CENTER FOR DRUG EVALUATION AND RESEARCH

Approval Package for:

APPLICATION NUMBER: 006488Orig1s027

Trade Name: Xylocaine (lidocaine hydrochloride) Solutions for Local Anesthesia in Dentistry

Generic or lidocaine hydrochloride with or without epinephrine Proper Name:

Sponsor: \quad Astra Pharmaceutical Products Inc.
Approval Date: 12/12/1984

Indication:

Xylocaine (lidocaine hydrochloride) Solutions for Local Anesthesia in Dentistry are indicated for production of local anesthesia by nerve block or infiltration techniques.

CENTER FOR DRUG EVALUATION AND RESEARCH

APPLICATION NUMBER:
 NDA 006488/S-027

CONTENTS
Reviews / Information Included in this NDA Review.

Approval Letter	x
Other Action Letters	x
Labeling	
REMS	
Summary Review	
Officer/Employee List	
Office Director Memo	
Cross Discipline Team Leader Review	
Medical Review(s)	
Chemistry Review(s)	
Environmental Assessment	
Pharmacology Review(s)	
Statistical Review(s)	
Microbiology Review(s)	
Clinical Pharmacology/Biopharmaceutics Review(s)	
Other Reviews	
Risk Assessment and Risk Mitigation Review(s)	
Proprietary Name Review(s)	x
Administrative/Correspondence Document(s)	

CENTER FOR DRUG EVALUATION AND RESEARCH

APPLICATION NUMBER:
NDA 006488/S-027

APPROVAL LETTER

1.0n 6-400/5-027

Astra Phamaceutical protucts Inc.
Ctis Street
lestborough, hid 01501
Attention: fruce R. Jannom
Centlenen:
Please refor to your supplewental new erus aplication dated april 30 , 1981, resubnitted January 27,1903 pursuan to section $505(b)$ of the Foderal Food, Drug, and cosnctic Act for Sylocaine (lisocalne le?) Solutions for Local Anesthesia in lentistry.

He acknovleoge your final printed labeling dated Septerver 2.1, 1024 and received by the Dfvision on Septeder 25,1004 .

The supplowent $(\$-027)$ provices for revised labeling to confom with 21 CFR 201.50 and 207.57 (Labellng Fomat Revision) and with the Lecal Anesthetic lumen Prescription Drugs Class Labeling Cuiceline for Professional Labeling.

We have corpleted our revion of this supplerental applicetion and it is approved. Cur letter of Decerber 4,1972 detalied the conditions relating to the approval of this application.

Patricia h. Russell, H.D. Acting Director bivision of Surgical-Dental
irug Products
Office of brug Research and Revien Conter for Urugs and Biologics
CC: $\operatorname{BOS}-10$ (HFR-1100)
NDA 6-488
AFH-160
WFN-240
HFN-83
Doc. Roon 160

R/D init by PHRussell 12/10/84, CPHoiberg 12/7/84, JKInscoe 12/7/84, HLDickstein 12/10/84, GBoyer 12/7/84
FT td W1416Y 12/10/84
APPROVAL

CENTER FOR DRUG EVALUATION AND RESEARCH

APPLICATION NUMBER:
NDA 006488/S-027

LABELING

Xylocaine (lidocaine hydrochloride) Solutions for Local Anesthesia in Dentistry

OESCRIPTION
Xyiocaine liddocaine HCll solutions are sterile Isotonic solutions that contain a local anesthetic agent with and without epinephrine las bitartrate) and are administered parenterally by injection See INDICA TIONS AND USAGE for specific uses The quantitative composition of each avallable solutions is shown in Table 1
xylocaine solutions contain lidocaine HCl which is chemically
designated as acetamide. 2 -diethylamino $\mathrm{N} \cdot \mathrm{-2} .6$-dimethylpheny
monohydrochioride and has the following sttuctural formuia

