U.S. Department of Health

 \& Human ServicesFood and Drug Administration

SAVE REQUEST

USER:

FOLDER:
COMPANY:
PRODUCT:
SUMMARY:
(kml)
K000609-213 pages
CARDIAC TELECOMMUNICATIONS (CARDTELEA)
ELECTROCARDIOGRAPH,AMBULATORY(WITHOUT ANALYSIS) (MWJ)
Product: CARDTEL, MODEL NT-100

DATE REQUESTED: Jun 26, 2016
DATE PRINTED: Jun 26, 2016

Note:

This summary of $510(\mathrm{k})$ safety and effectiveness information is being submitted in accordance with the requirements of $\mathbf{2 1}$ CFR Part 807.92.

1. Submitter

Name: Cardiac Telecommunications Address: 17448 Highway 3, Ste. 175 Webster, Texas 77698 USA Telephone Number: (281) 332-7587 Contact Person: Karim Alhussiny, Ph.D. Date Prepared: $2 / 17 / 00$	or	Delphi Consulting Group P. O. Box 932 Stafford, Texas 77047 (713) 723-8169 J. Harvey Knauss (as Regulatory Consultant to Cardiac Telecommunications)

2. Device

Proprietary name:	CardTel, Model NT-100
Common name:	ECG
Classification name:	Electrocardiograph

3. Classifications Names \& Citations:

21 CFR 870.2340 Electrocardiograph
21 CFR 870.2910 Radiofrequency Physiological signal transmitter and receiver
3. Predicate Device

Burdick Eclipse Plus, Burdick, Inc., K946281
4. Description

The CardTel Model NT-100 provides a portable device to continuously monitor ambulatory patient 12 lead electrocardiographic (ECG) data. The unit is designed to acquire and display up to twelve ECG vectors in a standard diagnostic ECG analysis format. The twelve leads consist of the standard twelve ECG leads, I, II, III, aVR, aVL, aVF, V1 and V6. The Model NT-100 is used to monitor patients in the operating room, recovery rooms, intensive care units, in the emergency room, in research settings, or other units where additional ECG leads are desired and real time display is desired. The display unit consists of a generally available Pentium® based personal computer or laptop computer with a SVGA monitor and color printer.

The system provides a means for the continuous monitoring of electrocardiographic signals in order to detect abnormal cardiac rhythms, including life-threatening events.
5. Indications for use

The CardTel Model NT-100 is intended to be used under the supervision of a licensed Healthcare practitioner. The Model NT-100 is intended to be used to display, record and transmit ECG signals from surface electrodes. The device is intended to acquire, display and record real time electrocardiographic information from relevant populations.

$K 000609$ p. 2/2

6. Contra-indications

May only be operated by trained personnel.
7. Comparison

The CardTel NT-100 ECG System has the same device characteristics as the predicate device, except the predicate device does not have wireless capability.

8. Test Data

The Model NT-100 System has been subjected to extensive safety and performance testing prior to release. Final testing for the system includes various performance tests designed to ensure that the device meets all of its functional requirements and performance specifications. The ECG Analysis system meets the specified clinical output data requirements of the ANSI/AAMI EC38-1994 specification for ambulatory electrocardiography. Standard databases have been used for automated ECG algorithm verification testing. Safety tests have further been performed to ensure the system complies to applicable industry and safety standards.

The NT-100 device labeling includes instructions for safe and effective use. It includes warning, cautions, and guidance for installation and maintenance.
9. Literature Review

A review of literature pertaining to the safety of electrocardiographs has been conducted. Appropriate safeguards have been incorporated in the design of the NT-100 unit.
10. Conclusions

The conclusion drawn from these tests is that the Model NT-100 ECG System is equivalent in safety and efficacy to its predicate device.

MAY 232000

Cardiac Telecommunications
c/o Mr. J. Harvey Knauss
Delphi Consulting Group
11874 South Evelyn Circle
Houston, TX 77071

Re: K000609
CardTel, Model NT-100
Regulatory Class: II (two)
Product Code: 74 MWJ
Dated: February 16, 2000
Received: February 23, 2000

Dear Mr. Knauss:
We have reviewed your Section $510(\mathrm{k})$ notification of intent to market the device referenced above and we have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act). You may, therefore, market the device, subject to the general controls provisions of the Act. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration.

If your device is classified (see above) into either class II (Special Controls) or class III (Premarket Approval), it may be subject to such additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations. Title 21, Parts 800 to 895. A substantially equivalent determination assumes compliance with the Current Good Manufacturing Practice requirements, as set forth in the Quality System Regulation ($Q S$) for Medical Devices: General regulation (21 CFR Part 820) and that, through periodic $Q S$ inspections, the Food and Drug Administration (FDA) will verify such assumptions. Failure to comply with the GMP regulation may result in regulatory action. In addition, FDA may publish further announcements concerning your device in the Federal Register. Please note: this response to your premarket notification submission does not affect any obligation you might have under sections 531 through 542 of the Act

Page 2 - Mr. J. Harvey Knauss
for devices under the Electronic Product Radiation Control provisions, or other Federal laws or regulations.

This letter will allow you to begin marketing your device as described in your $510(k)$ premarket notification. The FDA finding of substantial equivalence of your device to a legally marketed predicate device results in a classification for your device and thus, permits your device to proceed to the market.

If you desire specific advice for your device on our labeling regulation (21 CFR Part 801 and additionally 809.10 for in vitro diagnostic devices), please contact the Office of Compliance at (301) 594-4648. Additionally, for questions on the promotion and advertising of your device, please contact the Office of Compliance at (301) 594-4639. Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21CFR 807.97). Other general information on your responsibilities under the Act may be obtained from the Division of Small Manufacturers Assistance at its toll-free number (800) 638-2041 or (301) 443-6597 or at its internet address "http://www.fda.gov/cdrh/dsma/dsmamain.html".

Sincerely yours,
o James E. Dillard III
Director
Division of Cardiovascular and Respiratory Devices
Office of Device Evaluation
Center for Devices and Radiological Health

Enclosure

510(k) Number \qquad
Device Name: CardTel Model NT-100

Indications for use: The CardTel Model NT-100 is intended to be used under the supervision of a licensed Healthcare practitioner. The Model NT-100 is intended to be used to display, record and transmit ECG signals from surface electrodes. The device is intended to acquire, display and record real time electrocardiographic information from relevant populations.

Prescription Device: Federal Law (US) restricts this device to sale by or on the order of a physician.
(PLEASE DO NOT WRITE BELOW THIS LINE- CONTINUE ON ANOTHER PAGE IF NEEDED)

Concurrence of CDRH, Office of Device Evaluation (ODE)

(Division Sign-Off)
Division of Cardiovascular Respiratory,
and Neurological Devices
$510(k)$ Number

Prescription Use Yes
OR
Over-The-Counter Use \qquad
(Per 21 CFR 801.109)
(Optional Format 1-2-96)

MAY 232000

Cardiac Telecommunications
c/o Mr. J. Harvey Knauss Delphi Consulting Group 11874 South Evelyn Circle Houston, TX 77071

Re: K000609
CardTel, Model NT-100
Regulatory Class: II (two)
Product Code: 74 MWJ
Dated: February 16, 2000
Received: February 23, 2000
Dear Mr. Knauss:
We have reviewed your Section $510(\mathrm{k})$ notification of intent to market the device referenced above and we have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act). You may, therefore, market the device, subject to the general controls provisions of the Act. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration.

If your device is classified (see above) into either class II (Special Controls) or class III (Premarket Approval), it may be subject to such additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations, Title 21, Parts 800 to 895. A substantially equivalent determination assumes compliance with the Current Good Manufacturing Practice requirements, as set forth in the Quality System Regulation (QS) for Medical Devices: General regulation (21 CFR Part 820) and that, through periodic QS inspections, the Food and Drug Administration (FDA) will verify such assumptions. Failure to comply with the GMP regulation may result in regulatory action. In addition, FDA may publish further announcements concerning your device in the Federal Register. Please note: this response to your premarket notification submission does not affect any obligation you might have under sections 531 through 542 of the Act

Page 2 - Mr. J. Harvey Knauss
for devices under the Electronic Product Radiation Control provisions, or other Federal laws or regulations.

This letter will allow you to begin marketing your device as described in your $510(k)$ premarket notification. The FDA finding of substantial equivalence of your device to a legally marketed predicate device results in a classification for your device and thus, permits your device to proceed to the market.

If you desire specific advice for your device on our labeling regulation (21 CFR Part 801 and additionally 809.10 for in vitro diagnostic devices), please contact the Office of Compliance at (301) 594-4648. Additionally, for questions on the promotion and advertising of your device, please contact the Office of Compliance at (301) 594-4639. Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21CFR 807.97). Other general information on your responsibilities under the Act may be obtained from the Division of Small Manufacturers Assistance at its toll-free number (800) 638-2041 or (301) 443-6597 or at its internet address "http://www.fda.gov/cdrh/dsma/dsmamain.html".

Sincerely yours, Mat n mukden-
James E. Dillard III
Director
Division of Cardiovascular and Respiratory Devices Office of Device Evaluation Center for Devices and Radiological Health

Enclosure

510(k) Number \qquad
Device Name: CardTel Model NT-100

Indications for use: The CardTel Model NT-100 is intended to be used under the supervision of a licensed Healthcare practitioner. The Model NT-100 is intended to be used to display, record and transmit ECG signals from surface electrodes. The device is intended to acquire, display and record real time electrocardiographic information from relevant populations.

Prescription Device: Federal Law (US) restricts this device to sale by or on the order of a
physician.

(PLEASE DO NOT WRITE BELOW THIS LINE- CONTINUE ON ANOTHER PAGE IF NEEDED)

Concurrence of CDRH, Office of Device Evaluation (ODE)
tAluk N Melkuz.
(Division Sign-Off)
Division of Cardiovascular Respiratory. and Neurological Devices 510(k) Number \qquad $K 000609$
Prescription Use Yes OR

Over-The-Counter Use \qquad (Per 21 CFR 801.109)
From: Reviewer(s)-Name(s) Bina/tuscher Memorandum
Subject: $510(k)$ Number

To: The Record - It is my recommendation that the subject $510(\mathrm{k})$ Notification:
\square Refused to accept.
\square Requires additional information (other than refuse to accept).
\square Is substantially equivalent to marketed devices.
\square NOT substantially equivalent to marketed devices.
De Novo Classification Candidate? ... \square YES \square NO
\square Other (e.g., exempt by regulation, not a device, duplicate, etc.) Is this device subject to Postmarket Surveillance?
Is this device subject to the Tracking Regulation?
Was clinical data necessary to support the review of this $510(\mathrm{k})$?
Is this a prescription device?
Was this $510(\mathrm{k})$ reviewed by a Third Party?
Special 510(k)?
Abbreviated $510(\mathrm{k})$? Please fill out form on H Drive $510 \mathrm{k} / \mathrm{boilers}$

This 510(k) contains:
Truthful and Accurate Statement \square Requested \square Enclosed (required for originals received 3-14-95 and after)
\square S10(k) summary OR $\square_{\text {A }} 510(\mathrm{k})$ statement
\square The required certification and summary for class III devices
0 The indication for use form (required for originals received 1-1-96 and after)
Material of Biological Origin $\quad \square$ YES $\quad \square$ NO
The submitter requests under 21 CR 807.95 (doesn't apply for XEs):

\square No Confidentiality \square Confidentiality for 90 days \square Continued Confidentiality exceeding 90 days

Predicate Product Code with class:
Additional Product Codes) with panel (optional):

510(k) "Substantial Equivalence"
 Decision-Making Process (Detailed)

寄

so λ

Sormally Based on Descriptive Information Alone, Bu
Information is Sometimes Requlred.
the $510(k)$, Other $510(k) s$, The Center's

Compare New Devices to Marketed Devices. FDA Requests

510(k) Subm:
(Pre-Amendri.

