Patient Information

An Endovascular Treatment for Aortoiliac Aneurysms and Common Iliac Artery Aneurysms
Table of Contents

Introduction ... 2

What is an Aortoiliac Aneurysm or Common Iliac Artery Aneurysm? ... 4

What are Some of the Symptoms of an Aortoiliac Aneurysm or Common Iliac Artery Aneurysm? 6

What Causes an Aortoiliac Aneurysm or Common Iliac Artery Aneurysm? ... 8

How Do Doctors Treat an Aortoiliac Aneurysm or Common Iliac Artery Aneurysm? 9

When Treatment Becomes Necessary, What are My Treatment Options? 10

What is the GORE® EXCLUDER® AAA Endoprosthesis? .. 12

What is the GORE® EXCLUDER® Iliac Branch Endoprosthesis? ... 13

What is the GORE® EXCLUDER® Iliac Branch Endoprosthesis Procedure? 18

What Follow-Up Evaluations Will I Have? ... 20

When Should I Call My Doctor? ... 22

Glossary of Medical Terms ... 25

Questions for My Doctor .. 30
This brochure has been provided as a courtesy from W. L. Gore & Associates. This brochure will help you learn more about risk factors and common symptoms as well as a less-invasive method of treating an aortoiliac aneurysm or common iliac aneurysm. Whether you’re trying to reduce your risk or supporting a loved one diagnosed with an aortoiliac aneurysm or common iliac aneurysm, we hope this information will be helpful to you and your family.

Each year approximately 200,000 new cases of abdominal aortic aneurysms are diagnosed.¹ Also known as a AAA, an abdominal aortic aneurysm is a bulge in the aorta which could rupture with life-threatening results. In approximately 15–40% of patients with AAA, the aneurysm extends into at least one of the common iliac arteries.² These are referred to as aortoiliac aneurysms. Additionally, the aneurysm may be isolated to the common iliac artery, which are referred to as common iliac aneurysms. If you or a loved one has this disease, you may be seeking information on how it can be treated. This brochure describes aortoiliac aneurysms and common iliac artery aneurysms and endovascular repair using an endovascular graft.
For your convenience, we have included a Glossary of Medical Terms on page 25 and space in this brochure on page 30 to jot down questions to discuss with your doctor.

This brochure is an informational and referral guide only, and is not intended to diagnose a medical condition. As with any surgery or medical procedure, the best resource for information and advice is your doctor.

What is an Aortoiliac Aneurysm or Common Iliac Artery Aneurysm?

An aortoiliac aneurysm or common iliac artery aneurysm is the swelling or ballooning of the abdominal aorta and common iliac artery or the common iliac artery alone.

The aorta is the main artery that carries oxygen-filled blood from the heart to all parts of the body. In the abdomen, the aorta splits (bifurcates) into the iliac arteries, which carry blood to the legs and other lower areas of the body (see Figure 1).

An aneurysm is a dilation of the artery which results from a weakened section in the artery that cannot support the force of blood flow (see Figure 2). Although an aneurysm can occur in any artery of the body, it is most common in the abdominal aorta and the iliac arteries. An aneurysm can cause these blood vessels to grow to several times their normal size. This condition, if not treated, could result in rupture (bursting) of the artery. The risk of rupture increases with aneurysm size and high blood pressure. Ruptured aneurysms are frequently fatal and are a leading cause of death.³

Figure 1

The **aorta** is the main artery that carries oxygen-filled blood from the heart. It is the largest artery in the body, extending from the chest to the abdomen where it then branches into the **iliac arteries**.

Figure 2

An **aneurysm** is the ballooning of an artery, such as the **aorta** or common iliac artery. The weakened sections of the artery wall are unable to support the force of blood flow over time, and may rupture (burst).
What are Some of the Symptoms of an Aortoiliac Aneurysm or Common Iliac Artery Aneurysm?

