June 19, 2020

Aidoc Medical, Ltd.
℅ John J. Smith, M.D., J.D.
Regulatory Counsel
Hogan Lovells US LLP
555 Thirteenth Street, NW
WASHINGTON DC 20004

Re: K193298
 Trade/Device Name: BriefCase
 Regulation Number: 21 CFR 892.2080
 Regulation Name: Radiological computer aided triage and notification software
 Regulatory Class: Class II
 Product Code: QAS
 Dated: June 1, 2020
 Received: June 1, 2020

Dear Dr. Smith:

We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. Although this letter refers to your product as a device, please be aware that some cleared products may instead be combination products. The 510(k) Premarket Notification Database located at https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm identifies combination product submissions. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties. We remind you, however, that device labeling must be truthful and not misleading.

If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations, Title 21, Parts 800 to 898. In addition, FDA may publish further announcements concerning your device in the Federal Register.

Please be advised that FDA's issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal statutes and regulations administered by other Federal agencies. You must comply with all the Act's requirements, including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Part...
medical device reporting (reporting of medical device-related adverse events) (21 CFR 803) for
devices or postmarketing safety reporting (21 CFR 4, Subpart B) for combination products (see
https://www.fda.gov/combination-products/guidance-regulatory-information/postmarketing-safety-reporting-
combination-products); good manufacturing practice requirements as set forth in the quality systems (QS)
regulation (21 CFR Part 820) for devices or current good manufacturing practices (21 CFR 4, Subpart A) for
combination products; and, if applicable, the electronic product radiation control provisions (Sections 531-
542 of the Act); 21 CFR 1000-1050.

Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21 CFR Part
807.97). For questions regarding the reporting of adverse events under the MDR regulation (21 CFR Part
803), please go to https://www.fda.gov/medical-devices/medical-device-safety/medical-device-reporting-
mdr-how-report-medical-device-problems.

For comprehensive regulatory information about medical devices and radiation-emitting products, including
information about labeling regulations, please see Device Advice (https://www.fda.gov/medical-
devices/device-advice-comprehensive-regulatory-assistance) and CDRH Learn
(https://www.fda.gov/training-and-continuing-education/cdrh-learn). Additionally, you may contact the
Division of Industry and Consumer Education (DICE) to ask a question about a specific regulatory topic. See
the DICE website (https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-
assistance/contact-us-division-industry-and-consumer-education-dice) for more information or contact DICE
by email (DICE@fda.hhs.gov) or phone (1-800-638-2041 or 301-796-7100).

Sincerely,

Thalia T. Mills, Ph.D.
Director
Division of Radiological Health
OHT7: Office of In Vitro Diagnostics
and Radiological Health
Office of Product Evaluation and Quality
Center for Devices and Radiological Health

Enclosure
Device Name

BriefCase

Indications for Use (Describe)

BriefCase is a radiological computer aided triage and notification software indicated for use in the analysis of abdominal CT images. The device is intended to assist hospital networks and trained radiologists in workflow triage by flagging and communication of suspected positive findings of Intra-abdominal free gas (IFG) pathologies.

BriefCase uses an artificial intelligence algorithm to analyze images and highlight cases with detected findings on a standalone desktop application in parallel to the ongoing standard of care image interpretation. The user is presented with notifications for cases with suspected findings. Notifications include compressed preview images that are meant for informational purposes only and not intended for diagnostic use beyond notification. The device does not alter the original medical image and is not intended to be used as a diagnostic device.

The results of BriefCase are intended to be used in conjunction with other patient information and based on their professional judgment, to assist with triage/prioritization of medical images. Notified clinicians are responsible for viewing full images per the standard of care.

Type of Use (Select one or both, as applicable)

☒ Prescription Use (Part 21 CFR 801 Subpart D) ☐ Over-The-Counter Use (21 CFR 801 Subpart C)

CONTINUE ON A SEPARATE PAGE IF NEEDED.

This section applies only to requirements of the Paperwork Reduction Act of 1995.

