Neurontin® (Gabapentin Capsules)

DESCRIPTION

Neurontin® (Gabapentin capsules) is supplied as imprinted hard shell capsules containing 100 mg, 300 mg, and 400 mg of gabapentin. The inactive ingredients are lactose, cornstarch, and talc. The 100-mg capsule shell contains gelatin and titanium dioxide. The 300-mg capsule shell contains gelatin, titanium dioxide, and yellow iron oxide. The 400-mg capsule shell contains gelatin, red iron oxide, titanium dioxide, and yellow iron oxide. The imprinting ink contains FD&C Blue No. 2 and titanium dioxide.

Gabapentin is described as N-(aminomethyl)cyclohexanecarboxylic acid with an empirical formula of C9H17NO2 and a molecular weight of 171.24. The molecular structure of gabapentin is:

CH3NH2
CH3CO2H

Gabapentin is a white to off-white crystalline solid. It is freely soluble in water and both basic and acidic aqueous solutions.

CLINICAL PHARMACOLOGY

Mechanism of Action

The mechanism by which gabapentin exerts its anticonvulsant action is unknown, but in animal test systems designed to detect anticonvulsant activity, gabapentin was effective at seizure doses 4 to 6 times lower than those required for other marketed antiepileptic drugs. Gabapentin exhibits anticonvulsant activity in mice and rats in both the maximal electroshock and pentylenetetrazole-aided seizure models and other preclinical models (e.g., seizure tests in genetically epilepsy susceptible mice). The relevance of these models to human epilepsy is not known.

Gabapentin is structurally related to the neurotransmitter GABA (gamma-aminobutyric acid) but it does not interact with GABA receptors, it is not converted metabolically into GABA or a GABA agonist, and it is not an inhibitor of GABA uptake or degradation.

Gabapentin was tested in radioligand binding assays at concentrations up to 100 µM and did not exhibit affinity for a number of other common receptor sites, including: benzo diazepines, glutamate, N-methyl-D-aspartate (NMDA), quinoline, kainate, glycine, strychnine-insensitive or strychnine-sensitive glycine, alpha 1, alpha 2, or beta adrenergic, adenosine A1 or A2, cholinergic, muscarinic or nicotinic, dopamine D1 or D2, histamine H1, serotonin 51 or 52, opiate mu, delta or kappa, voltage-sensitive calcium channel sites labeled with nitrendipine or dilute, or at voltage-sensitive sodium channel sites with batrachotoxin A2 or alpha heliuria.

Several test systems ordinarily used to assess activity at the NMDA receptor have been examined. Results are contradictory. Accordingly, no general statement about the effects, if any, of gabapentin at the NMDA receptor can be made.

In vivo studies with radiolabeled gabapentin have revealed a gabapentin binding site in areas of rat brain including neocortex and hippocampus. The identity and function of this binding site remain to be elucidated.

Pharmacokinetics and Drug Metabolism

All pharmacological actions following gabapentin administration are due to the activity of the parent compound, gabapentin is not appreciably metabolized in humans.

Oral Bioavailability: Gabapentin bioavailability is not dose dependent, i.e., or dose is increased, bioavailability decreases. A 400-mg dose, for example, is about 25% less bioavailable than a 100 mg dose. Over the recommended dose range of 300 to 600 mg TID, however, the differences in bioavailability are not large, and bioavailability is about 60 percent. Food has no effect on the rate and extent of absorption of gabapentin.

Distribution: Gabapentin circulates largely unbound (<3%) to plasma protein. The apparent volume of distribution of gabapentin after 150 mg intravenous administration is 20.6 L (Mean ± SE). In patients with epilepsy, steady-state plasma (Cmax) concentrations of gabapentin in cerebrospinal fluid were approximately 20% of the corresponding plasma concentrations.

Elimination: Gabapentin is eliminated from the systemic circulation by renal excretion as unchanged drug. Gabapentin is not appreciably metabolized in humans.

Gabapentin elimination half-life is 6 to 7 hours and is unaltered by dose or following multiple dosing. Gabapentin elimination rate constant, plasma clearance, and renal clearance are directly proportional to creatinine clearance (see Special Populations: Patients With Renal Insufficiency, below). In elderly patients, and in patients with impaired renal function, gabapentin plasma clearance is reduced. Gabapentin can be removed from plasma by hemodialysis.

Dosage adjustment in patients with compromised renal function or undergoing hemodialysis is recommended (see DOSAGE AND ADMINISTRATION, Table 2).

