

510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY AND INSTRUMENT

- **Background Information:**
- A 510(k) Number K233410

I

B Applicant Luminex Corporation

C Proprietary and Established Names

LIAISON PLEX Respiratory Flex Assay

D Regulatory Information

Product Code(s)	Classification	Regulation Section	Panel
QOF ¹	Class II	21 CFR 866.3981 - Device To Detect And Identify Nucleic Acid Targets In Respiratory Specimens From Microbial Agents That Cause The SARS- Cov-2 Respiratory Infection And Other Microbial Agents When In	MI - Microbiology
OEM	Class II	A Multi-Target Test 21 CFR 866.3980 – Respiratory viral panel multiplex nucleic acid assay	MI - Microbiology
OOU	Class II	21 CFR 866.3980 – Respiratory viral panel multiplex nucleic acid assay	MI - Microbiology
OTG	Class II	21 CFR 866.3980 – Respiratory viral panel multiplex nucleic acid assay	MI - Microbiology
OZE	Class II	21 CFR 866.3980 – Respiratory viral panel multiplex nucleic acid assay	MI - Microbiology
OZX	Class II	21 CFR 866.3980 – Respiratory viral panel	MI - Microbiology

		multiplex nucleic acid	
		assay	
		21 CFR 866.3980 -	
OZY	Class II	Respiratory viral panel	MI Microbiology
OZY	Class II	multiplex nucleic acid	MI - Microbiology
		assay	
		21 CFR 866.3980 -	
077		Respiratory viral panel	
OZZ	Class II	multiplex nucleic acid	MI - Microbiology
		assay	
		21 CFR 866.3980 -	
OCC	Class II	Respiratory viral panel	MI Misushishara
occ	Class II	multiplex nucleic acid	MI - Microbiology
		assay	
		21 CFR 862.2570 -	
NGU		Instrumentation for	CIL Clinical Chamister
NSU	Class II	clinical multiplex test	CH - Clinical Chemistry
		systems	

¹Primary Product Code

II Submission/Device Overview:

A Purpose for Submission:

The purpose of this submission is to show that the LIASION PLEX Respiratory *Flex* Assay is substantially equivalent to the BioFire Respiratory Panel 2.1 (RP2.1) (DEN200031) and to obtain clearance for the LIASION PLEX Respiratory *Flex* Assay.

B Measurand:

Adenovirus, Human Metapneumovirus, Influenza A, Influenza A subtype H1, Influenza A subtype H3, Influenza B, Parainfluenza virus 1, Parainfluenza virus 2, Parainfluenza virus 3, Parainfluenza virus 4, Human Enterovirus/Rhinovirus (not differentiated), Respiratory Syncytial Virus (RSV), Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2), Human Coronavirus (HKU1, NL63, OC43, and 229E not differentiated), *Bordetella holmesii, Bordetella parapertussis, Bordetella pertussis, Chlamydia pneumoniae*, and *Mycoplasma pneumoniae* nucleic acid target sequences.

C Type of Test:

A multiplexed nucleic acid test intended for use with the automated LIAISON PLEX instrument for the qualitative *in vitro* detection and identification of multiple respiratory pathogen nucleic acids in nasopharyngeal swabs (NPS) collected in BD Universal Transport Media (UVT) or Copan Universal Transport Media (UTM) and obtained from individuals with signs and symptoms of respiratory tract infections.

III Intended Use/Indications for Use:

A Intended Use(s):

See Indications for Use below.

B Indication(s) for Use:

The LIAISON PLEX Respiratory *Flex* (RSP *Flex*) Assay is a multiplexed qualitative test for the simultaneous *in vitro* detection and identification of multiple bacterial and viral nucleic acids in nasopharyngeal swabs (NPS) obtained from individuals with clinical signs and symptoms of

respiratory tract infection, including SARS-CoV-2. The test is performed on the automated LIAISON PLEX System utilizing reverse transcription (RT), polymerase chain reaction (PCR), and array hybridization to detect specific nucleic acid gene sequences of the following organism types and subtypes:

<u>Viruses:</u> Adenovirus Human Coronavirus (HKU1, NL63, OC43, and 229E not differentiated) Human Enterovirus/Rhinovirus (not differentiated) Human Metapneumovirus, Influenza A Influenza A Influenza A (subtype H1) Influenza A (subtype H3) Influenza B Parainfluenza 1 Parainfluenza 2 Parainfluenza 3 Parainfluenza 4 Respiratory Syncytial Virus Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2)

Bacteria: Bordetella holmesii Bordetella parapertussis Bordetella pertussis Chlamydia pneumoniae Mycoplasma pneumoniae

Nucleic acids from the bacterial and viral organisms identified by this test are generally detectable in NPS specimens during the acute phase of infection. Detecting and identifying specific bacterial and viral nucleic acids from individuals exhibiting signs and symptoms of respiratory infection aids in the diagnosis of respiratory infection, if used in conjunction with other clinical, epidemiological, and laboratory findings. The results of this test should not be used as the sole basis for diagnosis, treatment, or patient management decisions.

Negative results in the presence of a respiratory illness may be due to infection with pathogens that are not detected by this test or due to lower respiratory tract infection that is not detected by an NPS specimen. Conversely, positive results do not rule out infection or co-infection with organisms not detected by the LIAISON PLEX Respiratory *Flex* (RSP *Flex*) Assay. The agent(s) detected may not be the definite cause of disease.

The use of additional laboratory testing (e.g., bacterial and viral culture, immunofluorescence, and radiography), may be necessary when evaluating a patient with possible respiratory tract infection.

C Special Conditions for Use Statement(s):

Rx - For Prescription Use Only For *in vitro* diagnostic use only

D Special Instrument Requirements: For use with the LIAISON PLEX System, only.

IV Device/System Characteristics:

A Device Description:

The LIAISON PLEX Respiratory *Flex* Assay is performed on the LIAISON PLEX System. The LIAISON PLEX System consists of a touchscreen user interface that includes the software for running and analyzing assay results, one to six processing/imaging LIAISON PLEX modules, and a handheld barcode reader. Each LIAISON PLEX module processes one sample at a time under the control of the LIAISON PLEX System software. The LIAISON PLEX Respiratory *Flex* Assay components required to perform the test include the following single-use, disposables:

- LIAISON PLEX Respiratory Flex Assay Test Cartridge
- LIAISON PLEX Respiratory *Flex* Assay Transfer Pipettes (or equivalent)

Prior to initiating a test on the LIAISON PLEX System, a 300 μ L aliquot of NPS in Viral Transport Media (VTM) is pipetted by the user into the Sample Port within the Sample Prep Tray (recommended, but not required), followed by closing the Sample Port Closure. Next, the Sample ID barcode on the sample tube is scanned with the hand-held barcode reader, or the Sample ID is manually entered using the touchscreen keyboard. The user then scans the assay cartridge ID barcode with the hand-held barcode scanner. Lastly, the Respiratory *Flex* Assay Cartridge is inserted into the module by the user. The LIAISON PLEX System identifies the assay being run and automatically initiates the proper testing protocol to process the sample, analyze the data, and generate test results. Once the test is finished running (~ 2 hours), the user ejects the assay cartridge by selecting the green check mark or the eject icon on the touchscreen.

The Respiratory *Flex* Assay has 19 different reportable targets (organisms and influenza A subtypes H1 and H3). Reporting of these targets is based on detection of one or more of the nucleic acid targets. For each intended Respiratory *Flex* Assay target, four sequence components, referred to as oligonucleotides (Oligos), consisting of one or more Capture probe(s), Mediator probe(s), forward primer(s), and reverse primer(s), are required.

The LIAISON PLEX Respiratory *Flex* Assay can be run in Fixed mode, which will return the results for all target analytes. To allow testing flexibility, the LIAISON PLEX Respiratory *Flex* Assay can be run in *Flex* mode. This feature allows laboratories to generate custom panels, which include only a subset of analytes selected by the laboratory. No pre-set *Flex*-panels are defined, and laboratories can choose to create custom panels of specific targets for certain populations and/or seasons, if they desire to incorporate the *Flex* reporting feature. Target assays that are initially masked can later be unmasked using *Flex* credits when ordered by a physician. When *Flex* mode is implemented, all target assays are performed, however the raw data is not analyzed for masked targets until they are unmasked.

Interpretation of Results

The Respiratory *Flex* Assay provides a qualitative result for the presence (Detected) or absence (Not Detected) of the Respiratory *Flex* target nucleic acid gene sequences. The image analysis of the Substrate provides light signal intensities from the target-specific capture spots as well as the internal processing controls, negative control, background, and imaging control spots. The mean signal intensity of a target, after background subtraction, is compared to the assay's signal detection threshold to make a determination. **Table 2** below lists the possible test results generated by the Respiratory *Flex* Assay representing identification of viral and bacterial nucleic acid sequences/targets.

Test Result Reported as "Detected"	Reported Target		
Viral Targets			
Adenovirus (inclusive to A, B, C, D, E, and F)	Adenovirus		
Human Metapneumovirus	Human Metapneumovirus		
Human Parainfluenza Virus 1	Human Parainfluenza Virus 1		
Human Parainfluenza Virus 2	Human Parainfluenza Virus 2		
Human Parainfluenza Virus 3	Human Parainfluenza Virus 3		
Human Parainfluenza Virus 4	Human Parainfluenza Virus 4		
Human Coronavirus (inclusive to HKU1, NL63, OC43, and 229E)	Human Coronavirus		
Influenza A*	Influenza A		
Influenza A subtype H1**	Influenza A subtype H1		
Influenza A subtype H3**	Influenza A subtype H3		
Influenza B	Influenza B		
Enterovirus	Enterovirus/Rhinovirus		
Rhinovirus	Enterovirus/Kinnovirus		
Respiratory Syncytial Virus (inclusive to RSV A and RSV B)	Respiratory Syncytial Virus		
SARS-CoV-2	SARS-CoV-2		
Bacterial Targets			
Bordetella holmesii	Bordetella holmesii		
Bordetella pertussis (Toxin Promoter Region)	Bordetella pertussis		
Bordetella parapertussis (IS1001)	Bordetella parapertussis		
Chlamydia pneumoniae	Chlamydia pneumoniae		
Mycoplasma pneumoniae	Mycoplasma pneumoniae		
Test Result Reporte	ed as "Not Detected"		
All Analytes Not Detected			

Table 2. Respiratory Flex Assay Calls for Valid Tests

*Detection of Influenza A without an Influenza A/H1 or Influenza A/H3 subtype may occur at low titer of the virus in the specimen or may indicate a false positive due to contamination. The result could also indicate a novel Influenza A strain. In these cases, the sample should be retested. If an Influenza A detected result is obtained without detection of an Influenza A/H1 or A/H3 subtype upon retesting, contact local or state public health authorities for confirmatory testing.

**Detection of Influenza A/H1 or Influenza A/H3 subtypes without an Influenza A "Detected" result may occur at low titer of the virus in the specimen or may indicate a false positive due to contamination. The result could also indicate potential genetic mutations in the Matrix protein gene among circulating seasonal Influenza A viruses. In these cases, the sample should be retested. If an Influenza A/H1 or A/H3 subtype detected result is obtained again without detection of Influenza A upon repeat testing, further investigations may be warranted.

Reasons for invalid (no call) results, together with the appropriate recourse which should be taken by the user, are described in **Table 3**.

Call	Reason	Recourse
	The hybridization internal control (IC) is not detected ¹	Retest from the primary
No Call	The amplification IC or extraction IC are not detected AND	sample beginning with
	no DNA or RNA target pathogen is detected, respectively ¹	the assay package insert

Table 3. LIAISON PLEX Respiratory *Flex* Assay Invalid Calls and Recourse

Signal in regions of the microarray which do not contain	section Procedure, using
capture oligos is too high	a new cartridge
Signal in regions of the microarray containing oligomer	
spots to ensure proper stringency	
The coefficient of variation of intensities for spots within at	
least one spot group is high	
The overall signal across all spot groups, excluding	
Negative Control and Background, is too high	

¹Additional information on the ICs (hybridization, amplification, and extraction) is provided in Section IV.C.Instrument Descriptive Information.5.Quality Control.Internal Controls, below.

B Principle of Operation:

The Respiratory *Flex* Assay is a multiplexed molecular assay with automated nucleic acid isolation, amplification, and detection of unique genomic sequences of target pathogens. The Respiratory *Flex* Assay is performed using the LIAISON PLEX System, which is a bench-top sample-to-result molecular diagnostics workstation consisting of a touchscreen user interface that includes the software for running and analyzing assay results, one to six processing/imaging LIAISON PLEX modules, and a handheld barcode reader. The LIAISON PLEX System automates the Respiratory *Flex* Assay sample analysis steps, which occur within the cartridge, including: (1) Specimen Extraction – Chemical and mechanical RNA/DNA extraction from nasopharyngeal swab specimens obtained from symptomatic patients; (2) Target Amplification - Multiplex RT-PCR- and PCR-based amplification of the extracted nucleic acids to generate target-specific amplicons; (3) Hybridization - Amplicon hybridization to target specific capture DNA in a microarray format and mediator and gold-nanoparticle probe hybridization to captured amplicons. Silver enhancement of the gold nanoparticle probes bound at the capture sites results in gold-silver aggregates that are imaged optically with high efficiency by the LIAISON PLEX System. The user can monitor the status of the assay via the touch screen on the instrument, which displays the run time.

Contamination Control

The Respiratory *Flex* Assay includes an Uracil DNA Glycosylase (UDG) enzyme-based strategy to eliminate amplicon contamination. Briefly, the lyophilized amplification master mix formulation contains deoxyuridine triphosphate (dUTP) in place of the standard deoxythymidine triphosphate (dTTP), and during the multiplexed RT-PCR step dUTP is incorporated into the amplicons. Prior to the start of an amplification step, the UDG enzyme renders any dUTP-containing *previously generated* amplicons non-amplifiable by selectively hydrolyzing at the uracil base, while not impacting the integrity of dTTP containing target RNA. The assay also uses a thermolabile version of UDG enzyme which is inactivated by heat prior to the RT step and does not interfere with the newly generated cDNA and/or the amplicon from the test. While the UDG-based strategy mitigates false positive risk due to lab-based carryover and cross-contamination, incomplete hydrolysis of uracil-containing amplicons may lead to amplification and detection of a contaminant. Additionally, this strategy does not address genomic contamination during the preparation of the samples. Strict adherence to the prescribed handling/preparation of samples and laboratory/system cleaning protocols and careful disposal of the used consumables can reduce the likelihood of contamination from the user-based sources.

End-Point Detection and Analysis

The target-specific amplicon is detected in an endpoint assay that utilizes a microarray format. For each of the bacterial or viral nucleic acid sequences/analytes detected by the Respiratory *Flex* Assay, two types of oligonucleotides are required for the endpoint gold nanoparticle probe-based detection: (1) Capture oligonucleotides (or captures) and (2) Mediator oligonucleotides (or mediators). The

Capture oligonucleotides are arrayed on the surface of a substrate (a microarray) within the test cartridge and are designed to specifically bind to one part of the analyte-specific target amplicon. The Mediator oligonucleotides bind to a different portion of the same amplicon and enable binding of gold nanoparticle probes. Notably, in a multiplexed detection system, numerous unique target-specific mediators can coexist and form unique hybridizations at the different captures on the microarray. Since all the mediators have a target specific region and a poly-A tail region, a single, universal gold nanoparticle poly-T probe is sufficient for target/mediator labeling. Silver enhancement of the bound gold nanoparticle probes at the capture sites results in gold-silver aggregates that scatter light with high efficiency. Light scatter from the capture spots is imaged by the LIAISON PLEX System and intensities from the microarray spots are processed by a decision algorithm to make calls regarding the presence (Detected) or absence (Not Detected) of a nucleic acid sequence/analyte.

C Instrument Description Information:

- 1. <u>Instrument Name:</u> LIAISON PLEX System, software version 1.0.0.144.
- 2. <u>Specimen Identification:</u> Specimen identification information is entered either manually or via barcode.
- 3. <u>Specimen Sampling and Handling</u>: Nasopharyngeal swab (NPS) specimens collected in BD UVT or Copan UTM.
- 4. <u>Calibration</u>:

LIAISON PLEX modules are calibrated during the manufacturing process; calibration is not performed by the user.

5. <u>Quality Control</u>:

Internal Controls

The Assay contains three sets of internal controls to check to ensure performance of sample preparation amplification, and detection. They are described in more detail, below:

- 1. **Extraction control**. The extraction control verifies the presence of an amplicon for Bacteriophage MS2, which is added to the sample prior to the nucleic acid extraction step. The extracted control product is amplified and subsequently detected by unique spots on the hybridization array, thereby confirming successful nucleic acid extraction, Reverse Transcription, PCR amplification of RNA targets, and detection.
- 2. **Amplification Control**. The amplification control verifies the presence of an amplicon for a synthetic DNA oligonucleotide sequence in the lyophilized PCR master mix. The product is detected by a unique spot on the hybridization array, thereby confirming successful PCR amplification and detection of DNA targets.
- 3. **Hybridization Control**. The hybridization control target and mediator oligonucleotide are contained within the Sample Buffer and added to the post-amplification product prior to hybridization. The hybridization control is detected by a unique spot on the hybridization array, thereby confirming successful processing of hybridization and signal enhancement steps.

Internal controls results are reported as Pass, Fail, or N/A (see **Table 4** for detailed explanations of each control result). Internal controls must either (1) generate a signal above threshold in each internal reaction for the system to report a valid test result, or (2) the amplification or extraction control result can be below the signal threshold if a DNA or RNA target pathogen is detected, respectively.

Assay		
Internal Control Result	Explanation	Suggested Action
Pass	 The hybridization control was detected, indicating successful hybridization. The amplification control was detected, indicating successful amplification. The extraction control was detected, indicating successful extraction. 	Review and report results
N/A	 The hybridization control was detected, indicating successful hybridization. A DNA pathogen target was detected, indicating successful amplification. If a DNA pathogen target is detected, the amplification control result is ignored. The extraction control was detected, indicating successful extraction. 	Review and report results
N/A	 The hybridization control was detected, indicating successful hybridization. The amplification control was detected, indicating successful amplification. An RNA pathogen target was detected, indicating successful extraction. If an RNA pathogen target is detected, the extraction control result is ignored. 	Review and report results
Fail	 The hybridization control was not detected, indicating hybridization was not successful. The amplification control, or a DNA pathogen was detected, indicating successful amplification. The extraction control, or an RNA pathogen was detected, indicating successful extraction. 	Repeat test with a new cartridge
Fail	 The hybridization control was detected indicating successful hybridization. The amplification control, or a DNA pathogen was not detected, indicating amplification was not successful. The extraction control, or a RNA pathogen was detected, indicating successful extraction. 	Repeat test with a new cartridge
Fail	The hybridization control was detected indicating successful hybridization.	Repeat test with a new cartridge

Table 4. Interpretation of Internal Control Results for the LIAISON PLEX Respiratory Flex

 Assay

 The amplification control, or a DNA pathogen was detected, indicating successful amplification. The extraction control, or a RNA pathogen, 	
was not detected, indicating extraction was not successful.	

External Controls

External controls are not provided with the Respiratory Flex Assay. However, five external control mixes (see Table 5 below) were provided to the clinical study sites for daily testing during the prospective clinical study. External controls were tested on each day of testing, utilizing one external negative control and one of four external positive controls (tested on a rotating basis) representing all Respiratory Flex targets.

Table 5. External Controls Utilize	ed in the Clinical Studies
	Г

External Control	Expected Calls
Positive Run Control - Pool 1	Adenovirus, Chlamydia pneumoniae, human coronavirus,
Fositive Run Control - Fool 1	hMPV, Influenza B, Parainfluenza 1, Parainfluenza 2, RSV
	Bordetella holmesii, Bordetella pertussis,
Positive Run Control - Pool 2	Enterovirus/Rhinovirus, Influenza A, Influenza A (subtype
Fositive Run Control - Fool 2	H1), Influenza A (subtype H3), Mycoplasma pneumoniae,
	Parainfluenza 3, Parainfluenza 4
Positive Run Control - Pool 3	SARS-CoV-2
Positive Run Control - Pool 4	Bordetella parapertussis, Bordetella pertussis
Negative Run Control	NA

The sponsor is also including the following in the product package insert, "Positive and negative external controls should be tested with each new lot or shipment of reagents, or monthly, (whichever occurs first), or in accordance with updated local, regional, state, and/or federal guidelines. Verified negative nasopharyngeal swab (NPS) specimens can be used as the negative control. Previously characterized positive samples or verified negative NPS specimens spiked with well characterized organisms may be used as the external positive control. External controls should be used in accordance with laboratory protocols and in accordance with local, state, and federal accrediting organizations, as applicable."

