• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail
-

Search Publications



Fields



Centers











Starting Date


Ending Date


Order by

Entry Details

Cell Immunol 2016 Dec;310:156-64

Early treatment with reverse transcriptase inhibitors significantly suppresses peak plasma IFNalpha in vivo during acute simian immunodeficiency virus infection.

George J, Renn L, Verthelyi D, Roederer M, Rabin RL, Mattapallil JJ

Abstract

Innate interferons (IFN) are comprised of multiple Type I and III subtypes. The in vivo kinetics of subtype responses during human immunodeficiency virus (HIV) infection is not well defined. Using the acute simian immunodeficiency virus (SIV) infection model, we show that plasma IFNalpha levels peak at day 10 post-infection (pi) after which they rapidly declined. The mRNA expression of Type I and III IFN subtypes were significantly elevated in the lymph nodes (LN) at day 10 pi. Though the expression levels of all subtypes declined by day 14-31 pi, numerous subtypes remained elevated suggesting that ongoing viral replication in LN continues to drive induction of these subtypes. Interestingly, treatment with reverse transcriptase (RT) inhibitors at day 7 pi significantly suppressed plasma IFNalpha responses by day 10 pi that significantly correlated with cell-associated SIV DNA loads suggesting that RT byproducts such as viral DNA likely plays a role in driving IFN responses during acute SIV infection. Quantification of Type I and III subtype transcripts in sorted subsets of LN CD4+ and CD8+ T cells, CD14+/CD14- monocytes/macrophages, and total CD11c/CD123+ dendritic cells (DC) at day 10 pi showed that DC expressed approximately 3-4 log more subtype transcripts as compared to the other subsets. Taken together, our results provide new insights into the kinetics of innate interferon responses during early stages of infection, and provide evidence that DC's are a major in vivo source of innate IFN during acute SIV infection.


Category: Journal Article
PubMed ID: #27622386 DOI: 10.1016/j.cellimm.2016.09.003
Includes FDA Authors from Scientific Area(s): Biologics
Entry Created: 2016-09-14 Entry Last Modified: 2017-01-02
Feedback
-
-