Special Populations: Patients With Renal Insufficiency: Subjects (N = 60) with renal insufficiency (mean creatinine clearance ranging from 13.114 ml/min) were administered single 400-mg oral doses of gabapentin. The mean gabapentin half-life ranged from about 6.5 hours (patients with creatinine clearance =60 ml/min) to 52 hours (patients with creatinine clearance =30 ml/min) and gabapentin renal clearance from about 90 ml/hr (<40 ml/min) to about 40 ml/hr (<20 ml/min). Mean plasma clearance (CUT) decreased from approximately 160 ml/min to 20 ml/min.
Dosage adjustment in patients with compromised renal function is necessary (see DOSAGE AND ADMINISTRATION).

Hemodialysis: In a study in anuric subjects (N = 11), the apparent elimination half-life of gabapentin on no-dialysis days was about 132 hours; dialysis three times a week (4 hours duration) lowered the apparent half-life of gabapentin by about 60%, from 132 hours to 51 hours. Hemodialysis thus has a significant effect on gabapentin elimination in anuric subjects.

Dosage adjustment in patients undergoing hemodialysis is necessary (see DOSAGE AND ADMINISTRATION).

Hepatic Disease: Because gabapentin is not metabolized, no study was performed in patients with hepatic impairment.

Age: The effect of age was studied in subjects 20-80 years of age. Apparent oral clearance (CLIN) of gabapentin decreased as age increased, from about 225 mL/min in those under 30 years of age to about 125 mL/min in those over 70 years of age. Renal clearance (CLCR) and CLIN adjusted for body surface area also declined with age; however, the decline in the renal clearance of gabapentin with age can largely be explained by the decline in renal function. Reduction of gabapentin dose may be required in patients who have age-related compromised renal function. (See PRECAUTIONS, Geriatric Use, and DOSAGE AND ADMINISTRATION.)

Pediatric: No pharmacokinetic data are available in pediatric patients below the age of 18 years.

Gender: Although no formal study has been conducted to compare the pharmacokinetics of gabapentin in men and women, it appears that the pharmacokinetic parameters for males and females are similar and there are no significant gender differences.

Race: Pharmacokinetic differences due to race have not been studied. Because gabapentin is primarily renally excreted and there are no important racial differences in glomerular clearance, pharmacokinetic differences due to race are not expected.

Clinical Studies

The effectiveness of Neurontin® as an adjunctive therapy (added to other antiepileptic drugs) was established in three multicenter placebo-controlled, double-blind, parallel-group clinical trials in 705 adults with refractory partial seizures. The patients enrolled had a history of at least 4 partial seizures/month in spite of receiving one or more antiepileptic drugs at therapeutic levels and were observed on their established antiepileptic drug regimen during a 12-week baseline period. In patients continuing to have at least 2 (or 4 in some studies) seizures per month, Neurontin® or placebo was then added on to the existing therapy during a 12-week treatment period. Effectiveness was assessed primarily on the basis of the percent of patients with a 50% or greater reduction in seizure frequency from baseline to treatment (the "responder rate") and a derived measure called dose-response ratio, a measure of change defined as (1 - B/(1 - B)). where B is the patient's baseline seizure frequency and T is the patient's seizure frequency during treatment. Response ratio is distributed within the range 0 to 1. A zero value indicates no change while complete elimination of seizures would give a value of 1. Increased seizure rates would give positive values. A response ratio of 0.33 corresponds to a 50% reduction in seizure frequency. The results given below are for all partial seizures in the intent to treat (all patients who received any doses of treatment) population in each study, unless otherwise indicated.

Our study compared Neurontin® 1200 mg/day TID with placebo. Responder rate was 23% (14/63) in the Neurontin® group and 9% (6/66) in the placebo group. The difference between groups was statistically significant. Response ratio was also better in the Neurontin® group (0.199) than in the placebo group (0.044), a difference that also achieved statistical significance.

A second study compared primarily 1200 mg/day TID Neurontin® (N = 101) with placebo (N = 96). Additional smallsized Neurontin® dosage groups (600 mg/day, N = 53; 1800 mg/day, N = 54) were also studied for information regarding dose response. Responder rate was higher in the Neurontin® 1200 mg/day group (17%) than in the placebo group (5%), but the difference was not statistically significant. The responder rate at 600 mg (17%) was not significantly higher than in the placebo, but the responder rate in the 1800 mg group (27%) was statistically significantly superior to the placebo group. Response ratio was better in the Neurontin® 1200 mg/day group (0.103) than in the placebo group (0.022), but this difference was also not statistically significant (p = 0.24). A better response was seen in the Neurontin® 600 mg/day group (0.015) and 1800 mg/day group (0.272) than in the 1200 mg/day group, with the 1800 mg/day group achieving statistical significance compared to the placebo group.

