TABLE 2: Infusion Rates Using Rocuronium Bromide Injection (1 mg/mL)

- **Dosage and Administration**
 - Appropriate Administration and Monitoring: Use only if facilities for intubation, mechanical ventilation, oxygen therapy and an antagonist are immediately available.
 - Use by Continuous Infusion: Appropriate Administration and Monitoring: Use only if facilities for intubation, mechanical ventilation, oxygen therapy and an antagonist are immediately available.

TABLE 3: Infusion Rates Using Rocuronium Bromide Injection (5 mg/mL)

- **Dosage and Administration**
 - Appropriate Administration and Monitoring: Use only if facilities for intubation, mechanical ventilation, oxygen therapy and an antagonist are immediately available.
 - Use by Continuous Infusion: Appropriate Administration and Monitoring: Use only if facilities for intubation, mechanical ventilation, oxygen therapy and an antagonist are immediately available.

Rocuronium bromide is a nondepolarizing neuromuscular blocking agent indicated as an adjunct to general anesthesia to facilitate intubation and surgical or mechanical ventilation. It is also indicated for the treatment of malignant hyperthermia. It is not appropriate for postoperative surgery.
Excellent intubating conditions = jaw relaxed, vocal cords apart and immobile, no diaphragmatic movement reversed with 0.03 mg/kg neostigmine recovered from 25 to 75% T1 within 4 minutes.

Completion of Intubation in Patients with Intubation Initiated at 60 to 70 Seconds

Table 4 presents intubating conditions in patients with intubation initiated at 60 to 70 seconds.

Rocuronium bromide was administered to 140 geriatric patients (65 years or greater) in surgical patients [see Clinical Pharmacology (12.3)]. Onset time and duration of action were approximately 0.3 mg/kg. Patient variability around the ED95 dose suggests that 50% of patients achieve intubating conditions in 0.6 mg/kg, and 86% of patients achieve intubating conditions in 0.8 mg/kg.

The median T4/T1 from 72% at reversal to 100% after 2 minutes. Infants (n=10) who were 3 months old had increases in the percentage of patients in whom intubating conditions were achieved from 0.6 mg/kg: 14% (n=12) to 22% (n=12) at 1 minute, 38% (n=12) to 46% (n=12) at 2 minutes, and 73% (n=12) to 96% (n=12) at 3 minutes. Pediatric patients (n=58) who received 1 mg/kg edrophonium had increases in the percentage of patients in whom intubating conditions were achieved from 0.6 mg/kg: 46 (22 to 73) to 67 (38 to 160) at 1 minute, 73 (39 to 139) to 86 (46 to 183) at 2 minutes, and 96 (67 to 226) to 100% at 3 minutes.

The median spontaneous recovery from 25 to 75% T1 was 13 minutes in adult patients, 11 minutes in infant patients, and 4 minutes in pediatric patients. The median T4/T1 from 72% at reversal to 100% after 2 minutes. Infants (n=10) who were 3 months old had increases in the percentage of patients in whom intubating conditions were achieved from 0.6 mg/kg: 14% (n=12) to 22% (n=12) at 1 minute, 38% (n=12) to 46% (n=12) at 2 minutes, and 73% (n=12) to 96% (n=12) at 3 minutes. Pediatric patients (n=58) who received 1 mg/kg edrophonium had increases in the percentage of patients in whom intubating conditions were achieved from 0.6 mg/kg: 46 (22 to 73) to 67 (38 to 160) at 1 minute, 73 (39 to 139) to 86 (46 to 183) at 2 minutes, and 96 (67 to 226) to 100% at 3 minutes.

The neuromuscular blocking action of rocuronium bromide may be enhanced in the presence of acetylcholinesterase inhibitors, such as neostigmine and edrophonium. Patients should be evaluated for adequate clinical evidence of neuromuscular recovery, including spontaneous recovery, before discontinuation of mechanical ventilation. Monitoring for evidence of recovery is particularly important in patients with compromised lung function.