Many people do not experience any symptoms of an aortoiliac aneurysm or common iliac artery aneurysm. Because of this, it is very important to speak with your doctor about your risk of having or developing an aortoiliac aneurysm or common iliac artery aneurysm. When symptoms do occur, pain is most commonly experienced. This can occur in the abdomen, back, or chest area. Some patients describe the pain as anything from a mild pain to a severe pain or tenderness in the mid or upper abdomen or lower back. Other patients can feel the aneurysm as a pulsating or throbbing mass in their abdomen.

Your doctor may discover an aortoiliac aneurysm or common iliac artery aneurysm during a routine physical exam. Your doctor may feel a bulge or pulsation (throbbing) in your abdomen. Aneurysms may be found during a medical test such as a CT Scan (also known as Computed Tomography or CAT Scan) or ultrasound.

Your doctor may also recommend an angiogram, or additional testing such as MRI (Magnetic Resonance Imaging), or IVUS (Intravascular Ultrasound) to determine the precise location, size, and shape of the aneurysm and your surrounding arteries.
What Causes an Aortoiliac Aneurysm or Common Iliac Artery Aneurysm?

Over time, the weakening of the aorta or common iliac artery due to vascular disease, injury (trauma), or a genetic (hereditary) defect of the tissue within the arterial wall can cause an aneurysm. Continuous blood pressure against this weakened area can result in the ballooning (enlarging and thinning) of the aortic artery.

Risk factors for developing an aneurysm include heredity (family history), smoking, heart disease, high blood pressure, and poor diet. Doctors may advise simple preventative measures such as keeping your blood pressure under control, quitting smoking, and reducing cholesterol in your diet. These lifestyle changes could also aid in preventing further problems in the future.

If you are at risk for developing an aneurysm, your doctor may recommend periodic screening. This is done with a simple physician exam and possible CT Scan or ultrasound.
How do doctors treat an Aortoiliac Aneurysm or Common Iliac Artery Aneurysm?

The size and location of the aortoiliac aneurysm, or common iliac artery aneurysm, and your general health, will determine how your aneurysm should be treated. When the aneurysm is small, your doctor may only recommend periodic check-ups to monitor the aneurysm. However, a larger, or rapidly growing (expanding) aneurysm poses more risk of bursting (rupture), and as such, may require treatment.\(^4\)

Two procedural options are available if your doctor feels treatment is necessary; open surgical repair or endovascular repair.

When Treatment Becomes Necessary,

What are My Treatment Options?

Open Surgical Repair

During this type of operation, the doctor makes an incision (cut) in the abdomen or side of the patient and repairs the blood vessel by replacing the diseased section (aneurysm) with a synthetic graft (tube) that is sewn into place with suture. This procedure requires stopping the flow of blood through the blood vessel while the graft is being put into place. Open surgical repair is typically performed under general anesthesia and takes about two to four hours to complete. Patients usually stay overnight in the intensive care unit and another five to seven days in the hospital. Depending on how quickly your body heals, your recovery time may take about three months.

Although open repair is a proven medical procedure, not all patients can tolerate this major operation. Ask your doctor about the risks associated with an open procedure as they relate to your overall health condition.
Endovascular Repair

Endovascular repair is a procedure for the treatment of aortoiliac aneurysm and common iliac artery aneurysm. Less invasive than open surgery, it involves excluding (sealing off) the aneurysm by placing an endovascular graft inside of the diseased aorta, making a new path for the blood to flow. The endovascular graft (GORE® EXCLUDER® Iliac Branch Endoprosthesis and GORE® EXCLUDER® AAA Endoprosthesis) remains inside the aorta permanently through the use of metal prongs, or anchors, as well as a tight fit (radial force) against the wall of the aorta. Endovascular repair may be performed under general, regional, or local anesthesia while the patient remains conscious (awake) but sedated, and typically takes one to three hours to complete. Patients may have a hospital stay of only a few days and can usually return to normal activity within six weeks after the procedure.

