• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail
-

Search Publications



Fields



Centers











Starting Date


Ending Date


Order by

Entry Details

Neurotoxicology 2014 Sep;44:250-62

Neuroprotective effect of the Chemical Chaperone, Trehalose in a Chronic MPTP-induced Parkinson's disease Mouse Model.

Sarkar S, Chigurupati S, Raymick J, Mann D, Bowyer JF, Schmitt T, Beger RD, Hanig JP, Schmued LC, Paule MG

Abstract

Parkinson's disease (PD) is a progressive motor disease of unknown etiology in the majority of cases. The clinical features of PD emerge due to selective degeneration of dopamine (DA) neurons in the substantia nigra pars compacta (SNc), which project to the caudate putamen (CPu) where they release DA. In the current in vivo mouse model study, we tested trehalose for its ability to protect against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced damage to DA neurons. Trehalose is a naturally occurring disaccharide present in plants and animals and appears capable of protecting cells against various environmental stresses. The effect of trehalose is likely due to its action as a pharmacological chaperone which promotes protein stability. In the present study, there were four treatment groups: saline only (control); probenecid only; MPTP+probenecid; and trehalose+MPTP+probenecid. MPTP-induced losses in tyrosine hydroxylase and DA transporter immunoreactivity in the ventral midbrain SNc and CPu were significantly reduced by trehalose. Decreases in CPu dopamine levels produced by MPTP were also blocked by trehalose. Microglial activation and astrocytic hypertrophy induced by MPTP were greatly reduced by trehalose, indicating protection against neuroinflammation. These effects are commensurate with the observed trehalose sparing of motor deficits produced by MPTP in this mouse model. Two tight junctional proteins, ZO-1 and occludin, are downregulated following MPTP treatment and trehalose blocks this effect. Likewise, the glucose transporter-1 that is expressed in brain endothelial cells is also protected by trehalose from MPTP-induced down-regulation. This study is the first to demonstrate using fluoro-turoquoise FT gel perfusion techniques, the protection afforded by trehalose from MPTP-induced damage to microvessels and endothelial and suggests that trehalose therapy may have the potential to slow or ameliorate PD pathology.


Category: Journal Article
PubMed ID: #25064079 DOI: 10.1016/j.neuro.2014.07.006
Includes FDA Authors from Scientific Area(s): Toxicological Research Drugs
Entry Created: 2014-07-30 Entry Last Modified: 2014-11-01
Feedback
-
-