"DO NOT SEND YOUR COMPLETED FORM TO THE PRA STAFF EMAIL ADDRESS BELOW."

The burden time for this collection of information is estimated to average 79 hours per response, including the time to review instructions, search existing data sources, gather and maintain the data needed and complete and review the collection of information. Send comments regarding this burden estimate or any other aspect of this information collection, including suggestions for reducing this burden, to:

Department of
Health and Human
Services Food and
Drug Administration
Office of Chief Information Officer
Paperwork
Reduction Act
(PRA) Staff
PRASStaff@fda.hhs.gov

"An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB number."
510(k) Summary
Aidoc Medical, Ltd.'s BriefCase (K193298)

Submitter:
Aidoc Medical, Ltd.
3 Aminadav St.
Tel-Aviv, Israel
Phone: +972-73-7946870
Contact Person: N. Epstein, Ph.D.
Date Prepared: June 1, 2020

Name of Device: BriefCase
Classification Name: Radiological computer-assisted triage and notification software device
Regulatory Class: Class II
Product Code: QAS (21 C.F.R. 892.2080)
Predicate Device: BriefCase (K180647, for ICH triage)

Device Description

BriefCase is a radiological computer-assisted triage and notification software device. The software system is based on an algorithm programmed component and is comprised of a standard off-the-shelf operating system, the Microsoft Windows server 2012 64bit, and additional applications, which include PostgreSQL, DICOM module and the BriefCase Image Processing Application. The device consists of the following three modules: (1) Aidoc Hospital Server (AHS) for image acquisition; (2) Aidoc Cloud Server (ACS) for image processing; and (3) Aidoc Worklist Application for workflow integration, installed on the radiologist' desktop and provides the user interface in which notifications from the BriefCase software are received.

DICOM images are received, saved, filtered and de-identified before processing. Series are processed chronologically by running an algorithm on each series to detect suspected findings and then notifications on flagged series are sent to the Worklist desktop application, thereby prompting preemptive triage and prioritization. The user may opt to filter out notifications by pathology, e.g. a chest radiologist may choose to filter out notifications on Large Vessel Occlusion (LVO) cases, and a neuro-radiologist would opt to divert Pulmonary Embolism (PE) notifications. In addition, where several medical centers are linked to a shared PACS, a user may read cases for a certain center but not for another, and thus may opt to filter out notification by center. Activating the filter does not impact the order in which notifications are presented in the Aidoc worklist application.

The Worklist Application displays the pop-up text notifications of new studies with suspected findings when they come in. Notifications are in the form of a small pop-up containing patient name, accession number and the relevant pathology (e.g., IFG). A list of all incoming cases with suspected findings is also displayed. Hovering over a notification or a case in the worklist pops up a compressed, small black and white, unmarked image that is captioned “not for diagnostic use” and is displayed as a preview function. This compressed preview is meant for informational
purposes only, does not contain any marking of the findings, and is not intended for primary diagnosis beyond notification.

Presenting the radiologist with notification facilitates earlier triage by prompting the user to assess the relevant original images in the PACS. Thus, the suspect case receives attention earlier than would have been the case in the standard of care practice alone.

Intended Use / Indications for Use

BriefCase is a radiological computer aided triage and notification software indicated for use in the analysis of abdominal CT images. The device is intended to assist hospital networks and trained radiologists in workflow triage by flagging and communication of suspected findings of Intra-abdominal Free Gas (IFG) pathologies.

BriefCase uses an artificial intelligence algorithm to analyze images and highlight cases with detected findings on a standalone desktop application in parallel to the ongoing standard of care image interpretation. The user is presented with notifications for cases with suspected findings. Notifications include compressed preview images that are meant for informational purposes only and not intended for diagnostic use beyond notification. The device does not alter the original medical image and is not intended to be used as a diagnostic device.

The results of BriefCase are intended to be used in conjunction with other patient information and based on their professional judgment, to assist with triage/prioritization of medical images. Notified clinicians are responsible for viewing full images per the standard of care.