V **Substantial Equivalence Information:**

- **A** Predicate Device Name(s):
 - BioFire Respiratory Panel 2.1 (RP2.1)
- **B** Predicate 510(k) Number(s): DEN200031

C Comparison with Predicate(s):

Device & Predicate Device(s):	<u>K233410</u>	<u>DEN200031</u>
Device Trade Name	LIAISON Plex Respiratory <i>Flex</i> Assay	BioFire Respiratory Panel 2.1 (RP2.1)
Regulation Number and Name	Same	21 CFR 866.3981; Devices to detect and identify nucleic acid targets in respiratory samples from

		microbial agents that cause the
		SARS-CoV-2 respiratory infection
		and other microbial agents when in
		a multi-analyte test.
Product Code	Same	QOF
	The LIAISON PLEX Respiratory	The BioFire Respiratory Panel 2.1
	<i>Flex</i> (RSP <i>Flex</i>) Assay is a	(RP2.1) is a PCR-based
	multiplexed qualitative test for the	multiplexed nucleic acid test
	simultaneous <i>in vitro</i> detection and	intended for use with the BioFire
	identification of multiple bacterial	FilmArray 2.0 or BioFire
	and viral nucleic acids in	FilmArray Torch Systems for the
	nasopharyngeal swabs (NPS)	simultaneous qualitative detection
	obtained from individuals with	and identification of multiple
	clinical signs and symptoms of	respiratory viral and bacterial
	respiratory tract infection,	nucleic acids in nasopharyngeal
	including SARS-CoV-2. The test	swabs (NPS) obtained from individuals suspected of
	is performed on the automated LIAISON PLEX System utilizing	respiratory tract infections,
	reverse transcription (RT),	including COVID-19.
	polymerase chain reaction (PCR),	
	and array hybridization to detect	The following organism types and
	specific nucleic acid gene	subtypes are identified using the
	sequences of the following	BioFire RP2.1:
	organism types and subtypes:	• Adenovirus,
		Coronavirus 229E,
	<u>Viruses:</u>	• Coronavirus HKU1,
	Adenovirus	• Coronavirus NL63,
	Human Coronavirus (HKU1,	 Coronavirus OC43,
	NL63, OC43, and 229E not differentiated)	Severe Acute Respiratory
	Human Enterovirus/Rhinovirus	Syndrome Coronavirus 2
Intended Use/Indications	(not differentiated)	(SARS-CoV-2),
For Use	Human Metapneumovirus,	Human Metapneumovirus,Human
	Influenza A	Rhinovirus/Enterovirus,
	Influenza A (subtype H1)	 Influenza A, including
	Influenza A (subtype H3)	subtypes H1, H3 and H1-
	Influenza B	2009,
	Parainfluenza 1	• Influenza B,
	Parainfluenza 2 Parainfluenza 3	• Parainfluenza Virus 1,
	Parainfluenza 4	• Parainfluenza Virus 2,
	Respiratory Syncytial Virus	• Parainfluenza Virus 3,
	Severe Acute Respiratory	• Parainfluenza Virus 4,
	Syndrome Coronavirus (SARS-	Respiratory Syncytial Virus,
	CoV-2)	Bordetella parapertussis
		(IS1001),
	<u>Bacteria:</u>	• Bordetella pertussis (ptxP),
	Bordetella holmesii	• <i>Chlamydia pneumoniae</i> , and
	Bordetella parapertussis	• Mycoplasma pneumoniae
	Bordetella pertussis Chlamydia pneumoniae	Nucleic acids from the requiretory
	Mycoplasma pneumoniae	Nucleic acids from the respiratory viral and bacterial organisms
		identified by this test are generally
	Nucleic acids from the bacterial	detectable in NPS specimens
	and viral organisms identified by	during the acute phase of infection.
	this test are generally detectable in	The detection and identification of
	NPS specimens during the acute	specific viral and bacterial nucleic
	phase of infection. Detecting and	acids from individuals exhibiting

	· · · · · · · · · · · · · · · · · · ·
identifying specific bacterial and viral nucleic acids from individuals exhibiting signs and symptoms of respiratory infection aids in the diagnosis of respiratory infection, if used in conjunction with other clinical, epidemiological, and laboratory findings. The results of this test should not be used as the sole basis for diagnosis, treatment, or patient management decisions. Negative results in the presence of a respiratory illness may be due to infection with pathogens that are not detected by this test or due to lower respiratory tract infection that is not detected by an NPS specimen. Conversely, positive results do not rule out infection or co-infection with organisms not detected by the LIAISON PLEX Respiratory <i>Flex</i> (RSP <i>Flex</i>) Assay. The agent(s) detected may not be the definite cause of disease. The use of additional laboratory testing (e.g., bacterial and viral culture, immunofluorescence, and radiography), may be necessary when evaluating a patient with	signs and/or symptoms of respiratory infection is indicative of the presence of the identified microorganism and aids in the diagnosis of respiratory infection if used in conjunction with other clinical and epidemiological information. The results of this test should not be used as the sole basis for diagnosis, treatment, or other patient management decisions. Negative results in the setting of respiratory illness may be due to infection with pathogens that are not detected by this test, or lower respiratory tract infection that may not be detected by an NPS specimen. Positive results do not rule out co-infection with other organisms. The agent(s) detected by the BioFire RP2.1 may not be the definite cause of disease. Additional laboratory testing (e.g., bacterial and viral culture, immunofluorescence, and radiography) may be necessary when evaluating a patient possible respiratory tract infection.
Same	Nucleic acids from target
	organisms Nasopharyngeal swab (NPS)
	BioFire FilmArray 2.0 or BioFire
Highly multiplexed nucleic acid PCR and RT-PCR test with microarray detection.	FilmArray Torch Systems Highly multiplexed nested nucleic acid amplification with melt analysis.
Multiple internal controls contained in the cartridge monitor sample processing and RT and PCR functions.	Two controls are included in each reagent pouch to control for sample processing and both stages of PCR and melt analysis.
Same	Nucleic Acid Extraction and Amplification, Detection and Results Interpretation
 Bordetella parapertussis Bordetella pertussis Bordetella holmesii 	 Bordetella parapertussis Bordetella pertussis
	Each target human senengying
The human coronavirus target species (i.e., HKU1, OC43, 229E, NL63) are not differentiated.	Each target human coronavirus species (i.e., HKU1, OC43, 229E, NL63) is reported independently.
	viral nucleic acids from individuals exhibiting signs and symptoms of respiratory infection aids in the diagnosis of respiratory infection, if used in conjunction with other clinical, epidemiological, and laboratory findings. The results of this test should not be used as the sole basis for diagnosis, treatment, or patient management decisions. Negative results in the presence of a respiratory illness may be due to infection with pathogens that are not detected by this test or due to lower respiratory tract infection that is not detected by an NPS specimen. Conversely, positive results do not rule out infection or co-infection with organisms not detected by the LIAISON PLEX Respiratory <i>Flex</i> (RSP <i>Flex</i>) Assay. The agent(s) detected may not be the definite cause of disease. The use of additional laboratory testing (e.g., bacterial and viral culture, immunofluorescence, and radiography), may be necessary when evaluating a patient with possible respiratory tract infection. Same LIAISON PLEX System Highly multiplexed nucleic acid PCR and RT-PCR test with microarray detection. Multiple internal controls contained in the cartridge monitor sample processing and RT and PCR functions. Same Bordetella parapertussis Bordetella pertussis Bordetella pertussis

Time to Result	~ 2 hours	~45 minutes
----------------	----------------	-------------

VI Standards/Guidance Documents Referenced:

Standards

- ISTA 3A. Packaged-Products for Parcel Delivery System Shipment 70 kg (150 lb) or Less. (2018).
- ITSA 7D. Temperature Test for Transport Packaging.
- CLSI EP07. Interference Testing in Clinical Chemistry; Third Edition.
- CLSI EP37. Supplemental Tables for Interference Testing in Clinical Chemistry; First Edition.
- CLSI EP25-A. Evaluation of Stability of *In Vitro* Diagnostic Reagents; Approved Guideline.
- CLSI EP17-A2. Evaluation of Detection Capability for Clinical Laboratory Measurement Procedures; Approved Guideline Second Edition.
- CLSI EP05-A3. Evaluation of Precision of Quantitative Measurement Procedures; Approved Guideline Third Edition.
- CLSI EP12-A2. User Protocol for Evaluation of Qualitative Test Performance; Approved Guideline Second Edition.
- CLSI EP24-A2. Assessment of the Diagnostic Accuracy of Laboratory Testing Using Receiver Operating Characteristic Curves; Approved Guideline Second Edition.
- ISO 14971. Medical Devices Application of Risk Management to Medical Devices. Third Edition (2019-12).
- ISO 23640. *In Vitro* Diagnostic Medical Devices Evaluation of Stability of *In Vitro* Diagnostic Reagents.
- ISO 15223-1. Medical Devices Symbols to be Used with Information to be Supplied by the Manufacturer-Part 1: General Requirements. Fourth Edition (2021-07).
- ISO 3864-1. Graphic Symbols Safety Colors and Safety Signs Part 1. Design Principles for Safety Signs and Safety Markings (2011).
- IEC 61010-1 Edition 3.1, Consolidated Version. Safety Requirements for Electrical Equipment for Measurement Control and Laboratory Use Part 1: General Requirements, Including Corrigendum 1. (2017-01).
- IEC 61326-2-6 Edition 3.0. Electrical Equipment for Measurement Control and Laboratory Use EMC Requirements Part 2-6: Particular Requirements *In Vitro* Diagnostic (IVD) Medical Equipment (2010-10).
- IEC 60601-1-2 Edition 4.0. Medial Electrical Equipment Part 1-2: General Requirements for Basic Safety and Essential Performance Collateral Standard: Electromagnetic Disturbances-Requirements and Tests (2014-02).
- IEC 61000-3-2. Electromagnetic Compatibility (EMC) Part 3-2: Limits for Harmonic Current Emissions, Input Current Up to & Including 16A Per Phase (2014).
- IEC 61000-3-3. Electromagnetic Compatibility (EMC) Part 3-3: Limits Limitation of Voltage Changes, Voltage Fluctuations and Flicker in Public Low Voltage Supply Systems for Equipment (2013).

Special Controls

• Class II Special Controls as per 21 CFR 866.3981

Guidance Documents

- Electronic Submission Template for Medical Device 510(k) Submissions Guidance for Industry and Food and Drug Administration Staff (October 2, 2023).
- Respiratory Viral Panel Multiplex Nucleic Acid Assay Class II Special Controls Guidance for Industry and FDA Staff (October 9, 2009).
- Content of Premarket Submissions for Device Software Functions Guidance for Industry and Food and Drug Administration Staff (June 14, 2023).
- Cybersecurity in Medical Devices: Quality System Considerations and Content of Premarket Submissions Guidance for Industry and Food and Drug Administration Staff (September 23, 2023).
- Statistical Guidance on Reporting Results from Studies Evaluating Diagnostic Tests Guidance for Industry and FDA Staff (March 13, 2007).

VII Performance Characteristics (if/when applicable):

A Analytical Performance:

1. Precision/Reproducibility:

a. <u>Within-Laboratory Precision</u>

Within-laboratory precision was evaluated at a single site using the Respiratory *Flex* Assay run on the LIAISON PLEX System. A total of three contrived panels containing known quantities of the target analytes were prepared in simulated NPS matrix, consisting of HeLa cells at a concentration of $2x10^3$ cells/mL in UTM. Data supporting the use of simulated matrix can be found in section **VII Performance Charactestics.B.2.Matrix Equivalency Study**, later in this document. The viral and bacterial materials used to generate the positive panel members are denoted in **Table 6**. The contrived positive panels consisted of five representative target organisms co-spiked at a low positive concentration (1.5x LoD) and moderate concentration (5x LoD). A negative panel was also included in the study (see **Table 7**). The study was conducted with one operator and three cartridge lots over the course of 5 non-consecutive days on two LIAISON PLEX Systems. Each panel member was tested in triplicate once per day on 5 different days generating a total of 45 replicates per panel member (1 Site x 1 Operator x 3 Lots x 5 Days X 1 Run per Day x 3 Replicates per Run).

Description	Organism Type	Vendor	Catalog Number
Bordetella pertussis (9797)	Bacterium	ATCC	9797
Adenovirus (4E)	DNA virus	Zeptometrix	0810070CF
Influenza B (Colorado/06/2017)	RNA virus	Zeptometrix	0810573CF
hMPV (27A2)	RNA virus	Zeptometrix	0810164CF
SARS-CoV-2 (USA-WA1/2020)	RNA virus	Zeptometrix	0810587CFHI

Table 6. Viral and Bacterial Strains Used in the Within-Laboratory Precision Study

Table 7. Precision Study Sample Panel

Panel ID	Description
1	<i>Bordetella pertussis</i> , Adenovirus, Influenza B, hMPV, SARS-CoV-2 (Low positive; all analytes at 1.5x LoD)
2	<i>Bordetella pertussis</i> , Adenovirus, Influenza B, hMPV, SARS-CoV-2 (Moderate positive; all analytes at 5x LoD)
3	Negative

The qualitative results (i.e., % agreement with expected results) from the study are illustrated in **Table 8**.

Target	Panel ID	Panel Conc.	% Positive (pos n/ valid n)	% Agreement with Expected Results/ (95% CI)
	1	Low positive	93.3% (42/45)	93.3% (82.1-97.7%)
Bordetella pertussis	2	Mod. positive	100% (45/45)	100% (92.1-100%)
	3	Negative	0% (0/45)	100% (92.1-100%)
	1	Low positive	97.8% (44/45)	97.8% (88.4-99.6%)
Adenovirus	2	Mod. positive	97.8% (44/45)	97.8% (88.4-99.6%)
	3	Negative	0% (0/45)	100% (92.1-100%)
	1	Low positive	100% (45/45)	100% (92.1-100%)
Influenza B	2	Mod. positive	100% (45/45)	100% (92.1-100%)
	3	Negative	0% (0/45)	100% (92.1-100%)
	1	Low positive	100% (45/45)	100% (92.1-100%)
hMPV	2	Mod. positive	97.8% (44/45)	97.8% (88.4-99.6%)
	3	Negative	0% (0/45)	100% (92.1-100%)
	1	Low positive	100% (45/45)	100% (92.1-100%)
SARS-CoV-2	2	Mod. positive	100% (45/45)	100% (92.1-100%)
	3	Negative	0% (0/45)	100% (92.1-100%)

Table 8. Within-Laboratory Precision Study – Qualitative Results

Note: Results are shown only for the intended targets. Panel members co-spiked with 5 different targets are presented 5 times.

All low positive (1.5x LoD) panel members were positive >97.8%, except for *Bordetella pertussis*, which had a positivity of 93.3% (42/45). All moderate positive (5x LoD) panel members were 100% positive for the spiked target analytes, except for adenovirus and hMPV, which yielded 97.8% positivity (44/45). The negative panel member was 100% negative. There was no lot-to-lot variability observed in the study. The results of the study demonstrate acceptable assay variability.

b. <u>Reproducibility</u>

A reproducibility study was conducted at three testing sites using the Respiratory *Flex* Assay run on the LIAISON PLEX System. The study incorporated potential sources of variation introduced by site (three testing sites), day (5 different days), operator (two operators per site), and instrument (six LIAISON PLEX Systems). One lot of Respiratory *Flex* Assay cartridges was tested at three sites by two operators per site over five days.

The same three contrived panels used to evaluate precision (see **Table 7**) were included in the reproducibility study. Three replicates of each panel member were tested by each operator at each site on all 5 days of testing generating a total of 90 replicates per panel member. The qualitative results of the study are illustrated in **Table 9**.

	Panel –		% Agreement with Expected Results			
Target	ID	Panel Conc.	Site 1	Site 2	Site 3	Overall/ (95% CI)
Bordetella pertussis	1	Low positive	93.3% (28/30)	100% (30/30)	96.7% (29/30)	96.7% (87/90) (90.7-98.9%)

 Table 9. Reproducibility Study – Qualitative Results

			-			-
	2	Mod. positive	100% (30/30)	100% (30/30)	100% (30/30)	100% (90/90) (95.9-100%)
	3	Negative	100% (30/30)	100% (30/30)	100% (30/30)	100% (90/90) (95.9-100%)
	1	Low positive	96.7% (29/30)	100% (30/30)	96.7% (29/30)	97.8% (88/90) (92.3-99.4%)
Adenovirus	2	Mod. positive	100% (30/30)	100% (30/30)	100% (30/30)	100% (90/90) (95.9-100%)
	3	Negative	100% (30/30)	100% (30/30)	100% (30/30)	100% (90/90) (95.9-100%)
	1	Low positive	93.3% (28/30)	100% (30/30)	96.7% (29/30)	96.7% (87/90) (90.7-98.9%)
Influenza B	2	Mod. positive	100% (30/30)	100% (30/30)	100% (30/30)	100% (90/90) (95.9-100%)
	3	Negative	100% (30/30)	100% (30/30)	100% (30/30)	100% (90/90) (95.9-100%)
	1	Low positive	90.0% (27/30)	100% (30/30)	93.3% (28/30)	94.4% (85/90) (87.6-97.6%)
hMPV	2	Mod. positive	100% (30/30)	93.3% (28/30)	100% (30/30)	97.8% (88/90) (92.3-99.4%)
	3	Negative	100% (30/30)	100% (30/30)	100% (30/30)	100% (90/90) (95.9-100%)
	1	Low positive	96.7% (29/30)	100% (30/30)	100% (30/30)	98.9% (89/90) (94.0-99.8%)
SARS-CoV- 2	2	Mod. positive	100% (30/30)	100% (30/30)	100% (30/30)	100% (90/90) (95.9-100%)
	3	Negative	100% (30/30)	100% (30/30)	100% (30/30)	100% (90/90) (95.9-100%)

Mod – moderate; *Note:* Results are shown only for the intended targets. Panel members co-spiked with 5 different targets are presented 5 times.

The negative panel was negative 100% of the time. The moderate positive (5x LoD) target gave expected results 100% of the time for adenovirus, *Bordetella pertussis*, influenza B, and SARS-CoV-2. The moderate positive for human metapneumovirus yielded 97.8% (88/90) positive results.

For the low positive (1.5x LoD) target, all targets except for human metapneumovirus yielded at least 96.7% (87/90) positivity. The overall positivity for the human metapneumovirus low positive sample was 94.4% (85/90).

2. Linearity:

Not applicable; this is a qualitative assay.

3. Analytical Specificity/Interference:

Analytical Reactivity (Inclusivity)

The inclusivity of the LIAISON PLEX Respiratory *Flex* Assay was evaluated using a combination of *in silico* analysis of publicly available sequence information and laboratory testing of contrived specimens containing viral and bacterial isolates that were selected to represent phylogenetic, geographic, and temporal diversity.

a. <u>Wet-Testing</u>

This study was performed to determine the analytical reactivity of the Respiratory *Flex* Assay with clinically relevant strains, serotypes, or subtypes of the target species. The inclusivity panel was prepared by spiking various target microorganism strains/serotypes/subtypes encompassing temporal and geographical diversity into simulated NPS matrix at a concentration of ~3x LoD and testing in triplicate. Data supporting the use of simulated matrix can be found in section **VII Performance Charactestics.B.2.Matrix Equivalency Study**, later in this document. Strains that did not yield 100% reactivity at 3x LoD were reprepared at the same concentration and retested in triplicate. If 100% reactivity was obtained during retesting, reactivity was reached. In this situation, the original and retesting results were pooled for performance calculations. If less than 100% reactivity was observed during retesting, the strain was prepared at a higher concentration and tested until 100% reactivity was achieved. The strains evaluated and the lowest concentration that met the reactivity criteria outlined above are shown in **Table 10 - Table 23**, below.

Strain	Concentra	ntion	% Detected
Stram	Copies/mL	xLoD	(# Detected/#Tested)
A 31	5.28x10 ³		100% (3/3)
B 3	2.06×10^3		100% (3/3)
B 7A	2.06×10^3		100% (3/3)
B 21	2.06×10^3		100% (3/3)
B 11	2.06×10^3		100% (3/3)
B 14	2.06×10^3		100% (3/3)
B 34	2.06x10 ³		83.3% (5/6)1
B 35	2.06×10^3		100% (3/3)
C 1	3.35x10 ³	3x	100% (3/3)
C 2	3.35x10 ³		100% (3/3)
C 5	3.35x10 ³		100% (3/3)
C 6	3.35x10 ³		100% (3/3)
D 26	2.24x10 ³		100% (3/3)
D 37	2.24×10^{3}		100% (3/3)
E 4	1.06x10 ³		83.3% (5/6)1
F 40-Dugan	1.45x10 ³		100% (3/3)
F 41-Tak	1.45x10 ³	1	100% (3/3)

¹The original three replicates tested resulted in 66.7% (2/3) positivity for adenovirus. New test material was prepared and tested, resulting in 100% (3/3) positivity for adenovirus.

Table 11. Inclusivity Testing – Bordetella holmesii Results
 Concentration % Detected Strain (# Detected/#Tested) Copies/mL xLoD 100% (3/3) FA061 2.19×10^4 CDC F5101 [CDC 84-013939] 2.19×10^4 $83.3\%(5/6)^1$ 3x CIP 104395 [G7702; 92A2997] 2.19×10^4 $80.0\% (4/5)^2$ CIP 104396 1.97×10^{5} $27x^3$ 100% (3/3)

¹The original three replicates tested resulted in 66.7% (2/3) positivity for *B. holmesii*. New test material was prepared and tested, resulting in 100% (3/3) positivity for *B. holmesii*. ²The original three replicates tested resulted in 33% (1/3) invalid replicates and 50% (1/2)

positivity for *B. holmesii*. New test material was prepared and tested, resulting in 100% (3/3) positivity for *B. holmesii*.

³Testing at lower concentrations (i.e., 3x and 9x LoD) failed to yield 100% detection. The lowest concentration that yielded 100% detection was 27x LoD.

Strain	Concentr	ation	% Detected	
Strain	Copies/mL	xLoD	(# Detected/#Tested)	
NCTC 5952 [522]			100% (3/3)	
508 and 344 [NCTC10853]		3x	100% (3/3)	
517			100% (3/3)	
12822	2.37×10^{3}		100% (3/3)	
509 and 609	$2.3/X10^{2}$		100% (3/3)	
PT28G			$100\% (3/3)^1$	
PT 26/28G			$100\% (3/3)^1$	
C510			100% (3/3)	

Table 12 Inclusivity Testing _ Rordetalla naranertussis Results

¹Testing results in positivity for *B. parapertussis* and *B. pertussis*. CoAs from the vendor confirm that these are genetically modified strains, engineered to contain DNA sequences for both B. parapertussis and B. pertussis toxins.

