HIGHLIGHTS OF PRESCRIBING INFORMATION These highlights do not include all the information needed to use Lovenox safely and effectively. See full prescribing information for Lovenox. Lovenox (enoxaparin sodium injection) for subcutaneous and intravenous use Initial U.S. Approval: 1993 #### WARNING: SPINAL/EPIDURAL HEMATOMA See full prescribing information for complete boxed warning. - Enoxaparin use in patients undergoing spinal/epidural anesthesia or spinal puncture increases the risk of spinal or epidural hematoma, which may cause long-term or permanent paralysis (5.1) - Risk is increased by: - o Indwelling epidural catheters for analgesia (5.1) - Drugs affecting hemostasis [e.g., nonsteroidal anti-inflammatory drugs, platelet inhibitors, anticoagulants] (5.1, 7) - o Traumatic or repeated spinal or epidural puncture (5.1) #### -----INDICATIONS AND USAGE----- Lovenox is a low molecular weight heparin [LMWH] indicated for: - Prophylaxis of deep vein thrombosis (DVT) in abdominal surgery, hip replacement surgery, knee replacement surgery, or medical patients with severely restricted mobility during acute illness (1.1) - Inpatient treatment of acute DVT with or without pulmonary embolism (1.2) - Outpatient treatment of acute DVT without pulmonary embolism. (1.2) - Prophylaxis of ischemic complications of unstable angina and non-Qwave myocardial infarction [MI] (1.3) - Treatment of acute ST-segment elevation myocardial infarction [STEMI] managed medically or with subsequent percutaneous coronary intervention [PCI] (1.4) -----DOSAGE AND ADMINISTRATION----- | Indication | Standard Regimen (2.1, 2.3) | |--|----------------------------------| | DVT prophylaxis in abdominal surgery | 40 mg SC once daily up to 12 | | | days | | DVT prophylaxis in knee replacement | 30 mg SC every 12 hours up to | | surgery | 14 days | | DVT prophylaxis in hip replacement | 30 mg SC every 12 hours or 40 | | surgery | mg SC once daily up to 14 days | | DVT prophylaxis in medical patients | 40 mg SC once daily up to 14 | | • • • | days | | Inpatient treatment of acute DVT with or | 1 mg/kg SC every 12 hours or | | without pulmonary embolism | 1.5 mg/kg SC once daily (with | | | warfarin) up to 17 days | | Outpatient treatment of acute DVT | 1 mg/kg SC every 12 hours | | without pulmonary embolism | (with warfarin) up to 17 days | | Unstable angina and non-Q-wave MI | 1 mg/kg SC every 12 hours | | - | (with aspirin) 2 to 8 days | | Acute STEMI in patients <75 years of age | 30 mg single IV bolus plus a 1 | | [For dosing in subsequent PCI, see | mg/kg SC dose followed by 1 | | Dosage and Administration (2.1)] | mg/kg SC every 12 hours at | | | least 8 days (with aspirin) | | Acute STEMI in patients ≥75 years of age | 0.75 mg/kg SC every 12 hours | | | (no bolus) at least 8 days (with | | | aspirin) | • Adjust the dose for patients with severe renal impairment (2.2, 8.7) #### ----DOSAGE FORMS AND STRENGTHS----- 100 mg/mL concentration (3.1): - Prefilled syringes: 30 mg/0.3 mL, 40 mg/0.4 mL - Graduated prefilled syringes: 60 mg/0.6 mL, 80 mg/0.8 mL,100 mg/1 mL - Multiple-dose vial: 300 mg/3 mL 150 mg/mL concentration (3.2): • Graduated prefilled syringes: 120 mg/0.8 mL, 150 mg/1 mL #### -----CONTRAINDICATIONS----- - Active major bleeding (4) - Thrombocytopenia with a positive in vitro test for anti-platelet antibody in the presence of enoxaparin sodium (4) - Hypersensitivity to enoxaparin sodium (4) - Hypersensitivity to heparin or pork products (4) - Hypersensitivity to benzyl alcohol [for multi-dose formulation only] (4) #### ------WARNINGS AND PRECAUTIONS------ - Increased risk of hemorrhage: Use with caution in patients at risk (5.1) - Percutaneous coronary revascularization: Obtain hemostasis at the puncture site before sheath removal (5.2) - Concomitant medical conditions: Use with caution in patients with bleeding diathesis, uncontrolled arterial hypertension or history of recent gastrointestinal ulceration, diabetic retinopathy, renal dysfunction, or hemorrhage (5.3) - History of heparin-induced thrombocytopenia: Use with caution (5.4). - Thrombocytopenia: Monitor thrombocytopenia closely (5.5). - Interchangeability with other heparins: Do not exchange with heparin or other LMWHs (5.6) - Pregnant women with mechanical prosthetic heart valves and their fetuses, may be at increased risk and may need more frequent monitoring and dosage adjustment (5.7) #### -----ADVERSE REACTIONS----- Most common adverse reactions (>1%) were bleeding, anemia, thrombocytopenia, elevation of serum aminotransferase, diarrhea, and nausea (6.1) To report SUSPECTED ADVERSE REACTIONS, contact sanofi-aventis at 1-800-633-1610 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch. #### -----DRUG INTERACTIONS----- Discontinue agents which may enhance hemorrhage risk prior to initiation of Lovenox or conduct close clinical and laboratory monitoring (5.9, 7). #### -----USE IN SPECIFIC POPULATIONS----- - Severe Renal Impairment: Adjust dose for patients with creatinine clearance <30mL/min (2.2, 8.7) - Geriatric Patients: Monitor for increased risk of bleeding (8.5) - Patients with mechanical heart valves: Not adequately studied (8.6) - Hepatic Impairment: Use with caution. (8.8) - Low-Weight Patients: Observe for signs of bleeding (8.9) #### See 17 for PATIENT COUNSELING INFORMATION Revised: July, 2009 #### FULL PRESCRIBING INFORMATION: CONTENTS* WARNING: SPINAL / EPIDURAL HEMATOMAS - INDICATIONS AND USAGE - 1.1 Prophylaxis of Deep Vein Thrombosis - 1.2 Treatment of Acute Deep Vein Thrombosis - 1.3 Prophylaxis of Ischemic Complications of Unstable Angina and Non-Q-Wave Myocardial Infarction - Treatment of Acute ST-Segment Elevation Myocardial Infarction - DOSAGE AND ADMINISTRATION - 2.1 Adult Dosage - 2.2 Renal Impairment - Geriatric Patients with Acute ST-Segment Elevation 2.3 Myocardial Infarction - 2.4 Administration - DOSAGE FORMS AND STRENGTHS - 3.1 100 mg/mL Concentration 3.2 150 mg/mL Concentration - CONTRAINDICATIONS - WARNINGS AND PRECAUTIONS - 5.1 Increased Risk of Hemorrhage - 5.2 Percutaneous Coronary Revascularization Procedures - 5.3 Use of Lovenox with Concomitant Medical Conditions - 5.4 History of Heparin-Induced Thrombocytopenia - 5.5 Thrombocytopenia - Interchangeability with Other Heparins 5.6 - 5.7 Pregnant Women with Mechanical Prosthetic Heart Valves - 5.8 Benzyl Alcohol - 5.9 Laboratory Tests #### ADVERSE REACTIONS - 6.1 Clinical Trials Experience - 6.2 Postmarketing Experience - DRUG INTERACTIONS - USE IN SPECIFIC POPULATIONS - 8.1 Pregnancy - Nursing Mothers 8.3 - Pediatric Use - 8.5 Geriatric Use - 8.6 Patients with Mechanical Prosthetic Heart Valves - 8.7 Renal Impairment - Hepatic Impairment - Low-Weight Patients 89 - OVERDOSAGE - DESCRIPTION 11 - 12 CLINICAL PHARMACOLOGY - 12.1 Mechanism of Action - 12.2 Pharmacodynamics - 12.3 Pharmacokinetics - NONCLINICAL TOXICOLOGY - 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility - 13.2 Animal Toxicology and/or Pharmacology - 13.3 Reproductive and Developmental Toxicology - CLINICAL STUDIES - 14.1 Prophylaxis of Deep Vein Thrombosis Following Abdominal Surgery in Patients at Risk for Thromboembolic Complications - 14.2 Prophylaxis of Deep Vein Thrombosis Following Hip or Knee Replacement Surgery - 14.3 Prophylaxis of Deep Vein Thrombosis in Medical Patients with Severely Restricted Mobility During Acute Illness - 14.4 Treatment of Deep Vein Thrombosis with or without Pulmonary Embolism - 14.5 Prophylaxis of Ischemic Complications in Unstable Angina and Non-Q-Wave Myocardial Infarction - 14.6 Treatment of Acute ST-Segment Elevation Myocardial Infarction - HOW SUPPLIED/STORAGE AND HANDLING - PATIENT COUNSELING INFORMATION *Sections or subsections omitted from the full prescribing information are not listed #### **FULL PRESCRIBING INFORMATION** #### WARNING: SPINAL/EPIDURAL HEMATOMAS When neuraxial anesthesia (epidural/spinal anesthesia) or spinal puncture is employed, patients anticoagulated or scheduled to be anticoagulated with low molecular weight heparins or heparinoids for prevention of thromboembolic complications are at risk of developing an epidural or spinal hematoma which can result in long-term or permanent paralysis. The risk of these events is increased by the use of indwelling epidural catheters for administration of analgesia or by the concomitant use of drugs affecting hemostasis such as non steroidal anti-inflammatory drugs (NSAIDs), platelet inhibitors, or other anticoagulants. The risk also appears to be increased by traumatic or repeated epidural or spinal puncture. Monitor patients for signs and symptoms of neurological impairment. If neurologic compromise is noted, urgent treatment is necessary. Consider the potential benefit versus risk before neuraxial intervention in patients anticoagulated or to be anticoagulated for thromboprophylaxis [see *Warnings and Precautions (5.1)* and *Drug Interactions (7)*]. ## 1 INDICATIONS AND USAGE ## 1.1 Prophylaxis of Deep Vein Thrombosis Lovenox[®] is indicated for the prophylaxis of deep vein thrombosis (DVT), which may lead to pulmonary embolism (PE): - in patients undergoing abdominal surgery who are at risk for thromboembolic complications [see *Clinical Studies (14.1)*]. - in patients undergoing hip replacement surgery, during and following hospitalization. - in patients undergoing knee replacement surgery. - in medical patients who are at risk for thromboembolic complications due to severely restricted mobility during acute illness. ## 1.2 Treatment of Acute Deep Vein Thrombosis Lovenox is indicated for: - the **inpatient treatment** of acute deep vein thrombosis **with or without pulmonary embolism**, when administered in conjunction with warfarin sodium. - the **outpatient treatment** of acute deep vein thrombosis **without pulmonary embolism** when administered in conjunction with warfarin sodium. # 1.3 Prophylaxis of Ischemic Complications of
