September 11, 2020,

Collagen Matrix, Inc.
Gloria Zuclich
Director, Regulatory Affairs
15 Thornton Road
Oakland, New Jersey 07436

Re: K201859

Trade/Device Name: Porcine Mineral Collagen Composite Moldable
Regulation Number: 21 CFR 872.3930
Regulation Name: Bone Grafting Material
Regulatory Class: Class II
Product Code: NPM
Dated: July 1, 2020
Received: July 6, 2020

Dear Gloria Zuclich:

We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. Although this letter refers to your product as a device, please be aware that some cleared products may instead be combination products. The 510(k) Premarket Notification Database located at https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm identifies combination product submissions. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties. We remind you, however, that device labeling must be truthful and not misleading.

If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations, Title 21, Parts 800 to 898. In addition, FDA may publish further announcements concerning your device in the Federal Register.
Please be advised that FDA's issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal statutes and regulations administered by other Federal agencies. You must comply with all the Act's requirements, including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Part 801); medical device reporting (reporting of medical device-related adverse events) (21 CFR 803) for devices or postmarketing safety reporting (21 CFR 4, Subpart B) for combination products (see https://www.fda.gov/combination-products/guidance-regulatory-information/postmarketing-safety-reporting-combination-products); good manufacturing practice requirements as set forth in the quality systems (QS) regulation (21 CFR Part 820) for devices or current good manufacturing practices (21 CFR 4, Subpart A) for combination products; and, if applicable, the electronic product radiation control provisions (Sections 531-542 of the Act); 21 CFR 1000-1050.

For comprehensive regulatory information about medical devices and radiation-emitting products, including information about labeling regulations, please see Device Advice (https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance) and CDRH Learn (https://www.fda.gov/training-and-continuing-education/cdrh-learn). Additionally, you may contact the Division of Industry and Consumer Education (DICE) to ask a question about a specific regulatory topic. See the DICE website (https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/contact-us-division-industry-and-consumer-education-dice) for more information or contact DICE by email (DICE@fda.hhs.gov) or phone (1-800-638-2041 or 301-796-7100).

Sincerely,

Michael E. Adjobda -S

for Srinivas “Nandu” Nandkumar, Ph.D.
Director
DHT1B: Division of Dental Devices
OHT1: Office of Ophthalmic, Anesthesia, Respiratory, ENT and Dental Devices
Office of Product Evaluation and Quality Center for Devices and Radiological Health

Enclosure
Indications for Use

Porcine Mineral Collagen Composite Moldable is indicated for:

- Augmentation or reconstructive treatment of alveolar ridge
- Filling of infrabony periodontal defects
- Filling of defects after root resection, apicoectomy, and cystectomy
- Filling of extraction sockets to enhance preservation of the alveolar ridge
- Elevation of maxillary sinus floor
- Filling of periodontal defects in conjunction with products intended for Guided Tissue Regeneration (GTR) and Guided Bone Regeneration (GBR)
- Filling of peri-implant defects in conjunction with products intended for Guided Bone Regeneration.

Type of Use (Select one or both, as applicable)

- [x] Prescription Use (Part 21 CFR 801 Subpart D)
- [] Over-The-Counter Use (21 CFR 801 Subpart C)

CONTINUE ON A SEPARATE PAGE IF NEEDED.

This section applies only to requirements of the Paperwork Reduction Act of 1995.

DO NOT SEND YOUR COMPLETED FORM TO THE PRA STAFF EMAIL ADDRESS BELOW.

The burden time for this collection of information is estimated to average 79 hours per response, including the time to review instructions, search existing data sources, gather and maintain the data needed and complete and review the collection of information. Send comments regarding this burden estimate or any other aspect of this information collection, including suggestions for reducing this burden, to:

Department of Health and Human Services
Food and Drug Administration
Office of Chief Information Officer
Paperwork Reduction Act (PRA) Staff
PRASTaff@fda.hhs.gov

"An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB number."
510(k) SUMMARY

