SUMMARY OF SAFETY AND EFFECTIVENESS DATA

I. <u>GENERAL INFORMATION</u>

Device Generic Name:	Pulse Generator (PG): Implantable Pacemaker Lead: Steroid-eluting, endocardial, bipolar, pace/sense lead Lead stabilizer accessory Stylet accessories
Device Trade Name:	ImageReady TM MR Conditional Pacing System, consisting of:
Inallie.	The following Implantable PGs:
	 INGENIO[™] MRI Pacemaker, Models K175, K176 & K177
	• VITALIO TM MRI Pacemaker, Models K275, K276 & K277
	• FORMIO [™] MRI Pacemaker, Model K279
	• ESSENTIO [™] MRI Pacemaker, Models L110, L111 & L131
	• PROPONENT [™] MRI Pacemaker, Models L210, L211 & L231
	• ACCOLADE [™] MRI Pacemaker, Models L310, L311 & L331
	INGEVITY TM MRI Pace/Sense Lead:
	• Models 7731 & 7732 (Passive-fixation, Ventricular straight)
	• Models 7735 & 7736 (Passive-fixation, Preformed Atrial J)
	• Models 7740, 7741 & 7742 (Active-fixation, straight)
	Accessories:
	• Slit Suture Sleeve Accessory, Model 6402
	• ZOOM [®] LATITUDE TM Programing System, Model 3120
	• Programmer Software Application, Model 2869 v2.02
	• IS-1 Port Plug, Model 7145
	Other Leads and Accessories:
	INGEVITY TM Non-MRI Pace/Sense Lead:
	• Models 7631 & 7632 (Passive-fixation, Ventricular straight)
	• Models 7635 & 7636 (Passive-fixation, Preformed Atrial J)
	• Models 7640, 7641 & 7642 (Active-fixation, straight)
	Other Accessories:
	• Delivery Stylet, Models 5003, 5004, 5005, 5012, 5013, 5014
Device Procode:	LWP
	NVN

Applicant's Name and Address:	Boston Scientific Corporation 4100 Hamline Avenue North St. Paul, Minnesota 55112-5798
Date of Panel Recommendation:	None
PMA Number:	P150012
Date of Notice of Approval to Applicant:	April 25, 2016

II. <u>INDICATIONS FOR USE</u>

II. A. Ingenio and Accolade MRI Pacemaker Device Indications

The Ingenio and Accolade MRI pacemakers are indicated for the treatment of the following conditions:

- Symptomatic paroxysmal or permanent second- or third-degree AV block
- Symptomatic bilateral bundle branch block
- Symptomatic paroxysmal or transient sinus node dysfunction with or without associated AV conduction disorders (i.e., sinus bradycardia, sinus arrest, sinoatrial [SA] block)
- Bradycardia-tachycardia syndrome, to prevent symptomatic bradycardia or some forms of symptomatic tachyarrhythmias
- Neurovascular (vaso-vagal) syndromes or hypersensitive carotid sinus syndromes

Adaptive-rate pacing is indicated for patients exhibiting chronotropic incompetence and who may benefit from increased pacing rates concurrent with increases in minute ventilation and/or level of physical activity.

Dual-chamber and atrial tracking modes are also indicated for patients who may benefit from maintenance of AV synchrony.

Dual chamber modes are specifically indicated for treatment of the following:

- Conduction disorders that require restoration of AV synchrony, including varying degrees of AV block
- VVI intolerance (i.e., pacemaker syndrome) in the presence of persistent sinus rhythm
- Low cardiac output or congestive heart failure secondary to bradycardia

II. B. INGEVITYTM Pace/Sense Lead and Accessories Intended Use/Indications

The intended use/indication information listed below is presented as written in the device labeling.

II.C.1. <u>Passive-fixation Non-MRI Models 7631, 7632, 7635 and 7636 and MRI</u> <u>Models 7731, 7732, 7735 and 7736</u>

This Boston Scientific lead is indicated for use as follows:

• Intended for chronic pacing and sensing in the right atrium (Preformed Atrial J) or right ventricle (Straight) when used with a compatible pulse generator.

II.C.2. Active-fixation Non-MRI Models 7640, 7641, and 7642 and MRI Models 7740, 7741, and 7742

This Boston Scientific lead is indicated for use as follows:

• Intended for chronic pacing and sensing in the right atrium and/or right ventricle when used with a compatible pulse generator.

II.C.3. Slit Suture Sleeve Accessory Model 6402

The intended use of the slit suture sleeve accessory is:

• Use to secure and immobilize Boston Scientific INGEVITY[™] leads at the venous entry site.

II.C.4. Delivery Stylet Models 5003, 5004, 5005, 5012, 5013, and 5014

The delivery stylet accessory is indicated for us as follows:

• For use with Boston Scientific implantable transvenous leads.

III. CONTRAINDICATIONS

III. A. Ingenio and Accolade MRI Pacemaker Device Contraindications

These Boston Scientific pacemakers are contraindicated for patients who have a separate implanted cardioverter defibrillator (ICD) with transvenous leads.

Use of certain pacing modes and/or features available in Boston Scientific pacemakers is contraindicated for the following patients under the circumstances listed:

- Unipolar pacing or use of the MV Sensor with a Subcutaneous Implantable Cardioverter Defibrillator (S-ICD) because it may cause inappropriate therapy or inhibition of appropriate S-ICD therapy;
- Minute Ventilation in patients with both unipolar atrial and ventricular leads;

- Single-chamber atrial pacing in patients with impaired AV nodal conduction;
- Atrial tracking modes for patients with chronic refractory atrial tachyarrhythmias (atrial fibrillation or flutter), which might trigger ventricular pacing;
- Dual-chamber and single-chamber atrial pacing in patients with chronic refractory atrial tachyarrhythmias; and/or
- Asynchronous pacing in the presence (or likelihood) of competition between paced and intrinsic rhythms.

III. B. INGEVITYTM Lead and Accessories Contraindications

III.B.1. <u>Passive-fixation Non-MRI Models 7631, 7632, 7635 and 7636 and MRI</u> <u>Models 7731, 7732, 7735 and 7736</u>

Use of this Boston Scientific lead is contraindicated for the following patients:

- Patients with a hypersensitivity to a nominal single dose of 0.61 mg dexamethasone acetate
- Patients with mechanical tricuspid heart valves

III.B.2. Active-fixation Non-MRI Models 7640, 7641, and 7642 and MRI Models 7740, 7741, and 7742

Use of this Boston Scientific lead is contraindicated for the following patients:

- Patients with a hypersensitivity to a nominal single dose of 0.91 mg dexamethasone acetate
- Patients with mechanical tricuspid heart valves

III.B.3. <u>Slit Suture Sleeve Accessory Model 6402</u>

There are no known contraindications for the slit suture sleeve accessory.

III.B.4. Delivery Stylet Models 5003, 5004, 5005, 5012, 5013, and 5014

There are no known contraindications for the delivery stylet accessories.

IV. WARNINGS AND PRECAUTIONS

The warnings and precautions can be found in the ImageReadyTM MR Conditional Pacing System labeling, INGENIOTM MRI, VITALIOTM MRI, FORMIOTM MRI, ESSENTIOTM MRI, PROPONENTTM MRI, and ACCOLADETM MRI pacemaker labeling, and INGEVITYTM lead labeling.

V. IMAGEREADY SYSTEM MRI CONDITIONS OF USE

Based on its use as a system versus an individual device, "Conditions of Use" apply to the ImageReadyTM MR Conditional Pacing System (ImageReady System) rather than "Indications for Use." When used as a system and according to the labeled MRI Conditions of Use, the ImageReady System has been determined to meet the status of MR Conditional per ASTM F2503:2008. The MRI Conditions of Use are as follows:

The following Conditions of Use must be met in order for a patient with an ImageReady System to undergo an MRI scan. Adherence to the Conditions of Use must be verified prior to each scan to ensure that the most up-to-date information has been used to assess the patient's eligibility and readiness for an MR Conditional scan.

Cardiology

- 1. Patient is implanted with the ImageReady[™] MR Conditional Pacing System⁴
- 2. Pulse generator in MRI Protection Mode during scan
- 3. Bipolar pacing operation or pacing off
- 4. Patient does not have elevated body temperature or compromised thermoregulation at time of scan
- 5. Pulse generator implant location restricted to left or right pectoral region
- 6. At least six (6) weeks have elapsed since implantation and/or any lead revision or surgical modification of the MR Conditional Pacing System
- No cardiac-related implanted devices, components, or accessories present other than the ImageReadyTM MR Conditional Pacing System
- 8. Pacing threshold ≤ 2.0 V in pace-dependent patients
- 9. No abandoned leads or pulse generators
- 10. No evidence of a fractured lead or compromised pulse generator-lead system integrity

Radiology

- 1. MRI magnet strength of 1.5 T only
 - Radio frequency (RF) field of approximately 64 MHz
 - Spatial gradient no greater than 50 T/m (5,000 G/cm)
- 2. Horizontal, ¹H proton, closed bore scanners only
- 3. Specific Absorption Rate (SAR) limits for Normal Operating Mode⁵ or for First Level Controlled Operating Mode⁶ must be observed for the entire active scan session as follows:
 - Whole body averaged, ≤ 4.0 watts/kilogram (W/Kg)
 - Head, $\leq 3.2 \text{ W/Kg}$
- 4. Gradient Field limits: Maximum specified gradient slew rate ≤ 200 T/m/s per axis

⁴ Defined as a Boston Scientific MR Conditional pulse generator and lead(s), with all ports occupied by a lead or port plug.

⁵ As defined in IEC 60601-2-33, 201.3.224, 3rd Edition

⁶ As defined in IEC 60601-2-33, 201.3.208, 3rd Edition

- 5. No local transmit-only coils or local transmit/receive coils placed directly over the pacing system; the use of receive-only coils is not restricted
- 6. Patient in supine or prone position only
- 7. The patient must be monitored during the MRI scan by pulse oximetry and/or electrocardiography (ECG)

VI. <u>DEVICE DESCRIPTION</u>

VI. A ImageReady System Description

The ImageReady[™] MR Conditional Pacing System (ImageReady System) has been created specifically as a system for use with MRI scans performed under the Conditions of Use described in Section V. The Ingenio⁷ MRI or Accolade MRI⁸ pacemaker design has minimized use of ferromagnetic materials, which can interact with the fields generated during a typical MRI scan, and the circuits have been designed to tolerate voltages that may be induced during scans. The INGEVITY lead wire has been designed for use with the ImageReady pacemaker specifically to reduce absorption of energy from MR Fields, thus minimizing subsequent heating. The system is designed for full body scan, with no thoracic exclusion zone. The ImageReady System has mitigated risks associated with MRI scans as compared to conventional pacemakers and leads. The implanted system, as opposed to its constituent parts, is determined to have the status of MR Conditional as described in ASTM F2503:2008. Additionally, an MRI Protection Mode has been created for use during the scan. MRI Protection Mode modifies the behavior of the pacemaker and has been designed to accommodate the MRI scanner electromagnetic environment. A Time-out feature can be programmed to allow automatic exit from MRI Protection Mode after a set number of hours chosen by the user. These features have been tested to verify the effectiveness of the designs. Other MRI-related risks are further reduced by adherence to the Conditions of Use for MR Scanning specified in the Technical Guide.

VI. B Pacemaker Device Description

The Ingenio MRI and Accolade MRI pacemakers (see **Figure 1** and **Figure 2**) are multiprogrammable and consist of both dual-chamber and single-chamber models, offering adaptive-rate bradycardia therapy as well as various levels of therapeutic and diagnostic/trending functionality based upon the model.

Two sensors are available to adapt the pacing rate to the patient's changing metabolic demand. Minute Ventilation responds to change in respiration, and the accelerometer

 ⁷ Ingenio (lower case) refers to all trademarked devices in this family of pulse generators, including ADVANTIO, INGENIO, INGENIO MRI, VITALIO, VITALIO MRI, FORMIO and, FORMIO MRI
 ⁸ Accolade (lower case) refers to all trademarked devices in this family of pulse generators, including

ESSENTIO, ESSENTIO MRI, PROPONENT, PROPONENT MRI, ACCOLADE, ACCOLADE MRI

responds to patient activity (motion). Rate adaptive models can use either the accelerometer or minute ventilation sensor, or a blend of both accelerometer and minute ventilation.

Figure 1: Images of INGENIO [™], VITALIO[™] and FORMIO[™] MRI Pacemakers

Figure 2: Images of ACCOLADE TM, PROPONENTTM and ESSENTIOTM MRI Pacemakers

VI. C Lead and Lead Accessory Device Description

VI.C.1. INGEVITYTM Pace/Sense Lead Description

The INGEVITY lead is a steroid-eluting endocardial pace/sense lead intended for implantation into the right atrium and/or right ventricle for chronic pacing and sensing.

PMA P150012: FDA Summary of Safety and Effectiveness Data

The lead is designed to conduct intrinsic electrical signals from the cardiac tissue to a pulse generator; the IS-1 bipolar connector allows the lead to be used in conjunction with a compatible pulse generator. The six French diameter lead is offered in several lengths. The isodiametric INGEVITY lead body is a co-axial design, that includes single-filar inner and outer coils for improved flex fatigue. An open-lumen conductor coil design enables lead delivery using a stylet. The conductors are separated by both a silicone rubber and polytetrafluoroethylene (PTFE) lining. Both the inner and outer coil are covered in ethylene tetrafluoroethylene (ETFE) for extra insulation protection. The entire lead body is encompassed in a polyurethane outer insulation. The lead is equipped with a radiopaque suture sleeve that is visible under fluoroscopy and is used to secure, immobilize, and protect the lead at the venous entry site after lead placement. The lead electrodes are coated with IROX (iridium oxide) to increase the microscopic surface area.

The INGEVITY lead family includes these lead types:

- Straight, extendable/retractable fixation (active) models allow for various lead placement possibilities for the tip electrode in the right atrium and/or right ventricle;
- Straight, tined fixation (passive) models provide fixation in the apex of the right ventricle; and
- Preformed Atrial J-shaped, tined fixation (passive) models provide fixation in the atrial appendage.

Some models of the lead are MR Conditional when connected to a Boston Scientific MR Conditional pulse generator as part of the ImageReadyTM MR Conditional Pacing System.

Photos of the INGEVITY Lead Family are shown in Figure 3 and Figure 4.

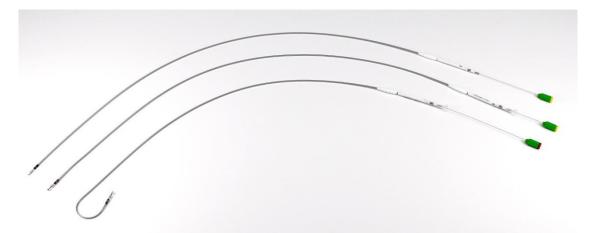


Figure 3: INGEVITY[™] Pace/Sense Lead Family

Figure 4: INGEVITY Lead Family – Distal End Close-up

VI.C.2. Slit Suture Sleeve Accessory Model 6402 Description

The suture sleeve (**Figure 5**) is a radiopaque, adjustable, tubular reinforcement made of molded silicone rubber, used to secure and protect the lead at the venous entry site after placement. The silicone rubber is mixed with titanium dioxide to color it white and barium sulfate to make it radiopaque. A slit traverses the length of the suture sleeve to facilitate installation over the INGEVITY lead body.

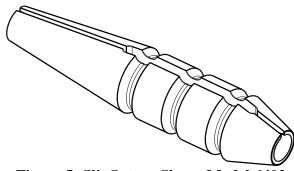


Figure 5: Slit Suture Sleeve Model 6402

VI.C.3. Delivery Stylet Models 5003, 5004, 5005, 5012, 5013, and 5014

Stylet models 5003, 5004, 5005, 5012, 5013, and 5014 are separately packaged accessories intended for use with the INGEVITYTM Pace/Sense Leads. They are sterilized with ethylene oxide. The stylet cap is color-coded to visually identify the stylet length, which is also imprinted on the cap. **Table 1** provides details of each model's characteristics.

Stylet Model	Туре	Stiffness	Length	Hub/Knob Color	Cap Color
5003	Straight	Extra Soft	45 cm	Yellow	White
5004	Straight	Extra Soft	52 cm	Yellow	Red
5005	Straight	Extra Soft	59 cm	Yellow	Yellow
5012	Straight Long-tapered	Soft	45 cm	Green	White
5013	Straight Long-tapered	Soft	52 cm	Green	Red
5014	Straight Long-tapered	Soft	59 cm	Green	Yellow

Table 1: Stylet Descriptions

VII. ALTERNATIVE PRACTICES AND PROCEDURES

There are several other alternatives for the correction of bradycardia. Alternative therapies include the use of other commercially available dual or single chamber adaptive rate pacing systems. Each system has its own advantages and disadvantages. A patient should fully discuss these alternatives with his/her physician to select the method that best meets expectations and lifestyle.

VIII. MARKETING HISTORY

INGEVITY Leads, both non-MRI and MRI models, have received CE mark and the MRI models are approved for use with the ImageReadyTM MR Conditional Pacing System. European implants began in March 2014. The INGEVITY Leads have not been withdrawn from the market in any country for any reason related to the safety and effectiveness of the system.

The non-MRI Ingenio and Accolade models are market approved in the US. Both device families are market approved internationally as well. Likewise, the Ingenio MRI and Accolade MRI models are market approved internationally. With regard to CE Mark, these Ingenio/Accolade MRI models are part of the ImageReady System with either FINELINE II Sterox and Sterox EZ leads, or with INGEVITY MRI leads. The ImageReady System has not been withdrawn from the market in any country for any reason related to the safety and effectiveness of the system. A summary of marketing status is provided in **Table 2**.

and INGEVITY Leads				
Product	US Market	International Market		
ImageReady System	FDA Approved <date be="" filled="" in<br="" to="">by FDA></date>	CE Mark authorized for Ingenio/ Accolade MRI models with either FINELINE II Sterox and Sterox EZ leads or with INGEVITY MRI leads. Also approved for Ingenio models with FINELINE II Sterox and Sterox EZ leads in Asia Pacific, Europe (non-CE Countries), Middle East/Africa and South America/Latin America.		
Ingenio non-MRI (Lower Tier) ADVANTIO	FDA Approved May 2012	CE Mark authorized September 2011 Also approved in Asia Pacific, Canada,		
INGENIO		Europe (non-CE Countries), Middle East/Africa and South America/Latin America		
Ingenio non-MRI (Upper Tier)	FDA Approved May	CE Mark authorized January 2013		
VITALIO FORMIO	2013	Also approved in Asia Pacific and Canada		
Ingenio MRI (Lower Tier)	FDA Approved	CE Mark authorized July 2012		
ADVANTIO* INGENIO	<date be="" by="" fda="" filled="" in="" to=""></date>	Also approved in Asia Pacific, Europe (non-CE Countries), Middle East/Africa		
	*ADVANTIO MRI not intended for US Market	and South America/Latin America		
Ingenio MRI (Upper Tier)	FDA Approved	CE Mark authorized January 2013		
VITALIO FORMIO	<date be="" by="" fda="" filled="" in="" to=""></date>	Also approved in Asia Pacific, Europe (non-CE Countries), Middle East/Africa and South America/Latin America		
Ingenio 2 (Accolade) non-MRI	FDA Approved	CE Mark authorized September 2014		
ESSENTIO	October 2014	Also approved in Europe (non-CE		
PROPONENT ACCOLADE		Countries)		
Ingenio 2 (Accolade) MRI	FDA Approved	CE Mark authorized September 2014		
ESSENTIO	<date be="" filled="" in<br="" to="">by FDA></date>	Also approved in Europe (non-CE Countries)		
PROPONENT ACCOLADE				
INGEVITY non-MRI and	FDA Approved	CE Mark authorized February 2014		
accessories	<date be="" filled="" in<br="" to="">by FDA></date>	Also approved in Asia Pacific, Canada and South America/Latin America		

Table 2: Market Status of ImageReady System, Ingenio and Accolade Pacemakers and INGEVITY Leads

Product	US Market	International Market
INGEVITY MRI	FDA Approved <date be="" filled="" in<br="" to="">by FDA></date>	CE Mark authorized February 2014 and are approved for use with the ImageReady system Also approved in Asia Pacific, Europe (non-CE Countries), Middle East/Africa and South America/Latin America

IX. POTENTIAL ADVERSE EFFECTS OF THE DEVICE ON HEALTH

Below is a list of the potential adverse effects (e.g., complications) associated with the use of the device.