Strain	Concentration		% Detected	
Stram	Copies/mL	xLoD	(# Detected/#Tested)	
18323 [NCTC 10739]			100% (3/3)	
CNCTC Hp 12/63 [623]			100% (3/3)	
10-536			100% (3/3)	
5 [17921]			100% (3/3)	
Tohama I	1.14×10^4	3x	100% (3/3)	
MN2531			100% (3/3)	
PT9/28G [W28]			100% (3/3)	
589			100% (3/3)	
F			100% (3/3)	

 Table 14. Inclusivity Testing – Chlamydia pneumoniae Results

Strain	Concentration		% Detected	
Strain	Copies/mL	xLoD	(# Detected/#Tested)	
CWL-029	1.71x10 ³	3x	100% (3/3)	
AR-39			100% (3/3)	
J-21			100% (3/3)	
2023			100% (3/3)	

Spacios/Strain		Concentra	ation	% Detected
	Species/Strain		xLoD	(# Detected/#Tested)
HKU1	CS-Lum2020-Resp-1146	5.0x10 ³	³ 3x	100% (3/3)
HKUI	CS-83254	5.0X10 ⁻		100% (3/3)
NL63	Source #: 0810228CF	2.29×10^{2}	3x	100% (3/3)
NL63	Source #: NR-470	6.88x10 ²	$9x^1$	100% (3/3)
OC43	Source #: 0810024CF	2.84×10^4	3x	100% (3/3)
0C43	Source #: VR-1558	2.84X10		100% (3/3)
229E	Source #: 0810229CF	1.20×10^{3}	3x	100% (3/3)
	Source #: VR-740	3.60×10^3	9 x ¹	100% (3/3)

 Table 15. Inclusivity Testing – Human Coronavirus Results

CS-Clinical sample

¹Testing at a lower concentration (i.e., 3x LoD) failed to yield 100% detection. The lowest concentration that yielded 100% detection was 9x LoD.

Species/Strain		Concentr		% Detected
Տր	becies/Strain	Copies/mL	xLoD	(# Detected/#Tested)
Enterovirus A	Coxsackievirus A10			100% (3/3)
Enterovirus A	Coxsackievirus 71			100% (3/3)
	Coxsackievirus A9			100% (3/3)
	Coxsackievirus B3			100% (3/3)
	Coxsackievirus B4			100% (3/3)
Enterovirus B	Echovirus 6	6.75×10^4	2	100% (3/3)
	Echovirus 9	0./3X10 ⁻	3x	100% (3/3)
	Echovirus 11			100% (3/3)
	Echovirus 30			100% (3/3)
Enterovirus C	Coxsackievirus A21			100% (3/3)
Enterovirus C	Coxsackievirus A24			100% (3/3)
Enterovirus D	68			100% (3/3)
	16	2.46x10 ⁴		100% (3/3)
	2		3x	100% (3/3)
	34			100% (3/3)
Rhinovirus A	57			100% (3/3)
	7			100% (3/3)
	77			100% (3/3)
	85			100% (3/3)
	14			100% (3/3)
	17			100% (3/3)
	27	0 45 104	2	100% (3/3)
Rhinovirus B	3	2.45×10^4	3x	100% (3/3)
	42			100% (3/3)
	83			100% (3/3)
	CS-75029 (H7-3)			100% (3/3)
	CS-75466 (J3-3)	5.75x10 ⁴	3x	100% (3/3)
Rhinovirus C	CS-NPS/UTU NEG 178			100% (3/3)
	CS-NEG004 (SAR-4)			100% (3/3)

Table 16. Inclusivity Testing – Enterovirus/Rhinovirus Results

CS-Clinical sample

Strain	Concentr	ation	% Detected	
Stram	Copies/mL	xLoD	(# Detected/#Tested)	
hMPV-9 (Type A1)	-6.40×10^3	3x	100% (3/3)	
hMPV-16 (Type A1)	0.40X10		100% (3/3)	
hMPV-20 (Type A2)	-6.12×10^3	3x	100% (3/3)	
hMPV-27 (Type A2)	0.12X10		100% (3/3)	
hMPV-3 (Type B1)	-1.50×10^4	3x	100% (3/3)	
hMPV-5 (Type B1)	1.30X10		100% (3/3)	
hMPV-4 (Type B2)			100% (3/3)	
hMPV-8 (Type B2)	4.50×10^4	3x	100% (3/3)	
hMPV-18 (Type B2)			100% (3/3)	

 Table 17. Inclusivity Testing –Human Metapneumovirus Results

	Species/Strain		tration	% Detected
			xLoD	(# Detected/#Tested)
	A/Wisconsin/588/2019			Matrix: 100% (3/3)
				Subtype H1: 100% (3/3)
	A/Hawaii/66/2019 X-345A			Matrix: 100% (6/6)
	A/Indiana/02/2020			Subtype H1: 83.3% (5/6) ¹ Matrix: 100% (3/3)
				Subtype H1: 100% (3/3)
	A /Michigan /272/2017	4.5x10 ³	3x	Matrix: 100% (3/3)
	A/Michigan/272/2017	4.3X10 ²	3X	Subtype H1: 100% (3/3)
	A/Idaho/07/2018			Matrix: 100% (3/3)
	A/Idano/07/2018			Subtype H1: 100% (3/3)
	A/Wisconsin/505/2018			Matrix: 100% (6/6)
				Subtype H1: 83.3% (5/6) ¹
	Guangdong-Maonan /SWL			Matrix: 100% (6/6)
	1536/19			Subtype H1: 83.3% (5/6) ¹
	Brisbane/02/18	1.35×10^4	9x ³	Matrix: 100% (3/3) Subtype H1: 100% (3/3)
H1N1				Matrix: 100% (3/3)
	A/St.Petersburg/61/2015			Subtype H1: 100% (3/3)
	A/Bangladesh/3002/2015			Matrix: 100% (3/3)
				Subtype H1: 100% (3/3)
	A/Denver/1/57			Matrix: 100% (3/3)
				Subtype H1: 100% (3/3)
	New Caledonia/20/99			Matrix: 100% (3/3)
		-4.5×10^{3}		Subtype H1: 100% (3/3)
	PR/8/34		2	Matrix: 100% (3/3)
			3x	Subtype H1: 100% (3/3)
	Singapore/63/04			Matrix: 100% (3/3)
				Subtype H1: 100% (3/3) Matrix: 100% (3/3)
	Solomon Islands/03/06			Subtype H1: 100% (3/3)
				Matrix: 100% (3/3)
	Taiwan/42/06			Subtype H1: 100% (3/3)
	A/Ohio/09/2015			Matrix: 0% (0/3) ²
H1N1v	(Subtype Synthetic DNA)	4.5x10 ³		Subtype H1: 100% (3/3)
	A/Ohio/09/2015			Matrix: 100% (3/3)

			ration	9/ Datastad
	Species/Strain	Copies/ mL	xLoD	% Detected (# Detected/#Tested)
	(Matrix Synthetic DNA)			Subtype H1: 0% (0/3) ²
11110		4 5 103		Matrix: 100% (3/3)
H1N2	A/swine/Ohio/09SW1484E/2009	4.5×10^3		Subtype H1: 100% (3/3)
	A/Minnesota/19/2011	4.5-103		Matrix: $0\% (0/3)^2$
11110	(Subtype Synthetic DNA)			Subtype H1: 100% (3/3)
H1N2v	A/Minnesota/19/2011	4.5×10^{3}		Matrix: 100% (3/3)
	(Matrix Synthetic DNA)			Subtype H1: $0\% (0/3)^2$
	A /V /1 4 /2017 NVMC X 227			Matrix: 100% (3/3)
	A/Kansas/14/2017 NYMC X-327			Subtype H3: 100% (3/3)
				Matrix: 100% (3/3)
	A/Texas/71/2017			Subtype H3: 100% (3/3)
	A /NV: : /0.4/2010			Matrix: 100% (3/3)
	A/Wisconsin/04/2018			Subtype H3: 100% (3/3)
	A / A · · / 45/2010			Matrix: 100% (3/3)
	A/Arizona/45/2018			Subtype H3: 100% (3/3)
	A/Hong Kong/45/2019			Matrix: 100% (3/3)
110110		5 00 103		Subtype H3: 100% (3/3)
H3N2	A/Tasmania/503/2020	5.89×10^3		Matrix: 100% (3/3)
				Subtype H3: 100% (3/3)
	A /D 1 /01/2021			Matrix: 100% (3/3)
	A/Delaware/01/2021			Subtype H3: 100% (3/3)
	A/Singapore/INFIMH-16-			Matrix: 100% (3/3)
	0019/2016			Subtype H3: 100% (3/3)
				Matrix: 100% (3/3)
	/California/55/2020		3x	Subtype H3: 100% (3/3)
	A / A 11 /222 /2015			Matrix: 100% (3/3)
	A/Alaska/232/2015			Subtype H3: 100% (3/3)
	A/Hawaii/28/2020			Matrix: $0\% (0/3)^2$
H3N2v	(Subtype Synthetic DNA)	5.89x10 ³		Subtype H3: 100% (3/3)
H3N2V	A/Hawaii/28/2020	3.89X10°		Matrix: 100% (3/3)
	(Matrix Synthetic DNA)			Subtype H3: $0\% (0/3)^2$
	A /E ~ met/NI02072/2010			Matrix: 100% (3/3)
	A/Egypt/N03072/2010			Subtype: $0\% (0/3)^2$
H5N1	A/Hubei/1/2010	5.89x10 ³		Matrix: 100% (3/3)
IJNI	A/Hubel/1/2010	J.89X10		Subtype: $0\% (0/3)^2$
	A/Anhui/01/2005			Matrix: 100% (3/3)
	A/AIIIIul/01/2003			Subtype: $0\% (0/3)^2$
H7N2	A/turkey/Virginia/4529/2002	5.89x10 ³		Matrix: 100% (3/3)
11/1NZ	A wikey v iigiiia/4329/2002	J.07X10°		Subtype: $0\% (0/3)^2$
H7N7	A/mallard/Netherlands/12/2000	5.89x10 ³		Matrix: 100% (3/3)
11/1N/	A/mailard/Netherlands/12/2000			Subtype: $0\% (0/3)^2$
H9N2	A/Hong Kong/33982/2009	5.89x10 ³		Matrix: 100% (3/3)
117INZ	ATTONE KONE 33982/2009		(3) positi	Subtype: $0\% (0/3)^2$

¹The original three replicates tested resulted in 66.7% (2/3) positivity for the influenza A H1 subtype. New test material was prepared and tested, resulting in 100% (3/3) positivity for the influenza A H1 subtype.

²No positivity was expected based on the strain and/or type of material being tested. 3T

³Testing at a lower concentration (i.e., 3x LoD) failed to yield 100% detection. The lowest concentration that yielded 100% detection was 9x LoD.

	I. (64 ·	Concentr	ation	% Detected
Lineage/Strain		Copies/mL	xLoD	(# Detected/#Tested)
	B/Washington/02/2019			100% (3/3)
	B/New Hampshire/01/2021			100% (3/3)
	B/Missouri/12/2018 (NA			100% (3/3)
	D197E)			10078 (373)
Victoria	B/Hawaii/01/2018 (NA			100% (3/3)
Lineage	D197N)			10078 (575)
_	B/Michigan/01/2021	_		100% (3/3)
	B/Hong Kong/286/2017			100% (3/3)
	B/Colorado/6/2017			100% (3/3)
	B/Texas/43/2019	1.01×10^{3}	3x	100% (3/3)
	B/Wisconsin/1/10	1.01X10		100% (3/3)
	B/Florida/02/06			100% (3/3)
	B/Florida/07/04			100% (3/3)
	B/Phuket/3073/13			100% (3/3)
Yamagata	B/Wisconsin/10/2016 (NA			100% (3/3)
Lineage	I221V)			10078 (373)
	B/Indiana/17/2017 (NA			100% (3/3)
	I221T)			10070 (3/3)
	B/Oklahoma/10/2018 (NA			100% (3/3)
	D197N)			10070 (5/5)

Table 19. Inclusivity Testing – Influenza B Results

Table 20. Inclusivity Testing – Mycoplasma pneumoniae Results

Strain	Concentration		% Detected
Strain	Copies/mL	xLoD	(# Detected/#Tested)
M129			100% (3/3)
15531-TTR			100% (3/3)
Mac			100% (3/3)
PI 1428			100% (3/3)
Bru	3.89×10^{3}	3x	100% (3/3)
M52			100% (3/3)
UTMB-10P			100% (3/3)
Mutant 22			100% (3/3)
M129-B7			100% (3/3)

Species/Strain		Concent	ration	% Detected
		Copies/mL	xLoD	(# Detected/#Tested)
PIV-1	N/A	2.28×10^3		83.3% (5/6) ¹
F1V-1	C35	2.20x10		100% (3/3)
PIV-2	N/A	2.54x10 ⁴		100% (3/3)
F1V-2	Greer			100% (3/3)
	N/A	5.79x10 ³	3x	100% (3/3)
PIV-3	ATCC-2011-5		3X	83.3% (5/6) ²
PIV-3	C243			100% (3/3)
	NIH 47885			100% (3/3)
PIV-4a	N/A	1.73x10 ⁴		100% (3/3)
r1v-4a	M-25			100% (3/3)

Species/Strain		Concent	ration	% Detected
		Copies/mL	xLoD	(# Detected/#Tested)
PIV-4b	N/A			100% (3/3)
P1V-40	CH 19503			100% (3/3)

¹The original three replicates tested resulted in 66.7% (2/3) positivity for parainfluenza 1. New test material was prepared and tested, resulting in 100% (3/3) positivity for parainfluenza 1. ²The original three replicates tested resulted in 66.7% (2/3) positivity for parainfluenza 3. New test material was prepared and tested, resulting in 100% (3/3) positivity for parainfluenza 3.

Species/Strain		Concent	ration	% Detected (# Detected/#Tested)
		Copies/mL	xLoD	
	2006 Isolate			100% (3/3)
RSV-A	A2	1.15x10 ⁴	3x	100% (3/3)
	Long			100% (3/3)
	CH93(18)-18	4.82x10 ⁴		100% (3/3)
RSV-B	B WV/14617/85			100% (3/3)
KSV-D	18537			100% (3/3)
	B1			100% (3/3)

Table 22. Inclusivity Testing – RSV Results

	Concent	ration	% Detected	
Strain	Copies/ mL	xLoD	(# Detected/#Tested)	
B.1.617.1: Isolate: USA/CA-Stanford- 15_S02/2021 (Kappa)	7.20x10 ⁴	9x ¹	100% (3/3)	
B.1.1.529 BA.1: Isolate: USA/MD- HP20874/2021 (Omicron)			100% (3/3)	
Isolate: Italy-INMI1			100% (3/3)	
Isolate: Hong Kong/VM20001061/2020			100% (3/3)	
B.1_2020: Isolate: USA/NY-Wadsworth- 103677-01/2020			100% (3/3)	
B.1.1.7: Isolate: England/204820464/2020 (Alpha)			100% (3/3)	
B.1.1.7: Isolate: USA/CA_CDC_5574/2020 (Alpha)			100% (3/3)	
B.1.351: Isolate: South Africa/KRISP- K005325/2020 (Beta)			100% (3/3)	
P1: Isolate: Japan/TY7-503/2021 (Gamma)			100% (3/3)	
P2_2021: Isolate: NY-Wadsworth- 21006055-01/2021 (Zeta)			100% (3/3)	
B.1.526_2021: Isolate: USA/NY- Wadsworth-21025952-01/2021 Isolate 1			100% (3/3)	
(Lota) B.1.617.2: Isolate: USA/PHC658/2021 (Delta)			100% (3/3)	
USA-WA1/2020			100% (3/3)	

¹Testing at a lower concentration (i.e., 3x LoD) failed to yield 100% detection. The lowest concentration that yielded 100% detection was 9x LoD.

The results from this study demonstrate that the Respiratory *Flex* Assay is capable of detecting multiple clinically relevant strains of each target analyte.

<u>In silico</u>

The inclusivity of the LIAISON PLEX Respiratory *Flex* Assay was evaluated using *in silico* analysis of the oligonucleotides (i.e., forward primer(s), reverse primer(s), capture and mediator probe(s)) for all assay targets in relation to sequences available in GISAID (for SARS-CoV-2, influenza A, influenza A/H1, influenza A/H3, and influenza B) and sequences in NCBI GenBank for all other target organisms.

Sequence alignments were generated using a publicly available sequence alignment program. Sequences with full coverage of all four oligo-binding regions (forward primer, reverse primer, mediator probe and capture probe) were included in the analyses. Partial target sequences and sequences with ambiguous or degenerate bases in an oligo binding region were excluded. A match (i.e., predicted reactivity) was based on the following criteria for all organisms other than SARS-CoV-2: >90% homology between the oligo and reference sequences. If <90% homology was observed, a melting temperature (Tm) analysis was performed using a publicly available Tm calculator and applying assay specific conditions. The Tm analysis involved comparing the calculated mismatch Tm values against the assay's PCR annealing temperature for the primers, against the RT temperature for the RT primers, and against the target hybridization temperature for the capture and mediator probes. If the Tm of the mismatch oligo:sequence pair was above the assay's temperature for the pertinent RT-PCR step (i.e., annealing, RT, or target hybridization), then reactivity was predicted. The >90% homology threshold was chosen because the Respiratory Flex Assay's oligos are designed to have a much higher Tm than the annealing/RT temperature for primers and the hybridization temperature for the capture and mediator probes. As such, the longest oligos in the Respiratory Flex Assay are more tolerant to mismatches.

For SARS-CoV-2, the criteria were stricter due to the propensity of this organism to acquire point mutations. Specifically, 100% homology was expected between the oligo and reference sequences for at least one gene oligo set. If <100% homology was observed for all gene oligo sets, the same melting temperature analysis and reactivity criteria described above were employed.

For SARS-CoV-2, 5,622,325 sequences in GISAID (as of July 31, 2023) were included in the analysis. These sequences included all variants of concern or variants of interest defined as of July 31, 2023. The LIAISON PLEX Respiratory *Flex* Assay targets three SARS-CoV-2 gene regions. The Respiratory *Flex* Assay result logic states that if at least 1 of these targets is detected, SARS-CoV-2 is positive. This same result logic was implemented for the *in silico* inclusivity assessment. Of the sequences included in this evaluation, 99.94% (5,619,069/5,622,325) have *no* mismatch in at least one gene oligo set and thus are predicted to be detected by the Respiratory *Flex* Assay. Of the 0.04% (3,256/5,622,325) of sequences with mismatches in at least one oligo binding region in all 3 SARS-CoV-2 target genes, a Tm analysis revealed that amplification/hybridization were expected to occur. Thus, it is expected that 100% of SARS-CoV-2 sequences evaluated in this study will be detected by the assay.

For influenza A, influenza A H1, influenza A H3, and influenza B, sequences uploaded to GISAID between September 1, 2015, and July 7, 2023, were included in the analysis. The following number of sequences were included in the evaluation of influenza A, A H1, A H3, and influenza B: 112,056, 54,364, 104,428, 26,470. Of the 26,470 influenza B sequences,

66.1% (17,509/26,470) were Victoria lineage, 30.9% (8,167/26,470) were Yamagata lineage, and 3.0% (794/26,470) were of unknown/unclassified lineage. The influenza *in silico* inclusivity analysis results are shown in **Table 24**. Based on the reactivity criteria (>90% homology), 99.9% (112,034/112,056) of influenza A (matrix gene) sequences are expected to be detected, 98.9% (53,778/54,364) of influenza A H1 sequences are expected to be detected, 99.9% (104,315/104,428) of influenza A H3 sequences are expected to be detected, and 99.9% (26,433/26,470) of influenza B sequences are expected to be detected.

Reportable Target	Target Gene	of Sequences in Alignment	# of Sequences with Percent Oligo Identify <u>></u> 90%
Influenza A	Matrix protein (MP)	112,056	112,0341
Influenza A H1	НА	54,364	53,778
Influenza A H3	НА	104,428	104,315
Influenza B	Non-structural protein (NS)	26,470	26,433 ²

 Table 24. Influenza In Silico Inclusivity Results

¹Analysis included influenza A subtype H0, H1, H3, H5, H7, H9, and H10 strains.

²Analysis included 17,509 Victoria lineage strains, 8,167 Yamagata lineage strains, and 794 strains of unknown lineage.

For all other target organisms, *in silico* inclusivity analyses was performed using sequences available from the GenBank nt database as of July 7, 2023. The majority of sequences evaluated for each target organism are expected to be detected by the Respiratory *Flex* Assay.

Cross-Reactivity

a. <u>Cross-Reactivity Wet-Testing</u>

i. Off-Panel Cross-Reactivity

This study evaluated the analytical specificity (cross-reactivity) of the Respiratory *Flex* Assay in the presence of non-targeted microorganisms that may be found in a respiratory tract clinical specimen. Sixty (60) non-target microorganisms (**Table 25**) were evaluated in the study. Panel members were composed of one individual non-target microorganism spiked into simulated NPS matrix at $\geq 10^5$ TCID₅₀/mL (or equivalent) for viruses, $\geq 10^6$ CFU/mL (or equivalent) for bacteria/fungi, or the highest concentration available. Data supporting the use of simulated matrix can be found in section **VII Performance Charactestics.B.2.Matrix Equivalency Study**, later in this document. For *Mycobacterium tuberculosis*, genomic DNA was evaluated for *Bordetella parapertussis* Bpp5, which was identified by *in silico* analysis to contain a sequence that was between 80.0% - 95.8% identical with the primers, mediators, or capture oligos of the Respiratory *Flex Bordetella pertussis* assay. Wet testing was performed with synthetic DNA consisting of the sequence for the matching region of the *B. parapertussis* genome to determine if cross-reactivity with the *Bordetella pertussis* assay occurred.

To evaluate cross-reactivity, each panel was evaluated in triplicate in the absence of the target organisms. No cross-reactivity was observed at the concentrations tested except for *Mycoplasma genitalium* at a concentration of 4×10^6 CCU/mL, which cross-reacted with the *Mycoplasma pneumoniae* assay in 50% of replicates (3/6). The concentration of

Mycoplasma genitalium was lowered to 1×10^6 and 4×10^5 CCU/mL and tested; cross-reactivity no longer occurred at either of these lower concentrations.

