic factors: age (< 65, 65-74, >=75), sex (F, M), and race (White, Non-White).

2. One baseline disease characteristic: baseline COPD severity (< 30% Predicted, >= 30% to 50 % Predicted, >= 50% Predicted).

For the substudy of study 301, subgroup analyses on the primary endpoint and secondary endpoints were conducted similarly as above.

Table 15 to Table 23 list the complete subgroup analysis results for the primary endpoint and secondary endpoints for studies 301 and 302 for both 25 mcg arm and 50 mcg arm.

Figure 3 to Figure 20 illustrate the complete subgroup analysis results for the primary endpoint and secondary endpoints for studies 301 and 302 for both 25 mcg arm and 50 mcg arm.

Interpretation of the key results will be given in section 4.1 and 4.2.

Table 15: Study 301: Subgroup Analyses on Primary Endpoint of Change from Baseline of FEV_1 at Week 12

	Mean I	Difference of	f FEV1 25	mcg		Mean	Differenc	e of FEV1	50 mcg		Interaction
	N	Est.	LL	UL	p-value	N	Est.	LL	UL	p-value	Test p-value
Age					1.					1.	0.5122
Group											
< 65	122	0.076	0.025	0.127	0.0037	135	0.109	0.058	0.159	< 0.0001	
65 - 74	73	0.114	0.054	0.175	0.0002	66	0.078	0.016	0.140	0.014	
>= 75	22	0.184	0.060	0.308	0.0037	17	0.197	0.067	0.328	0.0031	
Sex		1.				1.		1.	i .		0.0795
F	99	0.106	0.052	0.159	0.0001	98	0.072	0.018	0.125	0.0090	
M	118	0.086	0.035	0.137	0.0010	120	0.128	0.077	0.179	< 0.0001	
Race						1.		1.			0.1235
White	200	0.105	0.066	0.144	< 0.0001	198	0.107	0.067	0.146	< 0.0001	
Non-white	17	-0.0005	-0.125	0.124	0.9932	20	0.077	-0.041	0.194	0.1994	
In-Check PIFR											0.6007
< 30	9	0.108	-0.094	0.310	0.2937	7	0.226	0.012	0.441	0.0389	
30 – 60	50	0.035	-0.042	0.112	0.3732	51	0.068	-0.010	0.146	0.0858	•
60 – 90	46	0.104	0.016	0.191	0.0204	49	0.137	0.051	0.222	0.0018	•
> 90	111	0.123	0.072	0.174	<0.0001	111	0.098	0.047	0.150	0.0002	•
Spirometry PIFR					0.0001						0.0422
<= 60	16	0.129	-0.020	0.277	0.0889	10	0.122	-0.047	0.291	0.1544	
> 60 - 90	30	0.110	0.012	0.208	0.0284	29	0.083	-0.015	0.180	0.0984	
> 90 - 120	40	0.123	0.040	0.206	0.0038	39	0.127	0.042	0.211	0.0036	
> 120 - 150	45	0.144	0.050	0.237	0.0026	33	0.077	-0.023	0.176	0.1306	
> 150 -180	26	-0.046	-0.163	0.071	0.4368	28	0.123	0.009	0.237	0.0341	
> 180 -210	20	0.053	-0.082	0.189	0.4418	17	0.200	0.056	0.339	0.0063	
> 210	15	0.104	-0.032	0.240	0.1340	19	0.084	-0.045	0.213	0.2004	
Background LABA Use							•	-			0.8372
Y	66	0.071	0.002	0.140	0.0433	68	0.081	0.012	0.149	0.0212	
N	151	0.106	0.061	0.150	< 0.0001	150	0.112	0.067	0.157	< 0.0001	
COPD Severity											0.3378
<30% Predicated	12	0.070	-0.090	0.230	0.3898	16	0.094	-0.058	0.246	0.2231	
>= 30% to 50% Predicated	83	0.067	0.005	0.128	0.0338	82	0.072	0.010	0.133	0.0223	
>= 50% Predicted	121	0.121	0.073	0.170	<0.0001	120	0.134	0.085	0.183	<0.0001	

Figure 5: Study 301 25 mcg Arm: Subgroup Analyses on Primary Endpoint of Change from Baseline of FEV_1 at Week 12

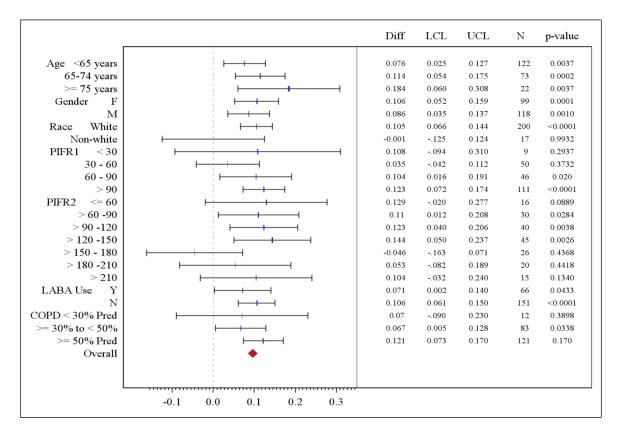


Figure 6: Study 301 50 mcg Arm: Subgroup Analyses on Primary Endpoint of Change from Baseline of FEV_1 at Week 12

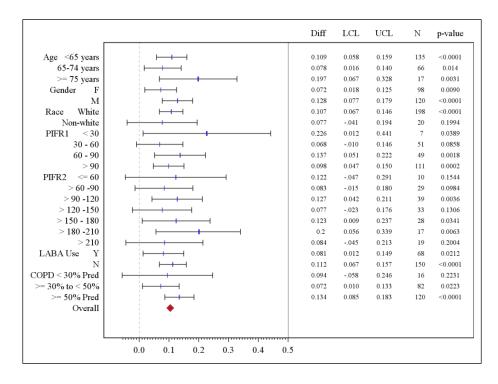


Table 16: Substudy of Study 301: Subgroup Analyses on Secondary Endpoint of Change from Baseline of FEV_1 AUC₍₀₋₁₂₎ at Week 12

	Mean I	Difference of	f FEV1 AU	JC 25 mcg		Mean	Difference	e of FEV1	AUC 50 m	cg	Interaction
	N	Est.	LL	UL	p-value	N	Est.	LL	UL	p-value	Test p-value
Age											0.1160
Group											
< 65	28	0.040	-0.063	0.143	0.4453	39	0.118	0.022	0.213	0.0164	
65 - 74	18	0.181	0.021	0.340	0.0266	15	0.124	-0.039	0.287	0.1354	
>= 75	3	0.236	-0.193	0.665	0.2776	8	0.109	-0.287	0.505	0.5857	
Sex											0.9923
F	22	0.109	-0.007	0.226	0.0655	27	0.121	0.012	0.230	0.0297	
M	27	0.086	-0.036	0.208	0.1653	35	0.109	-0.008	0.225	0.0680	
Race											0.3279
White	47	0.101	0.013	0.189	0.0245	54	0.132	0.047	0.217	0.0026	
Non-white	2	0.236	-0.088	0.560	0.1519	8	0.049	-0.182	0.279	0.676	
In-Check											0.1238
PIFR											
< 30	3	0.211	-0.211	0.633	0.3244	2	0.498	0.052	0.945	0.0291	
30 – 60	15	0.161	0.011	0.310	0.0354	20	0.224	0.081	0.366	0.0024	
60 – 90	8	0.049	-0.159	0.256	0.6416	16	-0.012	-0.189	0.165	0.8914	
> 90	23	0.089	-0.027	0.205	0.1320	24	0.087	-0.029	0.202	0.1388	
Spirometry											0.1011
PIFR											
<= 60	2	-0.039	-0.355	0.277	0.8055	3	0.363	0.078	0.649	0.0133	
> 60 - 90	10	0.114	-0.084	0.313	0.2553	7	0.170	-0.048	0.388	0.1249	
> 90 - 120	6	0.156	-0.049	0.360	0.1350	12	0.028	-0.140	0.195	0.7433	
> 120 - 150	10	0.261	-0.095	0.617	0.1485	9	0.271	-0.086	0.628	0.1350	
> 150 -180	9	0.061	-0.228	0.349	0.6771	6	0.156	-0.147	0.459	0.3074	
> 180 -210	3	0.088	-0.332	0.509	0.6770	2	0.526	0.031	1.021	0.0376	