IX. A. <u>ImageReadyTM MR Conditional Pacing System Potential Adverse</u> <u>Events</u>

Potential adverse events differ depending on whether the MRI Conditions of Use are met. For a complete list of potential adverse events, refer to the Physician's Technical Manual for the pulse generator.

MRI scanning of patients when the Conditions of Use are met could result in the following potential adverse events:

- Arrhythmia induction
- Bradycardia
- Patient death
- Patient discomfort due to slight movement or heating of the device
- Side effects of MRI Protection Mode pacing at elevated fixed rate and increased output including reduced exercise capacity, acceleration of heart failure, and competitive pacing/arrhythmia induction
- Syncope

MRI scanning of patients when the Conditions of Use are **NOT** met could result in the following potential adverse events:

- Arrhythmia induction
- Bradycardia
- Damage to the pulse generator and/or leads
- Erratic pulse generator behavior
- Inappropriate pacing, inhibition of pacing, failure to pace
- Increased rate of lead dislodgement (within six weeks of implant or revision of system)
- Irregular or intermittent capture or pacing
- Pacing threshold changes

- Patient death
- Patient discomfort due to movement or heating of the device
- Physical movement of pulse generator and/or leads
- Sensingchanges
- Syncope

IX. B. Ingenio and Accolade Pacemaker Potential Adverse Events

- Air embolism
- Allergic reaction
- Bleeding
- Bradycardia
- Cardiac tamponade
- Chronic nerve damage
- Component failure
- Conductor coil fracture
- Death
- Elevated thresholds
- Erosion
- Excessive fibrotic tissue growth
- Extracardiac stimulation (muscle/nerve stimulation)
- Fluid accumulation
- Foreign body rejection phenomena
- Formation of hematomas or seromas
- Heart block
- Heart failure following chronic RV apical pacing
- Inability to pace
- Inappropriate pacing
- Incisional pain
- Incomplete lead connection with pulse generator
- Infection including endocarditis
- Lead dislodgment
- Lead fracture
- Lead insulation breakage or abrasion
- Lead perforation
- Lead tip deformation and/or breakage
- Local tissue reaction
- Loss of capture
- Myocardial infarction (MI)
- Myocardial necrosis
- Myocardial trauma (e.g., tissue damage, valve damage)
- Myopotential sensing
- Oversensing/undersensing

- Pacemaker-mediated tachycardia (PMT) (Applies to dual-chamber devices only)
- Pericardial rub, effusion
- Pneumothorax
- Pulse generator migration
- Shunting current during defibrillation with internal or external paddles
- Syncope
- Tachyarrhythmias, which include acceleration of arrhythmias and early, recurrent atrial fibrillation
- Thrombosis/thromboemboli
- Valve damage
- Vasovagal response
- Venous occlusion
- Venous trauma (e.g., perforation, dissection, erosion)
- Worsening heart failure

For a list of potential adverse events associated with MRI scanning, refer to the MRI Technical Guide (included above in **Section IX. A**).

Patients may develop psychological intolerance to a pulse generator system and may experience the following:

- Dependency
- Depression
- Fear of premature battery depletion
- Fear of device malfunction

IX. C. INGEVITYTM Lead Potential Adverse Events

- Air embolism
- Allergic reaction
- Arterial damage with subsequent stenosis
- Bleeding
- Bradycardia
- Breakage/failure of the implant instruments
- Cardiac perforation
- Cardiac tamponade
- Chronic nerve damage
- Component failure
- Conductor coil fracture
- Death
- Electrolyte imbalance/dehydration
- Elevated thresholds
- Erosion

- Excessive fibrotic tissue growth
- Extracardiac stimulation (muscle/nerve stimulation)
- Fluid accumulation
- Foreign body rejection phenomena
- Formation of hematomas or seromas
- Heart block
- Hemorrhage
- Hemothorax
- Inability to pace
- Inappropriate therapy (e.g., shocks and antitachycardia pacing [ATP] where applicable, pacing)
- Incisional pain
- Incomplete lead connection with pulse generator
- Infection including endocarditis
- Lead dislodgment
- Lead fracture
- Lead insulation breakage or abrasion
- Lead tip deformation and/or breakage
- Malignancy or skin burn due to fluoroscopic radiation
- Myocardial trauma (e.g., tissue damage, valve damage)
- Myopotential sensing
- Oversensing/undersensing
- Pericardial rub, effusion
- Pneumothorax
- Pulse generator and/or lead migration
- Syncope
- Tachyarrhythmias, which include acceleration of arrhythmias and early, recurrent atrial fibrillation
- Thrombosis/thromboemboli
- Valve damage
- Vasovagal response
- Venous occlusion
- Venous trauma (e.g., perforation, dissection, erosion)

For the specific adverse events that occurred in the clinical studies, please see Section X below.

X. SUMMARY OF PRECLINICAL STUDIES

Extensive pre-clinical testing was done to assess the safety and effectiveness of the ImageReady System and INGEVITYTM lead and lead accessories. Pre-clinical test methods included in vitro (bench) testing, in vivo (animal) testing, modeling, MR scanner-based testing and usability testing.

X. A. Laboratory Studies

A series of non-clinical laboratory studies was conducted on the ImageReady[™] MR Conditional Pacing System and the INGEVITY[™] lead and is summarized in this section. See **Table 3** through **Table 5**.

X.A.1. Biocompatibility Testing

Table 3: Summary of Ingenio and Accolade Pulse Generator Biocompatibility
Testing

Biological Effect per ISO 10993-#	Test Method	Test Result
ISO 10993-3: 2009	Ames Assay	Passed
Genotoxicity	In vitro Mouse Lymphoma	Passed
	Mouse Micronucleus Assay	Passed
ISO 10993-3: 2009 Carcinogenicity	As the device is made of well-characterized materials and the results from the ISO 10993-3: 2009 genotoxicity studies demonstrated no mutagenic response, carcinogenicity testing was not conducted.	Not Required
ISO 10993-3: 2009 Reproductive Toxicity	The pulse generator does not come in direct contact with reproductive tissues, embryo or fetus. Moreover, the device has no known chemicals that have the potential to induce reproductive or developmental toxicity.	Not Required
ISO 10993-4: 2009 Blood interactions	Body contact is tissue/bone; therefore, Hemolysis- Direct & Indirect, Coagulation (PTT), Complement Activation, In vitro Hemocompatibility and Thrombogenicity are not required.	Not Required
ISO 10993-5: 2009 In vitro cytotoxicity	Cytotoxicity MEM Elution	Passed
ISO 10993-6: 2009 Local Implantation Effects	Combined with Chronic Toxicity per ISO 10993-11: 2009	Passed
ISO 10993-10:	Intracutaneous reactivity	Passed
2010 Irritation and delayed-type hypersensitivity	Guinea pig maximization Sensitization	Passed
ISO 10993-11:	Acute Systemic Toxicity	Passed
2009	Materials Mediated Rabbit Pyrogen Assay	Passed

Biological Effect per ISO 10993-#	Test Method	Test Result
Systemic Toxicity	Sub Acute Toxicity 14 Days Intravenous injection in mice	Passed
	Sub Acute Toxicity 14 Days Intraperitoneal injection in mice	Passed
	Chronic Systemic Toxicity combined with Local Implantation Effects per ISO 10993-6: 2009	Passed
ISO 10993-13: 2004 Degradation of polymeric materials	Conducted for the thermoplastic polyurethane core material and the epoxy overmold material in the header. No evidence of hydrolytic degradation for either material. For both materials, limited oxidative degradation was noted that would not be representative of the enrivornment that the pulse generator would be exposed to in the body.	Passed
ISO 10993-14: 2004 Degradation of ceramic materials	Not applicable because there are no patient-contacting ceramic materials used on the pulse generator.	Not Required
ISO 10993-15: 2000 Degradation of metals/alloys	The only patient-contacting metal/alloy material is titanium, which is known to form a chemically stable oxide layer acceptable for the implant environment.	Not Applicable
ISO 10993-18: 2005 Chemical characterization	Profile of extractables/leachable chemicals for the thermoplastic polyurethane core material and the epoxy overmold material in the header was conducted. The extractables found are non-hazardous and present at toxicologically insignificant amounts to pose any concern to patient health.	Successfully Completed

Table 4: Summary of INGEVITY Lead and Slit Suture Sleeve Biocompatibility Testing

Biological Effect per ISO 10993-#	Test Method	Test Result
ISO 10993-3: 2009	Ames Assay	Passed
Genotoxicity	In vitro Mouse Lymphoma	Passed
	Mouse Micronucleus Assay	Passed
ISO 10993-3: 2009 Carcinogenicity	As the lead is made of well-characterized materials and the results from the ISO 10993-3: 2009 genotoxicity studies demonstrated no mutagenic response, carcinogenicity testing was not conducted.	Not Required

Biological Effect per ISO 10993-#	Test Method	Test Result
ISO 10993-3: 2009 Reproductive Toxicity	The lead does not come in direct contact with reproductive tissues, embryo or fetus. Moreover, the device has no known chemicals that have the potential to induce reproductive or developmental toxicity.	Not Required
ISO 10993-4: 2009	Hemolysis- Direct & Indirect	Passed
Blood interactions	Coagulation (PTT)	Passed
	Complement Activation	Passed
	In vitro Hemocompatibility	Passed
	Thrombogenicity	Passed
ISO 10993-5: 2009 In vitro cytotoxicity	Cytotoxicity MEM Elution	Passed
ISO 10993-6: 2009 Local Implantation Effects	Combined with Chronic Toxicity per ISO 10993-11: 2009	Passed
ISO 10993-10: 2009	Intracutaneous reactivity	Passed
Irritation and delayed-type hypersensitivity	Guinea pig maximization Sensitization	Passed
ISO 10993-11: 2009	Acute Systemic Toxicity	Passed
Systemic Toxicity	Rabbit Pyrogen Assay	Passed
	Sub Acute Toxicity 14 Days Intravenous injection	Passed
	Sub Acute Toxicity 14 Days Intraperitoneal injection	Passed
	Chronic Systemic Toxicity	Passed
ISO 10993-13: 2004 Degradation of polymeric materials	No evidence of oxidative or hydrolytic degradation of the polyurethane material used on the lead	Passed
ISO 10993-14: 2004 Degradation of ceramic materials	The IROX ceramic material has a history of safe clinical use. Per Annex A, section A.2 of ISO10993-9, degradation studies are not required if the probable degradation products are the same substances, in similar quantities, and at a similar rate as devices that have a history of safe clinical use	Not Required
ISO 10993-15: 2000 Degradation of metals/alloys	No evidence of corrosion / dissolution of metals and alloys from the electrodes and conductor coils	Passed

Biological Effect per ISO 10993-#	Test Method	Test Result
ISO 10993-18: 2005 Chemical characterization	Profile of extractables/leachable chemicals in the lead was conducted. Identified extractables must be the same substances, in similar quantities, and at a similar rate as devices that have a history of safe clinical use.	Successfully Completed

Table 5: Summary of Biocompatibility Testing of Packaging for Lead and Lead Accessories

Test Performed	Test Method	Test Result
ISO 10993-5: 2009 In vitro cytotoxicity	Cytotoxicity MEM Elution	Passed
USP 32, NF 27 Monograph <661> Physicochemical Tests for Plastics	Extraction using purified water	Passed

X.A.2. Bench Testing Not Related to MRI

Implantable Pulse Generator System Testing Outside the MRI Environment

The INGENIOTM MRI, VITALIOTM MRI and FORMIOTM MRI pacemakers use the same platform and design as the commercially available INGENIOTM, VITALIOTM and FORMIOTM (non-MRI) pacemakers. Likewise the ESSENTIOTM MRI, PROPONENTTM MRI and ACCOLADETM MRI pacemakers use the same platform and design as the commercially available ESSENTIOTM, PROPONENTTM and ACCOLADETM (non-MRI) pacemakers. For the purpose of this testing the only difference is the unique MR Conditional X-ray Identification (ID) tag used in the MRI models. Therefore, the bench testing outside of the MRI environment performed on the commercially available non-MRI pacemakers applies to the corresponding MRI pacemakers (by family). A brief summary is provided in

Table 6.

Table 6: Summary	y of Bench Testing Outside the MRI Environment for the Ingenio)
and Accolade Pacemakers		

Test Activity	Summary	Results
Component Testing on new or modified components	Performed qualifications to ensure component suppliers are capable of providing parts that meet Boston Scientific requirements.	Passed

Test Activity	Summary	Results
System Design Testing	Conducted to verify a specific sub-set of system requirements that require end to end testing in the System Requirement Specification (SyRS) and are not otherwise cover by HW (mechanical, electrical and component), SW or FW testing. System under test included PG with PG FW and 2869 PRM SW.	Passed
Mechanical Testing	Conducted to verify that the PG meets the mechanical design specifications. Mechanical and environmental requirements were tested.	Passed
Electrical Testing	Conducted to verify that the PG meets the electrical design specifications.	Passed
PG Software (Firmware) Testing	Conducted to verify the PG FW meets the FW requirements specification.	Passed
Model 2869 PRM Software Testing	Conducted to verify the Model 2869 PRM SW meets the SW requirements specification.	Passed
Battery Testing	Conducted to verify that the battery meets design performance requirements. Testing verifies battery performance at stress conditions beyond the limits expected for the device / system.	Passed
Packaging Testing	Conducted to verify that the packaging system meets all the design requirements after being exposed to challenge conditions (sterilization, climatic conditioning, distribution simulation, aging).	Passed

Lead and Lead Accessory Testing Outside the MRI Environment

The INGEVITY lead is equivalent for testing conducted outside the MRI environment, regardless of lead type between non-MRI and MRI. A brief summary is provided in **Table** 7.

Table 7: Summary of Bench Testing for the INGEVITY™ Lead and Lead Accessories

Test Activity	Summary	Applicable Standards	Results
Component Testing on new or modified components used in the INGEVITY leads or lead accessories	Performed qualifications to ensure component suppliers are capable of providing parts that meet Boston Scientific requirements.	Varies by component/material if applicable	Passed

Test Activity	Summary	Applicable Standards	Results
Mechanical and Electrical Testing with Shelf Life Testing	Verified the mechanical and electrical performance of the active and passive fixation designs of the INGEVITY family of leads after accelerated and real time aging representing two years of shelf life.	ASTM D4169-09 ISO 14708-1: 2000 EN 45502-1: 1997	Passed
Terminal Testing with Shelf Life Testing	Verified the INGEVITY lead terminal mechanical and electrical performance meets the product specification after accelerated and real time aging representing two years of shelf life.	ASTM D4169-09 ISO 5841-3 ISO 14708-1: 2000 EN 45502-1: 1997	Passed
Lead Explant Axial Strength Testing with Shelf Life Testing	Verified the explant axial strength performance of the active and passive fixation INGEVITY lead designs after accelerated and real time aging representing two years of shelf life.	ISO 14708-1: 2000 EN 45502-1: 1997	Passed
Packaging and Package Shelf Life Testing	Verified the INGEVITY device packaging meets requirements of package cleanliness, packaging and labeling integrity, packaging and literature materials and sterile tray content, after accelerated and real time aging representing two years of shelf life.	ASTM D4169-09 EN 45502-2-1, 11607-1:2006, ISO 5841-3 ISO 14708-1: 2000 EN 45502-1: 1997	Passed
Corrosion Performance Testing	Verified the current induced corrosion performance of the active and passive fixation INGEVITY lead designs. Verify the mechanical, electrical, and corrosion performance of conductor joints at the distal end of the lead after being subjected to an equivalent to 10 years of pacing in an accelerated period in saline.	EN 45502-2-1 and ISO 5841-3 ISO 14708-1: 2000 EN 45502-1: 1997	Passed
Steroid Testing	Verified the active and passive fixation INGEVITY leads conform to the steroid requirements in the product specification.	USP <788> ISO 14708-1: 2000 EN 45502-1: 1997	Passed

Test Activity	Summary	Applicable Standards	Results
Lead Distal Section Fatigue Validation Test	Demonstrated the fatigue performance of the conductors in the distal section of the lead in the cyclic bending conditions experienced during 10 years of chronic implant in the right ventricle of the heart. The test demonstrated the distal section of the lead can experience 400 million cycles of intracardiac flexure without conductor fatigue fracture.	ISO 14708-1: 2000 EN 45502-1: 1997	Passed
Lead Body Bell- Mouth Fatigue Mechanical Testing	Demonstrated that the uniform lead body region of the INGEVITY lead can experience 64,000 cycles when exposed to the 6-mm bell-mouth test condition established in the CEN- CENELEC International Standard (EN 45502-2-1 Section 23.5, Test 1) without conductor fatigue fracture.	CEN-CENELEC International Standard (EN 45502-2-1) ISO 14708-1: 2000 EN 45502-1: 1997	Passed
Subcutaneous Lead Body Fatigue Mechanical Testing	Demonstrated that the INGEVITY lead can experience cyclic deflections equivalent to 10 years of subcutaneous flexure without conductor fatigue fracture.	ISO 14708-1: 2000 EN 45502-1: 1997	Passed
Intracardiac Lead Body Fatigue Testing	Demonstrated that the intracardiac region of the INGEVITY lead can experience cyclic deflections equivalent to 10 years of intracardiac flexure without conductor fatigue fracture	ISO 14708-1: 2000 EN 45502-1: 1997	Passed
Terminal Flex Fatigue Testing	Demonstrated the IS-1 conductors in the terminal region of the lead can experience the cyclic test conditions established in the CEN-CENELEC International Standard (EN 45502-2-1 Section 23.5, Test 2), with the exception of the tensile load, which was increased from 100g in the CEN- CENELEC standard to 200g.	CEN-CENELEC International Standard (EN 45502-2-1) ISO 14708-1: 2000 EN 45502-1: 1997	Passed

Test Activity	Summary	Applicable Standards	Results
Accessory Testing			
Accessory Mechanical/ Electrical and Shelf Life Testing	Verified the slit suture sleeve Model 6402 conforms to the mechanical requirements of handling, retention and lead body protection and meets the requirements of a four year shelf life.	ASTM 4169-09 EN 45502-2 EN 45502-2-1 ISO 14708-1: 2000 EN 45502-1: 1997	Passed
Accessory Particulate Testing	Verified the slit suture sleeve Model 6402 conforms to its requirements for product and packaging cleanliness.	ASTM 4169-09 EN 45502-2 EN 45502-2-1 ISO 14708-1: 2000 EN 45502-1: 1997	Passed
Accessory Package and Shelf Life Testing	Verified the accessory packaging used for the slit suture sleeve Model 6402 and the stylet accessories performs its intended functions to contain, protect and maintain a sterile barrier for the intended four years of shelf life. Testing also verified the performance of the printed markings of the labeling.	EN ISO 11607-1:2006	Passed
Stylet Accessory Shelf Life Testing	Verified the stylet models for use with INGEVITY leads meet the requirement for a four-year shelf life.	None	Passed

X.A.3. <u>Testing Related to MRI</u>

This section provides a summary of the pre-clinical evaluation performed to demonstrate safety and effectiveness of the ImageReady[™] MR Conditional Pacing System with respect to MRI-environment hazards. The pre-clinical evaluation included MRI scanner testing, bench testing, computer modeling, and animal studies performed by Boston Scientific as guided by ISO/TS 10974, "Assessment of the safety of magnetic resonance imaging for patients with an active implantable medical device." Boston Scientific's preclinical evaluation was designed to: a) apply exposure levels more severe than typically encountered during clinical MRI scanning; b) provide monitoring and measurement methods sensitive enough to detect any possible device performance anomalies; and c) assess a wide range of system implant and patient anatomy configurations. All evaluations were performed under generalized, conservative conditions for patient and device exposure in 1.5T MRI scanners, including conditions beyond limits typically encountered in clinical practice. An MRI scanner was used where appropriate for systemlevel testing. Standard test methods and test equipment were used where possible. Custom test systems were developed and used to create higher exposure levels as needed in bench and animal testing.