"SUBSTANTIAL EQUIVALENCE" (SE) DECISION MAKING DOCUMENTATION

K000609
Reviewer: Dina Fleischer
Division/Branch: DCRND/PEDG
Device Name: Cardiac Telecommunications CardTel NT-100
Product To Which Compared (510(K) Number If Known): SEE MEMO

Note: In addition to completing the form on the LAN, "yes" responses to explanation.

MEMORANDUM

DATE:
May 17, 2000
FROM: Dina Fleischer, Biomedical Engineer
TO: K000609
RE: Cardiac Telecommunications CardTel NT-100
CONTACT: Karim Alhussiny, Ph.D., Chief Technical Officer; (877) 228-2666

NARRATIVE DEVICE DESCRIPTION

A. INTENDED USE: The CardTel Model NT-100 is intended to be used under the supervision of a licensed healthcare practitioner. The Model NT-100 is intended to be used to display, record, and transmit ECG signals from surface electrodes. The device is intended to acquire, display, and record real time electrocardiographic information from relevant populations.

B. DEVICE DESCRIPTION:

1. Life-supporting or life-sustaining:
2. Implant (short-term or long-term):
3. Is the device sterile?

If yes, is the sterility information provided?
4. Is the device for single use?
5. Is the device for prescription use?

If yes, is prescription labeling included?
6. Is the device for home use or portable?
7. Does the device contain a drug or biological product as a component?
8. Is this device a kit?

If yes, and some or all of the components are not new, does the submission include the required kit certification?
9. Is this device software driven?
10. Estimated level of concern: (major, moderate, minor):
11. Electrically operated?

The NT-100 is a patient worn ECG recording system. It consists of a 12 -lead ECG amplifier module that is powered from a separate battery module. The amplifier is connected via a serial port to a battery powered wireless transmitter for sending the ECG waveforms to a receiver located within a range of 500 ft . The receiver is connected to a personal computer via a serial prot. The PC has software from display, storage, and hard copy printout of the ECG waveforms.

The system provides a means for continuous monitoring of ECG signals in order to detect abnormal cardiac rhythms, including life-threatening events.

C. SUBSTANTIAL EQUIVALENCE CLAIM

The sponsor states that the NT-100 is equivalent to the Burdick Eclipse Plus (K946281). The sponsor provided a detailed comparison table (page 50) that outlines all specs and highlights the similarities and differences between the subject and predicate devices. The differences between the two devices are as follows:

- The predicate has a computer built into the device for display, storage and printing whereas the subject device utilizes a standard PC computer and color printer.
- The NT-100 is smaller, the transmitter part may be worn by the patient if desired. This feature thus requires the radio link to the display and storage unit.
- The NT-100 does not feature interpretive analysis/software of patient ECG.

These differences can be qualified through performance, verification and validation testing.

D. SOFTWARE

The sponsor provided some software documentation, however, I was able to verify the information in accordance with the FDA guidance document, "Guidance for the Content of PreMarket Submissions for Software Contained in Medical Devices, May 1998". The fotlowing iternsere (Tab 8). The folloren sponsor did provide a software testing certification (Tab 8). The following software documentation was provided:

3.1 Software Level of Concern

The device software is considered MINOR level of concern because the device supplies data from the patient, so failures or design flaws are not expected to result in death or injury to the patient.

3.2 Software Description-Tab 10.

3.3 Device Hazard Analysis - The sponsor provided (Tab 14) a tabular hazard/risk assessment which identifies the all of the hazards presented by this device to the patient and the operator, the risk classification, and the risk control, i.e., specific system and/or components whose failure could cause each hazard, the specific software modules associated with each hazard, and the methods used to eliminate or mitigate each hazard including a traceability matrix identifying the verification/validation activities addressing each identified hazard.
3.7 Software Verification and Validation Activities - The sponsor provided a software functional test plan with pass/fail criteria, data, and an analysis of the results (Tab 19).

E. HARDWARE TESTING

Electrical Safety and EMC

The sponsor has provided testing information and data performed on the device as a system for general safety and electromagnetic compatibility. The sponsor provided a complete summary in Tab 17 identifying all required tests and the document number.

Electrical safety and electromagnetic compatibility of the NT-100 were tested to the following standards:

The device met the applicable parts of ANSI/AAMI EC13 with regard to electrical safety and EMC. The sponsor provided testing information data for EMC, radiated and conducted immunity, ESD, and radiated, conducted, and magnetic emissions, in accordance with IEC 60601-1 (am \& am 2), IEC 60601-1-1, IEC 60601-1-2, and IEC 60601-2-27. For each test, the sponsor provided the applicable clause of the IEC document referencing the test, the test acceptance criteria, results and pass/fail criteria. The device passed all required testing.

F. PERFORMANCE TESTING - AAMI EC 38: Ambulatory Electrocardiographs

The sponsor provided performance testing (Tabs 15, 16, and 18) for their device in accordance with AAMI EC38. The protocols are enclosed and correctly follow the standard's protocols. The system passed the following tests and the results provided are acceptable for:

- ECG input channels;
- leakage current (lead to ground);
- AC overload protection;
- gain accuracy;
- multi-channel crosstalk;
- hysteresis;
- frequency response;
- baseline stability;
- pacemaker pulse; and
- time floatation.

G. LABELING

The proposed labeling for the device is enclosed and is comparable to the labeling of the predicate
device.

H. BIOCOMPATIBILITY AND STERILITY

This device is not directly patient connected (the ECG electrodes are prepackaged from Lead-Lok, Inc., Model PO-6). Therefore, biocompatibility testing information is not required.

The device is not provided sterile, therefore, sterility information does not need to be provided.

I. SUMMARIES

The sponsor provided a Summary of Safety and Effectiveness Information, the Indications for Use form, and a Truthful and Accuracy Statement.

J. EXPLANATIONS TO "YES" AND "NO" QUESTIONS AS NEEDED

7. IF THE ANSWER TO QUESTION 7 IS NO, EXPLAIN HOW THE DESCRIPTIVE CHARACTERISTICS ARE NOT PRECISE ENOUGH.

The sponsor needs to provide adequate performance testing to qualify the proposed device changes.
11. If the answer to question 11 is yes or no, explain how the performance data DEMONSTRATES THAT THE DEVICE IS/IS NOT SUBSTANTIALLY EQUIVALENT.

The sponsor provided software and hardware verification and validation information and data to support the safety and effectiveness of the proposed device modifications. No additional testing needs to be provided.

Classifications:
870.2800 MWJ Ambulatory Electrocardiograph without analysis

RECOMMENDATION:

substantial equivalence

concur.

mex am C. Provost

Screening Checklist
 For all Premarket Notification 510(k) Submissions

3. "SPECIALS" - ONLY FOR MODIFICATIONS TO MANUFACTURER'S OWN CLASS II, III OR RESERVED CLASS I DEVICE
a) Name \& 510(k) number of legally marketed (unmodified) predicate device
b) STATEMENT - INTENDED USE AND INDICATIONS FOR \square

USE OF MODIFIED DEVICE AS DESCRIBED IN ITS Labeling have not changed*			
c) STATEMENT - FUNDAMENTAL SCIENTIFIC TECHNOLOGY OF THE MODIFIED DEVICE HAS NOT CHANGED*		-If no-Stop not a special	
d) Design Control Activities Summary			
i) Identification of Risk Analysis method(s) used to assess the impact of the modification on the device and its components, and the results of the analysis			
ii) Based on the Risk Analysis, an identification of the verification and/or validation activities required, including methods or tests used and acceptance criteria to be applied			
iii) A declaration of conformity with design controls. The declaration of conformity should include:			
1) A statement signed by the individual responsible, that, as required by the risk analysis, all verification and validation activities were performed by the designated individual(s) and the results demonstrated that the predetermined acceptance criteria were met	4	$=-$	
2) A statement signed by the individual responsible, that manufacturing facility is in conformance with design control procedure Requirements as specified in 21 CFR 820.30 and the records are available for review.			

4. ABBREVIATED 510(K): SPECIAL CONTROLS/CONFORMANCE TO RECOGNIZED STANDARDS - PLEASE FILL OUT THE STANDARDS ABBREVIATED FORM ON THE H DRIVE
a) For a submission, which relies on a guidance document and/or special control(s), a summary report that describes how the guidance and/or special control(s) was used to address the risks associated with the particular device type
b) If a manufacturer elects to use an alternate approach to address a particular risk, sufficient detail should be provided to justify that approach.
c) For a submission, which relies on a recognized standard, a declaration of conformity to the standard. The declaration should include the following:
i) An identification of the applicable recognized consensus standards that were met
ii) A specification, for each consensus standard, that all requirements were met, except for

5. Additional Considerations: (may be covered by Design Controls)

Items shaded under "NO" are necessary for that type of submission. Circled items and items with check: in the "Needed \& Missing" column must be submitted before acceptance of the document.

THE $510(K)$ DOCUMENTATION FORMS ARE AVAILABLE ON THE LAN UNDER $510(K)$ BOILERPLATE TITLED "DOCUMENTATION" AND MUST BE FILLED OUT WITH EVERY FINAL DECISION (SE, SSE, NOT A DEVICE, ETC.).
"SUBSTANTIAL EQUIVALENCE" (SE) DECISION MAKING DOCUMENTATION
\qquad

Reviewer: \qquad

Division/Branch: \qquad
Device Name: \qquad

Product To Which Compared (510(K) Number If Known): \qquad

Note: In addition to completing the form on the LAN, "yes" responses to questions 4, 6, 8, and 11, and every "no" response requires an explanation.

1. Intended Use:
2. Device Description: Provide a statement of how the device is either similar to and/or different from other marketed devices, plus data (if necessary) to support the statement. Is the device life-supporting or life sustaining? Is the device implanted (short-term or long-term)? Does the device design use software? Is the device sterile? Is the device for single use? Is the device for home use or prescription use? Does the device contain drug or biological product as a component? Is this device a kit? Provide a summary about the devices design, materials, physical properties and toxicology profile if important.

EXPLANATIONS TO "YES" AND "NO" ANSWERS TO QUESTIONS ON PAGE I AS NEEDED

1. Explain why not a device:
2. Explain why not subject to $510(k)$:
3. How does the new indication differ from the predicate device's indication:
4. Explain why there is or is not a new effect or safety or effectiveness issue:
5. Describe the new technological characteristics:
6. Explain how new characteristics could or could not affect safety or effectiveness:
7. Explain how descriptive characteristics are not precise enough:
8. Explain new types of safety or effectiveness questions raised or why the questions are not new:
9. Explain why existing scientific methods can not be used:
10. Explain what performance data is needed:
11. Explain how the performance data demonstrates that the device is or is not substantially equivalent:

Internal Administrative Form

Food and Drug Administration
Center for Devices and
Radiological Health
Office of Device Evaluation
Document Mail Center (HFZ-401)
9200 Corporate Blvd.
Rockville, Maryland 20850

CARDIAC TELECOMMUNICATIONS
C/O DELPHI CONSULTING GROUP
11874 SOUTH EVELYN CIRCLE
HOUSTON, TX 77071
ATTN: J. HARVEY KNAUSS

510 (k) Number: K000609
Received: 23-FEB-2000
Product: CARDTEL, MODEL
NT-100

The Center for Devices and Radiological Health (CDRH), Office of Device Evaluation (ODE), has received the Premarket Notification you submitted in accordance with Section $510(\mathrm{k})$ of the Federal Food, Drug, and Cosmetic Act (Act) for the above referenced product. We have assigned your submission a unique $510(k)$ number that is cited above. Please refer prominently to this $510(k)$ number in any future correspondence that relates to this submission. We will notify you when the processing of your premarket notification has been completed or if any additional information is required. YOU MAY NOT PLACE THIS DEVICE INTO COMMERCIAL DISTRIBUTION UNTIL YOU RECEIVE A LETTER FROM FDA ALLOWING YOU TO DO SO.