A third study compared Neurontin® 900 mg/day TID (N = 111) and placebo (N = 109). An additional Neurontin® 1200 mg/day dosage group (N = 57) provided dose response data. A statistically significant difference in responder rate was seen in the Neurontin® 900 mg/day group (22%) compared to that in the placebo group (16%). Response ratio was also statistically significantly superior in the Neurontin® 900 mg/day group (0.19) compared to that in the placebo group (0.027), as was response ratio in 1200 mg/day Neurontin® (0.184) compared to placebo.

Analyses were also performed in each study to examine the effect of Neurontin® on preventing secondarily generalized tonic-clonic seizures. Patients who experienced a secondarily generalized tonic-clonic seizure in either the baseline or in the treatment period in all three placebo-controlled studies were included in these analyses. There were several responder ratio comparisons that showed a statistically significant advantage for Neurontin® compared to placebo and favorable trends for almost all comparisons.

PARKE-DAVIS
Neurontin (Gabapentin Capsules)

Analysis of responder rate using combined data from all three studies and all doses (N = 1267, Neurontin®. N = 189, placebo) also showed a significant advantage for Neurontin® over placebo in reducing the frequency of secondary generalized tonic-clonic seizures.

In two of the three controlled studies, more than one dose of Neurontin® was used. Within each study the results did not show a consistently increased response to dose. However, looking across studies, a trend toward increasing efficacy with increasing dose is evident (see Figure 1).

![Figure 1: Responder Rate in Patients Receiving Neurontin® Expressed as a Difference from Placebo by Dose and Study](image)

FIGURE 1: Responder Rate in Patients Receiving Neurontin® Expressed as a Difference from Placebo by Dose and Study

In the figure, treatment effect magnitude, measured on the Y axis in terms of the difference in the proportion of gabapentin and placebo assigned patients attaining a 50% or greater reduction in seizure frequency from baseline, is plotted against the daily dose of gabapentin administered (X axis).

Although no formal analysis by gender has been performed, estimates of response (Response Ratio derived from clinical trials (250 men, 307 women) indicate no important gender differences exist. There was no consistent pattern indicating that age had any effect on the response to Neurontin®. There were insufficient numbers of patients of races other than Caucasian to permit a comparison of efficacy among racial groups.

INDICATIONS AND USAGE

Neurontin® (gabapentin) is indicated as adjunctive therapy in the treatment of partial seizures with and without secondary generalization in adults with epilepsy.

CONTRAINDICATIONS

Neurontin® is contraindicated in patients who have demonstrated hypersensitivity to the drug or its ingredients.

WARNINGS

Withdrawal Precipitated Seizure, Status Epilepticus

Antiepileptic drugs should not be abruptly discontinued because of the possibility of increasing seizure frequency.

In the placebo controlled studies, the incidence of status epilepticus in patients receiving Neurontin® was 0.06% (2 of 3433) versus 0.5% in patients receiving placebo (2 of 376). Among the 2074 patients treated with Neurontin® across all studies (controlled and uncontrolled) 31 (1.5%) had status epilepticus. Of these, 14 patients had no prior history of status epilepticus either before treatment or while on other medications. Because adequate historical data are not available, it is impossible to say whether or not treatment with Neurontin® is associated with a higher or lower rate of status epilepticus than would be expected to occur in a similar population not treated with Neurontin®.

Tumorigenic Potential

In standard preclinical in vivo lifetime carcinogenicity studies, an unexpectedly high incidence of pancreatic acinar adenocarcinomas was identified in male, but not female, rats. (See PRECAUTIONS: Carcinogenesis, Mutagenesis, Impairment of Fertility) The clinical significance of this finding is unknown. Clinical experience during gabapentin's premarketing development provided no direct means to assess its potential for inducing tumors in humans.

In clinical studies comprising 2085 patient-years of exposure, new tumors were reported in 10 patients (2 breast, 2 brain, 2 lung, 1 adrenal, 1 non-Hodgkin's lymphoma, 1 endometrial carcinoma in situ), and preexisting tumors worsened in 11 patients (9 brain, 1 breast, 1 prostate) during or up to 2 years following discontinuation of Neurontin®. Without knowledge of the background incidence and recurrence in a similar population not treated with Neurontin®, it is impossible to know whether the incidence seen in this cohort is or is not affected by treatment.

Sudden and Unexplained Deaths

During the course of premarketing development of Neurontin®, 8 sudden and unexplained deaths were recorded among a cohort of 2074 patients treated (2763 patient-years of exposure).
Some of these could represent seizure-related deaths in which the seizure was not observed, e.g., at night. This represents an incidence of 0.0038 deaths per patient year. Although the rate exceeds that expected in a healthy population matched for age and sex, it is within the range of estimates for the incidence of sudden unexplained deaths in patients with epilepsy not receiving Neurontin® (ranging from 0.005 for the general population of epileptics, to 0.003 for a clinical trial population similar to that in the Neurontin® program, to 0.005 for patients with refractory epilepsy). Consequently, whether these figures are reassuring or raise further concern depends on comparability of the populations reported upon to the Neurontin® cohort and the accuracy of the estimates provided.