Unstable Angina and Non-Q-Wave Myocardial Infarction Lovenox is indicated for the prophylaxis of ischemic complications of unstable angina and non-Q-wave myocardial infarction, when concurrently administered with aspirin. ## 1.4 Treatment of Acute ST-Segment Elevation Myocardial Infarction Lovenox, when administered concurrently with aspirin, has been shown to reduce the rate of the combined endpoint of recurrent myocardial infarction or death in patients with acute ST-segment elevation myocardial infarction (STEMI) receiving thrombolysis and being managed medically or with percutaneous coronary intervention (PCI). #### 2 DOSAGE AND ADMINISTRATION All patients should be evaluated for a bleeding disorder before administration of Lovenox, unless the medication is needed urgently. Since coagulation parameters are unsuitable for monitoring Lovenox activity, routine monitoring of coagulation parameters is not required [see *Warnings and Precautions* (5.9)]. For subcutaneous use, Lovenox should not be mixed with other injections or infusions. For intravenous use (*i.e.*, for treatment of acute STEMI), Lovenox can be mixed with normal saline solution (0.9%) or 5% dextrose in water. Lovenox is not intended for intramuscular administration. ## 2.1 Adult Dosage <u>Abdominal Surgery:</u> In patients undergoing abdominal surgery who are at risk for thromboembolic complications, the recommended dose of Lovenox is **40 mg once a day** administered by SC injection with the initial dose given 2 hours prior to surgery. The usual duration of administration is 7 to 10 days; up to 12 days administration has been administered in clinical trials. <u>Hip or Knee Replacement Surgery:</u> In patients undergoing hip or knee replacement surgery, the recommended dose of Lovenox is **30 mg every 12 hours** administered by SC injection. Provided that hemostasis has been established, the initial dose should be given 12 to 24 hours after surgery. For hip replacement surgery, a dose of **40 mg once a day** SC, given initially 12 (±3) hours prior to surgery, may be considered. Following the initial phase of thromboprophylaxis in hip replacement surgery patients, it is recommended that continued prophylaxis with Lovenox 40 mg once a day be administered by SC injection for 3 weeks. The usual duration of administration is 7 to 10 days; up to 14 days administration has been administered in clinical trials. <u>Medical Patients During Acute Illness:</u> In medical patients at risk for thromboembolic complications due to severely restricted mobility during acute illness, the recommended dose of Lovenox is **40 mg once a day** administered by SC injection. The usual duration of administration is 6 to 11 days; up to 14 days of Lovenox has been administered in the controlled clinical trial. Treatment of Deep Vein Thrombosis with or without Pulmonary Embolism: In outpatient treatment, patients with acute deep vein thrombosis without pulmonary embolism who can be treated at home, the recommended dose of Lovenox is 1 mg/kg every 12 hours administered SC. In inpatient (hospital) treatment, patients with acute deep vein thrombosis with pulmonary embolism or patients with acute deep vein thrombosis without pulmonary embolism (who are not candidates for outpatient treatment), the recommended dose of Lovenox is 1 mg/kg every 12 hours administered SC or 1.5 mg/kg once a day administered SC at the same time every day. In both outpatient and inpatient (hospital) treatments, warfarin sodium therapy should be initiated when appropriate (usually within 72 hours of Lovenox). Lovenox should be continued for a minimum of 5 days and until a therapeutic oral anticoagulant effect has been achieved (International Normalization Ratio 2.0 to 3.0). The average duration of administration is 7 days; up to 17 days of Lovenox administration has been administered in controlled clinical trials. <u>Unstable Angina and Non-Q-Wave Myocardial Infarction:</u> In patients with unstable angina or non-Q-wave myocardial infarction, the recommended dose of Lovenox is **1 mg/kg** administered SC **every 12 hours** in conjunction with oral aspirin therapy (100 to 325 mg once daily). Treatment with Lovenox should be prescribed for a minimum of 2 days and continued until clinical stabilization. The usual duration of treatment is 2 to 8 days; up to 12.5 days of Lovenox has been administered in clinical trials. [See *Warnings and Precautions* (5.2) and *Clinical Studies* (14.5).] <u>Treatment of Acute ST-Segment Elevation Myocardial Infarction</u>: In patients with acute ST-segment elevation myocardial infarction, the recommended dose of Lovenox is a **single IV bolus** of 30 mg plus a 1 mg/kg SC dose followed by 1 mg/kg administered SC every 12 hours (maximum 100 mg for the first two doses only, followed by 1 mg/kg dosing for the remaining doses). Dosage adjustments are recommended in patients \geq 75 years of age [see *Dosage and Administration* (2.3)]. All patients should receive aspirin as soon as they are identified as having STEMI and maintained with 75 to 325 mg once daily unless contraindicated. When administered in conjunction with a thrombolytic (fibrin-specific or non-fibrin specific), Lovenox should be given between 15 minutes before and 30 minutes after the start of fibrinolytic therapy. In the pivotal clinical study, the Lovenox treatment duration was 8 days or until hospital discharge, whichever came first. An optimal duration of treatment is not known, but it is likely to be longer than 8 days. For patients managed with percutaneous coronary intervention (PCI): If the last Lovenox SC administration was given less than 8 hours before balloon inflation, no additional dosing is needed. If the last Lovenox SC administration was given more than 8 hours before balloon inflation, an IV bolus of 0.3 mg/kg of Lovenox should be administered [see *Warnings and Precautions* (5.2)]. ## 2.2 Renal Impairment Although no dose adjustment is recommended in patients with moderate (creatinine clearance 30-50 mL/min) and mild (creatinine clearance 50-80 mL/min) renal impairment, all such patients should be observed carefully for signs and symptoms of bleeding. The recommended prophylaxis and treatment dosage regimens for patients with severe renal impairment (creatinine clearance <30 mL/min) are described in Table 1 [see *Use in Specific Populations* (8.6) and *Clinical Pharmacology* (12.3)]. Table 1 | Dosage Regimens for Patients with Severe Renal Impairment | | | | | | | |---|--------------------------------------|--|--|--|--|--| | (creatinine clearance <30) | mL/minute) | | | | | | | Indication | Dosage Regimen | | | | | | | Prophylaxis in abdominal surgery | 30 mg administered SC once daily | | | | | | | Prophylaxis in hip or knee replacement surgery | 30 mg administered SC once daily | | | | | | | Prophylaxis in medical patients during acute illness | 30 mg administered SC once daily | | | | | | | Inpatient treatment of acute deep vein thrombosis with | 1 mg/kg administered SC once daily | | | | | | | or without pulmonary embolism, when administered in | | | | | | | | conjunction with warfarin sodium | | | | | | | | Outpatient treatment of acute deep vein thrombosis | 1 mg/kg administered SC once daily | | | | | | | without pulmonary embolism, when administered in | | | | | | | | conjunction with warfarin sodium | | | | | | | | Prophylaxis of ischemic complications of unstable | 1 mg/kg administered SC once daily | | | | | | | angina and non-Q-wave myocardial infarction, when | | | | | | | | concurrently administered with aspirin | | | | | | | | Treatment of acute ST-segment elevation myocardial | 30 mg single IV bolus plus a 1 mg/kg | | | | | | | infarction in patients <75 years of age, when | SC dose followed by 1 mg/kg | | | | | | | administered in conjunction with aspirin | administered SC once daily. | | | | | | | Treatment of acute ST-segment elevation myocardial | 1 mg/kg administered SC once daily | | | | | | | infarction in geriatric patients ≥75 years of age, when | (no initial bolus) | | | | | | | administered in conjunction with aspirin | | | | | | | ## 2.3 Geriatric Patients with Acute ST-Segment Elevation Myocardial Infarction For treatment of acute ST-segment elevation myocardial infarction in geriatric patients ≥75 years of age, do not use an initial IV bolus. Initiate dosing with 0.75 mg/kg SC every 12 hours (maximum 75 mg for the first two doses only, followed by 0.75 mg/kg dosing for the remaining doses) [see *Use in Specific Populations* (8.5) and *Clinical Pharmacology* (12.3)]. No dose adjustment is necessary for other indications in geriatric patients unless kidney function is impaired [see *Dosage and Administration* (2.2)]. #### 2.4 Administration Lovenox is a clear, colorless to pale yellow sterile solution, and as with other parenteral drug products, should be inspected visually for particulate matter and discoloration prior to administration. The use of a tuberculin syringe or equivalent is recommended when using Lovenox multipledose vials to assure withdrawal of the appropriate volume of drug. Lovenox must not be administered by intramuscular injection. Lovenox is intended for use under the guidance of a physician. For subcutaneous administration, patients may self-inject only if their physicians determine that it is appropriate and with medical follow-up, as necessary. Proper training in subcutaneous injection technique (with or without the assistance of an injection device) should be provided. <u>Subcutaneous Injection Technique:</u> Patients should be lying down and Lovenox administered by deep SC injection. To avoid the loss of drug when using the 30 and 40 mg prefilled syringes, do not expel the air bubble from the syringe before the injection. Administration should be alternated between the left and right anterolateral and left and right posterolateral abdominal wall. The whole length of the