On January 1, 1996, FDA began requiring that all $510(k)$ submitters provide on a separate page and clearly marked "Indication For Use" the indication for use of their device. If you have not included this information on a separate page in your submission, please complete the attached and amend your $510(\mathrm{k})$ as soon as possible. Also if you have not included your $510(\mathrm{k})$ Summary or $510(\mathrm{k})$ Statement, or your Truthful and Accurate Statement, please do so as soon as possible. There may be other regulations or requirements affecting your device such as Postmarket Surveillance (Section 522(a)(1) of the Act) and the Device Tracking regulation (21 GFR Part 821). Please contact the Division of Small Manufacturers Assistance (DSMA) at the telephone or web site below for more information.

Please remember that all correspondence concerning your submission MUST be sent to the Document Mail Center (HFZ-401) at the above letterhead address. Correspondence sent to any address other than the Document Mail Center will not be considered as part of your official premarket notification submission. Because of equipment and personnel limitations, we cannot accept telefaxed material as part of your official premarket notification submission, unless specifically requested of you by an FDA official. Any telefaxed material must be followed by a hard copy to the Document Mail Center (HFZ-401).

You should be familiar with the manual entitled, "Premarket Notification $510(k)$ Regulatory Requirements for Medical Devices" available from DSMA. If you have other procedural or policy questions, or want information on how to check on the status of your submission (after 90 days from the receipt date), please contact DSMA at (301) 443-6597 or its toll-free number (800) 638-2041, or at their Internet address http://www.fda.gov/cdrh/dsmamain.html or me at (301) 594-1190.

Sincerely yours,

```
Marjorie Shulman
Consumer Safety Officer
Premarket Notification Staff
Office of Device Evaluation
```


Cardiac Telecommunications
17448 Highway 3, Ste. 175
Webster, Texas 77598
877-228-2666

\square
CardTel NT-100
510(k) Submission

Notes:
Sumission produced by:

Delphi Consulting
Group
POB 932
Stafford, TX 77477
713-723-8169
713-723-4080 fax delphi15@wt.net
www.delphiconsulting. com

Date	Description	Premarket Submission Cover Sheet	1.
		List of Reference Documents	2
		Refuse to Accept Checklist	3
		Cardiac Telecommunications Cover Letter	4
		Draft Lebel(s) and Labeling	5
		Draft Operators Manual	6
		Summary	7
		Indications for Use Page	8
		Photographs of Unit	9
		Description of Unti	10
		Drawings of Device	11
		Substantial Equivalence Chart	12
		Predicate Device Labeling	13
		Hazard Analysis	14
		Bench Test of Input/Output of System	15
		Electrical Safety Testing	16
		EMI Testing	17
		ANSI/AAMI EC38 Testing	18
		Overview of Software Validation	19
		Truthful and Accurate Statement	20
		Y2K Certification	21
		Submission correspondent Letter	22
		Reviewer's Notes	23
		DCG Notes	24
		510(k) Submission Page \# 2	25

			FDA Document Number:					
Section C		Product Classification						
Product code: 7	74 BRS	C.F.R. Section:	870.2340	Device class:Class IClass III	X米Class II \square Unclassified			
Classification panel: $\quad 74$ Cardiovascular								
Section D Information on 510(k) Subm								
Product codes of devices to which substantial equivalence is claimed:				Summary of, or statement concerning, safety and effectiveness data: 这 $510(\mathrm{k})$ summary attached s10(k) statement				
1K4BRS	2	3	4					
5	6	7	8					
Information on devices to which substantial equivalence is claimed:								
$510(\mathrm{k})$ Number	Trade or proprietary or model name			Manufacturer				
1K946281	1 Burdick Exlipse Plus			${ }^{1}$ Burdick, Inc.				
2	2			2				
3	3			3				
4	4			4				
5	s			s				
6	8			8				
Section E Product Information - Applicable to All Applications								
Common or usual name or classification name: Electrocardiography								
Trade or proprietary or model name				Model number				
CardTel				${ }^{1}$ NT-100				
2				2				
3				3				
4				4				
5				5				
6				6				
FDA document numbers of all prior reiated submissions (regardless of outcome):								
1 K 984454	:	3	. 4	5	6			
т	8	9	10	11×12				
Data included in submission: Laboratory testing \square Animal trials \square Human trials								
Indications (from labeling): The CardTel Model NT-100 is intended to be used under the supervision of a licensed Healthcare practitioner. Model NT-100 is intended to be.used to display, record and transmit ECG signals from surface electrodes. The device is intended to acquire, display and record real time eTectrocardiographic information from relevant populations.								

			FDA Document Number:	
Section F Manufacturing / Packaging / Sterilization Sites				
$\begin{aligned} & \square \text { Original } \\ & \square \text { Add Delete } \end{aligned}$	FDA establishment registration number:		Manufacturer Contract manufacturer	\square Contract sterilizer \square Repackager / relabeler
Company / Institution name:				
Division name (if applicable):				Phone number (include area code): ()
Street address:				FAX number (include area code): ()
City:		State / Province:	Country:	ZIP / Postal Code:
Contact name:				
Contact title:				
$\begin{aligned} & \text { Original } \\ & \square \text { Add } \square \text { Delete } \end{aligned}$	FDA establishment registration number: FDA Form 2891 has beens		DXManufacturer ITContract manufacturer	Contract sterilizer Repackager / relabeler
Company / Institution name: Cardiac Telecommunications				
Division name (if applicable):				Phone number (include area code): $(877) \quad 228-2666$
Street address: 17448 Highway 3, Ste. 175				FAX number (include area code): $(281) \quad 332-6000$
City: Webster		State / Province: Texas	Country: USA	ZIP / Postal Code: 77598
Contact name: Karim Alhussiny, Ph.D.				
Contact title: Chief Technical Officer				
$\begin{aligned} & \square \text { Original } \\ & \square \text { Add } \square \text { Delete } \end{aligned}$	FDA establishment registration number:		Manufacturer Contract manufacturer	\square Contract sterilizer \square Repackager / relabeler
Company / Institution name:				
Division name (if applicable):				Phone number (include area code): ()
Street address:				FAX number (include area code): ()
City:		State / Province:	Country:	ZIP / Postal Code:
Contact name:				
Contact title:				

Your vohuntary completion of this Premarket Submission Cover Sheet will not affect any FDA decision concerning your submission, but will help FDA's Center for Devices and Radiological Health process your submission more efficiently. The information you provide should apply only to a single accompanying submission. Please do not send cover sheets for any previous submissions. See the instructions for additional information on completing the cover sheet. If you have a question conceming completion of the cover sheet, please contact the Division of Small Manufacturers Assistance at (800) 638-2041 or (301) 443-6597.

510(k) Elements List

510(k) Elements	Authority (21 CFR)	Page \#
Device trade or proprietary name	807.87	14
Device common or usual name or classification	807.87	14
Establishment registration number (only applies if establishment is registered)	807.87	14
Class in which the device has been put under section 513 of the act and, if known the appropriate panel; or if the owner or operator determines that the device has not been classified under such section, a statement of that determination and the basis for the person's determination that the device is not so classified.	807.87	4
Action taken by the party required to register to comply with the requirements of the act under section 514 for Special controls.	807.87	14
Proposed labels, labeling, and advertisements sufficient to describe the device, its intended use, and the directions for its use. (Blue Book Memo \#G91-1)	807.87	16 -
510(k) summary or a 510(k) statement.	807 87(h)	35 \& 36
For class III only, a class III certification and a class III summary	80787 (i)	N/A
Photographs of the device.	80787	38 -
Engineering drawings of the device.	807.87	48 -
Identification of the marketed device(s) to which equivalence is claimed including labeling and description of the device. Affiliated 510(k) numbers and product codes are voluntary in cover sheet.	807.87	50 \& 51 -
Statement of similarities and/or differences with marketed device(s)	807.87	50
Data to show consequences and effects of a modified device	807.87	N/A
Submission Correspondent name and address	807.87	6 \& 190
Contact person, telephone number and fax number	807.87	6, 35, 190
Representative/Consultant if a applicable	807.87	6 \& 190
Table of Contents	807.87	2,7\&8
Name and address of manufacturing/packaging/sterilization facilities. Registration number of each facility when one exists.	807.87	5, 14 \& 35

Comparison table of the new device to the marketed device(s)	807.87	50
Action taken to comply with voluntary standards	807.87	14
Performance Data (bench, animal, clinical)	807.87	$79,84,88$, 129
Sterilization information (Blue Book Memo \#K90.1)	807.87	N/A
Software information (Blue Book Memo \#K91-1)	807.87	$61,42,183$
Hardware information	807.87	42
nformation requested in specific guidance documents (if applicable for this device)	807.87	N/A
Kit Certification Statement	807.87	N/A
Truthful and Accurate Statement	807.87 (j)	187

This submission considers the following FDA Blue Book Guidelines, Guides, other reference documents:

1. Premarket Notification 510(k): Regulatory Requirements for Medical Devices, HHS Publication FDA 954158, August 1995.
2. Providing Regulatory Submissions in Electronic Format - General Considerations, January 1999.
3. Instructions for Premarket submission Cover Sheet, March 14, 1995.
4. $\quad 510(\mathrm{k})$ Refuse to Accept Procedures, 5/20/94 (K94-1).
5. PMA/510(k) Triage Review Procedures 5/20/94 (G94-1).
6. Premarket Notification Truthful and Accurate Statement.
7. General/Specific Intended Use Guidance, May 21, 1998.
8. Information Paper on FDA Activities Related to the Year 2000 Date Problem and Medical Devices.
9. Safe Medical Devices Act of 1990.
10. Medical Device Commercialization in the United States of America, DCG, 1994.