Comparison of Technological Characteristics

The subject BriefCase for IFG triage and predicate device BriefCase for ICH triage (K180647) are identical in all aspects and defer only with respect to the training of the algorithm on IFG and ICH images, respectively.

Both devices are radiological computer-aided triage and notification software programs. Both devices are artificial intelligence algorithms incorporated software packages for use with CT scanners, PACS, and radiology workstations. Both devices are intended to aid in triage and prioritization of radiological images. The predicate device processes head CTs and is indicated for intracranial hemorrhage triage, while the subject device also processes abdominal images and is indicated for Intra-abdominal Free Gas (IFG) triage. Both devices are intended to provide radiologists with notifications and unannotated preview images of suspect studies for the purpose of preemptive triage.

In addition, both software devices notify the attending radiologist of the availability of time sensitive radiological images for review based on computer aided image analysis. Both devices send notifications and low-quality compressed previews to the radiology workstations’ desktop. Notifications are informational purpose only and are meant to prompt the radiologist to start preemptive triage of a flagged case, upon which he may decide after observing the unannotated, low quality preview on his desktop, to turn to the local PACS to perform evaluation of the original series earlier than would have been the case without BriefCase.

Thus, the subject and predicate BriefCase raise the same types of safety and effectiveness questions, namely, accurate detection of findings within the processed study. It is important to note that, like the predicate, the subject device does not remove cases from the standard of care reading queue and does not modify them. Both devices operate in parallel with the standard of care, which remains the default option for all cases.
A table comparing the key features of the subject and predicate devices is provided below.

<table>
<thead>
<tr>
<th>Intended Use / Indications for Use</th>
<th>Predicate Device</th>
<th>Subject Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aidoc Briefcase for ICH triage (K180647)</td>
<td>BriefCase is a radiological computer aided triage and notification software indicated for use in the analysis of non-enhanced head CT images. The device is intended to assist hospital networks and trained radiologists in workflow triage by flagging and communication of suspected positive findings of pathologies in head CT images, namely Intracranial Hemorrhage (ICH). BriefCase uses an artificial intelligence algorithm to analyze images and highlight cases with detected ICH findings on a standalone desktop application in parallel to the ongoing standard of care image interpretation. The user is presented with notifications for cases with suspected ICH findings. Notifications include compressed preview images that are meant for informational purposes only and not intended for diagnostic use beyond notification. The device does not alter the original medical image and is not intended to be used as a diagnostic device. The results of BriefCase are intended to be used in conjunction with other patient information and based on professional judgment, to assist with triage/prioritization of medical images. Notified clinicians are responsible for viewing full images per the standard of care.</td>
<td>BriefCase is a radiological computer aided triage and notification software indicated for use in the analysis of abdominal CT images. The device is intended to assist hospital networks and trained radiologists in workflow triage by flagging and communication of suspected positive findings of Intraperitoneal Free Gas (IFG) pathologies. BriefCase uses an artificial intelligence algorithm to analyze images and highlight cases with detected findings on a standalone desktop application in parallel to the ongoing standard of care image interpretation. The user is presented with notifications for cases with suspected findings. Notifications include compressed preview images that are meant for informational purposes only and not intended for diagnostic use beyond notification. The device does not alter the original medical image and is not intended to be used as a diagnostic device. The results of BriefCase are intended to be used in conjunction with other patient information and based on their professional judgment, to assist with triage/prioritization of medical images. Notified clinicians are responsible for viewing full images per the standard of care.</td>
</tr>
<tr>
<td>User population</td>
<td>Radiologist</td>
<td>Radiologist</td>
</tr>
<tr>
<td>Anatomical region of interest</td>
<td>Head</td>
<td>Abdomen</td>
</tr>
<tr>
<td>Data acquisition protocol</td>
<td>Non-contrast head CT scan</td>
<td>Abdominal CT scan</td>
</tr>
</tbody>
</table>
Performance Data

Pivotal Study Summary

Aidoc conducted a retrospective, blinded, multicenter, multinational study with the BriefCase software with the primary endpoint to evaluate the software’s performance in identifying abdominal CTs containing Intra-abdominal Free Gas in 184 cases from 3 clinical study sites (2 US and 1 OUS). There were 67 positive cases and 117 negative cases (images with IFG versus without IFG) included in the analysis.