> 210	1	-0.112	-0.521	0.296	0.5859	1	N/A	N/A	N/A	N/A	
COPD											0.3689
Severity											
<30%	2	0.113	-0.254	0.481	0.5431	5	0.019	-0.289	0.326	0.9034	
Predicated											
>= 30% to	16	0.095	-0.055	0.245	0.2137	22	0.200	0.056	0.343	0.0067	
50%											
Predicated											
>= 50%	31	0.120	0.017	0.222	0.0223	35	0.112	0.012	0.211	0.0278	
Predicted											

Figure 7: Substudy of Study 301 25 mcg Arm: Subgroup Analyses on Secondary Endpoint of Change from Baseline of FEV_1 AUC₍₀₋₁₂₎ at Week 12

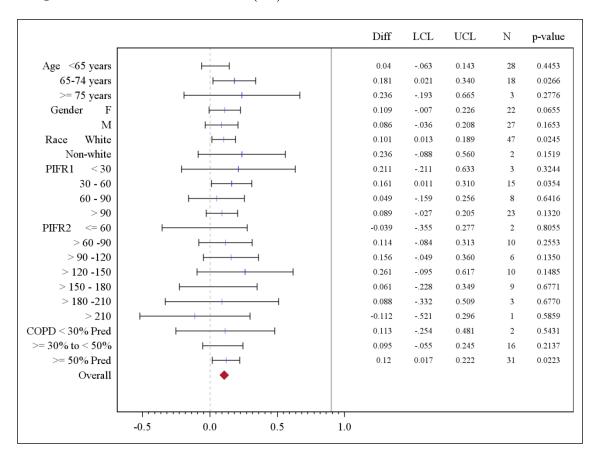


Figure 8: Study 301 Substudy 50 mcg Arm: Subgroup Analyses on Secondary Endpoint of Change from Baseline of FEV1 AUC (0-12) at Week 12

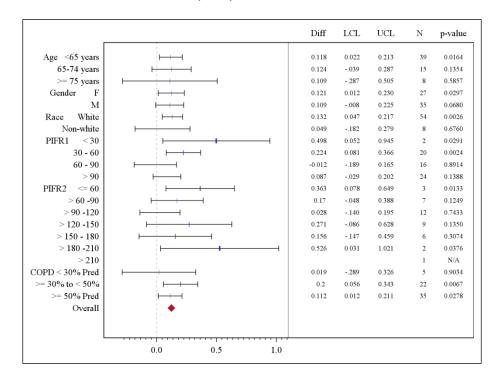


Table 17: Study 301: Subgroup Analyses on Secondary Endpoint of Change from Baseline of Trough FVC at Week 12

	Mean I	Difference o	f FVC 25 r	ncg		Mean	Difference	e of FVC 5	0 mcg		Interaction
	N	Est.	LL	UL	p-value	N	Est.	LL	UL	p-value	Test p-value
Age											0.4477
Group											
< 65	122	0.087	0.004	0.170	0.0410	135	0.128	0.047	0.210	0.0022	
65 - 74	73	0.199	0.100	0.298	< 0.0001	66	0.106	0.004	0.207	0.0408	
>= 75	22	0.227	0.025	0.428	0.0277	17	0.290	0.078	0.503	0.0075	
Sex											0.0984
F	99	0.154	0.068	0.241	0.0005	98	0.096	0.009	0.182	0.0299	
M	118	0.114	0.032	0.197	0.0065	120	0.163	0.080	0.245	0.0001	
Race											0.0851
White	200	0.150	0.086	0.213	< 0.0001	198	0.135	0.071	0.199	< 0.0001	
Non-white	17	-0.001	-0.204	0.202	0.9917	20	0.117	-0.074	0.308	0.2281	
COPD											0.7205
Severity											
<30%	12	0.149	-0.112	0.411	0.2634	16	0.215	-0.033	0.464	0.0896	
Predicated											
>= 30% to	83	0.114	0.013	0.214	0.0277	82	0.077	-0.024	0.178	0.1343	
50%											
Predicated											
>= 50%	121	0.148	0.068	0.228	0.0003	120	0.154	0.073	0.234	0.0002	
Predicted											

Figure 9: Study 301 25 mcg Arm: Subgroup Analyses on Secondary Endpoint of Change from Baseline of Trough FVC at Week 12

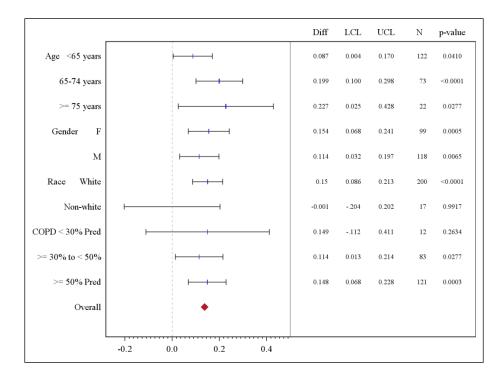


Figure 10: Study 301 50 mcg Arm: Subgroup Analyses on Secondary Endpoint of Change from Baseline of Trough FVC at Week 12

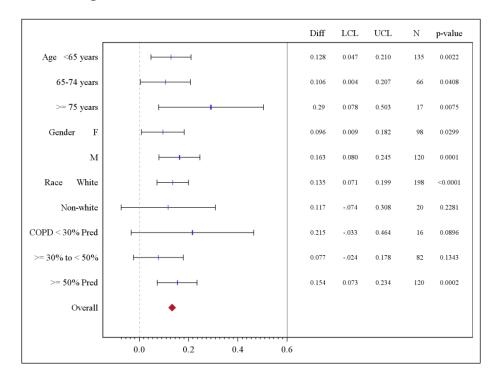
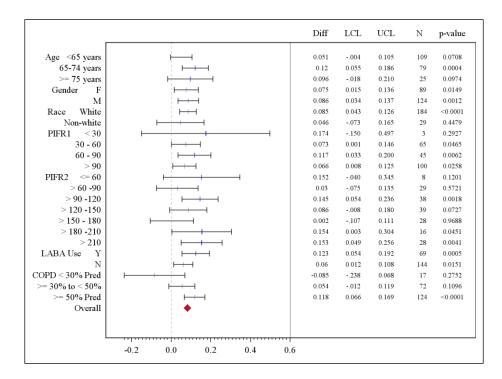
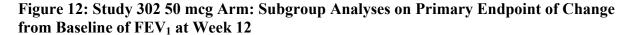




Table 18: Study 302: Subgroup Analyses on Primary Endpoint of Change from Baseline of FEV_1 at Week 12

