• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail
-

Search Publications



Fields



Centers











Starting Date


Ending Date


Order by

Entry Details

AAPS J 2015 Jul;17(4):948-64

Applying Biopharmaceutical Classification System (BCS) criteria to predict oral absorption of drugs in dogs: challenges and pitfalls.

Papich MG, Martinez MN

Abstract

The Biopharmaceutical Classification System (BCS) has been a prognostic tool for assessing the potential effects of formulation on the human drug oral bioavailability. When used in conjunction with in vitro dissolution tests, the BCS can support the prediction of in vivo product performance and the development of mechanistic models that support formulation assessments through the generation of "what if" scenarios. To date, the applicability of existing human BCS criteria has not been evaluated in dogs, thereby limiting its use in canine drug development. Therefore, we examined 50 drugs for which absolute bioavailability (F) was available both in dogs and humans. The drugs were also evaluated for any potential association between solubility (calculated from the dose number, Do) or lipophilicity (LogP) and F in dogs. In humans, solubility is determined in 250 mL of fluid. However, the appropriate volume for classifying drug solubility in dogs has not been established. In this analysis, the estimated volume of a water flush administered to fasted dogs (6 mL) and a volume of 250 mL scaled to a Beagle dog (35 mL) were examined. In addition, in humans, a Do value greater than 1.0 is used to define a compound as highly soluble and a LogP value greater than 1.72 as high permeability. These same criteria were applied for defining highly soluble and highly permeable in dogs. Whether using 35 or 6 mL to determine Do, the canine solubility classification remained unchanged for all but seven compounds. There were no clear associations between a drug's F in dogs and humans or between the canine value of F and either its human BCS classification, its LogP value, or the canine Do estimate. There was a tendency for those drugs with canine values of F equal to or greater than 80% to have LogP values equal to or greater than 1.0. Exceptions to this observation tended to be those compounds known to be absorbed via mechanisms other than passive diffusion (e.g., via transporters or paracellular transporters). Although there are limitations to the approach used in this study, the results of our assessment strongly suggest that the human BCS classification system requires substantial modification before it can be reliably applied to dogs.


Category: Journal Article
PubMed ID: #25916691 DOI: 10.1208/s12248-015-9743-7
Includes FDA Authors from Scientific Area(s): Animal and Veterinary
Entry Created: 2016-02-19
Feedback
-
-