The pre-clinical evaluation demonstrates Boston Scientific MR Conditional pacemakers and leads, when used together, meet all product requirements designed to mitigate the risks associated with MRI scans. These results demonstrate the ImageReady System is safe and effective for scans performed in accordance with the labeled Conditions of Use.

The following testing related to MRI is summarized in **Table 8** through **Table 15** below:

- Lead and PG Heating
- Vibration
- Translation Force
- Torque
- Image Artifact
- Unintended Cardiac Stimulation
- PG Malfunction

Lead Heating

Table 8: Summary of Lead Heating Testing Related to MRI

Lead Heating	
Field Interaction	Radiofrequency
Mechanism and Source of Hazard	Pacing leads may act as antennae, picking up RF energy. A portion of this energy may be transmitted into the cardiac tissue and converted into heat.
Clinical Impact	Heating near the lead electrodes may cause thermal tissue injury, which may alter pacing thresholds.
Evaluation Method	The patient safety risk due to MRI-induced lead heating was evaluated using a combination of bench testing, computer modeling, and animal studies. A computer modeling framework was used to compute the RF power deposited to cardiac tissues in contact with lead electrodes in approximately 0.5 million simulated patient and scanning scenarios. The computer model was developed based on known RF theory and was extensively validated by performing lead heating measurements in an RF coil test system. The 0.5 million simulated scenarios were developed using established electromagnetics simulation methods and are comprised of combinations of human body models, lead implant configurations, and MRI scanner/scanning conditions. Using the computer modeling framework, a worst-case RF power potentially inducible in any patient with INGEVITY MRI leads was determined. An animal study was performed to determine the change in pacing capture threshold as a function of RF power. The worst- case RF power was compared to results of the animal study to assess the risk of clinically significant change in pacing capture threshold caused by MRI-induced lead heating.

Lead Heating	
Results & Conclusions	Bench testing, computer modeling, and animal study results indicate patient safety risk due to MRI-induced lead heating of the ImageReady [™] MR Conditional Pacing System is minimal. Analysis of the results demonstrated that MRI-induced tissue heating around INGEVITY MRI lead electrodes is unlikely to cause a clinically significant change in pacing capture threshold. These results support the safety of ImageReady Systems with regard to the MRI-induced lead heating hazard.

PG Heating

PG Heating		
Field Interaction	Radiofrequency	Gradient
Mechanism and Source of Hazard	The PG case concentrates RF electric field into adjacent tissue.	Gradient magnetic fields induce electrical currents in conductive materials of the PG, such as the case and internal components, which are dissipated as heat.
Clinical Impact	Tissue heating near the PG case may cause patient discomfort or tissue injury.	
Evaluation Method	The patient safety risk due to MRI-induced PG heating was evaluated through analysis of bench testing and computer modeling. Gradient field induced heating of the PG case was measured in a gradient coil test system. Radiofrequency field induced heating of tissues surrounding the PG was determined using established electromagnetics simulation methods. Both bench testing and computer modeling were performed under worst-case conditions for gradient and RF field exposures. Testing and modeling results were compared to thresholds for tissue damage reported in published literature to assess the risk of clinically significant temperature rise caused by MRI-induced PG heating.	
Results & Conclusions	Analysis comprised of bench tes indicates patient safety risk due Ingenio and Accolade PGs is mi demonstrated that heating of and harm surrounding tissues. These ImageReady [™] MR Conditional the MRI-induced PG heating has	to MRI-induced heating of inimal. Testing and modeling d around the pacemaker will not results support the safety of the Pacing System with regard to

Table 9: Summary of PG Heating Testing Related to MRI

Vibration

Vibration	
Field Interaction	Static and Gradient
Mechanism and Source of Hazard	Gradient fields induce electrical currents in the conductive surfaces of pacemaker components. Interaction of these currents with the static magnetic field causes vibration.
Clinical Impact	Vibration of the PG may cause device malfunction, including loss or alteration of pacing therapy.
Evaluation Method	Bench testing was performed to evaluate the potential for PG malfunction and damage resulting from MRI-induced vibration. A shaker table based test system was used to apply vibration profiles representative of vibration expected in a pacemaker during MRI scans. Vibration testing was conducted at vibration stress levels above and for durations beyond what a device would reasonably be exposed to during its lifetime. Device functionality testing was performed to ensure normal pacing system operation, including therapy delivery.
Results & Conclusions	Bench testing confirmed that device malfunction and damage caused by MRI-induced vibration of Ingenio and Accolade PGs are unlikely. No device malfunctions or damage were observed during vibration testing and all devices performed normally after vibration testing. These results support the safety and effectiveness of the ImageReady System with regard to the MRI-induced vibration hazard.

 Table 10: Summary of Vibration Testing Related to MRI

Translation Force

Table 11: Summary of Translation Force Testing Related to MRI

Translation Force	
Field Interaction	Static
Mechanism and Source of Hazard	The static magnetic field will act on any ferromagnetic material in a PG or lead, producing a translation or rotation of the PG or lead.
Clinical Impact	PG or lead movement may cause patient discomfort, tissue injury, or device dislodgment.
Evaluation Method	The patient safety risk due to MRI static field induced force was evaluated in bench tests. The MRI induced force exerted on pacemakers and leads was measured using test methods described in ASTM F2052-02, "Standard Test Method For Measurement of Magnetically Induced Displacement Force On Medical Devices in the Magnetic Resonance Environment."

Translation Force			
Results & Conclusions	Bench testing demonstrated that MRI-induced force on Ingenio and Accolade PGs and INGEVITY MRI leads is minimal. These results support the safety of the ImageReady [™] MR Conditional Pacing System with regard to the MRI-induced force hazard.		

Torque

	Torque			
Field Interaction	Static			
Mechanism and Source of Hazard	The static magnetic field will act on any ferromagnetic material in a PG or lead, producing a torque of the PG or lead.			
Clinical Impact	PG or lead movement may cause patient discomfort, tissue injury, or device dislodgement.			
Evaluation Method	The patient safety risk due to MRI static field induced torque was evaluated in bench tests. The MRI induced torque exerted on pacemakers and leads was measured using test methods described in ASTM F2213-02, "Standard Test Method for Measurement of Magnetically Induced Torque on Passive Implants in the Magnetic Resonance Environment"			
Results & Conclusions	Bench testing demonstrated that MRI-induced torque on Ingenio and Accolade PGs and INGEVITY MRI leads is minimal. These results support the safety of the ImageReady TM MR Conditional Pacing System with regard to the MRI-induced torque hazard.			

Table 12: Summary of Torque Testing Related to MRI

Image Artifact

Table 13: Summary of Image Artifact Testing Related to MRI

Image Artifact			
Field Interaction	Static, Gradient, and Radiofrequency		
Mechanism and Source of Hazard	The pacing system may interfere with the acquisition of MR data.		
Clinical Impact	Image artifacts may compromise the usefulness of MR images.		
Evaluation Method	MRI scanner testing was performed to evaluate the size of the image artifact produced by the ImageReady System. The image artifact created by pacemakers and leads was measured using test methods described in ASTM F2119-07, "Standard Test Method for Evaluation of MR Image Artifacts from Passive Implants"		

Image Artifact		
Results & Conclusions	MRI scanner testing confirmed the appearance of image artifact is consistent with expectation for metallic implanted devices.	

Unintended Cardiac Stimulation (UCS)

Table 14: Summary of Unintended Cardiac Stimulation Testing Related to MRI

Unintended Cardiac Stimulation				
Field Interaction	Gradient and Radiofrequency			
Mechanism and Source of Hazard	Gradient: The time varying gradient field will induce a voltage between the pacing lead electrodes and the PG. Current may conduct from the lead electrodes to the heart.	RF: The time varying RF field will induce a voltage along the pacing leads. The PG circuitry may rectify the voltage and conduct a current to the heart.		
Clinical Impact	MRI-induced currents, if large e the heart.	nough, may directly stimulate		
Evaluation Method	The patient safety risk due to MRI-induced UCS was evaluated using a combination of bench testing and animal studies. Bench testing was performed to measure currents potentially induced on the pacing system and injected into tissues resulting from: a) rectification of RF pulses; and b) interactions with gradient fields. An animal study was performed to determine the strength-duration relationship for a current stimulus to capture cardiac tissue. The probability that UCS could occur was determined by comparing the statistical distributions of MRI- induced current obtained in bench testing with statistical distributions of capture thresholds obtained in animals.			
Results & Conclusions	Bench testing and animal study risk due to MRI-induced UCS o Conditional Pacing System is re demonstrated that the probability stimulation resulting in cardiac to small. These results support the System with regard to the MRI-	f the ImageReady™ MR mote. Analysis of the results y for MRI-induced unintended issue capture is exceedingly safety of the ImageReady		

PG Malfunction

Table 15: Summary of PG Malfunction Testing Related to MRI

PG Malfunction				
Field Interaction Static, Gradient, and Radiofrequency				
Mechanism and Source of HazardThe static, gradient, and RF fields may interfere with the electrical operation of the pacing system.				

	PG Malfunction				
Clinical Impact	MRI-field interactions may cause PG malfunction, including loss or alteration of pacing therapy.				
Evaluation Method	MRI scanner and bench testing were performed to evaluate the potential for PG malfunction and damage resulting from MRI- field interactions. MRI scanner testing was performed to evaluate pacing system operation during and after exposure to the combination of static, radiofrequency, and gradient fields. Bench testing was performed to evaluate pacing system operation during and after independent exposure to static, radiofrequency, and gradient fields. For bench testing, custom electrical injection test systems and a custom gradient coil system were used to apply exposure levels at or above what a device would reasonably be exposed to in clinical scanning scenarios. Device functionality testing was performed to ensure normal pacing system operation, including therapy delivery.				
Results & Conclusions	MRI scanner and bench testing confirmed device malfunction and damage resulting from MRI-field interactions of ImageReady systems are unlikely. MRI scanner testing confirmed normal pacing system operation, including therapy delivery, during and after exposure to the combination of static, radiofrequency, and gradient fields. Bench testing confirmed normal pacing system operation, including therapy delivery, during and after independent exposure to static, radiofrequency, and gradient fields. No device malfunction or damage was observed during testing and all devices performed normally after MRI scanner and bench testing. These results support the safety and effectiveness of the ImageReady System with regard to the MRI-induced malfunction hazard.				

X. B. <u>Animal Studies</u>

The safety of the INGEVITY[™] leads and ImageReady[™] MR Conditional Pacing System was evaluated in a series of canine studies (see **Table 16**); these studies were conducted in accordance with §21 CFR 58 – Good Laboratory Practice (GLP). The results of the studies support the safety of the INGEVITY leads and ImageReady System. System level testing of the Ingenio and Accolade family of pulse generators was done via animal studies conducted in accordance with GLP; these studies were not specific to the MRI versions of Ingenio and Accolade pacemakers and were reviewed by FDA under supplements for existing families of devices.

Study Name/ Number	Objective	# / Type Animals Test Devices Study Duration	Method	Results
Chronic Evaluation of Pacing Capture Threshold (PCT) Change in a Canine Model GLP Study 10- 124G	Obtain data to understand the relationship between heating, power dissipation, and Pacing Capture Threshold (PCT) change for the INGEVITY lead family.	 10 Canines Test articles consisting of lead outer insulation and distal electrodes with coaxial cable and fiber optic temperature probe 40 days 	Test articles were designed to efficiently transmit RF power to the distal electrodes (actual lead electrode) and allow measurements of PCT, impedance and R-wave amplitudes via the coaxial cable using a pacing system analyzer device. The power dissipation to PCT/temperature change relationship was obtained by measuring changes to PCT and any increases in lead tip- tissue interface temperature that may be caused by delivering RF power to the lead distal electrodes at various power levels.	Sufficient data were collected to establish a relationship between PCT change and RF total dissipated power for the INGEVITY lead family to establish a lead heating performance specification.

Table 16: Summary of GLP Animal Studies

Study Name/ Number	Objective	# / Type Animals Test Devices Study Duration	Method	Results
Passive Fixation Lead Electrical/ Mechanical GLP Study 10-122G	Assess the safety and efficacy of the INGEVITY passive pacing lead system in a canine model over 90 and 180 days post implant. An additional purpose of the study was to gather observational data pertaining to the INGEVITY MRI lead for probability analysis of unintended cardiac stimulation hazard.	 20 Canines Model 7632 passive fixation straight lead Model 7636 passive fixation preformed J lead 90 days for endpoints and 180 days for observational data 	The lead test articles were implanted and connected to a pacemaker. Electrical data (atrial and ventricular pacing voltage threshold, atrial sensing P wave, ventricular sensing R wave) was taken throughout the study to document lead function and radiographs taken to document lead position. Simulated MRI electrical testing was performed on 18 animals to characterize chronic single beat stimulation threshold measurements over the range of gradient and RF field pulse widths for an MR scanner. All animals had a comprehensive necropsy performed, including to inspect and observe gross cardiac changes and to assess the cellular-level tissue biocompatibility response at the implant site.	Under the conditions of this study, the chronic electrical performance endpoints were successfully met and observational data was collected. The study successfully supported safety and efficacy of the INGEVITY passive pacing lead system in a canine model over 90 days post implant and continued to collect observational data up to 180 days post implant. The study successfully collected the single beat stimulation threshold measurements over a range of pulse widths relevant to MR scanners after 90 or 180 days post implant in the canine model.

Study Name/ Number	Objective	# / Type Animals Test Devices Study Duration	Method	Results
Active Fixation Lead Electrical/ Mechanical GLP Study 10-072G	Assess the safety and efficacy of the INGEVITY active pacing lead system in a canine model over 90 and 180 days post implant. An additional purpose of the study was to gather observational data pertaining to the INGEVITY MRI lead for probability analysis of unintended cardiac stimulation hazard.	 19 Canines Model 7642 active fixation straight lead 90 days for endpoints and 180 days for observational data 	The lead test articles were implanted and connected to a pacemaker. Electrical data (atrial and ventricular pacing voltage threshold, atrial sensing P wave, ventricular sensing R wave) was taken throughout the study to document lead function and radiographs taken to document lead position Simulated MRI electrical testing was performed on 16 animals to characterize chronic single beat stimulation threshold measurements over the range of gradient and RF field pulse widths for an MR scanner. All animals had a comprehensive necropsy performed, including to inspect and observe gross cardiac changes and to assess the cellular-level tissue biocompatibility response at the implant site.	Under the conditions of this study, the chronic electrical performance endpoints were successfully met and observational data was collected. The study successfully supported safety and efficacy of the INGEVITY Active pacing lead system in a canine model over 90 days post implant and continued to collect observational data up to 180 days post implant. The study successfully collected the single beat stimulation threshold measurements over a range of pulse widths relevant to MR scanners after 90 or 180 days post implant in the canine model.

Study Name/ Number	Objective	# / Type Animals Test Devices Study Duration	Method	Results
Acute Accessory GLP Study 11- 022G	Demonstrate the safety and performance of the INGEVITY active and passive fixation pacing leads with their compatible accessories in an acute setting in an animal model.	 2 swine Models 7641 and 7642 active fixation straight leads Model 7636 passive fixation preformed J lead Model 7632 passive fixation straight lead Model 6402 Slit Suture Sleeve 0.014 inch long tapered straight stylets 0.013 inch tapered straight stylets Acute 	Standard right atrium (RA) and right ventricle (RV) brady lead implant technique was used for the lead implantation. The lead with stylet was inserted and positioned in the RV chamber, RA chamber or appendage multiple times. A pacing system analyzer (PSA) device was connected to select leads and used to collect electrical data. Fluoroscopy cines were also taken throughout the study to view the lead position and the suture sleeve visibility. Acute repositionability of the lead in the RA and RV and compatibility with accessories were tested in this study. Qualitative data were collected and recorded regarding the ease and general performance of the INGEVITY lead with specified accessories.	Endpoint 1: PASS Demonstration that the INGEVITY active fixation straight leads could withstand five consecutive cycles of positioning in the ventricle in ≤ 18 turns for full extension and retraction. Endpoint 2: PASS Demonstration that the INGEVITY family of leads were successfully compatible with: • Select stylets • Slit suture sleeves • Introducers (6Fr and 9Fr) • Guide wires Data on five observational criteria was collected.

Study Name/ Number	Objective	# / Type Animals Test Devices Study Duration	Method	Results
Passive and Active Fixation Lead Drug Characterization GLP Studies 10- 073G and 10- 074G)	Characterize the drug system of the INGEVITY passive fixation and active fixation pacing/sensing leads	 15 Canines in the passive fixation lead study 9 Canines in the active fixation lead study Model 7632 passive fixation straight lead Model 7636 passive fixation preformed J lead Model 7642 active fixation straight lead Up to 90 days 	The animals were implanted with the INGEVITY leads and survived until their predetermined endpoints (2, 7, 14, 21, 28, 44, 60 and 90 days). Plasma samples were collected and analyzed at multiple time points throughout the study to measure circulating DX. Endocardial tissue was collected at the location of each lead drug collar during necropsy and subsequently analyzed to measure tissue concentration of DX. Each lead's drug-containing component was analyzed for residual DXA. Observational data were collected during the in-life phase: • Radiographic or fluoroscopic images • Electrical data at implant and just prior to animal termination • Gross necropsy	An assessment of dexamethasone (DX) drug release following lead implant of the INGEVITY passive and active fixation pacing lead systems in an animal model at prescribed time points through 90 days post implant was completed. Systemic (plasma) dexamethasone (DX) and tissue (endocardium) DX concentrations were measured as well as residual dexamethasone acetate (DXA) in the collars of the explanted leads. The studies provided appropriate characterization data on the drug system of the INGEVITY passive and active fixation pacing/sensing leads (3 samples per time-point), respectively.

X.C. <u>Sterilization</u>

The Ingenio and Accolade pulse generators, as well as the INGEVITY leads and lead accessories, are sterilized via Ethylene Oxide (EO) in accordance with internal quality control procedures and ANSI/AAMI/ISO 11135:2007 Medical Device – Validation and Routine Control of Ethylene Oxide Sterilization. Residual testing was conducted per ISO 10993-7:2008 Biological Evaluation of Medical Devices – Part 7: Ethylene Oxide Sterilization Residuals. The validated EO sterilization process has demonstrated Sterility Assurance Levels (SAL) of greater than 10^{-6} .

XI. SUMMARY OF PRIMARY CLINICAL STUDY FOR THE LEAD

The applicant performed a clinical study to establish a reasonable assurance of safety and effectiveness of implantation of the INGEVITY Active Fixation and Passive Fixation Pace/Sense Leads for the treatment of the conditions listed in Section II.A in the US and internationally under IDE G110227. Data from this clinical study were the basis for the PMA approval decision, along with data from the SAMURAI study under IDE G120076 (see Section XII for details). A summary of the clinical study is presented below.

A. <u>Study Design – INGEVITY</u>

Patients were treated between October 22, 2012 and October 22, 2013. Treatment was defined as implanted or attempted with at least one INGEVITY lead. The database for this PMA reflected data collected through February 17, 2016 and included 1060 patients and 1599 leads. There were 43 US and 34 international investigational sites.

The INGEVITY Study is a prospective, single-group, non-randomized, multi-center, global clinical study, utilizing performance goals to demonstrate the safety, performance and effectiveness of the INGEVITY Leads. As a single-group study, there was no control group in the INGEVITY study.

The study used a Clinical Events Committee as a group of independent evaluators to adjudicate mortality.