Sensitivity and specificity exceeded the 80% performance goal. Specifically, sensitivity was 91.0% (95% CI: 81.5%, 96.7%) and specificity was 88.9% (95% CI: 81.7%, 94.0%).

In addition, a supplemental dataset was provided with additional cases from various scanner manufacturers and demonstrated consistent performance for the device across scanners.

Secondary Endpoint

Briefcase’s potential clinical benefit of worklist prioritization for true positive IFG cases was evaluated by comparing the standard-of-care metric of time-to-exam-open to the software’s time-to-notification metric for IFG, in the study sites where the time-to-exam-open information was available.

- The BriefCase time-to-notification includes the time to get the DICOM exam, de-identify it, upload it to the cloud, analyze and send a notification on a positive suspect case back to the worklist application.
- The standard of care time-to-open-exam consists of the time from scan acquisition to when the radiologist first opened the exam for review.

The standard of care metric was compared to the BriefCase time-to-notification in two of the study sites (both in the US) for 22 True Positive cases (i.e., identified as positive both by the reviewers as well as the BriefCase device), and the results are reported in the Table 2 below.
The BriefCase time-to-notification for IFG was 4.4 minutes (95% CI: 3.7-5.0; Median: 4.2, IQR: 2.5). In contrast, standard of care time-to-exam-open was much longer 94.1 minutes (95% CI: 49.9-138.2; Median: 50.1, IQR: 79.9). The mean difference of 89.7 minutes (95% CI: 45.5-133.9; Median: 47.4, IQR: 76.7) for these two metrics is statistically significant and assuming the radiologist receives a notification on a true positive IFG case and acts on it immediately, it can on average save more than one hour compared to the time-to-exam-open in a first in first out (FIFO) reading queue. The value of 89.7 is based on the study of 22 cases from 2 study sites and may vary in practice.

Table 2. Time saving data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>N</th>
<th>Mean estimate</th>
<th>Lower Confidence Limit</th>
<th>Upper Confidence Limit</th>
<th>Median</th>
<th>IQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time-to-exam-open in the standard of care</td>
<td>22</td>
<td>94.1</td>
<td>49.9</td>
<td>138.2</td>
<td>50.1</td>
<td>79.9</td>
</tr>
<tr>
<td>Time-to-notification of BriefCase IFG</td>
<td>22</td>
<td>4.4</td>
<td>3.7</td>
<td>5.0</td>
<td>4.2</td>
<td>2.5</td>
</tr>
<tr>
<td>Difference</td>
<td>22</td>
<td>89.7</td>
<td>45.5</td>
<td>133.9</td>
<td>47.4</td>
<td>76.7</td>
</tr>
</tbody>
</table>

NPV and PPV are presented in **Table 3** by a range of prevalence. NLR and PLR are also reported in **Table 4**.

