

June 7, 2023

Diagnostica Stago SAS % Anthony Dennis Director of US Market Access Diagnostica Stago Inc. 5 Century Drive Parsippany, New Jersey 07054

Re: K212183

Trade/Device Name: STA R Max 3, STA Compact Max 3

Regulation Number: 21 CFR 864.5425

Regulation Name: Multipurpose System For In Vitro Coagulation Studies

Regulatory Class: Class II

Product Code: JPA

Dated: September 30, 2022 Received: October 5, 2022

Dear Anthony Dennis:

We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. Although this letter refers to your product as a device, please be aware that some cleared products may instead be combination products. The 510(k) Premarket Notification Database located at https://www.accessdata.fda.gov/scripts/cdrh/efdocs/efpmn/pmn.cfm identifies combination product submissions. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties. We remind you, however, that device labeling must be truthful and not misleading.

If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to additional controls. Existing major regulations affecting your device can be found in the Code of Federal Regulations, Title 21, Parts 800 to 898. In addition, FDA may publish further announcements concerning your device in the <u>Federal Register</u>.

Please be advised that FDA's issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal

statutes and regulations administered by other Federal agencies. You must comply with all the Act's requirements, including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Part 801 and Part 809); medical device reporting (reporting of medical device-related adverse events) (21 CFR 803) for devices or postmarketing safety reporting (21 CFR 4, Subpart B) for combination products (see https://www.fda.gov/combination-products/guidance-regulatory-information/postmarketing-safety-reporting-combination-products); good manufacturing practice requirements as set forth in the quality systems (QS) regulation (21 CFR Part 820) for devices or current good manufacturing practices (21 CFR 4, Subpart A) for combination products; and, if applicable, the electronic product radiation control provisions (Sections 531-542 of the Act); 21 CFR 1000-1050.

Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21 CFR Part 807.97). For questions regarding the reporting of adverse events under the MDR regulation (21 CFR Part 803), please go to https://www.fda.gov/medical-device-problems.

For comprehensive regulatory information about medical devices and radiation-emitting products, including information about labeling regulations, please see Device Advice (https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance) and CDRH Learn (https://www.fda.gov/training-and-continuing-education/cdrh-learn). Additionally, you may contact the Division of Industry and Consumer Education (DICE) to ask a question about a specific regulatory topic. See the DICE website (https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/contact-us-division-industry-and-consumer-education-dice">https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/contact-us-division-industry-and-consumer-education-dice) for more information or contact DICE by email (DICE@fda.hhs.gov) or phone (1-800-638-2041 or 301-796-7100).

Sincerely,

Min Wu, Ph.D.
Branch Chief
Division of Immunology and Hematology Devices
OHT7: Office of In Vitro Diagnostics
Office of Product Evaluation and Quality
Center for Devices and Radiological Health

Enclosure

DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration

Indications for Use

510(k) Number (if known)

Form Approved: OMB No. 0910-0120 Expiration Date: 06/30/2020

See PRA Statement below.

K212183
Device Name
STA R Max 3® and STA Compact Max 3®
Indications for the (Describe)
Indications for Use (Describe) The STA R Max 3® and STA Compact Max 3® are fully automatic clinical analyzers designed to be used by professional
laboratory personnel and to perform tests on human venous plasmas (in 3.2% trisodium citrate tubes) the results of which
aid in the diagnosis of coagulation abnormalities or in monitoring anticoagulant therapy.
and in the diagnosis of congulation donormanaes of in monitoring unitoongulant therapy.
Type of Use (Select one or both, as applicable)
Prescription Use (Part 21 CFR 801 Subpart D) Over-The-Counter Use (21 CFR 801 Subpart C)

CONTINUE ON A SEPARATE PAGE IF NEEDED.

This section applies only to requirements of the Paperwork Reduction Act of 1995.

DO NOT SEND YOUR COMPLETED FORM TO THE PRA STAFF EMAIL ADDRESS BELOW.

The burden time for this collection of information is estimated to average 79 hours per response, including the time to review instructions, search existing data sources, gather and maintain the data needed and complete and review the collection of information. Send comments regarding this burden estimate or any other aspect of this information collection, including suggestions for reducing this burden, to:

Department of Health and Human Services Food and Drug Administration Office of Chief Information Officer Paperwork Reduction Act (PRA) Staff PRAStaff@fda.hhs.gov

"An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB number."

510(k) SUMMARY

This 510(k) summary of safety and effectiveness is submitted in accordance with the requirements of 21 CFR 807.92 and follows FDA guidance 'The 510(k) Program: Evaluating Substantial Equivalence in Premarket Notifications [510(k)]', issued July 28, 2014.

1. Submitter

Diagnostica Stago, Inc.

5 Century Drive

Parsippany, NJ 07054

Primary Contact: Anthony Dennis, RAC, CBA (ASQ), MBA

Director, US Market Access

Phone: $1 - (973) - 775 - 1200 \times 4162$

On Behalf of: Diagnostica Stago SAS

Date: 12 July 2021; Revised 05 June 2023

2. Device

Device Name: STA R Max 3[®] / STA Compact Max 3[®]

Common Name: Automated Coagulation Analyzer

Classification Name: System, Multipurpose for In Vitro Coagulation Studies

Regulatory Class: Class II
Panel: Hematology

Product Code: JPA

Regulation Number 21 CFR 864.5424

Note that as a successor of earlier instruments in their respective families, reference to "STA R Max 3" or "Compact Max 3" is in reference to these families of analyzers with the aforementioned improvements. As such, elements in this submission, such as the intended use below are not version specific.

Intended Use:

The STA R Max 3® and STA Compact Max 3® are fully automatic clinical analyzers designed to be used by professional laboratory personnel and to perform tests on human venous plasmas (in 3.2% trisodium citrate tubes) the results of which aid in the diagnosis of coagulation abnormalities or in monitoring anticoagulant therapy.

3. Predicate Device

Device Name: STA R Max[®] (K151867) / STA Compact Max[®] (K130090)

Common Name: Automated Coagulation Analyzer

Classification Name: System, Multipurpose for In Vitro Coagulation Studies

Regulatory Class: Class II
Panel: Hematology

Product Code: JPA

Regulation Number 21 CFR 864.5424

The predicate has not been subject to design-related recalls for any of the applications associated with this premarket notification. No reference devices were used in this submission.

4. Device Description / Test Principle

4.1.1. STA R Max 3[®] and STA Compact Max 3[®] Test Principle

The technological characteristics are the same for all STA R Max[®] Family and STA Compact Max[®] family analyzers, including STA R Max 3[®] and STA Compact Max 3[®], which is based on two measurement principles.

• Chronometric measurement principle:

The principle consists of measuring the variation of the metal ball oscillation amplitude through inductive sensors. The ball has a pendula movement due to an alternating electromagnetic field generated by two independent drive coils and two curved rail tracks in the bottom of the cuvettes. The oscillation amplitude is constant when the viscosity of the reaction volume in the cuvette remains constant.

