• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail
-

Search Publications



Fields



Centers











Starting Date


Ending Date


Order by

Entry Details

Brain Path 2010 Mar;20(2):419-30

PET of brain prion protein amyloid in Gerstmann-Sträussler-Scheinker disease.

Kepe V, Ghetti B, Farlow MR, Bresjanac M, Miller K, Huang SC, Wong KP, Murrell JR, Piccardo P, Epperson F, Repovs G, Smid LM, Petric A, Siddarth P, Liu J, Satyamurthy N, Small GW, Barrio JR.

Abstract

In vivo amyloid PET imaging was carried out on six symptomatic and asymptomatic carriers of PRNP mutations associated with the Gerstmann-Sträussler-Scheinker (GSS) disease, a rare familial neurodegenerative brain disorder demonstrating prion amyloid neuropathology, using 2-(1-{6-[(2-[F-18]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile ([F-18]FDDNP). 2-Deoxy-2-[F-18]fluoro-d-glucose PET ([F-18]FDG) and magnetic resonance imaging (MRI) scans were also performed in each subject. Increased [F-18]FDDNP binding was detectable in cerebellum, neocortex and subcortical areas of all symptomatic gene carriers in close association with the experienced clinical symptoms. Parallel glucose metabolism ([F-18]FDG) reduction was observed in neocortex, basal ganglia and/or thalamus, which supports the close relationship between [F-18]FDDNP binding and neuronal dysfunction. Two asymptomatic gene carriers displayed no cortical [F-18]FDDNP binding, yet progressive [F-18]FDDNP retention in caudate nucleus and thalamus was seen at 1- and 2-year follow-up in the older asymptomatic subject. In vitro FDDNP labeling experiments on brain tissue specimens from deceased GSS subjects not participating in the in vivo studies indicated that in vivo accumulation of [F-18]FDDNP in subcortical structures, neocortices and cerebellum closely related to the distribution of prion protein pathology. These results demonstrate the feasibility of detecting prion protein accumulation in living patients with [F-18]FDDNP PET, and suggest an opportunity for its application to follow disease progression and monitor therapeutic interventions.


Category: Journal Article
PubMed ID: #19725833
Includes FDA Authors from Scientific Area(s): Biologics
Entry Created: 2011-10-04 Entry Last Modified: 2012-08-29
Feedback
-
-