Table 3. NPV and PPV with Varying Prevalence

<table>
<thead>
<tr>
<th>Assumed Prevalence</th>
<th>Parameter</th>
<th>n</th>
<th>Estimate</th>
<th>95% Lower CL</th>
<th>95% Upper CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>Negative Predictive Value</td>
<td>110</td>
<td>99.7%</td>
<td>99.5%</td>
<td>99.9%</td>
</tr>
<tr>
<td></td>
<td>Positive Predictive Value</td>
<td>74</td>
<td>20.2%</td>
<td>7.7%</td>
<td>26.3%</td>
</tr>
<tr>
<td></td>
<td>Negative Predictive Value</td>
<td>110</td>
<td>99.5%</td>
<td>99.1%</td>
<td>99.9%</td>
</tr>
<tr>
<td></td>
<td>Positive Predictive Value</td>
<td>74</td>
<td>30.1%</td>
<td>15.0%</td>
<td>38.4%</td>
</tr>
<tr>
<td>0.05</td>
<td>Negative Predictive Value</td>
<td>110</td>
<td>99.2%</td>
<td>98.7%</td>
<td>99.8%</td>
</tr>
<tr>
<td></td>
<td>Positive Predictive Value</td>
<td>74</td>
<td>38.1%</td>
<td>22.1%</td>
<td>47.7%</td>
</tr>
<tr>
<td></td>
<td>Negative Predictive Value</td>
<td>110</td>
<td>99.0%</td>
<td>98.4%</td>
<td>99.8%</td>
</tr>
<tr>
<td></td>
<td>Positive Predictive Value</td>
<td>74</td>
<td>44.8%</td>
<td>28.7%</td>
<td>55.0%</td>
</tr>
<tr>
<td>0.07</td>
<td>Negative Predictive Value</td>
<td>110</td>
<td>99.2%</td>
<td>98.7%</td>
<td>99.8%</td>
</tr>
<tr>
<td></td>
<td>Positive Predictive Value</td>
<td>74</td>
<td>38.1%</td>
<td>22.1%</td>
<td>47.7%</td>
</tr>
<tr>
<td></td>
<td>Negative Predictive Value</td>
<td>110</td>
<td>99.0%</td>
<td>98.4%</td>
<td>99.8%</td>
</tr>
<tr>
<td></td>
<td>Positive Predictive Value</td>
<td>74</td>
<td>44.8%</td>
<td>28.7%</td>
<td>55.0%</td>
</tr>
<tr>
<td>0.09</td>
<td>Negative Predictive Value</td>
<td>110</td>
<td>99.2%</td>
<td>98.7%</td>
<td>99.8%</td>
</tr>
<tr>
<td></td>
<td>Positive Predictive Value</td>
<td>74</td>
<td>38.1%</td>
<td>22.1%</td>
<td>47.7%</td>
</tr>
<tr>
<td></td>
<td>Negative Predictive Value</td>
<td>110</td>
<td>99.0%</td>
<td>98.4%</td>
<td>99.8%</td>
</tr>
<tr>
<td></td>
<td>Positive Predictive Value</td>
<td>74</td>
<td>44.8%</td>
<td>28.7%</td>
<td>55.0%</td>
</tr>
</tbody>
</table>
Table 4. NLR and PLR

<table>
<thead>
<tr>
<th>Parameter</th>
<th>n</th>
<th>Estimate</th>
<th>95% Lower CL</th>
<th>95% Upper CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLR</td>
<td>184</td>
<td>0.1</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>PLR</td>
<td>184</td>
<td>8.2</td>
<td>4.9</td>
<td>13.8</td>
</tr>
</tbody>
</table>

Thus, the reported time savings data demonstrates that radiologists may have the opportunity to be involved in the clinical workflow substantially earlier thanks to the notifications from the BriefCase device. Performance validation data suggest that when using the subject BriefCase for IFG triage, the radiologists may have the same benefit in time saving as with using the BriefCase for ICH triage.

Conclusions

The subject BriefCase for IFG triage and the predicate BriefCase for ICH triage devices are both intended to aid in prioritization and triage of radiological images for the indications of Intra-abdominal Free Gas and Intracranial Hemorrhage, respectively. Both devices are software packages with similar technological characteristics and principles of operation, incorporating deep learning AI algorithms that process images, and software to send notifications and unannotated compressed preview images to the radiologists’ workstation. In both devices, the labeling states that the devices are not for diagnostic use and instructs the user to further evaluate and diagnose based only on the original images in the local PACS.

Both devices operate in parallel to the standard of care workflow in the sense that they do not change the original image, do not provide any marking on the output preview, and do not remove images from the standard of care FIFO queue, thus not disturbing standard interpretation of the images by the attending radiologists. Both devices notify the radiologist of time-sensitive critical findings within the range of several minutes, and thus contribute similarly to the standard of care workflow turnaround time reduction through preemptive triage.

The BriefCase device for IFG triage is thus substantially equivalent to the BriefCase for ICH triage.