DESCRIPTION

ACTOS (pioglitazone hydrochloride) is an oral antidiabetic agent that acts primarily by decreasing insulin resistance. ACTOS is used in the management of type 2 diabetes mellitus (also known as non-insulin-dependent diabetes mellitus (NIDDM) or adult-onset diabetes). Pharmacological studies indicate that ACTOS improves sensitivity to insulin in muscle and adipose tissue and inhibits hepatic gluconeogenesis. ACTOS improves glycemic control while reducing circulating insulin levels.

Pioglitazone [(±)-5-[[4-[2-(5-ethyl-2-pyridinyl)ethoxy]phenyl]methyl]-2,4-]
thiazolidinedione monohydrochloride belongs to a different chemical class and has a different pharmacological action than the sulfonylureas, metformin, or the α-glucosidase inhibitors. The molecule contains one asymmetric carbon, and the compound is synthesized and used as the racemic mixture. The two enantiomers of pioglitazone interconvert in vivo. No differences were found in the pharmacologic activity between the two enantiomers. The structural formula is as shown:

\[
\text{Pioglitazone hydrochloride is an odorless white crystalline powder that has a molecular formula of } C_{19}H_{20}N_2O_3S\cdot\text{HCl and a molecular weight of 392.90 daltons. It is soluble in N,N-dimethylformamide, slightly soluble in anhydrous ethanol, very slightly soluble in acetone and acetonitrile, practically insoluble in water, and insoluble in ether.}
\]

ACTOS is available as a tablet for oral administration containing 15 mg, 30 mg, or 45 mg of pioglitazone (as the base) formulated with the following excipients: lactose monohydrate NF, hydroxypropylcellulose NF, carboxymethylcellulose calcium NF, and magnesium stearate NF.
CLINICAL PHARMACOLOGY

Mechanism of Action

ACTOS is a thiazolidinedione antidiabetic agent that depends on the presence of insulin for its mechanism of action. ACTOS decreases insulin resistance in the periphery and in the liver resulting in increased insulin-dependent glucose disposal and decreased hepatic glucose output. Unlike sulfonylureas, pioglitazone is not an insulin secretagogue. Pioglitazone is a potent and highly selective agonist for peroxisome proliferator-activated receptor-gamma (PPARγ). PPAR receptors are found in tissues important for insulin action such as adipose tissue, skeletal muscle, and liver. Activation of PPARγ nuclear receptors modulates the transcription of a number of insulin responsive genes involved in the control of glucose and lipid metabolism.

In animal models of diabetes, pioglitazone reduces the hyperglycemia, hyperinsulinemia, and hypertriglyceridemia characteristic of insulin-resistant states such as type 2 diabetes. The metabolic changes produced by pioglitazone result in increased responsiveness of insulin-dependent tissues and are observed in numerous animal models of insulin resistance.

Since pioglitazone enhances the effects of circulating insulin (by decreasing insulin resistance), it does not lower blood glucose in animal models that lack endogenous insulin.

Pharmacokinetics and Drug Metabolism

Serum concentrations of total pioglitazone (pioglitazone plus active metabolites) remain elevated 24 hours after once daily dosing. Steady-state serum concentrations of both pioglitazone and total pioglitazone are achieved within 7 days. At steady state, two of the pharmacologically active metabolites of pioglitazone, Metabolites III (M-III) and IV (M-IV), reach serum concentrations equal to or greater than pioglitazone. In both healthy volunteers and in patients with type 2 diabetes, pioglitazone comprises approximately 30% to 50% of the peak total pioglitazone serum concentrations and 20% to 25% of the total area under the serum concentration-time curve (AUC).

Maximum serum concentration (Cmax), AUC, and trough serum concentrations (Cmin) for both pioglitazone and total pioglitazone increase proportionally at doses of 15 mg and
30 mg per day. There is a slightly less than proportional increase for pioglitazone and total pioglitazone at a dose of 60 mg per day.

Absorption: Following oral administration, in the fasting state, pioglitazone is first measurable in serum within 30 minutes, with peak concentrations observed within 2 hours. Food slightly delays the time to peak serum concentration to 3 to 4 hours, but does not alter the extent of absorption.

Distribution: The mean apparent volume of distribution (Vd/F) of pioglitazone following single-dose administration is 0.63 ± 0.41 (mean ± SD) L/kg of body weight. Pioglitazone is extensively protein bound (>99%) in human serum, principally to serum albumin. Pioglitazone also binds to other serum proteins, but with lower affinity. Metabolites M-III and M-IV also are extensively bound (>98%) to serum albumin.

Metabolism: Pioglitazone is extensively metabolized by hydroxylation and oxidation; the metabolites also partly convert to glucuronide or sulfate conjugates. Metabolites M-II and M-IV (hydroxy derivatives of pioglitazone) and M-III (keto derivative of pioglitazone) are pharmacologically active in animal models of type 2 diabetes. In addition to pioglitazone, M-III and M-IV are the principal drug-related species found in human serum following multiple dosing. At steady state, in both healthy volunteers and in patients with type 2 diabetes, pioglitazone comprises approximately 30% to 50% of the total peak serum concentrations and 20% to 25% of the total AUC.

Pioglitazone incubated with expressed human P450 or human liver microsomes results in the formation of M-IV and to a much lesser degree, M-II. The major cytochrome P450 isoforms involved in the hepatic metabolism of pioglitazone are CYP2C8 and CYP3A4 with contributions from a variety of other isoforms including the mainly extrahepatic CYP1A1. Ketoconazole inhibited up to 85% of hepatic pioglitazone metabolism in vitro at a concentration equal molar to pioglitazone. Pioglitazone did not inhibit P450 activity when incubated with human P450 liver microsomes. In vivo human studies have not been performed to investigate any induction of CYP3A4 by pioglitazone.

Excretion and Elimination: Following oral administration, approximately 15% to 30% of the pioglitazone dose is recovered in the urine. Renal elimination of pioglitazone is
negligible, and the drug is excreted primarily as metabolites and their conjugates. It is presumed that most of the oral dose is excreted into the bile either unchanged or as metabolites and eliminated in the feces.

The mean serum half-life of pioglitazone and total pioglitazone ranges from 3 to 7 hours and 16 to 24 hours, respectively. Pioglitazone has an apparent clearance, CL/F, calculated to be 5 to 7 L/hr.

