• Decrease font size
  • Return font size to normal
  • Increase font size
U.S. Department of Health and Human Services

Scientific Publications by FDA Staff

  • Print
  • Share
  • E-mail

Search Publications



Starting Date

Ending Date

Order by

Entry Details

J Neurosurg 2004 Dec;101(6):1004-11

Distribution kinetics of targeted cytotoxin in glioma by bolus or convection-enhanced delivery in a murine model.

Kawakami K, Kawakami M, Kioi M, Husain SR, Puri RK


OBJECT: Interleukin-13 receptor (IL-13R)-targeted cytotoxin (IL-13-PE38) displays a potent antitumor activity against a variety of human tumors including glioblastoma multiforme (GBM) and, thus, this agent is being tested in the clinical trial for the treatment of recurrent GBM. In this study, the authors determined the safety and distribution kinetics of IL-13 cytotoxin when infused intracranially by a bolus injection and by convection-enhanced delivery (CED) in an athymic nude mouse model of GBM. METHODS: For the safety studies, athymic nude mice were given intracranial infusions of IL-13 cytotoxin into normal parenchyma by either a bolus injection or a 7-day-long CED. Toxicity was assessed by performing a histological examination of the mouse brains. For the drug distribution studies, nude mice with intracranially implanted U251 GBM tumors were given an intratumor bolus or a CED infusion of IL-13 cytotoxin. Brain tumor samples obtained between 0.25 and 72 hours after the infusion were assessed for drug distribution kinetics by performing immunohistochemical and Western blot analyses. Based on the histological changes in the tumor and brain, the maximum tolerated dose of intracranial IL-13 cytotoxin infusion in nude mice was determined to be 4 microg when delivered by a bolus injection and 10 microg when CED was used. Drug distribution reached the maximum level 1 hour after the bolus injection and the volume of distribution was determined to be 19.3 +/- 5.8 mm3. Interleukin-13 cytotoxin was barely detectable 6 hours after the injection. Interestingly, when delivered by bolus injections IL-13 cytotoxin exhibited superior distribution in larger rather than smaller tumors. Convection-enhanced delivery was superior for drug distribution in the U251 tumors because when CED was used the drug remained in the tumors 6 hours after the infusion. CONCLUSIONS: These studies provide confirmation of a previous hypothesis that CED of IL-13 cytotoxin is superior to bolus injections not only for the safety of the normal brain but also for maintaining drug levels for a prolonged period in infused brain tumors. These findings are highly relevant and important for the optimal clinical development of IL-13 cytotoxin or any other targeted antitumor agent for GBM therapy, in which multiple routes of delivery of an agent are being contemplated.

Category: Journal Article, Peer
PubMed ID: #15597761
Includes FDA Authors from Scientific Area(s): Biologics
Entry Created: 2011-10-04 Entry Last Modified: 2012-08-29