	Mean Difference of FEV1 25 mcg						Mean Difference of FEV1 50 mcg					
	N	Est.	LL	UL	p-value	N	Est.	LL	UL	p-value	Test p-value	
Age					1.					1.	0.7617	
Group												
< 65	109	0.051	-0.004	0.105	0.0708	119	0.040	-0.013	0.094	0.1378		
65 - 74	79	0.120	0.055	0.186	0.0004	74	0.136	0.070	0.202	< 0.0001		
>= 75	25	0.096	-0.018	0.210	0.0974	21	0.035	-0.083	0.152	0.5620		
Sex											0.7329	
F	89	0.075	0.015	0.136	0.0149	87	0.056	-0.006	0.117	0.0742		
M	124	0.086	0.034	0.137	0.0012	127	0.086	0.035	0.136	0.0009	1.	
Race										1.	0.2279	
White	184	0.085	0.043	0.126	< 0.0001	188	0.086	0.044	0.127	< 0.0001	1.	
Non-white	29	0.046	-0.073	0.165	0.4479	26	-0.023	-0.146	0.099	0.7083		
In-Check PIFR											0.3375	
< 30	3	0.174	-0.150	0.497	0.2927	3	0.052	-0.246	0.351	0.7301		
30 – 60						+	-				•	
30 – 60 60 – 90	65 45	0.073	0.001	0.146	0.0465 0.0062	70 51	0.104 0.032	-0.048	0.175	0.0040	+	
> 90	100		0.033	0.200		89				0.4373	· ·	
	100	0.066	0.008	0.125	0.0258	89	0.076	0.017	0.136	0.0120	0.5005	
Spirometry PIFR	•	•	•	•			•		•	•	0.5885	
<= 60	8	0.152	-0.040	0.345	0.1201	17	0.120	-0.036	0.275	0.1313		
> 60 - 90	29	0.030	-0.075	0.135	0.5721	26	0.022	-0.083	0.128	0.6798		
> 90 - 120	38	0.145	0.054	0.236	0.0018	30	0.082	-0.014	0.178	0.0942		
> 120 - 150	39	0.086	-0.008	0.180	0.0727	42	0.127	0.036	0.217	0.0062		
> 150 -180	28	0.002	-0.107	0.111	0.9688	25	0.068	-0.045	0.181	0.2350		
> 180 -210	16	0.154	0.003	0.304	0.0451	20	0.129	-0.014	0.272	0.0762		
> 210	28	0.153	0.049	0.256	0.0041	27	0.038	-0.067	0.144	0.4774		
Background LABA Use								·	·		0.7733	
Y	69	0.123	0.054	0.192	0.0005	67	0.085	0.015	0.155	0.0173		
N	144	0.060	0.012	0.108	0.0151	147	0.069	0.021	0.116	0.0044		
COPD Severity											0.1440	
<30% Predicated	17	-0.085	-0.238	0.068	0.2752	19	-0.030	-0.178	0.119	0.6969		
>= 30% to 50% Predicated	72	0.054	-0.012	0.119	0.1096	76	0.063	-0.002	0.128	0.0557		
>= 50% Predicted	124	0.118	0.066	0.169	<0.0001	119	0.095	0.043	0.146	0.0003		

Figure 11: Study 302 25 mcg Arm: Subgroup Analyses on Primary Endpoint of Change from Baseline of FEV_1 at Week 12

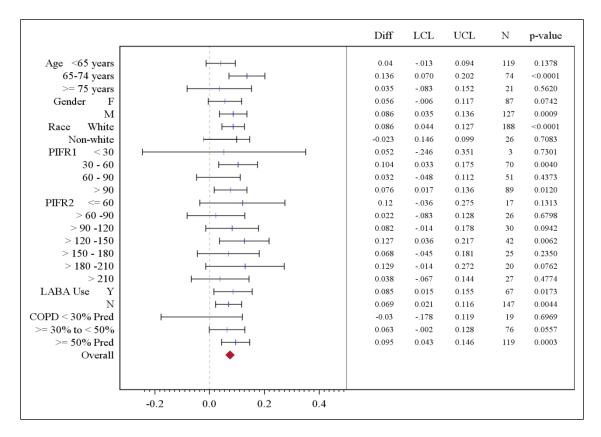


Table 19: Study 302: Subgroup Analyses on Secondary Endpoint of Change from Baseline of Trough FVC at Week 12

	Mean Difference of RESC 25 mcg					Mean Difference of RESC 50 mcg					Interaction
	N	Est.	LL	UL	p-value	N	Est.	LL	UL	p-value	Test p-value
Age											0.3291
Group											
< 65	109	0.057	-0.028	0.142	0.1866	119	0.031	-0.051	0.114	0.4580	
65 - 74	79	0.206	0.105	0.308	< 0.0001	74	0.198	0.096	0.301	0.0001	
>= 75	25	0.124	-0.053	0.300	0.1689	21	0.057	-0.125	0.238	0.541	
Sex											0.4199
F	89	0.087	-0.005	0.180	0.0650	87	0.062	-0.031	0.156	0.1904	
M	124	0.140	0.062	0.219	0.0005	127	0.113	0.036	0.191	0.0041	
Race											0.1174
White	184	0.124	0.059	0.189	0.0002	188	0.113	0.050	0.177	0.0005	
Non-white	29	0.081	-0.103	0.265	0.3861	26	-0.052	-0.241	0.137	0.5894	
COPD											0.2573
Severity											
<30%	17	-0.116	-0.353	0.121	0.3378	19	-0.001	-0.232	0.229	0.9918	
Predicated											
>= 30% to	72	0.090	-0.013	0.192	0.0857	76	0.064	-0.037	0.165	0.212	
50%											
Predicated											
>= 50%	124	0.166	0.086	0.246	< 0.0001	119	0.120	0.040	0.200	0.0034	
Predicted											

Figure 13: Study 302 25 mcg Arm: Subgroup Analyses on Secondary Endpoint of Change from Baseline of Trough FVC at Week 12

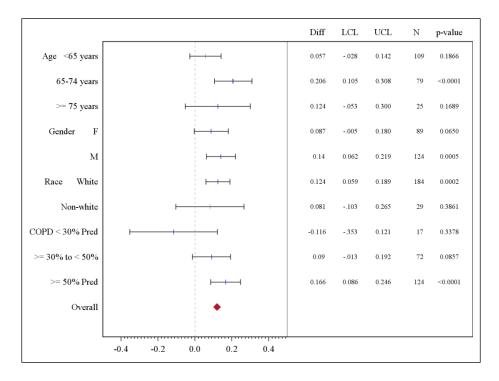
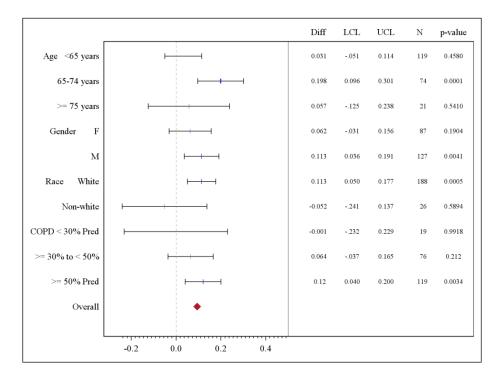



Figure 14: Study 302 50 mcg Arm: Subgroup Analyses on Secondary Endpoint of Change from Baseline of Trough FVC at Week 12

4.1 Sex, Race, Age, and Geographic Region

Subgroup analyses were performed on sex, race and age. Since all the clinical trials were conducted in the USA, there were no subgroup analyses on geographic region.

The treatment-by-subgroup interaction is evaluated at significance level of 0.10.

Table 15 summarizes the results of study 301 on the primary endpoint change from baseline of trough FEV_1 at Week 12. The analyses are based on all data collected on the ITT population:

- 1. There was a statistically significant treatment-by-gender interaction effect (p-value of 0.0795). Treatment with both doses of SUN-101 demonstrated improvements in trough FEV₁ in both male and female subgroups at Week 12. The mean, placebo-adjusted trough FEV₁ increased by 0.086 L and 0.128 L in subjects in the SUN-101 25 mcg and 50 mcg male subgroups respectively. The mean, placebo-adjusted trough FEV₁ increased by 0.106 L and 0.072 L in the SUN-101 25 mcg and 50 mcg female subgroup. Due to clinically insignificant responses within and between the male and female subgroups, the gender subgroup results do not support an alternative dosing recommendation to either the SUN-101 25 mcg or 50 mcg doses.
- 2. There was no statistically significant treatment-by-age group interaction effect (p-value of 0.5122).
- 3. There was no statistically significant treatment-by-race interaction effect (p-value of 0.1235).