needle should be introduced into a skin fold held between the thumb and forefinger; the skin fold should be held throughout the injection. To minimize bruising, do not rub the injection site after completion of the injection. Lovenox prefilled syringes and graduated prefilled syringes are for single, one-time use only and are available with a system that shields the needle after injection. 1. Remove the needle shield by pulling it straight off the syringe (see Figure A). If adjusting the dose is required, the dose adjustment must be done prior to injecting the prescribed dose to the patient. 2. Inject using standard technique, pushing the plunger to the bottom of the syringe (see Figure B). 3. Remove the syringe from the injection site keeping your finger on the plunger rod (see Figure C). Figure C 4. Orient the needle away from you and others, and activate the safety system by firmly pushing the plunger rod. The protective sleeve will automatically cover the needle and an audible "click" will be heard to confirm shield activation (see Figure D). Figure D 5. Immediately dispose of the syringe in the nearest sharps container (see Figure E). Figure E #### NOTE: - The safety system can only be activated once the syringe has been emptied. - Activation of the safety system must be done only after removing the needle from the patient's skin. - Do not replace the needle shield after injection. - The safety system should not be sterilized. Activation of the safety system may cause minimal splatter of fluid. For optimal safety activate the system while orienting it downwards away from yourself and others. <u>Intravenous (Bolus) Injection Technique:</u> For intravenous injection, the multiple-dose vial should be used. Lovenox should be administered through an intravenous line. Lovenox should not be mixed or co-administered with other medications. To avoid the possible mixture of Lovenox with other drugs, the intravenous access chosen should be flushed with a sufficient amount of saline or dextrose solution prior to and following the intravenous bolus administration of Lovenox to clear the port of drug. Lovenox may be safely administered with normal saline solution (0.9%) or 5% dextrose in water. ## 3 DOSAGE FORMS AND STRENGTHS Lovenox is available in two concentrations: ## 3.1 100 mg/mL Concentration -Prefilled Syringes 30 mg/0.3 mL, 40 mg/0.4 mL -Graduated Prefilled Syringes 60 mg/0.6 mL, 80 mg/0.8 mL, 100 mg/1 mL -Multiple-Dose Vials 300 mg/3 mL # 3.2 150 mg/mL Concentration -Graduated Prefilled Syringes 120 mg/0.8 mL, 150 mg/1 mL #### 4 CONTRAINDICATIONS - Active major bleeding - Thrombocytopenia associated with a positive *in vitro* test for anti-platelet antibody in the presence of enoxaparin sodium - Known hypersensitivity to enoxaparin sodium (e.g., pruritus, urticaria, anaphylactic/anaphylactoid reactions) [see *Adverse Reactions* (6.2)] - Known hypersensitivity to heparin or pork products - Known hypersensitivity to benzyl alcohol (which is in only the multi-dose formulation of Lovenox) [see *Warnings and Precautions* (5.8)] # **5 WARNINGS AND PRECAUTIONS** ### 5.1 Increased Risk of Hemorrhage Cases of epidural or spinal hematomas have been reported with the associated use of Lovenox and spinal/epidural anesthesia or spinal puncture resulting in long-term or permanent paralysis. The risk of these events is higher with the use of post-operative indwelling epidural catheters or by the concomitant use of additional drugs affecting hemostasis such as NSAIDs [see *Boxed Warning, Adverse Reactions* (6.2) and *Drug Interactions* (7)]. Lovenox should be used with extreme caution in conditions with increased risk of hemorrhage, such as bacterial endocarditis, congenital or acquired bleeding disorders, active ulcerative and angiodysplastic gastrointestinal disease, hemorrhagic stroke, or shortly after brain, spinal, or ophthalmological surgery, or in patients treated concomitantly with platelet inhibitors. Major hemorrhages including retroperitoneal and intracranial bleeding have been reported. Some of these cases have been fatal. Bleeding can occur at any site during therapy with Lovenox. An unexplained fall in hematocrit or blood pressure should lead to a search for a bleeding site. ## 5.2 Percutaneous Coronary Revascularization Procedures To minimize the risk of bleeding following the vascular instrumentation during the treatment of unstable angina, non-Q-wave myocardial infarction and acute ST-segment elevation myocardial infarction, adhere precisely to the intervals recommended between Lovenox doses. It is important to achieve hemostasis at the puncture site after PCI. In case a closure device is used, the sheath can be removed immediately. If a manual compression method is used, sheath should be removed 6 hours after the last IV/SC Lovenox. If the treatment with enoxaparin sodium is to be continued, the next scheduled dose should be given no sooner than 6 to 8 hours after sheath removal. The site of the procedure should be observed for signs of bleeding or hematoma formation [see *Dosage and Administration* (2.1)]. #### 5.3 Use of Lovenox with Concomitant Medical Conditions Lovenox should be used with care in patients with a bleeding diathesis, uncontrolled arterial hypertension or a history of recent gastrointestinal ulceration, diabetic retinopathy, renal dysfunction and hemorrhage. ## 5.4 History of Heparin-Induced Thrombocytopenia Lovenox should be used with extreme caution in patients with a history of heparin-induced thrombocytopenia. # 5.5 Thrombocytopenia Thrombocytopenia can occur with the administration of Lovenox. Moderate thrombocytopenia (platelet counts between 100,000/mm³ and 50,000/mm³) occurred at a rate of 1.3% in patients given Lovenox, 1.2% in patients given heparin, and 0.7% in patients given placebo in clinical trials. Platelet counts less than 50,000/mm³ occurred at a rate of 0.1% in patients given Lovenox, in 0.2% of patients given heparin, and 0.4% of patients given placebo in the same trials. Thrombocytopenia of any degree should be monitored closely. If the platelet count falls below 100,000/mm³, Lovenox should be discontinued. Cases of heparin-induced thrombocytopenia with thrombosis have also been observed in clinical practice. Some of these cases were complicated by organ infarction, limb ischemia, or death [see Warnings and Precautions (5.4)]. # 5.6 Interchangeability with Other Heparins Lovenox cannot be used interchangeably (unit for unit) with heparin or other low molecular weight heparins as they differ in manufacturing process, molecular weight distribution, anti-Xa and anti-IIa activities, units, and dosage. Each of these medicines has its own instructions for use. ### 5.7 Pregnant Women with Mechanical Prosthetic Heart Valves The use of Lovenox for thromboprophylaxis in pregnant women with mechanical prosthetic heart valves has not been adequately studied. In a clinical study of pregnant women with mechanical prosthetic heart valves given enoxaparin (1 mg/kg twice daily) to reduce the risk of thromboembolism, 2 of 8 women developed clots resulting in blockage of the valve and leading to maternal and fetal death. Although a causal relationship has not been established these deaths may have been due to therapeutic failure or inadequate anticoagulation. No patients in the heparin/warfarin group (0 of 4 women) died. There also have been isolated postmarketing reports of valve thrombosis in pregnant women with mechanical prosthetic heart valves while receiving enoxaparin for thromboprophylaxis. Women with mechanical prosthetic heart valves may be at higher risk for thromboembolism during pregnancy, and, when pregnant, have a higher rate of fetal loss from stillbirth, spontaneous abortion and premature delivery. Therefore, frequent monitoring of peak and trough anti-Factor Xa levels, and adjusting of dosage may be needed [see *Use in Specific Populations* (8.6)]. ## 5.8 Benzyl Alcohol Lovenox multiple-dose vials contain benzyl alcohol as a preservative. The administration of medications containing benzyl alcohol as a preservative to premature neonates has been associated with a fatal "gasping syndrome". Because benzyl alcohol may cross the placenta, Lovenox multiple-dose vials, preserved with benzyl alcohol, should be used with caution in pregnant women and only if clearly needed [see *Use in Specific Populations* (8.1)]. ## 5.9 Laboratory Tests Periodic complete blood counts, including platelet count, and stool occult blood tests are recommended during the course of treatment with Lovenox. When administered at recommended prophylaxis doses, routine coagulation tests such as Prothrombin Time (PT) and Activated Partial Thromboplastin Time (aPTT) are relatively insensitive measures of Lovenox activity and, therefore, unsuitable for monitoring. Anti-Factor Xa may be used to monitor the anticoagulant effect of Lovenox in patients with significant renal impairment. If during Lovenox therapy abnormal coagulation parameters or bleeding should occur, anti-Factor Xa levels may be used to monitor the anticoagulant effects of Lovenox [see *Clinical Pharmacology* (12.3)]. ### **6 ADVERSE REACTIONS** ### **6.1 Clinical Trials Experience** The following serious adverse reactions are also discussed in other sections of the labeling: - Spinal/epidural hematoma [see *Boxed Warning*] - Increased Risk of Hemorrhage [see *Warnings and Precautions* (5.1)] - Thrombocytopenia [see Warnings and Precautions (5.1)] Because clinical studies are conducted under widely varying conditions, adverse reaction rates observed in the clinical studies of a drug cannot be directly compared to rates in the clinical studies of another drug and may not reflect the rates observed in practice. During clinical development for the approved indications, 15,918 patients were exposed to enoxaparin sodium. These included 1,228 for prophylaxis of deep vein thrombosis following abdominal surgery in patients at risk for