Organism	Conc./Unit	Organism	Conc./Unit
Acinetobacter baumannii	1x10 ⁶ CFU/mL	Legionella pneumophila	4x10 ⁵ CFU/mL
Aspergillus flavus	1x10 ⁶ CFU/mL	Listeria innocua	1x10 ⁶ CFU/mL
Aspergillus fumigatus	4x10 ⁵ CFU/mL	Listeria monocytogenes	1x10 ⁶ CFU/mL
Bordetella avium	1x10 ⁶ CFU/mL	Measles	1x10 ⁵ TCID ₅₀ /mL
Bordetella bronchiseptica	1x10 ⁶ CFU/mL	MERS-CoV	NA ²
Bordetella hinzii	1x10 ⁶ CFU/mL	Moraxella catarrhalis	1x10 ⁵ TCID ₅₀ /mL
Bordetella petrii	1x10 ⁶ CFU/mL	Mumps Virus	1x10 ⁵ TCID ₅₀ /mL
Bordetella trematum	1x10 ⁶ CFU/mL	Mycobacterium tuberculosis (H37Rv gDNA)	2.88 ng/uL
Poudotalla navanantussia			4x10 ⁶ CCU/mL
Bordetella parapertussis Bpp5 (synthetic DNA) ¹	1x10 ⁶ copies/mL	Mycoplasma genitalium ³	1x10 ⁶ CCU/mL
			4x10 ⁵ CCU/mL
Candida albicans	1x10 ⁶ CFU/mL	Mycoplasma hominis	1x10 ⁶ CFU/mL
Candida glabrata	1x10 ⁶ CFU/mL	Nasal Wash (pooled)	NA ²
Chlamydia trachomatis Serovar D	1x10 ⁶ IFU/mL	Neisseria elongata	1x10 ⁶ CFU/mL
Coronavirus-SARS	NA ²	Neisseria gonorrhoeae	1x10 ⁶ CFU/mL
Corynebacterium diphtheriae	1x10 ⁶ CFU/mL	Neisseria lactamica	1x10 ⁶ CFU/mL
Corynebacterium pseudodiphtheriticum	1x10 ⁶ CFU/mL	Neisseria meningitidis	1x10 ⁶ CFU/mL
Corynebacterium striatum	1x10 ⁶ CFU/mL	Neisseria mucosa	1x10 ⁶ CFU/mL
Cytomegalovirus	1x10 ⁵ TCID ₅₀ /mL	Neisseria sicca	1x10 ⁶ CFU/mL
Epstein Barr Virus	1x10 ⁵ copies/mL	Pneumocystis jiroveci	1x10 ⁶ CFU/mL
Escherichia coli	1x10 ⁶ CFU/mL	Proteus vulgaris	1x10 ⁶ CFU/mL
Fluoribacter bozemanae	4x10 ⁶ CFU/mL	Pseudomonas aeruginosa	1x10 ⁶ CFU/mL
Fusobacterium necrophorum	1x10 ⁶ CFU/mL	Serratia marcescens	1x10 ⁶ CFU/mL
Haemophilus influenzae	1x10 ⁶ CFU/mL	Staphylococcus aureus	1x10 ⁶ CFU/mL
Haemophilus parainfluenzae	1x10 ⁶ CFU/mL	Staphylococcus epidermidis	1x10 ⁶ CFU/mL
Herpes Simplex Virus Type 1	1x10 ⁵ TCID ₅₀ /mL	Staphylococcus haemolyticus	1x10 ⁶ CFU/mL
Klebsiella pneumoniae	1x10 ⁶ CFU/mL	Streptococcus agalactiae	1x10 ⁶ CFU/mL
Lactobacillus acidophilus	1x10 ⁶ CFU/mL	Streptococcus pneumoniae	1x10 ⁶ CFU/mL
Lactobacillus plantarum	1x10 ⁶ CFU/mL	Streptococcus pyogenes	1x10 ⁶ CFU/mL
Legionella anisa	1x10 ⁶ CFU/mL	Streptococcus salivarius	1x10 ⁶ CFU/mL
Legionella feeleii	1x10 ⁶ CFU/mL	Ureaplasma urealyticum	1x10 ⁶ CCU/mL
Legionella longbeachae	1x10 ⁶ CFU/mL	Varicella-Zoster Virus	2.34x10 ⁴ TCID ₅₀ /mL

Table 25. Off-Panel Organisms Evaluated for Cross-Reactivity

CFU = Colony Forming Units; CCU = Colony Changing Units; IFU = Inclusion Forming Units; TCID₅₀ = Median Tissue Culture Infectious Dose.

¹A portion of the *B. parapertussis* Bpp5 genome was identified by *in-silico* analysis as potentially cross-reactive with *B. pertussis*. Synthetic DNA was tested that matched the region of high homology in the assay. Testing was included in the off-panel cross-reactivity study since the targeted sequence was not expected to be detected as *B. parapertussis* by the assay.

²No concentration provided by the supplier.

³At 4x10⁶ CCU/mL, *Mycoplasma genitalium* was cross-reactive with the *Mycoplasma pneumoniae* assay in 50.0% (3/6) of replicates. The *Mycoplasma genitalium* concentration was lowered to $1x10^{6}$ CCU/mL and $4x10^{5}$ CCU/mL and had 0% (0/3) positivity for both concentrations.

ii. On-Panel Cross-Reactivity

Potential intra-panel cross-reactivity was evaluated with twenty-eight (28) on-panel microorganisms (**Table 26**). The on-panel organisms were evaluated by spiking each independently into simulated NPS matrix at $\geq 10^5$ TCID₅₀/mL (or equivalent) for viruses and $\geq 10^6$ CFU/mL (or equivalent) for bacteria, or the highest concentration available. Data supporting the use of simulated matrix can be found in section **VII Performance Charactestics.B.2.Matrix Equivalency Study**, later in this document. To evaluate potential intra-panel cross-reactivity, each panel was evaluated in triplicate. The results of testing are shown in **Table 26**.

Organism	Conc./Unit	Expected Target Positivity	Unexpected Target Positivity	
Adenovirus	1x10 ⁵ TCID ₅₀ /mL	100% (3/3)	0% (0/3)	
Bordetella holmesii	1x10 ⁶ CFU/mL	100% (3/3)	0% (0/3)	
Bordetella parapertussis	1x10 ⁶ CFU/mL	100% (3/3)	0% (0/3)	
Bordetella pertussis	1x10 ⁶ CFU/mL	100% (3/3)	0% (0/3)	
Chlamydia pneumoniae	1x10 ⁶ IFU/mL	100% (3/3)	0% (0/3)	
Human Coronavirus 229E	1x10 ⁵ TCID ₅₀ /mL	100% (3/3)	0% (0/3)	
Human Coronavirus HKU1 (Lum2020-Resp-1528)	6.62x10 ⁴ copies/mL	100% (3/3)	0% (0/3)	
Human Coronavirus NL63	1x10 ⁵ TCID ₅₀ /mL	100% (3/3)	0% (0/3)	
Human Coronavirus OC43	1x10 ⁵ TCID ₅₀ /mL	100% (3/3)	0% (0/3)	
Echovirus (Enterovirus/Rhinovirus)	1x10 ⁵ TCID ₅₀ /mL	100% (3/3)	0% (0/3)	
Human Metapneumovirus	1x10 ⁵ TCID ₅₀ /mL	100% (3/3)	0% (0/3)	
Influenza B (Washington/02/2019/Victoria Lineage)	1x10 ⁵ TCID ₅₀ /mL	100% (3/3)	0% (0/3)	
Influenza B (Phuket/3073/13/Yamagata Lineage)	1x10 ⁵ TCID ₅₀ /mL	100% (3/3)	0% (0/3)	
Mycoplasma pneumoniae	1x10 ⁶ CCU/mL	100% (3/3)	0% (0/3)	
Parainfluenza 1	1x10 ⁵ TCID ₅₀ /mL	100% (3/3)	0% (0/3)	
Parainfluenza 2	1x10 ⁵ TCID ₅₀ /mL	100% (3/3)	0% (0/3)	
Parainfluenza 3	1x10 ⁵ TCID ₅₀ /mL	100% (3/3)	0% (0/3)	
Parainfluenza 4	1x10 ⁵ TCID ₅₀ /mL	100% (3/3)	0% (0/3)	

Table 26. On-Panel Organisms Evaluated for Cross-Reactivity

RSV A	1x10 ⁵ PFU/mL	100% (3/3)	0% (0/3)
RSV B	1x10 ⁵ TCID ₅₀ /mL	100% (3/3)	0% (0/3)
Influenza A H1N1	1x10 ⁵ TCID ₅₀ /mL	Matrix: 100% (3/3) Subtype H1: 100% (3/3)	0% (0/3)
Influenza A H3N2	1x10 ⁵ TCID ₅₀ /mL	Matrix: 100% (3/3) Subtype H3: 100% (3/3)	0% (0/3)
Influenza A H5N1 ¹	2x10 ⁷ copies/mL	Matrix: 100% (3/3)	0% (0/3)
Influenza A H7N2 ¹	6x10 ⁶ copies/mL	Matrix: 100% (3/3)	0% (0/3)
Influenza A H7N7 ¹	2x10 ⁷ copies/mL	Matrix: 100% (3/3)	0% (0/3)
Influenza A H9N2 ¹	4x10 ⁸ copies/mL	Matrix: 100% (3/3)	0% (0/3)
Influenza A H1N2 ²	3x10 ⁷ copies/mL	Matrix: 100% (3/3) Subtype H1: 100% (3/3)	0% (0/3)
SARS-CoV-2	1x10 ⁵ TCID ₅₀ /mL	100% (3/3)	0% (0/3)

CFU = Colony Forming Units; IFU = Inclusion Forming Units; TCID50 = Median Tissue Culture Infectious Dose; PFU = Plaque Forming Units

¹These influenza A non-subtype H1/H3 strains are expected to be inclusive to the influenza A matrix target, only (i.e., are expected to be reported as influenza A positive, subtype H1/subtype H3 negative). All were negative for both subtype H1 and subtype H3, as anticipated.

²This influenza A H1N2 strain is expected to be inclusive to the influenza A matrix target and influenza A subtype H1 target. This strain was positive for both the influenza A matrix target and influenza A subtype H1 target, as expected.

b. <u>In silico</u>

In silico analysis of assay specificity/exclusivity was performed by conducting a BLAST comparison of the assay's oligos sequences to the GenBank nt sequence database, as of July 14, 2023. Sequences for 83 off-panel organisms (68 bacteria/fungi and 15 viruses) that can be found in a respiratory specimen were included. Additionally, sequences for all on-panel organisms were included to evaluate intra-panel cross-reactivity. A summary of the results from the analysis is provided in **Table 27**. The LIAISON PLEX Respiratory *Flex* assays were shown to be specific for their respective analytes with the following exceptions, which are noted in the device labeling:

- Cross-reaction of the Adenovirus assays with closely related Adenovirus G (serotype 52) strains.
- Cross-reaction of the SARS-CoV-2 assays with closely related bat and pangolin coronavirus sequences;
- Cross-reaction of the *B. parapertussis* assay with strains of *B. bronchiseptica* that carry IS1001;
- Cross-reaction of the influenza A H1 subtyping assay with 3 swine H3N2 strains and 1 avian H6N1 strain;

• Cross-reaction of the influenza A H3 subtyping assay with 59 swine H1N1 and swine H1N2 strains, 1 duck H5N2 strain, 1 ostrich H7N1 strain, 1 avian H7N9 strain, 1 avian H8N4 strain, and 1 avian H11N9 strain.

Assay	Predicted Cross-Reaction
Adenovirus	Adenovirus G (serotype 52) - strains
SARS-CoV-2	Bat coronavirus and Bat SARS-like coronavirus (accessions MG772933, MG772934, and MN996532)
Bordetella parapertussis	<i>Bordetella bronchiseptica</i> containing IS1001 element (accessions JX013523 to JX013527 and CP022962)
Influenza A H1	H5N1 (accession CY110922) ¹ ; swine H3N2 (accessions KM110061, KM110062, KM110063, and OM935891); avian H6N1 (accession OP888980)
Influenza A H3	swine H1N1 and swine H1N2 – 59 strains; duck H5N2 (accession OK103962); ostrich H7N1 (accession AF202244); avian H7N9 (accession KP413675); avian H8N4 (accession OK103964); avian H11N9 (accession OK103956)

Table 27. Organisms Predicted by In Silico Analyses to Cross-React with the RespiratoryFlex Assay.

¹This H5N1 human strain sequence is a chimeric sequence containing H1N1 sequence fragments. Therefore, detection of this sequence by the H1 oligos is not considered a cross-reaction.

Microbial Interference

To determine if non-target organisms can interfere with detection of on-panel organisms in the same sample, a microbial interference study was conducted. The study evaluated 16 non-target organisms spiked into simulated NPS matrix at $\geq 10^5$ TCID₅₀/mL for viruses and $\geq 10^6$ CFU/mL for bacteria/fungi, or the highest concentration available. Data supporting the use of simulated matrix can be found in section **VII Performance Charactestics.B.2.Matrix Equivalency Study**, later in this document. In addition to each non-target organism, each sample was cospiked with five representative on-panel targets (i.e., *B. pertussis*, adenovirus, influenza B, hMPV, and SARS-CoV-2) at 3x LoD. To evaluate microbial interference, testing was performed in triplicate. If on-panel organisms were detected at <100%, samples were reprepared at the same concentration and retested in triplicate. If 100% detection of the on-panel targets was obtained during retesting, no additional testing was performed. When this situation was encountered, the original and retesting results were pooled for performance calculations. Results of the study are shown in **Table 28**. No microbial interference was observed except for *Streptococcus pyogenes* at 1x10⁶ CFU/mL and *Legionella pneumophilia* at 4x10⁵ CFU/mL, which interfered with detection of adenovirus in 16.7% (1/6) of replicates.

		% Positivity (# Detected/# Tested)				
Off-Panel Organism	Conc./Unit	Adenovirus	B. pertussis	Flu B	hMPV	SARS- CoV-2
Candida albicans	1x10 ⁶ CFU/mL	100%	100%	100%	100%	100%
		(3/3)	(3/3)	(3/3)	(3/3)	(3/3)
Corynebacterium	1x10 ⁶ CFU/mL	100%	100%	100%	100%	100%
diphtheriae	IXI0° CFU/IIIL	(3/3)	(3/3)	(3/3)	(3/3)	(3/3)

 Table 28. Microbial Interference Study Results

Cytomegalovirus	1x10 ⁵ TCID ₅₀ /mL	100%	100%	100%	100%	100%
Cytomegalovitus		(3/3)	(3/3)	(3/3)	(3/3)	(3/3)
Haemonhilus influenzae	1x10 ⁶ CFU/mL	100%	100%	100%	100%	100%
Haemophilus influenzae	IXI0 [°] CFU/IIIL	(3/3)	(3/3)	(3/3)	(3/3)	(3/3)
Herpes Simplex Virus 1	1x10 ⁵ TCID ₅₀ /mL	100%	100%	100%	100%	100%
Therpes Simplex Virus I	TXT0 TCID50/IIIL	(3/3)	(3/3)	(3/3)	(3/3)	(3/3)
MERS	NA	100%	100%	100%	100%	100%
WIEKS	INA	(3/3)	(3/3)	(3/3)	(3/3)	(3/3)
Neisseria meningitidis	1x10 ⁶ CFU/mL	100%	100%	100%	100%	100%
weisseria meningiliais		(3/3)	(3/3)	(3/3)	(3/3)	(3/3)
Stanbylococcus aurous	1x10 ⁶ CFU/mL	100%	100%	100%	100%	100%
Staphylococcus aureus	TXT0° CFU/IIIL	(3/3)	(3/3)	(3/3)	(3/3)	(3/3)
Proudomonas aomiginosa	1x10 ⁶ CFU/mL	100%	100%	100%	100%	100%
Pseudomonas aeruginosa		(3/3)	(3/3)	(3/3)	(3/3)	(3/3)
Streptococcus	1x10 ⁶ CFU/mL	100%	100%	100%	100%	100%
pneumoniae	IXI0° CFU/mL	(3/3)	(3/3)	(3/3)	(3/3)	(3/3)
Strantococcus moganas	1x10 ⁶ CFU/mL	83.3%	100%	100%	100%	100%
Streptococcus pyogenes		$(5/6)^1$	(6/6)	(6/6)	(6/6)	(6/6)
SARS	NA	100%	100%	100%	100%	100%
SARS		(3/3)	(3/3)	(3/3)	(3/3)	(3/3)
Legionella pneumophilia	4x10 ⁵ CFU/mL	83.3%	100%	100%	100%	100%
Legionella pheumophilia	4X10° CFU/IIIL	$(5/6)^1$	(6/6)	(6/6)	(6/6)	(6/6)
Measles	1x10 ⁵ TCID ₅₀ /mL	100%	100%	100%	100%	100%
111003105		(3/3)	(3/3)	(3/3)	(3/3)	(3/3)
Moraxella catarrhalis	1x10 ⁶ CFU/mL	100%	100%	100%	100%	100%
Morazetta catarrhatts	IATU CI U/IIIL	(3/3)	(3/3)	(3/3)	(3/3)	(3/3)
Mumns	1x10 ⁵ TCID ₅₀ /mL	100%	100%	100%	100%	100%
Mumps	1X10 ICID50/IIIL	(3/3)	(3/3)	(3/3)	(3/3)	(3/3)

¹The original three replicates tested resulted in 66.7% (2/3) positivity for adenovirus. New test material was prepared and tested, resulting in 100% (3/3) positivity for adenovirus.

Interfering Substances

An analytical study was performed to assess the potential inhibitory effects of exogenous and endogenous substances that may be commonly found in NPS specimens. A representative panel of five Respiratory *Flex* target organisms - *Bordetella pertussis*, adenovirus, influenza B, hMPV, and SARS-CoV-2 were co-spiked at 3x LoD in simulated NPS matrix and challenged with the 34 substances illustrated in **Table 29**. Testing was performed in triplicate. Data supporting the use of simulated matrix can be found in section **VII Performance Charactestics.B.2.Matrix Equivalency Study**, later in this document.

Substance/Class	Description/Active Ingredient	Concentration Tested	
Nasal Corticosteroid	Beclomethasone dipropionate	25 μg/mL	
Anesthetic	Benzocaine	10% w/v	
Nasal Corticosteroid	Budesonide	3.4x10 ⁻² μmol/L	
Nasal Corticosteroid	Dexamethasone	30.6 µmol/L	
Nasal Corticosteroid	Flunisolide	25 μg/mL	
FLONASE Sensimist Allergy	Fluticasone furoate	2.84x10 ⁻³ µmol/L	
Relief	Futicasone futoate	2.84X10 µ1101/L	
Fluticasone Propionate Nasal	Fluticasone propionate	2.84x10 ⁻³ µmol/L	
Spray	Futicasone propionate	2.84X10 µmol/L	
DNA	Human DNA	20 ng/µL	
Nasal Wash	Human Nasal Wash	9.1%	
Sputum/Mucus	Human Sputum/Mucus	1 swab/1mL sample ¹	

Table 29. Substances Evaluated for Interference

		1 swab/2mL sample ²
Human Blood	Human Whole Blood	5.0% v/v 4.5% v/v
		4.0% v/v
Human Cells	Leukocytes	1000 cells/μL 666.7 cells/μL
Truman Cens	Leukocytes	333.3 cells/µL
Oral Anesthetic and Analgesic	Menthol	1% w/v
Nasal Corticosteroid	Mometasone furoate	8.63x10 ⁻⁴ μmol/L
Mucin	Mucin, bovine submaxillary Type I-S	100 μg/mL
Mucin	Mucin, porcine stomach Type II	100 μg/mL
Mucin	Mucin, porcine stomach Type III	100 μg/mL
Antibiotic, Nasal Ointment	Mupirocin	3.0 µmol/L
Anti-viral	Oseltamivir Phosphate	1.28 μmol/L
Afrin Nasal Spray	Oxymetazoline	1% v/v
Nasal Decongestant	Phenylephrine	1.79x10 ⁻¹ μmol/L
Saline Nasal Spray	Sodium Chloride	1% v/v
Nasal Corticosteroid	Triamcinolone acetonide	25 μg/mL
Antibiotic	Tobramycin	76.0 μmol/L
Anti-viral	Zanamivir	100 μg/mL
Anti-viral	Zinc	5% v/v
	Galphimia glauca	
	Histaminum Hydrochloricum	10//
ZICAM Nasal Spray	Luffa operculata	1% v/v
	Sulfur	
NPS Swab	Nylon swab (Copan)	NA
Transport Media	Universal Transport Medium (Copan)	100%

¹A nylon nasopharyngeal swab was fully coated with human sputum/mucus and then eluted into 1 mL of simulated NPS matrix, containing 5 representative target organisms at 3x LoD. The eluent was subsequently tested with the Respiratory *Flex* Assay.

²A nylon nasopharyngeal swab was fully coated with human sputum/mucus and then eluted into 2 mL of simulated NPS matrix, containing 5 representative target organisms at 3x LoD. The eluent was subsequently tested with the Respiratory *Flex* Assay.

If an on-panel organism in the panel was detected at <100%, samples were reprepared at the same concentration (for both the on-panel organisms and the potential interfering substance) and retested in triplicate. If 100% detection of the on-panel targets was obtained during retesting, no additional testing was performed. When this situation was encountered, the original and retesting results were pooled for performance calculations. If less than 100% detection was observed during retesting, the sample was reprepared at a lower concentration of the interfering substance and tested until 100% detection was achieved.

No interference was observed except for the substances illustrated in **Table 30** and described in more detail below:

• Human sputum/mucus (prepared by coating a nylon NPS swab with human sputum/mucus, eluting the swab in 1 mL of simulated NPS matrix containing 5 representative target organisms at 3x LoD, and then testing the eluate) interfered with detection of hMPV, influenza B, and SARS-CoV-2. For hMPV and influenza B, interference was observed during both initial testing and retesting, so per the study protocol, testing was performed at a less challenging concentration until interference was no longer observed (i.e., eluting the

swab into 2 mL of simulated NPS matrix containing 5 representative target organisms at 3x LoD). Interference was no longer observed when human sputum/mucus was eluted into 2 mL of simulated NPS matrix containing 5 representative analytes.