1. Applicant Information

Applicant Name: Collagen Matrix, Inc.
Address: 15 Thornton Road
 Oakland, New Jersey 07436
Telephone: (201) 405-1477
Fax: (201) 405-1355
Contact Person: Gloria Zuchlich
 Director of Regulatory Affairs
 gzuchlich@collagenmatrix.com
Date Prepared: September 08, 2020

2. Name of the Device

Device Trade Name: Porcine Mineral Collagen Composite Moldable
Device Common Name(s): Bone Grafting Material
Device Classification Name: Bone Grafting Material, Animal Source
 872.3930
 NPM
 Class II

3. Legally Marketed Devices to Which Substantial Equivalence is Claimed

Primary Predicate Device: Porcine Anorganic Bone Mineral
 Collagen Matrix, Inc.
 K140714

Reference Device(s): Bio-Oss® Collagen
 Geistlich-Pharma AG
 K033815
 Collagen Dental Membrane – Porcine Type I
 Collagen
 Collagen Matrix, Inc.
 K110600
 Collagen Dental Wound Dressings
 Collagen Matrix, Inc.
 K122115

4. Description of the Device

Porcine Mineral Collagen Composite Moldable is an osteoconductive bone mineral with
collagen composite for bone grafting in periodontal, oral and maxillofacial surgery. The device is
composed of 90% anorganic bone mineral granules derived from porcine cancellous bone and 10% collagen from porcine Achilles tendon in a composite matrix. The product is supplied sterile, non-pyrogenic and for single use only.

Porcine Mineral Collagen Composite Moldable is provided in a block form and is available in three sizes, 0.5cc, 1.0cc, and 2.0cc.

5. Intended Use

Porcine Mineral Collagen Composite Moldable is indicated for:

- Augmentation or reconstructive treatment of alveolar ridge
- Filling of infrabony periodontal defects
- Filling of defects after root resection, apicoectomy, and cystectomy
- Filling of extraction sockets to enhance preservation of the alveolar ridge
- Elevation of maxillary sinus floor
- Filling of periodontal defects in conjunction with products intended for Guided Tissue Regeneration (GTR) and Guided Bone Regeneration (GBR)
- Filling of peri-implant defects in conjunction with products intended for Guided Bone Regeneration.

6. Summary/Comparison of Technical Characteristics

The subject device and the predicate device have the same indications for use. The subject device has substantially equivalent technological characteristics as the cited legally marketed predicate device. Differences include the physical form, material composition and product range volumes. Differences in the physical form and material composition have been determined to be minor and are substantiated when compared to that of the cited reference devices. The difference in product range volume offered for the subject device falls within the range supplied for the primary predicate device.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Porcine Mineral Collagen Composite Moldable (This Submission)</th>
<th>Porcine Anorganic Bone Mineral (K140714)</th>
<th>Bio-Oss® Collagen (K033815)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indications for Use</td>
<td>• Augmentation or reconstructive treatment of alveolar ridge</td>
<td>• Augmentation or reconstructive treatment of alveolar ridge</td>
<td>• Augmentation or reconstructive treatment of alveolar ridge</td>
</tr>
<tr>
<td></td>
<td>• Filling of infrabony periodontal defects</td>
<td>• Filling of infrabony periodontal defects</td>
<td>• Filling of periodontal defects</td>
</tr>
<tr>
<td></td>
<td>• Filling of defects after root resection, apicoectomy, and cystectomy</td>
<td>• Filling of defects after root resection, apicoectomy, and cystectomy</td>
<td>• Filling of defects after root resection, apicoectomy, and cystectomy</td>
</tr>
<tr>
<td></td>
<td>• Filling of extraction sockets to enhance preservation of the alveolar ridge</td>
<td>• Filling of extraction sockets to enhance preservation of the alveolar ridge</td>
<td>• Filling of extraction sockets to enhance preservation of the alveolar ridge</td>
</tr>
<tr>
<td></td>
<td>• Elevation of maxillary sinus floor</td>
<td>• Elevation of maxillary sinus floor</td>
<td>• Elevation of maxillary sinus floor</td>
</tr>
<tr>
<td></td>
<td>• Filling of periodontal</td>
<td>• Filling of periodontal</td>
<td>• Filling of periodontal</td>
</tr>
</tbody>
</table>
defects in conjunction with products intended for Guided Tissue Regeneration (GTR) and Guided Bone Regeneration (GBR). Filling of peri-implant defects in conjunction with products intended for Guided Bone Regeneration (GBR).