The INGEVITY Study has been conducted through the 12-month follow-up endpoints to collect data to support US pre-market approval of the INGEVITY lead family. Data continues to be collected via annual follow-up at 2 through 5 years in support of post-market approval requirements.

To appropriately characterize long-term safety performance of this new family of pace/sense leads, the various leads in the INGEVITY lead family are studied in separate "lead cohorts." The right ventricular active fixation lead serves as the primary lead model in the INGEVITY Study, and therefore is studied as lead cohort 1 with a sample size equal to 700 leads evaluable at 12 months. The required sample sizes for the right atrial active fixation lead, the right ventricular passive fixation lead and the right atrial passive fixation lead are 350, 175, and 35 leads, respectively,

evaluable at 12 months. The following lead cohorts were studied in the INGEVITY Study:

- Lead Cohort 1 = Right ventricular active fixation leads
- Lead Cohort 2 = Right atrial active fixation leads
- Lead Cohort 3 = Right atrial and right ventricular passive fixation leads

Subjects were followed in the INGEVITY study based on the date of their INGEVITY Lead implant(s). Follow-up was required at pre-discharge, 1 month, 3 months and 12 months post-implant. Subjects will continue to be followed annually until 5 years post-implant.

1. Clinical Inclusion and Exclusion Criteria

Enrollment in the INGEVITY study was limited to patients who met all of the following inclusion criteria:

- Willing and capable of providing informed consent;
- INGEVITYTM Lead(s) and a Boston Scientific pulse generator must be the initial (de novo) pacing system implants for the patient;
- Has a Class I or II indication for implantation of a single (VVI(R) only) or dual chamber pacemaker or CRT-P system according to the American College of Cardiology (ACC)/American Heart Association (AHA)/Hearth Rhythm Society (HRS)⁹, or European Society of Cardiology (ESC)¹⁰ guidelines;
- Willing and capable of participating in all testing/visits associated with this clinical study at an approved clinical study center and at the intervals defined by this protocol; and
- Age 18 or above, or of legal age to give informed consent specific to state and national law.

Patients were <u>not</u> permitted to enroll in the INGEVITY study if they met any of the following exclusion criteria:

- Has or has had any pacing or ICD system implants;
- Intended to receive an AAI(R) pulse generator;
- Known or suspected sensitivity to dexamethasone acetate (DXA);

⁹ Epstein AE, DiMarco JP, Ellenbogen KA, et al. ACC/AHA/HRS 2008 Guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology/ American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices) Developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons Circulation 2008;117: e350-e408.

¹⁰ Vardas PE, Auricchio A, Blanc J, et al. Guidelines for cardiac pacing and cardiac resynchronization therapy: The Task Force for Cardiac Pacing and Cardiac Resynchronization Therapy of the European Society of Cardiology. Developed in collaboration with the European Heart Rhythm Association. Europace 2007; 9: 959-998.

- Has a mechanical tricuspid heart valve;
- Enrolled in any other concurrent study, with the exception of local mandatory governmental registries and observational studies/registries that are not in conflict;
- Documented permanent or persistent AF¹¹ where the physician intends to implant a dual chamber pulse generator (single chamber VVIR pulse generators are acceptable);
- Currently on the active heart transplant list;
- Documented life expectancy of less than 12 months;
- Women of childbearing potential who are or might be pregnant at the time of study enrollment or INGEVITY[™] Lead implant (method of assessment upon physician's discretion); and/or
- Currently requiring dialysis.

2. Follow-up Schedule

All patients were scheduled to return for follow-up examinations at pre-discharge (3-72 hours post-implant), 1, 3, 12, 24, 36, 48 and 60-months postoperatively.

Preoperative and postoperative evaluations and objective parameters measured are listed in the following table. Adverse events and complications were required per the protocol to be reported at all visits.

The key timepoints are shown below in the tables summarizing safety and effectiveness.

		Iuon	5 17. Data	concerton	oeneuule			
Procedure/ Assessment	Enroll- ment	Implant	Pre- Discharge	1 Month	3 Months	12 Months	2, 3, 4, 5 years	Add'l Visits
Timeframe	≤ 30 days prior to Implant	Day 0 ¹	3-72 h ¹	30 ± 7 d ¹ Clinic Visit	91±14 d ¹ Clinic Visit	365 ± 45 d ¹ Clinic Visit	-2 yr: 730±90 d ¹ -3 yr: 1095±90 d ¹ -4 yr: 1461±90 d ¹ -5 yr: 1826±90 d ¹ Clinic Visit	Not specified
Informed consent form, including informed consent signature date	х	-	-			-	-	-
Demographics, including age at implant, gender	х	-	-	-	-	-	-	-
Physical assessment, including weight and height	x	1	1	-	1	1	1	1
Medical history	Х			-				
PSA measurements for all INGEVITY Leads (capture	-	х						

Table 17: Data Collection Schedule

¹¹ Calkins H, et al. HRS/EHRA/ECAS expert Consensus Statement on catheter and surgical ablation of atrial fibrillation: recommendations for personnel, policy, procedures and follow-up. Heart Rhythm 4:816-861, 2007

Procedure/ Assessment	Enroll- ment	Implant	Pre- Discharge	1 Month	3 Months	12 Months	2, 3, 4, 5 years	Add'l Visits
thresholds @ 0.5ms)								
PA and lateral chest X-ray and/or fluoroscopic image of INGEVITY Lead distal tip fixation	-		x					
Implant Questionnaire		х						
Cardiovascular Medications, including updates and changes	х	x	x	х	х	x	x	ο
IPG lead measurements for all INGEVITY Leads (threshold @ 0.5ms through 3-Month Visit)		х	x	x	x	x	x	X (if lead- related AE), else O
ECG documenting LOC		x	x	x	x	x	x	X (if lead- related AE), else O
Adverse Event assessment/ reporting	х	Х	x	х	х	x	x	х
Protocol Deviation	Х	Х	Х	Х	Х	Х	Х	Х

Legend: X = Required; -- = Not required/ Not applicable; O = Optional; h = hours; d = days; ECG = Electrocardiogram; LOC = Loss of Capture; IPG = Implantable Pulse Generator; PSA = Pacing System Analyzer; PA = Posterior-Anterior

¹Clock starts after end of Implant procedure, day of implant is day 0 and hour 0 is pocket closure

The follow-up compliance for all successfully implanted subjects is presented in **Table 18**. Follow-up is ongoing.

Visit	Visit Window	Expected Number of Visits*	Completed Number (%) of Visits	Completed Number (%) of Visits in Visit Window
Implant	Not applicable	1038	1038 (100%)	1038 (100%)
Predischarge	3-72 hours after implant	1038	1037 (99.9%)	1035 (99.7%)
1 Month Follow-Up	30 ± 7 days after implant	1033	1015 (98.3%)	924 (89.4%)
3 Month Follow-Up	91 ± 14 days after implant	1018	1000 (98.2%)	916 (90.0%)
12 Month Follow-Up	365 ± 45 days after implant	979	948 (96.8%)	912 (93.2%)
* Expected number of visits based on the number of subjects actively followed at the time of the opening of the visit window.				

Table 18: Follow-Up Visit Compliance (*N* = 1038 Implanted Subjects)

3. Clinical Endpoints

SAFETY ENDPOINTS

With regard to safety, the following endpoints were evaluated for the INGEVITY Leads, to satisfy worldwide regulatory requirements.

- Safety Endpoint 1: Lead-related Complication-Free Rate from Implant through Three Months Post-Implant
- Safety Endpoint 2: Lead-related Complication-Free Rate from Three Months Post-Implant through Twelve Months Post-Implant
- Safety Endpoint 3: Hazard of Lead-Related Complications Over Time

Lead-related complications are defined as lead-related adverse events resulting in permanent loss of pacing therapy, invasive intervention, injury or death. Leadrelated adverse events include, but are not limited to the following, based on the Advamed Industry Guidance for Uniform Reporting of Clinical Performance of Cardiac Rhythm Management of Pulse Generators and Leads, and in accordance with the FDA Guidance:

- Cardiac perforation requiring surgical intervention
- Cardiac perforation not requiring surgical intervention
- Conductor fracture/helix damage
- Lead dislodgment
- Failure to capture
- Oversensing
- Failure to sense (undersensing)
- Insulation breach
- Abnormal pacing impedance
- Extracardiac stimulation

Lead-related complications associated with attempted INGEVITY Lead implants counted toward the safety endpoints. Lead-related adverse events that are not a complication counted as a complication if intravenous (IV) drug therapy was necessary to treat the event. IV drug therapy that occured concomitant but unrelated to the lead-related adverse event did not count as a lead-related complication. Complications involving an INGEVITY lead that occurred as a result of a procedure unrelated to that INGEVITY lead did not count toward this safety endpoint. Two examples of this scenario are 1) an INGEVITY lead dislodgment that resulted from an ablation procedure and 2) an RV INGEVITY lead dislodgment that resulted from a repositioning of an RA lead (INGEVITY or market-released).

EFFECTIVENESS ENDPOINTS

With regard to effectiveness, the following endpoints were evaluated for the INGEVITY Leads. These endpoints were analyzed separately by lead fixation type and chamber.

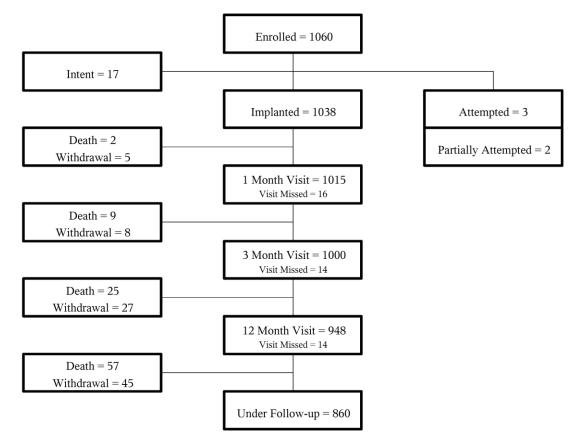
- Effectiveness Endpoint 1: Pacing Threshold at 0.5 ms pulse width at Three Months Post-Implant
- Effectiveness Endpoint 2: Sensed Amplitude at Three Months Post-Implant
- Effectiveness Endpoint 3: Pacing Impedance at Three Months Post-Implant

SUCCESS/FAILURE CRITERIA

With regard to success/failure criteria, the study was required to pass Safety Endpoints 1, 2 and 3 and Effectivenss Endpoints 1, 2 and 3.

B. Accountability of PMA Cohort

At the time of database lock, a total of 1060 subjects were enrolled in the PMA study at 77 at 77 centers, including 603 (56.9%) enrollments at 43 centers in the US and 457 (43.1%) (43.1%) enrollments at 34 centers outside of the US., as shown in


Table 19.

Country	Number (%) of Centers	Number (%) of Subjects
United States	43 (55.8%)	603 (56.9%)
Spain	4 (5.2%)	88 (8.3%)
France	2 (2.6%)	57 (5.4%)
Austria	3 (3.9%)	45 (4.2%)
United Kingdom	3 (3.9%)	39 (3.7%)
Germany	4 (5.2%)	37 (3.5%)
Portugal	2 (2.6%)	32 (3.0%)
Denmark	2 (2.6%)	26 (2.5%)
Malaysia	2 (2.6%)	25 (2.4%)
Belgium	2 (2.6%)	22 (2.1%)
Italy	1 (1.3%)	21 (2.0%)
Canada	3 (3.9%)	20 (1.9%)
Sweden	2 (2.6%)	16 (1.5%)
Hong Kong	1 (1.3%)	11 (1.0%)
Thailand	1 (1.3%)	10 (0.9%)
Australia	2 (2.6%)	8 (0.8%)
Total	77	1060

Table 19: Enrollment Numbers by Country (*N* = 1060 Enrolled Subjects)

Of the 1060 enrolled subjects, 1038 were successfully implanted with the INGEVITY leads. Subjects were allowed to contribute both a right atrial and a right ventricular lead to the endpoint analyses. There were 563 subjects that contributed both a right atrial lead and a right ventricular lead to the endpoint analyses, and 473 subjects that contributed one lead to the analysis, either a right atrial or a right ventricular lead. **Figure 6** shows the disposition of subjects in the study. A subject could miss a

follow-up visit, and still contribute data at a subsequent follow-up visit. 91% (962) of patients were under follow-up and therefore available for analysis at the 12 month post-operative visit.

Figure 6: Subject Disposition

The last 12-month follow-up visit was performed in November 2014. Results include any visit or event that occurred on or before February 17, 2016. This dataset represents the data submitted in support of the PMA; however, subject follow-up continued beyond this date, with subjects and leads followed for a median of 31 and 32 months, respectively.

DATA CONTRIBUTING TO ENDPOINTS

Of the 1060 enrolled subjects, 1599 leads in 1036 subjects were eligible to contribute to endpoint analyses. To be eligible for endpoint analysis the lead must have been the final lead implanted or attempted in a chamber during the intitial implantation procedure. Each patient could contribute up to two leads, one per chamber. **Table 20** summarizes the data contributing to each of the endpoints.

	ary of Data Contributing to Stud	<u>, nubounte</u>	
		Included in Endpoint Analysis	
Endpoint	Description	Patients	Leads
Safety Endpoint 1	Lead-Related Complcation-Free Rate through 3 months	1036 (100%)	1599 (100%)
Safety Endpoint 2	Lead-Related Complcation-Free Rate from 3 months through 12 months	1009 (97%)	1545 (97%)
Safety Endpoint 3	Weibull Shape Parameter for Lead- Related Complications	1036 (100%)	1599 (100%)
Effectiveness Endpoint 1	Pacing Threshold @ 0.5 ms at 3 months	982 (95%)	1482 (93%)
Effectiveness Endpoint 2 (RA)	Sensed Amplitude at 3 months (RA)	521 (93%)	521 (93%)
Effectiveness Endpoint 2 (RV)	Sensed Amplitude at 3 months (RV)	914 (88%)	914 (88%)
Effectiveness Endpoint 3	Pacing Impedance at 3 months	995 (96%)	1526 (95%)

Table 20: Summary of Data Contributing to Study Endpoints

Statistical analyses were performed and determined that the missing/excluded data were highly unlikely to affect the conclusions from the study.

C. Study Population Demographics and Baseline Parameters

Although the study was performed globally, the demographics of the study population are typical for a pace/sense lead study performed in the US.

Baseline characteristics, including subject demographics and the primary indication for implant for successfully randomized subjects are summarized in **Table 21** and **Table 22**.

	u u		Implanted or Attempted Subjects	
Characteristic	Measurement	All Enrolled Subjects (N=1060)	Pacemaker (N=1006)	CRT-P (N=35)
Pulse Generator [N (%)]	Single Chamber Pacemaker	176 (17)	176 (17)	0 (0)
	Dual Chamber Pacemaker	830 (78)	830 (83)	0 (0)
	CRT-P	35 (3)	0 (0)	35 (100)
	No Device	19 (2)	0 (0)	0 (0)
Age at Implant (years)	N	1060	1006	35
	Mean ± SD	74.3 ± 10.6	74.3 ± 10.5	74.5 ± 13.4
	Range	23.0 - 98.0	23.0 - 98.0	24.0 - 88.0
Gender [N (%)]	Male	582 (55)	554 (55)	20 (57)
	Female	478 (45)	452 (45)	15 (43)

Table 21: INGEVITY Subject Demographics

			Implanted o Subj	
Characteristic	Measurement	All Enrolled Subjects (N=1060)	Pacemaker (N=1006)	CRT-P (N=35)
Race [N (%)]	Caucasian	865 (89)	816 (89)	31 (100)
	Asian	46 (5)	46 (5)	0 (0)
	Black, of African heritage	31 (3)	30 (3)	0 (0)
	Hispanic or Latino	13 (1)	13 (1)	0 (0)
	Not disclosed	4 (0)	4 (0)	0 (0)
	Other	10(1)	10(1)	0 (0)
NYHA Class [N (%)]	Ι	138 (37)	136 (40)	1 (3)
	П	149 (40)	137 (41)	12 (39)
	III	44 (12)	27 (8)	16 (52)
	IV	3 (1)	1 (0)	2 (6)
	No-HF Subject	39 (10)	36 (11)	0 (0)
LVEF (%)	N	812	765	34
	Mean ± SD	57.4 ± 10.4	58.6 ± 8.9	31.8 ± 10.2
	Range	15.0 - 85.0	20.0 - 85.0	15.0 - 55.0
QRS Duration (ms)	N	957	908	34
	Mean ± SD	111 ± 28	110 ± 28	140 ± 29
	Range	55 - 261	55 - 261	85 - 202
Body Mass Index (kg/m ²)	N	1052	1000	35
	Mean ± SD	28.5 ± 6.5	28.5 ± 6.4	29.2 ± 5.4
	Range	10.7 - 105.3	10.7 - 105.3	19.4 - 43.9
Body Surface Area (m ²)	N	1052	1000	35
	Mean ± SD	1.9 ± 0.3	1.9 ± 0.3	2.0 ± 0.3
	Range	1.2 - 3.1	1.2 - 3.1	1.4 - 2.7
Medications* [N (%)]	ACE Inhibitor	354 (36)	332 (36)	17 (49)
	Angiotensin Receptor Blocker	225 (23)	214 (23)	9 (26)
	ACE Inhibitor and/or Angiotensin Receptor Blocker	567 (58)	534 (57)	26 (74)
	Antiarrhythmic	131 (13)	122 (13)	4 (11)
	Anticoagulant	372 (38)	348 (37)	18 (51)
	Antiplatelet	454 (46)	424 (46)	22 (63)
	Diuretics	461 (47)	429 (46)	24 (69)
	Beta Blockers	373 (38)	341 (37)	29 (83)

			Implanted or Attempte Subjects	
Characteristic	Measurement	All Enrolled Subjects (N=1060)	Pacemaker (N=1006)	CRT-P (N=35)
	Sodium Channel Blocker	9 (1)	9 (1)	0 (0)
	Potassium Channel Blockers	10(1)	10(1)	0 (0)
	Calcium Channel Blockers	305 (31)	298 (32)	4 (11)
	Other Meds	486 (50)	460 (50)	20 (57)
Etiology [N (%)]	No Disease (e.g. age related)	839 (79)	820 (82)	5 (14)
	Ischemic Cardiomyopathy	113 (11)	103 (10)	9 (26)
	Valvular Cardiomyopathy	39 (4)	35 (3)	4 (11)
	Idiopathic Cardiomyopathy	37 (3)	21 (2)	15 (43)
	Congenital Heart Disease	16 (2)	16 (2)	0 (0)
	Hypertrophic Cardiomyopathy	14 (1)	11 (1)	2 (6)
Atrial Arrhythmia History* [N (%)]	Paroxysmal Atrial Fibrillation	277 (25)	264 (25)	8 (21)
	Permanant Atrial Fibrillation	107 (10)	104 (10)	3 (8)
	Atrial Tachycardia/Flutter	102 (9)	92 (9)	7 (18)
	Persistent Atrial Fibrillation	55 (5)	49 (5)	4 (10)
	None	560 (51)	534 (51)	17 (44)
Brady Arrhythmia History* [N (%)]	Sinus Node Dysfunction	475 (28)	464 (29)	2 (4)
	Bradycardia	383 (23)	372 (23)	7 (15)
	2nd Degree AV Block - Intermittent	137 (8)	131 (8)	5 (11)
	1st Degree AV Block	122 (7)	116 (7)	6 (13)
	3rd Degree AV Block - Intermittent	113 (7)	108 (7)	2 (4)
	3rd Degree AV Block - Permanent	107 (6)	103 (6)	2 (4)
	Chronotropic Incompetance	46 (3)	46 (3)	0 (0)
	2nd Degree AV Block - Permanent	43 (3)	43 (3)	0 (0)
	Sinus Arrest	43 (3)	43 (3)	0 (0)
	Other	171 (10)	157 (10)	9 (20)
	None	50 (3)	36 (2)	13 (28)
Associated Diseases and Risk Factors* [N (%)]	Hypertension	805 (77)	764 (77)	27 (77)
	Diabetes	332 (32)	319 (32)	10 (29)
	Renal Disease	135 (13)	127 (13)	5 (14)
	Chronic Pulmonary Disease	104 (10)	98 (10)	5 (14)

			Implanted or Attempted Subjects	
Characteristic	Measurement	All Enrolled Subjects (N=1060)	Pacemaker (N=1006)	CRT-P (N=35)
	Other	414 (39)	398 (40)	13 (37)
	None	126 (12)	119 (12)	5 (14)
* Subjects may contribute to more than one category				

Table 22: Primary CRT-P and Pacemaker Indications (N = 35 CRT-P Subjects and N=1006 Pacemaker Subjects)

Primary Indication	Number of Subjects
Primary CRT-P Indication	
Severe Systolic Heart Failure	22 (62.9%)
Obstructive Hypertrophic Cardiomyopathy	1 (2.9%)
Other	12 (34.3%)
Primary Brady Indication	
Sinus Node Dysfunction	440 (43.7%)
3rd Degree AV Block	195 (19.4%)
2nd Degree AV Block	139 (13.8%)
Bradycardia, not otherwise specified	51 (5.1%)
Other Block (i.e. Chronic Bifascicular Block)	45 (4.5%)
Tachycardia/Bradycardia Syndrome	43 (4.3%)
Atrial Fibrillation/Flutter with Slow Ventricular Response	42 (4.2%)
1st Degree AV Block	28 (2.8%)
Neurocardiogenic Syncope	8 (0.8%)
Carotid Sinus Syndrome	5 (0.5%)
Chronotropic Incompetence	5 (0.5%)
Other AV Nodal Block	2 (0.2%)
Other	3 (0.3%)
Total	1041

D. <u>Safety and Effectiveness Results – INGEVITY</u>

1. Safety Results

The analysis of safety was based on the evaluation of:

- a) key safety outcomes (Safety Endpoints 1, 2 and 3) among 1599 leads eligible for endpoint analysis;
- b) adverse events among 1041 patients implanted or attempted with at least one INGEVITY lead; and
- c) deaths among 1060 enrolled patients.

