• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail
-

Search Publications



Fields



Centers











Starting Date


Ending Date


Order by

Entry Details

J Biomed Mater Res A 2017 Jan;105(1):253-64

Effects of nanotopography on the in vitro hemocompatibility of nanocrystalline diamond coatings.

Skoog SA, Lu Q, Malinauskas RA, Sumant AV, Zheng J, Goering PL, Narayan RJ, Casey BJ

Abstract

Nanocrystalline diamond (NCD) coatings have been investigated for improved wear resistance and enhanced hemocompatibility of cardiovascular devices. The goal of this study was to evaluate the effects of NCD surface nanotopography on in vitro hemocompatibility. NCD coatings with small (NCD-S) and large (NCD-L) grain sizes were deposited using microwave plasma chemical vapor deposition and characterized using scanning electron microscopy, atomic force microscopy, contact angle testing, and Raman spectroscopy. NCD-S coatings exhibited average grain sizes of 50-80 nm (RMS 5.8 nm) while NCD-L coatings exhibited average grain sizes of 200-280 nm (RMS 23.1 nm). In vitro hemocompatibility testing using human blood included protein adsorption, hemolysis, non-activated partial thromboplastin time, platelet adhesion, and platelet activation. Both NCD coatings demonstrated low protein adsorption, a non-hemolytic response, and minimal activation of the plasma coagulation cascade. Furthermore, the NCD coatings exhibited low thrombogenicity with minimal platelet adhesion and aggregation, and similar morphological changes to surface-bound platelets (i.e. activation) in comparison to the HDPE negative control material. For all assays, there were no significant differences in the blood-material interactions of NCD-S vs. NCD-L. The two tested NCD coatings, regardless of nanotopography, had similar hemocompatibility profiles compared to the negative control material (HDPE) and should be further evaluated for use in blood-contacting medical devices.


Category: Journal Article
PubMed ID: #27543370 DOI: 10.1002/jbm.a.35872
Includes FDA Authors from Scientific Area(s): Medical Devices
Entry Created: 2016-08-21 Entry Last Modified: 2017-01-02
Feedback
-
-