• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail
-

Search Publications



Fields



Centers











Starting Date


Ending Date


Order by

Entry Details

J Neurosci 2015 Jan 7;35(1):396-408

PDE-4 Inhibition Rescues Aberrant Synaptic Plasticity in Drosophila and Mouse Models of Fragile X Syndrome.

Choi CH, Schoenfeld BP, Weisz ED, Bell AJ, Chambers DB, Hinchey J, Choi RJ, Hinchey P, Kollaros M, Gertner MJ, Ferrick NJ, Terlizzi AM, Yohn N, Koenigsberg E, Liebelt DA, Zukin RS, Woo NH, Tranfaglia MR, Louneva N, Arnold SE, Siegel SJ, Bolduc FV, McDonald TV, Jongens TA, McBride SM

Abstract

Fragile X syndrome (FXS) is the leading cause of both intellectual disability and autism resulting from a single gene mutation. Previously, we characterized cognitive impairments and brain structural defects in a Drosophila model of FXS and demonstrated that these impairments were rescued by treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium. A well-documented biochemical defect observed in fly and mouse FXS models and FXS patients is low cAMP levels. cAMP levels can be regulated by mGluR signaling. Herein, we demonstrate PDE-4 inhibition as a therapeutic strategy to ameliorate memory impairments and brain structural defects in the Drosophila model of fragile X. Furthermore, we examine the effects of PDE-4 inhibition by pharmacologic treatment in the fragile X mouse model. We demonstrate that acute inhibition of PDE-4 by pharmacologic treatment in hippocampal slices rescues the enhanced mGluR-dependent LTD phenotype observed in FXS mice. Additionally, we find that chronic treatment of FXS model mice, in adulthood, also restores the level of mGluR-dependent LTD to that observed in wild-type animals. Translating the findings of successful pharmacologic intervention from the Drosophila model into the mouse model of FXS is an important advance, in that this identifies and validates PDE-4 inhibition as potential therapeutic intervention for the treatment of individuals afflicted with FXS.


Category: Journal Article
PubMed ID: #25568131 DOI: 10.1523/JNEUROSCI.1356-12.2015
Includes FDA Authors from Scientific Area(s): Drugs
Entry Created: 2015-01-09
Feedback
-
-