• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail

Search Publications



Starting Date

Ending Date

Order by

Entry Details

J Biopharm Stat 2013 Jan;23(1):178-200

Likelihood Ratio Test-Based Method for Signal Detection in Drug Classes Using FDA's AERS Database.

Huang L, Zalkikar J, Tiwari RC


In 1968 the Food and Drug Administration (FDA) established the Adverse Event Reporting System (AERS) database containing data on adverse events (AEs) reported by patients, health care providers, and other sources through a spontaneous reporting system. FDA uses AERS for monitoring the safety of the drugs on the market after approval. Most statistical methods that are available in the literature to analyze large postmarket drug safety data for identifying drug-event combinations with disproportionately high frequencies are designed to explore signals of a single drug-AE combination, but not signals including a drug class or a group of AEs simultaneously. Those methods are also not designed to control type I error and are subject to high false discovery rates. In this paper, we first briefly review a recently developed method, known as the likelihood ratio test (LRT)-based method, which has been demonstrated to control the family-wise type I error and false discovery rates. By introducing a concept of weight matrix for the drugs (or for AEs), we then extend the LRT method for detecting signals including a class of drugs (or AEs) in addition to detecting signals of single drug (or AE). A simplified Bayesian method is also proposed and compared with LRT method. The proposed methods are applied to study the signal patterns of drug classes, namely, the gadolinium drug class for magnetic resonance imaging (MRI) and statins for hypercholesterolemia, over different time periods, using the datasets with only suspect drugs and with both suspect and concomitant drugs from the AERS database. The signals detected by the statistical methods can be confirmed by signals detected across different databases, existing medical evidence from research or regulatory resources, prospective biological studies, and also through simulation as illustrated in the application.

Category: Journal Article
PubMed ID: #23331230 DOI: 10.1080/10543406.2013.736810
Includes FDA Authors from Scientific Area(s): Drugs
Entry Created: 2013-01-22 Entry Last Modified: 2013-10-26