Special Populations

Renal Insufficiency: The serum elimination half-life of pioglitazone, M-III, and M-IV remains unchanged in patients with moderate (creatinine clearance 30 to 60 mL/min) to severe (creatinine clearance < 30 mL/min) renal impairment when compared to normal subjects. No dose adjustment in patients with renal dysfunction is recommended (see DOSAGE AND ADMINISTRATION).

Hepatic Insufficiency: Compared with normal controls, subjects with impaired hepatic function (Child-Pugh Grade B/C) have an approximate 45% reduction in pioglitazone and total pioglitazone mean peak concentrations but no change in the mean AUC values.

ACTOS therapy should not be initiated if the patient exhibits clinical evidence of active liver disease or serum transaminase levels (ALT) exceed 2.5 times the upper limit of normal (see PRECAUTIONS, Hepatic Effects).

Elderly: In healthy elderly subjects, peak serum concentrations of pioglitazone and total pioglitazone are not significantly different, but AUC values are slightly higher and the terminal half-life values slightly longer than for younger subjects. These changes were not of a magnitude that would be considered clinically relevant.

Pediatrics: Pharmacokinetic data in the pediatric population are not available.

Gender: The mean C$_{\text{max}}$ and AUC values were increased 20% to 60% in females. As monotherapy and in combination with sulfonylurea, metformin, or insulin, ACTOS improved glycemic control in both males and females. In controlled clinical trials,
hemoglobin A\textsubscript{1c} (HbA\textsubscript{1c}) decreases from baseline were generally greater for females than for males (average mean difference in HbA\textsubscript{1c} 0.5\%). Since therapy should be individualized for each patient to achieve glycemic control, no dose adjustment is recommended based on gender alone.

Ethnicity: Pharmacokinetic data among various ethnic groups are not available.

Pharmacodynamics and Clinical Effects

Clinical studies demonstrate that ACTOS improves insulin sensitivity in insulin-resistant patients. ACTOS enhances cellular responsiveness to insulin, increases insulin-dependent glucose disposal, improves hepatic sensitivity to insulin, and improves dysfunctional glucose homeostasis. In patients with type 2 diabetes, the decreased insulin resistance produced by ACTOS results in lower blood glucose concentrations, lower plasma insulin levels, and lower HbA\textsubscript{1c} values. Based on results from an open-label extension study, the glucose lowering effects of ACTOS appear to persist for at least one year. In controlled clinical trials, ACTOS in combination with sulfonylurea, metformin, or insulin had an additive effect on glycemic control.

Patients with lipid abnormalities were included in clinical trials with ACTOS. Overall, patients treated with ACTOS had mean decreases in triglycerides, mean increases in HDL cholesterol, and no consistent mean changes in LDL and total cholesterol.

In a 26-week, placebo-controlled, dose-ranging study, mean triglyceride levels decreased in the 15 mg, 30 mg, and 45 mg ACTOS dose groups compared to a mean increase in the placebo group. Mean HDL levels increased to a greater extent in the ACTOS-treated patients than in the placebo-treated patients. There were no consistent differences for LDL and total cholesterol in ACTOS-treated patients compared to placebo (Table 1).
Table 1 Lipids in a 26-Week Placebo-Controlled Dose-Ranging Study

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>ACTOS 15 mg Once Daily</th>
<th>ACTOS 30 mg Once Daily</th>
<th>ACTOS 45 mg Once Daily</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>N=79</td>
<td>N=79</td>
<td>N=84</td>
<td>N=77</td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>262.8</td>
<td>283.8</td>
<td>261.1</td>
<td>259.7</td>
</tr>
<tr>
<td>Percent change from baseline (mean)</td>
<td>4.8%</td>
<td>-9.0%</td>
<td>-9.6%</td>
<td>-9.3%</td>
</tr>
<tr>
<td>HDL Cholesterol (mg/dL)</td>
<td>N=79</td>
<td>N=79</td>
<td>N=83</td>
<td>N=77</td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>41.7</td>
<td>40.4</td>
<td>40.8</td>
<td>40.7</td>
</tr>
<tr>
<td>Percent change from baseline (mean)</td>
<td>8.1%</td>
<td>14.1%</td>
<td>12.2%</td>
<td>19.1%</td>
</tr>
<tr>
<td>LDL Cholesterol (mg/dL)</td>
<td>N=65</td>
<td>N=63</td>
<td>N=74</td>
<td>N=62</td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>138.8</td>
<td>131.9</td>
<td>135.6</td>
<td>126.8</td>
</tr>
<tr>
<td>Percent change from baseline (mean)</td>
<td>4.8%</td>
<td>7.2%</td>
<td>5.2%</td>
<td>6.0%</td>
</tr>
<tr>
<td>Total Cholesterol (mg/dL)</td>
<td>N=79</td>
<td>N=79</td>
<td>N=84</td>
<td>N=77</td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>224.6</td>
<td>220.0</td>
<td>222.7</td>
<td>213.7</td>
</tr>
<tr>
<td>Percent change from baseline (mean)</td>
<td>4.4%</td>
<td>4.6%</td>
<td>3.3%</td>
<td>6.4%</td>
</tr>
</tbody>
</table>

In the two other monotherapy studies (24 weeks and 16 weeks) and in combination therapy studies with sulfonylurea (16 weeks) and metformin (16 weeks), the results were generally consistent with the data above. For ACTOS-treated patients, the placebo-corrected mean changes from baseline decreased 5% to 26% for triglycerides and increased 6% to 13% for HDL cholesterol.

In the combination therapy study with insulin (16 weeks), the placebo-corrected mean percent change from baseline in triglyceride values for ACTOS-treated patients was also decreased. A placebo-corrected mean change from baseline in LDL cholesterol of 7% was observed for the 15 mg dose group. Similar results to those noted above for HDL and total cholesterol were observed.

In all clinical trials, a reduction in HbA1c was accompanied by increased body weight in ACTOS-treated patients in a dose-related manner. The change in average weight in U.S. placebo-controlled monotherapy trials ranged from 0.5 kg to 2.8 kg for ACTOS-treated patients and −1.3 kg to −1.9 kg for placebo-treated patients. In combination with sulfonylurea, the change in average weight was 1.9 kg and 2.9 kg for 15 mg and 30 mg of ACTOS, respectively, and −0.8 kg for placebo. In combination with insulin, the change
in average weight was 2.3 kg and 3.7 kg for 15 mg and 30 mg of ACTOS, respectively, and 0 kg for placebo. In combination with metformin, the change in average weight was 1.0 kg for 30 mg of ACTOS and –1.4 kg for placebo.