Epinephrineis $(-1-3.4$-Dihydroxy - - -1 imethylamino

Table 1. Composition of Available Solutions
FORMULA

Xylocaine	Epinephrine	SINGLE DOSE CARTRIDGES			MULTIPLE DOSE VIALS			
llidocaine HCl Concentration \%	las the bitartiate) (dilution)	$\begin{gathered} \text { Citric } \\ \text { Acid } \\ (\mathrm{mg} / \mathrm{ml}) \end{gathered}$	Sodium Chioride ($\mathrm{mg} / \mathrm{ml}$)	Sodium Metabisullite ($\mathrm{mg} / \mathrm{ml}$)	Citric Acid (mg/mi)	Sodium Chioride (mg/ml)	Methylparaben (mg/ml)	Sodium Metabisulfite ($\mathrm{mg} / \mathrm{ml}$)
$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { None } \\ & 1100000 \\ & 150,000 \end{aligned}$	$\begin{gathered} \text { None } \\ 0.2 \\ 0.2 \end{gathered}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & 60 \end{aligned}$	$\begin{gathered} \text { None } \\ 0.5 \\ 0.5 \end{gathered}$	$\begin{aligned} & \text { None } \\ & 0.2 \\ & \text { NS } \end{aligned}$	$\begin{aligned} & 6.0 \\ & 60 \\ & \text { NS } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & \text { NS } \end{aligned}$	$\begin{aligned} & \text { None } \\ & 0.5 \\ & \text { NS } \end{aligned}$

NS - Not Supplied.
NOTE The pH of all solutions is adjusted to USP limits with sodium hydroxide and/or hydrochloric acid.

CLINICAL PHARMACOLOGY

Mechanism of action Lidocaine stabilizes the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses, thereby effecting local anesthetic action.
Onset and duratton of anesthesia When used for infiltration anesthesia in dental patients. the time of onset averages less than 2 minutes for Xylocaine 2% Solution and Xylocaine 2% Solutions with epine phrine Xylocaine 2% Solution provides an average pulp anesthesia of 5 minutes. Xylocaine 2% Solutions with epinephrine $1: 100,000$ or $1: 50,000$ provide an average pulp anesthesia of at least 60 minutes with an average duration of soft tissue anesthesia of approximately 2.5 hours.
When used for nerve block in dental patients the time of onset of Xylocaine 2% Solution with epinephrine averages $2-4$ minutes. Xylocaine 2% Solutions with epinephrine $1: 100,000$ or $1: 50,000$ provide an average pulp anesthesia of at least 90 minutes with an average duration of soft tissue anesthesia of 3.25 hours.
Hemodynamics Excessive blood levels may cause changes in cardiac output. total peripheral resistance, and mean arterial pressure. These changes may be attributable to a direct depressant effect of the local anesthetic agent on various components of the cardiovascular system and/or the beta-adrenergic receptor stimulating action of epinephrine when present.
Pharmacokinetics and metabolism. Information derived from diverse formulations, concentrations and usages reveals that lidocaine is completely absorbed following parenteral administration, its rate of absorption depending, for example, upon various factors such as the site of administration and the presence or absence of a vasoconstrictor agent. Except for intravascular administration, the highest blood levels are obtained following intercostal nerve block and the lowest after subcutaneous administration.
The plasma binding of lidocaine is dependent on drug concentration, and the fraction bound decreases with increasing concentration. At concentrations of 1 to $4 \mu \mathrm{~g}$ of free base per mi. 60 to 80 percent of lidocaine is protein bound. Binding is also dependent on the plasma concentration of the alphat-acid glycoprotein.
Lidocaine crosses the blood-brain and placental barriers. presumably by passive diffusion.
Lidocaine is metabolized rapidly by the livet and metabolites and unchanged drug are excreted by the kidneys. Biotransformation includes oxidative N -dealikylation, ring hydroxylation, cleavage of the amide linkage. and conjugation. N-deaikylation, a major pathway of biotranslormation, yields the metabolites monoethyiglycinexylidide and glycinexylidide. The pharmacological/toxicological actions of these metabolites are similar to, but less potent than those of lidocaine. Approximately 90% of lidocaine administered is excreted in the form of various metabolites, and less than 10% is excreted unchanged. The primary metabolite in urine is a conjugate of 4 -hydroxy-2.6-dimethylaniline.
Studies of lidocaine metabolism following intravenous bolus injections have shown that the elimination half-life of this agent is typically 1.5 to 2.0 hours. Because of the rapid rate at which lidocaine is metabolized, any condition that affects liver function may alter lidocaine kinetics. The half-life may be prolonged two-fold or more in patients with liver dysfunction. Renal dysfunction does not affect lidocaine kinetics but may increase the accumulation of metabolites
Factors such as acidosis and the use of CNS stimulants and depressants aftect the CNS levels of lidocaine required to produce overt systemic effects. Objective adverse manitestations become increas ingly apparent with increasing venous plasma levels above $6.0 \mu \mathrm{~g}$ free base per mi. In the thesus monkey, arterial blood levels of $18-21 \mu \mathrm{~g} / \mathrm{ml}$ have been shown to be threshoid for convulsive activity INDICATIONS AND USAGE
Xylocaine (lidocaine HCl Solutions are indicated for production of local anesthesia by nerve block or infiltration techniques. Only accepted procedures for these techniques as described in standard lextbooks are recommended.

