• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail

Search Publications



Starting Date

Ending Date

Order by

Entry Details

Am J Pathol 2005 Jun;166(6):1871-81

Anthrax lethal toxin induces endothelial barrier dysfunction.

Warfel JM, Steele AD, D'Agnillo F

D'Agnillo F, US FDA, Ctr Biol Evaluat & Res, Div Hematol, Lab Biochem & Vasc Biol, 29 Lincoln Dr,Bldg 29,Rm 129, Bethesda, MD 20892 USA US FDA, Ctr Biol Evaluat & Res, Div Hematol, Lab Biochem & Vasc Biol, Bethesda, MD 20892 USA


Hemorrhage and pleural effusion are prominent pathological features of systemic anthrax infection. We examined the effect of anthrax lethal toxin (LT), a major virulence factor of Bacillus anthracis, on the barrier function of primary human lung microvascular endothelial cells. We also examined the distribution patterns of cytoskeletal actin and vascular endothelial-cadherin (VE-cadherin), both of which are involved in barrier function regulation. Endothelial monolayers cultured on porous membrane inserts were treated with the LT components lethal factor (LF) and protective antigen (PA) individually, or in combination. LT induced a concentration- and time-dependent decrease in transendothelial electrical resistance that correlated with increased permeability to fluorescently labeled albumin. LT also produced a marked increase in central actin stress fibers and significantly altered VE-cadherin distribution as revealed by immunofluorescence microscopy and cell surface enzyme-linked immunosorbent assay. Treatment with LF, PA, or the combination of an inactive LF mutant and PA did not alter barrier function or the distribution of actin or VE-cadherin. LT-induced barrier dysfunction was not dependent on endothelial apoptosis or necrosis. The present findings support a possible role for LT-induced barrier dysfunction in the vascular permeability changes accompanying systemic anthrax infection.

Category: Journal Article, Peer
PubMed ID: #15920171
Includes FDA Authors from Scientific Area(s): Biologics
Entry Created: 2011-10-04 Entry Last Modified: 2012-08-29