SUMMARY OF SAFETY AND EFFECTIVENESS DATA (SSED)

I. <u>GENERAL INFORMATION</u>

Device Generic Name: Drug Eluting Permanent Right Ventricular (RV) or Right Atrial (RA) Pacemaker Electrodes

Device Trade Name: VEGA Steroid-Eluting Endocardial Leads Lead Models: VEGATM R45, VEGATM R52, and VEGATM R58

Device Procode: NVN

Applicant's Name and Address: MicroPort CRM USA, Inc. 5640 Airline Road, Arlington, TN 38002

Date(s) of Panel Recommendation: None

Premarket Approval Application (PMA) Number: P130010

Date of FDA Notice of Approval: May 17, 2023

II. **INDICATIONS FOR USE**

VEGA leads are active straight leads indicated for anti-brady therapy according to applicable guidelines, and can be used in the ventricle or atrium. VEGA leads R45, R52 and R58 are suitable for MRI (allowing patients to safely undergo an MRI examination) with a MicroPort MR Conditional pulse generator device.

III. <u>CONTRAINDICATIONS</u>

Implantation of endocardial leads is generally contraindicated in patients with mechanical tricuspid valves.

Do not implant in patients for whom a single dose of 310 μ g of dexamethasone sodium phosphate may be contraindicated.

IV. WARNINGS AND PRECAUTIONS

The warnings and precautions can be found in the VEGA lead labeling.

V. <u>DEVICE DESCRIPTION</u>

The VEGA Lead is a combination product consisting of two components: a device (pacing/sensing lead) and a drug (dexamethasone sodium phosphate). VEGA is a 7 French, transvenous, steroid-eluting, bipolar, IS-1 compliant active fixation endocardial lead intended for permanent sensing and pacing in either the right atrium or ventricle, for use with a single or dual chamber pacing system. VEGA leads are provided in straight configurations, but can be used with J-shaped stylets. The lead's body is a coaxial design with MP35N conductors and silicone outer insulation with a lubricious silicone coating Silglide® . The steroid collar is impregnated with a nominal dose of 310 µg of Dexamethasone Sodium Phosphate (DSP). A radiopaque marker is incorporated in the tip to enable x-ray facilitation of fixation. The lead's 2 mm body requires use of a 7F (2.33 mm) introducer sheath.

The system includes a straight stylet, J stylet, fixation tool, suture sleeve, funnel stylet guide and vein lifter as implant accessories.

VI. <u>ALTERNATIVE PRACTICES AND PROCEDURES</u>

There are several other alternatives for the correction of bradyarrhythmias, including in some situations, medications or surgery. Each alternative has its own specific indications as well as advantages and disadvantages. A patient should fully discuss these alternatives with his/her physician to select the method that best meets their expectations and lifestyle. Cardiac pacing remains the most effective long-term treatment for symptomatic, irreversible bradycardia. Other non-MicroPort CRM pacing leads are commercially available to meet the needs of patients requiring an implantable pacing system.

VII. MARKETING HISTORY

VEGA Leads were first approved in April of 2017. They are CE marked and have been sold in Europe, Japan, EUA (emerging EU countries and Africa) and Latin America, Canada, and Australia. The lead has not been withdrawn from marketing in any country for any reason related to its safety or effectiveness.

VIII. POTENTIAL ADVERSE EFFECTS OF THE DEVICE ON HEALTH

Below is a list of the potential adverse effects (e.g., complications) associated with the use of the device. For the specific adverse events that occurred in the clinical study, please see Section X below.