thromboembolic complications, 1,368 for prophylaxis of deep vein thrombosis following hip or knee replacement surgery, 711 for prophylaxis of deep vein thrombosis in medical patients with severely restricted mobility during acute illness, 1,578 for prophylaxis of ischemic complications in unstable angina and non-Q-wave myocardial infarction, 10,176 for treatment of acute ST-elevation myocardial infarction, and 857 for treatment of deep vein thrombosis with or without pulmonary embolism. Enoxaparin sodium doses in the clinical trials for prophylaxis of deep vein thrombosis following abdominal or hip or knee replacement surgery or in medical patients with severely restricted mobility during acute illness ranged from 40 mg SC once daily to 30 mg SC twice daily. In the clinical studies for prophylaxis of ischemic complications of unstable angina and non-Q-wave myocardial infarction doses were 1 mg/kg every 12 hours and in the clinical studies for treatment of acute ST-segment elevation myocardial infarction enoxaparin sodium doses were a 30 mg IV bolus followed by 1 mg/kg every 12 hours SC. ## Hemorrhage The incidence of major hemorrhagic complications during Lovenox treatment has been low. The following rates of major bleeding events have been reported during clinical trials with Lovenox [see Tables 2 to 7]. Table 2 Major Bleeding Episodes Following Abdominal and Colorectal Surgery¹ | | Dosing 1 | Regimen | | | | | |--------------------|-----------------------------|---------|--|--|--|--| | | Lovenox Heparin | | | | | | | Indications | 40 mg q.d. SC 5000 U q8h SC | | | | | | | Abdominal Surgery | n = 555 n = 560 | | | | | | | | 23 (4%) | 16 (3%) | | | | | | Colorectal Surgery | n = 673 $n = 674$ | | | | | | | | 28 (4%) | 21 (3%) | | | | | ¹ Bleeding complications were considered major: (1) if the hemorrhage caused a significant clinical event, or (2) if accompanied by a hemoglobin decrease ≥ 2 g/dL or transfusion of 2 or more units of blood products. Retroperitoneal, intraocular, and intracranial hemorrhages were always considered major. Table 3 Major Bleeding Episodes Following Hip or Knee Replacement Surgery¹ | | Dosing Regimen | | | | | | |---|--|---------------|-----------------|--|--|--| | | <u>Lovenox</u> <u>Lovenox</u> <u>Heparin</u> | | | | | | | Indications | 40 mg q.d. SC | 30 mg q12h SC | 15,000 U/24h SC | | | | | Hip Replacement Surgery | | n = 786 | n = 541 | | | | | without Extended Prophylaxis ² | | 31 (4%) | 32 (6%) | | | | | Hip Replacement Surgery | | | | | | | | with Extended Prophylaxis | | | | |--|---------|---------|---------| | Peri-operative Period ³ | n = 288 | | | | | 4 (2%) | | | | Extended Prophylaxis Period ⁴ | n = 221 | | | | | 0 (0%) | | | | Knee Replacement Surgery | | n = 294 | n = 225 | | without Extended Prophylaxis 2 | | 3 (1%) | 3 (1%) | ¹ Bleeding complications were considered major: (1) if the hemorrhage caused a significant clinical event, or (2) if accompanied by a hemoglobin decrease ≥ 2 g/dL or transfusion of 2 or more units of blood products. Retroperitoneal and intracranial hemorrhages were always considered major. In the knee replacement surgery trials, intraocular hemorrhages were also considered major hemorrhages. NOTE: At no time point were the 40 mg once a day pre-operative and the 30 mg every 12 hours post-operative hip replacement surgery prophylactic regimens compared in clinical trials. Injection site hematomas during the extended prophylaxis period after hip replacement surgery occurred in 9% of the Lovenox patients versus 1.8% of the placebo patients. Table 4 Major Bleeding Episodes in Medical Patients with Severely Restricted Mobility During Acute Illness¹ | | Dosing Regimen | | | | | | | | |--------------------------------|-----------------------------|--|---------|--|--|--|--|--| | | Lovenox ² | Lovenox ² Lovenox ² Placebo ² | | | | | | | | Indications | 20 mg q.d. SC | 40 mg q.d. SC | | | | | | | | Medical Patients During | n = 351 | n = 360 | n = 362 | | | | | | | Acute Illness | 1 (<1%) | 3 (<1%) | 2 (<1%) | | | | | | ¹ Bleeding complications were considered major: (1) if the hemorrhage caused a significant clinical event, (2) if the hemorrhage caused a decrease in hemoglobin of ≥ 2 g/dL or transfusion of 2 or more units of blood products. Retroperitoneal and intracranial hemorrhages were always considered major although none were reported during the trial. Table 5 Major Bleeding Episodes in Deep Vein Thrombosis with or without Pulmonary Embolism Treatment $^{\rm 1}$ | Dosing Regimen ² | | | | | |-----------------------------|----------------|----------------|--|--| | Lovenox | Lovenox | <u>Heparin</u> | | | ² Lovenox 30 mg every 12 hours SC initiated 12 to 24 hours after surgery and continued for up to 14 days after surgery ³ Lovenox 40 mg SC once a day initiated up to 12 hours prior to surgery and continued for up to 7 days after surgery ⁴ Lovenox 40 mg SC once a day for up to 21 days after discharge ² The rates represent major bleeding on study medication up to 24 hours after last dose. | Indication | 1.5 mg/kg q.d. SC | 1 mg/kg q12h SC | aPTT Adjusted IV Therapy | |-------------------------|-------------------|-----------------|--------------------------| | Treatment of DVT and PE | n = 298 | n = 559 | n = 554 | | | 5 (2%) | 9 (2%) | 9 (2%) | ¹ Bleeding complications were considered major: (1) if the hemorrhage caused a significant clinical event, or (2) if accompanied by a hemoglobin decrease ≥ 2 g/dL or transfusion of 2 or more units of blood products. Retroperitoneal, intraocular, and intracranial hemorrhages were always considered major. Table 6 Major Bleeding Episodes in Unstable Angina and Non-Q-Wave Myocardial Infarction | | Dosing Regimen | | | | | |------------------------------|---|------------|--|--|--| | | Lovenox ¹ Heparin ¹ | | | | | | | 1 mg/kg q12h SC aPTT Adjusted | | | | | | Indication | | IV Therapy | | | | | Unstable Angina and | n = 1578 | n = 1529 | | | | | Non-Q-Wave MI ^{2,3} | 17 (1%) | 18 (1%) | | | | ¹ The rates represent major bleeding on study medication up to 12 hours after dose. Table 7 Major Bleeding Episodes in Acute ST-Segment Elevation Myocardial Infarction | | Dosing Regimen | | | | | |---|---|---|--|--|--| | Indication | Lovenox Initial 30 mg IV bolus followed by 1 mg/kg q12h SC | Heparin ¹ aPTT Adjusted IV Therapy | | | | | Acute ST-Segment Elevation
Myocardial Infarction | n = 10176
n (%) | n = 10151
n (%) | | | | | - Major bleeding (including ICH) ² | 211 (2.1) | 138 (1.4) | | | | | - Intracranial hemorrhages (ICH) | 84 (0.8) | 66 (0.7) | | | | ² All patients also received warfarin sodium (dose-adjusted according to PT to achieve an INR of 2.0 to 3.0) commencing within 72 hours of Lovenox or standard heparin therapy and continuing for up to 90 days. ² Aspirin therapy was administered concurrently (100 to 325 mg per day). ³ Bleeding complications were considered major: (1) if the hemorrhage caused a significant clinical event, or (2) if accompanied by a hemoglobin decrease by ≥ 3 g/dL or transfusion of 2 or more units of blood products. Intraocular, retroperitoneal, and intracranial hemorrhages were always considered major. #### Elevations of Serum Aminotransferases Asymptomatic increases in aspartate (AST [SGOT]) and alanine (ALT [SGPT]) aminotransferase levels greater than three times the upper limit of normal of the laboratory reference range have been reported in up to 6.1% and 5.9% of patients, respectively, during treatment with Lovenox. Similar significant increases in aminotransferase levels have also been observed in patients and healthy volunteers treated with heparin and other low molecular weight heparins. Such elevations are fully reversible and are rarely associated with increases in bilirubin. Since aminotransferase determinations are important in the differential diagnosis of myocardial infarction, liver disease, and pulmonary emboli, elevations that might be caused by drugs like Lovenox should be interpreted with caution. #### Local Reactions Mild local irritation, pain, hematoma, ecchymosis, and erythema may follow SC injection of Lovenox. # Adverse Reactions in Patients Receiving Lovenox for Prophylaxis or Treatment of DVT, PE: Other adverse reactions that were thought to be possibly or probably related to treatment with Lovenox, heparin, or placebo in clinical trials with patients undergoing hip or knee replacement surgery, abdominal or colorectal surgery, or treatment for DVT and that occurred at a rate of at least 2% in the Lovenox group, are provided below [see Tables 8 to 11]. Table 8 Adverse Reactions Occurring at ≥2% Incidence in Lovenox-Treated Patients Undergoing Abdominal or Colorectal Surgery | | Dosing Regimen | | | | | | |------------------|-----------------------|---------|----------------|-------|--|--| | | Love | enox | <u>Heparin</u> | | | | | | 40 mg | q.d. SC | 5000 U q8h SC | | | | | | $\mathbf{n} = 1$ | 1228 | n = 1234 | | | | | | 9/ | 6 | % | | | | | Adverse Reaction | Severe Total | | Severe | Total | | | | Hemorrhage | <1 | 7 | <1 | 6 | | | | Anemia | <1 3 | | <1 | 3 | | | | Ecchymosis | 0 | 3 | 0 | 3 | | | ¹The rates represent major bleeding (including ICH) up to 30 days ²Bleedings were considered major if the hemorrhage caused a significant clinical event associated with a hemoglobin decrease by ≥ 5 g/dL. ICH were always considered major. Table 9 Adverse Reactions Occurring at ≥2% Incidence in Lovenox-Treated Patients Undergoing Hip or Knee Replacement Surgery | | | | |] | Dosing R | Regimen | | | | | | |------------------|---------------