To be eligible for endpoint analysis the lead must have been the final lead implanted or attempted in a chamber during the intitial implantation procedure. Each patient could contribute up to two leads, one per chamber. The available timeframe of the analysis is discussed under each endpoint below. The key safety outcomes for this study are presented below in **Tables 23** to **25**. Adverse events (adverse effects) and deaths are reported in **Tables 26** and **27**.

All three safety endpoints were met and are described in detail later in this section.

SAFETY ENDPOINT 1 – LEAD-RELATED COMPLICATION-FREE RATE FROM 0 TO 3 MONTHS

The analysis of Safety Endpoint 1 was based on the full cohort of 1599 leads eligible for endpoint analysis. Safety of the INGEVITY lead was evaluated by the lead-related complication-free rate (CFR) from lead implant through the 3-month post-implant follow-ups, with a performance goal of >91.4%. The CFR from 0 through 3 months for all INGEVITY leads was 98.4%, with a one-sided 95% lower confidence limit of 97.7% (see **Figure 7** and **Table 23**).

Figure 7: Safety Endpoint 1 Results – Complication-Free Rate from 0 to 3 Months

The results were further analyzed by lead cohort (see **Table 23**).

Group	Leads at Risk 1599	Leads with a Lead-Related Complication 26	Lead-Related Complication Free Rate 98.4%	95% One- Sided Lower Confidence Limit 97.7%
- Lead Cohort 1: RV Active Fixation	828	12	98.5%	97.7%
- Lead Cohort 2: RA Active Fixation	442	7	98.4%	97.0%
- Lead Cohort 3: RA/RV Passive Fixation	329	7	97.9%	96.1%

Table 23: Safety Endpoint 1 Results by Lead Cohort – INGEVITY Lead-Related Complication-Free Rate from 0 to 3 Months

Since the lower confidence limit was greater than the performance goal of 91.4% for all groups, the data support the safety of the INGEVITY lead through the 3-month post-implant period.

SAFETY ENDPOINT 2 - LEAD-RELATED COMPLICATION-FREE RATE FROM THREE MONTHS POST-IMPLANT THROUGH TWELVE MONTHS POST-IMPLANT.

The analysis of Safety Endpoint 2 was based on the cohort of 1545 leads eligible for endpoint analysis that also achieved three months of follow-up. Safety of the INGEVITY lead was evaluated by the lead-related complication-free rate (CFR) from 3 months post-implant through 12 months post-implant, with a performance goal of >94%. The CFR from 3 through 12 months for all INGEVTIY leads was 99.7%, with a one-sided 95% lower confidence limit of 99.4 % (see **Figure 8** and **Table 24**).

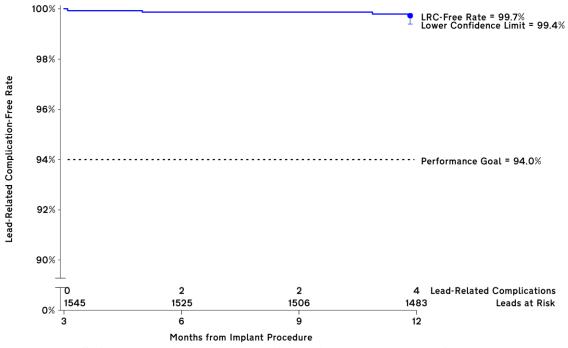


Figure 8: Safety Endpoint 2 Results – Complication-Free Rate from 3 through 12 Months

The results were further analyzed by lead cohort (see Table 24).

Table 24: Safety Endpoint 2 Results by Lead Cohort – INGEVITY Lead-Related
Complication-Free Rate from 3 through 12 Months

Group	Leads at Risk	Leads with a Lead-Related Complication	Lead-Related Complication Free Rate	95% One- Sided Lower Confidence Limit
All Leads	1545	4	99.7%	99.4%
- Lead Cohort 1: RV Active Fixation	804	4	99.5%	98.8%
- Lead Cohort 2: RA Active Fixation	424	0	100.0%	100.0%
- Lead Cohort 3: RA/RV Passive Fixation	317	0	100.0%	100.0%

Since the lower confidence limit was greater than the performance goal of 94% for all groups, the data support the safety of the INGEVITY lead through the 12-month post-implant period.

SAFETY ENDPOINT 3: HAZARD OF LEAD-RELATED COMPLICATIONS OVER TIME

The analysis of Safety Endpoint 3 was based on the cohort of 1599 leads eligible for endpoint analysis. The hazard of lead-related complications from implant through the entire follow-up period was analyzed by Weibull regression analysis. A Weibull shape greater than one (>1), equal to one (=1) and less than one (<1) indicates accelerating, constant, and decelerating hazard over time, respectively.

The performance goal for this endpoint is a Weibull shape less than one (<1), indicative of a decelerating hazard. The exact follow-up time in the post-implant period for each lead was included in the analysis.

The hazard rate of lead-related complications has been significantly decreasing with time (i.e., decelerating), as evidenced by the Weibull shape parameter equal to 0.23 with a corresponding one-sided 95% upper confidence limit equal to 0.30 (see **Figure 9** and **Table 25**). The figure presents the smooth modeled Weibull hazard resulting from the Weibull regression analysis overlayed on top of the raw observed lead-related complication hazard data.

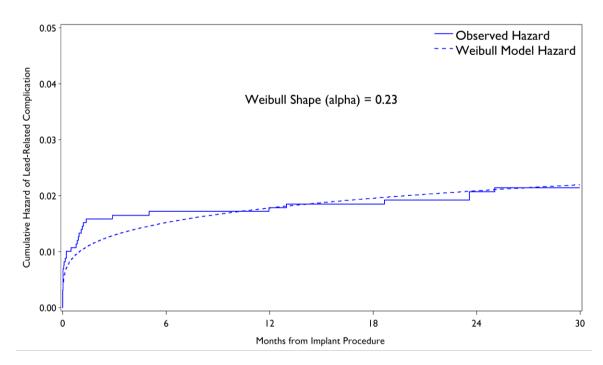


Figure 9: Safety Endpoint 3 Results – Hazard of Lead-related Complications Over Time

The results were further analyzed by lead cohort (see Table 25).

Table 25: Safety Endpoint 3 Results by Lead Cohort – Hazard of Lead-related	l
Complications Over Time	

Group	Weibull Shape Parameter (Alpha)	95% One-Sided Upper Confidence Limit
All Leads	0.23	0.30
- Lead Cohort 1: RV Active Fixation	0.24	0.35
- Lead Cohort 2: RA Active Fixation	0.32	0.54
- Lead Cohort 3: RA/RV Passive Fixation	0.15	0.28

Since the hazard of lead-related complications decelerated over the course of the follow-up period, the data support the safety of the INGEVITY lead.

Adverse effects that occurred in the PMA clinical study – INGEVITY

There have been no reported unanticipated adverse device effects in the study as of February 17, 2016. Of the 1041 implanted or attempted subjects, 92.2% were free from adverse events related to the implant procedure; 95.4% and 97.7% were free from adverse events related to the INGEVITY RA and RV leads, respectively.

Table 26 provides a summary of all Adverse Events reported in the INGEVITYstudy. See Section XIII.B. Summary of the Lead-Related Adverse Event Data**Collected Across the INGEVITY and SAMURAI Studies** for a summary ofadverse events related to the INGEVITY lead.

			Classification					
	T	Total	Com	plication	Observation			
Relationship	Events	N (%)	Events	N (%)	Events	N (%)		
RA Lead - INGEVITY- related (N at risk = 564)	27	26 (4.6%)	14	14 (2.5%)	13	12 (2.1%)		
RV Lead - INGEVITY- related (N at risk = 1041)	31	24 (2.3%)	23	16 (1.5%)	8	8 (0.8%)		
RA Lead - Other (N at risk = 858)	16	15 (1.7%)	10	10 (1.2%)	6	6 (0.7%)		
RV Lead - Other (N at risk = 1041)	1	1 (0.1%)	1	1 (0.1%)	0	0 (0.0%)		
LV Lead (N at risk = 47)	9	8 (17.0%)	1	1 (2.1%)	8	7 (14.9%)		
PG (N at risk = 1041)	47	41 (3.9%)	9	8 (0.8%)	38	33 (3.2%)		
Procedure (N at risk = 1041)	92	81 (7.8%)	28	27 (2.6%)	64	57 (5.5%)		
Cardiovascular - HF (N at risk = 1041)	237	140 (13.4%)	148	95 (9.1%)	89	72 (6.9%)		
Cardiovascular - Non-HF (N at risk = 1041)	1046	528 (50.7%)	217	166 (15.9%)	829	462 (44.4%)		
Non-cardiovascular (N at risk = 1041)	1783	542 (52.1%)	666	342 (32.9%)	1114	418 (40.2%)		
Other (N at risk = 1041)	157	129 (12.4%)	33	32 (3.1%)	124	103 (9.9%)		
Unclassified (N at risk = 1041)	18	17 (1.6%)	0	0 (0.0%)	0	0 (0.0%)		
Total (N at risk = 1041)	3464	789 (75.8%)	1150	497 (47.7%)	2293	673 (64.6%)		

 Table 26: INGEVITY Study Adverse Events Summary

Device Deficiencies Summary

The INGEVITY study and the SAMURAI study each collected device deficiencies. Per ISO 14155, a device deficiency was defined as any inadequacy of a medical device with respect to its identity, quality, durability, reliability, safety or performance. Device deficiencies include malfunctions, misuse or use errors, and inadequate labeling. Per ISO 14155, device deficiencies and adverse events have unique definitions. Therefore, device deficiencies were separately reported from adverse events (see adverse events definition in "Safety Endpoints" on page 2).

Table 27 is a summary of device deficiencies reported in the INGEVITY study, the SAMURAI study, and the two studies combined. Data are presented as the "number of leads with deficiencies/total number of leads implanted and attempted (% of total)." The rate of occurrence of device deficiencies across both studies was 6.4%. Some examples of device deficiencies include poor visibility of suture sleeve, inability to place the lead, and difficulty with helix extension/retraction. The most common device deficiency observed was difficulty with helix extension/retraction, 3.9% for the INGEVITY study, 6.8% for the SAMURAI study, and 4.8% across both studies.

Some of these helix extension/retraction device deficiencies resulted in lead conductor coil breaks, which were consistent with acute overload and not flex fatigue fracture. The rate of occurrence of lead conductor coil breaks was 1.6% for the INGEVITY study, 3.3% for the SAMURAI study, and 2.1% across both studies. In each case of conductor coil break, inadequate functionality of the lead was identified prior to pocket closure and the lead was removed from service. The leads were subsequently determined to have broken coils based on return product analysis. Implant of a lead with a broken coil during the study was prevented by physician attention to two procedural indicators: a) inability to extend or retract the helix per labeling instructions and/or b) unacceptable electrical measurements as determined by testing per labeling, which includes tests using the pacing system analyzer (PSA) and pulse generator.

Analysis of study data did not show an elevated safety risk of death, adverse events, serious adverse events, or complications for subjects with a helix extension/retraction device deficiency or a lead conductor coil break when compared to those who did not experience a helix extension/retraction device deficiency or lead conductor coil break.

To mitigate the extension/retraction device deficiencies, manufacturing improvements were made and the instructions for use were clarified.

Device Deficiency	Leads Included	INGEVITY	SAMURAI	Total of both
All Reported	All	98/1656	54/705	152/2361
		(5.9%)	(7.7%)	(6.4%)
- Active Fixation	Active Fixation	91/1322	54/601	145/1923
		(6.9%)	(9.0%)	(7.5%)
- Passive Fixation	Passive Fixation	7/334	0/104	7/438
		(2.1%)	(0.0%)	(1.6%)
Helix Extension/	Active Fixation	52/1322	41/601	93/1923
Retraction		(3.9%)	(6.8%)	(4.8%)
- Right Atrium	RA Active Fixation	36/475	23/299	59/774
		(7.6%)	(7.7%)	(7.6%)
- Right Ventricle	RV Active Fixation	16/847	18/302	34/1149
-		(1.9%)	(6.0%)	(3.0%)
Coil Breaks*	Active Fixation	21/1322	20/601	41/1923
		(1.6%)	(3.3%)	(2.1%)
- Right Atrium	RA Active Fixation	14/475	11/299	25/774
-		(2.9%)	(3.7%)	(3.2%)
- Right Ventricle	RV Active Fixation	7/847	9/302	16/1149
-		(0.8%)	(3.0%)	(1.4%)

Table 27: Summary of Device Deficiencies for theINGEVITY study and the SAMURAI study

*Coil Breaks are a subset of Helix Extension/Retraction device deficiencies. Note: All implanted and attempted leads are included.

Deaths that occurred in the PMA clinical study – INGEVITY

A total of 93 deaths (8.8% of enrolled subjects) were reported for this study. Classification of deaths by the independent Clinical Events Committee (CEC) is provided in **Table 28**. The four "Unclassified" deaths are pending classification, upon review of further source information.

		Lead-Related Number (%) of Patients		
CEC Adjudicated Primary Organ Cause	Number (%) of Patients	Yes	Unknown	
Non Cardiac	46 (4.3%)	0 (0.0%)	0 (0.0%)	
Cardiac: Pump Failure	6 (0.6%)	0 (0.0%)	0 (0.0%)	
Cardiac: Arrhythmic	1 (0.1%)	0 (0.0%)	0 (0.0%)	
Cardiac: Unknown	1 (0.1%)	0 (0.0%)	0 (0.0%)	
Cardiac: Ischemic	1 (0.1%)	0 (0.0%)	0 (0.0%)	
Cardiac: Other Cardiac	1 (0.1%)	0 (0.0%)	1 (0.1%)	
Unknown	33 (3.1%)	0 (0.0%)	7 (0.7%)	
Unclassified	4 (0.4%)	Not applicable	Not applicable	
Total	93 (8.8%)	0 (0.0%)	8 (0.8%)	

Table 28: Study Deaths (*N* = 1060 Enrolled Subjects)

As shown in **Table 28** above, the CEC did not attribute any deaths as related to the INGEVITY lead. Due to insufficient source information on some deaths, the CEC was unable to classify the relationship of the death to the INGEVITY lead in seven of the 33 deaths where the primary organ cause was unknown. Additionally, there was one death due to other cardiac reasons for which the CEC was unable to classify the relationship of the death to the INGEVITY lead.

2. Effectiveness Results

The analysis of effectiveness was based on evaluation of key effectiveness outcomes (Effectiveness Endpoint 1, 2 and 3) at the 3-month time point as presented in **Tables 29** to **32**. There were 1599 leads eligible for endpoint analysis; exact number of leads for each endpoint are described below.

All three effectiveness endpoints were met and are described in detail later in this section.

EFFECTIVENESS ENDPOINT 1 – PACING THRESHOLD AT 0.5 MS PULSE WIDTH

The analysis of Effectiveness Endpoint 1 was based on 1482 leads that had bipolar pacing threshold measurements at a 0.5 ms pulse width collected at 3 months post-implant.

The mean pacing threshold for a total of 1482 threshold measurements collected at the 3-month follow-up was 0.67 V with an upper one-sided 95% confidence limit of 0.69 V, resulting in a p-value < 0.001 (see **Table 29**). A total of 98.5% of threshold measurements were at or below the performance goal value of 1.5 V. The results were further analyzed by lead cohort (**Table 29**).

Group	Leads	Mean	Standard Deviation	Upper One-sided 95% Confidence Limit	P-value (Perf. Goal = 1.5 V)
All Leads	1482	0.67	0.33	0.69	< 0.001
- Lead Cohort 1: RV Active Fixation	782	0.68	0.33	0.69	< 0.001
- Lead Cohort 2: RA Active Fixation	394	0.75	0.39	0.78	< 0.001
- Lead Cohort 3: RA/RV Passive Fixation	306	0.57	0.19	0.59	< 0.001

Table 29: Effectiveness Endpoint 1 Results by Lead Cohort – Pacing Threshold at0.5 ms Pulse Width

Since for all cases the mean pacing threshold obtained at 3 months post-implant was significantly lower than the performance goal, the data from analysis of all leads, and from analyses of lead fixation type and chamber, support the effectiveness of the INGEVITY lead at 3 months post-implant.

EFFECTIVENESS ENDPOINT 2 – SENSED AMPLITUDE IN THE RA AND RV

The analysis of Effectiveness Endpoint 2 was based on 521 right atrial leads and 914 right ventricular leads that had sensed amplitude measurements collected at 3 months post-implant. Analysis was performed separately for each heart chamber.

A total of 521 atrial sensed amplitude measurements (409 active fixation and 112 passive fixation) were taken at the 3-month follow-up visit and included in the endpoint analysis. The mean sensed amplitude in the right atrium was 4.8 mV with a lower one-sided 95% confidence limit of 4.6 mV, resulting in a p-value < 0.001 (see

Table 30). A total of 914 ventricular sensed amplitude measurements (738 active fixation and 176 passive fixation) were taken at the 3-month follow-up visit and included in the endpoint analysis. The mean sensed amplitude in the right ventricle was 16.5 mV with a lower one-sided 95% confidence limit of 16.2 mV, resulting in a p-value < 0.001 (see **Table 31**). A total of 91.6% of measurements in the atrium and 96.4% of measurements in the ventricle were at or above the performance goals of 1.5 mV and 5.0 mV, respectively.

