iCAD, Inc.
% Mr. John DeLucia
VP, Regulatory Affairs, Quality Assurance, Clinical Affairs
98 Spitbrook Road, Suite 100
NASHUA NH 03062

Re: K153570
 Trade/Device Name: Axxent Electronic Brachytherapy System Model 110 XP 1200
 Regulation Number: 21 CFR 892.5900
 Regulation Name: X-ray radiation therapy system
 Regulatory Class: II
 Product Code: JAD
 Dated: February 10, 2016
 Received: February 11, 2016

Dear Mr. DeLucia:

We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties. We remind you, however, that device labeling must be truthful and not misleading.

If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations, Title 21, Parts 800 to 898. In addition, FDA may publish further announcements concerning your device in the Federal Register.

Please be advised that FDA’s issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal statutes and regulations administered by other Federal agencies. You must comply with all the Act’s requirements, including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Part 801); medical device reporting (reporting of medical device-related adverse events) (21 CFR 803); good manufacturing practice requirements as set forth in the quality systems (QS) regulation (21 CFR Part 820); and if applicable, the electronic product radiation control provisions (Sections 531-542 of the Act); 21 CFR 1000-1050.
If you desire specific advice for your device on our labeling regulation (21 CFR Part 801), please contact the Division of Industry and Consumer Education at its toll-free number (800) 638 2041 or (301) 796-7100 or at its Internet address http://www.fda.gov/MedicalDevices/ResourcesforYou/Industry/default.htm. Also, please note the regulation entitled, “Misbranding by reference to premarket notification” (21 CFR Part 807.97). For questions regarding the reporting of adverse events under the MDR regulation (21 CFR Part 803), please go to http://www.fda.gov/MedicalDevices/Safety/ReportaProblem/default.htm for the CDRH’s Office of Surveillance and Biometrics/Division of Postmarket Surveillance.

You may obtain other general information on your responsibilities under the Act from the Division of Industry and Consumer Education at its toll-free number (800) 638-2041 or (301) 796-7100 or at its Internet address http://www.fda.gov/MedicalDevices/ResourcesforYou/Industry/default.htm.

Sincerely yours,

Robert Ochs, Ph.D.
Director
Division of Radiological Health
Office of In Vitro Diagnostics and Radiological Health
Center for Devices and Radiological Health

Enclosure
Device Name
Axxent® Electronic Brachytherapy System

Indications for Use
The Axxent® Electronic Brachytherapy System Model 110 XP 1200 is a high dose rate Brachytherapy device for use with Axxent Applicators to treat lesions, tumors and conditions in or on the body where radiation is indicated. Only Xoft Axxent Surface Applicators can be used with the Axxent Electronic Brachytherapy System Model 110 XP 1200.

Type of Use (Select one or both, as applicable)

- Prescription Use (Part 21 CFR 801 Subpart D)
- Over-The-Counter Use (21 CFR 801 Subpart C)

CONTINUE ON A SEPARATE PAGE IF NEEDED.

This section applies only to requirements of the Paperwork Reduction Act of 1995.

DO NOT SEND YOUR COMPLETED FORM TO THE PRA STAFF EMAIL ADDRESS BELOW.

The burden time for this collection of information is estimated to average 79 hours per response, including the time to review instructions, search existing data sources, gather and maintain the data needed and complete and review the collection of information. Send comments regarding this burden estimate or any other aspect of this information collection, including suggestions for reducing this burden, to:

Department of Health and Human Services
Food and Drug Administration
Office of Chief Information Officer
Paperwork Reduction Act (PRA) Staff
PRASstaff@fda.hhs.gov

“An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB number.”
510(K) Summary

510(k) OWNER:

iCAD Inc.
98 Spit Brook Road, Suite 100
Nashua, NH 03062
T: 603- 546-7430
F: 603- 880-3843
Registered Establishment Number: 1225671

MANUFACTURER FACILITY:

Xsoft Inc. a Subsidiary of iCAD Inc.
101 Nicholson Lane
San Jose, CA 95134
Registered Establishment Number: 3005594788

NAME OF CONTACT:

John A. DeLucia
VP, Regulatory Affairs, Clinical Affairs and Quality Assurance

DATE SUMMARY PREPARED AND REVISED: December 11, 2015/February 23, 2016

TRADE NAME: Axxent Electronic Brachytherapy System Model 110 XP 1200

COMMON NAME: Radiation Therapy System

CLASSIFICATION: Class II

CLASSIFICATION NAME: X-ray Radiation Therapy System

CRF CLASSIFICATION: 21 CFR 892.5900

PRODUCT CODE: JAD
510(K) Summary (con’t)

Legally Marketed Devices to Which Substantial Equivalence is Claimed

The Axxent Electronic Brachytherapy System is substantially equivalent to the following legally marketed predicate device.

<table>
<thead>
<tr>
<th>Device Name</th>
<th>Manufacturer</th>
<th>510(k) Reference #</th>
<th>Concurrence Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axxent Electronic Brachytherapy System</td>
<td>Xoft</td>
<td>K122951</td>
<td>01/17/2013</td>
</tr>
</tbody>
</table>

Device Description

The Axxent Electronic Brachytherapy System consists of two primary components: the Axxent System Controller (Controller); the Axxent HDR X-ray Source-2.2 (Catheter/Source). The System is designed to deliver doses of X-ray radiation to tissue in proximity to the applicator using a miniature X-ray tube powered by the Controller.

