• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail

Search Publications



Starting Date

Ending Date

Order by

Entry Details

J Virol 2013 Feb;87(4):2278-86

No evidence of xenotropic murine leukemia virus-related virus transmission by blood transfusion from infected rhesus macaques.

Williams DK, Galvin TA, Gao Y, O'Neill C, Glasner D, Khan AS


The discovery of xenotropic murine leukemia virus-related virus (XMRV) in human tissue samples has been shown to be due to virus contamination with a recombinant murine retrovirus. However, due to the unknown pathogenicity of this novel retrovirus and its broad host range, including human cell lines, it is important to understand the modes of virus transmission and develop mitigation and management strategies to reduce the risk of human exposure and infection. XMRV transmission was evaluated by whole-blood transfusion in rhesus macaques. Monkeys were infected with XMRV to serve as donor monkeys for blood transfers at weeks 1, 2, and 3 into naïve animals. The donor and recipient monkeys were evaluated for XMRV infection by nested PCR assays with nucleotide sequence confirmation, Western blot assays for development of virus-specific antibodies, and coculture of monkey peripheral blood mononuclear cells (PBMCs) with a sensitive target cell line for virus isolation. XMRV infection was demonstrated in the virus-injected donor monkeys, but there was no evidence of virus transmission by whole-blood transfusion to naïve monkeys based upon PCR analysis of PBMCs using XMRV-specific gag and env primers, Western blot analysis of monkey plasma up to 31 to 32 weeks after transfusion, and coculture studies using monkey PBMCs from various times after transfusion. The study demonstrates the lack of XMRV transmission by whole-blood transfusion during the acute phase of infection. Furthermore, analysis of PBMC viral DNA showed extensive APOBEC-mediated G-to-A hypermutation in a donor animal at week 9, corroborating previous results using macaques and supporting the possible restriction of XMRV replication in humans by a similar mechanism.

Category: Journal Article
PubMed ID: #23236064 DOI: 10.1128/JVI.02326-12
Includes FDA Authors from Scientific Area(s): Biologics
Entry Created: 2012-08-27 Entry Last Modified: 2013-03-23