PRECAUTIONS

Information for Patients

Patients should be instructed to take Neurontin® only as prescribed.

Patients should be advised that Neurontin® may cause dizziness, somnolence and other symptoms and signs of CNS depression. Accordingly, they should be advised not to drive a car or operate other complex machinery until they have gained sufficient experience on Neurontin® to gauge whether or not it affects their mental and/or motor performance adversely.

Laboratory Tests

Clinical trials data do not indicate that routine monitoring of clinical laboratory parameters is necessary for the safe use of Neurontin®. The value of monitoring Neurontin® blood concentrations has not been established. Neurontin® may be used in combination with other antiepileptic drugs without concern for alteration of the blood concentrations of gabapentin or of other antiepileptic drugs.

Drug Interactions

Gabapentin is not appreciably metabolized nor does it interfere with the metabolism of commonly coadministered antiepileptic drugs.

The drug interaction data described in this section were obtained from studies involving healthy adults and patients with epilepsy.

Phenobarbital: In a single and multiple dose study of Neurontin® (400 mg T.I.D.) in epileptic patients (N = 6) maintained on phenobarbital monotherapy for at least 2 months, gabapentin had no effect on the steady-state trough plasma concentrations of phenobarbital. Phenobarbital had no effect on gabapentin pharmacokinetics.

Carbamazepine: Steady-state trough plasma carbamazepine and carbamazepine 10, 11 epoxide concentrations were not affected by concurrent gabapentin (400 mg T.I.D., N = 12) administration. Likewise, gabapentin pharmacokinetics were unaffected by carbamazepine administration.

Valproic Acid: The mean steady-state trough serum valproic acid concentrations prior to and during concurrent gabapentin administration (400 mg T.I.D., N = 12) were not different and neither were gabapentin pharmacokinetic parameters affected by valproic acid.

Phenobarbital: Estimates of steady-state pharmacokinetic parameters for phenobarbital or gabapentin (300 mg T.I.D., N = 12) are identical whether the drugs are administered alone or together.

Cimetidine: In the presence of cimetidine at 300 mg Q.I.D. (N = 12) the mean apparent oral clearance of gabapentin fell by 14% and creatinine clearance fell by 10%. Thus cimetidine appeared to alter the renal excretion of both gabapentin and creatinine, an endogenous marker of renal function. This small decrease in excretion of gabapentin by cimetidine is not expected to be of clinical importance. The effect of gabapentin on cimetidine was not evaluated.

Oral Contraceptives: Based on AUC and half-life, multiple dose pharmacokinetic profiles of norethindrone and ethinyl estradiol following administration of tablets containing 2.5 mg of norethindrone acetate and 50 mcg of ethinyl estradiol were similar with and without coadministration of gabapentin (400 mg T.I.D., N = 12). The AUC of norethindrone was 12% higher when it was coadministered with gabapentin, this interaction is not expected to be of clinical importance.

Antacid (Maalox®): Maalox reduced the bioavailability of gabapentin (N = 16) by about 20%. The decrease in bioavailability was about 5% when gabapentin was administered 2 hours after Maalox. It is recommended that gabapentin be taken at least 2 hours following Maalox administration.

Effect of Probencid: Probenecid is a blocker of renal tubular secretion. Gabapentin pharmacokinetic parameters without and with probenecid were comparable. This indicates that gabapentin does not undergo renal tubular secretion by the pathway that is blocked by probenecid.

Drug/Laboratory Tests Interactions

Because false positive readings were reported with the Ames N-Multistix SC® dipstick test for urinary protein when gabapentin was added to other antiepileptic drugs, the more specific sulfosalicylic acid precipitation procedure is recommended to determine the presence of urine protein.
Neurontin (Gabapentin Capsules)

Carcinogenesis, Mutagenesis, Impairment of Fertility

Gabapentin was given in the diet to mice at 200, 600, and 2000 mg/kg/day and to rats at 250, 1000, and 2000 mg/kg/day for 2 years. A statistically significant increase in the incidence of pancreatic acinar cell adenoma and carcinoma was found in male rats receiving the high dose; the no-effect dose for the occurrence of carcinomas was 1000 mg/kg/day. Peak plasma concentrations of gabapentin in rats receiving the high dose of 2000 mg/kg were 10 times higher than plasma concentrations in humans receiving 3600 mg per day, and in rats receiving 1000 mg/kg/day, peak plasma concentrations were 6.5 times higher than in humans receiving 3600 mg/day. The pancreatic acinar cell carcinomas did not affect survival, did not metastasize and were not locally invasive. Studies to attempt to define a mechanism by which this relatively rare tumor type is occurring are in progress. The relevance of this finding to carcinogenic risk in humans is unclear.