The oscillation amplitude decreases when the viscosity of the reaction volume in the cuvette increases. The amplitude of the oscillation ball is analyzed to determine coagulation time in the cuvette.

• Photometry measurement principle:

The principles consists of measuring the variation of absorbance (optical density, O.D.) of monochromatic light (405 nm or 540 nm) passing through a cuvette as an enzymatic or immunological reaction takes place.

The variation of absorbance is analyzed to determine enzymatic activity or quantification (by immune aggregation) of factors related to coagulation.

4.1.2. STA R Max 3® Device Description

Diagnostica Stago's STA R Max 3[®] analyzers are modified versions of the STA R Max® analyzer, originally cleared for marketing by the FDA under K151867 as an in-vitro diagnostic device.

The STA-R family of analyzers is composed of:

- STAR® cleared in 1998: K983460
- STA-R Evolution® cleared in 2008: K082675
- STA-R Evolution® Expert Series cleared in 2009: K093001
- STA R Max® cleared in 2015: K151867

All these analyzers are fully automatic systems designed to perform tests on human plasmas and to study coagulation parameters.

Samples and test reagents are loaded into the instrument where sample handling, reagent delivery, analysis and reporting of results are performed automatically. A central processing unit controls the instrument such as, management of patient results, quality control, system supervision, support for instrument maintenance and workload optimization.

The analyzers use Diagnostica Stago reagents in addition to open adaptation of other available reagents. The instrument performs multiple test methodologies in random access, as selected by the user. These include clotting time or clot-based tests (i.e. chronometric measures) and photometric assays on plasma samples.

All the information on the analyzers, intended use and description, come from the instrument manual/labeling, which is the same for all STA R Max® family of analyzers (VOL_013, Labeling).

4.1.3. STA Compact Max 3® Device Description

Diagnostica Stago's STA Compact Max®3 analyzers are modified versions of the STA Compact Max® analyzer, originally cleared for marketing by the FDA under K130090 as an in-vitro diagnostic device.

The STA Compact® family of analyzers is composed of:

- STA Compact cleared in 1996: K961579, K093167
- STA Compact with Cap piercing Options cleared in 1996, with an add to file
- STA Compact Max cleared in 2013: K130090

All these analyzers are fully automatic systems designed to perform tests on human plasmas, the results of which aid in the diagnosis of coagulation abnormalities or in monitoring anticoagulant therapy.

Once samples and test reagents are loaded onto the instrument, sample handling, reagent delivery, analysis and reporting of results are performed automatically. A central processing unit controls instrument functions, including management of patient's results, quality control, scheduling of instrument maintenance and workload organization.

The analyzers use Diagnostica Stago reagents in addition to open adaptation of other available reagents. The instrument performs multiple test methodologies in random access, as selected by the user. These include clotting time or clot-based tests (i.e. chronometric measures) and photometric assays on plasma samples.

All the information on the analyzers, intended use and description, come from the instrument manual/labeling, which is the same for all Compact Max® family of analyzers (VOL_013, Labeling).

4.1.4. Change to Control of Fluidic System and Addition of HIL Module

To facilitate in user maintenance and manufacturing process, the PSR module has been designed to replace the Hamilton syringes and Valcor pump of the fluidic circuit on all Diagnostica Stago analyzers.

The HIL module is a detection module developed to estimate interferences (Hemoglobin, Icterus, Lipemia) which may affect chromogenic and immune-turbidimetric tests. The analysis is performed before delivery in the cuvette and provides results of an index of interferences concentration to the biologist (display of the data on screen monitor). The plasma sample is not altered during HIL evaluation.

4.1.5. Reagent Applications in this 510(k) Notification

Five assays were used to demonstrate substantial equivalence, i.e. STA® - Neoplastine CI Plus (10), STA® - PTTA (5), STA® - STA® - STA8 - STA9 - STA8 - STA9 - ST

Sample Dilution Measuring Reagent Set-up Prior Assay **Principle** Set-Up regulatory clearance (K#) STA® - Neoplastine Only the third K922040 Chronometric Undiluted CI Plus (10) needle Second and third K861190 STA® - PTTA (5) Chronometric Undiluted needles for reagent STA® - Fibrinogen Only the third K840211 Chronometric Diluted needle (5) STA® - Stachrom Second and third K832592 Chromogenic Diluted ATIII (6) needles for reagent Immuno-Second and third K162227 STA® - Liatest DDi Undiluted turbidimetric needles for reagent

Table 1: Description of the test configurations for the assays used for validation

The intended Environment of Use is a clinical central/hospital laboratory.

5. Substantial Equivalence

Table 2: STA R Max 3 Similarities Between Candidate and Predicate Devices

Attributes or Characteristics	Predicate Device STA R Max (K151867)	Candidate Device STA R Max 3	
Regulatory Classification	JPA, Class II System, Multipurpose for in vitro coagulation studies	Same	
Indications for use	The STA R Max is a fully automatic clinical instrument designed to perform tests on human plasmas, the results of which aid in the diagnosis of coagulation abnormalities or in monitoring anticoagulant therapy.	The STA R Max 3® and STA Compact Max 3® are fully automatic clinical analyzers designed to be used by professional laboratory personnel and to perform tests on human venous plasmas (in 3.2% trisodium citrate tubes) the results of which aid in the diagnosis of coagulation abnormalities or in monitoring anticoagulant therapy	
Anatomical Sites	In vitro testing of human plasma	Same	
Sample Matrix	Human plasma 3.2% sodium citrate	Same	
Where Used: hospital, home, ambulance, etc.	Hospital Laboratory or other Health Care Laboratory.	Health Care Same	

Attributes or Characteristics	Predicate Device STA R Max (K151867)	Candidate Device STA R Max 3	
Measurement Principle	Chronometric method (clotting time): mechanical measurement of the oscillation of the metal ball placed in the cuvette Photometric method: light absorption technique provided by a filtered light source (405nm, 540nm).	Same	
Cap Piercing	Available as an option	Available as an option with HIL pre- analytical module. New needle connector, new cap piercing foot and evolution of the lock system.	
Control of Fluidic System	Valcor pump and Hamilton syringes	PSR (Pipettor Simple Resolution) in replacement of Valcor pump and Hamilton syringes	
Needles	One sample, Two reagent	Same	
Operating Environment Temperature	59° - 89.5°F	Same	
User/Patient Data Input Touchscreen, keyboard, and/or barcode scanner Same		Same	
Specimen Processing	Automatic pipetting and dilution	Same	
Random Access	Yes	Same	
Liquid Level Sensing	Yes	Same	
Stat Testing	Yes	Same	
Parameters	Prothrombin Time (PT) seconds, PT INR, Activated Partial Thromboplastin Time (APTT), Fibrinogen, Thrombin Time (TT), Reptilase, Extrinsic pathway factors, Intrinsic pathway factors, Anti-Xa (UFH, LMWH), Antithrombin (AT) activity, D-Dimer, Protein C activity, Protein S activity, Free Protein S antigen, Lupus anticoagulant, vWF antigen, Plasminogen	Same	