Table 17 summarizes the results of Study 301 on the secondary endpoint change from baseline of trough FVC at Week 12. The analysis population is based on all data collected on the ITT population:

- 1. There was a treatment-by-gender interaction effect (p-value of 0.0984). Treatment with both doses of SUN-101 demonstrated improvements in trough FVC in the male and female subgroups at Week 12. The mean, placebo-adjusted trough FVC increased by 0.114 L and 0.163 L in the SUN-101 25 mcg and 50 mcg male subgroups. The mean, placebo adjusted trough FVC increased by 0.154 L and 0.096 L in the SUN-101 25 mcg and 50 mcg female subgroups. Due to clinically insignificant responses within and between the male and female subgroups, gender subgroup results do not support an alternative dosing recommendation to either the SUN-101 25 mcg or 50 mcg doses.
- 2. There was no treatment-by-age group interaction effect (p-value of 0.4477).
- 3. There was a treatment-by-race interaction effect (p-value of 0.0851). White subjects in the SUN-101 25 mcg group had a greater treatment effect relative to placebo than white subjects in the SUN-101 50 mcg group (0.149 L and 0.135 L). Conversely, nonwhite subjects in the SUN-101 25 mcg group had a lesser treatment effect relative to placebo than nonwhite subjects in the SUN-101 50 mcg group (-0.0011 L and 0.1173 L).

Table 20 summarizes the results of study 302 on the primary endpoint change from baseline of trough FEV_1 at Week 12. The analyses are based on all collected data for the ITT population:

- 1. There was no treatment-by-gender interaction effect (p-value of 0.7329).
- 2. There was no treatment-by-age group interaction effect (p-value of 0.7617).

3. There was no treatment-by-race interaction effect (p-value of 0.2279).

Table 21 summarizes the results of study 302 on the secondary endpoint change from baseline of trough FVC at Week 12. The analyses are based on is all collected data for the ITT population:

- 1. There were no treatment-by-gender interaction effects with interaction p-value of 0.4199.
- 2. There were no treatment-by-age group interaction effects with interaction p-value of 0.3291.
- 3. There were no treatment-by-race interaction effects with interaction p-value of 0.1174.

4.2 Baseline Disease Characteristics

Subgroup analyses were performed on in-check PIFR, spirometry peak inspiratory flow rate (PIFR), background LABA use, and baseline COPD severity on the primary endpoint. Subgroup analyses were performed on baseline COPD severity on the key secondary endpoints.

Table 15 summarizes the results of study 301 on the primary endpoint change from baseline of trough FEV_1 at Week 12. The analyses are based on all collected data for the ITT population:

- 1. There was no treatment-by-in-Check PIFR interaction effect (p-value of 0.6007).
- 2. There was a treatment-by-spirometry PIFR interaction effect (p-value of 0.0422). Generally, the mean effects are consistent within each treatment group across the various categories, with the exception that the SUN-101 25 mcg group had an apparently spurious low mean of -0.048 L in the > 150 to 180 L/min category compared to a range of 0.063 to 0.1327 for the other categories, and that the SUN-101 50 mcg group had an apparently spurious high mean of 0.260 L in the > 180 to 210 L/min category compared to a range of 0.057 to 0.121 for the other categories.
- 3. There was no treatment-by-background LABA interaction (p-value of 0.8372).
- 4. There was no treatment-by-COPD severity interaction effect (p-value of 0.3378). Treatment with both doses of SUN-101 showed improvements across different COPD severity categories.

Table 17 summarizes the results of study 301 on the secondary endpoint change from baseline of trough FVC at Week 12. The analyses are based on all collected data for the ITT population. There was no treatment-by-COPD severity interaction effect with interaction p-value of 0.7205.

Table 20 summarizes the results of study 302 on the primary endpoint change from baseline of trough FEV1 at Week 12. The analyses are based on all collected data for the ITT population:

- 1. There was no treatment-by-In-Check PIFR interaction effect (p-value of 0.3375).
- 2. There was no treatment-by-spirometry PIFR interaction effect (p-value of 0.5885).
- 3. There was no treatment-by-background LABA interaction (p-value of 0.7733).
- 4. There was no treatment-by-COPD severity interaction effect (p-value of 0.1440).

Table 21 summarizes the results of study 302 on the secondary endpoint change from baseline of trough FVC at Week 12. The analyses are based on all collected data for the ITT population. There was no treatment-by-COPD severity interaction effect (p-value of 0.2573).

5 SUMMARY AND CONCLUSIONS

5.1 Statistical Issues

There were no statistical issues with this submission.

5.1.1 Missing Data and Sensitivity Analysis

5.1.1.1 Tipping Point Analysis for the Primary Endpoint

The primary endpoint in studies SUN101-301 and SUN101-302 is the change from baseline in trough FEV₁ at Week 12 for the ITT population. The primary analysis used all collected data, including data for patients who discontinued randomized treatment and were followed for 12 weeks. The tipping point analysis seeks to impute the remaining missing data under various scenarios.

Tipping point analysis is a means of exploring the influence of missingness on the overall conclusion by positing a wide spectrum of assumptions regarding the missingness mechanism. The analysis finds a "tipping" point in this spectrum of assumptions, at which conclusions change from being favorable to the experimental treatment to being unfavorable. After such a tipping point is determined, clinical judgement is applied as to the plausibility of the assumptions underlying this tipping point. In this submission, the sponsor submitted tipping point analysis results using delta-adjusted pattern imputation assuming missing-not-at-random (MNAR).

Under this method, subjects from the experimental or control treatment arm who discontinue at a given time-point would have, on average, their unobserved efficacy values worsen by some amount δ compared to the observed efficacy value. This method allows the assumptions about missingness on the experimental SUN-101 treatment and placebo arms to vary independently.

The amount of missing data in the two pivotal studies is relatively small. The number of subjects who were not followed for the full 12 weeks is shown in Table 20.

Table 20: Missing Data in Studies SUN101-301 and SUN101-302

	Placebo	SUN-101 25 mcg	SUN-101 50 mcg
Study SUN101-301	27 (12.4%)	14 (6.5%)	17 (7.8%)
Study SUN101-302	24 (11.3%)	21 (9.8%)	15 (7.0%)

The process for implementing the tipping point analysis in this submission includes:

1. Impute the missing values due to non-monotone reasons first. Missing baseline data is imputed using a monotone regression on 100 imputations with a model that includes gender, stratification of LABA use, stratification of cardiovascular risk, and age. Intermittent missing FEV₁ values are imputed for each treatment using non-missing data from all subjects within the treatment group by a Markov Chain Monte Carlo (MCMC)

imputation model. As a result, each dataset only has a monotone missing data pattern.

- 2. The missing values in a monotonic pattern are then imputed using PROC MI to impute the monotonic missing FEV₁ values within each treatment arm at Week 2, Week 4, Week 8, and Week 12 using a monotone regression. Imputation is performed on the first missing value from left to right (i.e. Week 2, Week 4, etc.), with each subsequent imputation using the non-missing data and the previously imputed data in the calculation. One-hundred imputations are generated.
- 3. For a range of penalty values the δ_1 values are added to the placebo subjects' change from baseline in monotonic imputed values, and the δ_2 values are added to the SUN-101 subjects' change from baseline in monotonic imputed values. Similarly, the post-baseline monotonic imputed FEV₁ values are also delta-adjusted for data summarization. The same δ_2 value is used for both SUN-101 25 mcg and SUN-101 50 mcg. For SUN101-301, δ_1 and δ_2 are equal to 0, -0.200, -0.400, -0.600, -0.700, -0.800 L and for SUN101-302, δ_1 and δ_2 are equal to 0, -0.100, -0.200, -0.300, -0.400, -0.500 L.
- 4. At each level of δ_1 and δ_2 , re-run the MMRM model for the primary efficacy analysis for each of the 100 imputations. The MMRM model is also run at $\delta_1 = 0$ and $\delta_2 = 0$ as the base case.
- 5. Use PROC MIANALYZE to combine information from each imputation.

Table 21 to Table 24 list the tipping point analyses results for the primary endpoint of study 301 and study 302 in 25 mcg arm compared to the placebo arm and 50 mcg arm compared to the placebo arm.