Center for Devices and Radiological Health

Premarket Notification for $510(\mathrm{k})$
Refuse to Accept Checklist
(Revised 3-14-95)
\qquad Date DMC Received \qquad

Device Trade Name: \qquad

Reason for 510(k) \qquad

Division/Branch: \qquad
Administrative Reviewer Signature: \qquad Date \qquad
Supervisory Signature: \qquad Date \qquad
Did the firm request expedited review?
Yes \qquad No

Did we grant expedited review? \qquad Yes \qquad No

Truthful and accurate statement enclosed? \qquad Yes \qquad No
(If Not Enclosed, Must Be A Refuse To Accept Letter)
Required For Originals Received 3/14/95 And After

	Yes Present Omission Justified	No Inadequate Omitted
Critical Elements;		
A. Is the product a device?		
B. Is the device exempt from $510(\mathrm{k})$ by regulation or policy?		
C. Is the device subject to review by CDRH?		
D. (I) Are you aware that this device has been the subject of a previous NSE decision? (ii) If yes, does this new $510(\mathrm{k})$ address the NSE issue(s) (e.g., performance data)?		
E. (I) Are you aware of the submitter being the subject of an integrity investigation? If yes, consult the ODE Integrity Officer		
(ii) Has the ODE Integrity Officer given permission to proceed with the review? (Blue Book Memo \#191-2 and Federal Register 90N-0332, September 10, 1991.)		
F. Does the submission contain the information required under Sections 510(k), 513(f), and 513(I) of the Federal Food, Drug, and Cosmetic Act(Act) and Subpart E of Part 807 in Title 21 of the Code of Federal Regulations?:		
I. Device trade or proprietary name		
2. Device common or usual name or classification name		
3. Establishment registration number (only applies if establishment is registered)		
4. Class into which the device is classified under (21 CFR Parts 862 to 892)		
5. Classification Panel		
6. Action taken to comply with Section 514 of the Act		
7. Proposed labels, labeling and advertisements (if available) that describe the device, its intended use, and directions for use Blue Book Memo \# G91-1)		

Yes No
Present Inadequate
Omission Omitted
Justified

8. A 510(k) summary of safety and effectiveness or a 510(k) statement that safety and effectiveness information will be made available to any person upon request		
9. For class III devices only, a class III certification and a class III summary		
10. Photographs of the device		
11. Engineering drawings for the device with dimensions and tolerances		
12. The marketed device(s) to which equivalence is claimed including labeling and description of the device		
13. Statement of similarities and/or differences with marketed device(s)		
14. Data to show consequences and effects of a modified device(s)		
15. Truthful and accurate statement		
Additional Information that is necessary under 21 CFR 807.87 (h):		
A. Submitter's name and address		
B. Contact person, telephone number and fax number		
C. Representative/Consultant if applicable		
D. Table of Contents with pagination		
E. Address of manufacturing facility/facilities and , if appropriate, sterilization site(s)		
Additional Information that maybe necessary under 21 CFR 807.87(h):		
A. Comparison table of the new device to the marketed device(s)		
B. Action taken to comply with voluntary standards		
C. Performance data	I. marketed device	
bench testing		

	Yes Present Omission Justified	No Inadequate Omitted
clinical data		
2. new device		
bench testing		
animal testing		
clinical testing		
D. Sterilization information		
E. Software information		
F. Hardware information		
G. If this $510(\mathrm{k})$ is for a kit, has the kit certification statement been provided?		
H . Is this device subject to issues that have been addressed in specific guidance documents(s)?		
If yes, continue review with checklist from any appropriate guidance documents.		
If no, is $510(\mathrm{k})$ sufficiently complete to allow substantive review?		
I. Other (specify)		

MEDICAL PRODUCTS

CONSULTING
4
SOFTWARE/HARDWARE DEVELOPMENT

WiRELESS
NETWORKS \&
DATABASE
MANAGEMENT
0
Bharat Patel, M.D.
Chief Medical Officer Clinical Instructor, Baylor College of Medicine

Karim Alhussiny, Ph.D., E.E., M.E.
Chief Technical Officer
-

17448 Highway 3, Suite 175
Webster, TX 77598 USA
(tel) 877 CAT COMM
(tex) 281-332-6000

TIl Free 1-371-228:2663
cimon
priterainutelinom
fatmornditick
wuwhidingercoin

Food and Drug Administration
Center for Devices and Radiological Health
Document Mail Canter (HFZ-401)
1390 Piccard Drive
Rockville, Maryland 20850

Re: $510(\mathrm{k})$ Notification, New

Attention: Document Mail Clerk,

This is to notify you of the intention by Cardiac Telecommunications, to market a new electrocardiograph device.

Classification Name:	Electrocardiograph
Common/Usual Name:	EKG
Proprietary Name:	CardTel, Model NT-100
Establishment Reg. No.	Forms have been submitted
Classification:	21 CFR 870.2340, Electrocardiograph Performance Standards
Performance Standards:	None established
Labels \& Labeling	Label specimens enclosed.
Substantial Equivalence:	New
Reason for Submission:	Tier 1
Triage:	Cardiac Telecommunications considers our intent to market these devices as confidential commercial information and request that it be considered as such by the FDA.
Confidentiality:	

D:Word Processor FilesLDCGICLIENTSICardiact510 Submission\Cover letter section 1.doc
510(k) submission Page

31

In response to the requirements addressed by the SMDA of 1990. Enclosed is a summary of the safety and effectiveness information upon which the substantial equivalence determination is based.

Sincerely Yours,
Cardiac Telecommunications

Karim Alhussiny, Ph. D. Chief Technical Officer
Date: $2 \mid 16 / 2000$

Enclosures: 510(k) Submission

Preliminary Labels and Labeling

All labels and labeling presented in this submission are considered "draft." Advertising material has not been produced for this device at this date.

On the following pages are "draft" device labels, computer screen views, device photographs that display label placement and an Operator's Manual.

Unit

CardTel Electrocardiograph	
Model	NT-100
Serial No.	XXX-XX
Battery	9 Volt
Manufacturer	Cardiac Telecommunications
	Webster, Texas 77598
	$1-888-228-2666$
Date Mfg.	XXIXXIXXXX
Risk Class	1

O 1 RA LA LL RL V1 V2 V3 V4 V5 V6

Electrodes

Data Output
Connection

Battery Compartment
Replace with
9 Volt Battery

BOX LABEL

CardTel Electrocardiograph

Model NT-100
CAUTION: Federal Law restricts this device to sale by or on the order of a physician.

Read Operator's Manual before placing into service.
Cardiac Telecommunications
17448 Highway 3, Suite 175
Webster, Texas 77598
1-888-228-2666
One each, fully assembled, non-sterile, and nondisposable.
Risk Class I
9 Volt
Serial No. XXX-XXX
Mfg. $X X / X X I X X X X$

Please follow the steps below:
(1) For a current patient, click button Select Current Patient or
choose menu Patient/Current Pratient to pick the patient
For a new patient, click button Add New Patient or choose menu PatientNew Patient to fill in new patient informstion.
(2)Click button Display Settings or choose menu ECG/Settings to set Display parameters.
(3)Click button Monitor ECG or chaose menu ECGMMonitor to begin monitoring, or click button Record ECG or choose menu ECG/Record to begin recording, or (4)To replay ECG, click button Open ECG File or choose menu ECG/Open to open an ECG file, then chick button Replay ECG or choose menu ECGIReplay to replay ECG.
(5)Click button Stop or choose menu ECG/Stop to stop Record/Monitor/Replay sessions.
(6)Click button New or choose menu FileNew to begin another process.

This is specially useful for companing different ECG recorcs.
(7)Click button Instruction or choose menu Help/Instruction to see this instruction page agsin.
(8)Click button Print of choose menu FilePrint to print the displayed ECG.

Figure 1, This is the first screen seen by user. It appears when program is initiated.

Figure 2, New Patient form requires that all blanks be filled in. Last Name and First Name will hold a maximum of 30 characters each, while the Patient ID will hold a maximum of 11.

Figure 3, Settings is the first sub menu option in ECG. Duration of the ECG to be viewed or recorded is in seconds. For 10 minutes, enter 600 seconds, etc. Default is 10 seconds for this parameter and maximum time is 86,400 seconds. Sensitivity is in $\mathrm{mm} / \mathrm{mV}$. Default for this parameter is 10 with maximum value 99. You can select leads to display by selecting All 12 Leads or by selecting Following Leads. With this option, you can select any one or combination of leads. Select the Serial Port to acquire the ECG data option allows the user to select a communications port other than Com1 if their computer supports more than 1 serial port.

Figure 4, 11 shows the status bar with patient's name, Sensitivity selection, Start and End Time displayed and Elapsed time. This menu can be removed, making the display area larger by removing check mark on View option, sub menu Status Bar.

Figure 5,15 shows a standard 12 lead ECG

Label on top of NT-100 Unit

Label on bottom of Unit

OPERATORS MANUAL
 NT-100 CARDTEL ELECTROCARDIOGRAPH SYSTEM

Cardiac Telecommunications
17448 Highway 3
Webster, Texas 77598
877-228-2666

READ FIRST SAFETY \& OPERATION PRECATUTIONS

CAUTION

Regulations in the USA and Canada restrict this device to sale by or on the order of a licensed physician.

ELECTRICAL PRECAUTIONS

Make sure the power source is compatible with the electrical specifications shown on the computer power supply and battery chargers. For proper grounding reliability, connect the AC power cords only to a properly grounded 3-wire receptacle. In hospital use ensure the receptacle is of the "green dot" type. Do not remove the ground pin. Do not use extension cords.

The NT-100 System does no contain any user serviceable components except batteries.
Servicing should be performed only by authorized personnel.

EXPLOSION RISK

The NT-100 system is not designed for use in an explosive atmosphere or in the presence of flammable anesthetics. Use in such environments may present an explosion hazard.

Do not use in an oxygen tent, or in the presence of pure oxygen. A fire hazard exists in the presence of oxygen enriched atmospheres.

WARNINGS

Do not load any new or different programs onto the computer hard drive. The computer should have only the NT-100 program loaded on the hard drive.
Do not load any "run in the background" utilities.

QUESTIONS

Any questions regarding the Safety and Operations - contact Cardiac Telecommunications, 17448 Highway 3, Suite 175, Webster, Texas 77598. Telephone 1-877-228-266, Fax 281-332-6000.

SECTION I GENERAL INFORMATION

INTRODUCTION

This manual provides instructions for installation, use, and troubleshooting of the Cardiac Telecommunications CardTel Model NT-100. Cardiac Telecommunications can not be responsible for the performance of the CardTel Model NT-100 if the user does not operate the unit in accordance with provided instructions, uses accessories other then those designed for the system, or effects any repairs with unauthorized components. Repair should be performed only by qualified authorized service personnel.

This manual should be read, thoroughly understood, and readily accessible to all personnel who will be operating and using the CardTel Model NT-100 system.

WARNING

The NT-100 System is intended to be used under the direct supervision of a licensed Healthcare practitioner, by trained operators in a hospital or medical professional's facility.

DESCRIPTION

The CardTel Model NT-100 provides a portable device to continuously monitor ambulatory patient 12 lead electrocardiographic (ECG) data. The unit is designed to acquire and display up to twelve ECG vectors in a standard diagnostic ECG analysis format. The twelve leads consist of the standard twelve ECG leads, I, II, III, aVR, aVL, aVF, V1 and V6. The Model NT-100 is used to monitor patients in the operating room, recovery rooms, intensive care units, in the emergency room, in research settings, or other units where additional ECG leads are desired and real time display is desired. The display unit consists of a generally available Pentium((\mathbb{B}) based personal computer or laptop computer with a SVGA monitor.

The system provides a means for the continuous monitoring of electrocardiographic signals in order to detect abnormal cardiac rhythms, including life-threatening events.

WARNING

DO NOT OPERATE NEAR FLAMMABLE GAS.

SECIFICATIONS

Specifications for the Cardiac Telecommunications CardTel Model NT-100 are provided in Section 2. All specifications and accessories are subject to change without notice.

SYSTEM SET UP

The system is easy to set up. A complete NT-100 system consists of the following items:

- NT-100 unit
- NT-100 Battery Box
- ECG Cables and disposable electrodes
- Radio Transmitter
- Radio Receiver
- Radio Transmitter/Receiver Battery

Charger

- Laptop Computer w/NT-100 software
- Laser or Ink Jet printer

The NT-100 System

[^0]Set up the system of operation as follows:

1. Charge Radio batteries.
2. Ensure that new fresh batteries are in the NT-100 Battery box.
3. Connect Radio Receiver to Laptop computer turn radios ON.
4. Connect NT-100 to Battery Box and Radio Transmitter.
5. Connect ECG leads to NT-100.
6. Turn Laptop computer on and load NT100 program.

