• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail
-

Search Publications



Fields



Centers











Starting Date


Ending Date


Order by

Entry Details

Foodborne Pathog Dis 2013 Jul;10(7):581-8

Unique Class 1 Integron and Multiple Resistance Genes Co-located on IncHI2 Plasmid Is Associated with the Emerging Multidrug Resistance of Salmonella Indiana Isolated from Chicken in China.

Lai J, Wang Y, Shen J, Li R, Han J, Foley SL, Wu C

Abstract

The objective of this study was to clarify the molecular antimicrobial resistance mechanisms of Salmonella enterica serovar Indiana isolated from chickens in China. A total of 327 chicken intestinal content and feces were collected in Shandong, China in 2009. Isolates were serotyped and antimicrobial susceptibility testing was performed. Thirty-five (10.7%) Salmonella isolates were recovered, and 16 (45.7%) were Salmonella enterica serovar Indiana, which were resistant to at least 14 of 15 antimicrobial agents. The 16 Salmonella enterica serovar Indiana detected and other 13 Salmonella enterica serovar Indiana that were selected from 133 Salmonella enterica serovar Indiana isolated in 2008 were subjected to pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Then class 1 integron and drug resistance genes were detected by polymerase chain reaction. Linkage between plasmids and resistance components was determined by conjugation, electrotransformation, S1 nuclease-PFGE, polymerase chain reaction-based replicon typing and Southern blot assays. Regions flanking integrons were sequenced by modified random primer walking strategy. PFGE and MLST suggested that all the 29 Salmonella enterica serovar Indiana isolates that shared >78% similarity in PFGE patterns were of the same MLST type, ST17. Two kinds of class 1 integrons had different integrase genes and the same variable region (dfrA7/aadA4/IS26/aac(6')-Ib/blaOXA-1/catB3/arr-3), and additional antimicrobial resistance genes such as blaCTX-M-24, floR, and so on were detected on IncHI2 plasmids in 29 Salmonella enterica serovar Indiana, and seven plasmids were conjugative. Analysis of the genetic environment of the integrons suggested that these integrons might have been formed by the help of IS26. To our knowledge, the variable region in class 1 integrons is the longest reported in Salmonella to date. The unique integrons and multiple resistance genes co-located on the IncHI2 plasmid contributed to the dissemination of multidrug resistance.


Category: Journal Article
PubMed ID: #23672474 DOI: 10.1089/fpd.2012.1455
Includes FDA Authors from Scientific Area(s): Toxicological Research
Entry Created: 2013-08-05 Entry Last Modified: 2014-01-05
Feedback
-
-