Gabapentin did not demonstrate mutagenic or genotoxic potential in three in vitro and two in vivo assays. It was negative in the Ames test and the in vitro HGPRT forward mutation assay in Chinese hamster lung cells, it did not produce significant increases in chromosomal aberrations in the in vitro Chinese hamster lung cell assay; it was negative in the in vivo chromosomal aberration assay and in the in vivo micronucleus test in Chinese hamster bone marrow.

No adverse effects on fertility or reproduction were observed in rats at doses up to 2000 mg/kg (approximately 5 times the maximum recommended human dose on an mg/m² basis).

Pregnancy

Pregnancy Category C. Gabapentin has been shown to be fetotoxic in rodents, causing delayed ossification of several bones in the skull, vertebrae, forelimbs, and hindlimbs. These effects occurred when pregnant mice received oral doses of 1000 or 3000 mg/kg/day during the period of organogenesis, or approximately 1 to 4 times the maximum dose of 3600 mg/day given to epileptic patients on a mg/m² basis. The no-effect level was 500 mg/kg/day or approximately 5% of the human dose on a mg/m² basis.

When rats were dosed prior to and during mating, and throughout gestation, pups from all dose groups (500, 1000 and 2000 mg/kg/day) were affected. These doses are equivalent to less than approximately 1 to 5 times the maximum human dose on a mg/m² basis. There was an increased incidence of hydroxyurea and/or hydrazine-induced cytogenetic effects in a study of fertility and general reproductive performance at 2000 mg/kg/day with no effect at 1000 mg/kg/day, in a teratology study at 1500 mg/kg/day with no effect at 300 mg/kg/day, and in a perinatal and postnatal study at all doses studied (500, 1000, and 2000 mg/kg/day). The doses at which the effects occurred are approximately 1 to 5 times the maximum human dose of 3600 mg/day on a mg/m² basis; the no-effect dose was approximately 3 times (Fertility and General Reproductive Performance study) and approximately equal to (teratogenicity study) the maximum human dose on a mg/m² basis. Other than hydroxyurea and hydrazine, the drugs of which are unclear, the incidence of malformations was not increased compared to controls in offspring of mice, rats or rabbits given doses up to 50 times (mice), 30 times (rats), and 25 times (rabbits) the human daily dose on a mg/kg basis, or 4 times (mice), 5 times (rats), or 8 times (rabbits) the human daily dose on a mg/m² basis.

In a teratology study in rabbits, an increased incidence of postimplantation fetal loss occurred in dams exposed to 60, 300 and 1500 mg/kg/day, or less than approximately 5 to 8 times the maximum human dose on a mg/m² basis. There are no adequate and well controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Use in Nursing Mothers

It is not known if gabapentin is excreted in human milk and the effect on the nursing infant is unknown. However, because many drugs are excreted in human milk, Neurontin® should be used in women who are nursing only if the benefits clearly outweigh the risks.

Pediatric Use

Safety and effectiveness in pediatric patients below the age of 12 years have not been established.

Geriatric Use

No systematic studies in geriatric patients have been conducted. Adverse clinical events reported among 59 Neurontin®-exposed patients over age 65 did not differ from that noted in younger individuals. The small number of older individuals evaluated, however, limits the strength of any conclusions reached about the influence, if any, of age on the kind and incidence of adverse events or laboratory abnormalities associated with the use of Neurontin®.

Because Neurontin® is eliminated primarily by renal excretion, the dose of Neurontin® should be adjusted as noted in DOSAGE AND ADMINISTRATION (Table 2) for elderly patients with compromised renal function. Creatinine clearance is difficult to measure in outpatients and serum creatinine may be reduced in the elderly because of decreased muscle mass. Creatinine clearance (Ccr) can be reasonably well estimated using the equation of Cockcroft and Gault:

\[C_{cr} = \begin{cases} \frac{0.85}{(1.73 \times \text{age} \times \text{weight})} & \text{for females} \\ \frac{180}{\text{weight}} & \text{for males} \end{cases} \]

where age is in years, weight is in kilograms and \text{Ccr} is serum creatinine in mg/dL.