Table 30: Effectiveness Endpoint 2 Results by Lead Cohort – Sensed Amplitudes in the Right Atrium

Group	Leads	Mean	Standard Deviation	Lower 1-sided 95% Confidence Limit	P-value (Perf Goal = 1.5 mV)
All Right Atrial Leads	521	4.8	2.6	4.6	< 0.001
- Lead Cohort 2: RA Active Fixation	409	4.8	2.7	4.6	< 0.001
- Lead Cohort 3: RA Passive Fixation	112	4.7	2.5	4.3	< 0.001

Table 31: Effectiveness Endpoint 2 Results by Lead Cohort – Sensed Amplitudes in the Right Ventricle

Group	Leads	Mean	Standard Deviation	Lower 1-sided 95% Confidence Limit	P-value (Perf. Goal = 5 mV)
All Right Venricular Leads	914	16.5	6.5	16.2	< 0.001
- Lead Cohort 1: RV Active Fixation	738	16.7	6.5	16.3	< 0.001
- Lead Cohort 3: RV Passive Fixation	176	16.0	6.5	15.2	< 0.001

Since the mean sensed amplitude obtained in both the right atrium and the right ventricle at 3 months post-implant was significantly greater than the respective performance goals, these data also support the effectiveness of the INGEVITY lead at 3 months post-implant.

EFFECTIVENESS ENDPOINT 3 – PACING IMPEDANCE

The analysis of Effectiveness Endpoint 3 was based on 1526 leads that had pacing impedance measurements collected at 3 months post-implant. The mean pacing impedance was 773 Ω with a confidence interval of 766 to 779 Ω , between the performance goals of 300 and 1300 Ω , resulting in a p-value < 0.001 (see **Table 32**). A total of 98.6% measurements were observed to be between the performance goals of 300 and 1300 Ω .

The results were further analyzed by lead cohort (Table 32).

Group	Leads	Mean	Standard Deviation	90% Confidence Interval	P-value (Perf. Goals = 300, 1300 ohms)
All Leads	1526	773	155	(766, 779)	< 0.001
- Lead Cohort 1: RV Active Fixation	795	824	158	(815, 834)	< 0.001
- Lead Cohort 2: RA Active Fixation	420	711	139	(700, 722)	< 0.001
- Lead Cohort 3: RA/RV Passive Fixation	311	724	116	(713, 734)	< 0.001

Table 32: Effectiveness Endpoint 3 Results by Lead Cohort – Pacing Impedance

The overall mean pacing impedance obtained at 3 months post-implant for all groups of leads was within the performance goal range, and supports the effectiveness of the INGEVITY lead at 3 months post-implant.

3. Subgroup Analyses

The following preoperative and device characteristics were evaluated for potential association with outcomes: lead fixation (active versus passive), lead chamber (RA versus RV), geography (US versus international), age (<65 versus \geq 65), sex and pulse generator (pacemaker versus CRT-P). There were no significant differences observed between subgroups for any safety endpoint. Some significant differences were observed between subgroups for effectiveness endpoints; however, in every case in which subgroups differed each subgroup individually passed the endpoints.

4. INGEVITY Clinical Study Conclusion

The safety profile of the INGEVITY leads was assessed using the lead-related complications through the entire study to date. All three safety endpoints were met. The effectiveness profile of the INGEVITY leads was assessed by evaluating pacing thresholds, sensed amplitude, and pacing impedance via three endpoints and in each endpoint the performance goal was met. Therefore, all effectiveness endpoints were met. This indicates that the overall safety and effectiveness profile of the implanted leads is similar to approved devices.

E. <u>Financial Disclosure – INGEVITY</u>

The Financial Disclosure by Clinical Investigators regulation (21 CFR 54) requires applicants who submit a marketing application to include certain information concerning the compensation to, and financial interests and arrangement of, any clinical investigator conducting clinical studies covered by the regulation. The INGEVITY clinical study included 78 Principal Investigators and 183 SubInvestigators. Among the investigators involved in the study, 258 have, by way of a signed Certification of Investigator Financial Interest Form, verified that they have no applicable financial arrangement with Boston Scientific defined in sections 54.2(a), (b), (c), and (f). The information provided does not raise any questions about the reliability of the data.

The INGEVITY clinical study included three Investigators that have disclosable financial arrangements with INGEVITY disclosed under 21 CFR 54.2, not affecting the outcome of the INGEVITY clinical study. The nature of these disclosable financial interests/arrangements as defined in 21 CFR 54.2(a), (b), (c) and (f) is described below:

- Compensation to the investigator for conducting the study where the value could be influenced by the outcome of the study: 0
- Significant payment of other sorts: 3
- Proprietary interest in the product tested held by the investigator: 0
- Significant equity interest held by investigator in sponsor of covered study: 0

The applicant has adequately disclosed the financial interest/arrangements with clinical investigators. Statistical analyses were conducted by FDA to determine whether the financial interests/arrangements had any impact on the clinical study outcome. The information provided does not raise any questions about the reliability of the data.

XII. SUMMARY OF PRIMARY CLINICAL STUDY FOR THE MRI SYSTEM

The applicant performed a clinical study to establish a reasonable assurance of safety and effectiveness of implantation the ImageReady[™] MR Conditional Pacing System (ImageReady System) when subjects receive MRI scans up to 4W/kg Specific Absorption Rate (SAR) without positioning restrictions (MRI scans may occur anywhere on the body) in the US and internationally under IDE G120076. Data from this clinical study were the basis for the PMA approval decision, along with data from the INGEVITY study under IDE G110227 (see Section XI for details). A summary of the clinical study is presented below.

A. Study Design - SAMURAI

Patients were treated between February 14, 2013 and July 25, 2014. Treatment was defined as implanted or attempted with at least one component of the ImageReady

System. The database for this PMA reflected data collected through February 17, 2016 and included 363 patients. There were 41 investigational sites.

The SAMURAI Clinical Study is a prospective, open-label, two-group randomized clinical study with parallel groups conducted at multiple centers globally. Patients were randomized 2:1 to receive a protocol-required MRI scan (MRI Group) or not receive a scan (Control Group).

The study used a Clinical Events Committee (CEC) as a group of independent evaluators to adjudicate safety endpoint events and mortality. A Data Monitoring Committee reviews accumulating safety data to monitor the incidence of adverse events, deaths and other trends that would warrant modification or termination of the study. An Image Artifact Core Lab assessed MR scan image artifact in the torso region in a subset of the MR scan images. The core lab includes leading experts in Radiology and MR imaging.

The study has been conducted through the MRI + 1 month (3 months post-implant) follow-up endpoints to collect data to support US pre-market approval of the ImageReady System. Data continues to be collected via annual follow-ups at 1 through 5 years in support of post-market approval requirements.

Data was required to be collected from subjects upon enrollment into the study, at implant, and pre-discharge. The randomization order for subjects was available within their pre-discharge follow up eCRF. Subjects randomized to the MRI Group had an MR scan (including scans of the chest region), while those in the Control Group had a data collection follow up at 6-9 weeks post-implant, or at least 6 weeks after any required surgical interventions to the ImageReady System (labeled as MRI Visit or Control Group Visit). Subsequently, there was a clinic follow-up at MRI Visit + 1 Week, and another clinic follow-up at MRI Visit + 1 Month.

1. Clinical Inclusion and Exclusion Criteria

Enrollment in the SAMURAI study was limited to patients who met the all of the following inclusion criteria:

- All implanted devices must be the initial (de novo) pacing system implants for the subject and consist only of ImageReady MR Conditional Pacing System pacemaker and lead(s)
- Have a Class I or II indication for implantation of a single or dual chamber pacemaker according to the American College of Cardiology (ACC)/American Heart Association (AHA)/Hearth Rhythm Society (HRS)¹², or European Society of Cardiology (ESC)¹³, as appropriate per geography

¹² Epstein AE, DiMarco JP, Ellenbogen KA, et al. ACC/AHA/HRS 2008 Guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology/ American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002

- Willing and capable of undergoing an MR Scan without intravenous sedation. (Oral sedation may be used, if necessary, based on medical discretion)
- Willing and capable of providing informed consent (which can include the use of a legally authorized representative (LAR) for documentation of informed consent) and participating in all testing/visits associated with this clinical study at an approved clinical study center and at the intervals defined by this protocol
- Age 18 or above, or of legal age to give informed consent specific to state and national law

Patients were <u>not</u> permitted to enroll in the SAMURAI study if they met any of the following exclusion criteria:

- Has or has had any pacing or ICD system implants
- Has any MR Unsafe implants or devices with an unknown MR status, including MR Unsafe sternal wires, neurostimulator, biostimulator, metals or alloys, per labeling of each implant
- Has any MR Conditional implants or devices that impact the ability to conduct this protocol
- Needs or will need another MR scan, other than that required by the SAMURAI Study, within 14 weeks of system implant
- Known or suspected sensitivity to dexamethasone acetate (DXA)
- Mechanical tricuspid heart valve
- Enrolled in any other concurrent study, with the exception of local mandatory governmental registries and observational studies/registries that are not in conflict and do not affect the following:
 - Schedule of procedures for the SAMURAI Study (i.e., should not cause additional or missed visits)
 - SAMURAI Study outcome (i.e., involve medications that could affect pacing thresholds)
 - Conduct of the SAMURAI Study per GCP/ ISO 14155:2011/ 21 CFR 812, local regulations
- Documented permanent or persistent AF¹⁴ where the physician intends to implant a dual chamber pulse generator (single chamber VVIR pulse generators are acceptable)
- Currently on the active heart transplant list

Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices) Developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons Circulation 2008;117: e350-e408.

¹³ Vardas PE, Auricchio A, Blanc J, et al. Guidelines for cardiac pacing and cardiac resynchronization therapy: The Task Force for Cardiac Pacing and Cardiac Resynchronization Therapy of the European Society of Cardiology. Developed in collaboration with the European Heart Rhythm Association. Europace 2007; 9: 959-998.

¹⁴ Calkins H, et al. HRS/EHRA/ECAS expert Consensus Statement on catheter and surgical ablation of atrial fibrillation: recommendations for personnel, policy, procedures and follow-up. Heart Rhythm 4:816-861, 2007

- Documented life expectancy of less than 12 months
- Women of childbearing potential who are or might be pregnant at the time of study enrollment or ImageReady System implant (method of assessment up to physician's discretion)
- Currently requiring dialysis
- 2. Follow-up Schedule

All patients were scheduled to return for follow-up examinations at pre-discharge (3-72 hours post-implant), MRI visit at 6-9 weeks post-implant, MRI visit + 1 week, MRI visit + 1 month, and 12, 24, 36, 48 and 60 months postoperatively. Preoperative and postoperative evaluations and objective parameters measured are listed in the following table. Adverse events and complications were required per the protocol to be reported at all visits.

The key timepoints are shown below in the tables summarizing safety and effectiveness.

Table 55: Data Conection Schedule									
Procedure/ Assessment	Enroll- ment	Implant	Pre- Discharge	MRI Visit	MRI Visit + 1 Week	MRI Visit + 1 Month	1, 2, 3, 4, 5 Yrs	Add'l Visits	Medically necessary MRI
Timeframe *, **, ^Δ : See below table	≤ 30 d prior to Implant	Implant	3-72 h* Clinic Visit	6-9 wks (42-63 d) ^{★ / ∆} Procedure & Clinic Visit	7 ± 3 d** Clinic Visit	30 ± 7 d** Clinic Visit	1 yr: 365±45 d* 2 yr: 730±90 d* 3 yr: 1095±90 d* 4 yr: 1461±90 d* 5 yr: 1826±90 d* Clinic Visit	Not specified	Not specified
ICF Process	Х								
Subject demographics	х								
Physical assessment	x			-					
Medical history	Х								
PSA measurements (pacing threshold(s) @ 0.5ms)		x		-					
PA and lateral CXR and/or fluoro image of lead distal tip fixation			x	-	-				-
Implant Questionnaire		x							
Post MR Scan Questionnaire				X MRI group					о
Cardiovascular Medications (Class I/ III only), including updates and changes	x	x	x	x	x	x	x	ο	0
IPG lead measurements (pacing threshold(s) @ 0.5ms thru MRI Visit + 1 Month)		x	x	x	x	х	x	ο	0

 Table 33: Data Collection Schedule

Procedure/ Assessment	Enroll- ment	Implant	Pre- Discharge	MRI Visit	MRI Visit + 1 Week	MRI Visit + 1 Month	1, 2, 3, 4, 5 Yrs	Add'l Visits	Medically necessary MRI
ECG documenting LOC		х	х	х	х	x		ο	
MR Scan Conditions of Use				х					x
DICOM file from MR scanner			-	X MRI group Include images					O Do not include images
Adverse Events	Х	Х	х	Х	Х	X	Х	х	X
Protocol Deviations	x	x	х	x	х	x	х	x	

Legend: X = Required; -- = Not required/ Not applicable; O = Optional; h = hours; d = days; wk(s) = week(s); yr = year; ECG = Electrocardiogram;

Abbreviations: LOC = Loss of Capture; IPG = Implantable Pulse Generator; PSA = Pacing System Analyzer; PA = Posterior-Anterior; CXR = Chest X=ray; AE = Adverse Event; Add'I = Additional; ICF = Informed Consent Form

*Clock starts after end of Implant procedure, day of implant is day 0 and hour 0 is pocket closure

**Timing based on MRI Visit

^AMust be at least 6 weeks after any required surgical interventions to the ImageReady System

Follow-up Experience

The follow-up visit compliance for all successfully implanted and randomized subjects is presented in

Table 34.

	Table 34: SAMURAI Study Follow up Compliance									
					Randomized Group					
		All S	Subjects (N	=363)	MR	MRI Group (N=229) Control Group (N=118				N=118)
Visit	Visit Window	Expected No. of Visits	Completed Visits	Visit in Window	Expected No. of Visits	Completed Visits	Visit in Window	Expected No. of Visits	Completed Visits	Visit in Window
Implant	Not applicable	350	350 (100.0%)	N/A	229	229 (100.0%)	N/A	118	118 (100.0%)	N/A
Pre- Discharge	3 – 72 hours post- implant	350	350 (100.0%)	347 (99.1%)	229	229 (100.0%)	227 (99.1%)	118	118 (100.0%)	117 (99.2%)
MRI Visit (includes Control Group Visit)	6-9 weeks post- implant	345	335 (97.1%)	300 (87.0%)	227	220 (96.9%)	195 (85.9%)	118	115 (97.5%)	105 (89.0%)

Table 34: SAMURAI Study Follow up Compliance

					Randomized Group					
		All S	ubjects (N	=363)	MR	MRI Group (N=229) Control Group (N=11				N=118)
Visit	Visit Window	Expected No. of Visits	Completed Visits	Visit in Window	Expected No. of Visits	Completed Visits	Visit in Window	Expected No. of Visits	Completed Visits	Visit in Window
MRI + 1 Week	7 ± 3 days post-MRI Visit	344	331 (96.2%)	317 (92.2%)	226	218 (96.5%)	208 (92.0%)	118	112 (94.9%)	109 (92.4%)
MRI + 1 Month	30 ± 7 days post-MRI Visit	341	330 (96.8%)	292 (85.6%)	224	217 (96.9%)	195 (87.1%)	117	113 (96.6%)	97 (82.9%)

3. Clinical Endpoints

SAFETY ENDPOINTS

With regard to safety, the following endpoints were evaluated for the ImageReadyTM MR Conditional Pacing System, to satisfy US regulatory requirements.

- Primary Safety Endpoint: MR Scan-related ImageReady System Complication-Free Rate from MR Scan through the MRI Visit + 1 Month Follow-up. This endpoint will be analyzed for subjects randomized to the MRI group only. For the purpose of this endpoint, a complication will be defined as those detectable adverse events that may only be resolved by invasive intervention or that cause significant loss of device function. Significant loss of device function is defined as any pacemaker that reverts to Safety Core, or any pacemaker rendered unable to deliver pacing. All complications will be adjudicated by an external Clinical Events Committee for relation to the MR scan. MR scan-related complications will be further adjudicated for their relation to the ImageReady System. Complications that are determined to be associated with both MR scan and the ImageReady system will be considered MR scan-related complications and count against this endpoint.
- Secondary Safety Endpoint: System-related Complication-Free Rate from Implant through 3 months post-implant. This endpoint will be analyzed for the entire study cohort. Adverse event data will be collected for the purpose of this endpoint at Implant, Pre-Discharge, MRI Visit, MRI Visit + 1 Week and MRI Visit + 1 Month, as well as any additional follow-ups in this time period. All complications will be adjudicated by an external Clinical Events Committee for relation to the system. Any adverse events that occur within 91 days of initial ImageReady System implant and adjudicated as a systemrelated complication will count against this endpoint.

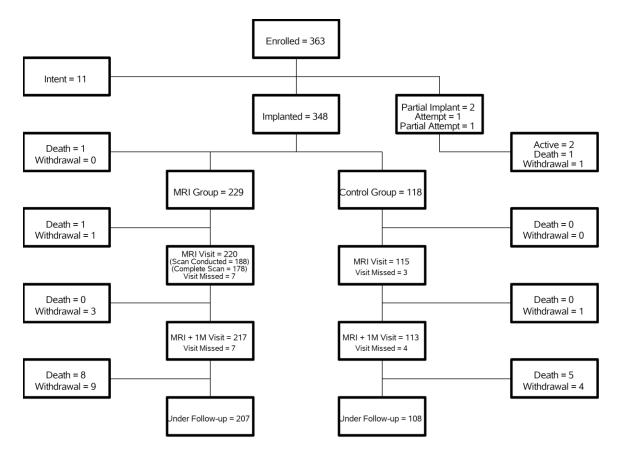
EFFECTIVENESS ENDPOINTS

With regard to effectiveness, the following endpoints were evaluated for the ImageReady System, to satisfy US regulatory requirements.

- Primary Effectiveness Endpoint 1: Change in Pacing Threshold (at 0.5 ms pulse width) pre- and 1-Month post-MR Scan or Control Group Visit compared between the MRI and Control Groups. This will be analyzed at the MRI Visit + 1 Month Follow-up.
- Primary Effectiveness Endpoint 2: Change in Sensed Amplitude pre- and 1-Month post-MR Scan or Control Group Visit compared between the MRI and Control Groups. This will be analyzed at the MRI Visit + 1 Month Follow-up.

Success/Failure Criteria

With regard to success/failure criteria, the study was required to pass all primary and secondary endpoints.


B. Accountability of PMA Cohort

At the time of database lock, a total of 363 subjects were enrolled at 41 centers, including 254 (70%) enrollments at 29 sites in the United States and 109 (30%) enrollments at 12 sites in the international geography, as described in **Table** 35.

Country	Number of Centers with Enrollments	Number of Enrollments
United States	29 (70.7)	254 (70.0)
Israel	4 (9.8)	36 (9.9)
Malaysia	2 (4.9)	32 (8.8)
Singapore	3 (7.3)	21 (5.8)
Hong Kong	1 (2.4)	10 (2.8)
Canada	1 (2.4)	8 (2.2)
Australia	1 (2.4)	2 (0.6)
Total	41	363

 Table 35: SAMURAI Enrollments per country

Of the 363 enrolled subjects, 348 were successfully implanted with the ImageReady[™] MR Conditional Pacing System. 347 subjects were randomized. Among these 347 randomized subjects, 245 (71%) were from the US and 102 (29%) were from outside the US. The study flowchart (Figure 5) accounts for subject withdrawal due to death or exits and denotes missing follow-up visit data. A subject could miss a follow-up visit, and still contribute data at a subsequent follow-up visit.

94% (341) of patients were under follow-up and therefore available for analysis at the MRI+1-month visit.

Figure 10: SAMURAI Subjects disposition

The first subject enrollment occurred on February 14, 2013 and enrollment was completed on July 14, 2014. The last MRI + 1 month visit was performed on October 28, 2014. Results include any visit or event that occurred on or before February 17, 2016. This dataset represents the data submitted in support of the PMA; however, subject follow-up continued beyond this date, with subjects and leads followed for a median of 23 months.

DATA CONTRIBUTING TO ENDPOINTS

There were 363 patients enrolled in the study. Not all patients contributed to study endpoints. **Table 36** summarizes the data contributing to each of the endpoints.