------------------|------------|------------------|--------------|-----------------|---------|-------|---------|---------|--| | | | Lovenox | | | Lov | Lovenox Heparin | | arin | Placebo | | | | | 40 mg q.d. SC | | 30 mg q12h | | 15,000 U/24h | | q12h SC | | | | | | | | | | S | C | S | C | | | | | | | Peri-op | perative | Exte | ended | | | | | | | | | | Per | riod | Propl | nylaxis | | | | | | | | | | | | Pe | riod | | | | | | | | | | n = 2 | 288 ¹ | n = | 131 ² | n = 1 | 1080 | n = | 766 | n = 115 | | | | | 9 | % | • | % | 9 | 6 | | % | | % | | | Adverse | | | | | | | | | | | | | Reaction | Severe | e Total | Sever | e Total | Severe | Total | Severe | Total | Severe | e Total | | | Fever | 0 | 8 | 0 | 0 | <1 | 5 | <1 | 4 | 0 | 3 | | | Hemorrhage | <1 | 13 | 0 | 5 | <1 | 4 | 1 | 4 | 0 | 3 | | | Nausea | | | | | <1 | 3 | <1 | 2 | 0 | 2 | | | Anemia | 0 | 16 | 0 | <2 | <1 | 2 | 2 | 5 | <1 | 7 | | | Edema | | | | | <1 | 2 | <1 | 2 | 0 | 2 | | | Peripheral edema | 0 | 6 | 0 | 0 | <1 | 3 | <1 | 4 | 0 | 3 | | ¹ Data represent Lovenox 40 mg SC once a day initiated up to 12 hours prior to surgery in 288 hip replacement surgery patients who received Lovenox peri-operatively in an unblinded fashion in one clinical trial. ² Data represent Lovenox 40 mg SC once a day given in a blinded fashion as extended prophylaxis at the end of the peri-operative period in 131 of the original 288 hip replacement surgery patients for up to 21 days in one clinical trial. Table 10 Adverse Reactions Occurring at ≥2% Incidence in Lovenox-Treated Medical Patients with Severely Restricted Mobility During Acute Illness | | Dosing Regimen | | | |------------------|----------------|----------------|--| | | Lovenox | <u>Placebo</u> | | | | 40 mg q.d. SC | q.d. SC | | | | n = 360 | n = 362 | | | Adverse Reaction | % | % | | | Dyspnea | 3.3 | 5.2 | | | Thrombocytopenia | 2.8 | 2.8 | | | Confusion | 2.2 | 1.1 | | | Diarrhea | 2.2 | 1.7 | | | Nausea | 2.5 | 1.7 | | Table 11 Adverse Reactions Occurring at ≥2% Incidence in Lovenox-Treated Patients Undergoing Treatment of Deep Vein Thrombosis with or without Pulmonary Embolism | | Dosing Regimen | | | | | | |-------------------------|-------------------|-------------------|---------|---------|----------------|---------| | | Lovenox | | Lovenox | | <u>Heparin</u> | | | | 1.5 mg/kg q.d. SC | | 1 mg/kg | q12h SC | aPTT A | djusted | | | | | | | IV Th | erapy | | | n = | n = 298 $n = 559$ | | n = 1 | 544 | | | | % | | % | | % | | | Adverse Reaction | Severe | Total | Severe | Total | Severe | Total | | Injection Site | 0 | 5 | 0 | 3 | <1 | <1 | | Hemorrhage | | | | | | | | Injection Site Pain | 0 | 2 | 0 | 2 | 0 | 0 | | Hematuria | 0 | 2 | 0 | <1 | <1 | 2 | # Adverse Events in Lovenox-Treated Patients with Unstable Angina or Non-Q-Wave Myocardial Infarction: Non-hemorrhagic clinical events reported to be related to Lovenox therapy occurred at an incidence of $\leq 1\%$. Non-major hemorrhagic events, primarily injection site ecchymoses and hematomas, were more frequently reported in patients treated with SC Lovenox than in patients treated with IV heparin. Serious adverse events with Lovenox or heparin in a clinical trial in patients with unstable angina or non-Q-wave myocardial infarction that occurred at a rate of at least 0.5% in the Lovenox group are provided below [see Table 12]. Serious Adverse Events Occurring at ≥0.5% Incidence in Lovenox-Treated Patients with Unstable Angina or Non-Q-Wave Myocardial Infarction Table 12 | | Dosing Regimen | | | |---------------------|-----------------|----------------|--| | | <u>Lovenox</u> | <u>Heparin</u> | | | | 1 mg/kg q12h SC | aPTT Adjusted | | | | | IV Therapy | | | | n = 1578 | n = 1529 | | | Adverse Event | n (%) | n (%) | | | Atrial fibrillation | 11 (0.70) | 3 (0.20) | | | Heart failure | 15 (0.95) | 11 (0.72) | | | Lung edema | 11 (0.70) | 11 (0.72) | | | Pneumonia | 13 (0.82) | 9 (0.59) | | # Adverse Reactions in Lovenox-Treated Patients with Acute ST-Segment Elevation Myocardial Infarction: In a clinical trial in patients with acute ST-segment elevation myocardial infarction, the only adverse reaction that occurred at a rate of at least 0.5% in the Lovenox group was thrombocytopenia (1.5%). ## **6.2 Postmarketing Experience** There have been reports of epidural or spinal hematoma formation with concurrent use of Lovenox and spinal/epidural anesthesia or spinal puncture. The majority of patients had a post-operative indwelling epidural catheter placed for analgesia or received additional drugs affecting hemostasis such as NSAIDs. Many of the epidural or spinal hematomas caused neurologic injury, including long-term or permanent paralysis. Local reactions at the injection site (*e.g.* nodules, inflammation, oozing), systemic allergic reactions (*e.g.* pruritus, urticaria, anaphylactic/anaphylactoid reactions), vesiculobullous rash, rare cases of hypersensitivity cutaneous vasculitis, purpura, skin necrosis (occurring at either the injection site or distant from the injection site), thrombocytosis, and thrombocytopenia with thrombosis [see *Warnings and Precautions* (5.5)] have been reported. Cases of hyperkalemia have been reported. Most of these reports occurred in patients who also had conditions that tend toward the development of hyperkalemia (*e.g.*, renal dysfunction, concomitant potassium-sparing drugs, administration of potassium, hematoma in body tissues). Very rare cases of hyperlipidemia have also been reported, with one case of hyperlipidemia, with marked hypertriglyceridemia, reported in a diabetic pregnant woman; causality has not been determined. Because these reactions are reported voluntarily from a population of uncertain size, it is not possible to estimate reliably their frequency or to establish a causal relationship to drug exposure. #### 7 DRUG INTERACTIONS Whenever possible, agents which may enhance the risk of hemorrhage should be discontinued prior to initiation of Lovenox therapy. These agents include medications such as: anticoagulants, platelet inhibitors including acetylsalicylic acid, salicylates, NSAIDs (including ketorolac tromethamine), dipyridamole, or sulfinpyrazone. If co-administration is essential, conduct close clinical and laboratory monitoring [see *Warnings and Precautions* (5.9)]. #### 8 USE IN SPECIFIC POPULATIONS # 8.1 Pregnancy # Pregnancy Category B All pregnancies have a background risk of birth defect, loss, or other adverse outcome regardless of drug exposure. The fetal risk summary below describes the potential of Lovenox to increase the risk of developmental abnormalities above the background risk. #### Fetal Risk Summary Lovenox does not cross the placenta, and is not expected to result in fetal exposure to the drug. Human data from a retrospective cohort study, which included 693 live births, suggest that Lovenox does not increase the risk of major developmental abnormalities. Based on animal data, enoxaparin is not predicted to increase the risk of major developmental abnormalities (see *Data*). ## **Clinical Considerations** Pregnancy alone confers an increased risk for thromboembolism that is even higher for women with thromboembolic disease and certain high risk pregnancy conditions. While not adequately studied, pregnant women with mechanical prosthetic heart valves may be at even higher risk for thrombosis [see *Warnings and Precautions (5.7)* and *Use in Specific Populations (8.6)*]. Pregnant women with thromboembolic disease, including those with mechanical prosthetic heart valves and those with inherited or acquired thrombophilias, have an increased risk of other maternal complications and fetal loss regardless of the type of anticoagulant used. All patients receiving anticoagulants, including pregnant women, are at risk for bleeding. Pregnant women receiving enoxaparin should be carefully monitored for evidence of bleeding or excessive anticoagulation. Consideration for use of a shorter acting anticoagulant should be specifically addressed as delivery approaches [see *Boxed Warning*]. Hemorrhage can occur at any site and may lead to death of mother and/or fetus. Pregnant women should be apprised of the potential hazard