CONTRAINDICATIONS

Lidocaine HCl is contraindicated in patients with a known history of hypersensitivity to local anesthetics of the amide type.
WARNINGS
OENTAL PRACTITIONERS WHO EMPLOY LOCAL ANESTHETIC AGENTS SHOULD BE WELL VERSED IN DIAGNOSIS AND MANAGEMENT OF EMERGENCIES WHICH MAY ARISE FROM THEIR USE RESUSCITATIVE EQUIPMENT. OXYGEN AND OTHER RESUSCITATIVE DRUGS SHOULD BE AVAILABLE FOR IMMEDIATE USE
To minimize the likelihood of intravascular injection, aspiration should be performed before the local anesthetic solution is injected if blood is aspirated, the needie must be repositioned until no return of blood can be elicited by aspiration Note. however, that the absence of blood in the syringe does not assure that intravascular injection will be avoided.
PRECAUTIONS
Generat The safety and effectiveness of lidocaine depend on proper dosage. correct technique, adequate precautions, and readiness for emergencies. Standard textbooks should be consulted for specific techniques and precautions for various regional anesthetic procedures. Resuscitative equipment, oxygen, and other resuscitative drugs should be available for immediate use. (See WARNINGS and ADVERSE REACTIONS.) The lowest dosage that results in effective anesthesia should be used to avoid high plasma levels and serious adverse effects. Repeated doses of lidocaine may cause significan patients. acutely ill patients, and children should be given reduced doses commensurate with their age and physical condition. Lidocaine should also be used with caution in patients with severe shcck or heart block.

Local anesthetic solutions containing a vasoconstrictor should be used cautiously in areas of the body supplied by end arteries or having otherwise compromised blood supply. Patients with peripheral vascular disease and those with hypertensive vascular disease may exhibit exaggerated vasoconstrictor response. Ischemic injury or necrosis may result. Preparations containing a vasoconstrictor should be used with caution in patients during or following the administration of potent general anesthetic agents. since cardiac arrhythmias may occur under such conditions.
Cardiovascular and respiratory ladequacy of ventilation) vital signs and the patient's state of consciousness should be monitored after each local anesthetic injection. Restlessness, anxiety, tinnitus. dizziness. blurred vision. tremors, depression or drowsiness should alert the practitioner to the possibility of central nervous system toxicity. Signs and symptoms of depressed cardiovascular function may and of a local anesthetic. ISee ADVERSE REACTIONS. Cardiovascular System). Since amide-type local anesthetics are metabolized by the liver, lidocaine should be used with caution in patients with hepatic disease.
Patients with severe hepatic disease, because of their inability to metabolize local anesthetics normally. are at greater risk of developing toxic plasma concentrations. Lidocaine should also be used with caution in patients with impaired cardiovascular function

Many drugs used during the conduct of anesthesia are considered potential triggering agents for familial malignant hyperthermia Since it is not known whether amide-type local anesthetics may trigger this reaction and since the need for supplemental general anesthesia cannot be predicted in advance, it is suggested that a standard protocol for management should be available, Early unexplained signs of tachycardia. tachypnea. labile blood pressure and metabolic acidosis may precede temperature elevation. Successful outcome is dependent on early diagnosis, prompt discontinuance of the suspect triggering agentis) and prompt treatment. including oxygen therapy. dantrolene (consult dantrolene sodium intravenous package insert before using) and other supportive measures.
Lidocaine should be used with caution in persons with known drug sensitivities. Patients allergic to para-aminobenzoic acid derivatives (procaine, tetracaine, benzocaine, etc.) have not shown cross sensitivity to lidocaine.
Use in the Head and Neck Area: Small doses of local anesthetics injected into the head and neck area, including retrobulbar, dental and stellate ganglion blocks, may produce adverse reactions similar to systemic toxicity seen with unintentional intravascular injections of larger doses. Confusion, convulsions, respiratory depression and/or respiratory arrest, and cardiovascular stimulation or depression
 and respiration monitored and be constantly observed. Resuscitative equipment and personnel for treating adverse reactions should be immediately available. Dosage recommendations should not be ex ceeded. (See DOSAGE AND ADMINISTRATION
Information for Patients-The patient should be informed of the possibiilty of temporary loss of sensation and muscle function following infiltration or nerve block injections.
The patient should be advised to exert caution to avoid inadvertent trauma to the lips, tongue, cheek mucosae or soft palate when these structures are anesthetized. The ingestion of food shouid therefore be postponed until normal function returns. The patient should be advised to consult the dentist if anesthesia persists or if a rash develops.
Clinically significant drug interactions. The administration of local anesthetic solutions containing epinephrine or norepinephrine to patients receiving monoamine oxidase inhibitors, tricyclic antidepressants or phenothiazines may produce severe, prolonged hypotension or hypertension. Concurrent use of these agents should generally be avoided. In situations when concurrent therapy is necessary