This procedure does require routine, periodic follow-up visits with your doctor. Tests are performed to evaluate the procedure and monitor the success of the treatment. Please see follow-up section on page 20 for further information.

Not every patient is a candidate for endovascular repair. With this in mind, please check with your doctor to see if you are a candidate. If you would like to learn more about aortoiliac aneurysm, common iliac artery aneurysm, types of therapy, or more information about the GORE® EXCLUDER® Iliac Branch Endoprosthesis and GORE® EXCLUDER® AAA Endoprosthesis, visit the websites listed on page 29.
What is the GORE® EXCLUDER® AAA Endoprosthesis?

The GORE® EXCLUDER® AAA Endoprosthesis is an implantable device positioned by a delivery catheter. The endovascular graft is intended to exclude (seal off) the aneurysm by placing the endovascular graft inside the diseased aorta to make a new path for the blood to flow.

The GORE® EXCLUDER® AAA Endoprosthesis is a device that allows for endovascular repair of an abdominal aortic aneurysm (AAA). The endovascular graft is a two-piece, bifurcated graft that lines the aorta and extends from below the renal (kidneys) arteries into both iliac arteries. It is made up of ePTFE (expanded polytetrafluoroethylene) with an outer metallic support structure known as a stent.

The GORE® EXCLUDER® AAA Endoprosthesis is delivered to the abdominal aorta in two sections; the trunk and the contralateral leg. The trunk receives its name from the large diameter at its top region, and is placed just below the renal arteries. It also includes one full leg which extends into one iliac artery. The other piece is called the contralateral leg component because it is placed in the other iliac artery to form a complete endovascular graft. Together, these two pieces form a bifurcated endovascular graft (see Figures 4 and 6).
What is the GORE® EXCLUDER® Iliac Branch Endoprosthesis?

Similar to the GORE® EXCLUDER® AAA Endoprosthesis, the GORE® EXCLUDER® Iliac Branch Endoprosthesis is an implantable device that is intended to exclude the aneurysm.

The GORE® EXCLUDER® Iliac Branch Endoprosthesis is a device that allows for endovascular repair of aortoiliac aneurysms and common iliac artery aneurysms. The endovascular graft is a two-piece, bifurcated graft that lines the common iliac artery that extends into both the external and internal iliac arteries. The GORE® EXCLUDER® Iliac Branch Endoprosthesis is connected to one side or both sides of the GORE® EXCLUDER® AAA Endoprosthesis through the use of a bridge device.

The GORE® EXCLUDER® Iliac Branch Endoprosthesis is delivered into the common iliac artery in two sections: the Iliac Branch Component and the Internal Iliac Component. The Iliac Branch Component is placed within the common iliac artery and extends into the external iliac artery. The Internal Iliac Component is placed within the internal iliac artery.

The GORE® EXCLUDER® Iliac Branch Endoprosthesis is used in conjunction with the GORE® EXCLUDER® AAA Endoprosthesis. When being treated with the Iliac Branch Endoprosthesis, a total of four pieces form a double bifurcated endovascular graft (Figures 4, 5, and 7).
Figure 3

Insertion sites of delivery catheters for placement of a GORE® EXCLUDER® Iliac Branch Endoprosthesis

What is the GORE® EXCLUDER® Iliac Branch Endoprosthesis? (continued)

Each component of the endovascular graft, the trunk, the contralateral leg (bridge), the iliac branch component, and the internal iliac component, is compressed into the end of a long, thin, tube-like device called a delivery catheter and inserted separately into your bloodstream. This is accomplished by making two small incisions, or punctures, in both femoral arteries in the groin area (see Figure 3).

For example, if the trunk delivery catheter is inserted through the right femoral artery, then the contralateral leg delivery catheter would be inserted through the left femoral artery (see Figure 3).