<table>
<thead>
<tr>
<th>Physical Form</th>
<th>Block Shaped</th>
<th>Granules</th>
<th>Block Shaped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>White to off-white</td>
<td>White to off-white</td>
<td>White to off-white</td>
</tr>
<tr>
<td>Material Composition</td>
<td>• Anorganic (porcine) bone mineral</td>
<td>• Anorganic (porcine) bone mineral</td>
<td>• Anorganic (bovine) bone mineral</td>
</tr>
<tr>
<td>• Purified (porcine) collagen</td>
<td>• Purified (porcine) collagen</td>
<td>• Purified (porcine) collagen</td>
<td></td>
</tr>
<tr>
<td>Product Range (volume)</td>
<td>0.5 cc to 2.0 cc</td>
<td>0.5 cc to 4.0 cc</td>
<td>0.2 cc to 1.2 cc</td>
</tr>
<tr>
<td>Biocompatibility</td>
<td>Biocompatible ISO 10993</td>
<td>Biocompatible ISO 10993</td>
<td>Biocompatible ISO 10993</td>
</tr>
<tr>
<td>Sterility</td>
<td>Sterile, SAL 10<sup>-6</sup> Gamma irradiation ISO 11137</td>
<td>Sterile, SAL 10<sup>-6</sup> Gamma irradiation ISO 11137</td>
<td>Sterile, SAL 10<sup>-6</sup> Gamma irradiation</td>
</tr>
<tr>
<td>Pyrogenicity</td>
<td>Non-pyrogenic</td>
<td>Non-pyrogenic</td>
<td>Non-pyrogenic</td>
</tr>
<tr>
<td>Single Use/ Reuse</td>
<td>Single use only</td>
<td>Single use only</td>
<td>Single use only</td>
</tr>
</tbody>
</table>

7. Performance Data

In vivo and in vitro testing of the subject device was conducted to demonstrate substantial equivalence of the subject device to its predicate devices. The following performance data are provided in support of the substantial equivalence determination.

Biocompatibility Testing

A series of in vitro and in vivo biocompatibility testing was performed to assess the safety of the subject device. Testing was determined in accordance with ISO 10993-1 and FDA Guidance on Use of International Standard ISO 10993-1 for the biological evaluation of medical devices within a risk management process. The biocompatibility testing performed is summarized in the table below.

<table>
<thead>
<tr>
<th>Test</th>
<th>Test Method</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytotoxicity</td>
<td>L929 MEM Elution Test, ISO 10993-5</td>
<td>Non-cytotoxic</td>
</tr>
<tr>
<td>Genotoxicity</td>
<td>Mouse Lymphoma Assay, ISO 10993-3</td>
<td>No evidence of causing increase in the mean mutant frequency of the L5178Y/TK+- cell line either in the presence or absence of metabolic inactivation. The test article was not mutagenic</td>
</tr>
<tr>
<td></td>
<td>Ames Assay</td>
<td>Non-mutagenic to Salmonella typhimurium and to Escherichia</td>
</tr>
</tbody>
</table>
Sensitization

<table>
<thead>
<tr>
<th>Test Method</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guinea Pig Maximization, ISO 10993-10</td>
<td>No evidence of causing delayed dermal contact sensitization in the guinea pig</td>
</tr>
</tbody>
</table>

Irritation Intracutaneous Reactivity

<table>
<thead>
<tr>
<th>Test Method</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO Intracutaneous Reactivity in Rabbits, ISO 10993-10</td>
<td>No evidence of irritation or toxicity</td>
</tr>
</tbody>
</table>

Acute Systemic Toxicity

<table>
<thead>
<tr>
<th>Test Method</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Systemic Toxicity in Mice, ISO 10993-3</td>
<td>No mortality or evidence of systemic toxicity</td>
</tr>
</tbody>
</table>