Table 3: STA R Max 3 Differences Between Candidate and Predicate Devices

Attributes or Characteristics	Predicate Device STA R Max (K151867)	Candidate Device STA R Max 3
HIL Pre-analytical Module	Avalable as an option: Semi quant determination of hemolysis, icterus Lipemia (HIL) in patient plasma, r as indices according to CLSI C56-document. No predefined alerts are in the analyzer; users are responsible setting thresholds according to pra Any evaluation of indices as poten interfering substances are left to thusers.	
Data Storage Capacity	160 GB	320 GB
Software	Windows XP	Windows 10
Cybersecurity	In 2019, Stago implemented a new PC-Gen with a new Windows 10 Operating System (OS), updated software, and the introduction of cybersecurity via internal documentation agreed with FDA during Q181507.	Introduced with user account management (reinforced passwords, restrictive access, log history), firewall, antivirus, and data encryption.

Table 4: STA Compact Max 3 Similarities Between Candidate and Predicate Devices

Attributes or Characteristics	Predicate Device STA Compact Max (K130090)	Candidate Device STA Compact Max 3	
Regulatory Classification	JPA, Class II System, Multipurpose for in vitro coagulation studies	Same	
Indications for use	The STA Compact Max is a fully automatic clinical analyzer designed to perform tests on human plasmas, the results of which aid in the diagnosis~ of coagulation abnormalities or in monitoring anticoagulant therapy.	The STA R Max 3® and STA Compact Max 3® are fully automatic clinical analyzers designed to be used by professional laboratory personnel and to perform tests on human venous plasmas (in 3.2% trisodium citrate tubes) the results of which aid in the diagnosis of coagulation abnormalities or in monitoring anticoagulant therapy.	
Anatomical Sites In vitro testing of human plasma		Same	
Sample Matrix Human plasma 3.2% sodium citrate		Same	
Where Used: hospital, home, ambulance, etc.	Hospital Laboratory or other Health Care Laboratory.	Same	
Measurement Principle	Chronometric method (clotting time): mechanical measurement of the oscillation of the metal ball placed in the cuvette Photometric method: light absorption technique provided by a filtered light source	Same	

Attributes or Characteristics	Predicate Device STA Compact Max (K130090)	Candidate Device STA Compact Max 3	
	(405nm, 540nm).		
Cap Piercing	Available as an option	Available as an option with HIL pre- analytical module. New needle connector, new cap piercing foot and evolution of the lock system.	
Control of Fluidic System	Valcor pump and Hamilton syringes	PSR (Pipettor Simple Resolution) in replacement of Valcor pump and Hamilton syringes	
Needles	One sample, Two reagent	One sample, Two reagent	
Operating Environment Temperature	59° - 89.5°F	Same	
User/Patient Data Input	Touchscreen, keyboard, and/or barcode scanner	Same	
Specimen Processing	ecimen Processing Automatic pipetting and dilution Same		
Random Access	Yes	Same	
Liquid Level Sensing	Yes	Same	
Stat Testing	Yes	Same	
Prothrombin Time (PT) seconds, I Activated Partial Thromboplastin (APTT), Fibrinogen, Thrombin Ti (TT), Reptilase, Extrinsic pathway factors, Intrinsic pathway factors, (UFH, LMWH), Antithrombin (A' activity, D-Dimer, Protein C activ Protein S activity, Free Protein S a Lupus anticoagulant, vWF antigen Plasminogen		Same	

Table 5: STA Compact Max 3 Differences Between Candidate and Predicate Devices

Attributes or Characteristics	Predicate Device Candidate Device STA Compact Max (K130090) STA Compact Max		
HIL Pre-analytical Module	Not available	Avalable as an option: Semi quantitative determination of hemolysis, icterus and Lipemia (HIL) in patient plasma, reported as indices according to CLSI C56-A document. No predefined alerts are set-up in the analyzer; users are responsible for setting thresholds according to practices. Any evaluation of indices as potential interfering substances are left to the end users.	
Data Storage Capacity	160 GB	320 GB	
Software	Windows XP	Windows 10	
Cybersecurity	In 2019, Stago implemented a new PC-Gen with a new Windows 10 Operating System (OS), updated software, and the introduction of cybersecurity via internal documentation agreed with FDA during Q181507.	Introduced with user account management (reinforced passwords, restrictive access, log history), firewall, antivirus, and data encryption.	

Standards/Guidance Documents Referenced:

- CLSI EP09c, Method Comparison and Bias Estimation Using Patient Samples; Approved Guideline
- CLSI EP05-A3, Evaluation of Precision of Quantitative Measurement Procedures; Approved Guideline

 Third Edition.

Performance Data

The following performance data were provided in support of the substantial equivalence determination.

Method Comparison: STA R Max 3

Method comparison studies designed according to CLSI EP09c recommendations were conducted at three external sites.

Samples were selected in order to cover the entire measuring range of each assay and measured on both the predicate device (STA R Max) and subject device (STA R Max 3). Results were compared by either Passing & Bablok or Deming regression analysis based on the distribution. The following summary shows the results of this analysis without outliers across the analytical measuring range and targeted medical decision points per parameter.

STA R Max 3: STA - Neoplastine CI Plus Passing-Bablok Regression Numerical Results

Site	Slope	Intercept	r _{Spearman}
	(95% CI)	(95% CI)	(95% CI)
All Sites	0.98 (0.97 to 0.98)	0.20 sec (0.06 to 0.30)	0.997 (0.996 to 0.998)

STA R Max 3: STA – PTTA Passing-Bablok Regression Numerical Results

Site	Slope (95% CI)	Intercept (95% CI)	r _{Spearman} (95% CI)
All Sites	1.00 (0.98 to 1.01)	-0.32 (-1.02 to 0.32)	0.997 (0.996 to 0.998)

STA R Max 3: STA - Fibrinogen Passing-Bablok Regression Numerical Results

Site	Slope (95% CI)	Intercept (95% CI)	r _{Spearman} (95% CI)
All Sites	1.01	4.26 mg/dL	0.996 (0.995
	(0.99 to 1.03)	(-1.83; 10.14)	to 0.997)

STA R Max 3: STA - Stachrom ATIII Passing-Bablok Regression Numerical Results

Site	Slope	Intercept	r _{Spearman}
	(95% CI)	(95% CI)	(95% CI)
All Sites	1.03 (1.00 to 1.07)	-1.03% (-3.15; 2.00)	0.980 (0.972 to 0.985)

STA R Max 3: STA - Liatest D-DI Passing-Bablok Regression Numerical Results

Site	Slope	Intercept	r _{Spearman}
	(95% CI)	(95% CI)	(95% CI)
All Sites	1.02 (1.01 to 1.03)	-0.02 μg/mL (-0.04; 0,01)	0.998 (0.998 to 0.999)

Method Comparison: STA Compact Max 3

Method comparison studies designed according to CLSI EP09c recommendations were conducted at three external sites.