Clinical Studies
Monotherapy
In the U.S., three randomized, double-blind, placebo-controlled trials with durations from 16 to 26 weeks were conducted to evaluate the use of ACTOS as monotherapy in patients with type 2 diabetes. These studies examined ACTOS at doses up to 45 mg or placebo once daily in 865 patients.

In a 26-week dose-ranging study, 408 patients with type 2 diabetes were randomized to receive 7.5 mg, 15 mg, 30 mg, or 45 mg of ACTOS, or placebo once daily. Therapy with any previous antidiabetic agent was discontinued 8 weeks prior to the double-blind period. Treatment with 15 mg, 30 mg, and 45 mg of ACTOS produced statistically significant improvements in HbA\textsubscript{1c} and fasting blood glucose (FBG) at endpoint compared to placebo (see Figure 1, Table 2).

Figure 1 shows the time course for changes in FBG and HbA\textsubscript{1c} for the entire study population in this 26-week study.

Figure 1 Mean Change from Baseline for FBG and HbA\textsubscript{1c} in a 26-Week Placebo-Controlled Dose-Ranging Study
Table 2 shows HbA$_1c$ and FBG values for the entire study population.

Table 2 Glycemic Parameters in a 26-Week Placebo-Controlled Dose-Ranging Study

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>ACTOS 15 mg Once Daily</th>
<th>ACTOS 30 mg Once Daily</th>
<th>ACTOS 45 mg Once Daily</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Population</td>
<td>N=79</td>
<td>N=79</td>
<td>N=85</td>
<td>N=76</td>
</tr>
<tr>
<td>HbA$_1c$ (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>10.4</td>
<td>10.2</td>
<td>10.2</td>
<td>10.3</td>
</tr>
<tr>
<td>Change from baseline (adjusted mean*)</td>
<td>0.7</td>
<td>-0.3</td>
<td>-0.3</td>
<td>-0.9</td>
</tr>
<tr>
<td>Difference from placebo (adjusted mean*)</td>
<td></td>
<td>-1.0*</td>
<td>-1.0*</td>
<td>-1.6*</td>
</tr>
<tr>
<td>FBG (mg/dL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>268</td>
<td>267</td>
<td>269</td>
<td>276</td>
</tr>
<tr>
<td>Change from baseline (adjusted mean*)</td>
<td>9</td>
<td>-30</td>
<td>-32</td>
<td>-56</td>
</tr>
<tr>
<td>Difference from placebo (adjusted mean*)</td>
<td></td>
<td>-39*</td>
<td>-41*</td>
<td>-65*</td>
</tr>
</tbody>
</table>

* Adjusted for baseline, pooled center, and pooled center by treatment interaction
* p ≤ 0.050 vs. placebo

The study population included patients not previously treated with antidiabetic medication (naïve; 31%) and patients who were receiving antidiabetic medication at the time of study enrollment (previously treated; 69%). The data for the naïve and previously treated patient subsets are shown in Table 3. All patients entered an 8 week washout/run-in period prior to double-blind treatment. This run-in period was associated with little change in HbA$_1c$ and FBG values from screening to baseline for the naïve patients; however, for the previously-treated group, washout from previous anti-diabetic medication resulted in deterioration of glycemic control and increases in HbA$_1c$ and FBG. Although most patients in the previously-treated group had a decrease from baseline in HbA$_1c$ and FBG with ACTOS, in many cases the values did not return to screening levels by the end of the study. The study design did not permit the evaluation of patients who switched directly to ACTOS from another antidiabetic agent.
Table 3 Glycemic Parameters in a 26-Week Placebo-Controlled Dose-Ranging Study

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>ACTOS 15 mg Once Daily</th>
<th>ACTOS 30 mg Once Daily</th>
<th>ACTOS 45 mg Once Daily</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naïve to Therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HbA₁c (%)</td>
<td>N=25</td>
<td>N=26</td>
<td>N=26</td>
<td>N=21</td>
</tr>
<tr>
<td>Screening (mean)</td>
<td>9.3</td>
<td>10.0</td>
<td>9.5</td>
<td>9.8</td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>9.0</td>
<td>9.9</td>
<td>9.3</td>
<td>10.0</td>
</tr>
<tr>
<td>Change from baseline (adjusted mean*)</td>
<td>0.6</td>
<td>-0.8</td>
<td>-0.6</td>
<td>-1.9</td>
</tr>
<tr>
<td>Difference from placebo (adjusted mean*)</td>
<td>-1.4</td>
<td>-1.3</td>
<td>-2.6</td>
<td></td>
</tr>
<tr>
<td>FBG (mg/dL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening (mean)</td>
<td>223</td>
<td>245</td>
<td>239</td>
<td>239</td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>229</td>
<td>251</td>
<td>225</td>
<td>235</td>
</tr>
<tr>
<td>Change from baseline (adjusted mean*)</td>
<td>16</td>
<td>-37</td>
<td>-41</td>
<td>-64</td>
</tr>
<tr>
<td>Difference from placebo (adjusted mean*)</td>
<td>-52</td>
<td>-56</td>
<td>-80</td>
<td></td>
</tr>
<tr>
<td>Previously Treated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HbA₁c (%)</td>
<td>N=54</td>
<td>N=53</td>
<td>N=59</td>
<td>N=55</td>
</tr>
<tr>
<td>Screening (mean)</td>
<td>9.3</td>
<td>9.0</td>
<td>9.1</td>
<td>9.0</td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>10.9</td>
<td>10.4</td>
<td>10.4</td>
<td>10.6</td>
</tr>
<tr>
<td>Change from baseline (adjusted mean*)</td>
<td>0.8</td>
<td>-0.1</td>
<td>-0.0</td>
<td>-0.6</td>
</tr>
<tr>
<td>Difference from placebo (adjusted mean*)</td>
<td>-1.0</td>
<td>-0.9</td>
<td>-1.4</td>
<td></td>
</tr>
<tr>
<td>FBG (mg/dL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening (mean)</td>
<td>222</td>
<td>209</td>
<td>230</td>
<td>215</td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>285</td>
<td>275</td>
<td>286</td>
<td>292</td>
</tr>
<tr>
<td>Change from baseline (adjusted mean*)</td>
<td>4</td>
<td>-32</td>
<td>-27</td>
<td>-55</td>
</tr>
<tr>
<td>Difference from placebo (adjusted mean*)</td>
<td>-36</td>
<td>-31</td>
<td>-59</td>
<td></td>
</tr>
</tbody>
</table>