Diagnostic measurements (CT, angiography, and IVUS) of the aorta prior to the procedure allow your doctor to visualize the aneurysm and your arteries to select the proper size of endovascular graft to fit your anatomy.
GORE® EXCLUDER® AAA Endoprosthesis

Consists of two components:
- Trunk
- Contralateral Leg (Bridging component)

GORE® EXCLUDER® Iliac Branch Endoprosthesis

Consists of two components:
- Iliac Branch Component
- Internal Iliac Component

Figure 4

Anchors (metal prongs)

Trunk component

Outer metallic support structure (stent)

Contralateral leg (Bridging component)

Ipsilateral leg

Iliac branch component

Internal iliac component

Figure 5

Internal Iliac Component — in its expanded size. Top right is the internal iliac component on a delivery catheter.

Iliac Branch Component — in its expanded size. Bottom left is the iliac branch component on a delivery catheter.
Figure 6

Artist’s rendition of a deployed GORE® EXCLUDER® AAA Endoprosthesis allowing for endovascular repair and exclusion of an abdominal aortic aneurysm.
Figure 7

Artist's rendition of a deployed GORE® EXCLUDER® Iliac Branch Endoprosthesis and GORE® EXCLUDER® AAA Endoprosthesis allowing for endovascular repair and exclusion of an aortoiliac aneurysm. Both components (Iliac Branch Component and Internal Iliac Component) of the GORE® EXCLUDER® Iliac Branch Endoprosthesis have been deployed in the right common iliac artery. The GORE® EXCLUDER® AAA Endoprosthesis has been deployed in the abdominal aorta and left common iliac artery, with the bridging component connecting the GORE® EXCLUDER® AAA Endoprosthesis to the GORE® EXCLUDER® Iliac Branch Endoprosthesis.
What is the GORE® EXCLUDER® Iliac Branch Endoprosthesis Procedure?

The GORE® EXCLUDER® Iliac Branch Endoprosthesis procedure consists of the implantation of the GORE® EXCLUDER® Iliac Branch Endoprosthesis and the GORE® EXCLUDER® AAA Endoprosthesis to exclude an aortoiliac aneurysm or common iliac artery aneurysm. The endovascular graft is implanted using fluoroscopy (real-time X-ray images) viewed on a monitor in these simple steps:

1. A delivery catheter is inserted into the femoral artery and carefully guided up the leg artery to the site of the aneurysm.

2. Once the endovascular graft is correctly positioned in the aorta, it is released or deployed from the delivery catheter.

3. The device self-expands inside the aorta to the diameter of your aorta and iliac arteries. The placement of the endovascular graft is designed to exclude (seal off) the aneurysm and reline the artery wall.

4. The delivery catheter is withdrawn from the body.

Figure 7a (Pre-Op)
These steps are the same for the trunk component, the contralateral leg component (bridge), the iliac branch component, and the internal iliac component. At the end of the procedure, your doctor will confirm the position of the device and exclusion of blood flow to the aneurysm by using X-ray angiography (see Figures 7a and 7b). The doctor will then be able to determine whether the aneurysm has been successfully excluded before closing up the incision in each leg with a few sutures.
What Follow-Up Evaluations Will I Have?

Currently, follow-up is advised to include check-ups at one month, six months, and annually thereafter. It is very important that you go to all follow-up visits recommended by your doctor.

The follow-up exams will consist of routine X-rays, **CT Scans** (Figures 8 and 9) and a physical exam. The exams may also include blood tests, and **ultrasound** or **MRI** Scans if other imaging methods are necessary.

These follow-up exams carry some minimal risk. However, the benefits of these tests clearly outweigh any potential risks.\(^5\), \(^6\)

There is some risk of allergic reactions related to the contrast dye used in these **CT Scans**.\(^7\) Please ask your doctor if you have any concerns regarding these tests and exams.

Figure 8

A **CT Scan** of an abdominal aortic **aneurysm** with a GORE® EXCLUDER® AAA Endoprosthesis.

