• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail
-

Search Publications



Fields



Centers











Starting Date


Ending Date


Order by

Entry Details

J Environ Sci Health C 2014 Oct 2;32(4):362-84

Metabolic Activation of Pyrrolizidine Alkaloids Leading to Phototoxicity and Photogenotoxicity in Human HaCaT Keratinocytes.

Wang CC, Xia Q, Li M, Wang S, Zhao Y, Tolleson WH, Yin JJ, Fu PP

Abstract

Pyrrolizidine alkaloids, produced by a large number of poisonous plants with wide global distribution, are associated with genotoxicity, tumorigenicity, and hepatotoxicity in animals and humans. Mammalian metabolism converts pyrrolizidine alkaloids to reactive pyrrolic metabolites (dehydropyrrolizidine alkaloids) that form covalent protein and DNA adducts. Although a mechanistic understanding is currently unclear, pyrrolizidine alkaloids can cause secondary (hepatogenous) photosensitization and induce skin cancer. In this study, the phototoxicity of monocrotaline, riddelliine, dehydromonocrotaline, dehydroriddelliine, and dehydroretronecine (DHR) in human HaCaT keratinocytes under ultraviolet A (UVA) irradiation was determined. UVA irradiation of HaCaT cells treated with dehydromonocrotaline, dehydroriddelline, and DHR resulted in increased release of lactate dehydrogenase and enhanced photocytotoxicity proportional to the UVA doses. UVA-induced photochemical DNA damage also increased proportionally with dehydromonocrotaline and dehydroriddelline. UVA treatment potentiated the formation of 8-hydroxy-2'-deoxyguanosine DNA adducts induced by dehydromonocrotaline in HaCaT skin keratinocytes. Using electron spin resistance trapping, we found that UVA irradiation of dehydromonocrotaline and dehydroriddelliine generates reactive oxygen species (ROS), including hydroxyl radical, singlet oxygen, and superoxide, and electron transfer reactions, indicating that cytotoxicity and genotoxicity of these compounds could be mediated by ROS. Our results suggest that dehydropyrrolizidine alkaloids formed or delivered to the skin cause pyrrolizidine alkaloid-induced secondary photosensitization and possible skin cancer.


Category: Journal Article, Review
PubMed ID: #25436474 DOI: 10.1080/10590501.2014.969980
Includes FDA Authors from Scientific Area(s): Toxicological Research Food
Entry Created: 2014-12-02 Entry Last Modified: 2014-12-26
Feedback
-
-