The Axxent Electronic Brachytherapy System is a mobile, computer-controlled platform that is responsible for the overall operation of the System. The Controller is designed to work with the Source, which is a miniature X-ray tube located at the end of a flexible catheter. The Catheter/Source is inserted into a lumen of an appropriate Applicator which are cleared separately under their 510(k). The Axxent Electronic Brachytherapy System Model 110 XP 1200 described in this 510(k) will only be used for surface applications using Xoft Axxent Surface Applicators.

Intended Use / “Indications for Use”

The Axxent Electronic Brachytherapy System Model 110 XP 1200 is a high dose rate Brachytherapy device for use with Axxent Applicators to treat lesions, tumors and conditions in or on the body where radiation is indicated. Only Xoft Axxent Surface Applicators can be used with the Axxent Electronic Brachytherapy System Model 110 XP 1200.

Summary of Technological Characteristics

The technological characteristics of the Axxent Electronic Brachytherapy System Controller are the same as the Axxent Electronic Brachytherapy Controller cleared in K122951. The table below describes the changes to the proposed Axxent Electronic Brachytherapy Controller.
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Proposed Device</th>
<th>Predicate Device</th>
<th>Difference</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Axxent Electronic Brachytherapy System</td>
<td>Axxent Electronic Brachytherapy System</td>
<td>No Change</td>
<td>NA</td>
</tr>
<tr>
<td>Catalog Number</td>
<td>XP 1200</td>
<td>XP 1100</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Part number</td>
<td>750-850</td>
<td>750-050</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Indications for Use</td>
<td>Same</td>
<td>Same</td>
<td>No Change</td>
<td>NA</td>
</tr>
<tr>
<td>Software</td>
<td>Same</td>
<td>Same</td>
<td>No Change</td>
<td>NA</td>
</tr>
<tr>
<td>Hardware</td>
<td>Same</td>
<td>Same</td>
<td>No Change</td>
<td>NA</td>
</tr>
<tr>
<td>Pump Speed</td>
<td>120 rev/min</td>
<td>60 rev/min</td>
<td>Same pump with resistors removed</td>
<td>Two Resistors removed</td>
</tr>
<tr>
<td>Cooling Fluid</td>
<td>Galden HT-135</td>
<td>Water</td>
<td>Improve Cooling</td>
<td>Both cooling fluids</td>
</tr>
<tr>
<td>Cooling Catheter Outer Material</td>
<td>Polyurethane 75D</td>
<td>HDPE</td>
<td>Longer Life</td>
<td>No Patient Contact</td>
</tr>
<tr>
<td>Anode Target</td>
<td>Tungsten Film</td>
<td>Tungsten Film</td>
<td>No Change</td>
<td>NA</td>
</tr>
<tr>
<td>Anode Target Thickness</td>
<td>1.5 microns</td>
<td>0.7 microns</td>
<td>Increased Thickness</td>
<td>Improve efficiency and life</td>
</tr>
<tr>
<td>Connectors on Cooling System</td>
<td>Kent Quick Connector</td>
<td>Luer</td>
<td>Improved Connector</td>
<td>Prevent new coolant use with older Axxent Electronic Brachytherapy System</td>
</tr>
<tr>
<td>Catheter/Source Interlock</td>
<td>No magnet</td>
<td>Magnet</td>
<td>Interlock not satisfied</td>
<td>Prevents use in non-surface indications</td>
</tr>
</tbody>
</table>
General Safety and Effectiveness Concerns
The device labeling contains instructions for use and any necessary cautions and warnings to provide for safe and effective use of this device. Risk management is ensured via a risk analysis which is used to identify potential hazards. Any potential hazards are controlled via software development, verification and validation testing.

Assessment of Non-Clinical Performance Data
Validation testing was performed and all performance, functional and system requirements were met. A number of non-clinical tests were conducted to support substantial equivalence. These included testing that demonstrated:

- Equivalence with the current device for spatial parameters (azimuthal and polar variation) and depth dose
- Equivalence between the current x-ray source/catheter used in the surface applicator and the proposed source/catheter through measurement of the depth dose
- Equivalence through the agreement of the first and second half value layers measured for the current x-ray source/catheter and the proposed source/catheter
- Consistency between spatial measurements, depth dose, and source/catheter spectrum after extended use of the proposed source/catheter
- The source/catheter output is linear as a function of time and reproducible.
- The proposed source/catheter functions for at least as long as the current source
- The proposed source/catheter are able to be used the same manner as the current x-ray source/catheter in a simulated clinical setting

This data has shown that the clinical dose is identical when using either source/catheter design in the surface applicator indication.

Conclusion
This traditional 510(k) for the Axxent® Electronic Brachytherapy System contains adequate information and data to determine substantial equivalence to the predicate devices.

The Axxent Electronic Brachytherapy System has the same intended use as the previously cleared predicate devices. Both are intended to be used to treat lesions, tumors and conditions in the body where radiation is indicated. The indications for use for the Axxent Electronic Brachytherapy System remain the same as its last clearance in K122951.

The Axxent Electronic Brachytherapy System has the same fundamental functional, scientific and performance characteristics as the previously cleared predicate device in that both devices are capable of providing radiation delivery through multiple channel applicators. The non-clinical data presented has shown that the clinical dose is identical when using the proposed or
current source/catheter design in the surface applicator indication. There are no new concerns of safety or efficacy with the proposed changes.