ECG

The total collective electrical activity associated with the waves of excitation of the heart's nerves and muscles can be recorded by electrodes placed on the skin and connected to the NT- 100 unit. The NT-100 system displays and records the ECG electrical activity on the heart at a standard rate.

Different types of ECG measurements can be made which are in essence different "views" of the heart's electrical activity from different angles around the body dependent upon the installation and connection of electrodes. Licensed Healthcare Professionals shall make the selection and placement of the ECG electrodes.

Electrode Site Preparation

Cleanse all sites thoroughly with alcohol or sterile wipes. Rub sites with wipes about 5 seconds each (this abrading increases electrical conductivity of skin).

Remove electrodes from package (open just prior to use). Apply to site (start at top edge and roll downward).

Press entire surface of electrode onto skin.

Connection of Electrode Wires

Snap electrode wires from the NT-100 to the surface electrodes by the color code.

CAUTION

Do not allow tension to be placed on any of the wiring connections between patient and the NT-100 unit. Dress wires form patient electrodes to NT-100 in a manner that minimizes the "over the body" routing of the wires.

Causes of unsatisfactory ECG's

Improper application of electrodes due to:

- Excessive hair
- Oily, dirty, scaly skin
- Excessive perspiration
- Broken or defective ECG cables
- Electrode paste dehydrated

Operation of Laptop Computer

- Turn on power.
- Load NT-100 program.

WARNING

Do not load any new or different programs onto the computer hard drive. The computer should have only the NT-100 program loaded on the hard drive.
Do Not Load any "run in the background" utilities. Should another program be loaded onto the hard drive, remove the computer from use and contact Cardiac Telecommunications.

Select:

1. For a current patient, click button Select Current Patient or choose menu Patient/Current Patient to pick the patient.
For a new patient, click button Add New Patient or choose menu Patient/New Patient to fill in new patient information.
2. Click button Display Settings or choose menu ECG/Settings to set Display parameters.
3. Click button Monitor ECG or choose menu ECG/Monitor to begin monitoring, or click button Record ECG or Choose menu ECG/Record to begin recording, or
4. To replay ECG, click button Open ECG File or choose menu ECG/Open to open an ECG file, then click button Replay ECG or choose menu ECG/Replay to replay ECG.
5. Click button Stop or choose menu ECG/Stop to stop Record/Monitor/Replay sessions.
6. Click button New or choose menu File/New to begin another process.
This is specially useful for comparing different ECG records.
7. Click button Instruction or choose menu Help/Instruction to see this instruction page again.
8. Click button Print or choose menu File/Print to print the displayed ECG.

Welcome to Cardiac Telecommunications

For a sow pationt, obick butbom Add Nou Pariont or

Figure 1, Opening Page

Figure 2, New Patient form. All fields must be filled in.

Figure 3, With this form the Duration, Sensitivity, Time Base, and lead selection is made. The computer communication port is selected for the radio receiver.

Figure 4, ECG display with patient name, Sensitivity selection, Start and End Time displayed and Elapsed total time.

Figure 5, Display with standard 12 lead ECG, Patient information.

Figure 6, Hard copy printout of 12 lead ECG.

Section 2

Cleaning and Service

Cleaning

The exterior enclosure of the NT-100 unit is made of plastic and should be cleaned using a soft, damp cloth with a mild detergent. Care should be taken to not allow any liquid to inter the inclosure. Hypocarbonate and phenolic based cleaning solutions should NEVER be used as they will cause deterioration of the plastic. The NT-100 may be disinfected using a hyperchlorite solution (1000 ppm). Do not sterilize the NT-100 unit by any method.

The ECG electrodes are single use devices and are not designed to be cleaned or reused.

Preventive Maintenance

A qualified biomedical service technician to assure proper operation of the system should routinely inspect the NT-100 unit (not less than once a year). Any worn or damaged components that could result in a hazard to safety or potential product malfunction should be identified and the system sent to authorize service.

Troubleshooting

WARNING: The NT-100 system does not contain any user serviceable components except for the replacement of batteries.

CAUTION: Electrical shock hazard. Opening any of the components of the computer must be done only by authorized qualified service personnel.

See next page for Troubleshooting Guide Chart.

Troubleshooting Chart

Svmptom	Possible (cause	Suggested Solution
Computer Screen has "The power of battery 2 is too low" warning box	Battery No. 2 in Battery Box is low or missing.	Replace battery
Computer Screen has "The power of battery 1 is too low" warning box	Battery No. 1 in Battery Box is low or missing.	Replace battery
Communications between NT-100 and Computer is lost	Battery in Radio Transmitter or Re- ceiver is low	Recharge battery or replace Ra- dio unit with a Radio with a charged battery.
Computer "Low Battery" alert is on.	Computer battery is low.	Recharge battery or operate Computer from Mains.
Computer screen has ERROR message or mouse pointer will not move.	Computer Operating System is locked.	Turn Computer OFF, wait one minute and turm back ON.

Specifications

Fcaturc	
Model Number	NT-100
NT-100 Size	$6.5 \times 3.25 \times 1.25$ inches
NT-100 Battery Box Size	4.5 X 3.75 X 2 inches
System Weight, less computer	3.5 Lbs.
Computer Screen Size	>11 inches, Computer Model Dependent
Radio Range from NT-100 to Computer	Approx. 6/10 of a mile.
Battery life	>24 hours
Number of ECG leads	12 or less as selected by Health Professional
No of leads displayed	12
Archival storage for ECGs	>60
Access to directory functions	Single screen
Record identification	By patient name or alphanumeric identification
Safety Testing	UL 2601,

Radio Transmitter and Receiver Specifications

Power Specifications

Vcc Input Range:
Vcc Ripple:
Operating Temperature Range:
3.3 v to 10.0 v
< 1%
-20 C to +70 C
Current Consumption (Max transmit power, 230.4Kbps 1/0)

Mode	Remote	Base Station
Sleep	50 pA	N/A
Standby	20 mA	N/A
Typical	50 mA	120 mA
Peak (Tx)	200 mA	200 mA

RF Specifications

FCC Certification
ETSI (European) Certification
Rated RF Power
Line-of-site Range
Frequency Range
Number of Channels
Receiver Sensitivity
Channel Data Rate
IF Adjacent Channel Rejection

Part 15.247, no license required brETSI 300.328 , no license required +18 dBm (+20 dBm effective radiated) approx. $6 / 10$ of a mile
2401 - 2495 MHz
75 US; Canada, France, Spain \& Japan: 25
$-93 \mathrm{dBm}$
460 Kbps
$>55 \mathrm{~dB}$

Mechanical Specifications

Weight
Dimensions (including shield)

35 g
$80.2 \times 46.5 \times 8.6 \mathrm{~mm}$
(refer to section 7.6 for mechanical drawing)

RF Connector:

WIT	Huber/Suhner:	85 MMCX 50-0-1
Mating	Huber/Suhner:	11 MMCX-50-2-3 (straight)
	Huber/Suhner:	16 MMCX-50-2-2 (rt. angle)

Data/Power Connector:

WIT
Mating

Samtec:
Samtec: FFSD-08 (IDC cable) Samtec: CLP-108-02-G-D (PCB mount)

Signal	WIT24IOM OEM PInout	WIT24IOE DB9 Pinout
GND	1	5
TXD	2	3
ROD	3	2
CFG	4	
PTS	5	7
SLEEP	6	4
BCD	7	\boldsymbol{I}
CTS	8	8

The WIT2410E is wired as a DTE device and as such can be connected to DTE devices such as PCs with a straight-through cable. When connecting a WIT2410E to a DCE device, a "null modem" cable is required. To effect a null modem cable, cross-wire TXD and RXD and connect ground. The WIT2410E can operate with just these three wires connected. However, as the WIT2410 does not support software flow control, there will be no flow control in this mode. If the DCE device fails to respond, connect DCD from the WIT2410E to the DTR and RTS inputs to activate the DCE device whenever the W1T2410 asserts carrier.

When connecting to the WIT2410M, make sure that all of the inputs (TXD, CFG, RTS and SLEEP) are terminated for proper operation.

Approved Antennas

The WIT2410M is designed to ensure that no antenna other than the one fitted shall be used with the device. The end user must permanently affix the antenna by using an adhesive on the coupling such as Loctite, or ensure the antenna has a unique coupling. The table below lists the antennas which can be purchased directly from Digital Wireless Corporation. Contact DWC Technical Support with any questions.

Description	Gain	Part Number	Coupling
YD24/15 Yagi Directional	14 dB	YAG12415	\mathbf{N}
Om24/9 Omnidirectional	9 dB	OMN 1249	\mathbf{N}
DWC Patch	$\mathbf{6 d B}$	PA2400	MMCX
Dipole	2 dB	RWA249R	Reverse SMA

This summary of $510(\mathrm{k})$ safety and effectiveness information is being submitted in accordance with the requirements of $\mathbf{2 1}$ CFR Part 807.92.

1. Submitter

2. Device

Proprietary name:	CardTel, Model NT-100
Common name:	ECG
Classification name:	Electrocardiograph

3. Classifications Names \& Citations:

21 CFR 870.2340 Electrocardiograph
21 CFR 870.2910 Radiofrequency Physiological signal transmitter and receiver
3. Predicate Device

Burdick Eclipse Plus, Burdick, Inc., K946281
4. Description

The CardTel Model NT-100 provides a portable device to continuously monitor ambulatory patient 12 lead electrocardiographic (ECG) data. The unit is designed to acquire and display up to twelve ECG vectors in a standard diagnostic ECG analysis format. The twelve leads consist of the standard twelve ECG leads, I, II, III, aV, aVI, IVF, V1 and V6. The Model NT-100 is used to monitor patients in the operating room, recovery rooms, intensive care units, in the emergency room, in research settings, or other units where additional ECG leads are desired and real time display is desired. The display unit consists of a generally available Pentium (8) based personal computer or laptop computer with a SVGA monitor and color printer.

The system provides a means for the continuous monitoring of electrocardiographic signals in order to detect abnormal cardiac rhythms, including life-threatening events.
5. Indications for use

The CardTel Model NT-100 is intended to be used under the supervision of a licensed Healthcare practitioner. The Model NT-100 is intended to be used to display, record and transmit ECG signals from surface electrodes. The device is intended to acquire, display and record real time electrocardiographic information from relevant populations.
6. Contra-indications

May only be operated by trained personnel.
7. Comparison

The CardTel NT-100 ECG System has the same device characteristics as the predicate device, except the predicate device does not have wireless capability.

8. Test Data

The Model NT-100 System has been subjected to extensive safety and performance testing prior to release. Final testing for the system includes various performance tests designed to ensure that the device meets all of its functional requirements and performance specifications. The ECG Analysis system meets the specified clinical output data requirements of the ANSI/AAMI EC38-1994 specification for ambulatory electrocardiography. Standard databases have been used for automated ECG algorithm verification testing. Safety tests have further been performed to ensure the system complies to applicable industry and safety standards.

The NT-100 device labeling includes instructions for safe and effective use. It includes warning, cautions, and guidance for installation and maintenance.
9. Literature Review

A review of literature pertaining to the safety of electrocardiographs has been conducted. Appropriate safeguards have been incorporated in the design of the NT-100 unit.
10. Conclusions

The conclusion drawn from these tests is that the Model NT-100 ECG System is equivalent in safety and efficacy to its predicate device.

510(k) Number $K 000609$
Device Name: CardTel Model NT-100

Indications for use: The CardTel Model NT-100 is intended to be used under the supervision of a licensed Healthcare practitioner. The Model NT-100 is intended to be used to display, record and transmit ECG signals from surface electrodes. The device is intended to acquire, display and record real time electrocardiographic information from relevant populations.