Table 21: Tipping Point Analysis Results – Study 301 25 mcg arm

	$\delta_2 = 0 L$	$\delta_2 = -0.2 \text{ L}$	$\delta_2 = -0.4 \text{ L}$	$\delta_2 = -0.6 \text{ L}$	$\delta_2 = -0.7 \text{ L}$	$\delta_2 = -0.8 \text{ L}$
$\delta_1 = 0 L$	0.0949	0.0811	0.0672	0.0533	0.0464	0.0394
	(0.0580, 0.1319)	(0.0430, 0.1192)	(0.0264, 0.1080)	(0.0085, 0.0982)	(-0.0009, 0.0936)	(-0.0104, 0.0893)
$\delta_1 = -0.2 \text{ L}$	0.1169	0.1031	0.0892	0.0753	0.0684	0.0615
	(0.0796, 0.1543)	(0.0646, 0.1416)	(0.0480, 0.1304)	(0.0302, 0.1205)	(0.0209, 0.1160)	(0.0113, 0.1116)
$\delta_1 = -0.4 \text{ L}$	0.1390	0.1251	0.1112	0.0974	0.0904	0.0835
	(0.1000, 0.1779)	(0.0851, 0.1652)	(0.0686, 0.1539)	(0.0509, 0.1439)	(0.0416, 0.1393)	(0.0322, 0.1349)
$\delta_1 = -0.6 \text{ L}$	0.1610	0.1471	0.1333	0.1194	0.1125	0.1055
	(0.1193, 0.2027)	(0.1045, 0.1898)	(0.0882, 0.1784)	(0.0706, 0.1682)	(0.0615, 0.1635)	(0.0521, 0.1589)
$\delta_1 = -0.7 \text{ L}$	0.1720	0.1582	0.1443	0.1304	0.1235	0.1165
	(0.1287, 0.2154)	(0.1138, 0.2025)	(0.0976, 0.1910)	(0.0802, 0.1806)	(0.0711, 0.1759)	(0.0618, 0.1713)
$\delta_1 = -0.8 \text{ L}$	0.1830	0.1692	0.1553	0.1414	0.1345	0.1276
	(0.1378, 0.2282)	(0.1230, 0.2153)	(0.1069, 0.2037)	(0.0896, 0.1933)	(0.0806, 0.1884)	(0.0713, 0.1838)

Source: Sponsor's Tipping Point Analysis Tables_301

Table 22: Tipping Point Analysis Results – Study 301 50 mcg arm

	$\delta_2 = 0 L$	$\delta_2 = -0.2 \text{ L}$	$\delta_2 = -0.4 \text{ L}$	$\delta_2 = -0.6 \text{ L}$	$\delta_2 = -0.7 \text{ L}$	$\delta_2 = -0.8 \text{ L}$
$\delta_1 = 0 L$	0.1022	0.0866	0.0710	0.0553	0.0475	0.0396
	(0.0652, 0.1392)	(0.0485, 0.1248)	(0.0301, 0.1119)	(0.0104, 0.1002)	(0.0002, 0.0947)	(-0.0102, 0.0895)
$\delta_1 = -0.2 \text{ L}$	0.1243	0.1088	0.0931	0.0774	0.0696	0.0618
	(0.0869, 0.1617)	(0.0702, 0.1473)	(0.0519, 0.1344)	(0.0322, 0.1227)	(0.0220, 0.1172)	(0.0116, 0.1120)
$\delta_1 = -0.4 \text{ L}$	0.1464	0.1308	0.1308 0.1152		0.0917	0.0839
	(0.1074, 0.1854)	(0.0907, 0.1709)	(0.0725, 0.1579)	(0.0530, 0.1461)	(0.0429, 0.1406)	(0.0325, 0.1353)
$\delta_1 = -0.6 \text{ L}$	0.1684	0.1529	0.1373	0.1216	0.1138	0.1060
	(0.1267, 0.2101)	(0.1102, 0.1956)	(0.0921, 0.1824)	(0.0728, 0.1704)	(0.0628, 0.1648)	(0.0526, 0.1594)
$\delta_1 = -0.7 \text{ L}$	0.1794	0.1639	0.1483	0.1327	0.1249	0.1171
	(0.1360, 0.2228)	(0.1195, 0.2082)	(0.1016, 0.1950)	(0.0824, 0.1829)	(0.0725, 0.1773)	(0.0623, 0.1718)
$\delta_1 = -0.8 \text{ L}$	0.1904	0.1749	0.1593	0.1437	0.1359	0.1281
	(0.1452, 0.2357)	(0.1287, 0.2211)	(0.1109, 0.2078)	(0.0918, 0.1956)	(0.0820, 0.1899)	(0.0719, 0.1843)

Source: Sponsor's Tipping Point Analysis Tables_301

Table 23: Tipping Point Analysis Results – Study 302 25 mcg arm

	$\delta_2 = 0 L$	$\delta_2 = -0.1 \text{ L}$	$\delta_2 = -0.2 \text{ L}$	$\delta_2 = -0.3 \text{ L}$	$\delta_2 = -0.4 \text{ L}$	$\delta_2 = -0.5 \text{ L}$
$\delta_1 = 0 L$	0.0775	0.0672	0.0568	0.0465	0.0362	0.0258
	(0.0378, 0.1172)	(0.0272, 0.1072)	(0.0161, 0.0976)	(0.0045, 0.0885)	(-0.0074, 0.0798)	(-0.0197, 0.0714)
$\delta_1 = -0.1 \text{ L}$	0.0898	0.0795	0.0691	0.0588	0.0484	0.0381
	(0.0500, 0.1296)	(0.0393, 0.1196)	(0.0282, 0.1100)	(0.0167, 0.1009)	(0.0047, 0.0921)	(-0.0076, 0.0838)
$\delta_1 = -0.2 \text{ L}$	0.1021	0.0917	0.0814	0.0710	0.0607	0.0504
	(0.0618, 0.1423)	(0.0512, 0.1323)	(0.0401, 0.1227)	(0.0285, 0.1135)	(0.0166, 0.1048)	(0.0043, 0.0964)
$\delta_1 = -0.3 \text{ L}$	0.1143	0.1040	0.0936	0.0833	0.0730	0.0626
	(0.0733, 0.1553)	(0.0627, 0.1453)	(0.0516, 0.1357)	(0.0401, 0.1265)	(0.0282, 0.1178)	(0.0159, 0.1094)
$\delta_1 = -0.4 \text{ L}$	0.1266	0.1162	0.1059	0.0956	0.0852	0.0749
	(0.0845, 0.1687)	(0.0739, 0.1586)	(0.0628, 0.1490)	(0.0514, 0.1398)	(0.0395, 0.1310)	(0.0272, 0.1226)
$\delta_1 = -0.5L$	0.1389	0.1285	0.1182	0.1078	0.0975	0.0872
	(0.0955, 0.1822)	(0.0849, 0.1722)	(0.0738, 0.1625)	(0.0624, 0.1533)	(0.0505, 0.1445)	(0.0383, 0.1360)

