Summary

Submitter's name: Diazyme Laboratories Division, General Atomics

Submitter's address: 3550 General Atomics Court
San Diego, CA 92121
Phone: 858-455-4761
Fax: 858-455-4750

Name of Contact Person: Huan Tran
Diazyme Laboratories Division
General Atomics
3550 General Atomics Court
San Diego, CA 92121
Phone: 858-455-4761
Fax: 858-455-4750

Date the summary was prepared: August 6, 2004

Name of the device: Sodium Enzymatic Assay
Trade Name: Diazyme Sodium Enzymatic Assay
Common/Usual Name: Enzymatic Assay, Sodium
Classification Name: Electrode, Ion Specific, Sodium
Device Class: II

Predicate Device:
The legally marketed device to which we are claiming equivalence [807.92(a)(3)]: Synchron LX I 725 Clinical System (K023049) manufactured by Beckman Coulter Inc., Brea, CA, USA.

Description of the devices

In healthy individual, an extracellular fluid level of sodium is regulated to maintain at 135-145mM. Small deviations from normal level can have severe health consequences. Monitoring serum sodium concentration is important in both routine check and emergency rooms. Currently, the two most commonly used methods to detect serum sodium are ion-selective electrode (ISE) and flame photometry. However, routine maintenance of these analyzers requires much effort and sometimes would be cumbersome. Diazyme’s Sodium Enzymatic assay is proven to be equivalent to ISE method but more user friendly in automated analyzers.
Sodium is determined enzymatically via sodium dependent β-galactosidase activity with ONPG as substrate. The absorbance at 405 nm of the product O-nitrophenyl is proportional to the sodium concentration.

\[
\text{ONPG} \xrightarrow{\beta-\text{galactosidase}} \text{O-nitrophenol} + \text{galactose}
\]

ONPG = O-nitrophenyl -β-D-galactopyranose

Intended Use of the Device:

Diazyme Sodium Enzymatic Assay Kit in conjunction with Diazyme Sodium Low and High Calibrators, are intended for the quantitative determination of sodium (NA) in serum.

Performance Characteristics

Diazyme’s Sodium Enzymatic Assay is a two reagent (R1 and R2) based kinetic assay system. The results are obtained in 10 min by measuring absorbance at 405 nm. No off line pretreatment is needed. The assay has a wide measuring range from 80 to 180 mmol/L of serum sodium. The assay offers excellent precision as shown in the table below:

<table>
<thead>
<tr>
<th></th>
<th>144mM Na⁺</th>
<th>164mM Na⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within Precision</td>
<td>CV%=3.2%</td>
<td>CV%=3.0%</td>
</tr>
<tr>
<td>Total Precision</td>
<td>CV%=5.3%</td>
<td>CV%=3.3%</td>
</tr>
</tbody>
</table>

Diazyme’s Sodium Enzymatic assay has a good correlation with ISE method with a correlation coefficient of 0.96. The average analytical recoveries for sodium added to two different sera were 104% and 97% respectively. We have conducted interference study by spiking the substances to be tested to the pooled human sera and found little interference at the indicated concentrations:

<table>
<thead>
<tr>
<th>Interference</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₄Cl</td>
<td>1 mM</td>
</tr>
<tr>
<td>NaPi</td>
<td>1.5 mM</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>5 mM</td>
</tr>
<tr>
<td>NaCl</td>
<td>200 mM</td>
</tr>
<tr>
<td>CuCl₂</td>
<td>0.25 mM</td>
</tr>
<tr>
<td>ZnCl₂</td>
<td>0.25 mM</td>
</tr>
<tr>
<td>FeCl₃</td>
<td>0.025 mM</td>
</tr>
<tr>
<td>Ascorbic Acid</td>
<td>5 mM</td>
</tr>
<tr>
<td>Glucose</td>
<td>5 mM</td>
</tr>
<tr>
<td>Bilirubin</td>
<td>10mg/dl</td>
</tr>
</tbody>
</table>
Conclusion:

Comparison analysis presented in the 510K submission for this device in the comparison section, together with linearity, precision and interference study presented demonstrated that the Diazyme’s Sodium Enzymatic Assay has excellent accuracy and is safe and effective. There is no significant deviation between the results obtained by Diazyme’s Sodium Enzymatic Assay and legally marketed predicate when testing clinical patient serum samples. Therefore, Diazyme’s Sodium Enzymatic Assay is substantially similar to the commercially available products to measure sodium levels in human serum samples.
Mr. Huan Tran
Quality Assurance Manager
Diazyme Laboratories
3550 General Atomics Court
San Diego, CA 92121

Re: k042189
Trade/Device Name: Diazyme Sodium Enzymatic Assay Kit
Regulation Number: 21 CFR 862.1665
Regulation Name: Sodium test system
Regulatory Class: Class II
Product Code: MZU, JIT, JJX
Dated: August 9, 2004
Received: August 12, 2004

Dear Mr. Tran:

We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration.

If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to such additional controls. Existing major regulations affecting your device can be found in Title 21, Code of Federal Regulations (CFR), Parts 800 to 895. In addition, FDA may publish further announcements concerning your device in the Federal Register.

Please be advised that FDA’s issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal statutes and regulations administered by other Federal agencies. You must comply with all the Act’s requirements, including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Parts 801 and 809); and good manufacturing practice requirements as set forth in the quality systems (QS) regulation (21 CFR Part 820).
This letter will allow you to begin marketing your device as described in your Section 510(k) premarket notification. The FDA finding of substantial equivalence of your device to a legally marketed predicate device results in a classification for your device and thus, permits your device to proceed to the market.

If you desire specific information about the application of labeling requirements to your device, or questions on the promotion and advertising of your device, please contact the Office of In Vitro Diagnostic Device Evaluation and Safety at (301) 594-3084. Also, please note the regulation entitled, “Misbranding by reference to premarket notification” (21CFR Part 807.97). You may obtain other general information on your responsibilities under the Act from the Division of Small Manufacturers, International and Consumer Assistance at its toll-free number (800) 638-2041 or (301) 443-6597 or at its Internet address http://www.fda.gov/cdrh/dsma/dsmamain.html.

Sincerely yours,

Jean M. Cooper, MS, D.V.M.
Director
Division of Chemistry and Toxicology
Office of In Vitro Diagnostic Device Evaluation and Safety
Center for Devices and Radiological Health

Enclosure
Indications for Use

510(k) Number (if known): K042189

Device Name: Diazyme Sodium Enzymatic Assay Kit

Indications for Use:

Diazyme Sodium Enzymatic Assay Kit in conjunction with Diazyme Sodium Low and High Calibrators, are intended for the quantitative determination of sodium (NA) in serum.

Diazyme Sodium Enzymatic Assay Kit contains a low level standard and a high level standard. The standards are used to generate a linear graph that will be used in the calculation of sodium concentrations in unknown serum samples.

Diazyme Sodium Enzymatic Assay has controls for normal serum sodium level and abnormal serum sodium level. The controls are used as reference samples for checking the functionality of the Diazyme Sodium Enzymatic Assay.

Prescription Use X AND/OR Over-The-Counter Use

(Please do not write below this line—continue on another page if needed)

Concurrence of CDRH, Office of In Vitro Diagnostic Devices (OIVD)

Division Sign-Off

Office of In Vitro Diagnostic Device Evaluation and Safety

510(k) K042189