to the fetus and the mother if enoxaparin is administered during pregnancy. It is not known if monitoring of anti-Factor Xa activity and dose adjustment (by weight or anti-Factor Xa activity) of Lovenox affect the safety and the efficacy of the drug during pregnancy. Cases of "gasping syndrome" have occurred in premature infants when large amounts of benzyl alcohol have been administered (99-405 mg/kg/day). The multiple-dose vial of Lovenox contains 15 mg benzyl alcohol per 1 mL as a preservative [see *Warnings and Precautions* (5.8)]. ## <u>Data</u> Human Data - There are no adequate and well-controlled studies in pregnant women. A retrospective study reviewed the records of 604 women who used enoxaparin during pregnancy. A total of 624 pregnancies resulted in 693 live births. There were 72 hemorrhagic events (11 serious) in 63 women. There were 14 cases of neonatal hemorrhage. Major congenital anomalies in live births occurred at rates (2.5%) similar to background rates. There have been postmarketing reports of fetal death when pregnant women received Lovenox. Causality for these cases has not been determined. Insufficient data, the underlying disease, and the possibility of inadequate anticoagulation complicate the evaluation of these cases. A clinical study using enoxaparin in pregnant women with mechanical prosthetic heart valves has been conducted [see *Warnings and Precautions* (5.7)]. Animal Data - Teratology studies have been conducted in pregnant rats and rabbits at SC doses of enoxaparin up to 15 times the recommended human dose (by comparison with 2 mg/kg as the maximum recommended daily dose). There was no evidence of teratogenic effects or fetotoxicity due to enoxaparin. Because animal reproduction studies are not always predictive of human response,
this drug should be used during pregnancy only if clearly needed. #### 8.3 Nursing Mothers It is not known whether Lovenox is excreted in human milk. Because many drugs are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from Lovenox, a decision should be made whether to discontinue nursing or discontinue Lovenox, taking into account the importance of Lovenox to the mother and the known benefits of nursing. #### 8.4 Pediatric Use Safety and effectiveness of Lovenox in pediatric patients have not been established. #### 8.5 Geriatric Use <u>Prevention of Deep Vein Thrombosis in Hip, Knee and Abdominal Surgery; Treatment of Deep Vein Thrombosis, Prevention of Ischemic Complications of Unstable Angina and Non-Q-wave Myocardial Infarction</u> Over 2800 patients, 65 years and older, have received Lovenox in pivotal clinical trials. The efficacy of Lovenox in the geriatric (≥65 years) was similar to that seen in younger patients (<65 years). The incidence of bleeding complications was similar between geriatric and younger patients when 30 mg every 12 hours or 40 mg once a day doses of Lovenox were employed. The incidence of bleeding complications was higher in geriatric patients as compared to younger patients when Lovenox was administered at doses of 1.5 mg/kg once a day or 1 mg/kg every 12 hours. The risk of Lovenox-associated bleeding increased with age. Serious adverse events increased with age for patients receiving Lovenox. Other clinical experience (including postmarketing surveillance and literature reports) has not revealed additional differences in the safety of Lovenox between geriatric and younger patients. Careful attention to dosing intervals and concomitant medications (especially antiplatelet medications) is advised. Lovenox should be used with care in geriatric patients who may show delayed elimination of enoxaparin. Monitoring of geriatric patients with low body weight (<45 kg) and those predisposed to decreased renal function should be considered [see Warnings and Precautions (5.9) and Clinical Pharmacology (12.3)]. ### Treatment of Acute ST-Segment Elevation Myocardial Infarction In the clinical study for treatment of acute ST-segment elevation myocardial infarction, there was no evidence of difference in efficacy between patients \geq 75 years of age (n = 1241) and patients less than 75 years of age (n=9015). Patients \geq 75 years of age did not receive a 30 mg IV bolus prior to the normal dosage regimen and had their SC dose adjusted to 0.75 mg/kg every 12 hours [see *Dosage and Administration* (2.3)]. The incidence of bleeding complications was higher in patients \geq 65 years of age as compared to younger patients (<65 years). #### 8.6 Patients with Mechanical Prosthetic Heart Valves The use of Lovenox has not been adequately studied for thromboprophylaxis in patients with mechanical prosthetic heart valves and has not been adequately studied for long-term use in this patient population. Isolated cases of prosthetic heart valve thrombosis have been reported in patients with mechanical prosthetic heart valves who have received enoxaparin for thromboprophylaxis. Some of these cases were pregnant women in whom thrombosis led to maternal and fetal deaths. Insufficient data, the underlying disease and the possibility of inadequate anticoagulation complicate the evaluation of these cases. Pregnant women with mechanical prosthetic heart valves may be at higher risk for thromboembolism [see *Warnings and Precautions* (5.7)]. #### 8.7 Renal Impairment In patients with renal impairment, there is an increase in exposure of enoxaparin sodium. All such patients should be observed carefully for signs and symptoms of bleeding. Because exposure of enoxaparin sodium is significantly increased in patients with severe renal impairment (creatinine clearance <30 mL/min), a dosage adjustment is recommended for therapeutic and prophylactic dosage ranges. No dosage adjustment is recommended in patients with moderate (creatinine clearance 30-50 mL/min) and mild (creatinine clearance 50-80 mL/min) renal impairment [see *Dosage and Administration* (2.2) and *Clinical Pharmacology* (12.3)]. In patients with renal failure, treatment with enoxaparin has been associated with the development of hyperkalemia [see *Adverse Reactions* (6.2)]. # 8.8 Hepatic Impairment The impact of hepatic impairment on enoxaparin's exposure and antithrombotic effect has not been investigated. Caution should be exercised when administering enoxaparin to patients with hepatic impairment. ## 8.9 Low-Weight Patients An increase in exposure of enoxaparin sodium with prophylactic dosages (non-weight adjusted) has been observed in low-weight women (<45 kg) and low-weight men (<57 kg). All such patients should be observed carefully for signs and symptoms of bleeding [see *Clinical Pharmacology* (12.3)]. #### 10 OVERDOSAGE Accidental overdosage following administration of Lovenox may lead to hemorrhagic complications. Injected Lovenox may be largely neutralized by the slow IV injection of protamine sulfate (1% solution). The dose of protamine sulfate should be equal to the dose of Lovenox injected: 1 mg protamine sulfate should be administered to neutralize 1 mg Lovenox, if enoxaparin sodium was administered in the previous 8 hours. An infusion of 0.5 mg protamine per 1 mg of enoxaparin sodium may be administered if enoxaparin sodium was administered greater than 8 hours previous to the protamine administration, or if it has been determined that a second dose of protamine is required. The second infusion of 0.5 mg protamine sulfate per 1 mg of Lovenox may be administered if the aPTT measured 2 to 4 hours after the first infusion remains prolonged. If at least 12 hours have elapsed since the last enoxaparin sodium injection, protamine administration may not be required; however, even with higher doses of protamine, the aPTT may remain more prolonged than following administration of heparin. In all cases, the anti-Factor Xa activity is never completely neutralized (maximum about 60%). Particular care should be taken to avoid overdosage with protamine sulfate. Administration of protamine sulfate can cause severe hypotensive and anaphylactoid reactions. Because fatal reactions, often resembling anaphylaxis, have been reported with protamine sulfate, it should be given only when resuscitation techniques and treatment of anaphylactic shock are readily available. For additional information consult the labeling of protamine sulfate injection products. #### 11 DESCRIPTION Lovenox is a sterile aqueous solution containing enoxaparin sodium, a low molecular weight heparin. The pH of the injection is 5.5 to 7.5. Enoxaparin sodium is obtained by alkaline depolymerization of heparin benzyl ester derived from porcine intestinal mucosa. Its structure is characterized by a 2-O-sulfo-4-enepyranosuronic acid group at the non-reducing end and a 2-N,6-O-disulfo-D-glucosamine at the reducing end of the chain. About 20% (ranging between 15% and 25%) of the enoxaparin structure contains an 1,6 anhydro derivative on the reducing end of the polysaccharide chain. The drug substance is the sodium salt. The average molecular weight is about 4500 daltons. The molecular weight distribution is: | <2000 daltons | ≤20% | |----------------------|------| | 2000 to 8000 daltons | ≥68% | | >8000 daltons | ≤18% | #### STRUCTURAL FORMULA | R | X*= 15 to