* Adjusted for baseline and pooled center

In a 24-week study, 260 patients with type 2 diabetes were randomized to one of two forced-titration ACTOS treatment groups or a mock titration placebo group. Therapy with any previous antidiabetic agent was discontinued 6 weeks prior to the double-blind period. In one ACTOS treatment group, patients received an initial dose of 7.5 mg once daily. After four weeks, the dose was increased to 15 mg once daily and after another four weeks, the dose was increased to 30 mg once daily for the remainder of the study (16 weeks). In the second ACTOS treatment group, patients received an initial dose of 15 mg once daily and were titrated to 30 mg once daily and 45 mg once daily in a similar
manner. Treatment with ACTOS, as described, produced statistically significant improvements in HbA1c and FBG at endpoint compared to placebo (see Table 4).

Table 4 Glycemic Parameters in a 24-Week Placebo-Controlled Forced-Titration Study

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>ACTOS 30 mg*</th>
<th>ACTOS 45 mg*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Population</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>N=83</td>
<td>N=85</td>
<td>N=85</td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>10.8</td>
<td>10.3</td>
<td>10.8</td>
</tr>
<tr>
<td>Change from baseline (adjusted mean**)</td>
<td>0.9</td>
<td>-0.6</td>
<td>-0.6</td>
</tr>
<tr>
<td>Difference from placebo (adjusted mean**)</td>
<td>-1.5*</td>
<td>-1.5*</td>
<td></td>
</tr>
<tr>
<td>FBG (mg/dL)</td>
<td>N=78</td>
<td>N=82</td>
<td>N=85</td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>279</td>
<td>268</td>
<td>281</td>
</tr>
<tr>
<td>Change from baseline (adjusted mean**)</td>
<td>18</td>
<td>-44</td>
<td>-50</td>
</tr>
<tr>
<td>Difference from placebo (adjusted mean**)</td>
<td>-62*</td>
<td>-68*</td>
<td></td>
</tr>
</tbody>
</table>

* Final dose in forced titration
** Adjusted for baseline, pooled center, and pooled center by treatment interaction
* p ≤ 0.050 vs. placebo

For patients who had not been previously treated with antidiabetic medication (24%), mean values at screening were 10.1% for HbA1c and 238 mg/dL for FBG. At baseline, mean HbA1c was 10.2% and mean FBG was 243 mg/dL. Compared with placebo, treatment with ACTOS titrated to a final dose of 30 mg and 45 mg resulted in reductions from baseline in mean HbA1c of 2.3% and 2.6% and mean FBG of 63 mg/dL and 95 mg/dL, respectively. For patients who had been previously treated with antidiabetic medication (76%), this medication was discontinued at screening. Mean values at screening were 9.4% for HbA1c and 216 mg/dL for FBG. At baseline, mean HbA1c was 10.7% and mean FBG was 290 mg/dL. Compared with placebo, treatment with ACTOS titrated to a final dose of 30 mg and 45 mg resulted in reductions from baseline in mean HbA1c of 1.3% and 1.4% and mean FBG of 55 mg/dL and 60 mg/dL, respectively. For many previously-treated patients, HbA1c and FBG had not returned to screening levels by the end of the study.

In a 16-week study, 197 patients with type 2 diabetes were randomized to treatment with 30 mg of ACTOS or placebo once daily. Therapy with any previous antidiabetic agent
was discontinued 6 weeks prior to the double-blind period. Treatment with 30 mg of ACTOS produced statistically significant improvements in HbA1c and FBG at endpoint compared to placebo (see Table 5).

Table 5 Glycemic Parameters in a 16-Week Placebo-Controlled Study

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>ACTOS 30 mg Once Daily</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Population</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>N=93</td>
<td>N=100</td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>10.3</td>
<td>10.5</td>
</tr>
<tr>
<td>Change from baseline (adjusted mean*)</td>
<td>0.8</td>
<td>-0.6</td>
</tr>
<tr>
<td>Difference from placebo (adjusted mean*)</td>
<td>-1.4*</td>
<td></td>
</tr>
<tr>
<td>FBG (mg/dL)</td>
<td>N=91</td>
<td>N=99</td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>270</td>
<td>273</td>
</tr>
<tr>
<td>Change from baseline (adjusted mean*)</td>
<td>8</td>
<td>-50</td>
</tr>
<tr>
<td>Difference from placebo (adjusted mean*)</td>
<td>-58*</td>
<td></td>
</tr>
</tbody>
</table>

* Adjusted for baseline, pooled center, and pooled center by treatment interaction

For patients who had not been previously treated with antidiabetic medication (40%), mean values at screening were 10.3% for HbA1c and 240 mg/dL for FBG. At baseline, mean HbA1c was 10.4% and mean FBG was 254 mg/dL. Compared with placebo, treatment with ACTOS 30 mg resulted in reductions from baseline in mean HbA1c of 1.0% and mean FBG of 62 mg/dL. For patients who had been previously treated with antidiabetic medication (60%), this medication was discontinued at screening. Mean values at screening were 9.4% for HbA1c and 216 mg/dL for FBG. At baseline, mean HbA1c was 10.6% and mean FBG was 287 mg/dL. Compared with placebo, treatment with ACTOS 30 mg resulted in reductions from baseline in mean HbA1c of 1.3% and mean FBG of 46 mg/dL. For many previously-treated patients, HbA1c and FBG had not returned to screening levels by the end of the study.

Combination Therapy
Three 16-week, randomized, double-blind, placebo-controlled clinical studies were conducted to evaluate the effects of ACTOS on glycemic control in patients with type 2 diabetes who were inadequately controlled (HbA1c ≥ 8%) despite current therapy with a
sulfonylurea, metformin, or insulin. Previous diabetes treatment may have been monotherapy or combination therapy.