Table 1: Most common events with possible adverse effects				
Events	Possible Adverse Effect			
Lead displacement, conductor fracture	Intermittent or continuous loss of pacing and/or sensing			
Rupture of insulation or helix electrode fracture	Pectoral stimulation, sudden fall in impedance, loss of efficacy of pacing, battery depletion			
Cardiac perforation	Intermittent or continuous loss of pacing and/or Sensing Muscle or phrenic stimulation Tamponade			
Threshold elevation	Loss of capture			
Poor lead/pacemaker or defibrillator connection	Intermittent or continuous loss of pacing and/or sensing Pectoral stimulation			
Arrhythmia at implantation	Extrasystoles, tachycardia, ventricular/atrial fibrillation			
Introduction of air (with subclavian approach)	Air embolism			
Clotting defect	Hematoma			
Myocardial trauma	Chest pain			
Contamination	Pocket infection, septicemia			

IX. <u>SUMMARY OF NONCLINICAL STUDIES</u>

Non-clinical testing of the leads was conducted to ensure that the components and the finished device perform in accordance with their design specifications. Some of the supporting data is from PY2 and Beflex leads, which were predecessors to VEGA. PY2 was formerly marketed in the US; Beflex has been approved and marketed in Europe and other countries since 2009 but never introduced in the US. The most significant difference between PY2 and Beflex was the addition of a steroid component. The main difference between Beflex and VEGA is the addition of a lubricious coating (Silglide®) and ergonomic redesign of the accessories; therefore much of the Beflex test data is also applicable to VEGA.

Test	Purpose	Acceptance Criteria	Results
Abrasion Lead to	Demonstrate the lead body is able	EN 45502-2-1: 2003	Pass
Can and Lead to	to experience abrasion cycles	EN45502-1 : 1998	
lead testing	between the can and the lead body		

	or between 2 leads body without		
	loss of insulation to the external		
Tin martine	Charlethe exercise from	EN145502 1 . 1009	D
Tip pressure resulig	needed to buckle the lead in order	EIN43302-1.1996	r ass
	to reproduce the heart beating.		
Electrical testing	Check the electrical performance	EN 45502-1: 1997	Pass
Literation	of the active fixation designs prior EN 45502-2-1: 2003		1 000
	to implantation and after	ASTM F (2007)	
	accelerated aging.		
Lead Explant Axial	Verified the explant axial strength	EN 45502-1: 1997	Pass
Strength Testing	performance of the active fixation	EN 45502-2-1: 2003	
	lead designs after accelerated		
~ .	aging.	700 5044 6	-
Connector testing	Check the lead connector	ISO 5841-3	Pass
and Connector	mechanical and electrical	EN 45502-1: 1997	
nexions langue	performance meets the product	EN 45502-2-1: 2005	
validation test	1 conductors in the connector		
	region of the lead can experience		
	the cyclic test conditions.		
Corrosion	Check the current induced	EN 45502-2-1 : 2003	Pass
Performance Testing	corrosion performance of the	EN 45502-1: 1997	
0	active fixation lead designs and		
	materials.		
	Verify the electrical, and corrosion		
	performance of electrical lines at		
	the distal end of the lead after		
	being subjected to 10 years of		
	pacing equivalent in an accelerated		
I ID I FI'	period in saline water.	ENL 45502 2 1 2002	D
Lead Body Flexion	body region of the lead con	EN 45502-2-1 : 2005 EN 45502 1: 1007	Pass
Testing	experience flexion cycles in a bell-	EIN 45502-1. 1997	
resting	mouth without conductor fatigue		
	fracture.		
400 million cycles	Demonstrate that the transition	EN 45502-1: 1997	Pass
flexion in the lead	zone can experience 400,000,000	EN 45502-2-1 : 2003	
distal section	flexes that represent movement		
	during heart contractions through		
	10 years of implant at a mean heart		
D' 1 ' 1.	rate of 75 bpm.		
Biological tests	Bacterial endotoxin determination	USP 31 – NF 26	Pass
	and determination of the	180 11/3/ - 1	
	population of microorganism on/in		
Packaging	Check the packaging meets	FN45502-1·2015	Pass
I auraging	requirements of packaging and	11173302-1,2013	1 000
	sterile tray content. Verify the		
	resistance of the packaging to the		
	transportation impact and		
	temperature variation.		
Particulates	Demonstrated that the lead	EN 45502-2-1 : 2003	Pass
	conform to particulates standards		
	in-vivo during implantation or in-		