Samples were selected in order to cover the entire measuring range of each assay and measured on both the predicate device (STA Compact Max) and subject device (STA Compact Max 3). Results were compared by either Passing & Bablok or Deming regression analysis based on the distribution. The following summary shows the results of this analysis without outliers across the analytical measuring range and targeted medical decision points per parameter.

STA Compact Max 3: STA - Neoplastine CI Plus Passing-Bablok Regression Numerical Results

Site	Slope (95% CI)	Intercept (95% CI)	r _{Spearman} (95% CI)
All Sites	0.99 (0.98	0.20 sec (0.05	0.994 (0.993
	to 1.00)	to 0.35)	to 0.996)

STA Compact Max 3: STA – PTTA Passing-Bablok Regression Numerical Results

Site	Slope	Intercept	r _{Spearman}
	(95% CI)	(95% CI)	(95% CI)
All Sites	0.99 (0.97	0.06 sec (-0.56	0.996 (0.995
	to 1.00)	to 0.81)	to 0.997)

STA Compact Max 3: STA - Fibrinogen Passing-Bablok Regression Numerical Results

Site	Slope (95% CI)	Intercept (95% CI)	r _{Spearman} (95% CI)
All Sites	1.01 (1.00	4.94 mg/dL	0.995 (0.993
An Sites	to 1.03)	(0.67 to 11.25)	to 0.996)

STA Compact Max 3: STA – Stachrom ATIII Passing-Bablok Regression Numerical Results

Site	Slope	Intercept	r _{Spearman} (95%
	(95% CI)	(95% CI)	CI)
All Sites	1.00 (1.00 to 1.03)	0.00% (-1.63 to 0.00)	0.981 (0.975 to 0.986)

STA Compact Max 3: STA - Liatest D-DI Passing-Bablok Regression Numerical Results

Site	Slope	Intercept	r _{Spearman}
	(95% CI)	(95% CI)	(95% CI)
All Sites	1.02 (1.01	-0.01 μg/mL	0.997 (0.996
	to 1.03)	(-0.04 to 0.01)	to 0.998)

Method Comparison: HIL

The candidate instrument STA R Max 3 was compared to the reference methods, cobas[®] 8000 modular analyzer (Hemolyis, Icterus, and Lipemia) and spectrophotometer (Lipemia) in a method comparison study performed in accordance with CLSI EP09c guideline at one site.

Hemolysis Passing-Bablok Regression

		S Dubion Hegi essi	
Analysis	Slope (95% CI)	Intercept (95% CI)	R Spearman (95% CI)
Hemolysis With Outliers	1.12 (1.08 to 1.19)	-0.03 g/L (-0.06 to -0.01)	0.954 (0.916 to 0.975)
Hemolysis Without Outliers	1.11 (1.07 to 1.14)	-0.03 g/L (-0.05 to -0.01)	0.948 (0.904 to 0.972)

Icterus Passing-Bablok Regression

Analysis	Slope (95% CI)	Intercept (95% CI)	R Spearman (95% CI)
Icterus	0.99 (0.96 to 1.07)	0.26 mg/dL (0.02 to 0.48)	0.956 (0.920 to 0.976)

Lipemia Linear Regression versus Spectrophotometer

Analysis	Regression coefficient (r)
Lipemia	0.91 ; P<0.001

Lipemia Linear Regression versus cobas® 8000

Analysis	Regression coefficient (r)
Lipemia	0.97 ; P<0.001

Precision/Reproducibility

Single-site precision testing was performed in accordance with CLSI EP05-A3 over 20 days at one external site. Three samples per parameter were tested across the applicable measuring ranges, with two runs per day and two replicates per day. Each run was at least two hours apart. The acceptance criteria were met for all samples in the studies.

PT (STA-Neoplastine CI Plus (10) (sec))

								<u>`</u>					
					STA-N	Veoplastin	e CI Plus	(sec)					
Analyzer	Sample	N	Mean	Within-Run			Between-Run (= Between-Operator)		Between-Day		Between-Instrument		in-Site
			sec	SD	CV(%)	SD	CV(%)	SD	CV(%)	SD	CV(%)	SD	CV(%)
	1	80	15.8	0.139	0.9	0.104	0.7	0.036	0.2			0.177	1.1
	2	80	39.7	0.243	0.6	0.417	1.1	0.000	0.0			0.483	1.2
403	3	80	61.1	0.415	0.7	0.606	1.0	0.326	0.5			0.804	1.3
	4	80	14.0	0.092	0.7	0.034	0.2	0.044	0.3			0.108	0.8
	5	80	24.0	0.186	0.8	0.176	0.7	0.000	0.0			0.256	1.1
	1	80	15.7	0.101	0.6	0.145	0.9	0.000	0.0			0.177	1.1
	2	80	39.5	0.188	0.5	0.309	0.8	0.170	0.4			0.400	1.0
404	3	80	60.7	0.376	0.6	0.691	1.1	0.271	0.4			0.832	1.4
	4	80	13.8	0.096	0.7	0.158	1.1	0.000	0.0			0.185	1.3
	5	80	23.7	0.165	0.7	0.294	1.2	0.000	0.0			0.337	1.4
	1	80	15.7	0.088	0.6	0.140	0.9	0.027	0.2			0.168	1.1
	2	80	39.5	0.306	0.8	0.326	0.8	0.181	0.5			0.483	1.2
426	3	80	60.6	0.281	0.5	0.723	1.2	0.048	0.1			0.777	1.3
	4	80	13.8	0.075	0.5	0.079	0.6	0.000	0.0			0.109	0.8
	5	80	23.8	0.158	0.7	0.147	0.6	0.027	0.1			0.218	0.9
	1	240	15.7	0.112	0.7	0.131	0.8	0.000	0.0	0.065	0.4	0.184	1.2
All	2	240	39.6	0.251	0.6	0.355	0.9	0.111	0.3	0.113	0.3	0.462	1.2
instruments	3	240	60.8	0.363	0.6	0.672	1.1	0.253	0.4	0.186	0.3	0.826	1.4
combined	4	240	13.9	0.088	0.6	0.104	0.7	0.000	0.0	0.105	0.8	0.172	1.2
	5	240	23.8	0.169	0.7	0.218	0.9	0.000	0.0	0.151	0.6	0.314	1.3

APTT (STA-PTTA (5) (sec))