In one combination study, 560 patients with type 2 diabetes on a sulfonylurea, either alone or combined with another antidiabetic agent, were randomized to receive 15 mg or 30 mg of ACTOS or placebo once daily in addition to their current sulfonylurea regimen. Any other antidiabetic agent was withdrawn. Compared with placebo, the addition of ACTOS to the sulfonylurea significantly reduced the mean HbA\(_1c\) by 0.9% and 1.3% for the 15 mg and 30 mg doses, respectively. Compared with placebo, mean FBG decreased by 39 mg/dL (15 mg dose) and 58 mg/dL (30 mg dose). The therapeutic effect of ACTOS in combination with sulfonylurea was observed in patients regardless of whether the patients were receiving low, medium, or high doses of sulfonylurea (< 50%, 50%, or > 50% of the recommended maximum daily dose).

In a second combination study, 328 patients with type 2 diabetes on metformin either alone or combined with another antidiabetic agent, were randomized to receive either 30 mg of ACTOS or placebo once daily in addition to their metformin. Any other antidiabetic agent was withdrawn. Compared to placebo, the addition of ACTOS to metformin significantly reduced the mean HbA\(_1c\) by 0.8% and decreased the mean FBG by 38 mg/dL. The therapeutic effect of ACTOS in combination with metformin was observed in patients regardless of whether the patients were receiving lower or higher doses of metformin (< 2000 mg per day or ≥ 2000 mg per day).

In a third combination study, 566 patients with type 2 diabetes receiving a median of 60.5 units per day of insulin, either alone or combined with another antidiabetic agent, were randomized to receive either 15 mg or 30 mg of ACTOS or placebo once daily in addition to their insulin. Any other antidiabetic agent was discontinued. Compared to placebo, treatment with ACTOS in addition to insulin significantly reduced both HbA\(_1c\) (0.7% for the 15 mg dose and 1.0% for the 30 mg dose) and FBG (35 mg/dL for the 15 mg dose and 49 mg/dL for the 30 mg dose). The therapeutic effect of ACTOS in combination with insulin was observed in patients regardless of whether the patients were receiving lower or higher doses of insulin (< 60.5 units per day or ≥ 60.5 units per day).
INDICATIONS AND USAGE
ACTOS is indicated as an adjunct to diet and exercise to improve glycemic control in patients with type 2 diabetes (non-insulin dependent diabetes mellitus, NIDDM). ACTOS is indicated for monotherapy. ACTOS is also indicated for use in combination with a sulfonylurea, metformin, or insulin when diet and exercise plus the single agent does not result in adequate glycemic control.

Management of type 2 diabetes should also include nutritional counseling, weight reduction as needed, and exercise. These efforts are important not only in the primary treatment of type 2 diabetes, but also to maintain the efficacy of drug therapy.

CONTRAINDICATIONS
ACTOS is contraindicated in patients with known hypersensitivity to this product or any of its components.

PRECAUTIONS
General
ACTOS exerts its antihyperglycemic effect only in the presence of insulin. Therefore, ACTOS should not be used in patients with type 1 diabetes or for the treatment of diabetic ketoacidosis.

Hypoglycemia: Patients receiving ACTOS in combination with insulin or oral hypoglycemic agents may be at risk for hypoglycemia, and a reduction in the dose of the concomitant agent may be necessary.

Ovulation: In premenopausal anovulatory patients with insulin resistance, treatment with thiazolidinediones, including ACTOS, may result in resumption of ovulation. As a consequence of their improved insulin sensitivity, these patients may be at risk for pregnancy if adequate contraception is not used.

Hematologic: ACTOS may cause decreases in hemoglobin and hematocrit. Across all clinical studies, mean hemoglobin values declined by 2% to 4% in ACTOS-treated patients. These changes primarily occurred within the first 4 to 12 weeks of therapy and remained relatively constant thereafter. These changes may be related to increased
plasma volume and have not been associated with any significant hematologic clinical effects (see ADVERSE REACTIONS, Laboratory Abnormalities).

Edema: ACTOS should be used with caution in patients with edema. In double-blind clinical trials of patients with type 2 diabetes, mild to moderate edema was reported in patients treated with ACTOS (see ADVERSE REACTIONS).

Cardiac: In preclinical studies, thiazolidinediones, including pioglitazone, cause plasma volume expansion and pre-load-induced cardiac hypertrophy (see PRECAUTIONS, Animal Toxicology). In a six-month placebo-controlled study of 334 patients with type 2 diabetes and a long-term (one year or more) open-label study of more than 350 patients with type 2 diabetes, echocardiographic evaluation revealed no significant increase in mean left ventricular mass index or significant decrease in mean cardiac index in patients treated with ACTOS.

In clinical trials that excluded patients with New York Heart Association (NYHA) Class III and IV cardiac status, no increased incidence of serious cardiac adverse events potentially related to volume expansion (e.g., congestive heart failure) was observed. Patients with NYHA Class III and IV cardiac status were not studied in ACTOS clinical trials. ACTOS is not indicated in patients with NYHA Class III or IV cardiac status.

Hepatic Effects: Another drug of the thiazolidinedione class, troglitazone, has been associated with idiosyncratic hepatotoxicity, and very rare cases of liver failure, liver transplants, and death have been reported during postmarketing clinical use. In pre-approval controlled clinical trials in patients with type 2 diabetes, troglitazone was more frequently associated with clinically significant elevations of hepatic enzymes (ALT > 3 times the upper limit of normal) compared to placebo, and very rare cases of reversible jaundice were reported.

In clinical studies worldwide, over 4500 subjects have been treated with ACTOS. In U.S. clinical studies, over 2500 patients with type 2 diabetes received ACTOS. There was no evidence of drug-induced hepatotoxicity or elevation of ALT levels.
During placebo-controlled clinical trials in the U.S., a total of 4 of 1526 (0.26%) ACTOS-treated patients and 2 of 793 (0.25%) placebo-treated patients had ALT values ≥ 3 times the upper limit of normal. The ALT elevations in patients treated with ACTOS were reversible and were not clearly related to therapy with ACTOS.

Although available clinical data show no evidence of ACTOS-induced hepatotoxicity or ALT elevations, pioglitazone is structurally related to troglitazone, which has been associated with idiosyncratic hepatotoxicity and rare cases of liver failure, liver transplants, and death. Pending the availability of additional large, long-term controlled clinical trials and postmarketing safety data following wide clinical use of ACTOS to more fully define its hepatic safety profile, it is recommended that patients treated with ACTOS undergo periodic monitoring of liver enzymes. Serum ALT (alanine transaminase) levels should be evaluated prior to the initiation of therapy with ACTOS in all patients, every two months for the first year of therapy, and periodically thereafter. Liver function tests should also be obtained for patients if symptoms suggestive of hepatic dysfunction occur, e.g., nausea, vomiting, abdominal pain, fatigue, anorexia, dark urine. The decision whether to continue the patient on therapy with ACTOS should be guided by clinical judgement pending laboratory evaluations. If jaundice is observed, drug therapy should be discontinued.