Blood (white) flows through the endoprosthesis

Cross-sectional view of the endoprosthesis legs excluding (sealing off) blood flow to the shrinking **aneurysm**
These tests and exams are performed because they are necessary in evaluating the outcome of your treatment and any changes over time. Your doctor may also request additional evaluations based on findings at the follow-up visits. These may include finding a return of blood flow in the **aneurysm** (Figure 9) and / or growth of the **aneurysm**.

This type and frequency of follow-up visits is generally not required after open surgical repair.

When Should I Call My Doctor?

The long-term safety and effectiveness of endovascular repair has not been established. Some patients may require additional treatment for conditions such as:

Endoleak – An endoleak occurs when blood from the aorta continues to leak into the aneurysm. While most endoleaks do not cause any medical problems, a small number require additional treatment.

Aneurysm growth or rupture – Symptoms of aneurysm growth are not always present, but when they are, the most common symptom is pain, also numbness, weakness in the legs, back, chest, or abdomen. Aneurysm rupture symptoms include dizziness, fainting, rapid heartbeat, or sudden weakness.

Limb Occlusion – Symptoms include pain in the hip(s) or leg(s) during walking, or discoloration or coolness of the leg.

In such cases, your doctor may recommend outpatient procedures and / or surgery. As with any surgery or medical procedure, there are potential complications with the treatment of an aortoiliac aneurysm or common iliac artery aneurysm. Discuss the risks and benefits with your doctor, and refer to this brochure for basic information. Contact your doctor immediately if you should experience any symptom potentially associated with your aortoiliac aneurysm or common iliac artery aneurysm. Remember, symptoms are not always present, but when they are, the most common symptom is pain, occurring in the abdomen, back or chest area, or tenderness in the mid or upper abdomen, lower back, or side.
Patient Counseling Information

You and your doctor should review the risks and benefits when discussing this **endovascular graft** and procedure including:

- Risks and differences between **endovascular repair** and open surgical repair.
- Potential advantages of traditional open surgical repair.
- Potential advantages of **endovascular repair**.
- The possibility that additional **endovascular treatment** or surgery may be required after initial **endovascular repair**.

In addition to the risks and benefits of an **endovascular repair**, your doctor should consider your commitment and compliance to post-operative follow-up as necessary to ensure continuing safe and effective results.
Glossary

Aorta
The main artery that carries blood away from the heart to the rest of the body.

Aortoiliac Aneurysm
An aneurysm of the aorta occurring in both the abdominal aorta and common iliac artery.

Abdominal Aortic Aneurysm (AAA)
A ballooning (enlarging and thinning) of the aorta due to a weakening in the arterial wall that occurs in the abdomen area. This term is often abbreviated as “AAA”.

Aneurysm
A ballooning (enlarging and thinning) of a weakened area of a blood vessel.

Angiography / Angiogram
A method whereby dye is injected into the bloodstream to view blood flow through the blood vessels under X-ray. Utilizes contrast (dye) and small radiation exposure. The resulting image is an angiogram.

Contrast (dye)
A drug injected into the vascular system to show blood flow through the blood vessels on the X-ray image.

Common Iliac Arteries
Two large arteries that are the first division of the aorta, carrying blood away from the heart to the lower half of the body.

Common Iliac Artery Aneurysm
An aneurysm of the common iliac artery (can be one or both sides).

CT Scan (Computed Tomography Scan)
An imaging technique that creates very precise, thin, cross-sectional views of your abdomen and aorta. This technique often utilizes contrast (dye) and small radiation exposure. Also known as a CAT scan.
Delivery Catheter
A long, thin, tube-like tool that assists in the positioning and delivering of an endovascular graft through the vascular system.

Endoleak
Blood flow into the abdominal aortic aneurysm after placement of an endovascular graft.

