Dear Daniel Ziskind:

We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties. We remind you, however, that device labeling must be truthful and not misleading.

If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations, Title 21, Parts 800 to 898. In addition, FDA may publish further announcements concerning your device in the Federal Register.

Please be advised that FDA's issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal statutes and regulations administered by other Federal agencies. You must comply with all the Act's requirements, including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Part 801); medical device reporting (reporting of medical device-related adverse events) (21 CFR 803); good manufacturing practice requirements as set forth in the quality systems (QS) regulation (21 CFR Part 820);
and if applicable, the electronic product radiation control provisions (Sections 531-542 of the Act); 21 CFR 1000-1050.

Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21 CFR Part 807.97). For questions regarding the reporting of adverse events under the MDR regulation (21 CFR Part 803), please go to http://www.fda.gov/MedicalDevices/Safety/ReportaProblem/default.htm for the CDRH's Office of Surveillance and Biometrics/Division of Postmarket Surveillance.

For comprehensive regulatory information about medical devices and radiation-emitting products, including information about labeling regulations, please see Device Advice (https://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/) and CDRH Learn (http://www.fda.gov/Training/CDRHLearn). Additionally, you may contact the Division of Industry and Consumer Education (DICE) to ask a question about a specific regulatory topic. See the DICE website (http://www.fda.gov/DICE) for more information or contact DICE by email (DICE@fda.hhs.gov) or phone (1-800-638-2041 or 301-796-7100).

Sincerely,

Mark N. Melkerson -S

Mark N. Melkerson
Director
Division of Orthopedic Devices
Office of Device Evaluation
Center for Devices and
Radiological Health

Enclosure
Device Name

7D Surgical System

Indications for Use (Describe)

The 7D Surgical System is a stereotaxic image guidance system intended for the spatial positioning and orientation of neurosurgical instruments used by surgeons. The system is also intended to be used as the primary surgical luminaire during image guided surgery. The device is indicated for posterior approach spine surgery where reference to a rigid anatomical structure can be identified.

Type of Use (Select one or both, as applicable)

- Prescription Use (Part 21 CFR 801 Subpart D)
- Over-The-Counter Use (21 CFR 801 Subpart C)

CONTINUE ON A SEPARATE PAGE IF NEEDED.

This section applies only to requirements of the Paperwork Reduction Act of 1995.

DO NOT SEND YOUR COMPLETED FORM TO THE PRA STAFF EMAIL ADDRESS BELOW.

The burden time for this collection of information is estimated to average 79 hours per response, including the time to review instructions, search existing data sources, gather and maintain the data needed and complete and review the collection of information. Send comments regarding this burden estimate or any other aspect of this information collection, including suggestions for reducing this burden, to:

Department of Health and Human Services
Food and Drug Administration
Office of Chief Information Officer
Paperwork Reduction Act (PRA) Staff
PRASStaff@fda.hhs.gov

“An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB number.”
510(k) Summary of Safety and Effectiveness
7D Surgical System

This summary of safety and effectiveness information is submitted in accordance with 21CFR §807.92.

1. **Submitter’s name, address, telephone number, contact person.**

 7D Surgical, Inc.
 60 Scarsdale Road, Unit 118
 Toronto, ON, M3B 2R7, Canada

 Contact person: Daniel Ziskind
 Quality and Regulatory, Director
 7D Surgical, Inc.
 60 Scarsdale Road, Unit 118
 Toronto, ON, M3B 2R7, Canada
 Phone: (647) 484-0079
 Fax: (647) 749-0400 (wait until you hear a message, then press 7)
 Email: daniel.ziskind@7dsurgical.com

 Date prepared: February 05, 2018

2. **Name of the device, including the trade or proprietary name if applicable, the common or usual name, and the classification name, if known:**

 Common/usual name: Computer-assisted surgical device
 Proprietary name: 7D Surgical System

 These devices are classified as follows:

<table>
<thead>
<tr>
<th>Classification Name</th>
<th>21 CFR Section</th>
<th>Product Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stereotaxic instrument</td>
<td>21 CFR §882.4560</td>
<td>OLO</td>
</tr>
</tbody>
</table>