ADVERSE REACTIONS

The most commonly observed adverse events associated with the use of Neurontin® in combination with other antiepileptic drugs, not seen at an equivalent frequency among placebo-treated patients, were somnolence, dizziness, ataxia, fatigue, and myalgia. Approximately 7% of the 2674 individuals who received Neurontin® in premarketing clinical trials discontinued treatment because of an adverse event. The adverse events most commonly associated with withdrawal were somnolence (1.2%), ataxia (0.8%), fatigue (0.6%), nausea and/or vomiting (0.6%), and dizziness (0.6%).
Incidence in Controlled Clinical Trials

Table 1 lists treatment-emergent signs and symptoms that occurred in at least 1% of Neurotin®-treated patients with epilepsy participating in placebo-controlled trials and were numerically more common in the Neurotin® group. In these studies, either Neurotin® or placebo was added to the patient's current antiepileptic drug therapy. Adverse events were usually mild to moderate in intensity.

The prescriber should be aware that these figures, obtained when Neurotin® was added to concurrent antiepileptic drug therapy, cannot be used to predict the frequency of adverse events in the course of usual medical practice where patient characteristics and other factors may differ from those prevailing during clinical studies. Similarly, the cited frequencies cannot be directly compared with figures obtained from other clinical investigations involving different treatments, uses, or investigators. An inspection of these frequencies, however, does provide the prescribing physician with one basis to estimate the relative contribution of drug and nondrug factors to the adverse event inci-
dences in the population studied.

TABLE 1. Treatment-Emergent Adverse Event Incidence in Controlled Add On Trials

<table>
<thead>
<tr>
<th>Body System/</th>
<th>Neurotin® *</th>
<th>Placebo *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adverse Event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N = 543</td>
<td>N = 378</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Body As A Whole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>11.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Weight Increase</td>
<td>2.9</td>
<td>1.6</td>
</tr>
<tr>
<td>Back Pain</td>
<td>1.8</td>
<td>0.5</td>
</tr>
<tr>
<td>Peripheral Edema</td>
<td>1.7</td>
<td>0.5</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vasodilation</td>
<td>1.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Dyspepsia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouth or Throat Dry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constipation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dental Abnormalities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased Appetite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematologic and Lymphatic Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leukopenia</td>
<td>1.1</td>
<td>0.5</td>
</tr>
<tr>
<td>Musculoskeletal System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myalgia</td>
<td>2.0</td>
<td>1.9</td>
</tr>
<tr>
<td>Fracture</td>
<td>1.1</td>
<td>0.8</td>
</tr>
<tr>
<td>Nervous System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somnolence</td>
<td>19.3</td>
<td>8.7</td>
</tr>
<tr>
<td>Dizziness</td>
<td>17.1</td>
<td>6.9</td>
</tr>
<tr>
<td>Lassitude</td>
<td>12.3</td>
<td>5.6</td>
</tr>
<tr>
<td>Dyssomnia</td>
<td>8.3</td>
<td>4.0</td>
</tr>
<tr>
<td>Tremor</td>
<td>6.8</td>
<td>3.2</td>
</tr>
<tr>
<td>Nervousness</td>
<td>2.4</td>
<td>1.9</td>
</tr>
<tr>
<td>Dysarthria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thinking Abnormal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ictching</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coordination Abnormal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhinitis</td>
<td>4.1</td>
<td>3.7</td>
</tr>
<tr>
<td>Pharyngitis</td>
<td>2.8</td>
<td>1.6</td>
</tr>
<tr>
<td>Coughing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin and Appendages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abraision</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pruritus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urogenital System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impotence</td>
<td>1.5</td>
<td>1.1</td>
</tr>
<tr>
<td>Special Senses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diplopia</td>
<td>5.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Amblyopia</td>
<td>4.2</td>
<td>1.1</td>
</tr>
<tr>
<td>Laboratory Deviations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WBC Decreased</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Plus background antiepileptic drug therapy

* Amblyopia was often described as blurred vision.

Other events in more than 1% of patients but equally or more frequent in the placebo group included: headache, viral infection, fever, nausea and/or vomiting, abdominal pain, diarrhea, confusion, confusion, insomnia, emotional lability, rash, acne.

Among the treatment-emergent adverse events occurring at an incidence of at least 10% of Neurotin-treated patients, somnolence and ataxia appeared to exhibit a positive dose-response relationship.

The overall incidence of adverse events and the type of adverse events seen were similar among men and women treated with Neurotin®. The incidence of adverse events increased slightly with increasing age in patients treated with either Neurotin® or placebo. Because only 3% of patients (9/9/21) in placebo-controlled studies were identified as mouth (black or other), there are insufficient data to support a statement regarding the distribution of adverse events by race.
Neurontin (Gabapentin Capsules)

Other Adverse Events Observed During All Clinical Trials

Neurontin® has been administered to 2074 patients during all clinical trials, only some of which were placebo-controlled. During these trials, all adverse events were recorded by the clinical investigator using terminology of their own choosing. To provide a meaningful estimate of the proportion of individuals having adverse events, similar types of events were grouped into a smaller number of standardized categories using modified COSTART dictionary terminology. These categories are used in the listing below. The frequencies presented represent the proportion of the 2074 patients exposed to Neurontin® who experienced an event of the type cited on at least one occasion while receiving Neurontin®. All reported events are included except those already listed in the previous table; those too general to be informative, and those not reasonably associated with the use of the drug.