						STA-PTT	A (sec	:)					
Analyzer	Sample	N	Mean	Withi	n-Run		en-Run n-Operator)	Betwe	en-Day	Between-	-Instrument	With	in-Site
			sec	SD	CV(%)	SD	CV(%)	SD	CV(%)	SD	CV(%)	SD	CV(%)
	1	80	31.5	0.195	0.6	0.238	0.8	0.000	0.0			0.308	1.0
	2	80	89.5	1.123	1.3	1.433	1.6	1.244	1.4			2.205	2.5
403	3	80	133.2	2.237	1.7	2.239	1.7	1.792	1.3			3.637	2.7
	4	80	31.9	0.138	0.4	0.167	0.5	0.000	0.0			0.216	0.7
	5	80	55.5	0.504	0.9	0.716	1.3	0.393	0.7			0.960	1.7
	1	80	31.5	0.185	0.6	0.253	0.8	0.000	0.0			0.313	1.0
	2	80	88.6	0.772	0.9	1.238	1.4	0.694	0.8			1.616	1.8
404	3	80	131.5	1.057	0.8	2.378	1.8	1.184	0.9			2.859	2.2
	4	80	31.9	0.116	0.4	0.167	0.5	0.000	0.0			0.203	0.6
	5	80	55.0	0.236	0.4	0.563	1.0	0.425	0.8			0.744	1.4
	1	80	31.2	0.165	0.5	0.244	0.8	0.000	0.0			0.294	0.9
	2	80	88.6	0.486	0.5	1.653	1.9	0.662	0.7			1.846	2.1
426	3	80	129.0	2.241	1.7	1.322	1.0	2.124	1.6			3.359	2.6
	4	80	31.6	0.165	0.5	0.189	0.6	0.000	0.0			0.251	0.8
	5	80	54.8	0.370	0.7	0.796	1.5	0.283	0.5			0.922	1.7
	1	240	31.4	0.181	0.6	0.244	0.8	0.000	0.0	0.152	0.5	0.340	1.1
All	2	240	88.9	0.837	0.9	1.456	1.6	0.897	1.0	0.441	0.5	1.955	2.2
instruments	3	240	131.2	1.935	1.5	2.035	1.6	1.734	1.3	2.003	1.5	3.861	2.9
combined	4	240	31.8	0.141	0.4	0.175	0.6	0.000	0.0	0.200	0.6	0.301	0.9
	5	240	55.1	0.388	0.7	0.700	1.3	0.367	0.7	0.330	0.6	0.940	1.7

FIB (STA-Fibrinogen (5) (mg/dL))

					STA	-Fibrinog	en (mg	/dL)					
Analyzer	Sample	N	Mean	Withi	n-Run		en-Run n-Operator)	Betwe	en-Day	Between-	Instrument	Withi	in-Site
			mg/dL	SD	CV(%)	SD	CV(%)	SD	CV(%)	SD	CV(%)	SD	CV(%)
	1	80	553	8.042	1.5	5.749	1.0	0.000	0.0			9.886	1.8
	2	80	736	10.434	1.4	8.252	1.1	0.000	0.0			13.303	1.8
403	3	80	992	20.287	2.0	0.000	0.0	8.186	0.8			21.876	2.2
	4	80	252	4.970	2.0	2.966	1.2	1.099	0.4			5.891	2.3
	5	80	110	1.761	1.6	1.204	1.1	0.000	0.0			2.133	1.9
	1	80	562	9.145	1.6	6.271	1.1	3.673	0.7			11.681	2.1
	2	80	747	12.298	1.6	7.388	1.0	5.236	0.7			15.272	2.0
404	3	80	1021	16.929	1.7	7.893	0.8	3.941	0.4			19.090	1.9
	4	80	254	3.362	1.3	5.261	2.1	0.000	0.0			6.243	2.5
	5	80	110	1.419	1.3	0.935	0.9	0.222	0.2			1.714	1.6
	1	80	565	7.305	1.3	3.298	0.6	6.510	1.2			10.326	1.8
	2	80	752	12.748	1.7	6.718	0.9	3.415	0.5			14.808	2.0
426	3	80	1025	18.465	1.8	12.045	1.2	0.000	0.0			22.046	2.2
	4	80	262	5.527	2.1	0.000	0.0	2.157	0.8			5.933	2.3
	5	80	113	1.265	1.1	1.378	1.2	0.000	0.0			1.871	1.7
	1	240	560	8.221	1.5	5.282	0.9	4.104	0.7	6.208	1.1	12.283	2.2
All	2	240	745	11.893	1.6	7.442	1.0	3.140	0.4	8.405	1.1	16.653	2.2
instruments	3	240	1013	18.689	1.8	7.642	0.8	1.630	0.2	17.832	1.8	26.987	2.7
combined	4	240	256	4.719	1.8	3.237	1.3	0.521	0.2	2.167	0.8	7.728	3.0
	5	240	111	1.501	1.4	1.189	1.1	0.000	0.0	1.556	1.4	2.467	2.2

AT (STA-Stachrom ATIII 6 (%))

				AI	(S1A-S	taciii oii	IAIIII	((/0))					
					STA	Stachron	ATIII	(%)					
Analyzer	Sample	N	Mean	With	in-Run		en-Run n-Operator)	Betwee	en-Day	Between-	Instrument	With	in-Site
-	_		%	SD	CV(%)	SD	CV(%)	SD	CV(%)	SD	CV(%)	SD	CV(%)
	1	80	31	1.251	4.0	1.332	4.3	0.000	0.0			1.828	5.9
	2	80	71	1.043	1.5	2.234	3.1	0.000	0.0			2.466	3.5
403	3	80	113	1.347	1.2	2.461	2.2	0.000	0.0			2.806	2.5
	4	80	99	1.265	1.3	1.479	1.5	0.000	0.0			1.947	2.0
	5	80	46	0.873	1.9	1.364	3.0	0.000	0.0			1.619	3.5
	1	80	31	1.045	3.4	1.989	6.4	0.000	0.0			2.247	7.2
	2	80	70	1.172	1.7	1.755	2.5	0.000	0.0			2.111	3.0
404	3	80	111	1.574	1.4	1.362	1.2	0.000	0.0			2.081	1.9
	4	80	98	1.277	1.3	2.143	2.2	0.000	0.0			2.494	2.5
	5	80	46	0.665	1.4	1.924	4.2	0.000	0.0			2.036	4.4
	1	80	31	1.160	3.7	1.962	6.3	0.000	0.0			2.280	7.4
	2	80	72	0.998	1.4	1.854	2.6	0.891	1.2			2.286	3.2
426	3	80	114	1.324	1.2	1.259	1.1	0.807	0.7			1.997	1.8
	4	80	101	1.226	1.2	1.670	1.7	0.440	0.4			2.118	2.1
	5	80	46	0.802	1.7	2.036	4.4	0.000	0.0			2.188	4.8
4.11	1	240	31	1.159	3.7	1.791	5.8	0.000	0.0	0.000	0.0	2.133	6.9
All	2	240	71	1.064	1.5	1.962	2.8	0.177	0.2	0.827	1.2	2.387	3.4
instruments combined	3	240	113	1.425	1.3	1.781	1.6	0.000	0.0	1.723	1.5	2.858	2.5
comomed	4	240	99	1.260	1.3	1.790	1.8	0.000	0.0	1.480	1.5	2.643	2.7
	5	240	46	0.788	1.7	1.802	3.9	0.000	0.0	0.197	0.4	1.976	4.3