3. **Substantially Equivalent Devices**

 7D Surgical believes the 7D Surgical System is substantially equivalent to the following currently marketed devices:

<table>
<thead>
<tr>
<th>Product</th>
<th>510(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medtronic StealthStation System</td>
<td>K133444</td>
</tr>
<tr>
<td>Envision 3D: Image Guidance System</td>
<td>K162375</td>
</tr>
</tbody>
</table>

 The indications for use of the subject device 7D Surgical System are equivalent to the predicate device K133444 and K162375. Furthermore, the technological characteristics of the 7D Surgical System are substantially equivalent. The differences in the
technological characteristics do not raise new questions of safety and effectiveness. Consequently, the subject is substantially equivalent to the predicate device.

4. Purpose of Submission
The proposed software change for the 7D Surgical System is intended to enable compatibility with the Medtronic Universal Drill Guide Set. The Universal Drill Guide Set is part of the Medtronic Spinal Navigation Instrument product line which assists surgeons with positioning of a drill to create the canal for screw placement. Similar to the 7D Surgical System, these stereotactic instruments are optically tracked by reflective marker spheres to locate the instruments’ position and orientation relative to the patient’s preoperative image. The Universal Drill Guide is currently designed for use with the Medtronic StealthStation System, which is indicated for any medical condition in which the use of stereotactic surgery may be appropriate, and where reference to a rigid anatomical structure, such as a skull, a long bone, or vertebra, can be identified relative to a CT or MR based model, fluoroscopy images, or digitized landmarks of the anatomy.

5. Indications for Use
The 7D Surgical System is a stereotaxic image guidance system intended for the spatial positioning and orientation of neurosurgical instruments used by surgeons. The system is also intended to be used as the primary surgical luminaire during image guided surgery. The device is indicated for posterior approach spine surgery where reference to a rigid anatomical structure can be identified.

6. Device Description and Technical Comparison to Predicate Devices
The 7D Surgical System is intended for use as a stereotaxic image guided surgical navigation system during spine surgery. The system provides image registration between preoperative scan data and data captured intraoperatively from the 7D Surgical System structured light scanner and/or user selected points. The system provides guidance data by tracking and displaying the position and orientation of wireless optically tracked Spinal Instruments including the 7D Surgical Pedicle Probe and Awl, now including the Medtronic Universal Drill Guide, relative to the patient. Position and orientation data of tracked Spinal Instruments are linked to the preoperative scan data using the 7D Surgical System workstation. The system is intended to be used as the primary surgical luminaire for image guided surgery. Similar to the Medtronic Stealth Station, the system tracks the position and orientation of the Medtronic Universal Drill Guide.

The system is intended to be used for both image fusion and navigation for neurological applications where reference to a rigid structure can be identified relative to a preoperative image data of the anatomy.

The Tracking System enables the surgeon to view the position and orientation of 7D Surgical System Spinal Instruments relative to registered preoperative image data while
performing the surgical procedure. Each of the 7D Surgical System instruments, including the Medtronic Universal Drill Guide, utilizes commercially available passive reflective marker spheres [Manufactured by NORTHERN DIGITAL, INC.; 510(k) K033621] to determine the position and orientation of instruments. Each tracked instrument requires a unique marker position configuration to enable the tracking system to distinguish the tools from one to the other.

The Software links all system components and displays navigational data to the surgeon. It provides methods for loading preoperative scans and guides the surgeon through the process of surface model creation, structured light acquisition, registration, registration verification, and navigation.

7. Safety Considerations
This change to add compatibility to the 7D System to include navigational tracking of the Medtronic Universal Drill Guide Set did not impact conformity to regulatory compliance standards as only the system software has been modified to support this new feature. Software and User Instructions risk control measures have been implemented to ensure all new risks associated with use of the Medtronic Universal Drill Guide Set have been adequately controlled.

8. Technological Characteristics
The literature research and the comparison to the predicate devices show that the device makes use of equivalent technological characteristics and functionality and is intended for equivalent surgical procedures as compared to the predicate devices.

9. Nonclinical Performance Data
Verification and Validation activities have been conducted to provide assurance that the device meets the performance requirements under the indications for use conditions.