Events are further classified within body system categories and enumerated in order of decreasing frequency using the following definitions: frequent, adverse events are defined as those occurring in at least 1/100 patients; infrequent, adverse events are those occurring in 1/100 to 1/1000 patients; rare events are those occurring in fewer than 1/1000 patients.

Body As A Whole: Frequent: asthenia, malaise, face edema; infrequent: allergy, generalized edema, weight decrease, chills, rare: strange feelings, lactulose, alcohol intolerance, hangover effect.

Cardiovascular System: Frequent: hypertension; infrequent: hypotension, angina pectoris, peripheral vascular disorder, palpitation, tachycardia, migraine, dizziness, rare: atrial fibrillation, heart failure, thrombophlebitis, deep vein thrombophlebitis, myocardial infarction, cerebrovascular accident, pulmonary embolism, retinal embolism, hyperlipidemia, hypercholesterolemia, pericardial effusion, pericarditis.

Digestive System: Frequent: anorexia, flatulence, gingivitis; infrequent: glossitis, gum hemorrhage, thirst, stomatitis, increased salivation, gastroenteritis, hemorrhoids, bloody stools, fecal incontinence, hepatomegaly, rare: dysphagia, esophagitis, pancreatitis, peptic ulcer, colitis, blisters in mouth, tooth discolor, perleche, salivary gland enlargement, lip hemorrhage, esophagitis, halitosis, hematemesis, pruritus, irritable bowel syndrome, rectal hemorrhage, esophageal spasm.

Endocrine System: Frequent: hyperglycemia, hypoglycemia, goiter, hyperprostaglandin, ovarian failure, epididymitis, swollen testicle, cushingoid appearance.

Hematologic and Lymphatic System: Frequent: purpura most often described as bruising resulting from physical trauma; infrequent: anemia, thrombocytopenia, lymphadenopathy, rare: WBC count increased, lymphocytosis, non-Hodgkin's lymphoma, bleeding time increased.

Musculoskeletal System: Frequent: arthralgia, infrequent: tendinitis, arthritis, joint stiffness, joint swelling, positive Blumberg test; rare: osteoarthritis, osteoporosis, bursitis, contracture.

Nervous System: Frequent: vertigo, headache, paresthesia, decreased or absent reflexes, increased reflexes, anxiety, hostility, infrequent: impotence, syncope, dream disorder, aphasia, hypotension, intracranial hemorrhage, hypotonia, dysphasia, paresthesia, dysarthria, hemiplegia, facial palsy, diplopia, st US, cerebellar dysfunction, seizures, Babinski sign, decreased position sense, subdural hematomata, apathy, hallucination, decrease or loss of libido, agitation, paranoia, depersonalization, euphoria, feeling high, drug-induced vision, suicidal, psychoses, rare: choreoathetosis, oral dyskinesia, encephalopathy, neuralgia, paresthesia, sensory or motor, increased libido, sedation, temperament, apraxia, fine motor control disorder, myoclonus, local myoclonus, hypotonia, hypotension, myoclonus, weakness, myokymia, dystonia, dystonia, extrapyramidalism, local twitching, muscle spasm, spasticity, speech disturbance, speech abnormalities.

Dermatological: Infrequent: alopecia, eczema, dry skin, increased sweating, urticaria, hirsutism, seborrhea, cyst, hives, simplex, rare: herpes zoster, skin discolor, skin papules, photosensitive reaction, irritable skin, scalp seborrhea, pruritus, desquamation, maceration, skin nodules, subcutaneous nodule, melanosis, skin necrosis, local swelling.

Special Senses: Frequent: abnormal vision; infrequent: cataract, conjunctivitis, eye pain, eye problems, visual field defect, photophobia, bilateral or unilateral loss, eye hemorrhage, hordeolum, hearing loss, earache, tinnitus, inner ear infection, otitis, taste loss, unusual taste, eye twitching, ear fullness, rare: eye itching, abnormal accommodation, peripheral facial pain, sensory loss in eye, eye focusing problem, watery eye, intracranial hypertension, headache, retro-orbital pain, meningeal disorders, lacrimal function, degenerative eye changes, blurred vision, nasal adhesive, nose, rhinitis, dacryocystitis, abdominal, constipation, tube dysfunction, dry mouth, otitis externa, cold sore.