Source: Sponsor's Tipping Point Analysis Tables_302

Table 24: Tipping Point Analysis Results – Study 302 50 mcg arm

	$\delta_2 = 0 L$	$\delta_2 = -0.1 \text{ L}$	$\delta_2 = -0.2 \text{ L}$	$\delta_2 = -0.3 \text{ L}$	$\delta_2 = -0.4 \text{ L}$	$\delta_2 = -0.5 \text{ L}$
$\delta_1 = 0 L$	0.0730	0.0656	0.0582	0.0509	0.0435	0.0362
	(0.0336, 0.1123)	(0.0260, 0.1053)	(0.0178, 0.0987)	(0.0092, 0.0925)	(0.0002, 0.0868)	(-0.0091, 0.0814)
$\delta_1 = -0.1 \text{ L}$	0.0852	0.0779	0.0705	0.0631	0.0558	0.0484
	(0.0458, 0.1247)	(0.0381, 0.1176)	(0.0300, 0.1110)	(0.0214, 0.1049)	(0.0124, 0.0992)	(0.0030, 0.0938)
$\delta_1 = -0.2 \text{ L}$	0.0975	0.0901	0.0828	0.0754	0.0680	0.0607
	(0.0576, 0.1374)	(0.0499, 0.1303)	(0.0418, 0.1237)	(0.0332, 0.1176)	(0.0242, 0.1118)	(0.0149, 0.1064)
$\delta_1 = -0.3 \text{ L}$	0.1097	0.1024	0.0950	0.0876	0.0803	0.0729
	(0.0691, 0.1504)	(0.0614, 0.1433)	(0.0533, 0.1367)	(0.0448, 0.1305)	(0.0358, 0.1248)	(0.0265, 0.1194)
$\delta_1 = -0.4 \text{ L}$	0.1220	0.1146	0.1073	0.0999	0.0925	0.0852
	(0.0803, 0.1637)	(0.0726, 0.1566)	(0.0645, 0.1500)	(0.0560, 0.1438)	(0.0471, 0.1380)	(0.0378, 0.1326)
$\delta_1 = -0.5L$	0.1343	0.1269	0.1195	0.1122	0.1048	0.0974
	(0.0912, 0.1773)	(0.0836, 0.1702)	(0.0755, 0.1636)	(0.0670, 0.1573)	(0.0581, 0.1515)	(0.0489, 0.1460)

Source: Sponsor's Tipping Point Analysis Tables_302

The tipping point analyses evaluated the sensitivity of the results to possible violations of MAR assumptions of the primary analyses. It tests the scenarios where the outcomes for early dropouts are worse than outcomes for patients who complete 12 weeks of follow-up; it allows the δ_2 and δ_1 to vary independently.

The results showed that:

- 1. For study 301, 25 mcg arm compared to placebo arm, when early dropouts in SUN-101 treated arm on average are at least 0.7 L worse than the observed follow-ups in trough FEV₁ at Week 12, while in the placebo arm the early dropouts on average have the same effects as the completers then the efficacy results will change to insignificant. The tipping point is where at least 0.7 L average worse in missing data on the treated arm than observed data.
- 2. For study 301, 50 mcg arm compared to placebo arm, when early dropouts in SUN-101 treated arm on average are at least 0.8 L worse than the observed follow-ups in trough FEV₁ at Week 12, while in the placebo arm the early dropouts on average have the same effects as the completers then the significant efficacy results will change to insignificant. The tipping point is where at least 0.8 L average worse in missing data on the treated arm than observed data.
- 3. For study 302, 25 mcg arm compare to placebo arm, when early dropouts in SUN-101 treated arm on average are at least 0.4 L worse than the observed follow-ups in trough FEV₁ at Week 12, while in the placebo arm the early dropouts on average have the same effects as the completers then the significant efficacy results will change to insignificant. The tipping point is where at least 0.4 L average worse in missing data than observed data.
- 4. For study 302, 50 mcg arm compare to placebo arm, when early dropouts in SUN-101 treated arm on average are at least 0.5 L worse than the observed follow-ups in trough FEV₁ at Week 12, while in the placebo arm the early dropouts on average have the same effects as the completers then the significant efficacy results will change to insignificant. The tipping point is where at least 0.5 L average worse in missing data than observed data.

In the individual pivotal studies, the LS mean FEV₁ increases from baseline compared to placebo for both the 25 and 50 mcg BID SUN-101 doses ranged from 0.074 L to 0.104 L (please refer to Table 8), therefore the tipping point scenarios to decrease 0.4 L to 0.8 L are clinically implausible. Decrease of 0.4 - 0.7 L for an individual patient was inconsistent with the efficacy results of studies 301 and 302.

5.1.1.2 SGRQ Responder Analysis at Week 12/EOT

The St. George's Respiratory Questionnaire (SGRQ) is an index to measure and quantify health-

related status in patients with chronic airflow limitation. Studies showed that SGRQ correlate well with established measures of symptom level, disease activity and disability.

The first part of SGRQ is Symptoms which evaluates symptomatology, including frequency of cough, sputum production, wheezing, breathlessness and duration and frequency of attacks of breathlessness or wheezing. The second part of SGRQ has two components: Activity and Impacts. The Activity section addresses activities that cause breathlessness or are limited because of breathlessness. The Impacts section covers a range of factors including influence on employment being in control of health, panic, stigmatization, the need for medication, side effects of prescribed therapies, expectations for health and disturbances of daily life.

Change from baseline of SGRQ score is one of the key secondary endpoints in both studies 301 and 302. Analyses of SGRQ compare to placebo showed that 25 mcg arm of study 301 and both 25 mcg and 50 mcg arms of study 302 have significant improvements at the end of Week 12/EOT, however 50 mcg arm of study 301 has no significant improvement.

During the NDA review, FDA requested the applicant to conduct additional SGRQ responder analyses on both studies. The purpose of these analyses is to further examine this important endpoint from the perspective of improvement of SGRQ Responder rate.

A "responder" was defined as a patient having a change from baseline in SGRQ total score of at least 4 points in the direction of improvement (decrease), the patient is a non-responder otherwise; responder rate was computed based on total evaluable data for each arm.

A logistic regression model was used to analyze the SGRQ Responder at Week 12/EOT. The model includes factors of treatment group, cardiovascular risk, and background LABA use and with baseline SGRQ as a covariate. Odds ratio (OR) were reported.

Odds ratio of SGRQ Responder analysis is a relative measure of number of patients being a responder in SUN-101 treated group compare to the placebo group. Odds ratio is a ratio of a numerator being the odds of responder in SUN-101 treated group and denominator being the odds of responder in the placebo group. If OR >1, the SUN-101 treated group is better than the control group in terms of SGRQ responder; if OR <1, then the placebo group is better than the SUN-101 treated group in terms of SGRQ responder.

The results of SGRQ Responder analyses of study 301 are summarized in Table 25, results of study 302 are summarized in Table 26.

Table 25: Results of SGRQ Responder Analysis of Study 301

	Placebo (n = 218) n (%)	SUN-101 25 mcg BID (n = 217) n (%)	SUN-101 50 mcg BID (n = 217) n (%)
# of subjects with evaluable data	179	189	179
Responder	71 (39.7)	94 (49.7)	79 (44.1)
Non-responder	108 (60.3)	95 (50.3)	100 (55.9)
Odds Ratio (95% CI)		1.486 (0.974, 2.267)	1.215 (0.791, 1.866)

Table 26: Results of SGRQ Responder Analysis of Study 302

	Placebo (n = 212) n (%)	SUN-101 25 mcg BID (n = 217) n (%)	SUN-101 50 mcg BID (n = 217) n (%)
# of subjects with evaluable data	186	183	188
Responder	55 (29.6)	80 (43.7)	74 (39.4)
Non-responder	131 (70.4)	103 (56.3)	114 (60.6)
Odds Ratio (95% CI)		1.906 (1.220, 2.976)	1.538 (0.985, 2.401)

The SGRQ Responder analysis results showed that all the results are in the direction to favor the SUN-101 treated groups in both studies and both dose levels. However, a logistic regression model analyses showed that they are not statistically significant in terms of odds ratio except for 25 mcg group pf study 302.

5.1.2 Subgroup Analysis

Studies 301 and 302 were not powered for subgroup analyses. Some of the subgroups have small sample sizes and result in wide confidence interval. Such subgroups are non-white, age >= 75, and some baseline disease subgroups.

5.2 Collective Evidence

As summarized in Table 27, effectiveness of two different dosages was examined: SUN-101 25 mcg BID and SUN-101 50 mcg BID. The review focused on two phase 3 studies. Statistically significant and reliable (despite small number of missing data) demonstration of efficacy of SUN-101 over placebo was achieved in change from baseline of FEV₁ at Week 12. Statistically significant demonstration of efficacy of SUN-101 over placebo was achieved in change from baseline of FVC at Week 12. However, no statistically significant benefits of SUN-101 over

placebo were identified for other key secondary efficacy endpoints, change from baseline of SGRQ total score at Week 12 and change from baseline of rescue medication puffs per day over the double-blind period.