	vivo use. The size and the quantity of particulates is analysed during his test.					
Mechanical tests	Verified the mechanical erformance of Vega leads prior to mplantation.			Pass		
Sterilization	Conducted to ensure that the VEGA lead meets the EO residual, particulate release, bioburden and bacterial endotoxin requirements with acceptable results. Validated cycle to a minimum sterility assurance level (SAL) of 10 ⁻⁶ .	d to ensure that the ad meets the EO residual, e release, bioburden and endotoxin requirements ptable results. Validated minimum sterility level (SAL) of 10 ⁻⁶		Pass		
MRI	Conducted to ensure performance with MR conditional pacemakers when used as a system in the MR environment (includes, static, RF gradient fields and heating)	ISO 10974:2018		Pass		
Shelf-life testing appl	Shelf-life testing applicable to VEGA Leads					
	Summary		1		r	
Test	Summary		Requiren	nents	Results	
Test Electrical testing	Summary Check the electrical performance fixation designs prior to implant accelerated aging.	e of the active ation and after	Requiren EN 45502 EN 45502 ASTM F	nents 2-1: 1997 2-2-1: 2003 1980 (2007)	Results Pass	
Test Electrical testing Lead Explant Axial Strength Testing	Summary Check the electrical performance fixation designs prior to implant accelerated aging. Verified the explant axial streng performance of the active fixation after accelerated aging.	e of the active ation and after th on lead designs	Requiren EN 45502 EN 45502 ASTM F EN 45502 EN 45502	nents 2-1: 1997 2-2-1: 2003 1980 (2007) 2-1: 1997 2-2-1: 2003	Results Pass Pass	
Test Electrical testing Lead Explant Axial Strength Testing Particulates	SummaryCheck the electrical performance fixation designs prior to implant accelerated aging.Verified the explant axial streng performance of the active fixation after accelerated aging.Demonstrated that the lead confer particulates standards in-vivo during implantation or in-vivo use. The quantity of particulates is analysi test.	e of the active ation and after th on lead designs orm to ring size and the ed during this	Requiren EN 45502 EN 45502 ASTM F EN 45502 EN 45502 EN 45502 EN 45502	hents 2-1: 1997 2-2-1: 2003 1980 (2007) 2-1: 1997 2-2-1: 2003 2-2-1: 2003	Results Pass Pass Pass	

Drug Component

The stability study of the drug component (ref. J900) mounted on VEGA lead was conducted following the ICH guidelines for stability studies.

The samples were prepared and packaged as finished leads, and sterilized according a validated EtO cycle before being put in storage conditions.

The steroid collar was successfully verified against specifications for a shelf life of 36 months in long term conditions (25°C, 60% (relative humidity (RH), according to ICH (International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use)

guideline definition) and for 6 months in accelerated conditions (40°C, 75% RH, according to ICH guideline definition).

Biocompatibility

Summary of Biocompatibility Testing				
Biological effect	Source	Test description	Result	
Cytotoxicity	ISO 10993-5	ISO MTS cytotoxicity test ISO MTT cytotoxicity test	PASS	
Sensitization	ISO 10993-10	ISO Guinea Pig Maximization Sensitization Test (Two Extracts)	PASS	
Irritation or intracutaneous reactivity	ISO 10993-10	ISO Intracutaneous Irritation Study - Extract	PASS	
	ISO 10993-11	Systemic Toxicity Study in Mice	PASS	
Acute Systemic Toxicity		E&L study and Toxicological Risk Assessment	PASS	
Material-Mediated Pyrogenicity	ISO 10993-11 and USP	USP Rabbit Pyrogen Study, Material Mediated	PASS	
Subchronic/Subacute toxicity	ISO 10993-11	ISO Systemic Toxicity Study in Rats Following Subcutaneous Implantation, 13 Weeks	PASS	
		Bacterial reverse mutation test (Ames testing)	PASS	
		Chromosomal aberration study in mammalian cells	PASS	
		E&L study and Toxicological Risk Assessment	PASS	
Implantation	ISO 10993-6	ISO Muscle Implantation Study in Rabbits, 4 Week	PASS	
		ISO Muscle Implantation Study in Rabbits, 13 Week	PASS	
		ISO Muscle Implantation Study in Rabbits, 26 Week	PASS	
		ISO Subcutaneous Implantation in Rats, 26 Weeks	PASS	
Hemocompatibility	ISO 10993-4	ASTM Hemolysis Study - Extract and Direct Contact Method	PASS	