7D Surgical performed the following testing to ensure the safety and effectiveness of the 7D Surgical System device:

- Non-Clinical System, Software, and Instrumentation Verification and Validation
- Non-Clinical Performance Surgical Simulations Conducted on Phantom Models
- Compliance Conformity Assessments
 - ASTM F2554-10 Standard Practice for Measurement of Positional Accuracy of Computer Assisted Surgical Systems

Device performance tests were performed to verify the absolute accuracy and repeatability of the accuracy of the device, and the navigation accuracy according to ASTM F2554-10. In addition, Target Registration Error has been used to evaluate the clinical accuracy of the system on phantom models in a clinical simulated environment. TRE evaluates the error
discrepancy between the position reported by the image guided surgery system and the ground truth position measured physically or otherwise.

The following table contains a summary of verification and validation performed on the 7D Surgical System:

<table>
<thead>
<tr>
<th>Verification and Validation</th>
<th>Description</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Verification</td>
<td>Scope of the test is to verify the design requirement specifications of 7D Surgical System under test case protocols.</td>
<td>Verification successful, all design requirements have been fulfilled.</td>
</tr>
<tr>
<td>System Validation</td>
<td>Scope of the test is to validate the Indications For Use and Customer Requirements of the 7D Surgical System under simulated use case situations.</td>
<td>Validation successful, all user needs met.</td>
</tr>
<tr>
<td>Usability</td>
<td>This test is conducted to validate the 7D Surgical System with respect to user errors.</td>
<td>Validation successful, device safe and effective with respect to user errors.</td>
</tr>
<tr>
<td>Safety regarding risk analysis</td>
<td>Implementation and effectiveness of all risk control requirements specified in the 7D Surgical System risk analysis are tested and verified.</td>
<td>Risk Control requirements are effective and mitigate the associated risks to an acceptable level.</td>
</tr>
<tr>
<td>Product Safety standards</td>
<td>The 7D Surgical System and Instrumentation was tested to the following recognized standards: IEC 60601-1, IEC 60601-1-2, IEC 60601-1-6, IEC 60601-2-41, IEC 60825-1, ISO 10993-1, and ISO 17665-1.</td>
<td>Compliance with recognized standards have been verified in the previous application K162375. Previous test results have not been affected by this change.</td>
</tr>
<tr>
<td>Non-Clinical Accuracy</td>
<td>System’s accuracy is tested using the 7D Surgical System on phantom models following the ASTM F2554-10 Standard Practice for Measurement of Positional Accuracy of Computer Assisted Surgical Systems in addition to Target Registration Error.</td>
<td>All accuracy specifications have been met for the Medtronic Universal Drill Guide. Accuracy testing for the currently cleared Reference Frame, Awl and Pedicle Probe have been verified in previous application K162375.</td>
</tr>
</tbody>
</table>

All non-clinical tests successfully passed demonstrating that the subject device performs as safely and effectively as the predicate device and supporting substantial equivalence.

10. Clinical Data
A clinical trial was not required to demonstrate safety and effectiveness of the 7D Surgical System. Clinical validation is unnecessary as the 7D Surgical System introduces no new indications for use, and device features are equivalent to the previously cleared
predicate device identified. The clinical safety and effectiveness of Image Guided Surgery Systems are historically accepted for both the predicate and subject device.

11. Conclusion
The 7D Surgical System is substantially equivalent in safety and effectiveness to the predicate devices identified above:

- The predicate devices and 7D Surgical System use essentially the same technologies.
- The predicate devices and 7D Surgical System are designed and manufactured to the similar electrical and physical safety standards.

The non-clinical verification and validation performed support the safety and effectiveness of the 7D Surgical System compatibility with the Universal Drill Guide. The conclusions drawn from the non-clinical tests demonstrate that the 7D Surgical System, performs as safely and effectively as the legally marketed device according to the comparison based on the requirements of 21 CFR §882.4560 and the information provided herein, it is concluded that the 7D Surgical System is substantially equivalent to the predicate device with respect to its indications for use, technological characteristics, and performance characteristics.

514 Performance Standards
There are no Sec. 514 performance standards for this device.