Table 27: Summary of the Key Efficacy Test Results

	Stud	y 301	Study 302				
Endpoints	25 mcg vs.	50 mcg vs.	25 mcg vs.	50 mcg vs.			
	Placebo	Placebo	Placebo	Placebo			
FEV_1	✓	✓	✓	✓			
FEV ₁ AUC ₍₀₋₁₂₎	×	✓					
FVC	✓	✓	✓	✓			
SGRQ	✓	×	✓	✓			
RES	×	×	×	×			

5.3 Conclusions and Recommendations

Sunovion Respiratory Development Inc. has proposed SUN-101 25 mcg twice daily (BID) for treating patients with chronic obstructive pulmonary disease (COPD) including chronic bronchitis and/or emphysema.

Effectiveness and safety of two different dosages of SUN-101 were examined with this submission: SUN-101 25 mcg BID and SUN-101 50 mcg BID. The review focused on two phase 3 studies to investigate the efficacy of SUN-101 in terms of change from baseline of FEV₁ at Week 12.

The contribution of SUN-101 over placebo for all major endpoints was directly examined. In support of the efficacy of SUN-101, patients with or without background LABA and ICS therapies or patients with severe disease showed statistically greater improvement in pre-defined change from baseline of FEV₁ at Week 12 and change from baseline of FVC at Week 12. However, statistical significance was not reached in the clinical endpoint of change from baseline of SGRQ total score and change from baseline of rescue medication puffs per Day.

Impact of missing data on the primary efficacy results were assessed using tipping point analyses assuming missing not at random. The tipping point analyses results support the primary efficacy results.

Subgroup analyses were conducted to investigate the level of consistency or heterogeneity of the treatment effect across subgroups of interest, including demographic factors age, sex, race, and baseline disease characteristics including in-check PIFR, spirometry PIFR, background LABA use, and baseline COPD severity. Almost all the subgroups have results consistent results with the overall data results except that the subgroup effects have wider confidence interval in general due to smaller sample sizes.

This submission supports effectiveness of SUN-101 25 mcg BID for the treatment of patients with COPD in terms of change from baseline of FEV $_1$ at Week 12 and change from baseline of FVC at Week 12. However, there were no statistically significant benefits of change from baseline of SGRQ total score at Week 12 or change from baseline of rescue medication puffs per day during the double-blind treatment period.

APPENDICES

Table 28: Study 301: Subgroup Analyses on Secondary Endpoint of Change from Baseline of SGRQ Total Score at week 12

	Mean I	Difference of	f SGRQ 25	mcg		Mean	Difference	of SGRQ	50 mcg		Interaction
	N	Est.	LL	UL	p-value	N	Est.	LL	UL	p-value	Test p-value
Age											0.8124
Group											
< 65	116	-3.552	-6.567	-0.537	0.0210	125	-1.416	-4.406	1.574	0.3526	
65 - 74	70	-2.593	-6.167	0.981	0.1547	61	-2.074	-5.803	1.656	0.2752	
>= 75	20	-5.178	-	2.438	0.1823	15	0.749	-7.344	8.841	0.8559	
			12.795								
Sex											0.5025
F	94	-2.543	-5.740	0.654	0.1188	90	-0.166	-3.391	3.059	0.9195	
M	112	-4.278	-7.307	-1.248	0.0057	111	-2.777	-5.842	0.288	0.0757	
Race											0.6799
White	189	-3.708	-6.018	-1.398	0.0017	183	-1.753	-4.095	0.589	0.1421	
Non-white	17	-0.497	-7.826	6.833	0.8941	18	1.686	-6.400	7.722	0.8493	
COPD											0.0662
Severity											
<30%	11	-12.205	-	-2.774	0.0113	15	1.972	-6.979	10.923	0.6654	
Predicated			21.636								
>= 30% to	80	-2.623	-6.256	1.010	0.1567	77	-2.346	-6.006	1.314	0.2086	
50%											
Predicated											
>= 50%	114	-2.906	-5.773	-0.040	0.0469	109	-1.227	-4.160	1.707	0.4118	
Predicted											

Table 29: Study 301: Subgroup Analyses on Secondary Endpoint of Change from Baseline of Rescue Medication Puffs per Day Over the Double-blind Period

	Mean I	Difference o	f RESC 25	mcg		Mean	Difference	e of RESC	50 mcg		Interaction
	N	Est.	LL	UL	p-value	N	Est.	LL	UL	p-value	Test p-value
Age											0.3710
Group											
< 65	110	-0.010	-0.467	0.446	0.9640	126	-0.425	-0.868	0.017	0.0596	
65 - 74	66	0.055	-0.497	0.607	0.8451	63	0.055	-0.499	0.609	0.8450	
>= 75	21	0.157	-0.961	1.275	0.7834	17	0.600	-0.572	1.771	0.3150	
Sex											0.3342
F	91	-0.233	-0.717	0.251	0.3455	94	-0.379	-0.854	0.096	0.1179	
M	106	0.247	-0.216	0.709	0.2952	112	-0.007	-0.464	0.450	0.9761	
Race											0.5436
White	182	-0.011	-0.360	0.338	0.9507	189	-0.238	-0.583	0.106	0.1751	
Non-white	15	0.396	-0.759	1.552	0.5008	17	0.414	-0.709	1.538	0.4690	
COPD											0.6836
Severity											
<30%	11	-0.588	-2.024	0.848	0.4215	15	0.134	-1.208	1.476	0.8445	
Predicated											
>= 30% to	77	0.106	-0.438	0.650	0.7029	77	-0.250	-0.793	0.293	0.367	
50%											
Predicated											
>= 50%	108	0.016	-0.424	0.456	0.9442	114	-0.217	-0.650	0.216	0.3247	
Predicted											

Table 30: Study 302: Subgroup Analyses on Secondary Endpoint of Change from Baseline of SGRQ Total Score at Week 12

	Mean D	Difference of	FRESC 25	mcg		Mean	Difference	of RESC	50 mcg		Interaction
	N	Est.	LL	UL	p-value	N	Est.	LL	UL	p-value	Test p-value
Age											0.7430
Group											
< 65	103	-2.973	-5.981	0.035	0.0527	117	-3.043	-5.967	-0.120	0.0414	
65 - 74	75	-3.105	-6.700	0.489	0.0903	70	-5.396	-9.034	-1.758	0.0037	
>= 75	23	-3.279	-9.632	3.074	0.3112	21	-1.531	-8.003	4.942	0.6424	
Sex											0.4171
F	85	-4.201	-7.569	-0.834	0.0146	85	-5.401	-8.785	-2.017	0.0018	
M	116	-2.250	-5.072	0.572	0.1179	123	-2.502	-5.283	0.279	0.0777	
Race											0.1382
White	176	-3.478	-5.779	-1.176	0.0031	182	-4.456	-6.733	-2.180	0.0001	
Non-white	25	0.254	-6.157	6.666	0.9379	26	2.505	-3.968	8.978	0.4475	
COPD											0.9644
Severity											
<30%	14	-2.557	-	6.098	0.5620	19	-3.257	-	4.747	0.4245	
Predicated			11.211					11.261			
>= 30% to	67	-2.377	-6.069	1.315	0.2065	74	-4.161	-7.763	-0.559	0.0236	
50%											
Predicated											
>= 50%	120	-3.549	-6.361	-0.736	0.0135	115	-3.581	-6.437	-0.724	0.0141	
Predicted											

Table 31: Study 302: Subgroup Analyses on Secondary Endpoint of Change from Baseline of Rescue Medication Puffs per Day Over the Double-blind Period