Postmarketing and Other Experience

In addition to the adverse experiences reported during clinical testing of Neurontin®, the following adverse experiences have been reported in patients receiving marketed Neurontin®. These adverse experiences have not been listed above and data are insufficient to support an estimate of their incidence or to establish causation. The listing is in alphabetical order: angioedema, blood glucose fluctuation, erythema multiforme, elevated liver function tests, fever, jaundice, Stevens-Johnson syndrome.

DRUG ABUSE AND DEPENDENCE

The abuse and dependence potential of Neurontin® has not been evaluated in human studies.
OVERDOSAGE
A lethal dose of gabapentin was not identified in mice and rats receiving single oral doses as high as 8000 mg/kg. Signs of acute toxicity in animals included ataxia, labored breathing, ptosis, sedation, hypotension, or excitation.

Acute oral overdoses of Neurontin® up to 49 grams have been reported. In these cases, double vision, slurred speech, drowsiness, lethargy and diarrhoea were observed. All patients recovered with supportive care.

Gabapentin can be removed by haemodialysis. Although haemodialysis has not been performed in the few overdose cases reported, it may be indicated by the patient's clinical state or in patients with significant renal impairment.

DOSAGE AND ADMINISTRATION
Neurontin® is recommended for add-on therapy in patients over 12 years of age. Evidence bearing on its safety and effectiveness in pediatric patients below the age of 12 is not available.

Neurontin® is given orally with or without food.

The effective dose of Neurontin® is 900 to 1800 mg/day and given in divided doses (three times a day) using 300- or 400-mg capsules. The starting dose is 300 mg three times a day. If necessary, the dose may be increased using 300- or 400-mg capsules three times a day up to 1800 mg/day. Dosages up to 2400 mg/day have been well tolerated in long term clinical studies. Doses of 3000 mg/day have also been administered to a small number of patients for a relatively short duration, and have been well tolerated. The maximum time between doses in the T.I.D. schedule should not exceed 12 hours.

It is not necessary to monitor gabapentin plasma concentrations to optimize Neurontin® therapy. Further, because there are no significant pharmacokinetic interactions among Neurontin® and other commonly used antiepileptic drugs, the addition of Neurontin® does not alter the plasma levels of these drugs appreciably.

If Neurontin® is discontinued and/or an alternate antiepileptic medication is added to the therapy, this should be done gradually over a minimum of 1 week. Dosage adjustment in patients with compromised renal function or undergoing haemodialysis is recommended as follows:

<table>
<thead>
<tr>
<th>Renal Function</th>
<th>Total Daily Dose (mg/day)</th>
<th>Dose Regimen (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creatinine Clearance (mg/dl)</td>
<td>1700</td>
<td>400 T.I.D.</td>
</tr>
<tr>
<td>>60</td>
<td>1700</td>
<td>400 T.I.D.</td>
</tr>
<tr>
<td>30—60</td>
<td>600</td>
<td>300 B.I.D.</td>
</tr>
<tr>
<td>15—30</td>
<td>300</td>
<td>300 B.I.D.</td>
</tr>
<tr>
<td><15</td>
<td>150</td>
<td>300 Q.D.</td>
</tr>
<tr>
<td>Haemodialysis</td>
<td>—</td>
<td>200—300*</td>
</tr>
</tbody>
</table>

* Every other day

b Loading dose of 300 to 400 mg in patients who have never received Neurontin®, then 200 to 300 mg Neurontin® following 4 hours of haemodialysis.

HOW SUPPLIED
Neurontin® (gabapentin capsules) are supplied as follows:

100 mg capsules:
White hard gelatin capsules printed with "PD" on one side and "Neurontin®/100 mg" on the other; available in:
Bottles of 100: N 0071-0003-24
Unit dose 50's: N 0071-0003-40

300 mg capsules:
Yellow hard gelatin capsules printed with "PD" on one side and "Neurontin®/300 mg" on the other; available in:
Bottles of 100: N 0071-0005-24
Unit dose 50's: N 0071-0005-40

400 mg capsules:
Orange hard gelatin capsules printed with "PD" on one side and "Neurontin®/400 mg" on the other; available in:
Bottles of 100: N 0071-0006-24
Unit dose 50's: N 0071-0006-40

Storage
Store at controlled room temperature 15° to 30°C (59° to 86° F).

Rx only

Revised May 1998

Manufactured by
Parke-Davis Pharmaceuticals, Ltd.
Vega Baja, PR 00694

Distributed by
PARKE-DAVIS
Distributor from Warner-Lambert Co.
Morris Plains, NJ 07950 USA

© 1997 PDPL