25% | OH OH NHSO ₃ Na | n= 0 to 20 | |---|------------------|----------------------------|------------| | | 100 - X | н | n =1 to 21 | *X = Percent of polysaccharide chain containing 1,6 anhydro derivative on the reducing end. **Lovenox 100 mg/mL Concentration** contains 10 mg enoxaparin sodium (approximate anti-Factor Xa activity of 1000 IU [with reference to the W.H.O. First International Low Molecular Weight Heparin Reference Standard]) per 0.1 mL Water for Injection. **Lovenox 150 mg/mL Concentration** contains 15 mg enoxaparin sodium (approximate anti-Factor Xa activity of 1500 IU [with reference to the W.H.O. First International Low Molecular Weight Heparin Reference Standard]) per 0.1 mL Water for Injection. The Lovenox prefilled syringes and graduated prefilled syringes are preservative-free and intended for use only as a single-dose injection. The multiple-dose vial contains 15 mg benzyl alcohol per 1 mL as a preservative [see *Dosage and Administration (2)* and *How Supplied (16)*]. #### 12 CLINICAL PHARMACOLOGY #### 12.1 Mechanism of Action Enoxaparin is a low molecular weight heparin which has antithrombotic properties. # **12.2 Pharmacodynamics** In humans, enoxaparin given at a dose of 1.5 mg/kg subcutaneously (SC) is characterized by a higher ratio of anti-Factor Xa to anti-Factor IIa activity (mean \pm SD, 14.0 ± 3.1) (based on areas under anti-Factor activity versus time curves) compared to the ratios observed for heparin (mean \pm SD, 1.22 ± 0.13). Increases of up to 1.8 times the control values were seen in the thrombin time (TT) and the activated partial thromboplastin time (aPTT). Enoxaparin at a 1 mg/kg dose (100 mg/mL concentration), administered SC every 12 hours to patients in a large clinical trial resulted in aPTT values of 45 seconds or less in the majority of patients (n = 1607). A 30 mg IV bolus immediately followed by a 1 mg/kg SC administration resulted in aPTT postinjection values of 50 seconds. The average aPTT prolongation value on Day 1 was about 16% higher than on Day 4. #### 12.3 Pharmacokinetics <u>Absorption:</u> Pharmacokinetic trials were conducted using the 100 mg/mL formulation. Maximum anti-Factor Xa and anti-thrombin (anti-Factor IIa) activities occur 3 to 5 hours after SC injection of enoxaparin. Mean peak anti-Factor Xa activity was 0.16 IU/mL (1.58 mcg/mL) and 0.38 IU/mL (3.83 mcg/mL) after the 20 mg and the 40 mg clinically tested SC doses, respectively. Mean (n = 46) peak anti-Factor Xa activity was 1.1 IU/mL at
steady state in patients with unstable angina receiving 1 mg/kg SC every 12 hours for 14 days. Mean absolute bioavailability of enoxaparin, after 1.5 mg/kg given SC, based on anti-Factor Xa activity is approximately 100% in healthy subjects. A 30 mg IV bolus immediately followed by a 1 mg/kg SC every 12 hours provided initial peak anti-Factor Xa levels of 1.16 IU/mL (n=16) and average exposure corresponding to 84% of steady-state levels. Steady state is achieved on the second day of treatment. Enoxaparin pharmacokinetics appear to be linear over the recommended dosage ranges [see *Dosage and Administration* (2)]. After repeated subcutaneous administration of 40 mg once daily and 1.5 mg/kg once-daily regimens in healthy volunteers, the steady state is reached on day 2 with an average exposure ratio about 15% higher than after a single dose. Steady-state enoxaparin activity levels are well predicted by single-dose pharmacokinetics. After repeated subcutaneous administration of the 1 mg/kg twice daily regimen, the steady state is reached from day 4 with mean exposure about 65% higher than after a single dose and mean peak and trough levels of about 1.2 and 0.52 IU/mL, respectively. Based on enoxaparin sodium pharmacokinetics, this difference in steady state is expected and within the therapeutic range. Although not studied clinically, the 150 mg/mL concentration of enoxaparin sodium is projected to result in anticoagulant activities similar to those of 100 mg/mL and 200 mg/mL concentrations at the same enoxaparin dose. When a daily 1.5 mg/kg SC injection of enoxaparin sodium was given to 25 healthy male and female subjects using a 100 mg/mL or a 200 mg/mL concentration the following pharmacokinetic profiles were obtained [see Table 13]. Table 13 Pharmacokinetic Parameters* After 5 Days of 1.5 mg/kg SC Once Daily Doses of Enoxaparin Sodium Using 100 mg/mL or 200 mg/mL Concentrations | | Concentration | Anti-Xa | Anti-IIa | Heptest | aPTT | |---|---------------|---------------|--------------|-------------|-----------| | $egin{array}{cccc} {\bf A_{max}} & & & & & \\ (IU/mL & or & \Delta & & & \\ sec) & & & & & \end{array}$ | 100 mg/mL | 1.37 (±0.23) | 0.23 (±0.05) | 105 (±17) | 19 (±5) | | | 200 mg/mL | 1.45 (±0.22) | 0.26 (±0.05) | 111 (±17) | 22 (±7) | | | 90% CI | 102-110% | | 102-111% | | | $\mathbf{t_{max}}^{**}(\mathbf{h})$ | 100 mg/mL | 3 (2-6) | 4 (2-5) | 2.5 (2-4.5) | 3 (2-4.5) | | | 200 mg/mL | 3.5 (2-6) | 4.5 (2.5-6) | 3.3 (2-5) | 3 (2-5) | | AUC (ss)
$(h*IU/mL \text{ or } h* \Delta \sec)$ | 100 mg/mL | 14.26 (±2.93) | 1.54 (±0.61) | 1321 (±219) | | | | 200 mg/mL | 15.43 (±2.96) | 1.77 (±0.67) | 1401 (±227) | | | | 90% CI | 105-112% | | 103-109% | | ^{*}Means ± SD at Day 5 and 90% Confidence Interval (CI) of the ratio <u>Distribution</u>: The volume of distribution of anti-Factor Xa activity is about 4.3 L. <u>Elimination</u>: Following intravenous (IV) dosing, the total body clearance of enoxaparin is 26 mL/min. After IV dosing of enoxaparin labeled with the gamma-emitter, ^{99m}Tc, 40% of radioactivity and 8 to 20% of anti-Factor Xa activity were recovered in urine in 24 hours. Elimination half-life based on anti-Factor Xa activity was 4.5 hours after a single SC dose to about 7 hours after repeated dosing. Significant anti-Factor Xa activity persists in plasma for about 12 hours following a 40 mg SC once a day dose. Following SC dosing, the apparent clearance (CL/F) of enoxaparin is approximately 15 mL/min. <u>Metabolism</u>: Enoxaparin sodium is primarily metabolized in the liver by desulfation and/or depolymerization to lower molecular weight species with much reduced biological potency. ^{**}Median (range) Renal clearance of active fragments represents about 10% of the administered dose and total renal excretion of active and non-active fragments 40% of the dose. ### **Special Populations** Gender: Apparent clearance and A_{max} derived from anti-Factor Xa values following single SC dosing (40 mg and 60 mg) were slightly higher in males than in females. The source of the gender difference in these parameters has not been conclusively identified; however, body weight may be a contributing factor. *Geriatric:* Apparent clearance and A_{max} derived from anti-Factor Xa values following single and multiple SC dosing in geriatric subjects were close to those observed in young subjects. Following once a day SC dosing of 40 mg enoxaparin, the Day 10 mean area under anti-Factor Xa activity versus time curve (AUC) was approximately 15% greater than the mean Day 1 AUC value [see *Dosage and Administration (2.3)* and *Use in Specific Populations (8.5)*]. Renal Impairment: A linear relationship between anti-Factor Xa plasma clearance and creatinine clearance at steady state has been observed, which indicates decreased clearance of enoxaparin sodium in patients with reduced renal function. Anti-Factor Xa exposure represented by AUC, at steady state, is marginally increased in mild (creatinine clearance 50–80 mL/min) and moderate (creatinine clearance 30-50 mL/min) renal impairment after repeated subcutaneous 40 mg oncedaily doses. In patients with severe renal impairment (creatinine clearance <30 mL/min), the AUC at steady state is significantly increased on average by 65% after repeated subcutaneous 40 mg once-daily doses [see *Dosage and Administration* (2.2) and *Use in Specific Populations* (8.7)]. *Hemodialysis:* In a single study, elimination rate appeared similar but AUC was two-fold higher than control population, after a single 0.25 or 0.5 mg/kg intravenous dose. Hepatic Impairment: Studies with enoxaparin in patients with hepatic impairment have not been conducted and the impact of hepatic impairment on the exposure to enoxaparin is unknown [see *Use in Specific Populations* (8.8)]. *Weight:* After repeated subcutaneous 1.5 mg/kg once daily dosing, mean AUC of anti-Factor Xa activity is marginally higher at steady state in obese healthy volunteers (BMI 30-48 kg/m²) compared to non-obese control subjects, while A_{max} is not increased. When non-weight adjusted dosing was administered, it was found after a single-subcutaneous 40 mg dose, that anti-Factor Xa exposure is 52% higher in low-weight women (<45 kg) and 27% higher in low-weight men (<57 kg) when compared to normal weight control subjects [see *Use in Specific Populations* (8.9)]. <u>Pharmacokinetic interaction:</u> No pharmacokinetic interaction was observed between enoxaparin and thrombolytics when administered concomitantly. #### 13 NONCLINICAL TOXICOLOGY ## 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility No long-term studies in animals have been performed to evaluate the carcinogenic potential of enoxaparin. Enoxaparin was not mutagenic in *in vitro* tests, including the Ames test, mouse lymphoma cell forward mutation test, and human lymphocyte chromosomal aberration test, and the *in vivo* rat bone marrow chromosomal aberration test. Enoxaparin was found to have no effect on fertility or reproductive performance of male and female rats at SC doses up to 20 mg/kg/day or 141 mg/m²/day. The maximum human dose in clinical trials was 2.0 mg/kg/day or 78 mg/m²/day (for an average body weight of 70 kg, height of 170 cm, and body surface area of 1.8 m²). # 13.2 Animal Toxicology and/or Pharmacology A single