Subgroup	Mean I	Difference of	f RESC 25	mcg		Mean	Difference	e of RESC	50 mcg		Interaction
RESC	N	Est.	LL	UL	p-value	N	Est.	LL	UL	p-value	Test p-value
Age Group				-				-			0.2243
< 65	97	-0.484	-0.968	0.000	0.0501	108	-0.350	-0.820	0.119	0.1432	
65 - 74	75	-0.045	-0.631	0.541	0.8801	67	-0.213	-0.814	0.388	0.4867	
>= 75	23	0.160	-0.868	1.188	0.7605	19	0.895	-0.178	1.968	0.1019	
Sex											0.8651
F	83	-0.330	-0.871	0.210	0.2300	79	-0.109	-0.655	0.438	0.6968	
M	112	-0.246	-0.712	0.220	0.3004	115	-0.218	-0.680	0.244	0.3546	
Race											0.3718
White	167	-0.242	-0.617	0.132	0.2044	169	-0.217	-0.590	0.156	0.2533	
Non-white	28	-0.762	-1.832	0.307	0.1622	25	-0.036	-1.127	1.055	0.9486	
COPD Severity											0.8646
<30% Predicated	16	0.316	-0.952	1.583	0.6249	15	-0.009	-1.280	1.263	0.9895	
>= 30% to 50% Predicated	69	-0.328	-0.911	0.254	0.2691	66	-0.083	-0.670	0.505	0.7822	
>= 50% Predicted	110	-0.355	-0.812	0.102	0.1280	113	-0.244	-0.698	0.211	0.2931	

Figure 15: Study 301 25 mcg Arm: Subgroup Analyses on Secondary Endpoint of Change from Baseline of SGRQ Total Score at week 12

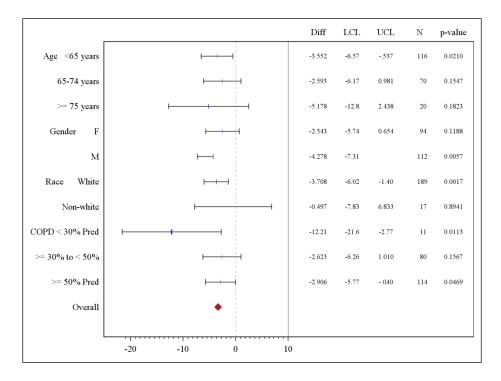


Figure 16: Study 301 50 mcg Arm: Subgroup Analyses on Secondary Endpoint of Change from Baseline of SGRQ Total Score at week 12

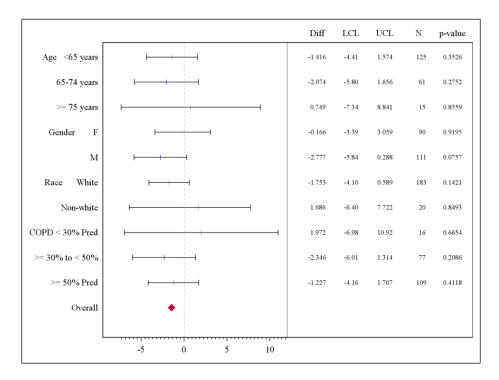


Figure 17: Study 301 25 mcg Arm: Subgroup Analyses on Secondary Endpoint of Change from Baseline of Rescue Medication Puffs per Day Over the Double-blind Period

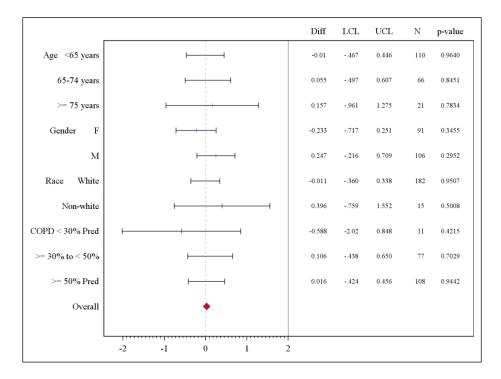


Figure 18: Study 301 50 mcg Arm: Subgroup Analyses on Secondary Endpoint of Change from Baseline of Rescue Medication Puffs per Day Over the Double-blind Period

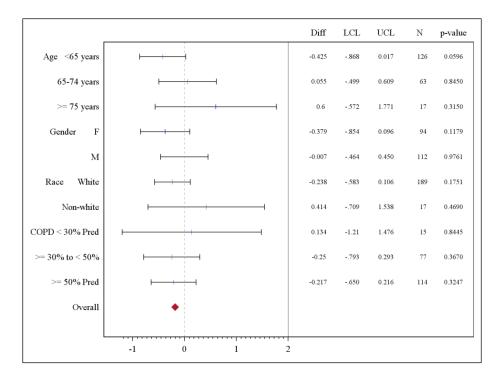


Figure 19: Study 302 25 mcg Arm: Subgroup Analyses on Secondary Endpoint of Change from Baseline of SGRQ Total Score at Week 12

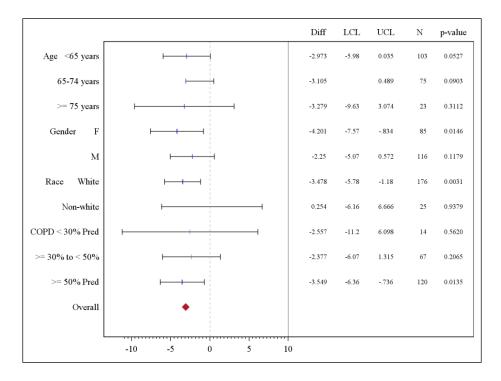


Figure 20: Study 302 50 mcg Arm: Subgroup Analyses on Secondary Endpoint of Change from Baseline of SGRQ Total Score at Week 12

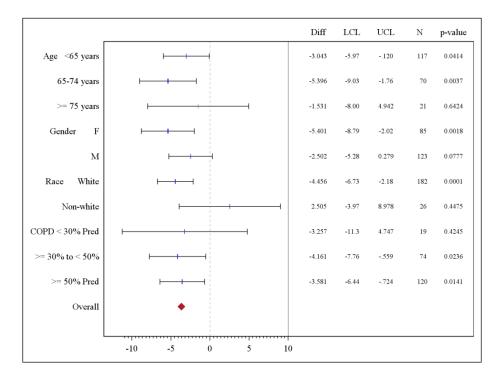


Figure 21: Study 302 25 mcg Arm: Subgroup Analyses on Secondary Endpoint of Change from Baseline of Rescue Medication Puffs per Day Over the Double-blind Period

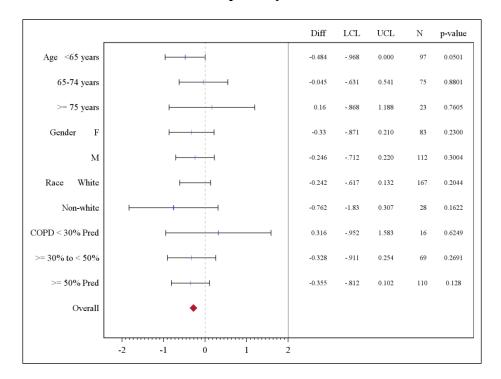
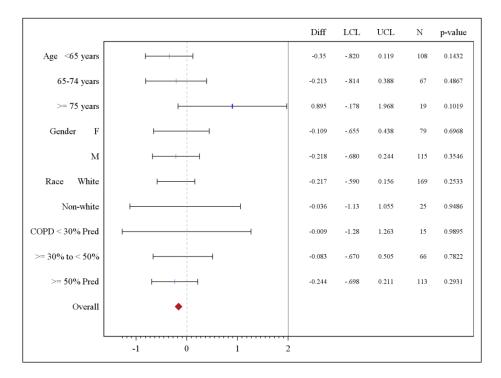



Figure 22: Study 302 50 mcg Arm: Subgroup Analyses on Secondary Endpoint of Change from Baseline of Rescue Medication Puffs per Day Over the Double-blind Period

This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

/s/

MINGYU XI
05/26/2017

SHANTI V GOMATAM
05/26/2017