Prescription Device: Federal Law (US) restricts this device to sale by or on the order of a physician.
(PLEASE DO NOT WRITE BELOW THIS LINE- CONTINUE ON ANOTHER PAGE IF NEEDED)

Concurrence of CDRH, Office of Device Evaluation (ODE)

\qquad
Prescription Use Yes OR Over-The-Counter Use
(Per 21 CFR 801.109)
(Optional Format 1-2-96)

Photographs of Unit

On the following pages are photographs of the CardTel NT-100 unit.
The first photograph is of the system with radio units less a color printer. The computer shown is a generically available IBM type PC with color display.

The next two pages have photographs of the device with sample labels in place. The labels shown are for location indications only.

Cardiac Telecommunications CardTel Model NT-100 System

Top of NT-100 Unit

Bottom of Unit

Data Output Cable to Radio Transmitter

Description of CardTel NT-100 Device

The CardTel Model NT-100 provides a portable device to continuously monitor ambulatory patient 12 lead electrocardiographic (ECG) data. The unit is designed to acquire and display up to twelve ECG vectors in a standard diagnostic ECG analysis format. The twelve leads consist of the standard twelve ECG leads, I, II, III, aVR, aVL, aVF, V1 and V6. The Model NT-100 is used to monitor patients in the operating room, recovery rooms, intensive care units, in the emergency room, in research settings, or other units where additional ECG leads are desired and real time display is desired. The display unit consists of a generally available Pentium® based personal computer or laptop computer with a SVGA monitor with CardTel software loaded.

The NT-100 is a patient worn ECG recording system. It consists of a 12-lead ECG amplifier module that is powered from a separate battery module. The amplifier is connected via a serial port to a battery powered wireless transmitter for sending the ECG waveforms to a receiver located within a range of 500 ft . The receiver is connected to a personal computer via a serial port. The personal computer has software for display, storage and hard copy printout of the ECG waveforms.

The system provides a means for the continuous monitoring of electrocardiographic signals in order to detect abnormal cardiac rhythms, including life-threatening events.

A complete NT-100 system consists of the following items:

- NT-100 unit
- NT-100 Battery Box
- ECG Cables and disposable electrodes
- Radio Transmitter
- Radio Receiver
- Radio Transmitter/Receiver Battery Charger
- Laptop Computer - supplied or user provided
- NT-100 Software
- Laser or Ink Jet printer - supplied or user provided

Optional Accessories:

- Extra batteries for radios
- Extra battery charger for radios

Operation Flow

Radio Transmitter and Receiver Specifications
 Digital Wireless Corp. model WIT2410

 Power Specifications

 Power Specifications}
(5)(4) \longrightarrow

RF Specifications

Mechanical Specifications

Signal	WIT24IOM OEM PInout	WIT24IOE DB9 Pinout
GND	1	5
TXD	2	3
RXD	3	2
CFG	4	
RTS	5	7
SLEEP	6	4
DCD	7	-
CTS	8	1

The WIT2410E is wired as a DTE device and as such can be connected to DTE devices such as PCs with a straight-through cable. When connecting a WIT241OE to a DCE device, a "null modem" cable is required. To effect a null modem cable, cross-wire TXD and RXD and connect ground. The WIT2410E can operate with just these three wires connected. However, as the W1T2410 does not support software flow control, there will be no flow control in this mode. If the DCE device fails to respond, connect DCD from the WIT241OE to the DTR and RTS inputs to activate the DCE device whenever the W1T2410 asserts carrier.

When connecting to the WIT241OM, make sure that all of the inputs (TXD, CFG, RTS and SLEEP) are terminated for proper operation.

Approved Antennas

The WIT241OM is designed to ensure that no antenna other than the one fitted shall be used with the device. The end user must permanently affix the antenna by using an adhesive on the coupling such as Loctite, or ensure the antenna has a unique coupling. The table below lists the antennas which can be purchased directly from Digital Wireless Corporation. Contact DWC Technical Support with any questions.

Description	Gain	Part Number	Coupling
YD24/15 Yagi Directional	14 dB	YAG12415	N
Om24/9 Omnidirectional	9 dB	OMN 1249	N
DWC Patch	6 dB	PA2400	MMCX
Dipole	2 dB	RWA249R	Reverse SMA

Drawings of Device

Attached are sketches of the device. Production drawings are on file with the plastic molder.

SUBSTANTIAL EQUIVALENCE

Parameter	CardTel NT-100	Burdick Eclipse Plus K946281
Records, stores, and displays electrocardiograms	Yes	Yes
12 Lead Std.	Yes	Yes
Defibrillator- protected input leads	Yes	Yes
Pacemaker spike detection	Yes	Yes
Wireless Operation	Yes	No
Archival storage for >60 ECGs	Yes	Yes
VGA color display	Yes	Yes
Color printer	Yes	Yo
Single screen access to all directory functions	Yes	Yes
Records identified by patient name, as well as alphanumeric identification	Yes	
ECG Electrodes	Lead-Lok, Inc. PO-6	Lead-Lok, Inc. PO-6
On cart	No	Yes
SCP-ECG data storage standard	No	Yes
Interpretative software	No	Yes

The CardTel NT-100 and Burdick Eclipse Plus are of the same basic design with the same basic indications for use.

The differences are:

- The Burdick Eclipse Plus has a computer built into the device for display, storage and printing where as the NT-100 utilizes a standard PC computer and color printer.
- The NT-100 is smaller, the transmitter part may be worn by the patient if desired. This feature thus requires the radio link to the display and storage unit.
- The NT-100 does not feature interpretative analysis of patient ECG.

Burdick Eclipse Plus labeling is supplied on the following pages.

Burdick Eclipse Plus - Predict Device Labeling

There are physicians retiring today who will leave behind a valued lirlend - the Burdick electrocardiograph that has served them well through many years in practice.

Reliability and value have become synonymous whit Burdock. That's why you'll find more then 400,000 Burdick electrocardiographs installed in phyolctans' offices, clinics and hospitals. We've been earning our customers' confidence with hardworking products and excellent service since 1913.

Today, our integrated cardiopulmonary products can help you meed the challenge for faster results and better cost controls. Burilick Sires and Holier Systems. Electrocardiographs, Splrometers, and Oximoters are efficient, accurate and featuradualue rich. They are engineered to accommodate changes without

Incurring unreamnable costs. and to communicate freely and easily. Burdock's quality electrooandiopraph supplies, warranties and service nctropk help support product longevity at optimum eincisicisy You oman be

 products, supporthenivelue. That's a commitment youth orin count on, now and long into the future.

Compare the Advantages of Ecilipse Plus" ${ }^{\text {su }}$

No other syetam delivere the leval of integrated performance and value you'll find in Ecllpee Pluse We urge you to compare Eclipse Plus feature for feature with any other electrocardlograph. Aak about technical support programa. Evaluato warrantios. Compare training and service. Add to all of these advintages truly seneible pricing, and you'll seo why Extlpen Plue so cloenty
 goee beyond the ordinary to deliver Burdick total value.

Convenient matla for auppliea. Koup what you noed at your flingortipe.
$8.6^{-} \times 11^{\prime \prime}$ neport, with ingee writing eunfices. Corvenient for recording notbe, comnnente.

Rugged
mompltat-grade
oart facturting
Irge supplice
tray and raport
beaker -
corvantiont for
holding extrin
paper and filces.

Unique Owhwl and Tilit wetion. Pooltion the ditaplay for optimum whewing.

The ldeal Partner for Your Pyramis ECG Management System

The Pyramis syetem is the enewer to your ECG management needs. Designed to integrate seamlessly into your dapartment and your homplta, Pyrarnis automates the process of managing electrocardiograms. making data available to other systems, when and where the data is neaded.

- Simple, intuitive word-processor style report editor makes the syetem exay to baern and use.
- Automated reporting functions, repon logging and dibtribution eave time.

- Windowr-based clienta integrate ausily into the enterprise-wide network.
- HIS interfaces with Burdick's powerful HL-7 integration engine, including requisition and AD' downioad, results reporting end blliing interfaces.
- Fast, user operation increases productivity and coet-effectiveness.

Leading the Way with Non-Proprietary ECG Communication

ECG deta tranemission and storage are often considered proprletary technology. At Burdick, we believe thet this is your date and you should not be conetrained by - restrictive approach to informakion management.

For this reason, we have adopted a nonproprietary communioation technology for tranemitting and storing ECGs. This protacol, the Standard Communications Protocol for Eloctrocardlography (SCP-ECG) is a published, international standard, allowing connectivity between instrurnente and syateme. Wht SCP-ECG, compatible syateme can transmit, store, and receive alectrocardiograms with full waveform fidelfy - true open-syatem.

ECIPSEPLUS

Spbcaficamons

Sysiem

- 10.4" VGA ective matrix color LCD display, with 80° tilt/wwivel capablity.
- Built-in thermal printer uses fuli-slzed $\left(8.5^{\prime \prime} \times 11^{\circ}\right.$ or A4) Assurance $80^{7 m}$ archival quality paper, continuous feed, Z-folded.
- Archlval storage for 60 ECGs.
- Customizeble display/report forms, precenting up to 12 laade on one screen or page.
- Singlo-ecreen accees to ell directory functions.
- Recorde identified by petient neme, as well as alphanumaric identification.
- PC card slot for software uparades.
- 16.8 VOC NiCd Battery Pack.
- Hoepital-grede cart with wiveliock cactere and paper/ilie etorage.

Opicons

- Fax modula.
- SCP-ECG competibility.

Limpuages
 Avtilable in English, German, French or Spanish verslone.

Opersing Volterpe
Available in $120 \mathrm{~V}, 240 \mathrm{~V}$, or 220 V operating at either 80 Hz or $\mathbf{6 0 H z}$.

FDA Data Base Listing of Predict Device - Burdick Eclipse

510(k) Summary

Effectiyenars

The pediatric enhancement to the interpretative program was developed by Dr. Peter MacFarlane in the University of Glasgow Department of Cardiology, Glasgow Royal Infirmary (GRI), Glasgow, Scotland. Dr. MacFarlane has been involved in computerized ECG interpretation since its inception in the 1960s. The GRI pediatric criteria is based on a large study of 2,196 neonates. infants and children.

The Burdick Reline 4 performs the same functions and meets the same performance standard as the Marquette MAC PC. This version of the Burdick GRI interpretative program and Marquette ${ }^{-}$s interpretative program used in the MAC PC both provide adult and pediatric resting ECG on patients ranging in age from birth to 99 years. Both programs analyze 10 seconds of data simultaneously from the 12 standard leads and identify essentially the same set of abnormalities.

Safety

The addition of pediatric interpretation does not change the analyeis of potential risks as outlined in the Eclipse $4510(\mathrm{k})$ submittal (\# K 943959) concerning electrical shock, misrepresentation of the patient EFCG. Inability of the operator to aucessfully record an BCG, mechanical pinch points and device falling.

Burdick conducted a review of the literature pertaining to safety of pediatric interpretative capabilities in electrocardiographs. Appropriate safeguards have been incorporated in the design of the Eclipse 4.

The device labeling includes instructions for safe and effective use. It included warnings, cautions, and guidance for installation and maintenance.

Summary of Burdick Eclipse Predict Device.

