• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail
-

Search Publications



Fields



Centers











Starting Date


Ending Date


Order by

Entry Details

Appl Opt 2014 Jun 20;53(18):4061-71

Vascular contrast in narrow-band and white light imaging.

Du Le VN, Wang Q, Gould T, Ramella-Roman JC, Joshua Pfefer T

Abstract

Narrow-band imaging (NBI) is a spectrally selective reflectance imaging technique that is used clinically for enhancing visualization of superficial vasculature and has shown promise for applications such as early endoscopic detection of gastrointestinal neoplasia. We have studied the effect of vessel geometry and illumination wavelength on vascular contrast using idealized geometries in order to more quantitatively understand NBI and broadband or white light imaging of mucosal tissue. Simulations were performed using a three-dimensional, voxel-based Monte Carlo model incorporating discrete vessels. In all cases, either 415 or 540 nm illumination produced higher contrast than white light, yet white light did not always produce the lowest contrast. White light produced the lowest contrast for small vessels and intermediate contrast for large vessels (diameter>/=100 mum) at deep regions (vessel depth>/=200 mum). The results show that 415 nm illuminations provided superior contrast for smaller vessels at shallow depths while 540 nm provided superior contrast for larger vessels in deep regions. Besides 540 nm, our studies also indicate the potential of other wavelengths to achieve high contrast of large vessels at deep regions. Simulation results indicate the importance of three key mechanisms in determining spectral variations in contrast: intravascular hemoglobin (Hb) absorption in the vessel of interest, diffuse Hb absorption from collateral vasculature, and bulk tissue scattering. Measurements of NBI contrast in turbid phantoms incorporating 0.1-mm-diameter hemoglobin-filled capillary tubes indicated good agreement with modeling results. These results provide quantitative insights into light-tissue interactions and the effect of device and tissue properties on NBI performance.


Category: Journal Article
PubMed ID: #24979441 DOI: 10.1364/AO.53.004061
Includes FDA Authors from Scientific Area(s): Medical Devices
Entry Created: 2014-08-07 Entry Last Modified: 2014-11-18
Feedback
-
-