	Complete Datasets Included in Endpoint Analyses N (%)		
Endpoint Description		MRI Subjects N=229	Control Group Subjects N=118
Primary Safety Endpoint	MR Scan-related Complication-Free Rate (CFR) Analyzed at MRI Visit + 1 Month (MRI Group only)	180 (78.6%)	N/A
Secondary Safety Endpoint	System-related Complication-Free Rate (CFR) from Implant through 3 Months Post-Implant	325	(92.6%)
Primary Effectiveness Endpoint 1 ITT	Pacing Threshold (at 0.5 ms pulse width) comparison pre- and 1 Month post-MR Scan or Control Group Visit and between the MRI and Control Groups	203 (88.6%)	101 (85.6%)
Primary Effectiveness Endpoint 1 PP	Pacing Threshold (at 0.5 ms pulse width) comparison pre- and 1 Month post-MR Scan or Control Group Visit and between the MRI and Control Groups	167 (72.9%)	96 (81.4%)
Primary Effectiveness Endpoint 2 ITT (RA)	Sensed Amplitude comparison pre- and 1 Month post-MR Scan or Control Group Visit and between MRI and Control Groups.	167 (81.5%)	83 (76.1%)
Primary Effectiveness Endpoint 2 PP (RA)	Sensed Amplitude comparison pre- and 1 Month post-MR Scan or Control Group Visit and between MRI and Control Groups.	135 (65.9%)	78 (71.6%)
Primary Effectiveness Endpoint 2 ITT (RV)	Sensed Amplitude comparison pre- and 1 Month post-MR Scan or Control Group Visit and between MRI and Control Groups.	181 (80.1%)	96 (81.4%)
Primary Effectiveness Endpoint 2 PP (RV)	Sensed Amplitude comparison pre- and 1 Month post-MR Scan or Control Group Visit and between MRI and Control Groups.	152 (67.3%)	91 (77.1%)

Table 36: Datasets included in Endpoints

Statistical analyses were performed and determined that the missing/excluded data were highly unlikely to affect the conclusions from the study.

C. Study Population Demographics and Baseline Parameters

Although the study was performed globally, the demographics of the study population are typical for a pacemaker MRI system study performed in the US.

Baseline characteristics, including subject demographics and the primary indication for succesfully randomized subjects, are summarized in

Table 37 and Table 38.

			Randomized Group			
Characteristic	Measurement	All Subjects (N=363)	MRI Group (N=229)	Control Group (N=118)	p-value	
Age at Implant (years)	Mean +/- SD (Median) Range	69.4 +/- 12.8 (71.0) 25.0-90.0	69.0 +/- 13.0 (71.0) 29.0-90.0	70.4 +/- 11.9 (72.5) 25.0-90.0	0.34	
Gender [N (%)]	Female	169 (46.6)	102 (44.5)	63 (53.4)	0.12	
	Male	194 (53.4)	127 (55.5)	55 (46.6)		
Race [N (%)]	Caucasian	266 (74.5)	170 (75.6)	85 (72.6)	0.56	
	Asian	71 (19.9)	43 (19.1)	24 (20.5)		
	Black, of African heritage	17 (4.8)	9 (4.0)	8 (6.8)		
	Other	2 (0.6)	2 (0.9)	0 (0.0)		
	Not disclosed	1 (0.3)	1 (0.4)	0 (0.0)		
Body Mass Index (kg/m ²)	Mean +/- SD (Median) Range	28.4 +/- 5.6 (27.2) 16.4-52.3	27.9 +/- 5.2 (27.1) 16.4-44.1	29.3 +/- 6.0 (27.6) 18.9-47.6	0.030	
Body Surface Area (m ²))	Mean +/- SD (Median) Range	1.9 +/- 0.3 (1.9) 1.2-2.8	1.9 +/- 0.3 (1.9) 1.2-2.7	1.9 +/- 0.3 (1.9) 1.2-2.5	0.95	
Atrial Arrhythmia History* [N (%)]	Paroxysmal Atrial Fibrillation	112 (30.9)	73 (31.9)	37 (31.4)	0.92	
	Atrial Tachycardia/Flutt er	52 (14.3)	34 (14.8)	14 (11.9)	0.45	
	Permanent Atrial Fibrillation	20 (5.5)	15 (6.6)	3 (2.5)	0.11	
	Persistent Atrial Fibrillation	18 (5.0)	12 (5.2)	5 (4.2)	0.68	
	Other Atrial Arrhythmia	22 (6.1)	11 (4.8)	10 (8.5)	0.17	
	None	182 (50.1)	110 (48.0)	62 (52.5)	0.43	
Brady Arrhythmia History* [N (%)]	Sinus Node Dysfunction	161 (44.4)	106 (46.3)	50 (42.4)	0.49	
	Sinus Bradycardia	153 (42.1)	101 (44.1)	45 (38.1)	0.29	
	2nd Degree AV Block - Intermittent	40 (11.0)	18 (7.9)	19 (16.1)	0.018	
	3rd Degree AV Block - Intermittent	42 (11.6)	27 (11.8)	10 (8.5)	0.34	

Table 37: SAMURAI Subject Demographics

			Randomized Group				
Characteristic	Measurement	All Subjects (N=363)	MRI Group (N=229)	Control Group (N=118)	p-value		
	1st Degree AV Block	34 (9.4)	25 (10.9)	7 (5.9)	0.13		
	3rd Degree AV Block - Permanent	31 (8.5)	20 (8.7)	9 (7.6)	0.72		
	Chronotropic Incompetence	28 (7.7)	17 (7.4)	11 (9.3)	0.54		
	Sinus Arrest	25 (6.9)	14 (6.1)	9 (7.6)	0.59		
	2nd Degree AV Block - Permanent	21 (5.8)	12 (5.2)	7 (5.9)	0.79		
	Other	87 (24.0)	57 (24.9)	26 (22.0)	0.55		
Associated Diseases and Risk Factors* [N (%)]	Hypertension	262 (72.2)	162 (70.7)	89 (75.4)	0.36		
	Diabetes	81 (22.3)	52 (22.7)	27 (22.9)	0.97		
	Coronary Artery Disease	73 (20.1)	44 (19.2)	27 (22.9)	0.42		
	Renal Disease	41 (11.3)	23 (10.0)	14 (11.9)	0.60		
	Cerebrovascular Disease	35 (9.6)	25 (10.9)	8 (6.8)	0.21		
	Chronic Pulmonary Disease	26 (7.2)	22 (9.6)	3 (2.5)	0.016		
	Peripheral Vascular Disease	20 (5.5)	15 (6.6)	5 (4.2)	0.38		
	Hypertrophic Cardiomyopathy	8 (2.2)	4 (1.7)	4 (3.4)	0.33		
	Ischemic Cardiomyopathy	7 (1.9)	4 (1.7)	2 (1.7)	0.97		
	Idiopathic Conduction System Disease	5 (1.4)	2 (0.9)	3 (2.5)	0.22		
	Idiopathic Cardiomyopathy	6 (1.7)	1 (0.4)	5 (4.2)	0.010		
	Congenital Heart Disease	3 (0.8)	2 (0.9)	1 (0.8)	0.98		
	Valvular Cardiomyopathy	3 (0.8)	1 (0.4)	1 (0.8)	0.63		
	Other	151 (41.6)	100 (43.7)	44 (37.3)	0.25		

		Randomized Group						
Characteristic Measurement A		All Subjects (N=363)	MRI Group (N=229)	Control Group (N=118)	p-value			
	None	50 (13.8)	34 (14.8)	16 (13.6)	0.75			
* Subjects may contribute to more than one category								

	Randomized Group			
Indication	All Patients (N=363)	MRI Group (N=229)	Control Group (N=118)	
Sinus Node Dysfunction	154 (42.4)	100 (43.7)	49 (41.5)	
3rd Degree AV Block	71 (19.6)	45 (19.7)	19 (16.1)	
2nd Degree AV Block	50 (13.8)	25 (10.9)	22 (18.6)	
Other Block (i.e. Chronic Bifascicular Block)	11 (3.0)	6 (2.6)	5 (4.2)	
Neurocardiogenic Syncope	6 (1.7)	4 (1.7)	2 (1.7)	
Carotid Sinus Syndrome	3 (0.8)	2 (0.9)	1 (0.8)	
Other	68 (18.7)	47 (20.5)	20 (16.9)	

D. Safety and Effectiveness Results – SAMURAI

1. Safety Results

The analysis of safety was based on evaluation of:

- a) key safety outcomes of Primary Safety Endpoint among 180 patients and Secondary Safety Endpoint among 325 patients eligible for endpoint analysis;
- b) adverse events among 351 patients implanted or attempted with at least one component of the ImageReady System; and
- c) deaths among 363 enrolled patients.

To be eligible for Primary Safety endpoint analysis the patient must have been randomized to the MRI Group and receive the protocol-required MRI scan. To be eligible for Secondary Safety endpoint analysis the patient must have been implanted or attempted with at least one component of the ImageReady System during the initial implantation procedure. The available timeframe of the analysis is discussed under each endpoint below. The key safety outcomes for this study are presented below in **Tables 39** and **40**. Adverse events (adverse effects) and deaths are reported in **Tables 41** and **42**.

Both safety endpoints were met and are described in detail later in this section.

PRIMARY SAFETY ENDPOINT: MR-RELATED COMPLICATIONS

The analysis of the Primary Safety Endpoint was based on the cohort of 180 patients patients randomized to the MRI Group that received the protocol-required MRI scan. scan. The MR scan-related Complication-free rate (CFR) between the MR Scan and the and the MRI Visit + 1 Month was assessed with a performance goal of 95%. The MR scan MR scan Complication Free Rate was 100% with a 95% one-sided lower confidence confidence interval of 100%. The result is shown in

Table 39 and Figure 11.

 Table 39: Primary Safety Endpoint Results – MR scan-related Complication-Free Rate between the MR scan and 31 days post-MR scan

Group	Subjects at Risk	Subjects with a MR Scan-Related Complication	MRI-Related Complication Free Rate	95% One-Sided Lower Conf Limit
MRI subjects receiving an MR scan	180	0	100.0%	100.0%

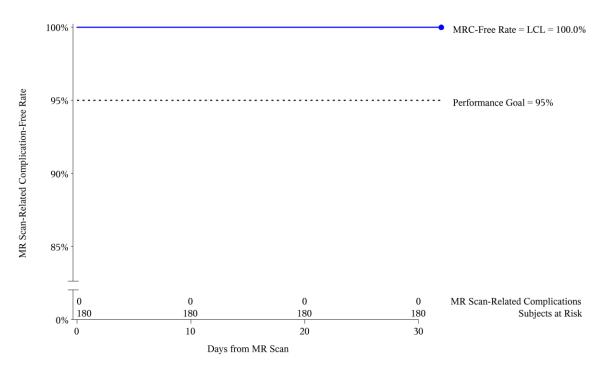
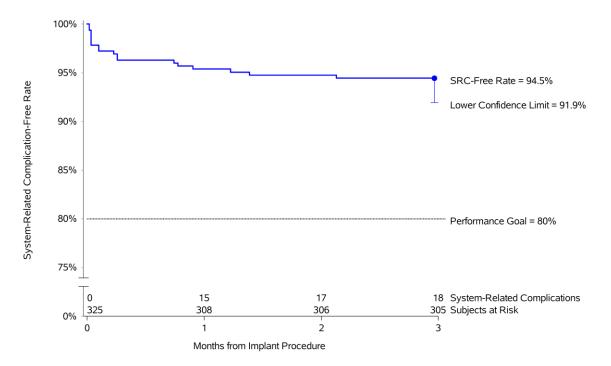


Figure 11: Safety Endpoint 1 Results – MR Scan-Related Complication-Free Rate from 0 to 3 Months


Secondary Safety Endpoint: System-Related Complications

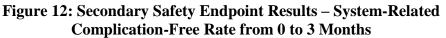

The analysis of the Secondary Safety Endpoint was based on the cohort of 325 patients implanted or attempted with at least one component of the ImageReady System during the initial implantation procedure. The overall safety of the ImageReadyTM MR Conditional Pacing System was assessed by evaluating system-related complications that occur from system implant through 3 months post-implant for subjects in both the MRI and Control groups. The ImageReady system-related CFR from implant through 3 months post-implant performance goal was greater than 80%. The system-related complication free rate was 94.5% with a 95% one-sided lower confidence interval of 91.9%. The result is shown in **Table 40** and **Figure 12**.

 Table 40: Secondary Safety Endpoint Results – System-Complication-Free

 Rate from 0 to 3 Months

Group	Subjects at Risk	Subjects with a System-Related Complication	System- Related Complication Free Rate	95% One- Sided Lower Conf Limit
All implant, partial implant and attempt subjects	325	18	94.5%	91.9%

Adverse Events that occurred in the PMA clinical study - SAMURAI

There have been no reported unanticipated adverse device effects in the study as of February 17, 2016. There were no reported MR-related complications. Of the 351 implanted, partially implanted or attempted subjects, 94.3% were free from adverse events related to the PG, 89.7% were free from adverse events related to the implant procedure; 94.3% and 95.7 were free from adverse events related to the INGEVITY MRI RA and RV leads, respectively.

Table 41 provides a summary of all Adverse Events reported in the SAMURAIstudy. See Section XIII.B. Summary of the Lead-Related Adverse Event Data**Collected Across the INGEVITY and SAMURAI Studies** for a summary ofadverse events related to the INGEVITY lead.

				Classification				
	,	Total	Com	Complication		ervation		
Classification	Events	N (%)	Events	N (%)	Events	N (%)		
Total (N at risk = 351)	964	275 (78.3%)	294	146 (41.6%)	664	237 (67.5%)		
PG (N at risk = 351)	23	20 (5.7%)	1	1 (0.3%)	22	19 (5.4%)		
RA Lead (N at risk = 314)	18	18 (5.7%)	8	8 (2.5%)	10	10 (3.2%)		
RV Lead (N at risk = 347)	16	15 (4.3%)	9	9 (2.6%)	7	7 (2.0%)		
Procedure (N at risk = 351)	46	36 (10.3%)	12	11 (3.1%)	34	28 (8.0%)		
Protocol Testing (N at risk = 351)	5	5 (1.4%)	0	0 (0.0%)	5	5 (1.4%)		
Cardiovascular - HF (N at risk = 351)	41	29 (8.3%)	30	22 (6.3%)	11	10 (2.8%)		
Cardiovascular - Non-HF (N at risk = 351)	325	177 (50.4%)	72	61 (17.4%)	253	147 (41.9%)		
Non-cardiovascular (N at risk = 351)	450	174 (49.6%)	149	77 (21.9%)	301	140 (39.9%)		
Other (N at risk = 351)	34	23 (6.6%)	13	10 (2.8%)	21	14 (4.0%)		
Unclassified (N at risk = 351)	6	6 (1.7%)	0	0 (0.0%)	0	0 (0.0%)		

 Table 41: SAMURAI Study Adverse Events Summary

All reported complications were further adjudicated by the Independent Clinical Events Committee (CEC) for relation to the MR Scan, and relation to the ImageReady System.

All adverse events were reviewed by an independent committee, the SAMURAI Data Monitoring Committee (DMC). During the course of the SAMURAI study, the DMC did not identify any serious risks to subjects.

There were no complications reported related to the protocol required scan; however, 2.8% (5 of 180) of patients experienced an observation related to the

protocol required scan, which were reported under Protocol Testing in the table above. No patients (zero of 48) experienced an adverse event related to a medically necessary MRI.

Deaths that occurred in the PMA clinical study - SAMURAI

As of February 17, 2016, sixteen SAMURAI subjects had died (4.4% of all enrolled subjects). All deaths were reviewed and classified by the CEC. No deaths were attributed to the MRI scan.

Table 42 provides information on Subject Death by Cause. The cause of death described in this table was defined by the SAMURAI CEC.

		MRI-Related		System-Related	
CEC Adjudicated Cause of Death	Classification N (%)	Yes N (%)	Unknown N (%)	Yes N (%)	Unknown N (%)
Non Cardiac	7 (1.9%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Cardiac: Arrhythmic	1 (0.3%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Cardiac: Ischemic	1 (0.3%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Cardiac: Pump Failure	1 (0.3%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Cardiac: Unknown	1 (0.3%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	1 (0.3%)
Unknown	5 (1.4%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Total	16 (4.4%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	1 (0.3%)

Table 42: Study Deaths (*N* = 363 Enrolled Subjects)

The death classified as "Cardiac: Unknown" and "System-Related Unknown" by the CEC was reported by the site as likely related to cardiac arrhythmia leading to cardiogenic shock, not to the pulse generator or pacemaker lead.

Due to insufficient source information on five deaths, the CEC was unable to classify the primary organ cause. None of these five were classified as related to the MRI or the system. One of these five deaths was classified by the site as "Sudden Cardiac Arrest." The subject underwent the implant procedure, but at the time of death, no investigational device had been introduced in the subject's body.

The study DMC monitored subjects' death rate until primary endpoint completion. No overall safety concerns regarding subjects' deaths were raised by the study DMC.

2. Effectiveness Results

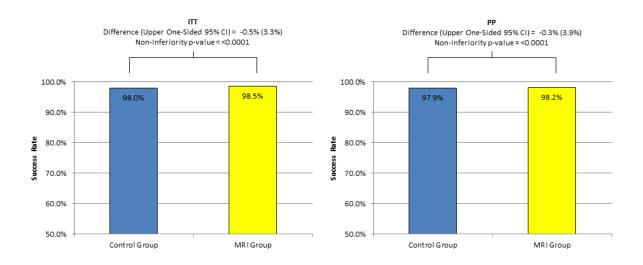
The analysis of effectiveness was based on evaluation of key effectiveness outcomes (Primary Effectiveness Endpoint 1 and 2) of paired measurements at the MRI Visit and MRI Visit + 1 Month follow-up time points as presented in **Tables**

43 and **44**. The 347 randomized patients were eligible for endpoint analysis; exact number of patients for each endpoint are described below.

Both effectiveness endpoints were met and are described in detail later in this section.

<u>PRIMARY EFFECTIVENESS ENDPOINT 1: PRE- VS. 1-MONTH POST-MR SCAN/CONTROL</u> <u>GROUP VISIT PACING THRESHOLD AT 0.5 MS</u>

The analysis of Primary Effectiveness Endpoint 1 was based on 203 MRI group patients and 101 Control Group patients for the Intention to Treat analysis and 167 MRI group patients and 96 Control Group patients for the Per Protocol analysis that had paired bipolar pacing threshold measurements at a 0.5 ms pulse width collected at the MRI and the MRI Visit + 1 Month follow-up.


Chronic effects from lead heating were assessed through increased pacing threshold at the MRI Visit + 1 Month follow-up. Subjects that had an increase in pacing thresholds $\leq 0.5V$ (at 0.5 ms) from pre-MR Scan/Control Group Visit to MRI Visit + 1 Month follow-up were considered a success. A success rate was calculated for the MRI and Control Groups. The hypothesis for that endpoint was that the success rate difference between the Control Group and the MRI Group should be less than 10%.

A total of 101 Control Group subjects and 203 MRI Group subjects had paired threshold measurements and were included in the Intention to Treat (ITT) endpoint analysis. The success rate in the Control group was 98.0% and 98.5% in the MRI group, resulting in a difference of -0.5% and an upper one-sided 95% confidence limit of 3.3%. The Farrington-Manning score test resulted in a p-value < 0.0001.

For the per-protocol (PP) analysis, a total of 96 Control Group subjects and 167 MRI Group subjects had paired threshold measurements and met the inclusion criteria. The success rate in the Control group was 97.9% and in the MRI group was 98.2%, resulting in a difference of -0.3% and an upper one-sided 95% confidence limit of 3.9%. The Farrington-Manning score test resulted in a p-value < 0.0001. Endpoints results are presented in **Table 433** and **Figure 13**.