Cardiac Telecommunications

CardTel NT-100 Electrocardiograph

Preliminary Hazard Analysis and
 Failure Mode and Effects Analysis

Table of Contents

1 PURPOSE AND SCOPE4
2 STANDARD REFERENCES4
3 DOCUMENT REFERENCES5
4 DEFINITIONS 5
4.1 OPERATING ENVIRONMENT5
4.2 DEFINITIONS 5
5 RESPONSIBILITY6
6 PROCEDURE 6
6.1 Hazard Causes. 6
6.1.1 Energy Hazards 6
6.1.2 Information Hazards 7
6.1.3 Biological Hazards 7
6.1.4 Environmental Hazards. 7
6.1.5 Hazards related to the use of the device 7
6.1.6 Hazards arising from functional failure, maintenance and aging 8
6.2 RISK ANALYSIS 8
7 QUALITATIVE AND QUANTITATIVE CHARACTERISTICS 11
7.1 Intended use 11
7.2 Intended Patient Contact or Contact with Other Persons 11
7.3 Materials and Components 11
7.4 Energy Delivered or Extracted from the Patient. 11
7.5 SUBSTANCES Delivered or Extracted from the Patient 11
7.6 Biological Material processed by the Device for Subsequent Use 11
7.7 STERIlity and Sterilization 11
7.8 Modification of Patient Environment
12
12
7.9 Measurements
12
12
7.10 Interpretation of Results
12
12
7.11 COntrol or Interactions with other devices or Drugs
12
12
7.12 Unwanted Output of Energy or Substances
12
12
7.13 Susceptibility to Environmental Influences
12
12
7.14 Essential Consumable or Accessories
12
12
7.15 Routine Maintenance and Calibration 12
7.16 Software
12
12
7.17 Restricted shelf-LIFe
13
13
7.18 Delayed and Long-Term Effects 13
8 HAZARD ANALYSIS MATRIX 15
8.1 ENERGY HAZARDS
15
15
8.1.1 Electrical Energy (SC)
15
15
8.1.2 Electrical Energy (APM)
15
15
8.1.3 Electro-magnetic Energy See separate report.
16
16
8.1.4 Mechanical Energy
16
16
8.1.5 Optical Energy (APM) 16
8.1.7 Thermal Energy 16
8.1.8 Ionizing Radiation 17
8.2 BIOLOGICAL HAZARDS
17
17
8.3 ENVIRONMENTAL HAZARDS 17
8.3.1 Inadequate Supply Of Power, Or Cooling 18
8.4 HAZARDS RELATED TO THE USE OF THE DEVICE 18
8.4.1 Incorrect System Component Interconnect 18
8.4.2 Information Processed by the NT-100 18
8.4.5 User Interface 19
8.5 HAZARDS ARISING FROM FUNCTIONAL FAILURE (INCLUDING SOFTWARE) 19
8.5.1 Measurement Function and Data Recording (APM) 19

1 Purpose and Scope

This document identifies the possible risks and hazards to a patient, operator or bystander that could occur if a component or subsystem of the CardTel NT-100 Electrocardiograph system fails. Any use of the equipment in an unforeseeable or unintended fashion is not covered by this analysis.

This document will:

- Identify possible risks and hazards that could occur to a patient, operator, or bystander if a component or subsystem of the CardTel NT-100 Electrocardiograph patient monitor system fails;
- Estimate the risk by determining the occurrence probability of the hazard;
- Estimate the maximum possible severity of the risk;
- Determine the risk reduction, or severity reduction necessary to make the risk acceptable;
- Estimate the resulting risk, and severity of the controlled or mitigated hazard.

2 Standard References

This hazard analysis will cover the CardTel NT-100 Electrocardiograph systems in stand-alone or connected status. It is based on the methodologies described in:

1. IEC 601-1-4: 1996, Part 1: General requirements for safety -Programmable electrical medical systemsBureau Central de la Commission Electrotechnique Internationale (IEC), Rue de Varembre, Geneve, Switzerland
2. EN1441: 1997: Medical Devices - Risk analysis (10/94) - CEN - European committee for Standardization, Rue de Stassart 36, B-1050 Bruxeles
3. ISO $9000-3: 1991$, Quality management and quality assurance standards - Part 3: Guidelines for the application of /SO 9001 to the development, supply and maintenance of software.
4. ISO 9001: 1994, Quality systems - Mode/ for quality assurance in design, development, production, installation and servicing
5. CEI-IEC 1508: Functional Safety - Safety Related Systems, Bureau Central de la Commission Electrotechnique Internationale (IEC), Rue de Varembre, Geneve, Switzerland
6. Reviewer Guidance for Computer Controlled Medical Devices undergoing 510(k) Review, Rockville, MD,
FDA 8/1991.
7. ODE Guidance for the content of Premarket Submission for Medical Device Containing Software, FDACDRH, Rockville, MD, 9/1996. (DRAFT)
8. CEI-IEC 601-2-22: Particular Requirements for the safety of diagnostic and therapeutic laser equipment (11/95) - Bureau Central de la Commission Electrotechnique Internationale (IEC), Rue de Varembre, Geneve, Switzerland
9. IEC 825-1: Safety of laser products: Equipment classification, requirements and user's guide (11/93) Bureau Central de la Commission Electrotechnique Internationale (IEC), Rue de Varembre, Geneve, Switzerland

10. ODE Guidance For Off-The-Shelf Software Use In Medical Devices, FDA-CDRH, Rockville, MD, 6/1997. (DRAFT)

11. General Principles of Software Validation, Draft Guidance, FDA- CDRH, Rockville, MD, 6/1997.

Any use of the equipment in unforeseeable, unintended, or careless fashion may lead to a potentially hazardous condition. The Users Manual provides instructions on proper system operation. Any use outside the scope and procedures described in the system documentation is NOT covered by this analysis.

3 Document References

Document \#	Title
	FDA 510(k) Submission

4 DEFINITIONS

4.1 OPERATING ENVIRONMENT

The s CardTel NT-100 Electrocardiograph system is part of a comprehensive system for monitoring ambulatory and bedridden patients. The monitored and recorded parameters are interpreted by trained and licensed medical professionals, however the patient is not under continuous supervision. The user interface and the operating instructions are designed to avoid misunderstandings and prevent foreseeable misuse.

The safe state of the device is defined as the de-energized state. This is in contrast to a lung ventilator or a defibrillator, for example, where absence of energy could lead to a hazard. Absence of energy in a patientmonitoring system might result in unavailability of diagnostic data but will not generate an immediate hazard.

4.2 DEFINITIONS

- Hazard -- Potentially detrimental effect on the patient, other persons, animals, or the surroundings, arising directly from the medical electrical equipment.
- Risk -- Probable rate of occurrence of a hazard causing harm, and the degree and severity of the harm. Incredible -- highly improbable.

4.3ACRONYMS AND ABBREVIATIONS

ALARP	As Low As Reasonably Practicable
A/D	Analog to Digital Converter
C	Consequence
D/A	Digital to Analog Converter
DC/DC	DC to DC converter (converts DC voltages)
EMI	Electro-Magnetic Interference
EMS	Electro-Magnetic Susceptibility
ESD	Electro-Static Discharge
F	Frequency
FMEA	Failure Mode and Effect Analysis
FMECA	Failure Mode Effect and Criticality Analysis
FTA	Fault Tree Analysis
Hazard	A possible source of danger
HCF	Healthcare Facility
I/O	Input / Output of electrical signals
MCU	Main Control Unit (Processor that controls the laser unit)
O	Observability
PS	Power Supply
R	Risk
RC	Risk Class
S	Severity
VcC	Supply Voltage for Logic Circuits

5 RESPONSIBILITY

It is the responsibility of the Project Engineer, with the aid of qualified personnel, to develop and maintain this document.

6 PROCEDURE

On the basis of the identified list of potential hazards, and their criticality level, a detailed analysis will be performed:

1. Failure Mode Effects and Criticality Analysis (FMECA). The "bottom-up" approach of the FMECA will be used to investigate known failure modes of system components, and their capability to create a hazard. This analysis will be based on a "single faut" assumption that no single point of failure shall create any of the identified hazards. The assessment schema will therefore not account for multiple (catastrophic) or 'chain of events' faults, or faults deliberately induced. The FMECA methodology will determine whether a sub-system or component failure could lead to a hazard. The advantage of FMECA is the fact, that every component of the system becomes part of the evaluation.

This Hazard Analysis will develop a comprehensive collection (matrix) of potential hazards. This matrix may be refined as the implementation of the device becomes more defined, but it is free from implementation details. All hazards are collected taking various factors into account. Specifically, the following sub-set of the hazards identified in EN 1441 are assumed to be the only factors that cause, or contribute to a hazard for this specific type of equipment.

However, because the direct cause-effect relationship may not be obvious, not all hazards are immediately identifiable. Specifically, long-term hazards, and secondary hazards or 'cloaked hazards' are not easily identified. This hazard analysis will therefore be periodically reviewed and updated.

6.1 Hazard Causes

6.1.1 Energy Hazards

The purpose of the devices is not to deliver energy to the patient. The devices are however powered by electrical power (battery or mains) and use secondary energy to measure physiological parameters The energy levels of the APM device are deliberately kept as low as possible to extent the battery life.

The following sources of energy will be evaluated as having either "direct" risk potential, or "secondary" risk potential (due to energy transformation -- a transformation such as light \Rightarrow heat could cause a hazard even though the primary energy property will not cause a hazard).

Hazard Energy Source	Primary Hazard	Secondary Hazard
Electrical Energy (conducted)	Electric shock (Cardiac fibrillation)	Tissue damage (burns)
Electro-Magnetic Energy (radiated)	External interference (Cardiac pacemakers)	EM susceptibility
Mechanical Energy	Tissue damage/impact	N/A
Optical Energy	Tissue damage	Explosion hazard

Hazard Energy Source	Primary Hazard	Secondary Hazard
Thermal Energy	Tissue damage	Fire hazard Explosion hazard
Chemical Energy	N/A	N/A
lonizing Radiation	N/A	N/A
Pressure	N/A	N/A

Table 1 Primary and Secondary Hazards

6.1.2 Information Hazards

The primary purpose of the device is to measure, record, evaluate and transmit measurements of physiological parameters. During each of the data processing steps the data is vulnerable to be incorrect, ie. not reflect the physiological parameter monitored. The following hazards will be evaluated:

- Incorrect data processing

6.1.3 Biological Hazards

The CardTel NT-100 Electrocardiograph is in patient contact through non invasive sensors. The sensors are not meant to be in contact with mucous membranes.. The following hazard will be evaluated:

- Patient/Operator/Device Contact.

6.1.4 Environmental Hazards

The device has to avoid hazards resulting from materials used in its design. Since the device, or its operation may require the use of toxic, caustic, or otherwise hazardous materials, it is necessary to determine whether materials used in the device's construction can lead to a hazard due to leaching, evaporation, or fumes generated by high temperatures; or due to material degradation through aging, excessive temperature, cleaning substances, or exposure to specified environmental conditions.

The device interactions with the environment will be minimized. Critical environmental parameters such as electromagnetic susceptibility, or emissions will have to comply with currently applicable international standards.

The following hazards will be evaluated:

- Materials used.
- Inadequate supply of power, or inadequate cooling.
- Electro-Magnetic Susceptibility, see separate EMI testing report.

6.1.5 Hazards related to the use of the device

The operator interface and the data transfer and processing is a crucial part of the device's safety system, since false information presented to the operator or patient as well as the absence of predetermined alarms can lead to improper treatment, and potential hazards. The primary information sources provided by the device are visual To ensure that critical operating parameters are correctly set, and to minimize the possibility of user error and foreseeable misuse, the information presented to the user has to be easily readable, correct, and comprehensive

The risk potential of the device's "information" content, and its software "dependencies" will be evaluated. Specifically, the following hazard will be evaluated:

- Information presented to the operator/patient.
- Data processing
- Data transfer
- User Interface

6.1.6 Hazards arising from functional failure, maintenance and aging

Time is needed for a hazard to develop into a risk; the amount of time needed depends on the nature of the hazard. Therefore, the hazard analysis matrix will account for a latency time in which a hazard control is possible without causing harm (hazard tolerance time).