Summary of Biocompatibility Testing				
Biological effect	Source	urce Test description		
& ASTM	SC5b-9 Complement Activation Assay	PASS		
		ASTM Partial Thromboplastin Time (PTT)	PASS	
		Heparinized Blood Platelet and Leukocyte Count Assay (ISO)	PASS	
		Standard Thrombogenicity in Ovine (ISO)	PASS	
		Chronic Evaluation in Ovine Model GLP study	PASS	
Chronic toxicity		ISO Systemic Toxicity Study in Rats Following Subcutaneous Implantation, 26 Weeks	PASS	
	ISO 10993-11	Genotoxicity Studies	PASS	
		E&L study and Toxicological Risk Assessment	PASS	

X. <u>SUMMARY OF PRIMARY CLINICAL STUDIES</u>

Clinical data supporting the VEGA leads was obtained on a predecessor lead, Beflex RF. The only difference between the VEGA leads and the Beflex RF leads is the addition of a lubricious outer coating intended to improve handling during implant. The Beflex RF have been sold in Europe and other OUS markets since 2012. Clinical data for the Beflex RF leads was obtained in the PLEASURE-S premarket clinical trial, which was conducted in Europe.

The initial phase of PLEASURE-S was a non-randomized, prospective trial, which studied 203 Beflex RF leads, models RF46D and RF45D. The study was designed to demonstrate with 95% confidence that the proportion of subjects free from lead complication (serious device-related adverse effect) is greater than 90%. Setting the Type 1 error to 0.05%, the statistical power to 80%, the one-sided test-expected rate success to 97% and using "proc power" of SAS 9.1, the sample size required was 89.

203 Beflex leads were implanted in 123 patients at 18 centers located in France, Spain and Germany, in either or both the atrial (98) and ventricular (105) chambers. The study evaluated the safety and performance of the leads by:

- Demonstrating the absence of excessive risks related to the lead or its use, when used in accordance with the lead's manual/instructions for use (IFU).
- Demonstrating that the device meets expectations regarding electrical performance.

A. Study Design

Patients were treated between June 9, 2009 and January 1, 2011. The database for this PMA reflected data collected through January 1, 2011 and included 203 patients. There were 22 investigational sites. The study was a prospective, multi-center, single arm clinical study.

1. Clinical Inclusion and Exclusion Criteria

Enrollment in the PLEASURE-S study was limited to patients who met the following inclusion criteria: patients who were candidates for single or dual chamber pacemaker indications.

Patients were <u>not</u> permitted to enroll in the PLEASURE-S study if they met any of the following exclusion criteria:

- Ventricular tachyarrhythmias
- Chronic atrial fibrillation
- o Tricuspid valvular disease or tricuspid mechanical heart valve
- 2. Follow-up Schedule

All patients were scheduled to return for follow-up examinations at pre discharge, 1 month and 3 months postoperatively.

Preoperatively, medical history and inclusion criteria compliance were assessed. Postoperatively, the objective parameters measured during the study included pacing threshold, R-wave or P-wave amplitude, and impedance. Adverse events and complications were recorded at all visits.

3. Clinical Endpoints

Primary objective and results:

The primary (safety) objective was to assess the complication rate per lead model with a confidence interval, and also measure the rate of other adverse events. The objective was to demonstrate that the complication free rate at 3 months is greater than 90%. There were two (2) lead complications recorded in two (2) patients with atrial implants, resulting in a 98% rate of patients free of lead complications at 3 months. The lower 95% confidence bound was 93.7% (p=0.002). In the ventricle, four (4) lead complications occurred in separate patients, resulting in a rate of 96.2% of patients free of lead complications at 3 months. The lower 91.5% (p=0.0167).