Table 43: Primary Effectiveness Endpoint 1 Results – Pre- vs. 1-Month Post-MR Scan/Control Group Visit Pacing Threshold at 0.5 ms

Analysis Subgroup	Control Group n/N (%)	MRI Group n/N (%)	Difference Control-MRI (Upper One-Sided 95% CI)	p-value
Intention to Treat (ITT)	99/101 (98.0%)	200/203 (98.5%)	-0.5% (3.3%)	<.0001
Per Protocol (PP)	94/96 (97.9%)	164/167 (98.2%)	-0.3% (3.9%)	<.0001

Figure 13: Primary Effectiveness Endpoint 1: Pacing Threshold Changes (ITT and PP analysis)

<u>PRIMARY EFFECTIVENESS ENDPOINT 2: PRE- VS. 1-MONTH POST-MR SCAN/CONTROL</u> <u>GROUP VISIT SENSED AMPLITUDE</u>

The analysis of Primary Effectiveness Endpoint 2 for right atrial leads was based on 167 MRI group patients and 83 Control Group patients for the Intention to Treat analysis and 135 MRI group patients and 78 Control Group patients for the Per Protocol analysis that had paired sensed amplitude measurements collected at the MRI and the MRI Visit + 1 Month follow-up. The analysis of Primary Effectiveness Endpoint 2 for right ventricular leads was based on 181 MRI group patients and 96 Control Group patients for the Intention to Treat analysis and 152 MRI group patients and 91 Control Group patients for the Per Protocol analysis that had paired sensed amplitude measurements collected at the MRI and the MRI Visit + 1 Month follow-up.

Chronic effects from lead heating were assessed through decreased sensed amplitude at the MRI Visit + 1 Month follow-up. Changes in sensed amplitude pre- and 1-Month post-MR Scan or Control Group Visit were compared between the MRI and Control Groups and analyzed separately by chamber. For atrial sensed amplitudes, a subject was considered a success if the sensed amplitude at the MRI Visit + 1 Month Follow-up remained ≥ 1.0 mV and above 50% of the pre-MR scan/Control Group Visit value. For ventricular sensed amplitudes, a subject was considered a success if the sensed amplitude at the MRI Visit + 1 Month Follow-up remained ≥ 5.0 mV and above 50% of the pre-MR scan/Control Group Visit value. A success rate was calculated for the MRI Group and Control Group.The hypothesis for that endpoint was that the success rate difference between the Control Group and the MRI Group should be less than 10%. For the Right Atrium, a total of 83 Control Group subjects and 167 MRI Group subjects had paired sensed amplitude measurements and were included in the ITT endpoint analysis. The success rate in the Control group was 96.4% and 96.4% in the MRI group, resulting in a difference of -0.0% and an upper one-sided 95% confidence limit of 4.6%. The Farrington-Manning score test resulted in a p-value of 0.0002. Additionally for the Per Protocol analysis, a total of 78 Control Group subjects and 135 MRI Group subjects had paired sensed amplitude measurements and met the inclusion criteria. The success rate in the Control group was 96.2% and 96.3% in the MRI group, resulting in a difference of -0.1% and an upper one-sided 95% confidence limit of 5.0%. The Farrington-Manning score test resulted in a p-value of 0.0006.

For the Right Ventricle, a total of 96 Control Group subjects and 181 MRI Group subjects had paired sensed amplitude measurements and were included in the ITT endpoint analysis. The success rate in the Control group was 96.9% and 96.1% in the MRI group, resulting in a difference of 0.7% (rounded) and an upper one-sided 95% confidence limit of 5.1%. The Farrington-Manning score test resulted in a p-value is 0.0002. Additionally for the Per Protocol analysis, a total of 91 Control Group subjects and 152 MRI Group subjects had paired sensed amplitude measurements and met the inclusion criteria. The success rate in the Control group was 96.7% and 96.7% in the MRI group, resulting in a difference of -0.0% and an upper one-sided 95% confidence limit of 4.7%. The Farrington-Manning score test resulted in a p-value is 0.0002. Endpoint results are presented in **Table 44, Figure 14** and **Figure 15**.

 Table 44: Primary Effectiveness Endpoint 2 Results – Pre- vs. 1-Month Post-MR

 Scan/Control Group Visit Sensed Amplitude

Analysis Subgroup	Chamber	Control Group n/N (%)	MRI Group n/N (%)	Difference Control-MRI (Upper One-Sided 95% CI)	p-value
ITT	Right Atrium	80/83 (96.4%)	161/167 (96.4%)	-0.0% (4.6%)	0.0002
	Right Ventricle	93/96 (96.9%)	174/181 (96.1%)	0.7% (5.1%)	0.0002
Per Protocol	Right Atrium	75/78 (96.2%)	130/135 (96.3%)	-0.1% (5.0%)	0.0006
	Right Ventricle	88/91 (96.7%)	147/152 (96.7%)	-0.0% (4.7%)	0.0002

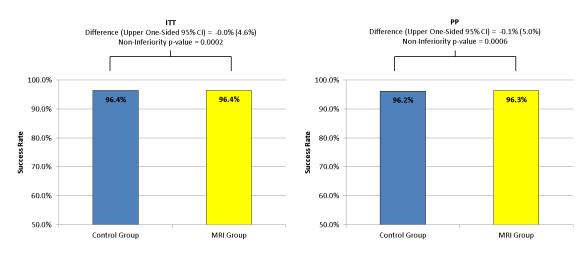


Figure 14: Primary Effectiveness Endpoint 2: RA Sensed Amplitude Changes (ITT and PP analysis)

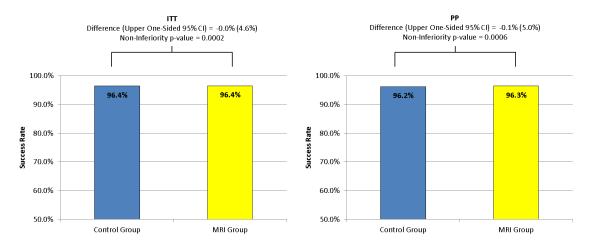


Figure 15: Primary Effectiveness Endpoint 2: RV Sensed Amplitude Changes (ITT and PP analysis)

3. Subgroup Analyses

The following preoperative and device characteristics were evaluated for potential association with outcomes: number of leads (1 versus 2), sex, RA lead fixation (active versus passive), RV lead fixation (active versus passive), geography (US versus international), age (<65 versus \geq 65), BMI (<30 kg/m² versus \geq 30 kg/m²), intermitant second degree AV block, chronic pulmonary disease and idiopathic cardiomyopathy. There were no significant differences observed between subgroups for any endpoint.

4. <u>SAMURAI Clinical Study Conclusion</u>

The safety profile of the ImageReadyTM MR Conditional Pacing System was assessed using the MR-related complication free rate and the system-related complication free rate. Both rates met their respective performance goals.

The effectiveness profile of the ImageReady System was assessed by comparing pacing thresholds and sensed amplitude changes before and one month after the MR scan to assess the chronic effect of lead heating. For both parameters, the performance goal was met.

Passing of both safety and effectiveness endpoints indicates that the overall safety and effectiveness profile of the implanted ImageReady System is similar to approved devices.

F. Financial Disclosure – SAMURAI

The Financial Disclosure by Clinical Investigators regulation (21 CFR 54) requires applicants who submit a marketing application to include certain information concerning the compensation to, and financial interests and arrangement of, any clinical investigator conducting clinical studies covered by the regulation. The SAMURAI clinical study included 41 Principal Investigators and 176 Sub-Investigators. Among the investigators involved in the study, 214 have, by way of a signed Certification of Investigator Financial Interest Form, verified that they have no applicable financial arrangement with Boston Scientific defined in sections 54.2(a), (b), (c), and (f). The information provided does not raise any questions about the reliability of the data.

The SAMURAI clinical study included five Investigators that have disclosable financial arrangements with SAMURAI disclosed under 21 CFR 54.2, not affecting the outcome of the SAMURAI clinical study. The nature of these disclosable financial interests/arrangements as defined in 21 CFR 54.2(a), (b), (c) and (f) is described below:

- Compensation to the investigator for conducting the study where the value could be influenced by the outcome of the study: 0
- Significant payment of other sorts: 5
- Proprietary interest in the product tested held by the investigator: 0
- Significant equity interest held by investigator in sponsor of covered study: 0

The applicant has adequately disclosed the financial interest/arrangements with clinical investigators. Statistical analyses were conducted by FDA to determine whether the financial interests/arrangements had any impact on the clinical study outcome. The information provided does not raise any questions about the reliability of the data.

XIII. SUMMARY OF SUPPLEMENTAL CLINICAL STUDY INFORMATION

A. SAMURAI Study Support of Accolade Devices

The SAMURAI study also supports the safety and effectiveness of the Accolade devices. The ImageReady System consists of different families of pacemakers (Ingenio MRI or Accolade MRI) with the same family of pace/sense leads (INGEVITY MRI). Regardless of the combination of these system components, the system has the same MRI Conditions of Use. A subset of the pacemaker models from the Ingenio MRI family along with the INGEVITY MRI leads were included in the SAMURAI study to confirm the safety and effectiveness of the ImageReady System when subjected to MR scanning according to the labeled Conditions of Use. This clinical study also confirms safety and effectiveness of the ImageReady System with an Accolade MRI pacemaker. Regarding the clinical study of these devices, Accolade MRI pacemakers are equivalent to Ingenio MRI with respect to design, testing, and clinical endpoints.

The design modifications implemented in comparison to the Ingenio family to create the Accolade family are unrelated to MRI compatibility. Test strategies, bench test methods, computer simulations, preclinical studies, and MRI scanner testing applied to the ImageReady System with Accolade MRI pacemakers are fundamentally the same as those used for the ImageReady System with Ingenio MRI pacemakers. Test data and results also demonstrate the ImageReady System provides protection to patients from potential MRI-related harm with a significant safety margin regardless of the pacemaker model.

The data obtained from the SAMURAI Clinical Study are also applicable to Accolade MRI pacemakers because the clinical protocol and MRI-related outcomes of the clinical study would not be impacted by use of Accolade MRI pacemakers based on the following rationale:

The primary safety endpoint of the SAMURAI Clinical Study is MRI scan-related • complication-free rate from MRI scan through the MRI visit + 1 month follow-up. The SAMURAI Clinical Study confirmed in a clinical setting that MRI-related complications do not occur in patients implanted with an ImageReady System when scanned according to the labeled Conditions of Use. The absence of scanrelated complications validates the sufficiency of the broad based non-clinical evaluation performed on Ingenio MRI and subsequently Accolade MRI pacemakers. Boston Scientific's non-clinical evaluation regimen, consistent with ISO/TS 10974, is designed to: a) apply more severe exposure levels than are expected under clinical MRI scanning for each MR field independently, and b) provide monitoring and measurement methods which are more sensitive for detecting device performance anomalies. The combination of severe exposure conditions and stringent performance criteria employed in non-clinical evaluation provides greater opportunity for assessing a wide variety of scenarios with severities beyond what will be found within the limitations of a clinical study.

- The secondary safety endpoint of the SAMURAI study is system-related complication-free rate from implant through 3 months post-implant. This endpoint is not associated with system performance in the MRI environment or MRI scan-related complications. Since the Accolade pacemaker size, shape, and therapy are similar to Ingenio, new pacemaker-related complications are not expected. Since Accolade MRI pacemakers will be paired with the same INGEVITY MRI leads and implanted under standard implant procedures, new lead-related complications are not expected. Differences with Accolade MRI in comparison to Ingenio MRI do not require additional clinical study in regards to this endpoint.
- The primary effectiveness endpoints of the SAMURAI study are pacing threshold and sensed amplitude comparisons pre- and 1 month post-MRI scan. These endpoints are defined to assess lead-related MRI interactions. Since INGEVITY MRI leads will be used with both Ingenio MRI and Accolade MRI pacemakers, differences in Accolade MRI compared to Ingenio MRI do not impact this endpoint.

B. <u>Summary of the Lead-Related Adverse Event Data Collected Across the</u> <u>INGEVITY and SAMURAI Studies</u>

Lead-related adverse data was collected uniformly across the two studies and is presented in totality in **Table 45** below. The median follow-up time for the INGEVITY study was 32 months, and the median follow-up time for the SAMURAI study was 23 months.

The lead-related adverse event profile is within expectations for a pace/sense lead.

Table 45. INOE VITT and SANTORAL Leau-Related Adverse Events						
Adverse Event	Leads Included	INGEVITY	SAMURAI	Total		
Lead-Related Adverse Event	All Leads	67/1599 (4.19%)	33/665 (4.96%)	100/2264 (4.42%)		
- Lead-Related Complication	All Leads	34/1599 (2.13%)	20/665 (3.01%)	54/2264 (2.39%)		
Dislodgment	All Leads	21/1599 (1.31%)	8/665 (1.20%)	29/2264 (1.28%)		
Perforation/Pericardial Effusion	Active Fixation	4/1270 (0.31%)	7/563 (1.24%)	11/1833 (0.60%)		
- Perforation	Active Fixation	0/1270 (0.00%)	7/563 (1.24%)	7/1833 (0.38%)		
- Pericardial Effusion	Active Fixation	4/1270 (0.31%)	0/563 (0.00%)	4/1833 (0.22%)		
Conductor Coil Fracture	All Leads	2/1599 (0.13%)	0/665 (0.00%)	2/2264 (0.09%)		

Table 45: INGEVITY and SAMURAI Lead-Related Adverse Events

As shown in **Table 45** above, two conductor coil fractures occurred in the INGEVITY study. Both events were classified as ventricular lead fractures at the costoclavicular junction, consistent with subclavian crush.

XIV. PANEL MEETING RECOMMENDATIONS AND FDA'S POST-PANEL ACTION

In accordance with the provisions of section 515(c)(3) of the act as amended by the Safe Medical Devices Act of 1990, this PMA was not referred to the Circulatory System Devices Panel, an FDA advisory committee, for review and recommendation because the information in the PMA substantially duplicates information previously reviewed by this panel.

XV. CONCLUSIONS DRAWN FROM PRECLINICAL AND CLINICAL STUDIES

A. Effectiveness Conclusions

The INGEVITY study clinical data demonstrate that the lead performs acceptably. The clinical study met the pre-specified effectiveness endpoints at 3 months of follow-up.

The SAMURAI study clinical data demonstrates that the ImageReady MR Conditional Pacing System performs acceptably while used in the MRI environment. The clinical study met the pre-specified effectiveness endpoints at the MRI + 1 month (3 months post-implant) follow-up.

B. Safety Conclusions

The risks of the device were assessed using nonclinical laboratory and animal studies as well as data collected in clinical studies conducted to support PMA approval as described above.

The results from the clinical study performed on the INGEVITY Active Fixation and Passive Fixation Pace/Sense Leads demonstrate that this device is suitable for long-term implant. The INGEVITY lead-related adverse event rates are comparable to the rates observed for other market-released pace/sense leads. The INGEVITY clinical study met the pre-specified safety endpoints through the reported follow-up.

The results from the ImageReady[™] MR Conditional Pacing System demonstrate that this device is suitable for use in the MR environment. The ImageReady System-related adverse event rates are comparable to the rates observed for other market-released MR Conditional systems. The SAMURAI study met the pre-specified safety endpoints through the MRI + 1 month (3 months post-implant) follow-up.

C. Benefit-Risk Conclusions

The probable benefits of the device are also based on data collected in clinical studies conducted to support PMA approval as described above. The probable benefit of this family of leads may be summarized as follows:

The INGEVITY lead family, including both MRI and non-MRI leads, has a new design that integrates the handling benefits of coaxial lead design with the small size and redundant insulation features of co-radial designed leads. The coils of the INGEVITY leads are designed to provide mathematically-predicted fatigue characteristics. Other design improvements to characteristics such as the insulation, electrode, lead handling, and lead markings have been made in comparison to previous generations of leads. The INGEVITY leads have undergone extensive bench and animal testing to support a determination of safety and effectiveness.

The purpose of the INGEVITY clinical study was to evaluate the safety and effectiveness of INGEVITY leads in humans. As is summarized in this document, the INGEVITY lead study met its pre-specified safety and effectiveness endpoints, demonstrating a reasonable assurance that the lead is both safe and effective.

The probable benefit of the Image Ready System may be summarized as follows:

Boston Scientific's next generation single and dual chamber pacemakers, the Ingenio MRI and Accolade MRI families, and the next generation pace/sense INGEVITY MRI lead family, are designed to mitigate hazards related to exposure in the MR environment.

The INGEVITY MRI Lead family consists of passive fixation and active fixation leads. Together, the Ingenio MRI or Accolade MRI family of pacemakers and the INGEVITY MRI pace/sense leads comprise the implantable portion of the ImageReady[™] MR Conditional Pacing System. The ImageReady System is intended for MR Conditional labeling that allows scanning in First-level Controlled Operating Mode (up to 4 W/kg whole body averaged specific absorption rate (SAR)) and does not require an anatomical isocenter exclusion zone.

The purpose of the SAMURAI clinical study was to confirm the safety, performance, and effectiveness of the ImageReady System in humans when used in the MR environment. The SAMURAI study met its pre-specified safety and effectiveness endpoints, confirming that the ImageReady System is both safe and effective when used in the MR environment according to the Conditions of Use.

In conclusion, given the available information above, the data support that for the above stated indication for use of the devices the probable benefits outweigh the probable risks.

D. Overall Conclusions

The data in this application support the reasonable assurance of safety and effectiveness of the devices when used in accordance with their indications for use. There exists no evidence that the lead-related complication rates, dislodgment rates or perforation/pericardial effusion rates significantly differ by study. Therefore, the INGEVITY lead-related adverse event profile in the two studies is comparable.

Additionally, the INGEVITY lead-related adverse event rates are comparable to the rates observed for other market-released pace/sense leads.

Similar to the conclusions drawn for the INGEVITY and SAMURAI studies separately, the combined INGEVITY and SAMURAI data indicate that the overall safety profile of the INGEVITY Lead is similar to approved pace/sense leads.

The preclinical and clinical studies submitted in the PMA application provide a reasonable assurance that the INGEVITY Active Fixation and Passive Fixation Pace/Sense Leads and the ImageReady[™] MR Conditional Pacing System are safe and effective.

XVI. <u>CDRH DECISION</u>

CDRH issued an approval order on April 25, 2016. The final conditions of approval cited in the approval order are described below.

ODE Lead PMA Post-Approval Study – INGEVITY (lead performance) and SAMURAI (multiple MR exposures): The Office of Device Evaluation (ODE) will have the lead for this clinical study, which was initiated prior to device approval. The study will include two arms 1) the long-term Ingevity lead safety arm and 2) the multiple MRI scan arm.

- 1. The long-term Ingevity lead safety arm (INGEVITY study) will consist of:
 - a. a prospective, multi-center, global, nonrandomized clinical study to characterize chronic lead performance following device implant, as well as a robust process to retrospectively collect implant data for each study subject;
 - b. a post-approval study duration of at least 5 years;
 - c. a sample size of 1599 leads implanted in 1036 patients that were used for premarket endpoint analyses;
 - d. a primary safety endpoint that results in a 95% one-sided lower pointwise confidence limit of the complication-free rate via log-log methodology for all eligible leads will be greater than performance goal of 92.5%;
 - e. post-approval study status reporting every six months;
 - f. inclusion of full list of complications, failure modes, and definition of terms within the study protocol; and
 - g. collection of secondary data including implant data, demographic information, all reported adverse device effects, electrical performance, returned product analysis, extraction experience, and other parameters of interest.
- 2. The multiple MRI scan arm (SAMURAI study) will consist of:
 - a. a total of 351 patients implanted with an ImageReady system that were used for premarket endpoint analyses;

- b. a primary safety endpoint that results in 95% one-sided lower pointwise confidence limit of the complication-free rate via log-log methodology will be greater than the performance goal of 95%; and
- c. the characterization of the cumulative change in pacing capture thresholds for subjects with multiple (2 or more) MRI scans with an adequate sample size to reach 75 patients with multiple MRI scans.

The applicant's manufacturing facilities have been inspected and found to be in compliance with the device Quality System (QS) regulation (21 CFR 820).

XVII. APPROVAL SPECIFICATIONS

Directions for use: See device labeling.

Hazards to Health from Use of the Device: See Indications, Contraindications, Warnings, Precautions, and Adverse Events in the device labeling.

Post-approval Requirements and Restrictions: See approval order.