The amount of substance, or energy delivered over time is also a factor that is hazard specific.
Long term effects are very difficult to predict. The application of patient monitoring equipment however is well understood over several decades. Currently no long-term hazards have been identified, or substantiated.

Figure 1: Device Properties and Interactions

6.2 RISK ANALYSIS

The severity of the hazardous events, combined with their occurrence probability determines the total risk potential of a device.

This analysis uses the following risk class ratings:

Risk Class	Interpretation
Class I	Intolerable risk
Class II	Undesirable risk and tolerable only if risk reduction is impracticable or if the costs are grossly disproportionate to the improvements gained
Class III	Tolerable risk if the cost of risk reduction would exceed the improvement gained
Class IV	Negligible risk

Table 2: Risk Classes

These risk classes are linked to occurrence probability, and the consequence of the event:

Frequency	Consequence					Critical	Marginal	Negligible
	Catastrophic	I	I	II				
Frequent	I	I	II					
Probable	I	II						
Occasional	I							
Remote	II							
Improbable								
Incredible								

Table 3: Risk Matrix
The device shall not generate a risk greater than Class III under normal operating and single fault conditions. However, frequent risks should not be tolerated, and incredible frequency will not be assumed. Catastrophic risks like the multiple deaths can be excluded due to the limited damage potential of the device. Therefore, the following sub-set from Table 3 is used:

Table 4: Acceptable Risks (ALARP)

The shaded part of the table represents the risk area, which is considered to be within the ALARP range.
The final risk assessment grades the "risk of a device" based on the mitigated or controlled risks. To enhance clarity, and to better identify the effectiveness of the control/mitigation measures, the unmitigated risk is also graded using the same rating. Figure 3 illustrates the risk reduction concept.

Figure 2: Risk, Acceptable Risk and Risk-Reduction

7 Qualitative and Quantitative Characteristics

7.1 Intended use

The intended use of the CardTel NT-100 Electrocardiograph device is the monitoring of the following physiological parameter:

- Electro-Cardiogram

The device is used to monitor a supervised patient.

7.2 Intended Patient Contact or Contact with Other Persons

The CardTel NT-100 Electrocardiograph is in patient contact through:

- ECG electrodes (electrical contact, mechanical contact)

7.3 Materials and Components

The devices use standard materials and components with well-understood properties.

7.4 Energy Delivered or Extracted from the Patient

- The intended use of the device does not energy from the patient.

7.5 Substances Delivered or Extracted from the Patient

The device if used as intended does not extract or deliver any substances to or from the patient.

7.6 Biological Material processed by the Device for Subsequent Use

The device if used as intended does not process biological material for subsequent use.

7.7 Sterility and Sterilization

The intended use of the device requires only sensors to be in contact with the skin surface:
The device itself does not require sterility or sterilization.

7.8 Modification of Patient Environment

The intended use of the device does not modify the patient environment.

7.9 Measurements

The device measures the following physiological parameters:
The intended use of the system is the monitoring of the following physiological parameters:

- Electro-Cardiac Waveforms

7.10 Interpretation of Results

The CardTel NT-100 Electrocardiograph measurements are transmitted, displayed, and recorded. The measurements are not interpreted by the system.

7.11 Control or Interactions with other Devices or Drugs

The system does not independently control other medical devices.

7.12 Unwanted Output of Energy or Substances

The intended use of the device does not cause unwanted output of energy or substances.

7.13 Susceptibility to Environmental Influences

The susceptibility of the device to environmental influences could lead to malfunction or incorrect measurements.

7.14 Essential Consumable or Accessories

Essential consumable required for the use of the device are:

- ECG electrodes (single patient use)

7.15 Routine Maintenance and Calibration

The device will require routine maintenance and calibration.

7.16 Software

510(k) Submission Page \#

The device will incorporate the majority of its functionality using two software systems.

7.17 Restricted shelf-life

The shelf life of the APM and SC systems is limited only by battery life. The essential consumables will have a limitation on shelf-life depending on the manufacturers specifications for these components.

7.18 Delayed and Long-Term Effects

The application of patient monitoring equipment is well understood over several decades. Currently no long-term hazards have been identified, or substantiated.

Bench Test of Input/Output System

1. Purpose

The purpose of this test is to verify that the signal in to the CardTel NT-100 is not compromised by the system or the radio link.
2. Test Procedures

(b)(4) Testing

3. Conclusion

The NT-100 system received and transmitted, stored, and printed the input wave shapes without any alteration.

1.0 Purpose

The purpose of this test is to verify that the Cardiac Telecommunications NT-100 ambulatory wireless ECG monitor meets a selected group of the UL2601-1 Medical Electrical Test - General Safety Requirements.
2.0 Description of the Device

The NT-100 is a patient worn ECG recording system. It consists of a 12-lead ECG amplifier module that is powered from a separate battery module. The amplifier is connected via a serial port to a battery powered wireless transmitter for sending the ECG waveforms to a receiver located within a range of 500 ft . The receiver is connected to a personal computer via a serial port. The personal computer has software for display, storage and hardcopy printout of the ECG waveforms.

3.0 Test Procedures

(b)(4) Testing

4.0 Test Results

4.1 Continuous Leakage Currents and Patient Auxiliary Currents (UL2601-1 section 19)
4.1.1 Enclosure Leakage Current for Internally Powered Equipment (UL2601-1 sec $19.4 \mathrm{~g} \mathrm{3)}$

Measurement between Modules					Power	
Limits	Units					
ECG-Batt	ECG-Xmitter	Batt-Xmitter	ECG	Xmitter	Min/Max	
		Off	Off	$---/ 100$	microamps	
		Off	On	$---/ 100$	microamps	
		On	Off	$---/ 100$	microamps	
		On	On	$---/ 100$	microamps	

4.1.2 Measurement of Patient Leakage (Source) Current for Internally Powered Equipment
(UL2601-1 sec 19.4h 6)

Measurement between Electrodes and Module Power								Limits		Units
Elec-ECG	Elec-Xmitter	Elec-Batt	ECG	Xmitter	Min/Max					
		Off	Off	$---/ 10$	microamps					
		Off	On	$--/ 10$	microamps					
		On	Off	$---/ 10$	microamps					
		On	On	$---/ 10$	microamps					

4.1.3 Measurement of Patient Leakage (Sink) Current for Internally Powered Equipment (UL2601-1 sec 19.4h 7)

Measurement between Leadwire and Module								Power	Limits	Units
	Elec -ECG	Elec-Xmitter	Elec-Batt	ECG	Xmitter	Min/Max				
		Off	Off	$---/ 50$	microamps					
	Off	On	$---/ 50$	microamps						
		On	Off	$---/ 50$	microamps					
		On	On	$---/ 50$	microamps					

4.1.4 Measurement of Patient Leakage (Sink) Current for Internally Powered Equipment (UL2601-1 sec 19.4h 7)

4.2 Dielectric Strength (UL2601-1 section 20)

Measurement between Leadwires and Module Power								Limits	Units
Elec -ECG	Elec-Xmitter	Elec-Batt	ECG	Xmitter	Min/Max				
			On	On	Pass/Fail	N/A			

5.0 Conclusion

The NT-100 passed all of the selected tests for electrical safety as performed. The one discrepancy noted was a failure during test 3.1.3 in which the mains voltage was applied between the electrodes and the exposed metal on the ECG cable housing. This failure was corrected by covering the exposed metal with insulation. It is recommended that a cable with a plastic connector housing be used in future revisions.

I certify that the tests were performed as written and that the results were as indicated.

PE License \#: \qquad

Reviewed and Accepted

Cardiac Telecommunications NT-100 Battery Powered EKG Device

Radiated Emissions - Front View

Radiated Emissions - Back View

Cardiac Telecommunications

Electrostatic Discharge Test Setup

Radiated Immunity Test Setup

Appendix D of EMC Measurement Uncertainty

Policy, Rationale and Evaluation

PREMARKET NOTIFICATION
 TRUTHFUL AND ACCURATE STATEMENT

(As Required by 21 CFR 807.87 (j))

I certify that, in my capacity as Chief Technical Officer of Cardiac Telecommunications, I believe to the best of my knowledge, that all data and information submitted in this premarket notification is truthful and accurate and that no material fact has been omitted.

Karim Alhussing, Ph. D.

For: CardTel, Model NT-100 Electrocardiograph

Y2K Certification

Cardiac Telecommunications, warrants that each item of hardware, software, and firmware in the CardTel Model NT-100 System shall be able to accurately process date/time data (including, but not limited to, calculating, comparing, and sequencing) from, into, an between the twentieth and twenty-first centuries, and the years 1999 and 2000 and leap year calculations to the extent that other information technology, used in combination with the information technology being acquired, properly exchanges date/time data with it.

Karim Alhussiny, Ph.D.
Chief Technical Officer

Date:
Feb 16,2000

For: 510(k) submission, New, CardTel Model NT-100 ECG

DEPARTMENT OF HEALTH AND HUMAN SERVICES

FOOD AND DRUG ADMINISTRATION, Federal Y2K Biomedical Equipment Clearinghouse

Additional Information Request Form - Manufacturer Reporting Y2K Compliant Products - FORM FDA 3473

- Please verify and correct, or provide any missing information and return as indicated in the enclosed Options for Reporting page. For detailed instructions, please refer to the appropriate line number on the BACK of this form.

In addition to the $Y 2 \mathrm{~K}$ status information previously provided, your company is requested to report all products that are Y2K compliant. Please see Line \#12 for the options available for reporting medical devices and/or scientific research equipment that are Y2K compliant.

Additional Information
Use one of the three options below to report medical devices and/or scientific research equipment that are Y2K compliant to the Clearinghouse:
(1) Paper Reporting - Complete a Compliant Products - FORM FDA 3474 for each product that is Y2K compliant.
(2) Online at FDA's Web Site - http:/www.fda.gov/cdih/yr2000/y2kform.html
(3) Electronic File Submission (E-File) - Please see the enclosed instructions entited, Options for Reporting Biomedical Equipment That Is Y2K Compliant.

For details about each option, please see the enclosed instructions entitled Options for Reporting Biomedical Equipment That Is Y2K Compliant.
CardTel NT-100 ECG
J. Harvey Knauss Consultant

Subject: Submission correspondent - 510(k) Notification

To Whom It May Concern:
Delphi Consulting Group (a State of Texas, Harris County d.b.a.), acting under contract from Cardiac Telecommunications, 17488 Highway, Ste. 175, Webster, Texas 77598, produced this submission. Raw data for this submission was obtained from Cardiac Telecommunications, Consultants, and the Food and Drug Administration (FDA). Current Federal and FDA documents and guidelines were utilized to ensure compliance with the FD\&C Act.

Accuracy of submission data is based on material and documents provided by client and testing laboratories.

Sincerely yours,
Delphi Consulting Group
For and on behalf of:
Cardiac Telecommunications,

Date:

[^1]
Reviewer's Notes

Date Received:

\qquad

[^0]: - DiWord Processor Files DCGLCLIENTS Cardiac 1510 Submission'409 NT-100 Operators Manual doc
 - Last printed 02/09/00 3:39 PM

[^1]: D:IWord Processor FilesIDCGCLIENTSICardiac(510 Subrnission/Submission correspondent letter.doc