- Human whole blood at 5.0% v/v interfered with detection of *Bordetella pertussis*, hMPV, and influenza B. For hMPV, interference was observed during both initial testing and retesting, so per the study protocol, testing was performed at a less challenging concentration until interference was no longer observed. Interference caused by human whole blood no longer occurred at a concentration of 4.0% v/v.
- Leukocytes at 1000 cells/μL interfered with detection of hMPV and SARS-CoV-2. The original three replicates tested resulted in 33.3% (1/3) replicates being invalid and 50% (1/2) positivity for hMPV and 100% positivity (2/2) for SARS-CoV-2. New test material was prepared and tested, resulting in 66.6% (2/3) invalid results and 0% (0/1) positivity for hMPV and SARS-CoV-2. Per the study protocol, testing was performed at more dilute concentrations until 100% detection occurred. Interference caused by leukocytes was no longer observed at a concentration of 333.3 cells/μL.
- Mupirocin at 3.0 µmol/L interfered with detection of influenza B in 33% (1/3) of replicates during initial testing. Upon repeat testing, no interference was observed.
- Tobramycin at 76.0 µmol/L interfered with detection of hMPV and SARS-CoV-2 in 50% (1/2) of replicates during initial testing. In addition, one replicate was invalid during original testing. Upon repeat testing, no interference was observed.

Active		% Positivity (# Detected/# Tested)					
Ingredient	Test Conc.	Adenovirus	B. pertussis	hMPV	Flu B	SARS- CoV-2	
	1 swab/1mL	100%	100%	33.3%	66.7%	83.3%	
Human	sample	(6/6)	(6/6)	$(2/6)^1$	$(4/6)^1$	(5/6)	
Sputum/Mucus	1 swab/2mL	100%	100%	100%	100%	100%	
	sample	(3/3)	(3/3)	(3/3)	(3/3)	(3/3)	
	5 00/ 11/12	100%	83.3%	66.7%	83.3%	100%	
	5.0% v/v	(6/6)	(5/6)	$(4/6)^1$	(5/6)	(6/6)	
Human Whole	4.5% v/v	100%	100%	66.7%	100%	100%	
Blood		(3/3)	(3/3)	(2/3)	(3/3)	(3/3)	
	4.0% v/v	100%	100%	100%	100%	100%	
		(3/3)	(3/3)	(3/3)	(3/3)	(3/3)	
	1000 cells/µL	100%	100%	33.3%	100%	66.7%	
		(3/3)	(3/3)	$(1/3)^2$	(3/3)	$(2/3)^2$	
T1	666.7 cells/μL	100%	100%	33.3%	33.3%	33.3%	
Leukocytes		(3/3)	(3/3)	(1/3)	(1/3)	(1/3)	
	222.2	100%	100%	100%	100%	100%	
	333.3 cells/μL	(3/3)	(3/3)	(3/3)	(3/3)	(3/3)	
Maarinaalia	2.0	100%	100%	100%	83.3%	100%	
Mupirocin	3.0 μmol/L	(6/6)	(6/6)	(6/6)	$(5/6)^3$	(6/6)	
T 1 ·	76.0	100%	100%	80%	100%	80%	
Tobramycin	76.0 μmol/L	(5/5)	(5/5)	$(4/5)^4$	(5/5)	$(4/5)^4$	

Table 30. Substances that Interfered with Detection of at Least One Target Organism

¹Unexpected negative results were obtained during original and repeat testing, therefore testing was performed at more dilute concentrations until 100% detection occurred.

²The original three replicates tested resulted in 33.3% (1/3) replicates being invalid and 50% (1/2) positivity for hMPV and 100% positivity (2/2) for SARS-CoV-2. New test material was prepared and tested, resulting in 66.6% (2/3) invalid results, and 0% (0/1) positivity for hMPV and SARS-CoV-2. Therefore, testing was performed at more dilute concentrations until 100% detection occurred.

³The original three replicates tested resulted in 66.7% (2/3) positivity for influenza B. New test material was prepared and tested, resulting in 100% (3/3) positivity for influenza B. ⁴The original three replicates tested resulted in 33.3% (1/3) replicates being invalid and 50% (1/2) positivity for hMPV and SARS-CoV-2. New test material was prepared and tested, resulting in 100% (3/3) positivity for hMPV and SARS-CoV-2.

Competitive Interference (Co-Infection)

The impact of competitive interference, caused by co-infections with on-target analytes, was evaluated for the Respiratory Flex Assay by testing contrived samples consisting of an on-target analyte at a low concentration (3x LoD) in the presence of a different target organism at a high concentration (>1x10⁵ TCID₅₀/mL, PFU/mL, or CEID₅₀/mL) in simulated NPS matrix. Data supporting the use of simulated matrix can be found in section VII Performance Charactestics.B.2.Matrix Equivalency Study, later in this document. For high concentration Coronavirus HKU1 testing, the highest concentration available $(1.31 \times 10^4 \text{ copies/mL})$ was used. Testing for each target organism (at low concentration) and each potential competitive strain (at high concentration) was performed in triplicate for the 54 co-infection combinations illustrated in Table 31. If competitive interference was observed during initial testing, samples were reprepared at the same concentration and retested in triplicate. If competitive interference was not observed during retesting, no additional testing was performed. When this situation was encountered, the original and retesting results were pooled for performance calculations. If competitive interference was observed during retesting, the high concentration analyte concentration was reduced, and additional testing was performed. Results of the study are shown in Table 31.

Target 1 (High Conc.)		Target 2 (Low Conc. ¹)	% Detected (# Detected/#Tested)	
Organism	Conc. (TCID ₅₀ /mL ²)	Organism	Target 1	Target 2
Adenovirus 37D	1x10 ⁵	Rhinovirus	100% (3/3)	100% (3/3)
Rhinovirus	1x10 ⁵	hMPV	100% (3/3)	100% (3/3)
Adenovirus 37D	1x10 ⁵	Coronavirus NL63	100% (3/3)	100% (3/3)
Rhinovirus	1x10 ⁵	RSV A	100% (3/3)	100% (3/3)
Coronavirus OC43	1x10 ⁵	PIV-3	100% (6/6)	$66.7\% (4/6)^3$
Coronavirus OC43	5x10 ⁴	PIV-3	100% (3/3)	100% (3/3)
Rhinovirus	1x10 ⁵	Coronavirus NL63	100% (3/3)	100% (3/3)
Adenovirus 37D	1x10 ⁵	hMPV	100% (3/3)	100% (3/3)
Rhinovirus	1x10 ⁵	Flu A H3N2	100% (3/3)	Matrix: 100% (3/3) Subtype H3: 100% (3/3)
Adenovirus 37D	1x10 ⁵	PIV-3	100% (7/7)	$85.7\% (6/7)^4$
Coronavirus NL63	1x10 ⁵	hMPV	100% (3/3)	100% (3/3)
Rhinovirus	1x10 ⁵	SARS-CoV-2	100% (3/3)	100% (3/3)
Rhinovirus	1x10 ⁵	PIV-3	100% (3/3)	100% (3/3)
Adenovirus 37D	1x10 ⁵	RSV A	100% (6/6)	$66.7\% (4/6)^5$
Adenovirus 37D	5x10 ⁴	RSV A	100% (3/3)	100% (3/3)
Rhinovirus	1x10 ⁵	PIV-4	100% (3/3)	100% (3/3)
Rhinovirus	1x10 ⁵	PIV-1	100% (3/3)	100% (3/3)
Adenovirus 37D	1x10 ⁵	Flu A H3N2	100% (6/6)	Matrix: 66.7% (4/6) ⁶

 Table 31. Competitive Interference Study Sample Panel Composition & Study Results

Target 1 (High Conc.)		Target 2 (Low Conc. ¹)		tected d/#Tested)
Organism Conc. (TCID ₅₀ /mL ²)		Organism	Target 1	Target 2
Organism		Organishi	Target 1	Subtype H3:
				100% (6/6)
				Matrix:
				100% (3/3)
Adenovirus 37D	5x10 ⁴	Flu A H3N2	100% (3/3)	Subtype H3:
				100% (3/3)
				Matrix:
	4 4 9 5			100% (3/3)
Rhinovirus	1x10 ⁵	Flu A H1N1	100% (3/3)	Subtype H1:
				100% (3/3)
				Matrix:
	1 105		1000/ ((())	100% (3/3)
SARS-CoV-2	1x10 ⁵	Flu A H3N2	100% (6/6)	Subtype H3:
				100% (3/3)
SARS-CoV-2	1x10 ⁵	Flu B	100% (3/3)	100% (3/3)
SARS-CoV-2	1x10 ⁵	Coronavirus 229E	100% (6/6)	83.3% (5/6) ⁷
SARS-CoV-2	1x10 ⁵	Coronavirus NL63	100% (3/3)	100% (3/3)
SARS-CoV-2	1x10 ⁵	Coronavirus OC43	100% (3/3)	100% (3/3)
		Coronavirus		, <i>í</i>
SARS-CoV-2	1x10 ⁵	HKU1	100% (3/3)	100% (3/3)
SARS-CoV-2	1x10 ⁵	RSV A	100% (3/3)	100% (3/3)
SARS-CoV-2	1x10 ⁵	Adenovirus 3B	100% (3/3)	100% (3/3)
SARS-CoV-2	1x10 ⁵	Adenovirus 4E	100% (3/3)	100% (3/3)
SARS-CoV-2	1x10 ⁵	Adenovirus 7A	100% (3/3)	100% (3/3)
Rhinovirus	1x10 ⁵	Adenovirus 37D	100% (3/3)	100% (3/3)
hMPV	1x10 ⁵	Rhinovirus	100% (3/3)	100% (3/3)
Coronavirus NL63	1x10 ⁵	Adenovirus 37D	100% (3/3)	100% (3/3)
RSV A	1x10 ⁵ (PFU/mL)	Rhinovirus	100% (3/3)	100% (3/3)
PIV-3	1x10 ⁵	Coronavirus OC43	100% (3/3)	100% (3/3)
Coronavirus NL63	1x10 ⁵	Rhinovirus	100% (3/3)	100% (3/3)
hMPV	1x10 ⁵	Adenovirus 37D	100% (3/3)	100% (3/3)
Flu A H3N2	$1x10^{5}$ (CEID ₅₀ /mL)	Rhinovirus	100% (3/3)	100% (3/3)
PIV-3	1x10 ⁵	Adenovirus 37D	100% (3/3)	100% (3/3)
hMPV	1x10 ⁵	Coronavirus NL63	100% (3/3)	100% (3/3)
SARS-CoV-2	1x10 ⁵	Rhinovirus	100% (3/3)	100% (3/3)
PIV-3	1x10 ⁵	Rhinovirus	100% (3/3)	100% (3/3)
RSV A	$1x10^{5}$ (PFU/mL)	Adenovirus 37D	100% (3/3)	100% (3/3)
PIV-4	1x10 ⁵	Rhinovirus	100% (3/3)	100% (3/3)
PIV-1	1x10 ⁵	Rhinovirus	100% (3/3)	100% (3/3)
			Matrix:	· · · · · · · · · · · · · · · · · · ·
		A denovirus 37D 100% (3/3)		1000((2/2)
Flu A H3N2	$1x10^{5}$ (CEID ₅₀ /mL)		Subtype H3:	100% (3/3)
			100% (3/3)	
			Matrix:	
	1, 105 (CEID (1)	1000/ (2/2)	1000/ (2/2)	
Flu A H1N1	$1x10^{5}$ (CEID ₅₀ /mL)		· · ·	100% (3/3)
			100% (3/3)	
EL. A LIZNIZ	1 - 105 (CEID (CADC CAU 2	Matrix:	1000/ (2/2)
Flu A H3N2	$1x10^{5}$ (CEID ₅₀ /mL)	SARS-CoV-2	100% (3/3)	100% (3/3)

Target 1 (High Conc.)		Target 2 (Low Conc. ¹)	% Detected (# Detected/#Tested)	
Organism	Conc. (TCID ₅₀ /mL ²)	Organism	Target 1	Target 2
			Subtype H3:	
			100% (3/3)	
Influenza B	1x10 ⁵	SARS-CoV-2	100% (3/3)	100% (3/3)
Coronavirus 229E	1x10 ⁵	SARS-CoV-2	100% (3/3)	100% (3/3)
Coronavirus NL63	1x10 ⁵	SARS-CoV-2	100% (3/3)	100% (3/3)
Coronavirus OC43	1x10 ⁵	SARS-CoV-2	100% (6/6)	83.3% (5/6) ⁸
Coronavirus HKU1	1.31x10 ⁴ (copies/mL)	SARS-CoV-2	100% (3/3)	100% (3/3)
RSV A	1x10 ⁵ (PFU/mL)	SARS-CoV-2	100% (3/3)	100% (3/3)
Adenovirus 3B	1x10 ⁵	SARS-CoV-2	100% (3/3)	100% (3/3)
Adenovirus 4E	1x10 ⁵	SARS-CoV-2	100% (3/3)	100% (3/3)
Adenovirus 7A	1x10 ⁵	SARS-CoV-2	100% (3/3)	100% (3/3)

¹Low concentration target organisms were prepared at 3x LoD.

²Concentrations are in TCID₅₀/mL, unless otherwise noted.

³Unexpected negative results were obtained during original and repeat testing for parainfluenza 3, therefore testing was performed at more dilute coronavirus OC43 concentrations until 100% detection of parainfluenza 3 occurred.

⁴The original three replicates tested resulted in 66.7% (2/3) positivity for parainfluenza 3. New test material was prepared and tested, resulting in 100% (4/4) positivity for parainfluenza 3. Four replicates were performed during resting, rather than three because a single false positive SARS-CoV-2 result was obtained during retesting.

⁵Unexpected negative results were obtained during original and repeat testing for RSV A, therefore testing was performed at more dilute adenovirus concentrations until 100% detection of RSV A occurred.

⁶Unexpected negative results were obtained during original and repeat testing for influenza A (matrix), therefore testing was performed at more dilute adenovirus concentrations until 100% detection of influenza A (matrix) occurred.

⁷The original three replicates tested resulted in 66.7% (2/3) positivity for coronavirus. New test material was prepared and tested, resulting in 100% (3/3) positivity for coronavirus.

⁸The original three replicates tested resulted in 66.7% (2/3) positivity for SARS-CoV-2. New test material was prepared and tested, resulting in 100% (3/3) positivity for SARS-CoV-2.

Interference was observed for the following co-infections:

- Parainfluenza 3 (low concentration) in the presence of human coronavirus OC43 (high concentration of 1x10⁵ TCID₅₀/mL). Competitive interference was no longer observed when the human coronavirus OC43 concentration was decreased to 5x10⁴ TCID₅₀/mL.
- Parainfluenza 3 (low concentration) in the presence of adenovirus 37D (high concentration of 1×10^5 TCID₅₀/mL).
- RSV A (low concentration) in the presence of adenovirus 37D (high concentration of 1×10^5 TCID₅₀/mL). Competitive interference was no longer observed when the adenovirus 37D concentration was decreased to 5×10^4 TCID₅₀/mL.
- Flu A H3N2 (low concentration) in the presence of adenovirus 37D (high concentration of $1x10^5$ TCID₅₀/mL). Specifically, detection of influenza A (matrix) was decreased in the presence of adenovirus 37D at a high concentration of $1x10^5$ TCID₅₀/mL. Competitive interference was no longer observed when the adenovirus 37D concentration was decreased to $5x10^4$ TCID₅₀/mL.
- Human coronavirus 229E (low concentration) in the presence of SARS-CoV-2 (high concentration of 1x10⁵ TCID₅₀/mL).

- SARS-CoV-2 (low concentration) in the presence of human coronavirus OC43 (high concentration of 1x10⁵ TCID₅₀/mL).
- 4. <u>Assay Reportable Range:</u> Not applicable; this is a qualitative assay.
- 5. <u>Traceability</u>, Stability, Expected Values (Controls, Calibrators, or Methods):
 - a. <u>Controls</u> See Section IV.C.Instrument Descriptive Information.5.Quality Control.
 - b. <u>Sample Stability</u>

An analytical study was performed to establish the recommended transport and storage conditions for nasopharyngeal swab (NPS) specimens eluted in UVT /UTM that will be tested using the Respiratory *Flex* Assay. A representative panel of five Respiratory *Flex* target organisms (i.e., *Bordetella pertussis*, adenovirus, influenza B, hMPV, and SARS-CoV-2) was evaluated. Positive samples were prepared by co-spiking the five organisms at concentrations of 2x and 5x LoD in natural clinical NPS matrix. Negative samples, consisting of natural clinical NPS matrix, were also included in the study. Initial testing was performed to establish the baseline time point (t=0 hours) for the study, and additional aliquots of the samples were stored at each of the following temperature conditions: (1) room temperature (15-30°C), (2) refrigerated (2-8°C), and (3) Frozen (\leq -70°C).

At the designated time points shown in **Table 32** below, one positive sample at each concentration and a negative sample was tested with the Respiratory *Flex* Assay. The number of replicates performed for each storage condition and sample concentration is illustrated in **Table 33**.

Test Time Point	Storage Temperature				
Test Time Point	15-30°C	2-8° C	<u><</u> -70°C		
Baseline (0-hours)	Х	Х	Х		
5-hours	Х	NA			
9-hours	Х	NA			
27-hours		Х	NA		
72-hours	NA X				
80-hours	INA	Х			
36-days		NA	Х		

Table 32. Overview of Specimen Stability Storage Conditions and Time Points

"X" indicates the testing time point for each target.

"NA" indicates the time point/storage condition as not part of the testing protocol.

Table 33. Number of Replicates Collected for Each Storage Condition and Sample
Concentration

Refrigerated Storage					
Storage Temperature	Sample Concentration	Baseline (0-hours)	27-Hours	72-Hours	80-Hours
	5x	10	10	10	10
2°C	2x	40	40	40	40
	Negative	10	10	10	10
8°C	5x	10	10	10	10

	2x	40	40	40	40
	Negative	10	10	10	10
	Roo	m Temperat	ure Storage		
Storage	Sample	Baseline	5-Hours	9-Hours	
Temperature	Concentration	(0-hours)	5-nours	9-Hours	
	5x	20	10	10	
30°C	2x	80	40	40	
	Negative	20	10	10	
		Frozen St	orage		
Storage	Sample	Baseline	26 Dave		
Temperature	Concentration	(0-hours)	36-Days		
	5x	10	10		
<u></u> ≤-70°C	2x	40	40		
	Negative	10	10		

The results of this specimen stability study support the stability claims for the Respiratory *Flex* Assay of clinical NPS specimens in UTM/UVT at the following conditions:

- Up to 8-hours at 15-30°C
- Up to 72-hours at 2-8°C
- Up to 30 days at \leq -70°C

Freeze/Thaw Stability

The performance of the Respiratory *Flex* Assay with fresh and frozen specimens was evaluated by testing 4 sample panels, each consisting of 5-6 target analytes co-spiked into natural clinical NPS matrix (see **Table 34**). For each of the 19 Respiratory *Flex* Assay reportable targets, at least one organism was included in the study. Each positive panel was prepared at both 2x and 5x LoD. In addition, a negative sample was included the study.

Panel	Organism	Panel	Organism
	Bordetella pertussis		Bordetella parapertussis
	Adenovirus		RSV A
А	Influenza B	С	Parainfluenza 2
	hMPV (A2)		Influenza A (subtype H3)
	SARS-CoV-2		hMPV (B2)
В	Bordetella holmesii		RSV B
	Mycoplasma pneumoniae		Chlamydia pneumoniae
	Parainfluenza 4	D	Parainfluenza 1
	Influenza A (subtype H1)		Human coronavirus NL63
	Parainfluenza 3		Human coronavirus OC43
	Rhinovirus A		

Positive panels spiked at 2x were tested in replicates of 40 at T0 (fresh) and 20 replicates following 1, 2, and 3 freeze/thaw (F/T) cycles after storage at -70°C. Positive panels spiked at 5x LoD and the negative sample were tested in replicates of 10 at T0 (fresh) and following 1, 2, and 3 F/T cycles after storage at -70°C.

The results of the study support that NPS specimens in UVT/UTM may undergo up to 2 F/T cycles following storage at -70°C.

c. <u>In-Use Stability</u>

A 'loaded sample' study was evaluated to define the duration that the Respiratory Flex Assay cartridges can remain loaded with sample *prior* to being run on a LIAISON PLEX instrument. The loaded sample stability study evaluated 40 cartridges from a single reagent lot using a multi-analyte co-spiked positive target pool, that contained five targets (adenovirus, B. pertussis, human metapneumovirus, influenza B, and SARS-CoV-2) each at a final concentration of 5x LoD (for that target) in simulated NPS matrix. Data supporting the use of simulated matrix can be found in section VII Performance Charactestics.B.2.Matrix Equivalency Study, later in this document. Twenty valid cartridges were tested immediately following sample addition to the cartridge. Twenty valid cartridges were tested after adding the sample into the cartridge and being allowed to sit at room temperature (between 15°C -30°C) for a minimum of three hours. The Respiratory *Flex* Assay run time is approximately two hours so performance of a loaded cartridge after three hours will allow a user to delay testing a prepared and loaded cartridge for approximately the duration of a single Respiratory Flex Assay run. All cartridges loaded with sample and tested immediately and loaded with sample and tested after three hours at room temperature resulted in 100% positivity for all targets. Results demonstrated that RSP Flex Assay cartridges loaded with sample are stable for up to three hours.

6. Detection Limit:

A limit of detection study (LoD) was performed to evaluate the analytical sensitivity of the Respiratory *Flex* Assay. For this study, thirty-eight (38) strains and isolates (**Table 35**) that represent the 19 reportable targets of the Respiratory *Flex* Assay were tested individually by serially diluting each target in NPS matrix. Testing was broken into two parts: preliminary and confirmatory LoD testing. For the preliminary LoD study, a 3-fold dilution series consisting of at least 3 concentrations was tested in replicates of six per dilution. The preliminary LoD for each target was defined as the lowest concentration at which 100% of replicates were positive for the intended reportable target. The confirmed LoD was determined by testing a 3-fold dilution series of concentrations around the preliminary LoD in replicates of 20. The confirmed LoD for each organism was defined as the lowest concentration at which $\geq 95\%$ of the replicates were positive for the intended reportable target. To confirm the LoD, at least one dilution below the LoD was required to result in less than 95% positivity. The confirmed LoDs for the Respiratory *Flex* Assay bacterial and viral analytes are illustrated in **Table 36** and **Table 37**, respectively.