Concurrent administration of vasopressor drugs and ergot-type oxytocic drugs may cause severe, persistent hypertension or cerebrovascular accidents.
Drug/Laboratory test interactions: The intramuscular injection of lidocaine may result in an increase in creatine phosphokinase levels. Thus, the use of this enzyme determination, without isoenzyme separation, as a diagnostic test for the presence of acute myocardial infarction may be compromised by the intramuscular injection of lidocaine.
Carcinogenesis, mutagenesis, impairment of fertility: Studies of lidocaine in animals to evaluate the carcinogenic and mutagenic potential or the effect on fertility have not been conducted.

Pregnancy Teratogenic Eftects. Pregnancy Category B. Reproduction studies have been performed in rats at doses up to 6.6 times the human dose and have tevealed no evidence of harm to the fetus caused by lidocaine. There are, however no adequate and well-controlled studies in pregnant women. Animal reproduction studies are not always predictive of human response General consideration should be given to this fact before administering lidocaine to women of chiidbearing potential, especially during early pregnancy when maximum organogenesis takes place
Nursing mothers. It is not known whether this drug is excreted in human milk. Because many drugs are excreted in human milk. caution should be exercised when lidocaine is administered to a nursing woman

Pediatric use Dosages in children should be reduced commensurate with age. body weight and physical condition. See DOSAGE AND ADMINISTRATION
adverse reactions
Adverse experiences following the administration of lidocaine are similar in nature to those observed with other amide local anesthetic agents. These adverse experiences are. in general. dose-related and may result from high plasma levels caused by excessive dosage. rapid absorption or unintended intravascular injection. or may result trom a hypersensitivity idiosyncrasy or diminished tolerance on the part of the patient. Serious adverse experiences are generally systemic in nature. The following types are those most commonly reported
Central nervous system CNS manifestations are excitatory and/or depressant and may be characterized by lightheadedness. nervousness. apprehension euphoria. confusion, dizziness, drowsiness timnitus. blurred or double vision vomiting, sensations of heat. cold or numbness, twitching, tremors. convulsions. unconsciousness, respiratory depression and arrest. The excitatory manitestations may oe very briet or may not occur at all. in which case the first manifestation of toxicity may be drowsiness merging into unconsciousness and respiratory arrest
Drowsiness following the administration of lidocaine is usually an earty sign of a high blood level of the drug and may occur as a consequence of rapid absorption
Cardiovascular system Cardiovascular manifestations are usually depressant and are characterized by bradycardia. hypotension. and cardiovascular collapse. which may lead to cardiac arrest
Signs and symptoms of depressed cardiovasculat function may commonly result from a vasovagal reaction. particularly if the patient is in an upright position. Less commonly, they may result trom a direct
 of intiavenous tluids and when appropriate a vasopessor (e e ephedrine) as directed by the clinical situation
Allergic. Allergic reactions are characterized by cutaneous lesions. urticaria. edema or anaphylactoid reactions. Allergic reactions as a result of sensitivity to lidocaine are extremely rare and. if they occur. should be managed by conventional means. The detection of sensitivity by skin testing is of doubtful value.
Neurofogic. The incidences of adverse reactions (e. 9 . persistent neurologic deficit) associated with the use of local anesthetics may be related to the technique employed, the tolal dose of local anesthetic administered. the particular drug used, the route of administration, and the physical condition of the patient.
OVERDOSAGE
Acute emergencies trom local anesthetics are generally related to high plasma levels encountered during therapeutic use of local anesthetics or to unintended subarachnoid injection of local anesthetic solution isee ADVERSE REACTIONS. WARNINGS and PRECAUTIONS).
Management of local anesthetic emergencies. The first consideration is prevention. best accomplished by careful and constant monitoring of cardiovascula and respiratory vital signs and the patient's state of consciousness atter each local anesthetic injection At the first sign of change. oxygen should be administered.