D-Dimer (STA-Liatest D-DI (µg/mL))

							D-DI (µg/1		<i>,,</i>				
Analyzer	Sample	N	Mean	Withi	n-Run		en-Run n-Operator)	Betwe	en-Day	Between-	Instrument	Withi	in-Site
	_		μg/mL	SD	CV(%)	SD	CV(%)	SD	CV(%)	SD	CV(%)	SD	CV(%)
	1	80	0.53	0.036	6.8	0.021	4.0	0.000	0.0			0.042	7.9
	2	80	7.16	0.242	3.4	0.106	1.5	0.048	0.7			0.268	3.7
403	3	80	16.04	0.369	2.3	0.143	0.9	0.000	0.0			0.396	2.5
	4	80	0.27	0.011	4.1	0.000	0.0	0.000	0.0			0.011	4.1
	5	80	2.21	0.055	2.5	0.000	0.0	0.000	0.0			0.055	2.5
	1	80	0.59	0.043	7.3	0.020	3.4	0.022	3.7			0.052	8.8
	2	80	7.45	0.231	3.1	0.138	1.9	0.000	0.0			0.269	3.6
404	3	80	16.61	0.337	2.0	0.214	1.3	0.000	0.0			0.399	2.4
	4	80	0.28	0.025	8.9	0.009	3.2	0.000	0.0			0.026	9.3
	5	80	2.25	0.044	2.0	0.018	0.8	0.000	0.0			0.047	2.1
	1	80	0.56	0.034	6.1	0.024	4.3	0.000	0.0			0.041	7.3
	2	80	7.38	0.157	2.1	0.079	1.1	0.093	1.3			0.199	2.7
426	3	80	16.14	0.272	1.7	0.165	1.0	0.075	0.5			0.327	2.0
	4	80	0.28	0.013	4.6	0.011	3.9	0.000	0.0			0.017	6.1
	5	80	2.23	0.034	1.5	0.02	0.9	0.019	0.9			0.043	1.9
	1	240	0.56	0.038	6.8	0.020	3.6	0.009	1.6	0.033	5.9	0.055	9.8
All	2	240	7.33	0.212	2.9	0.108	1.5	0.029	0.4	0.145	2.0	0.280	3.8
instruments	3	240	16.26	0.328	2.0	0.174	1.1	0.000	0.0	0.298	1.8	0.477	2.9
combined	4	240	0.28	0.017	6.1	0.008	2.9	0.000	0.0	0.006	2.1	0.020	7.1
	5	240	2.23	0.045	2.0	0.007	0.3	0.000	0.0	0.021	0.9	0.050	2.2

STA Compact Max 3

PT (STA-Neoplastine CI Plus (10) (sec))

					STA-N	eoplastine	CI Plus	(sec)					
Analyzer	Sample	N	Mean	Withi	Within-Run		en-Run n-Operator)	Betwe	en-Day	Between-	Instrument	Within-Site	
			sec	SD	CV(%)	SD	CV(%)	SD	CV(%)	SD	CV(%)	SD	CV(%)
	1	80	13.0	0.173	1.3	0.019	0.1	0.036	0.3			0.178	1.4
	2	80	38.2	0.232	0.6	0.477	1.2	0.315	0.8			0.617	1.6
3522	3	80	60.3	0.623	1.0	1.041	1.7	0.000	0.0			1.213	2.0
	4	80	14.0	0.089	0.6	0.096	0.7	0.000	0.0			0.131	0.9
	5	80	23.1	0.203	0.9	0.256	1.1	0.043	0.2			0.33	1.4
	1	80	12.8	0.152	1.2	0.065	0.5	0.065	0.5			0.178	1.4
	2	80	38.1	0.241	0.6	0.355	0.9	0.182	0.5			0.466	1.2
3524	3	80	59.2	0.521	0.9	0.795	1.3	0.000	0.0			0.95	1.6
	4	80	13.9	0.117	0.8	0.119	0.9	0.000	0.0			0.167	1.2
	5	80	23.0	0.254	1.1	0.239	1.0	0.142	0.6			0.376	1.6
	1	80	12.8	0.184	1.4	0.000	0.0	0.006	0.0			0.184	1.4
	2	80	38.0	0.297	0.8	0.471	1.2	0.276	0.7			0.621	1.6
3525	3	80	60.1	0.509	0.8	0.767	1.3	0.350	0.6			0.985	1.6
	4	80	14.0	0.084	0.6	0.104	0.7	0.000	0.0			0.133	1.0
	5	80	23.1	0.178	0.8	0.263	1.1	0.000	0.0			0.318	1.4
	1	240	12.9	0.171	1.3	0.000	0.0	0.041	0.3	0.068	0.5	0.188	1.5
All	2	240	38.1	0.259	0.7	0.439	1.2	0.261	0.7	0.079	0.2	0.578	1.5
instruments	3	240	59.8	0.553	0.9	0.880	1.5	0.000	0.0	0.568	0.9	1.185	2.0
combined	4	240	14.0	0.097	0.7	0.107	0.8	0.000	0.0	0.058	0.4	0.156	1.1
	5	240	23.1	0.213	0.9	0.254	1.1	0.061	0.3	0.081	0.4	0.347	1.5

APTT (STA-PTTA (5) (sec))