Therapy with ACTOS should not be initiated if the patient exhibits clinical evidence of active liver disease or the ALT levels exceed 2.5 times the upper limit of normal. Patients with mildly elevated liver enzymes (ALT levels at 1 to 2.5 times the upper limit of normal) at baseline or any time during therapy with ACTOS should be evaluated to determine the cause of the liver enzyme elevation. Initiation of, or continuation of, therapy with ACTOS in patients with mildly elevated liver enzymes should proceed with caution and include the appropriate clinical follow-up which may include more frequent liver enzyme monitoring. If serum transaminase levels are increased (ALT > 2.5 times the upper limit of normal), liver function tests should be evaluated more frequently until the levels return to normal or pretreatment values. If ALT levels exceed 3 times the upper limit of normal, the test should be repeated as soon as possible. If ALT levels remain > 3 times the upper limit of normal or if the patient is jaundiced, ACTOS therapy should be discontinued.
There are no data available to evaluate the safety of ACTOS in patients who experienced liver abnormalities, hepatic dysfunction, or jaundice while on troglitazone. ACTOS should not be used in patients who experienced jaundice while taking troglitazone. For patients with normal hepatic enzymes who are switched from troglitazone to ACTOS, a one-week washout is recommended before starting therapy with ACTOS.

Laboratory Tests

FBG and HbA$_{1c}$ measurements should be performed periodically to monitor glycemic control and the therapeutic response to ACTOS.

Liver enzyme monitoring is recommended prior to initiation of therapy with ACTOS in all patients and periodically thereafter (see PRECAUTIONS, General, Hepatic Effects and ADVERSE REACTIONS, Serum Transaminase Levels).

Information for Patients

It is important to instruct patients to adhere to dietary instructions and to have blood glucose and glycosylated hemoglobin tested regularly. During periods of stress such as fever, trauma, infection, or surgery, medication requirements may change and patients should be reminded to seek medical advice promptly.

Patients should be told that blood tests for liver function will be performed prior to the start of therapy, every two months for the first year, and periodically thereafter. Patients should be told to seek immediate medical advice for unexplained nausea, vomiting, abdominal pain, fatigue, anorexia, or dark urine.

Patients should be told to take ACTOS once daily. ACTOS can be taken with or without meals. If a dose is missed on one day, the dose should not be doubled the following day.

When using combination therapy with insulin or oral hypoglycemic agents, the risks of hypoglycemia, its symptoms and treatment, and conditions that predispose to its development should be explained to patients and their family members.
In anovulatory, premenopausal women with insulin resistance, therapy with ACTOS may cause resumption of ovulation and contraceptive measures may need to be considered.

Drug Interactions

Oral Contraceptives: Administration of another thiazolidinedione with an oral contraceptive containing ethinyl estradiol and norethindrone reduced the plasma concentrations of both hormones by approximately 30%, which could result in loss of contraception. The pharmacokinetics of coadministration of ACTOS and oral contraceptives have not been evaluated in patients receiving ACTOS and an oral contraceptive. Therefore, additional caution regarding contraception should be exercised in patients receiving ACTOS and an oral contraceptive.

Glipizide: In healthy volunteers, coadministration of ACTOS (45 mg once daily) and glipizide (5.0 mg once daily) for seven days did not alter the steady-state pharmacokinetics of glipizide.

Digoxin: In healthy volunteers, coadministration of ACTOS (45 mg once daily) with digoxin (0.25 mg once daily) for seven days did not alter the steady-state pharmacokinetics of digoxin.

Warfarin: In healthy volunteers, coadministration of ACTOS (45 mg once daily) for seven days with warfarin did not alter the steady-state pharmacokinetics of warfarin. In addition, ACTOS has no clinically significant effect on prothrombin time when administered to patients receiving chronic warfarin therapy.

Metformin: In healthy volunteers, coadministration of metformin (1000 mg) and ACTOS (45 mg) after seven days of ACTOS (45 mg once daily) did not alter the pharmacokinetics of the single dose of metformin.

The cytochrome P450 isoform CYP3A4 is partially responsible for the metabolism of pioglitazone. Specific formal pharmacokinetic interaction studies have not been conducted with ACTOS and other drugs metabolized by this enzyme such as: erythromycin, astemizole, calcium channel blockers, cisapride, corticosteroids, cyclosporine, HMG-CoA reductase inhibitors, tacrolimus, trizolam, and trimetrexate, as
well as inhibitory drugs such as ketoconazole and itraconazole. In vitro, ketoconazole appears to significantly inhibit the metabolism of pioglitazone (see CLINICAL PHARMACOLOGY, Metabolism). Pending the availability of additional data, patients receiving ketoconazole concomitantly with ACTOS should be evaluated more frequently with respect to glycemic control.

Carcinogenesis, Mutagenesis, Impairment of Fertility

A two-year carcinogenicity study was conducted in male and female rats at oral doses up to 63 mg/kg (approximately 14 times the maximum recommended human oral dose of 45 mg based on mg/m²). Drug-induced tumors were not observed in any organ except for the urinary bladder. Benign and/or malignant transitional cell neoplasms were observed in male rats at 4 mg/kg/day and above (approximately equal to the maximum recommended human oral dose based on mg/m²). The relationship of these findings in male rats to humans is unclear. A two-year carcinogenicity study was conducted in male and female mice at oral doses up to 100 mg/kg/day (approximately 11 times the maximum recommended human oral dose based on mg/m²). No drug-induced tumors were observed in any organ.

During prospective evaluation of urinary cytology involving more than 1800 patients receiving ACTOS in clinical trials up to one year in duration, no new cases of bladder tumors were identified. Occasionally, abnormal urinary cytology results indicating possible malignancy were observed in both ACTOS-treated (0.72%) and placebo-treated (0.88%) patients.

Pioglitazone HCl was not mutagenic in a battery of genetic toxicology studies, including the Ames bacterial assay, a mammalian cell forward gene mutation assay (CHO/HPRT and AS52/XPRT), an in vitro cytogenetics assay using CHL cells, an unscheduled DNA synthesis assay, and an in vivo micronucleus assay.

