• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail
-

Search Publications



Fields



Centers











Starting Date


Ending Date


Order by

Entry Details

Toxicol Ind Health 2013 Apr 3 [Epub ahead of print]

UVA photoirradiation of benzo[a]pyrene metabolites: induction of cytotoxicity, reactive oxygen species, and lipid peroxidation.

Xia Q, Chiang HM, Yin JJ, Chen S, Cai L, Yu H, Fu P

Abstract

Benzo[a]pyrene (BaP) is a prototype for studying carcinogenesis of polycyclic aromatic hydrocarbons (PAHs). We have long been interested in studying the phototoxicity of PAHs. In this study, we determined that metabolism of BaP by human skin HaCaT keratinocytes resulted in six identified phase I metabolites, for example, BaP trans-7,8-dihydrodiol (BaP t-7,8-diol), BaP t-4,5-diol, BaP t-9,10-diol, 3-hydroxybenzo[a]pyrene (3-OH-BaP), BaP (7,10/8,9)tetrol, and BaP (7/8,9,10)tetrol. The photocytotoxicity of BaP, 3-OH-BaP, BaP t-7,8-diol, BaP trans-7,8-diol-anti-9,10-epoxide (BPDE), and BaP (7,10/8,9)tetrol in the HaCaT keratinocytes was examined. When irradiated with 1.0 J/cm2 UVA light, these compounds when tested at doses of 0.1, 0.2, and 0.5 muM, all induced photocytotoxicity in a dose-dependent manner. When photoirradiation was conducted in the presence of a lipid (methyl linoleate), BaP metabolites, BPDE, and three related PAHs, pyrene, 7,8,9,10-tetrahydro-BaP trans-7,8-diol, and 7,8,9,10-tetrahydro-BaP trans-9,10-diol, all induced lipid peroxidation. The formation of lipid peroxides by BaP t-7,8-diol was inhibited by NaN3 and enhanced by deuterated methanol, which suggests that singlet oxygen may be involved in the generation of lipid peroxides. The formation of lipid hydroperoxides was partially inhibited by superoxide dismutase (SOD). Electron spin resonance spin trapping experiments indicated that both singlet oxygen and superoxide radical anion were generated from UVA photoirradiation of BPDE in a light dose responding manner.


Category: Journal Article
PubMed ID: #23552265 DOI: 10.1177/0748233713484648
Includes FDA Authors from Scientific Area(s): Toxicological Research Food
Entry Created: 2013-04-05
Feedback
-
-