The first step in the management of convulsions consists of immediate attention to the maintenance of a patent airway and assisted or controlled ventilation with oxygen and a delivery system capable of permitting immediate positive airway pressure by mask. Immediately after the institution of these ventiatory measures, the adequacy of the circulation should be evaluated, keeping in mind that drugs used to treat convulsions sometimes depress the circulation when administered intravenously. Should convulsions persist despite adequate respiratory support. and it the status of the circuiation permits. Smali increments of an ultra short acting barbiturate isuch as thiopental or thiamyiali or a benzodiazepine isuch as diazepam) may be administered intravenousty The clinician should be familiar prior to use of local anesthetics, with these anticonvulsant drugs. Supportive treatment of circulatory depression may require administration of intiavenous fluids and. when appropriate a vasopressor as directed by the clinical situation (e.g. ephedrine).

If not treated immediately, both convulsions and cardiovascular depression can result in hypoxia acidosis, bradycardia. arhythmias and cardiac arrest. If cardiac arrest should occur, standard cardiopulmonary resuscitative measures should be instituted
Endotracheal intubation, employing drugs and techniques familiar to the clinician. may be indicated, after initial administration of oxygen by mask. if difficulty is encountered in the maintenance of a patent airway or if prolonged ventilatory support (assisted or controiled) is indicated.
Dialysis is of negligible value in the treatment of acute overdosage with lidocaine.
The intravenous $L \mathrm{~L}_{50}$ of lidocaine HCl in termale mice is $26(21.31) \mathrm{mg} / \mathrm{kg}$ and the subcutaneous LD_{50} is $264(203.304) \mathrm{mg} / \mathrm{kg}$.

DOSAGE AND ADMINISTRATION

When used for local anesthesia in dental procedures the dosage of Xylocaine (lidocaine HCI Solution depends on the physical status of the patient. the area of the oral cavity to be anesthetized, the vascularity of the oral tissues, and the technique of anesthesia. The least volume of solution that results in effective local anesthesia should be administered. time should be allowed between injections to observe the patient for manifestations of an adverse reaction. For specific techniques and procedures of a local anesthesia in the oral cavity, refer to standard textbooks.
For most routine dental procedures. Xylocaine Solution 2% with epinephrine $1: 100,000$ is preferred. However, when greater depth and a more pronounced hemostasis are required, a $1: 50,000$ epinephrine concentration should be used

Dosage requirements should be determined on an individual basis. In oral infiltration and/or mandibular block, initial dosages of $1.0-5.0 \mathrm{ml}(1 / 2.21 / 2$ cartridges) of Xylocaine Solution 2% with epinephrine $1: 50,000$ or $1: 100,000$ are usually effective.

In children under 10 years of age it is rarely necessary to administer more than one-half cartridge ($0.9-1.0 \mathrm{ml}$ or $18-20 \mathrm{mg}$) of Xylocaine Solution per procedure to achieve local anesthesia for a procedure involving a single tooth. In maxillary infiltration, this amount will often suffice to the treatment of two or even three teeth. In the mandibular block, however, satisfactory anesthesia achieved with this amount of drug will allow treatment of the teeth in an entire quadrant.

Aspiration is recommended since it reduces the possibility of intravascular injection, thereby keeping the incidence of side effects and anesthetic failures to a minimum.
NOTE: Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration whenever the solution and container permit. Solutions that are discolored and/or contain particulate matter should not be used.
Any unused portion of a cartridge of Xylocaine Solution should be discarded

Maximum recommended dosages

Aduit

4. For normal healthy adults, the individual dose of lidocaine HCl with epinephrine should be kept below 500 mg and in any case should not exceed $7 \mathrm{mg} / \mathrm{kg}(3.2 \mathrm{mg} / \mathrm{bb})$ of body weight. When used without epinephrine, the amount of lidocaine HCl administered should be kept below 300 mg and in any case should not exceed $4.5 \mathrm{mg} / \mathrm{kg}(2 \mathrm{mg} / \mathrm{b})$ of body weight.
Pediatric
It is difficuilt to recommend a maximum dose of any drug for children since this varies as a function of age and weight. For children of less than ten years who have a normal lean body mass and normal body development. the maximum dose may be determined by the application of one of the standard pediatric drug formulas le.g. Clark's rule). For example, in a child of five years weighing 50 los. the dose of lidocaine should not exceed $75-10 n \mathrm{mg}$ when calculated according to Clark's rule. In any case, the maximum dose of Xylocaine Solution with epinephrine should not exceed $7 \mathrm{mg} / \mathrm{kg}(3.2 \mathrm{mg} / \mathrm{lb})$ of body weight. When used without epinephrine, the amount of Xylocaine Solution administered should not exceed $4.5 \mathrm{mg} / \mathrm{kg}(2.0 \mathrm{mg} / \mathrm{b})$ of body weight.