					S	STA-PTT	'A (sec	:)					
Analyzer	Sample	N	Mean	Withi	n-Run		een-Run n-Operator)	Betwe	en-Day	Between-	Instrument	Within-Site	
			sec	SD	CV(%)	SD	CV(%)	SD	CV(%)	SD	CV(%)	SD	CV(%)
	1	80	31.9	0.328	1.0	0.230	0.7	0.199	0.6			0.447	1.4
	2	80	102.2	1.114	1.1	1.972	1.9	2.174	2.1			3.140	3.1
3522	3	80	118.9	1.060	0.9	1.746	1.5	0.771	0.6			2.183	1.8
	4	80	32.8	0.409	1.2	0.011	0.0	0.105	0.3			0.422	1.3
	5	80	53.8	0.327	0.6	0.716	1.3	0.000	0.0			0.788	1.5
	1	80	31.7	0.199	0.6	0.372	1.2	0.173	0.5			0.456	1.4
	2	80	100.8	0.944	0.9	1.697	1.7	1.448	1.4			2.422	2.4
3524	3	80	121.3	1.010	0.8	1.950	1.6	1.202	1.0			2.503	2.1
	4	80	32.5	0.307	0.9	0.196	0.6	0.123	0.4			0.384	1.2
	5	80	53.9	0.338	0.6	0.695	1.3	0.353	0.7			0.850	1.6
	1	80	31.8	0.400	1.3	0.292	0.9	0.000	0.0			0.495	1.6
	2	80	100.9	1.036	1.0	1.158	1.1	1.327	1.3			2.043	2.0
3525	3	80	120.8	0.942	0.8	1.802	1.5	0.942	0.8			2.052	1.7
	4	80	32.7	0.355	1.1	0.202	0.6	0.147	0.4			0.435	1.3
	5	80	54.2	0.306	0.6	0.785	1.4	0.000	0.0			0.843	1.6
	1	240	31.8	0.321	1.0	0.302	0.9	0.152	0.5	0.104	0.3	0.478	1.5
All	2	240	101.3	1.037	1.0	1.648	1.6	1.685	1.7	0.591	0.6	2.642	2.6
instruments	3	240	120.4	1.009	0.8	1.820	1.5	0.866	0.7	1.217	1.0	2.562	2.1
combined	4	240	32.7	0.360	1.1	0.161	0.5	0.126	0.4	0.188	0.6	0.455	1.4
	5	240	54.0	0.318	0.6	0.727	1.3	0.135	0.3	0.146	0.3	0.818	1.5

FIB (STA-Fibrinogen (5) (mg/dL))

					STA	-Fibrinog	en (mg	/dL)					
Analyzer	Sample	N	Mean	Within	n-Run		en-Run n-Operator)	Betwe	en-Day	Between-	Instrument	Withi	n-Site
			mg/dL	SD	CV(%)	SD	CV(%)	SD	CV(%)	SD	CV(%)	SD	CV(%)
	1	80	555	14.551	2.6	15.116	2.7	8.198	1.5			22.526	4.1
	2	80	772	9.317	1.2	17.028	2.2	12.600	1.6			23.142	3.0
3522	3	80	1046	18.238	1.7	25.567	2.4	26.377	2.5			41.013	3.9
	4	80	270	5.106	1.9	5.780	2.1	0.000	0.0			7.713	2.9
	5	80	114	1.383	1.2	2.704	2.4	0.000	0.0			3.037	2.7
	1	80	551	15.199	2.8	5.415	1.0	16.011	2.9			22.731	4.1
	2	80	764	13.896	1.8	13.301	1.7	16.895	2.2			25.601	3.4
3524	3	80	1044	24.405	2.3	22.802	2.2	24.648	2.4			41.510	4.0
	4	80	269	5.835	2.2	4.141	1.5	3.700	1.4			8.055	3.0
	5	80	112	1.792	1.6	2.764	2.5	0.000	0.0			3.294	2.9
	1	80	557	11.584	2.1	7.269	1.3	10.763	1.9			17.404	3.1
	2	80	767	13.374	1.7	14.352	1.9	13.520	1.8			23.825	3.1
3525	3	80	1027	18.555	1.8	12.260	1.2	19.363	1.9			29.488	2.9
	4	80	270	4.503	1.7	3.834	1.4	4.965	1.8			7.722	2.9
	5	80	114	1.673	1.5	1.684	1.5	0.424	0.4			2.412	2.1
	1	240	554	13.892	2.5	10.152	1.8	12.092	2.2	0.000	0.0	21.030	3.8
All	2	240	768	12.404	1.6	15.003	2.0	14.391	1.9	0.343	0.0	24.211	3.2
instruments	3	240	1039	20.659	2.0	21.019	2.0	23.579	2.3	8.053	0.8	38.593	3.7
combined	4	240	270	5.094	1.9	4.666	1.7	3.654	1.4	0.000	0.0	7.815	2.9
	5	240	113	1.611	1.4	2.436	2.2	0.000	0.0	0.510	0.5	2.965	2.6

AT (STA-Stachrom ATIII 6) (%))

				711	(0111-0	taciii oii	IAIIII	<u> </u>					
					STA-	Stachron	n ATIII	(%)					
Analyzer	Sample	N	Mean	Withi	n-Run		en-Run n-Operator)	Betwe	en-Day	Between-	Instrument	Withi	in-Site
			%	SD	CV(%)	SD	CV(%)	SD	CV(%)	SD	CV(%)	SD	CV(%)
	1	80	22	1.064	4.8	0.969	4.4	0.000	0.0			1.439	6.5
	2	80	58	1.236	2.1	0.981	1.7	0.000	0.0			1.578	2.7
3522	3	80	109	0.975	0.9	1.027	0.9	0.000	0.0			1.416	1.3
	4	80	98	0.936	1.0	1.042	1.1	0.000	0.0			1.400	1.4
	5	80	41	2.049	5.0	0.000	0.0	0.304	0.7			2.071	5.1
	1	80	23	1.006	4.4	0.533	2.3	0.596	2.6			1.285	5.6
	2	80	58	0.924	1.6	0.875	1.5	0.000	0.0			1.273	2.2
3524	3	80	108	1.200	1.1	0.579	0.5	0.575	0.5			1.451	1.3
	4	80	97	1.047	1.1	0.705	0.7	0.731	0.8			1.459	1.5
	5	80	42	2.058	4.9	0.000	0.0	0.572	1.4			2.136	5.1
	1	80	24	0.802	3.3	1.111	4.6	0.000	0.0			1.370	5.7
	2	80	60	0.798	1.3	1.573	2.6	0.000	0.0			1.764	2.9
3525	3	80	110	0.859	0.8	0.998	0.9	0.000	0.0			1.317	1.2
	4	80	98	0.912	0.9	1.520	1.6	0.000	0.0			1.772	1.8
	5	80	44	1.598	3.6	0.810	1.8	0.542	1.2			1.872	4.3
	1	240	23	0.967	4.2	0.902	3.9	0.000	0.0	1.105	4.8	1.723	7.5
All	2	240	59	0.999	1.7	1.187	2.0	0.000	0.0	0.821	1.4	1.755	3.0
instruments	3	240	109	0.971	0.9	0.956	0.9	0.000	0.0	0.855	0.8	1.609	1.5
combined	4	240	98	0.959	1.0	1.152	1.2	0.000	0.0	0.916	0.9	1.757	1.8
	5	240	42	1.913	4.6	0.000	0.0	0.462	1.1	1.376	3.3	2.401	5.7

D-Dimer (STA-Liatest D-DI (µg/mL))

