• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail
-

Search Publications



Fields



Centers











Starting Date


Ending Date


Order by

Entry Details

Infect Immun 2005 Nov;73(11):7406-12

Analysis of a Heme-Dependent Signal Transduction System in Corynebacterium diphtheriae: Deletion of the chrAS Genes Results in Heme Sensitivity and Diminished Heme-Dependent Activation of the hmuO Promoter.

Bibb LA, King ND, Kunkle CA, Schmitt MP

Schmitt MP, US FDA, Ctr Biol Evaluat & Res, DBPAP, Lab Bacterial Toxins, Bldg 29,Room 108,8800 Rockville Pike, Bethesda, MD 20892 USA US FDA, Ctr Biol Evaluat & Res, DBPAP, Lab Bacterial Toxins, Bethesda, MD 20892 USA

Abstract

The Corynebacterium diphtheriae hmuO gene encodes a heme oxygenase that is involved in the utilization of heme as an iron source. Transcription of hmuO is activated by heme or hemoglobin and repressed by iron and DtxR. Previous studies with Escherichia coli showed that heme-dependent transcriptional activation of an hmuO promoter-lacZ fusion was dependent on the cloned C. diphtheriae chrA and chrS genes (chrAS), which encode the response regulator and sensor kinase, respectively, of a two-component signal transduction system. In this study, nonpolar deletions in the chrAS genes were constructed on the chromosome of C. diphtheriae. Mutations in chrAS resulted in marked reduction in heme-dependent transcription of hmuO, which indicates that the ChrA/S system is a key regulator at the hmuO promoter. However, low but significant levels of heme-specific transcriptional activity were observed at the hmuO promoter in the chrAS mutants, suggesting that an additional heme-dependent activator is involved in hmuO expression. The chrAS mutants were also sensitive to heme, which was observed only in stationary-phase cultures and correlated with reduced cell viability. The heme sensitivity of the mutants was not due to reduced expression of hmuO, and these results suggest that additional factors controlled by the ChrA/S system may be involved in protection against heme toxicity. Transcriptional analysis of the chrAS operon revealed that it was not autoregulated or affected by iron or heme levels.


Category: Journal Article, Peer
PubMed ID: #16239540
PubMed Central ID: #PMC1273899
Includes FDA Authors from Scientific Area(s): Biologics
Entry Created: 2011-10-04 Entry Last Modified: 2012-08-29
Feedback
-
-