HOW SUPPLIED

Xylocaine (lidocaine HCl) 2% Solution
Cartridges. 18 ml . 100 per carton (NDC 0186-0170-14
Xylocaine (lidocaine HCl) 2% Solution with Epinephrine 1:100.000
Xylocaine (lidocaine HCl$) 2 \%$ Solution with Epinephrine 1.50,00 Muttiple dose vials. 20 ml (NDC $0186 \cdot 0120.01$)
Sterilization: Storage and Technical Procedures

1. Cartridges should not be autoclaved, because the closures employed cannot withstand autoclaving temperatures and pressures. Vials containing lidocaine HCl solutions without epinephrine may be autoclaved repeatedly if necessary.
2. If chemical disinfection of anesthetic cartridges is desired. either pure undiluted isopropyl alcohol (91%) or 70% ethyl alcohol U.S.P. is recommended. Many commercially available brands of rubbing alcohol, as well as solutions of ethyl alcohol not of U.S.P. grade. contain denaturants that are injurious to rubber and, therefore, are not to be used. It is recommended that chemical disinfection be accomplished just prior to use by wiping the cartridge cap thoroughly with a pledget of cotton that has been moistened with recommended alcohol,
3. Certain metallic ions (mercury, zinc. copper etc.) have been related to swelling and edema after local anesthesia in dentistry. Therefore, chemical disinfectants containing or releasing these ions are not recommended. Antirust tablets usually contain sodium nitrite or some similar agents that may be capable of releasing metal ions. Because of this, aluminum sealed cartridges should not be kept in such solutions.
4. Ouaternary ammonium salts, such as benzalkonium chloride, are electrolytically incompatible with aluminum. Cartridges of Xylocaine (lidocaine HCl) Solutions are sealed with aluminum caps and there fore should not be immersed in any solution containing these salts.
5. To avoid leakage of solutions during injection, be sure to penetrate the center of the rubber diaphragm when loading the syringe. An off-center penetration produces an oval shaped puncture that allows leakage around the needle.
6. Cracking of glass cartridges is most often the resuit of an attempt to use a cartridge with an extruded plunger. An extruded plunger loses its lubrication and can be forced back into the cartridge only with difficulty. Cartridges with extruded plungers should be discarded
7. Store at controlled room temperature: $15^{\circ}-30^{\circ} \mathrm{C}\left(59^{\circ}-86^{\circ} \mathrm{F}\right)$

CENTER FOR DRUG EVALUATION AND RESEARCH

APPLICATION NUMBER:

NDA 006488/S-027

ADMINISTRATIVE and CORRESPONDENCE DOCUMENTS

ANTTRA Astra Pharmaceutical Products Inc.

ND 6-488/S-027

Xylocaine (lidocaine HC1) Solutions for Local Anesthesia in Dentistry

FINAL PRINTED LABELING

September 21, 1984

Center for Drugs and Biologics, HFN-160
Attention: Document Control Room, $\overline{\beta F 18 \mathrm{~B}}-03$
5600 Fishers Lane
Rockville, Maryland 20857
Gentlemen:
Reference is made to our Supplemental New Drug Application 6-488/S-027 submitted on April 30, 1981 and resubmitted on January 27, 1983 which provides for revised labeling to conform with 21 CR 201.56 and 201.57 (Labeling Format Revision) and with the Local Anesthetic Human Prescription Drugs Class Labeling Guideline for Professional Labeling.

Please refer also to your letter of March 16,1984 in which you requested that certain changes be included in the final printed package insert.

We have revised the package insert in accordance with your letter. We have also decided to include under Precautions, the subsection Use in the Head and Neck Area as previously requested by the Agency.

Enclosed are twelve (12) copies of printed labeling, eight (8) copies are unbound as required by regulation.

Thank you for your continuing review of our application.
Sincerely,

David J. Pizzi

Drug Regulatory Affairs

DJP/j1s
Enclosures