							D-DI (μg/r		,,				
Analyzer	Sample	N	Mean	Withi	n-Run		en-Run n-Operator)	Betwe	en-Day	Between-	Instrument	Within-Site	
			μg/mL	SD	CV(%)	SD	CV(%)	SD	CV(%)	SD	CV(%)	SD	CV(%)
	1	80	0.68	0.035	5.1	0.013	1.9	0.000	0.0			0.037	5.4
	2	80	7.88	0.158	2.0	0.045	0.6	0.000	0.0			0.165	2.1
3522	3	80	16.49	0.317	1.9	0.000	0.0	0.038	0.2			0.320	1.9
	4	80	0.33	0.036	10.9	0.000	0.0	0.000	0.0			0.036	10.9
	5	80	2.39	0.035	1.5	0.000	0.0	0.000	0.0			0.035	1.5
	1	80	0.66	0.038	5.8	0.010	1.5	0.000	0.0			0.040	6.1
	2	80	7.75	0.176	2.3	0.048	0.6	0.000	0.0			0.182	2.3
3524	3	80	15.72	0.275	1.7	0.142	0.9	0.000	0.0			0.309	2.0
	4	80	0.34	0.041	12.1	0.000	0.0	0.010	2.9			0.042	12.4
	5	80	2.30	0.036	1.6	0.014	0.6	0.005	0.2			0.039	1.7
	1	80	0.66	0.031	4.7	0.000	0.0	0.000	0.0			0.031	4.7
	2	80	7.56	0.173	2.3	0.000	0.0	0.000	0.0			0.173	2.3
3525	3	80	15.35	0.279	1.8	0.000	0.0	0.000	0.0			0.279	1.8
	4	80	0.33	0.026	7.9	0.000	0.0	0.011	3.3			0.029	8.8
	5	80	2.27	0.04	1.8	0.000	0.0	0.014	0.6			0.042	1.9
	1	240	0.66	0.035	5.3	0.009	1.4	0.000	0.0	0.012	1.8	0.038	5.8
All	2	240	7.73	0.169	2.2	0.038	0.5	0.000	0.0	0.162	2.1	0.238	3.1
instruments	3	240	15.85	0.291	1.8	0.063	0.4	0.000	0.0	0.581	3.7	0.653	4.1
combined	4	240	0.33	0.035	10.6	0.000	0.0	0.007	2.1	0.002	0.6	0.036	10.9
	5	240	2.32	0.037	1.6	0.000	0.0	0.005	0.2	0.065	2.8	0.075	3.2

Multi-site precision testing was performed in accordance with CLSI EP05-A3 over 5 days at three external sites. Three samples per parameter were tested across the applicable measuring ranges, with two runs per day and two replicates per day. Each run was at least two hours apart. The acceptance criteria were met for all samples in the studies. A summary of the within-run, between run, between day between site, and total precision is provided below.

STA R Max 3

	Assay	Sample	N	Mean	Withi	n-Run		en-Run -Operator)	Betwee	en-Day		en-Site -Instrument)	Total Precision	
					SD	CV(%)	SD	CV(%)	SD	CV(%)	SD	CV(%)	SD	CV(%)
	PT	CCN	90	13.8	0.116	0.8	0.000	0.0	0.080	0.6	0.067	0.5	0.156	1.1
	(sec)	CCP	90	22.8	0.227	1.0	0.221	1.0	0.000	0.0	0.149	0.7	0.350	1.5
	APTT	CCN	90	28.7	0.210	0.7	0.146	0.5	0.120	0.4	0.143	0.5	0.317	1.1
	(sec)	CCP	90	48.7	0.368	0.8	0.560	1.1	0.502	1.0	0.321	0.7	0.897	1.8
All 3 sites	FIB	CCN	90	304.0	8.413	2.8	2.472	0.8	0.000	0.0	5.272	1.7	10.231	3.4
combined	(mg/dL)	CCP	90	113	2.438	2.2	1.020	0.9	0.000	0.0	1.597	1.4	3.088	2.7
	AT	CCN	90	94.0	1.932	2.1	1.631	1.7	0.000	0.0	1.095	1.2	2.755	2.9
	(%)	CCP	90	45	0.960	2.1	1.604	3.6	0.000	0.0	0.689	1.5	1.993	4.4
	D-Dimer	LCN	90	0.31	0.027	8.7	0.008	2.6	0.008	2.6	0.014	4.5	0.033	10.6
	(μg/mL)	LCP	90	2.22	0.044	2.0	0.040	1.8	0.016	0.7	0.007	0.3	0.062	2.8

STA Compact Max 3

	Assay	Sample	N	Mean	Within	n-Run		en-Run -Operator)	Betwee	en-Day		en-Site ·Instrument)	Total P	recision
					SD	CV(%)	SD	CV(%)	SD	CV(%)	SD	CV(%)	SD	CV(%)
	PT	CCN	90	14.0	0.148	1.1	0.138	1.0	0.000	0.0	0.000	0.0	0.203	1.5
	(sec)	CCP	90	23.9	0.304	1.3	0.338	1.4	0.000	0.0	0.254	1.1	0.521	2.2
	APTT	CCN	90	28.3	0.224	0.8	0.235	0.8	0.123	0.4	0.333	1.2	0.481	1.7
	(sec)	CCP	90	47.0	0.330	0.7	1.316	2.8	0.000	0.0	0.439	0.9	1.426	3.0
All 3 sites	FIB	CCN	90	277	5.361	1.9	3.291	1.2	0.000	0.0	0.952	0.3	6.362	2.3
combined	(mg/dL)	CCP	90	115	1.745	1.5	2.331	2.0	0.000	0.0	0.000	0.0	2.912	2.5
	AT	CCN	90	98	1.130	1.2	2.106	2.1	0.938	1.0	1.068	1.1	2.781	2.8
	(%)	CCP	90	42	1.160	2.8	2.443	5.8	0.592	1.4	2.681	6.4	3.854	9.2
	D-Dimer	LCN	90	0.31	0.021	6.8	0.010	3.2	0.002	0.6	0.008	2.6	0.025	8.1
	$(\mu g/mL)$	LCP	90	2.30	0.056	2.4	0.031	1.3	0.022	1.0	0.042	1.8	0.08	3.5

HIL Interferences

Cross-interferences were assessed by spiking plasma with hemoglobin, bilirubin and lipids (Intralipid®) at various concentrations in order to provide combinations of HIL concentrations to assess HIL measurement sensitivity for each interfering substance in the presence of other interfering substances at various concentrations. Spiked plasmas were prepared and each interfering substance was represented by various concentrations distributed across the designated indices. Each spiked plasmas concentration was assayed in triplicate on two subject devices. All results obtained matched the index determination for the subject devices and the theoretical index.

Detection Limit
Not applicable

Assay Cut-off Not applicable

Clinical Studies Clinical Sensitivity

Not applicable

Clinical Specificity
Not applicable

Clinical Cut-off
Not applicable

Reference Interval Not applicable

CONCLUSION

The submitted information in this premarket notification is complete and supports a substantial equivalence decision.