No adverse effects upon fertility were observed in male and female rats at oral doses up to 40 mg/kg pioglitazone HCl daily prior to and throughout mating and gestation (approximately 9 times the maximum recommended human oral dose based on mg/m²).
Animal Toxicology
Heart enlargement has been observed in mice (100 mg/kg), rats (4 mg/kg and above) and dogs (3 mg/kg) treated orally with pioglitazone HCl (approximately 11, 1, and 2 times the maximum recommended human oral dose for mice, rat, and dogs, respectively, based on mg/m2). In a one-year rat study, drug-related early death due to apparent heart dysfunction occurred at an oral dose of 160 mg/kg/day (approximately 35 times the maximum recommended human oral dose based on mg/m2). Heart enlargement was seen in a 13-week study in monkeys at oral doses of 8.9 mg/kg and above (approximately 4 times the maximum recommended human oral dose based on mg/m2), but not in a 52-week study at oral doses up to 32 mg/kg (approximately 13 times the maximum recommended human oral dose based on mg/m2).

Pregnancy
Pregnancy Category C. Pioglitazone was not teratogenic in rats at oral doses up to 80 mg/kg or in rabbits given up to 160 mg/kg during organogenesis (approximately 17 and 40 times the maximum recommended human oral dose based on mg/m2, respectively). Delayed parturition and embryotoxicity (as evidenced by increased postimplantation losses, delayed development and reduced fetal weights) were observed in rats at oral doses of 40 mg/kg/day and above (approximately 10 times the maximum recommended human oral dose based on mg/m2). No functional or behavioral toxicity was observed in offspring of rats. In rabbits, embryotoxicity was observed at an oral dose of 160 mg/kg (approximately 40 times the maximum recommended human oral dose based on mg/m2). Delayed postnatal development, attributed to decreased body weight, was observed in offspring of rats at oral doses of 10 mg/kg and above during late gestation and lactation periods (approximately 2 times the maximum recommended human oral dose based on mg/m2).

There are no adequate and well-controlled studies in pregnant women. ACTOS should be used during pregnancy only if the potential benefits justifies the potential risk to the fetus.

Because current information strongly suggests that abnormal blood glucose levels during pregnancy are associated with a higher incidence of congenital anomalies, as well as increased neonatal morbidity and mortality, most experts recommend that insulin
be used during pregnancy to maintain blood glucose levels as close to normal as possible.

Nursing Mothers
Pioglitazone is secreted in the milk of lactating rats. It is not known whether ACTOS is secreted in human milk. Because many drugs are excreted in human milk, ACTOS should not be administered to a breast-feeding woman.

Pediatric Use
Safety and effectiveness of ACTOS in pediatric patients have not been established.

Elderly Use
Approximately 500 patients in placebo-controlled clinical trials of ACTOS were 65 and over. No significant differences in effectiveness and safety were observed between these patients and younger patients.

ADVERSE REACTIONS
In worldwide clinical trials, over 3700 patients with type 2 diabetes have been treated with ACTOS. In U.S. clinical trials, over 2500 patients have received ACTOS, over 1100 patients have been treated for 6 months or longer, and over 450 patients for one year or longer.

The overall incidence and types of adverse events reported in placebo-controlled clinical trials of ACTOS monotherapy at doses of 7.5 mg, 15 mg, 30 mg, or 45 mg once daily are shown in Table 6.
Table 6 Placebo-Controlled Clinical Studies of ACTOS Monotherapy: Adverse Events Reported at a Frequency ≥ 5% of ACTOS-Treated Patients

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Placebo (N=259)</th>
<th>ACTOS (N=606)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Respiratory Tract Infection</td>
<td>8.5</td>
<td>13.2</td>
</tr>
<tr>
<td>Headache</td>
<td>6.9</td>
<td>9.1</td>
</tr>
<tr>
<td>Sinusitis</td>
<td>4.6</td>
<td>6.3</td>
</tr>
<tr>
<td>Myalgia</td>
<td>2.7</td>
<td>5.4</td>
</tr>
<tr>
<td>Tooth Disorder</td>
<td>2.3</td>
<td>5.3</td>
</tr>
<tr>
<td>Diabetes Mellitus Aggravated</td>
<td>8.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Pharyngitis</td>
<td>0.8</td>
<td>5.1</td>
</tr>
</tbody>
</table>

The types of clinical adverse events reported when ACTOS was used in combination with sulfonylureas (N=373), metformin (N=168), or insulin (N=379) were generally similar to those reported during ACTOS monotherapy with the exception of an increase in the occurrence of edema in the insulin combination study (pioglitazone 15% and placebo 7%). The incidence of withdrawals from clinical trials due to an adverse event other than hyperglycemia was similar for patients treated with placebo (2.8%) or ACTOS (3.3%).

Mild to moderate hypoglycemia was reported during combination therapy with sulfonylurea or insulin. Hypoglycemia was reported for 1% of placebo-treated patients and 2% of patients when ACTOS was used in combination with a sulfonylurea. In combination with insulin, hypoglycemia was reported for 5% of placebo-treated patients, 8% for patients treated with 15 mg of ACTOS, and 15% for patients treated with 30 mg of ACTOS (see PRECAUTIONS, General, Hypoglycemia).

In U.S. double-blind studies, anemia was reported for 1.0% of ACTOS-treated patients and 0.0% of placebo-treated patients in monotherapy studies. Anemia was reported for 1.6% of ACTOS-treated patients and 1.6% of placebo-treated patients in combination with insulin. Anemia was reported for 0.3% of ACTOS-treated patients and 1.6% of placebo-treated patients in combination with sulfonylurea. Anemia was reported for 1.2% of ACTOS-treated patients and 0.0% of placebo-treated patients in combination with metformin.
In all U.S. clinical trials, edema was reported more frequently in ACTOS-treated patients than placebo-treated patients. In monotherapy studies, edema was reported for 4.8% of ACTOS-treated patients versus 1.2% of placebo-treated patients. Edema was reported most frequently in the insulin combination study (15.3% for ACTOS-treated patients versus 7.0% for placebo-treated patients). All events were considered mild or moderate in intensity (see PRECAUTIONS, General, Edema).