Pyrogenicity

<table>
<thead>
<tr>
<th>Test Method</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>USP (151) Rabbit Pyrogen Study USP <85> Bacterial Endotoxin Test</td>
<td>Non-pyrogenic</td>
</tr>
</tbody>
</table>

Implantation

<table>
<thead>
<tr>
<th>Test Method</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implantation in Canine Intrabony Defect Model, ISO 10993-6</td>
<td>Minimum tissue reaction up to 13 weeks of implantation and no adverse tissue reaction to the host</td>
</tr>
</tbody>
</table>

Subacute / Subchronic / Chronic Toxicity

<table>
<thead>
<tr>
<th>Test Method</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implantation in Canine Intrabony Defect Model, ISO 10993-11</td>
<td>Minimum tissue reaction up to 13 weeks of implantation and no adverse tissue reaction to the host</td>
</tr>
</tbody>
</table>

Bench Testing

In vitro product characterization testing was performed to demonstrate substantial equivalence of the subject device to its predicate devices. A series of bench tests were conducted to evaluate material properties, biological properties, chemical and physical properties as indicated. Testing of the anorganic bone mineral component was conducted in accordance with ASTM F1581 Standard Specifications for Composition of Anorganic Bone for Surgical Implants.

<table>
<thead>
<tr>
<th>Test</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral Content</td>
<td>Mineral content similar to predicate device</td>
</tr>
<tr>
<td>Size</td>
<td>Volumes similar to predicate device</td>
</tr>
<tr>
<td>Calcium to Phosphate Ratio (mineral only)</td>
<td>Ratio similar to predicate device</td>
</tr>
<tr>
<td>Scanning Electron Micrograph (SEM)</td>
<td>Morphologies similar to reference device</td>
</tr>
<tr>
<td>X-Ray Diffraction</td>
<td>Similar diffraction patterns to reference device</td>
</tr>
<tr>
<td>IR Spectroscopy</td>
<td>Similar functional groups to reference device</td>
</tr>
<tr>
<td>Density</td>
<td>Appropriate density for sufficient porosity</td>
</tr>
<tr>
<td>pH</td>
<td>pH similar to predicate device</td>
</tr>
<tr>
<td>Absorbency</td>
<td>Absorbency similar to predicate device</td>
</tr>
<tr>
<td>Pyrogenicity</td>
<td>Non-pyrogenic</td>
</tr>
</tbody>
</table>
Animal Testing
The performance of the device in a canine one-wall intrabony defect model was compared to the performance of the reference device, Bio-Oss Collagen. Radiographic, Micro CT, Histology and Histomorphometry analyses were conducted following implantation at 4, 8, and 13 weeks for the subject device, reference device and sham negative control. The results demonstrate performance substantially equivalent to the reference device Bio-Oss Collagen when used as intended.

Animal Tissue Management
Animal tissues are managed in accordance with the following standards and guidance documents:

- ISO 22442-2 Animal Tissues and Their Derivatives Utilized in the Manufacture of Medical Devices – Part 2: Controls on Sourcing, Collection, and Handling
- ISO 22442-3 Animal Tissues and Their Derivatives Utilized in the Manufacture of Medical Devices – Part 3: Validation of the Elimination and/or Inactivation of Viruses and Transmissible Agents
- Medical Devices Containing Materials Derived from Animal Sources (Except for In Vitro Diagnostic Devices) Guidance for Industry and Food and Drug Administration Staff, CDRH, FDA, March 15, 2019

Sterilization
Sterilization validation was performed in accordance with ISO 11137-1 Sterilization of health care products – Radiation.

Shelf Life and Stability
Product and packaging stability was determined using real-time aging data. Performance testing of packaging system was tested in accordance with ASTM D4169 Standard Practice for Performance Testing of Shipping Containers and Systems.

Viral Inactivation
Viral inactivation studies were performed in accordance with ISO 22442-3 to ensure the viral safety of the product.

Clinical Studies
Clinical performance data was not required to determine substantial equivalence.

8. Conclusions Drawn from Non-clinical Studies

The conclusions drawn from the nonclinical tests demonstrate that the device is substantially equivalent to its predicate devices.