A second study phase was added to gather additional data on ventricular implants. Fifty one (51) additional patients were implanted with ventricular leads and followed for 3 months. Within this group, two (2) lead complications occurred in two patients, resulting in cumulative safety results of 96.3% rate of patients free of lead complications at 3 months. The lower 95% confidence bound was 92.1% (p=0.002).

Secondary Endpoint #1 - Electrical performance:

The secondary (performance) objective was to document the pacing threshold, sensing amplitudes and impedance at implant, one month and three month follow up visits, as well as document the stimulation threshold at 3 months. Electrical performance was stable and as expected in both heart chambers, and the overall rate of observations/non-device related adverse events was also comparable to performance of predecessor leads.

In this premarket application, existing clinical data was not leveraged to support approval of a pediatric patient population.

XI. PANEL MEETING RECOMMENDATION AND FDA'S POST-PANEL ACTION

In accordance with the provisions of section 515(c)(3) of the act as amended by the Safe Medical Devices Act of 1990, this PMA was not referred to the Circulatory Devices Panel, an FDA advisory committee, for review and recommendation because the information in the PMA substantially duplicates information previously reviewed by this panel.

XII. CONCLUSIONS DRAWN FROM PRECLINICAL AND CLINICAL STUDIES

A. Safety and Effectiveness Conclusions

The risks of the device are based on nonclinical laboratory testing and data collected in a clinical study conducted to support post market OUS requirements, as described above. Bench testing verified that the lead conformed with and performed to its design specifications. Since the VEGA leads are an evolution of the Beflex lead with no significant design changes that impact the clinical evaluation, clinical data was leveraged from Beflex. The initial clinical trial confirmed safety by meeting the acceptance criteria for lead complications and adverse events at 3 months post-implant in the target patient population.

Effectiveness of the VEGA lead was demonstrated by bench tests as well as three-month clinical trial endpoints for pacing and sensing performance and lead handling.

Based on successful completion of bench testing and a clinical trial that met all primary and secondary endpoints in the target patient population, the probable benefits of the lead outweigh the potential risks of lead failure or injury to the patient, when used in accordance with the directions for use.

B. Benefit-Risk Determination

The probable benefits of the device are also based on data collected in a clinical study as described above. When the device performs as intended, the lead paces appropriately and provides the necessary benefit to maintain a normal heart rate.

The probable risks of the device are also based on data collected in a clinical study as described above. The risks include lead dislodgement or lead failure. This may require an additional invasive approach to place the new lead. Threshold increases and infection are also risks. If the patient is pacemaker-dependent and the lead suddenly fails, it could result in syncope, hemodynamic collapse or death. Risks such as perforation either acutely or after the procedure can also result in prolonged hospital stay or pericardial effusion with tamponade. The proposed leads have demonstrated through bench testing and a long history of reliability in the market that the benefits outweigh all those risks and provide a better life to the people with heart problems.

1. Patient Perspective

This submission either did not include specific information on patient perspectives or the information did not serve as part of the basis of the decision to approve or deny the PMA for this device.

In conclusion, given the available information above, the data support that for the indication for use of the device the probable benefits outweigh the probable risks.

C. Overall Conclusions

The data in this application support the reasonable assurance of safety and effectiveness of this device when used in accordance with the indications for use. Based on successful completion of bench testing and a clinical trial that met all primary and secondary endpoints in the target patient population, the probable benefits of the lead (delivery of pacing and sensing as needed to maintain a normal heart rate) outweigh the potential risks of lead failure or injury to the patient, when used in accordance with the directions for use.

XIII. CDRH DECISION

CDRH issued an approval order on May 17, 2023.

The applicant's manufacturing facilities have been inspected and found to be in compliance with the device Quality System (QS) regulation (21 CFR 820).

XIV. APPROVAL SPECIFICATIONS

Directions for use: See device labeling.

Hazards to Health from Use of the Device: See Indications, Contraindications, Warnings, Precautions, and Adverse Events in the device labeling.

Post-approval Requirements and Restrictions: See approval order.