Laboratory Abnormalities

Hematologic: ACTOS may cause decreases in hemoglobin and hematocrit. Across all clinical studies, mean hemoglobin values declined by 2% to 4% in ACTOS-treated patients. These changes generally occurred within the first 4 to 12 weeks of therapy and remained relatively stable thereafter. These changes may be related to increased plasma volume associated with ACTOS therapy and have not been associated with any significant hematologic clinical effects.

Serum Transaminase Levels: During placebo-controlled clinical trials in the U.S., a total of 4 of 1526 (0.26%) ACTOS-treated patients and 2 of 793 (0.25%) placebo-treated patients had ALT values ≥ 3 times the upper limit of normal. During all clinical studies in the U.S., 11 of 2561 (0.43%) ACTOS-treated patients had ALT values ≥ 3 times the upper limit of normal. All patients with follow-up values had reversible elevations in ALT. In the population of patients treated with ACTOS, mean values for bilirubin, AST, ALT, alkaline phosphatase, and GGT were decreased at the final visit compared with baseline. Fewer than 0.12% of ACTOS-treated patients were withdrawn from clinical trials in the U.S. due to abnormal liver function tests.

In pre-approval clinical trials, there were no cases of idiosyncratic drug reactions leading to hepatic failure (see PRECAUTIONS, Hepatic Effects).

CPK Levels: During required laboratory testing in clinical trials, sporadic, transient elevations in creatine phosphokinase levels (CPK) were observed. A single, isolated elevation to greater than 10 times the upper limit of normal (values of 2150 to 8610) was noted in 7 patients. Five of these patients continued to receive ACTOS and the other two patients had completed receiving study medication at the time of the elevated value.
These elevations resolved without any apparent clinical sequelae. The relationship of these events to ACTOS therapy is unknown.

OVERDOSAGE
During controlled clinical trials, one case of overdose with ACTOS was reported. A male patient took 120 mg per day for four days, then 180 mg per day for seven days. The patient denied any clinical symptoms during this period.

In the event of overdosage, appropriate supportive treatment should be initiated according to patient’s clinical signs and symptoms.

DOSAGE AND ADMINISTRATION
ACTOS should be taken once daily without regard to meals.

The management of antidiabetic therapy should be individualized. Ideally, the response to therapy should be evaluated using HbA\textsubscript{1c} which is a better indicator of long-term glycemic control than FBG alone. HbA\textsubscript{1c} reflects glycemia over the past two to three months. In clinical use, it is recommended that patients be treated with ACTOS for a period of time adequate to evaluate change in HbA\textsubscript{1c} (three months) unless glycemic control deteriorates.

Monotherapy
ACTOS monotherapy in patients not adequately controlled with diet and exercise may be initiated at 15 mg or 30 mg once daily. For patients who respond inadequately to the initial dose of ACTOS, the dose can be increased in increments up to 45 mg once daily. For patients not responding adequately to monotherapy, combination therapy should be considered.

Combination Therapy
Sulfonylureas: ACTOS in combination with a sulfonylurea may be initiated at 15 mg or 30 mg once daily. The current sulfonylurea dose can be continued upon initiation of ACTOS therapy. If patients report hypoglycemia, the dose of the sulfonylurea should be decreased.
Metformin: ACTOS in combination with metformin may be initiated at 15 mg or 30 mg once daily. The current metformin dose can be continued upon initiation of ACTOS therapy. It is unlikely that the dose of metformin will require adjustment due to hypoglycemia during combination therapy with ACTOS.

Insulin: ACTOS in combination with insulin may be initiated at 15 mg or 30 mg once daily. The current insulin dose can be continued upon initiation of ACTOS therapy. In patients receiving ACTOS and insulin, the insulin dose can be decreased by 10% to 25% if the patient reports hypoglycemia or if plasma glucose concentrations decrease to less than 100 mg/dL. Further adjustments should be individualized based on glucose-lowering response.

Maximum Recommended Dose:
The dose of ACTOS should not exceed 45 mg once daily since doses higher than 45 mg once daily have not been studied in placebo-controlled clinical studies. No placebo-controlled clinical studies of more than 30 mg once daily have been conducted in combination therapy.

Dose adjustment in patients with renal insufficiency is not recommended (see CLINICAL PHARMACOLOGY, Pharmacokinetics and Drug Metabolism).

Therapy with ACTOS should not be initiated if the patient exhibits clinical evidence of active liver disease or increased serum transaminase levels (ALT greater than 2.5 times the upper limit of normal) at start of therapy (see PRECAUTIONS, General, Hepatic Effects and CLINICAL PHARMACOLOGY, Special Populations, Hepatic Insufficiency). Liver enzyme monitoring is recommended in all patients prior to initiation of therapy with ACTOS and periodically thereafter (see PRECAUTIONS, General, Hepatic Effects).

There are no data on the use of ACTOS in patients under 18 years of age; therefore, use of ACTOS in pediatric patients is not recommended.

No data are available on the use of ACTOS in combination with another thiazolidinedione.
HOW SUPPLIED
ACTOS is available in 15 mg, 30 mg, and 45 mg tablets as follows:

15 mg Tablet: white to off-white, round, convex, non-scored tablet with “ACTOS” on one side, and “15” on the other, available in:
NDC 64764-151-04 Bottle of 30
NDC 64764-151-05 Bottle of 90
NDC 64764-151-06 Bottle of 500

30 mg Tablet: white to off-white, round, flat, non-scored tablet with “ACTOS” on one side and “30” on the other, available in:
NDC 64764-301-14 Bottle of 30
NDC 64764-301-15 Bottle of 90
NDC 64764-301-16 Bottle of 500

45 mg Tablet: white to off-white, round, flat, non-scored tablet with “ACTOS” on one side, and “45” on the other, available in:
NDC 64764-451-24 Bottle of 30
NDC 64764-451-25 Bottle of 90
NDC 64764-451-26 Bottle of 500

Storage
Store at 25°C (77°F) excursions permitted to 15-30°C (59-86°F) [see USP Controlled Room Temperature]. Keep container tightly closed, and protect from moisture and humidity.

Rx only

Manufactured by:
Takeda Chemical Industries, Ltd.
Osaka, Japan
Marketed by:

Takeda Pharmaceuticals America, Inc.
475 Half Day Road, Suite 500
Lincolnshire, IL 60069

Eli Lilly and Company
Lilly Corporate Center
Indianapolis, IN 46285

ACTOS™ is a trademark of _________

©1999, Takeda America Research and Development Center, Inc.
July 1999