Endovascular Graft
A synthetic graft implanted within a diseased vessel intended to relieve weakened vessel walls without the use of open surgery techniques. Endovascular grafts are delivered to the diseased aorta at a small size and then are deployed or expanded to the size of the vessels in which it is placed.

Endovascular Repair
Considered to be less invasive than open surgery, it involves the use of an endovascular graft to exclude (seal off) an aneurysm inside a diseased aorta, making a new path for blood to flow.

Endovascular Treatment
The use of real time X-rays and guidewires to treat unhealthy arteries with small incisions in the femoral arteries.

Femoral Arteries
Two arteries located in each leg which carry blood to the femur or thigh region of each leg. Doctors gain access to the iliac arteries and the aorta through the use of the femoral arteries (see Figure 1).

Fluoroscopy
A real time X-ray image that is viewed on a monitor and used with a C-arm during endovascular repair.

Guidewire
Long, flexible wire that is placed in an artery to track a delivery catheter and other endovascular accessories to implant an endovascular graft.
Iliac Arteries
Two arteries that deliver blood to the legs and connect the aorta to the femoral arteries in each leg. The iliac arteries begin from the bifurcation (separation) of the aorta which occurs in your abdomen.

IVUS (Intravascular Ultrasound)
An ultrasound probe on a delivery catheter placed inside your arteries to see the vessel walls and measure diameters and lengths of your arteries.

MRI (Magnetic Resonance Imaging)
A procedure using magnetic fields and radio waves to form an image of structures inside the body.

Occlusion
The blocking of an artery, causing the stop of normal blood flow.

Radiation
A form of energy that allows your doctor to see blood vessel structures and other anatomy inside your body.

Renal Arteries
Two arteries that are attached to the aorta and carry blood from the aorta to the left and right kidney.

Rupture
A tear in the vessel wall near or at the location of the ballooning (enlarging and thinning) of the weakened area of the blood vessel allowing blood to spill into the peritoneal cavity (hemorrhage).

Synthetic Graft
A man-made material in tube form intended to replace diseased human vessels.

Ultrasound
An image created through the use of high-frequency sound waves.
Where Can I Get More Information?

Aneurysms

Background Information on Abdominal Aortic Aneurysms

American Heart Association • www.americanheart.org
Founded in 1924, today the American Heart Association is the largest voluntary health organization fighting cardiovascular diseases and stroke.

Mayo Clinic • www.mayoclinic.com
MayoClinic.com is the latest chapter in a long and successful consumer health publishing history of the Mayo Clinic. This presence on the Web is a natural extension of Mayo’s long-standing commitment to provide health education to patients and the general public.

Interventional Therapy

Society of Interventional Radiology • www.sirweb.org
The Society of Interventional Radiology (SIR) is a professional society for doctors who specialize in interventional or minimally invasive procedures. SIR is a non-profit, national scientific organization deeply committed to its mission to improve health and the quality of life through the practice of cardiovascular and interventional radiology.

US National Library of Medicine • www.medlineplus.gov
The National Library of Medicine (NLM), on the campus of the National Institutes of Health in Bethesda, Maryland, is the world’s largest medical library. The Library collects materials in all areas of biomedicine and health care, as well as works on biomedical aspects of technology, the humanities, and the physical, life, and social sciences.

Product Information

W. L. Gore & Associates, Inc. • www.goremedical.com
At Gore, we have provided creative therapeutic solutions to complex medical problems for more than 35 years. During that time, more than 35 million innovative Gore Medical Devices have been implanted, saving and improving the quality of lives worldwide. Our extensive family of products includes vascular grafts, endovascular and interventional devices, surgical meshes for hernia and soft tissue reconstruction, staple line reinforcement materials, and sutures for use in vascular, cardiac, and general surgery.

US Department of Health and Human Services
Food and Drug Administration • www.fda.gov
A US government agency intended to promote and protect the public health by helping safe and effective products reach the market in a timely way, and monitoring products for continued safety after they are in use.
Questions for my Doctor