Organism (Strain/Isolate)	Vendor	Catalog Number
Bordetella holmesii (F061)	Zeptometrix	0801464
Bordetella parapertussis (C510)	Zeptometrix	0801643
Bordetella pertussis (18323 NCTC 10739)	ATCC	9797
Chlamydia pneumoniae (CM-1)	ATCC	VR-1360
Mycoplasma pneumoniae (M129)	Zeptometrix	0801579
Adenovirus 1 (C)	Zeptometrix	0810050CF
Adenovirus 3 (B)	Zeptometrix	0810062CF
Adenovirus 31 (A)	Zeptometrix	0810073CF
Adenovirus 26 (D)	Zeptometrix	0810117CF
Adenovirus 40 (F)	Zeptometrix	0810084CF
Adenovirus 4 (E)	Zeptometrix	0810070CF
Human Coronavirus HKU1		NA ¹
Human Coronavirus NL63	Zeptometrix	0810228CF
Human Coronavirus OC43	Zeptometrix	0810024CF

 Table 35. Strains Included in the LoD Study

Human Coronavirus 229E	Zeptometrix	0810229CF
SARS-CoV-2 (USA-WA1/2020)	Zeptometrix	0810587CFHI
Echovirus Type 6	Zeptometrix	0810076CF
Rhinovirus (1A)	Zeptometrix	0810012CFN
Rhinovirus (B14)	Zeptometrix	0810284CF
Rhinovirus (C1)		NA^1
Human Metapneumovirus 3 (Type B1)	Zeptometrix	0810156CF
Human Metapneumovirus 8 (Type B2)	Zeptometrix	0810159CF
Human Metapneumovirus 9(Type A1)	Zeptometrix	0810160CF
Human Metapneumovirus 27 (Type A2)	Zeptometrix	0810164CF
Influenza A H3N2 (A/Kansas/14/2017)	Zeptometrix	0810586CF
Influenza A H3N2 (Hongkong/2671-19)	Zeptometrix	0810609CF
Influenza A H3N2 (Singapore/INFIMH-160019/16)	Zeptometrix	0810574CF
Influenza A H1N1 (A/Brisbane/02/2018)	Zeptometrix	0810585CF
Influenza A H1N1 (Guangdong-Maonan/SWL 1536/19)	Zeptometrix	0810610CF
Influenza B (Alabama/2/17, Victoria Lineage)	Zeptometrix	0810572CF
Influenza B (Washington/02/19, Victoria Lineage)	Zeptometrix	0810611CF
Influenza B (Colorado/06/2017, Victoria Lineage)	Zeptometrix	0810573CF
Influenza B (Wisconsin/1/10, Yamagata Lineage)	Zeptometrix	0810241CF
Parainfluenza (Type 1)	Zeptometrix	0810014CF
Parainfluenza (Type 2)	Zeptometrix	0810015CF
Parainfluenza (Type 3)	Zeptometrix	0810016CF
Parainfluenza (Type 4A)	Zeptometrix	0810060CF
RSV A (2006 Isolate)	Zeptometrix	0810040ACF
RSV B (3/2015 Isolate #1)	Zeptometrix	0810479CF
¹ Clinical sample		

¹Clinical sample

Table 36. Confirmed LoD Results for Bacterial Targets

Tangat	Strain/	Concentrati	on at LoD	Percent Positive
Target	Isolate	Copies/mL ¹	CFU/mL ²	(# Positive/# Tested)
Bordetella holmesii	F061	7.29×10^3	86.8	95.0% (19/20)
Bordetella pertussis	18323 NCTC 10739	3.80x10 ³	1.98x10 ³	100% (20/20)
Bordetella parapertussis	C510	7.90x10 ²	20.6	95.0% (19/20)
Chlamydia pneumoniae	CM-1	5.68x10 ²	1.04x10 ² IFU/mL	100% (20/20)
Mycoplasma pneumoniae	M129	1.30x10 ³	42.4 CCU/mL	95.0% (19/20)

¹Concentrations in copies/mL were obtained by digital-droplet PCR. ²Concentrations in CFU/mL unless otherwise noted.

Table 37. Confirmed LoD Results for Viral Targets

Tangat	Strain/	Concentrat	tion at LoD	Percent Positive
Target	Isolate	Copies/mL ¹	TCID ₅₀ /mL ²	(# Positive/# Tested)
	31 (A)	1.76×10^{3}	1.09x10 ⁻²	100% (20/20
Adenovirus	3 (B)	6.86x10 ²	1.69x10 ⁻¹	100% (20/20)
(inclusive to A, B,	1 (C)	1.12×10^{3}	89.7	95.0% (19/20)
C, D, E, and F	26 (D)	7.48×10^2	1.10x10 ⁻²	100% (20/20)
serotypes)	4 (E)	3.53×10^{2}	1.08x10 ⁻²	95.0% (19/20)
	40 (F)	4.85×10^{2}	2.29x10 ⁻²	100% (20/20)
	229E	4.00×10^2	9.15x10 ⁻²	95.0% (19/20)
Human Coronavirus (inclusive to HKU1,	HKU1	1.67×10^3	NA ³	100% (20/20)
(inclusive to fixu),	NL63	76.4	1.34x10 ⁻²	95.0% (19/20)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	229E, NL63, and	OC2	13	9.48x10 ³	9.58x10 ⁻¹	100% (20/20)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OC43)	_				. ,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			\			× /
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Metapneumovirus					· · · · · ·
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		hMPV-8	8 (B2)			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Brichana	Matrix	1.35×10^4		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Influenza A /	Diisoane	H1		4.41x10 ⁻¹	95.0% (19/20)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Subtype H1	Guanadana	Matrix	1.37×10^{4}	5.86	100.0% (20/20)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Guanguong	H1		5.86	95.0% (19/20)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Uana Vana	Matrix	1.59x10 ⁵	15.0	95.0% (19/20)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Hong Kong	H3	5.30x10 ⁴	4.98	100.0% (20/20)
	Influenza A /	Vanaaa	Matrix	1.96×10^{3}	5.58	95.0% (19/20)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Subtype H3	Nansas	H3	1.96x10 ³	5.58	100.0% (20/20)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		G.	Matrix	4.55x10 ³	11.0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Singapore	H3	4.55×10^3	11.0	
$ \begin{array}{c cccc} & Washington/02/19 \\ (Victoria lineage) & 3.02x10^3 & 27.9 & 100.0\% (20/20) \\ \hline & Colorado/6/17 \\ (Victoria lineage) & 3.02x10^3 & 6.64x10^{-1} & 100.0\% (20/20) \\ \hline & Wisconsin/1/10 \\ (Yamagata lineage) & 1.01x10^3 & 3.23x10^{-1} & 95.0\% (19/20) \\ \hline & Parainfluenza 1 & NA & 7.61x10^2 & 10.6 & 95.0\% (19/20) \\ \hline & Parainfluenza 2 & NA & 8.46x10^3 & 15.5 & 95.0\% (19/20) \\ \hline & Parainfluenza 3 & NA & 1.93x10^3 & 3.18 & 100.0\% (20/20) \\ \hline & Parainfluenza 4 & A & 5.76x10^3 & 66.5 & 95.0\% (19/20) \\ \hline & RSV (inclusive to \\ RSV A and RSV B) & B (3/2015 Isolate #1) & 1.61x10^4 & 7.48x10^{-1} & 100.0\% (20/20) \\ \hline & Human Rhinovirus 1A & 8.19x10^3 & 4.99x10^{-1} & 100.0\% (20/20) \\ \hline & Human Rhinovirus C1 & 1.92x10^4 & NA^3 & 100.0\% (20/20) \\ \hline & Human Rhinovirus C1 & 1.92x10^4 & NA^3 & 100.0\% (20/20) \\ \hline & Human Rhinovirus Type 6 & 2.25x10^4 & 30.0 & 95.0\% (19/20) \\ \hline \end{array}$				3.35x10 ²	7.30x10 ⁻¹	95.0% (19/20)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Washington/02/19		3.02x10 ³	27.9	100.0% (20/20)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Influenza B	Colorado/6/17		3.02x10 ³	6.64x10 ⁻¹	100.0% (20/20)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Wisconsin/1/10		1.01x10 ³	3.23x10 ⁻¹	95.0% (19/20)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Parainfluenza 1					95.0% (19/20)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Parainfluenza 2	NA	1	8.46x10 ³	15.5	95.0% (19/20)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Parainfluenza 3	NA	1	1.93×10^{3}	3.18	100.0% (20/20)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Parainfluenza 4	А		5.76x10 ³	66.5	95.0% (19/20)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	RSV (inclusive to	A (2006]	[solate]	3.83x10 ³	1.11	95.0% (19/20)
$ \begin{array}{c} \mbox{Enterovirus/} \\ \mbox{Rhinovirus} \end{array} \begin{array}{c c c c c c c c } \hline Human Rhinovirus B14 & 8.18x10^3 & 11.0 & 100.0\% (20/20) \\ \hline Human Rhinovirus C1 & 1.92x10^4 & NA^3 & 100.0\% (20/20) \\ \hline Human Enterovirus \\ Echovirus Type 6 & 2.25x10^4 & 30.0 & 95.0\% (19/20) \\ \hline \end{array}$	RSV A and RSV B)			1.61x10 ⁴	7.48x10 ⁻¹	100.0% (20/20)
Enterovirus/ RhinovirusHuman Rhinovirus C1 $1.92x10^4$ NA3 $100.0\% (20/20)$ Human Enterovirus Echovirus Type 6 $2.25x10^4$ 30.0 $95.0\% (19/20)$		Human Rhir	ovirus 1A	8.19x10 ³	4.99x10 ⁻¹	100.0% (20/20)
Enterovirus/ RhinovirusHuman Rhinovirus C1 $1.92x10^4$ NA3 $100.0\% (20/20)$ Human Enterovirus Echovirus Type 6 $2.25x10^4$ 30.0 $95.0\% (19/20)$	Entenerim-/	Human Rhin	ovirus B14	8.18x10 ³	11.0	100.0% (20/20)
KnihovirusHuman Enterovirus Echovirus Type 6 2.25×10^4 30.0 $95.0\% (19/20)$		Human Rhir	novirus C1	1.92x10 ⁴	NA ³	100.0% (20/20)
	KIIIIOVIFUS			2.25x10 ⁴	30.0	· · · ·
	SARS-CoV-2			8.00x10 ³	40.4	95.0% (19/20)

¹Concentrations in copies/mL were obtained by digital-droplet PCR.

²Concentrations in TCID₅₀/mL unless otherwise noted.

³Clinical sample without a titer in TCID₅₀/mL.

The LoD for co-analyte spiked samples was also evaluated and shown to be equivalent to single analyte spiked samples.

LoD Testing with the WHO International Standard for SARS-CoV-2 (NIBSC, 20/146) An LoD study was performed to evaluate the analytical sensitivity of the Respiratory *Flex* Assay with the World Health Organization (WHO) Internal Standard for SARS-CoV-2. The WHO SARS-CoV-2 standard was reconstituted then serially diluted in NP matrix. As with the LoD study described above, testing was broken into two parts: preliminary and confirmatory LoD testing. For the preliminary LoD study, a 10-fold dilution series consisting of nine concentrations was tested in triplicate per dilution. The preliminary LoD was defined as the lowest concentration at which 100% of replicates were positive for SARS-CoV-2. The confirmed LoD was determined by testing a 3-fold dilution series of multiple concentrations around the preliminary LoD in replicates of 20. The confirmed LoD was defined as the lowest concentration at which \geq 95% of the replicates were positive for the intended reportable target. To confirm the LoD, at least one dilution below the LoD was required to result in less than 95% positivity. The confirmed LoD for the Respiratory *Flex* Assay with the WHO International Standard was 7.7×10^5 IU/mL.

7. Assay Cut-Off:

The Respiratory *Flex* Assay determines the presence/absence of each target analyte (and control) by comparing the mean intensity of capture spots to pre-defined thresholds. In addition to the capture spot thresholds, a set of assay-dependent parameters are used to evaluate the validity of the run. To determine the threshold and parameter values, a sequential, multi-step approach was employed.

In the first step, a threshold training set consisting of 1905 samples from analytical testing was used to estimate the thresholds and assay-dependent parameters. Proposed threshold and assay-dependent parameter values were determined by their ability to distinguish between true and false target calls while minimizing the no call rate. The proposed thresholds were determined by the negative signal distribution, where the target is absent from the samples.

In the second step of threshold determination, the performance of the proposed parameter and threshold values from step 1 were evaluated using the threshold test set, which consisted of 736 contrived/clinical samples. The clinical samples included in the Assay Cut-Off Study are independent from those used to demonstrate clinical performance of the Respiratory *Flex* Assay. The true call vs. no call rate for performance parameters and controls, and reportable target sensitivity and specificity were tabulated for presentation to a technical review team.

In the third step, a technical review team consisting of subject matter experts of the assay and chemistry determined the final threshold values through an assessment of the results for each performance parameter, control, and reportable target. As part of this analysis, an ROC curve was generated for each spot group with the final established thresholds marked to illustrate the expected clinical performance of the Respiratory *Flex* Assay. The specific assay parameters and thresholds are not reported in this document, as they are considered confidential and proprietary.

- 8. <u>Accuracy (Instrument):</u> Not applicable.
- 9. Carryover:

An analytical study was performed to assess potential carryover or cross-contamination in the Respiratory *Flex* Assay by testing high positive and negative samples in an alternating fashion on the LIAISON PLEX instrument. The high positive samples consisted of a representative panel of five assay targets (i.e., *B. pertussis*, adenovirus, influenza B, hMPV, and SARS-CoV-2). Contrived positive samples were prepared by spiking *B. pertussis* at 1x10⁶ CFU/mL and the viral targets at 1x10⁵ TCID₅₀/mL into simulated NPS matrix. Data supporting the use of simulated matrix can be found in section **VII Performance Charactestics.B.2.Matrix Equivalency Study**, later in this document.

The study was performed by two operators, each using one of two LIAISON PLEX instruments, each containing six modules. Alternating high positive and negative samples were evaluated per the format summarized in **Table 38**. In total, 30 high positive and 30 negative samples were evaluated. All high positive samples yielded positive results for the five analytes in the sample, while all negative samples were negative. These results confirm that there is no evidence of carryover from samples tested with the Respiratory *Flex* Assay.

	LIAISON	Test		Mo	Module			
Operator	erator PLEX Instrument		1	2	3	4	5	6
		1	POS	NEG	POS	NEG	POS	NEG
		2	NEG	POS	NEG	POS	NEG	POS
1	1 1	3	POS	NEG	POS	NEG	POS	NEG
		4	NEG	POS	NEG	POS	NEG	POS
		5	POS	NEG	POS	NEG	POS	NEG
		1	NEG	POS	NEG	POS	NEG	POS
		2	POS	NEG	POS	NEG	POS	NEG
2	2 2	3	NEG	POS	NEG	POS	NEG	POS
		4	POS	NEG	POS	NEG	POS	NEG
	5	NEG	POS	NEG	POS	NEG	POS	

 Table 38. Overview of Carryover/Cross-contamination Study Design

POS-Positive; NEG-Negative

B Comparison Studies:

- 1. <u>Method Comparison with Predicate Device:</u> Not applicable.
- 2. Matrix Comparison:

Matrix Equivalency Study

This study was designed to demonstrate the equivalence of simulated NPS matrix used in analytical studies, with clinically-derived natural NPS matrix. Simulated NPS matrix was formulated to resemble the content of a clinical NPS specimen collected in VTM, such that the simulated matrix would not artificially alter the performance of the test. The simulated NPS matrix consisted of $2x10^3$ HeLa cells/mL in UTM. The natural clinical NPS matrix consisted of NPS samples collected in UTM, which were negative for all Respiratory *Flex* Assay targets.

For this study, a representative panel of five assay targets (i.e., *B. pertussis*, adenovirus, influenza B, hMPV, and SARS-CoV-2) were co-spiked into pooled negative natural clinical NPS matrix and simulated NPS matrix at <1x LoD, 2x LoD, and 5x LoD. Aliquots of negative matrices were also included in the evaluation. Positive samples spiked at <1x LoD and 5x LoD were tested in replicates of 20 per condition, while positive samples prepared at 2x LoD were tested in replicates of 60 per condition. Negative samples in natural clinical NPS matrix were tested in replicates of 22 per condition, while negative samples in simulated NPS matrix were tested in replicates of 20 per condition. The results of the study are shown in **Table 39**.

		% Positivity (# Tested/# Positive)							
Target	5x L	5x LoD		2x LoD		<1x LoD		Negative	
	Simulated	Clinical	Simulated	Clinical	Simulated	Clinical	Simulated	Clinical	
Adenovirus	95.0%	95.0%	95.0%	96.7%	30.0%	35.0%	0.0%	0.0%	
Adenovirus	(19/20)	(19/20)	(57/60)	(58/60)	(6/20)	(7/20)	(0/20)	(0/22)	
D nontragia	100%	100%	100%	98.3%	65.0%	70.0%	0.0%	0.0%	
B. pertussis	(20/20)	(20/20)	(60/60)	(59/60)	(13/20)	(14/20)	(0/20)	(0/22)	
Influenze D	100%	100%	100%	98.3%	60.0%	60.0%	0.0%	0.0%	
Influenza B	(20/20)	(20/20)	(60/60)	(59/60)	(12/20)	(12/20)	(0/20)	(0/22)	

Table 39. Matrix Equivalency Study Results

hMPV	100%	100%	100%	100%	55.0%	30.0%	0.0%	0.0%
IIIVII V	(20/20)	(20/20)	(60/60)	(60/60)	(11/20)	(6/20)	(0/20)	(0/22)
SARS-CoV-2	100%	100%	100%	98.3%	70.0%	80.0%	0.0%	0.0%
SARS-COV-2	(20/20)	(20/20)	(60/60)	(59/60)	(14/20)	(16/20)	(0/20)	(0/22)

All samples spiked at 5x LoD and 2x LoD met the acceptance criteria of 100% agreement and 95% agreement with expected results, respectively, except for adenovirus at 5x LoD, which was detected in 95% (19/20) of replicates in both simulated and natural clinical matrices. Since the results were adenovirus at 5x LoD were equivalent between matrices, they were deemed acceptable. As expected, detection varied for samples prepared at <1x LoD. All negative samples were negative, as expected. The results from the study indicate that performance of the Respiratory *Flex* Assay is equivalent with a representative panel of analytes seeded into natural clinical NPS matrix in UTM and simulated NPS matrix in UTM and thus support use of simulated NPS matrix in select analytical validation studies.

C Clinical Studies:

Prospective Clinical Study

The clinical performance of the LIAISON PLEX Respiratory *Flex* Assay was established in a multi-center study conducted with nasopharyngeal swab (NPS) specimens in BD UVT and Copan UTM collected from individuals with signs and symptoms of respiratory infection. Specimens were prospectively collected (i.e., all comers between two time points that met the clinical study inclusion criteria) during the 2022-2023 respiratory illness season (i.e., October 2022 thru April 2023). Specimens were stored refrigerated at 2-8°C for up to 72-hours before testing (i.e., Category I specimens) or if they could not be tested within 72-hours, after freezing at -70°C (Category II specimens). In total, six geographically distinct sites in the U.S. were involved in the prospective collection of NPS specimens. Of these six sites, three sites conducted LIAISON PLEX Respiratory *Flex* Assay testing. A fourth site (Luminex), which was not involved in the prospective collection, also performed Respiratory *Flex* Assay testing.

A total of 1911 NPS specimens were enrolled in the study. Of these 1911 specimens, 68 were excluded due to protocol deviations (e.g., specimen not stored appropriately, insufficient volume, etc.). This left 1843 clinical specimens for evaluation. Of these 1843 specimens, 66.3% (1221/1843) were tested fresh (Category I specimens), while 33.7% (622/1843) were tested frozen (Category II specimens). Patient demographic information for the 1843 prospectively collected NPS specimens is presented in **Table 40**.

	0	Overall	Site 1	Site 2	Site 3	Site 4	Site 5	Site 6
	Male	839	271	43	143	354	18	10
	Male	(45.5%)	(52.9%)	(37.7%)	(43.2%)	(44.5%)	(35.3%)	(25.0%)
Sex	Female	1004	241	71	188	441	33	30
Sex	гешае	(54.5%)	(47.1%)	(62.3%)	(56.8%)	(55.5%)	(64.7%)	(75.0%)
	Total	1843	512	114	331	795	51	40
	Totai	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)
	0-1	350	205	4	62	75	4	0
Ago	0-1	(19.0%)	(40.0%)	(3.5%)	(18.7%)	(9.4%)	(7.8%)	(0.0%)
Age (Years)	>1-5	274	146	7	49	61	11	0
(Teals)	×1-J	(14.9%)	(28.5%)	(6.1%)	(14.8%)	(7.7%)	(21.6%)	(0.0%)
	>5-21	447	158	36	57	165	24	7

Table 40. Demographic Data for Prospectively Collected Specimens

Total	1843 (100%)	512 (100%)	114 (100%)	331 (100%)	795 (100%)	51 (100%)	40 (100%)
>65	237 (12.9%)	0 (0.0%)	4 (3.5%)	37 (11.2%)	191 (24.0%)	0 (0.0%)	5 (12.5%)
>21-65	535 (29.0%)	3 (0.6%)	63 (55.3%)	126 (38.1%)	303 (38.1%)	12 (23.5%)	28 (70.0%)
	(24.3%)	(30.9%)	(31.6%)	(17.2%)	(20.8%)	(47.1%)	(17.5%)

The LIAISON PLEX Respiratory *Flex* Assay was evaluated for performance by comparing to an FDA-cleared molecular respiratory panel for all analytes, except the following: SARS-CoV-2, *B. holmesii*, *B. parapertussis*, and *B. pertussis*. Performance for SARS-CoV-2 was evaluated by comparing to an FDA-cleared molecular SARS-CoV-2 assay. Performance for the denoted *Bordetella* species was based on comparison to well-validated Fragment Analysis (FA) assays followed by PCR/Bi-Directional Sequencing (PCR/BDS) assays (see **Table 41**). The FDA-cleared comparator assays were performed in accordance with their respective package inserts.

LIAISON PLEX Respiratory Flex Target	Comparator Method
Adenovirus (inclusive to A, B, C, D, E, and F)	
Chlamydia pneumoniae	
Human Coronavirus (inclusive to HKU1, NL63, OC43,	
and 229E)	
Enterovirus/Rhinovirus	
Human Metapneumovirus	
Influenza A	
Influenza A subtype H1	FDA-Cleared Molecular Respiratory
Influenza A subtype H3	Panel
Influenza B	
Mycoplasma pneumoniae	
Parainfluenza 1	
Parainfluenza 2	
Parainfluenza 3	
Parainfluenza 4	
RSV (inclusive to RSV A and RSV B)	
	FDA-Cleared Molecular SARS-CoV-
SARS-CoV-2	2 Assay, Cleared Under 21 CFR
	866.3981
Bordetella holmesii	Analytically Validated Fragment
Bordetella parapertussis	Analysis Assays Followed by
Bordetella pertussis	PCR/Bi-Directional Sequencing

Out of the 1843 prospective clinical specimens included in the prospective study analysis, 95.2% (1755/1843) generated valid Respiratory *Flex* Assay results (i.e., detected or not detected) on the first attempt, for an initial invalid rate of 4.8% (88/1843). Of the 88 specimens with initial invalid results, 77 produced valid results on repeat testing, 6 specimens remained invalid on repeat, and 5 specimens were not retested, resulting in a final invalid rate of 0.6% (11/1843). This left 1832 specimens with valid Respiratory *Flex* Assay results. The final number of evaluable results varied by target based on the number of valid comparator method results obtained. The final number of evaluable results for each assay target is shown in **Table 42**.

Target	Comparator Method	Total Specimens	Respiratory <i>Flex</i> Invalid Results ¹	Respiratory <i>Flex</i> Valid AND Comparator Results Unavailable ²	Total Evaluable Results
Adenovirus	FDA-cleared molecular respiratory panel	1843	11	12	1820
Bordetella holmesii		1843	11	102	1730
Bordetella parapertussis	FA & PCR/BDS	1843	11	59	1773
Bordetella pertussis		1843	11	79	1753
Chlamydia pneumoniae		1843	11	12	1820
Human Coronavirus		1843	11	12	1820
Enterovirus/Rhinovirus		1843	11	12	1820
hMPV		1843	11	12	1820
Influenza A		1843	11	12	1820
Influenza A subtype H1	FDA-cleared	1843	11	12	1820
Influenza A subtype H3	molecular	1843	11	12	1820
Influenza B	respiratory	1843	11	12	1820
Mycoplasma pneumoniae	panel	1843	11	12	1820
Parainfluenza 1		1843	11	12	1820
Parainfluenza 2		1843	11	12	1820
Parainfluenza 3		1843	11	12	1820
Parainfluenza 4		1843	11	12	1820
RSV		1843	11	12	1820
SARS-CoV-2	FDA-cleared molecular SARS-CoV- 2 assay	1843	11	52	1780

Table 42. Total Evaluable Results for Prospective Specimens, Stratified by Analyte

¹Eleven specimens were invalid after repeat testing with the Respiratory *Flex* Assay. Of these 11 specimens, 6 specimens remained invalid on repeat, while 5 specimens were not retested with the Respiratory *Flex* Assay.

²Unavailable indicates a specimen that was invalid by the comparator method or not tested with the comparator method.

A summary of the LIAISON PLEX Respiratory *Flex* Assay prospective clinical study performance is provided in **Table 43**. Positive Percent Agreement (PPA) was calculated as 100% \times (TP / (TP + FN)). True positive (TP) indicates that both the Respiratory *Flex* Assay and the comparator method had a positive result for the specific analyte, and false negative (FN) indicates that the Respiratory *Flex* Assay was negative while the comparator result was positive. Negative Percent Agreement (NPA) was calculated as 100% \times (TN / (TN + FP)). True negative (TN) indicates that both the Respiratory *Flex* Assay and the comparator method had negative results, and false positive (FP) indicates that the Respiratory *Flex* Assay was positive while the comparator result was negative. Specimens that obtained discordant results underwent additional testing with an FDA-cleared molecular respiratory panel or PCR/BDS for investigation.

NPS Specimens		Positive P	ercent A	greement	Negative Percent Agreement			
Analyte	•	TP/ (TP+FN)	%	95% CI	TN/ (TN+FP)	%	95% CI	
	Fresh	75/75	100	95.1-100	1074/1129	95.1	93.7-96.2	
Adenovirus	Frozen	19/19	100	83.2-100	578/597	96.8	95.1-98.0	
	Overall	94/94	100	96.1-100	1652/1726 ¹	95.7	94.7-96.6	
	Fresh	0/0	NE	NE	1127/1127	100	99.7-100	
Bordetella	Frozen	0/0	NE	NE	603/603	100	99.4-100	
holmesii	Overall	0/0	NE	NE	1730/1730	100	99.8-100	
Doudetalla	Fresh	4/4	100	51.0-100	1161/1163	99.8	99.4-100	
Bordetella	Frozen	0/1	0	0-79.3	604/605	99.8	99.1-100	
parapertussis	Overall	4/5	80.0	37.6-96.4	1765/1768 ²	<i>99.8</i>	99.5-99.9	
Bordetella	Fresh	0/0	NE	NE	1146/1146	100	99.7-100	
pertussis	Frozen	0/0	NE	NE	607/607	100	99.4-100	
periussis	Overall	0/0	NE	NE	1753/1753	100	99.8-100	
Chlamydia	Fresh	0/0	NE	NE	1204/1204	100	99.7-100	
cniamyala pneumoniae	Frozen	0/0	NE	NE	616/616	100	99.4-100	
pneumoniue	Overall	0/0	NE	NE	1820/1820	100	99.8-100	
Human	Fresh	90/97	92.8	85.8-96.5	1100/1107	99.4	98.7-99.7	
Coronavirus	Frozen	27/33	81.8	65.6-91.4	582/583	99.8	99.0-100	
Coronavirus	Overall	<i>117/130</i> ³	90.0	83.6-94.1	1682/1690 ⁴	<i>99.5</i>	<i>99.1-99.8</i>	
Enterovirus/	Fresh	230/242	95.0	91.5-97.1	937/962	97.4	96.2-98.2	
Rhinovirus	Frozen	81/90	90.0	82.1-94.7	518/526	98.5	97.0-99.2	
KIIIIOVII US	Overall	<i>311/332</i> ⁵	93. 7	90.5-95.8	<i>1455/1488</i> ⁶	97.8	96.9-98.4	
	Fresh	113/118	95.8	90.5-98.2	1080/1086	99.4	98.8-99.7	
hMPV	Frozen	12/13	92.3	66.7-98.6	603/603	100	99.4-100	
	Overall	<i>125/131</i> ⁷	95.4	90.4-97.9	1683/1689 ⁸	99.6	99.2-99.8	
	Fresh	18/18	100	82.4-100	1185/1186	99.9	99.5-100	
Influenza A	Frozen	111/111	100	96.7-100	490/505	97.0	95.2-98.2	
	Overall	129/129	100	97.1-100	1675/1691 ⁹	99.1	98.5-99.4	
Influenza A	Fresh	16/16	100	80.6-100	1187/1188	99.9	99.5-100	
Subtype H1	Frozen	21/21	100	84.5-100	595/595	100	99.4-100	
~	Overall	37/37	100	90.6-100	<i>1782/1783</i> ¹⁰	99.9	99.7-100	
Influenza A	Fresh	2/3	66.7	20.8-93.9	1200/1201	99.9	99.5-100	
Subtype H3	Frozen	102/104	98.1	93.3-99.5	509/512	99.4	98.3-99.8	
	Overall	<i>104/107</i> ¹¹	<i>97.2</i>	92.1-99.0	<i>1709/1713</i> ¹²	99.8	99.4-99.9	
	Fresh	4/4	100	51.0-100	1200/1200	100	99.7-100	
Influenza B	Frozen	4/4	100	51.0-100	612/612	100	99.4-100	
	Overall	8/8	100	67.6-100	<u>1812/1812</u>	100	99.8-100	
Mycoplasma	Fresh	0/0	NE	NE	1204/1204	100	99.7-100	
pneumoniae	Frozen	0/0	NE	NE	616/616	100	99.4-100	
*	Overall	<i>0/0</i>	NE	NE	1820/1820	100	99.8-100	
D 1 9 -	Fresh	7/8	87.5	52.9-97.8	1196/1196	100	99.7-100	
Parainfluenza 1	Frozen	4/4	100	51.0-100	612/612	100	99.4-100	
	Overall	<i>11/12</i> ¹³	<i>91.7</i>	64.6-98.5	1808/1808	100	99.8-100	
D . G .	Fresh	9/10	90	59.6-98.2	1194/1194	100	99.7-100	
Parainfluenza 2	Frozen	3/3	100	43.9-100	613/613	100	99.4-100	
D . 4 .	Overall	12/13	<i>92.3</i>	66.7-98.6	1807/1807	100	99.8-100	
Parainfluenza 3	Fresh	37/39	94.9	83.1-98.6	1164/1165	99.9	99.5-100	

Table 43. Prospective Clinical Performance of the LIAISON PLEX Respiratory *Flex* Assay with NPS Specimens

		Positive P	ercent A	greement	Negative Percent Agreement			
Analyte		TP/ (TP+FN)	%	95% CI	TN/ (TN+FP)	%	95% CI	
	Frozen	4/5	80	37.6-96.4	611/611	100	99.4-100	
	Overall	<i>41/44</i> ¹⁴	93.2	81.8-97. 7	<i>1775/1776</i> ¹⁵	<i>99.9</i>	<i>99.7-100</i>	
	Fresh	4/4	100	51.0-100	1199/1200	99.9	99.5-100	
Parainfluenza 4	Frozen	4/5	80.0	37.6-96.4	611/611	100	99.4-100	
	Overall	8/9 ¹⁶	<i>88.9</i>	56.5-98.0	<i>1810/1811</i> ¹⁷	<i>99.9</i>	<i>99.7-100</i>	
Despinatory	Fresh	37/38	97.4	86.5-99.5	1166/1166	100	99.7-100	
Respiratory	Frozen	81/85	95.3	88.5-98.2	531/531	100	99.3-100	
Syncytial Virus	Overall	<i>118/123</i> ¹⁸	95.9	90.8-98.3	1697/1697	100	99.8-100	
	Fresh	178/183	97.3	93.8-98.8	996/1000	99.6	99.0-99.8	
SARS-CoV-2	Frozen	68/72	94.4	86.6-97.8	521/525	99.2	98.1-99.7	
	Overall	246/255 ¹⁹	96.5	93.4-98.1	<i>1517/1525</i> ²⁰	<i>99.5</i>	99.0-99. 7	

TP – true positive; FN – false negative; TN – true negative; FP – false positive; NE – not evaluable ¹Of the 74 specimens with false positive adenovirus results by the Respiratory *Flex* Assay, 21 were positive by an FDA-cleared molecular respiratory panel, 21 were negative, and 32 were not tested. ²Of the 3 specimens with false positive *Bordetella parapertussis* results by the Respiratory *Flex* Assay, 1 was negative by an FDA-cleared molecular respiratory panel and 2 were not tested.

³Of the 13 specimens with false negative coronavirus results by the Respiratory *Flex* Assay, 3 were negative by PCR/BDS, 9 were positive, and 1 was not tested.

⁴Of the 8 specimens with false positive coronavirus results by the Respiratory *Flex* Assay, 5 were positive by PCR/BDS, 2 were negative, and 1 was not tested.

⁵Of the 21 specimens with false negative enterovirus/rhinovirus results by the Respiratory *Flex* Assay, 9 were positive by PCR/BDS, 8 were negative, and 4 were not tested.

⁶Of the 33 specimens with false positive enterovirus/rhinovirus results by the Respiratory *Flex* Assay, 4 were positive by PCR/BDS, 27 were negative, and 2 were not tested.

⁷Of the 6 specimens with false negative hPMV results by the Respiratory *Flex* Assay, 4 were positive by PCR/BDS and 2 were negative.

⁸Of the 6 specimens with false positive hPMV results by the Respiratory *Flex* Assay, 4 were positive by PCR/BDS and 2 were negative.

⁹Of the 16 specimens with false positive influenza A results by the Respiratory *Flex* Assay, 7 were positive by PCR/BDS and 9 were negative.

¹⁰The 1 specimen with a false positive influenza A subtype H1 result by the Respiratory *Flex* Assay was negative by PCR/BDS.

¹¹The 3 specimens with false negative influenza A subtype H3 results by the Respiratory *Flex* Assay were all negative by PCR/BDS.

¹²The 4 specimens with false positive influenza A subtype H3 results by the Respiratory *Flex* Assay were all negative by PCR/BDS.

¹³The 1 specimen with a false negative parainfluenza 1 result by the Respiratory *Flex* Assay was positive by PCR/BDS.

¹⁴Of the 3 specimens with false negative parainfluenza 3 results by the Respiratory *Flex* Assay, 2 were negative by PCR/BDS and 1 was not tested.

¹⁵The 1 specimen with a false positive parainfluenza 3 result by the Respiratory *Flex* Assay was negative by PCR/BDS.

¹⁶The 1 specimen with a false negative parainfluenza 4 result by the Respiratory *Flex* Assay was negative by PCR/BDS.

¹⁷The 1 specimen with a false positive parainfluenza 4 result by the Respiratory *Flex* Assay was negative by PCR/BDS.

¹⁸Of the 5 specimens with false negative RSV results by the Respiratory *Flex* Assay, 1 was negative by PCR/BDS, and 3 were negative by an FDA-cleared molecular Flu/RSV assay.

¹⁹Of the 9 specimens with false negative SARS-CoV-2 results by the Respiratory *Flex* Assay, 5 were positive by PCR/BDS, 2 were negative, and 2 were not tested.

²⁰Of the 8 specimens with false positive SARS-CoV-2 results by the Respiratory *Flex* Assay, 5 were positive by PCR/BDS, 2 were negative, and 1 was not tested.

Positive Percent Agreement (PPA) ranged from 80.0%-100%, depending on the analyte. The only analytes for which PPA was lower than expected were *B. parapertussis* with a PPA of 80.0% (4/5) and parainfluenza 4 with a PPA of 88.9% (8/9). The limited number of positive NPS specimens for these pathogens required supplementation with archived (Category III specimens) to obtain accurate PPA point estimates.

Negative Percent Agreement (NPA) ranged from 95.7-100%.

The Respiratory *Flex* Assay reported multiple organism detections (coinfections) in a total of 176 prospectively collected NPS specimens. Of these 176 specimens, 3 specimens lacked comparator results for least one organism identified in the coinfection, and thus were excluded from further analysis. The remaining 173 specimens with coinfections represent 14.6% (173/1187) of all positive prospective specimens and 9.4% (173/1840) of all prospective specimens. Most coinfections contained two organisms (87.3%, 151/173) while 11.6% (20/173) contained three organisms and 1.2% (2/173) contained four organisms. Out of the 173 specimens with coinfections, 44.5% (77/173) contained one or more organisms that were not detected by the comparator methods (**Table 44**). Coinfections identified by the comparator methods which were not reported by the LIAISON PLEX Respiratory *Flex* Assay are illustrated in **Table 45**.

Analyta 1	Analyta 2	Analyte 2 Analyte 3 Analyte 4 Number of Specimens		Respiratory <i>Flex</i>		
Analyte 1	Analyte 2	Analyte 3	Analyte 4	Total	False Positive	Assay False Positive Analyte(s) ¹
Adenovirus	Bordetella parapertussis	Enterovirus/ Rhinovirus		2	2	Adenovirus (2), Bordetella parapertussis (1)
Adenovirus	Coronavirus			10	5	Adenovirus (5)
Adenovirus	Coronavirus	Enterovirus/ Rhinovirus		1	1	Adenovirus (1)
Adenovirus	Coronavirus	hMPV		1	1	hMPV (1)
Adenovirus	Coronavirus	PIV-3		1	0	
Adenovirus	Enterovirus/ Rhinovirus			35	18	Adenovirus (17), Enterovirus/ Rhinovirus (1)
Adenovirus	Enterovirus/ Rhinovirus	hMPV		3	1	Adenovirus (1), Enterovirus/ Rhinovirus (1)
Adenovirus	Enterovirus/ Rhinovirus	hMPV	SARS- CoV-2	1	1	Adenovirus (1), Enterovirus/ Rhinovirus (1)
Adenovirus	Enterovirus/ Rhinovirus	Influenza A & Influenza A (subtype H1)		1	1	Adenovirus (1)
Adenovirus	Enterovirus/ Rhinovirus	PIV-1		1	1	Adenovirus (1)
Adenovirus	Enterovirus/ Rhinovirus	RSV		1	1	Adenovirus (1), Enterovirus/ Rhinovirus (1)
Adenovirus	Enterovirus/	SARS-CoV-2		1	0	

Table 44. Coinfections Reported by the LIAISON PLEX Respiratory *Flex* Assay in the

 Prospective Study

					nber of cimens	Respiratory <i>Flex</i>
Analyte 1	Analyte 2	Analyte 3	Analyte 4	Total	False Positive	Assay False Positive Analyte(s) ¹
	Rhinovirus					
Adenovirus	hMPV			7	4	Adenovirus (4)
Adenovirus	hMPV	PIV-2		1	0	
Adenovirus	hMPV	SARS-CoV-2		1	1	Adenovirus (1)
Adenovirus	Influenza A & Influenza A (subtype H1)			2	2	Adenovirus (2)
Adenovirus	Influenza A & Influenza A (subtype H3)			2	2	Adenovirus (2)
Adenovirus	Influenza B			1	1	Adenovirus (1)
Adenovirus	PIV-1	RSV		1	1	Adenovirus (1)
Adenovirus	PIV-2			1	1	Adenovirus (1)
Adenovirus	PIV-3			5	4	Adenovirus (4)
Adenovirus	RSV			4	3	Adenovirus (3)
Adenovirus	SARS-CoV-2			2	2	Adenovirus (2)
Bordetella parapertussis	Coronavirus			1	1	Bordetella parapertussis (1)
Bordetella parapertussis	Enterovirus/ Rhinovirus			2	1	Bordetella parapertussis (1)
Bordetella parapertussis	hMPV			1	0	
Bordetella parapertussis	PIV-3			1	0	
Coronavirus	Enterovirus/ Rhinovirus			8	2	Coronavirus (1), Enterovirus/ Rhinovirus (1)
Coronavirus	Enterovirus/ Rhinovirus	hMPV		1	0	
Coronavirus	Enterovirus/ Rhinovirus	SARS-CoV-2		1	0	
Coronavirus	hMPV			6	2	Coronavirus (2)
Coronavirus	Influenza A & Influenza A (subtype H1)			1	0	
Coronavirus	PIV-3			3	0	
Coronavirus	RSV			2	0	
Coronavirus	SARS-CoV-2			4	1	Coronavirus (1)
Enterovirus/ Rhinovirus	hMPV			11	1	Enterovirus/ Rhinovirus (1)
Enterovirus/ Rhinovirus	hMPV	Influenza A (subtype H3)	SARS- CoV-2	1	1	Enterovirus/ Rhinovirus (1), Influenza A (subtype H3) (1), SARS-CoV-2 (1)
Enterovirus/ Rhinovirus	hMPV	SARS-CoV-2		1	1	Enterovirus/ Rhinovirus (1)
Enterovirus/ Rhinovirus	Influenza A & Influenza A (subtype H1)			2	0	
Enterovirus/ Rhinovirus	Influenza A & Influenza A (subtype H3)			7	2	Enterovirus/ Rhinovirus (2)

Amelate 1					nber of cimens	Respiratory <i>Flex</i>	
Analyte 1	Analyte 2	Analyte 3	Analyte 4	Total	False Positive	Assay False Positive Analyte(s) ¹	
Enterovirus/ Rhinovirus	Influenza A & Influenza A (subtype H3)	RSV		2	2	Influenza A (2), Influenza A (subtype H3) (1)	
Enterovirus/ Rhinovirus	PIV-1			3	1	Enterovirus/ Rhinovirus (1)	
Enterovirus/ Rhinovirus	PIV-3			5	2	Enterovirus/ Rhinovirus (2)	
Enterovirus/ Rhinovirus	PIV-4			4	1	PIV-4 (1)	
Enterovirus/ Rhinovirus	RSV			9	0		
Enterovirus/ Rhinovirus	SARS-CoV-2			5	2	Enterovirus/ Rhinovirus (2)	
hMPV	RSV			1	1	hMPV (1)	
Influenza A & Influenza A (subtype H1)	Influenza A (subtype H3)			1	0		
Influenza A & Influenza A (subtype H1)	SARS-CoV-2			1	1	SARS-CoV-2 (1)	
Influenza A & Influenza A (subtype H3)	RSV			1	1	Influenza A (1)	
PIV-2	SARS-CoV-2			1	0		
PIV-3	RSV			1	0		
PIV-3	SARS-CoV-2			1	1	SARS-CoV-2(1)	
			Total	173	77		
		Total Doubl		151 20	62 13		
	Total Triple Infections						
	1.	Total Quadrup	e Infections	2	2		

¹Based on comparator test results

Thirty-four (34) specimens were positive for two or more analytes (i.e., coinfected) by the comparator methods but were reported as negative for one of the analytes using the LIAISON PLEX Respiratory *Flex* Assay (**Table 45**).

Table 45 . Coinfections Identified by the Comparator Methods which were Not Reported by the
LIAISON PLEX Respiratory Flex Assay in the Prospective Study

			Number of Specimens		Respiratory <i>Flex</i> Assay
Analyte 1	Analyte 2	Analyte 3	Total	False Negative	False Negative Analyte(s) ¹
Adenovirus	Coronavirus		7	1	Coronavirus (1)
Adenovirus	Enterovirus/ Rhinovirus		18	2	Enterovirus/ Rhinovirus (2)
Adenovirus	Enterovirus/ Rhinovirus	PIV-2	1	1	PIV-2 (1)
Adenovirus	hMPV		3	1	hMPV (1)
Adenovirus	hMPV	SARS-CoV-2	1	1	SARS-CoV-2 (1)
Adenovirus	SARS-CoV-2		1	1	SARS-CoV-2 (1)
Coronavirus	Enterovirus/ Rhinovirus		8	1	Coronavirus (1)
Coronavirus	Enterovirus/	SARS-CoV-2	2	1	Coronavirus (1)

		ouble Infections	<u>99</u> 6	<u>29</u> 5	-
		Total	105	34	4
PIV-3	Enterovirus/ Rhinovirus	RSV	1	1	PIV-3 (1), Enterovirus/ Rhinovirus (1)
Enterovirus/ Rhinovirus	SARS-CoV-2		5	3	Enterovirus/Rhinovirus (2), SARS-CoV-2 (1)
Enterovirus/ Rhinovirus	RSV		13	3	Enterovirus/Rhinovirus (3)
Enterovirus/ Rhinovirus	Influenza A & Influenza A (subtype H3)	SARS-CoV-2	1	1	SARS-CoV-2 (1)
Enterovirus/ Rhinovirus	Influenza A (subtype H3)		1	1	Influenza A (subtype H3) (1)
Enterovirus/ Rhinovirus	Influenza A & Influenza A (subtype H1)		6	3	Enterovirus/Rhinovirus (3)
Enterovirus/ Rhinovirus	hMPV		11	1	hMPV (1)
Enterovirus/ Rhinovirus	Bordetella Parapertussis		3	1	Bordetella parapertussis (1)
RSV	SARS-CoV-2		1	1	RSV (1)
RSV	hMPV		1	1	hMPV (1)
(subtype H3) hMPV	SARS-CoV-2		4	1	hMPV (1)
Influenza A & Influenza A	RSV		1	1	RSV (1)
Influenza A & Influenza A (subtype H3)	PIV-4		1	1	PIV-4 (1)
Coronavirus	RSV		3	1	Coronavirus (1)
Coronavirus	PIV-3		5	2	Coronavirus (1), PIV-3 (1)
Coronavirus	Influenza A & Influenza A (subtype H3)		1	1	Coronavirus (1)
Coronavirus	hMPV		6	2	Coronavirus (2)

¹Based on comparator test results

Retrospective Clinical Study

Several analytes included on the Respiratory *Flex* Assay were not encountered during the Prospective Clinical Study in sufficient numbers to demonstrate assay performance. Therefore, the Prospective Clinical Study was supported by additional testing that was performed at three U.S. study sites (including one internal) on frozen, archived specimens (Category III specimens) obtained from four clinical laboratories in the U.S. These specimens were selected for inclusion in the study based solely on the historic qualitative result.

A total of 256 archived NPS specimens were evaluated, of which 66 negatives were included for blinding and randomization purposes. A summary of the demographic information of the tested retrospective specimens is provided in **Table 46** below.

		Overall
	Male	117 (45.7%)
Sex	Female	124 (48.4%)
Sex	Unknown	15 (5.9%)
	Total	256 (100%)
	0-1	44 (17.2%)
	>1-5	53 (20.7%)
	>5-21	69 (27.0%)
Age	>21-65	44 (17.2%)
	>65	32 (12.5%)
	Unknown	14 (5.5%)
	Total	256 (100%)

Table 46. Demographic Data for Retrospective Specimens

The performance of the LIAISON PLEX Respiratory *Flex* Assay was determined by comparing to an FDA-cleared molecular respiratory panel for all analytes, except the following: *B. holmesii*, *B. parapertussis*, and *B. pertussis*. As noted previously in this Decision Summary, performance for the denoted *Bordetella* species was based on comparison to analytically validated Fragment Analysis (FA) assays followed by PCR/Bi-Directional Sequencing (PCR/BDS) assays.

Out of the 256 specimens included in the pre-selected study analysis, 241 (94.1%) generated valid Respiratory *Flex* Assay results (i.e., Detected or Not Detected) on the first attempt. There were 15 specimens (5.9%) with invalid results on the initial run that required retesting. Of the specimens with initial invalid results; all 15 specimens generated valid Respiratory *Flex* Assay results after retest for a final success rate of 100% (256/256).

For the 256 pre-selected specimens, the final number of evaluable results varied by target based on valid comparator results obtained. The final number of evaluable results for each target is shown in **Table 47**.

Target	Comparator Method	Total Specimens	Respiratory <i>Flex</i> Invalid Results ¹	Respiratory <i>Flex</i> Valid AND Comparator Results Unavailable ¹	Total Evaluable Results
Adenovirus	FDA-cleared molecular respiratory panel	256	0	0	256
Bordetella holmesii	EA 0	256	0	22	234
Bordetella parapertussis	FA & PCR/BDS	256	0	12	244
Bordetella pertussis	I CIUDDS	256	0	16	240
Chlamydia pneumoniae		256	0	0	256
Human Coronavirus	FDA-cleared	256	0	0	256
Enterovirus/Rhinovirus	molecular	256	0	0	256
hMPV	respiratory	256	0	0	256
Influenza A	panel	256	0	0	256
Influenza A subtype H1		256	0	0	256

 Table 47. Total Evaluable Results for Retrospective Specimens, Stratified by Analyte

Influenza A subtype H3	256	0	0	256
Influenza B	256	0	0	256
Mycoplasma pneumoniae	256	0	0	256
Parainfluenza 1	256	0	0	256
Parainfluenza 2	256	0	0	256
Parainfluenza 3	256	0	0	256
Parainfluenza 4	256	0	0	256
RSV	256	0	0	256

¹Unavailable indicates a specimen that was invalid by the comparator method or not tested with the comparator method.

A summary of the LIAISON PLEX Respiratory *Flex* Assay retrospective clinical study performance, expressed as positive percent and negative percent agreements against the comparator method, are presented in **Table 48**.

 Table 48. Retrospective Clinical Performance of the Respiratory Flex Assay vs. the Comparator

 Assay

	Positive Percent			Negative			
Analysta	A	greeme	ent	Percent Agreement			
Analyte	TP/ (TP+FN)	%	95% CI	TN/ (TN+FP)	%	95% CI	
Adenovirus	6/6	100	61.0-100	$241/250^{1}$	96.4	93.3-98.1	
Bordetella holmesii	0/0	NE	NE	234/234	100	98.4-100	
Bordetella parapertussis	8/8	100	67.6-100	233/236	98.7	96.3-99.6	
Bordetella pertussis	23/23	100	85.7-100	214/217	98.6	96.0-99.5	
Chlamydia pneumoniae	13/14	92.9	68.5-98.7	241/242	99.6	97.7-99.9	
Human Coronavirus	4/4	100	51.0-100	249/252	98.8	96.6-99.6	
Enterovirus/ Rhinovirus	24/27 ²	88.9	71.9-96.1	223/229 ³	97.4	94.4-98.8	
hMPV	1/1	100	20.7-100	255/255	100	98.5-100	
Influenza A	1/1	100	20.7-100	254/255 ⁴	99.6	97.8-99.9	
Influenza A subtype H1	1/1	100	20.7-100	254/255 ⁴	99.6	97.8-99.9	
Influenza A subtype H3	0/0	NE	NE	256/256	100	98.5-100	
Influenza B	23/23	100	85.7-100	232/233	99.6	97.6-99.9	
Mycoplasma pneumoniae	23/24	95.8	79.8-99.3	226/232	97.4	94.5-98.8	
Parainfluenza 1	18/18	100	82.4-100	237/238	99.6	97.7-99.9	
Parainfluenza 2	19/20	95.0	76.4-99.1	235/236	99.6	97.6-99.9	
Parainfluenza 3	2/2	100	34.2-100	254/254	100	98.5-100	
Parainfluenza 4	23/23	100	85.7-100	230/2335	98.7	96.3-99.6	
Respiratory Syncytial Virus	9/9	100	70.1-100	246/247	99.6	97.7-99.9	

TP – true positive; FN – false negative; TN – true negative; FP – false positive; NE – not evaluable ¹Of the 9 specimens with false positive adenovirus results by the Respiratory *Flex* Assay, seven were negative by PCR/BDS and two were not tested.

²Of the 3 specimens with false negative enterovirus/rhinovirus results by the Respiratory *Flex* Assay, one was negative by PCR/BDS, one was positive by PCR/BDS, and one was not tested.

³Of the 6 specimens with false positive enterovirus/rhinovirus results by the Respiratory *Flex* Assay, four were negative by PCR/BDS and two were not tested.

⁴The 1 specimen with a false positive influenza A/influenza A H1 result by the Respiratory *Flex* Assay was negative for influenza A by PCR/BDS and not tested for influenza A H1.

⁵Of the 3 specimens with false positive parainfluenza 4 results, one was negative by PCR/BDS and two were not tested.

Contrived Clinical Study

Some respiratory pathogens are so rare that both prospective and archived specimen collection efforts were insufficient to demonstrate clinical performance. To supplement the prospective clinical study and retrospective archived study data, an evaluation of contrived specimens was performed for five pathogens: *Bordetella holmesii*, *Bordetella parapertussis*, *Bordetella pertussis*, *Chlamydia pneumoniae*, and *Mycoplasma pneumoniae*. Positive contrived specimens for influenza A H1N1 pdm09 were prepared and tested prior to completion of the prospective clinical study ended up yielding an adequate number of influenza A H1 positive specimens to demonstrate performance, however since the contrived data was already acquired, it's presented here. These contrived specimens were prepared using unique negative clinical NPS specimens. Contrived specimens were prepared by spiking representative strains at concentrations of 2x, 10x, and 100x LoD. Fifty total positive samples for each pathogen were prepared, interspersed with negative samples, and randomized before testing at two clinical sites.

A total of 300 contrived positive samples were tested along with pre-selected archived specimens in a randomized, blinded fashion. Out of the 300 specimens included in the contrived study analysis, 291 specimens (97.0%) generated valid Respiratory *Flex* Assay results on the first attempt. There were 9 specimens (3.0%) with an invalid result on the initial run. Of the 9 specimens retested, all 9 generated a valid result after a single retest for a final success rate of 100% (300/300). The results of contrived specimen testing with the Respiratory *Flex* Assay are presented in **Table 49** below.

	Target	Positive P	ercent A	greement	Negative Percent Agreement			
Analyte	Conc. (xLoD)	TP/ (TP+FN)	%	95% CI	TN/ (TN+FP)	%	95% CI	
	2x	25/25	100	86.7-100	125/125	100	97.0-100	
Bordetella	10x	13/13	100	77.2-100	65/65	100	94.4-100	
holmesii	100x	12/12	100	75.8-100	60/60	100	94.0-100	
	Combined	50/50	100	92.9-100	250/250	100	98.5-100	
	2x	25/25	100	86.7-100	125/125	100	97.0-100	
Bordetella	10x	12/13	92.3	66.7-98.6	65/65	100	94.4-100	
parapertussis	100x	12/12	100	75.8-100	60/60	100	94.0-100	
	Combined	49/50	98.0	89.5-99.6	250/250	100	98.5-100	
	2x	25/25	100	86.7-100	125/125	100	97.0-100	
Bordetella	10x	13/13	100	77.2-100	65/65	100	94.4-100	
pertussis	100x	12/12	100	75.8-100	60/60	100	94.0-100	
	Combined	50/50	100	92.9-100	250/250	100	98.5-100	
	2x	25/25	100	86.7-100	125/125	100	97.0-100	
Chlamydia	10x	13/13	100	77.2-100	65/65	100	97.0-100	
pneumoniae	100x	12/12	100	75.8-100	60/60	100	94.0-100	
	Combined	50/50	100	92.9-100	250/250	100	98.5-100	
	2x	24/25	96.0	80.5-99.3	125/125	100	97.0-100	
Influenza A	10x	13/13	100	77.2-100	65/65	100	94.4-100	
H1N1 pdm09	100x	12/12	100	75.8-100	60/60	100	94.0-100	
	Combined	49/50	98.0	89.5-99.6	250/250	100	98.5-100	
Musaplasma	2x	24/25	96.0	80.5-99.3	125/125	100	97.0-100	
Mycoplasma pneumoniae	10x	13/13	100	77.2-100	64/65	98.5	91.8-99.7	
pneumoniue	100x	12/12	100	75.8-100	60/60	100	94.0-100	

Table 49. LIAISON PLEX Respiratory Flex Assay Performance with Contrived Specimens

	Target	Positive P	Percent A	greement	Negative Percent Agreement		
Analyte	Conc.	TP/	%	95% CI	TN/	%	95% CI
	(xLoD)	(TP+FN)			(TN+FP)		
	Combined	49/50	<i>98.0</i>	89.5-99.6	249/250	<i>99.6</i>	<i>97.8-99.9</i>

- 1. <u>Clinical Specificity:</u> See section **C.Clinical Studies** above.
- 2. <u>Other Clinical Supportive Data (When 1. and 2. Are Not Applicable):</u> Not applicable.

D Clinical Cut-Off:

Not applicable.

E Expected Values/Reference Range:

The LIAISON PLEX Respiratory *Flex* Assay prospective clinical study included a total of 1843 prospectively collected NPS specimens, of which 1780 were evaluable for SARS-CoV-2, 1730 were evaluable for *Bordetella holmesii*, 1773 were evaluable for *Bordetella parapertussis*, 1753 were evaluable for *Bordetella pertussis*, and 1820 were evaluable for all remaining target analytes. The number and percentage of cases positive for each analyte, as determined by LIAISON PLEX Respiratory *Flex* Assay, are presented below, stratified by collection site and age group.

Table 50. LIAISON PLEX Respiratory *Flex* Assay - Expected Values Stratified by Specimen

 Collection Site

	Expected Values								
Target	Site 1	Site 02	Site 03	Site 4	Site 5	Site 16	Overall		
	(N=508)	(N=113)	(N=326)	(N=789)	(N=51)	(N=39)	(N=1820)		
Adenovirus	14.8%	1.8%	12.1%	4.6%	27.5%	5.1%	9.2%		
	(75/508)	(2/112)	(39/321)	(36/789)	(14/51)	(2/39)	(168/1820)		
Bordetella holmesii	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%		
	(0/447)	(0/113)	(0/320)	(0/778)	(0/34)	(0/38)	(0/1730)		
Bordetella	0.0%	0.0%	0.6%	0.6%	0.0%	0.0%	0.4%		
parapertussis	(0/477)	(0/113)	(2/322)	(5/788)	(0/34)	(0/39)	(7/1773)		
Bordetella pertussis	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%		
	(0/463)	(0/113)	(0/320)	(0/784)	(0/34)	(0/39)	(0/1753)		
Chlamydia pneumoniae	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%		
	(0/508)	(0/112)	(0/321)	(0/789)	(0/51)	(0/39)	(0/1820)		
Human Coronavirus	10.4%	3.6%	2.8%	6.3%	9.8%	10.3%	6.9%		
	(53/508)	(4/112)	(9/321)	(50/789)	(5/51)	(4/39)	(125/1820)		
Enterovirus/Rhinovirus	31.1%	6.3%	19.0%	12.0%	33.3%	15.4%	18.9%		
	(158/508)	(7/112)	(61/321)	(95/789)	(17/51)	(6/39)	(344/1820)		
Human	14.8%	1.8%	4.4%	3.4%	15.7%	12.8%	7.2%		
Metapneumovirus	(75/508)	(2/112)	(14/321)	(27/789)	(8/51)	(5/39)	(131/1820)		
Influenza A	2.2%	0.9%	3.1%	15.3%	3.9%	0.0%	8.0%		
	(11/508)	(1/112)	(10/321)	(121/789)	(2/51)	(0/39)	(145/1820)		
Influenza A H1	0.8%	0.9%	1.2%	3.4%	3.9%	0.0%	2.1%		
	(4/508)	(1/112)	(4/321)	(27/789)	(2/51)	(0/39)	(38/1820)		
Influenza A H3	1.6%	0.0%	1.9%	11.9%	0.0%	0.0%	5.9%		
	(8/508)	(0/112)	(6/321)	(94/789)	(0/51)	(0/39)	(108/1820)		
Influenza B	0.0%	0.0%	2.5%	0.0%	0.0%	0.0%	0.4%		
	(0/508)	(0/112)	(8/321)	(0/789)	(0/51)	(0/39)	(8/1820)		
Mycoplasma	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%		
pneumoniae	(0/508)	(0/112)	(0/321)	(0/789)	(0/51)	(0/39)	(0/1820)		

	Expected Values								
Target	Site 1	Site 02	Site 03	Site 4	Site 5	Site 16	Overall		
	(N=508)	(N=113)	(N=326)	(N=789)	(N=51)	(N=39)	(N=1820)		
Parainfluenza 1	1.2%	0.9%	0.6%	0.3%	0.0%	0.0%	0.6%		
	(6/508)	(1/112)	(2/321)	(2/789)	(0/51)	(0/39)	(11/1820)		
Parainfluenza 2	0.2%	1.8%	0.0%	1.0%	0.0%	2.6%	0.7%		
	(1/508)	(2/112)	(0/321)	(8/789)	(0/51)	(1/39)	(12/1820)		
Parainfluenza 3	4.5%	0.0%	2.8%	0.4%	11.8%	2.6%	2.3%		
	(23/508)	(0/112)	(9/321)	(3/789)	(6/51)	(1/39)	(42/1820)		
Parainfluenza 4	0.6%	0.0%	0.3%	0.5%	2.0%	0.0%	0.5%		
	(3/508)	(0/112)	(1/321)	(4/789)	(1/51)	(0/39)	(9/1820)		
Respiratory Syncytial	6.1%	0.0%	5.0%	8.7%	3.9%	0.0%	6.5%		
Virus (RSV)	(31/508)	(0/112)	(16/321)	(69/789)	(2/51)	(0/39)	(118/1820)		
SARS-CoV-2	5.5%	40.0%	16.9%	15.6%	7.3%	19.4%	14.3%		
	(28/507)	(42/105)	(55/326)	(119/765)	(3/41)	(7/36)	(254/1780)		

Table 51. LIAISON PLEX Respiratory Flex Assay - Expected Values Stratified by Age Group

	Expected Values									
Target	0-1 years	>1-5 years	>5-21 years	>21-65 years	> 65 years	Overall				
	(N=347)	(N=273)	(N=439	(N=528)	(N=237	(N=1820)				
Adenovirus	15.3%	22.0%	10.0%	2.1%	0.0%	9.2%				
	(53/347)	(60/273)	(44/439)	(11/528)	(0/233)	(168/1820)				
Bordetella holmesii	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%				
	(0/316)	(0/247)	(0/411)	(0/522)	(0/234)	(0/1730)				
Bordetella	0.6%	1.6%	0.2%	0.0%	0.0%	0.4%				
parapertussis	(2/329)	(4/257)	(1/422)	(0/528)	(0/237)	(7/1773)				
Bordetella pertussis	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%				
	(0/322)	(0/254)	(0/416)	(0/525)	(0/236)	(0/1753)				
Chlamydia	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%				
pneumoniae	(0/347)	(0/273)	(0/439)	(0/528)	(0/233)	(0/1820)				
Human Coronavirus	10.7%	10.3%	6.6%	4.5%	3.0%	6.9%				
	(37/347)	(28/273)	(29/439)	(24/528)	(7/233)	(125/1820)				
Rhinovirus/Enterovirus	30.5%	32.6%	20.3%	8.7%	6.0%	18.9%				
	(106/347)	(89/273)	(89/439)	(46/528)	(14/233)	(344/1820)				
Human	11.5%	13.9%	6.4%	3.8%	2.1%	7.2%				
Metapneumovirus	(40/347)	(38/273)	(28/439)	(20/528)	(5/233)	(131/1820)				
Influenza A	4.3%	2.2%	13.2%	7.8%	10.7%	8.0%				
	(15/347)	(6/273)	(58/439)	(41/528)	(25/233)	(145/1820)				
Influenza A H1	1.4%	0.4%	2.7%	2.7%	2.6%	2.1%				
	(5/347)	(1/273)	(12/439)	(14/528)	(6/233)	(38/1820)				
Influenza A H3	3.2%	1.8%	10.7%	4.9%	8.2%	5.9%				
	(11/347)	(5/273)	(47/439)	(26/528)	(19/233)	(108/1820)				
Influenza B	0.0% (0/347)	1.1% (3/273)	0.7% (3/439)	0.4% (2/528)	0.0% (0/233)	0.4% (8/1820)				
Mycoplasma	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%				
pneumoniae	(0/347)	(0/273)	(0/439)	(0/528)	(0/233)	(0/1820)				
Parainfluenza 1	1.7%	1.1%	0.2%	0.2%	0.0%	0.6%				
	(6/347)	(3/273)	(1/439)	(1/528)	(0/233)	(11/1820)				
Parainfluenza 2	0.6%	0.7%	0.5%	0.9%	0.4%	0.7%				
	(2/347)	(2/273)	(2/439)	(5/528)	(1/233)	(12/1820)				
Parainfluenza 3	4.0%	6.2%	1.1%	1.1%	0.0%	2.3%				
	(14/347)	(17/273)	(5/439)	(6/528)	(0/233)	(42/1820)				
Parainfluenza 4	0.3%	0.7%	1.1%	0.2%	0.0%	0.5%				
	(1/347)	(2/273)	(5/439)	(1/528)	(0/233)	(9/1820)				
Respiratory Syncytial	17.3%	8.4%	2.5%	2.1%	5.6%	6.5%				
Virus (RSV)	(60/347)	(23/273)	(11/439)	(11/528)	(13/233)	(118/1820)				
SARS-CoV-2	8.4%	5.2%	9.2%	21.9%	26.4%	14.3%				
	(29/345)	(14/270)	(39/426)	(112/512)	(60/227)	(254/1780)				

F Other Supportive Instrument Performance Characteristics Data: Not applicable.

VIII Proposed Labeling:

The labeling supports the finding of substantial equivalence for this device.

IX Conclusion:

The submitted information in this premarket notification is complete and supports a substantial equivalence decision.