SC dose of 46.4 mg/kg enoxaparin was lethal to rats. The symptoms of acute toxicity were ataxia, decreased motility, dyspnea, cyanosis, and coma. ## 13.3 Reproductive and Developmental Toxicology Teratology studies have been conducted in pregnant rats and rabbits at SC doses of enoxaparin up to 30 mg/kg/day corresponding to 211 mg/m²/day and 410 mg/m²/day in rats and rabbits respectively. There was no evidence of teratogenic effects or fetotoxicity due to enoxaparin. #### 14 CLINICAL STUDIES # 14.1 Prophylaxis of Deep Vein Thrombosis Following Abdominal Surgery in Patients at Risk for Thromboembolic Complications Abdominal surgery patients at risk include those who are over 40 years of age, obese, undergoing surgery under general anesthesia lasting longer than 30 minutes or who have additional risk factors such as malignancy or a history of deep vein thrombosis (DVT) or pulmonary embolism (PE). In a double-blind, parallel group study of patients undergoing elective cancer surgery of the gastrointestinal, urological, or gynecological tract, a total of 1116 patients were enrolled in the study, and 1115 patients were treated. Patients ranged in age from 32 to 97 years (mean age 67 years) with 52.7% men and 47.3% women. Patients were 98% Caucasian, 1.1% Black, 0.4% Asian and 0.4% others. Lovenox 40 mg SC, administered once a day, beginning 2 hours prior to surgery and continuing for a maximum of 12 days after surgery, was comparable to heparin 5000 U every 8 hours SC in reducing the risk of DVT. The efficacy data are provided below [see Table 14]. Table 14 Efficacy of Lovenox in the Prophylaxis of Deep Vein Thrombosis Following Abdominal Surgery | Dosing Regimen | | | |----------------|----------------|--| | <u>Lovenox</u> | <u>Heparin</u> | | | 40 mg q.d. SC | 5000 U q8h SC | | | Indication | n (%) | n (%) | |----------------------------|---------------------------------|-------------------| | All Treated Abdominal | 555 (100) | 560 (100) | | Surgery Patients | | | | Treatment Failures | | | | Total VTE ¹ (%) | 56 (10.1) | 63 (11.3) | | | (95% CI ² : 8 to 13) | (95% CI: 9 to 14) | | DVT Only (%) | 54 (9.7) | 61 (10.9) | | | (95% CI: 7 to 12) | (95% CI: 8 to 13) | ¹ VTE = Venous thromboembolic events which included DVT, PE, and death considered to be thromboembolic in origin In a second double-blind, parallel group study, Lovenox 40 mg SC once a day was compared to heparin 5000 U every 8 hours SC in patients undergoing colorectal surgery (one-third with cancer). A total of 1347 patients were randomized in the study and all
patients were treated. Patients ranged in age from 18 to 92 years (mean age 50.1 years) with 54.2% men and 45.8% women. Treatment was initiated approximately 2 hours prior to surgery and continued for approximately 7 to 10 days after surgery. The efficacy data are provided below [see Table 15]. Table 15 Efficacy of Lovenox in the Prophylaxis of Deep Vein Thrombosis Following Colorectal Surgery | | Dosing Regimen | | | |--------------------------------|--------------------------------|------------------|--| | | Lovenox | <u>Heparin</u> | | | | 40 mg q.d. SC | 5000 U q8h SC | | | Indication | n (%) | n (%) | | | All Treated Colorectal Surgery | 673 (100) | 674 (100) | | | Patients | | | | | Treatment Failures | | | | | Total VTE ¹ (%) | 48 (7.1) | 45 (6.7) | | | | (95% CI ² : 5 to 9) | (95% CI: 5 to 9) | | | DVT Only (%) | 47 (7.0) | 44 (6.5) | | | | (95% CI: 5 to 9) | (95% CI: 5 to 8) | | ¹ VTE = Venous thromboembolic events which included DVT, PE, and death considered to be thromboembolic in origin # 14.2 Prophylaxis of Deep Vein Thrombosis Following Hip or Knee Replacement Surgery Lovenox has been shown to reduce the risk of post-operative deep vein thrombosis (DVT) following hip or knee replacement surgery. ²CI = Confidence Interval ² CI = Confidence Interval In a double-blind study, Lovenox 30 mg every 12 hours SC was compared to placebo in patients with hip replacement. A total of 100 patients were randomized in the study and all patients were treated. Patients ranged in age from 41 to 84 years (mean age 67.1 years) with 45% men and 55% women. After hemostasis was established, treatment was initiated 12 to 24 hours after surgery and was continued for 10 to 14 days after surgery. The efficacy data are provided below [see Table 16]. Table 16 Efficacy of Lovenox in the Prophylaxis of Deep Vein Thrombosis Following Hip Replacement Surgery | | Dosing Regimen <u>Lovenox</u> <u>Placebo</u> | | |--------------------------------------|--|----------| | | | | | | 30 mg q12h SC | q12h SC | | Indication | n (%) | n (%) | | All Treated Hip Replacement Patients | 50 (100) | 50 (100) | | Treatment Failures | | | | Total DVT (%) | 5 (10) ¹ | 23 (46) | | Proximal DVT (%) | $1(2)^2$ | 11 (22) | p value versus placebo = 0.0002 A double-blind, multicenter study compared three dosing regimens of Lovenox in patients with hip replacement. A total of 572 patients were randomized in the study and 568 patients were treated. Patients ranged in age from 31 to 88 years (mean age 64.7 years) with 63% men and 37% women. Patients were 93% Caucasian, 6% Black, <1% Asian, and 1% others. Treatment was initiated within two days after surgery and was continued for 7 to 11 days after surgery. The efficacy data are provided below [see Table 17]. Table 17 Efficacy of Lovenox in the Prophylaxis of Deep Vein Thrombosis Following Hip Replacement Surgery | | Dosing Regimen | | | |----------------------|----------------|--------------------|---------------| | | 10 mg q.d. SC | 30 mg q12h SC | 40 mg q.d. SC | | Indication | n (%) | n (%) | n (%) | | All Treated Hip | 161 (100) | 208 (100) | 199 (100) | | Replacement Patients | | | | | Treatment Failures | | | | | Total DVT (%) | 40 (25) | $22(11)^{1}$ | 27 (14) | | Proximal DVT (%) | 17 (11) | 8 (4) ² | 9 (5) | $^{^{1}}$ p value versus Lovenox 10 mg once a day = 0.0008 ²p value versus placebo = 0.0134 $^{^{2}}$ p value versus Lovenox 10 mg once a day = 0.0168 There was no significant difference between the 30 mg every 12 hours and 40 mg once a day regimens. In a double-blind study, Lovenox 30 mg every 12 hours SC was compared to placebo in patients undergoing knee replacement surgery. A total of 132 patients were randomized in the study and 131 patients were treated, of which 99 had total knee replacement and 32 had either unicompartmental knee replacement or tibial osteotomy. The 99 patients with total knee replacement ranged in age from 42 to 85 years (mean age 70.2 years) with 36.4% men and 63.6% women. After hemostasis was established, treatment was initiated 12 to 24 hours after surgery and was continued up to 15 days after surgery. The incidence of proximal and total DVT after surgery was significantly lower for Lovenox compared to placebo. The efficacy data are provided below [see Table 18]. Table 18 Efficacy of Lovenox in the Prophylaxis of Deep Vein Thrombosis Following Total Knee Replacement Surgery | | 21061000110110 2018013 | | |------------------------|---------------------------------|--------------------| | | Dosing 1 | Regimen | | | <u>Lovenox</u> | <u>Placebo</u> | | | 30 mg q12h SC | q12h SC | | Indication | n (%) | n (%) | | All Treated Total Knee | 47 (100) | 52 (100) | | Replacement Patients | | | | Treatment Failures | | | | Total DVT (%) | 5 (11) ¹ | 32 (62) | | | (95% CI ² : 1 to 21) | (95% CI: 47 to 76) | | Proximal DVT (%) | $0(0)^3$ | 7 (13) | | | (95% Upper CL ⁴ : 5) | (95% CI: 3 to 24) | ¹p value versus placebo = 0.0001 Additionally, in an open-label, parallel group, randomized clinical study, Lovenox 30 mg every 12 hours SC in patients undergoing elective knee replacement surgery was compared to heparin 5000 U every 8 hours SC. A total of 453 patients were randomized in the study and all were treated. Patients ranged in age from 38 to 90 years (mean age 68.5 years) with 43.7% men and 56.3% women. Patients were 92.5% Caucasian, 5.3% Black, and 0.6% others. Treatment was initiated after surgery and continued up to 14 days. The incidence of deep vein thrombosis was significantly lower for Lovenox compared to heparin. Extended Prophylaxis of Deep Vein Thrombosis Following Hip Replacement Surgery: In a study of extended prophylaxis for patients undergoing hip replacement surgery, patients were treated, while hospitalized, with Lovenox 40 mg SC, initiated up to 12 hours prior to surgery for the prophylaxis of post-operative DVT. At the end of the peri-operative period, all patients underwent bilateral venography. In a double-blind design, those patients with no venous thromboembolic disease were randomized to a post-discharge regimen of either Lovenox 40 mg ²CI = Confidence Interval $^{^{3}}$ p value versus placebo = 0.013 ⁴ CL = Confidence Limit (n = 90) once a day SC or to placebo (n = 89) for 3 weeks. A total of 179 patients were randomized in the double-blind phase of the study and all patients were treated. Patients ranged in age from 47 to 87 years (mean age 69.4 years) with 57% men and 43% women. In this population of patients, the incidence of DVT during extended prophylaxis was significantly lower for Lovenox compared to placebo. The efficacy data are provided below [see Table 19]. Table 19 Efficacy of Lovenox in the Extended Prophylaxis of Deep Vein Thrombosis Following Hip Replacement Surgery | 110 510001110110 2 011 501 5 | | | | | | |------------------------------------|---------------------------------|-------------------------------|--|--|--| | | Post-Discharge | Post-Discharge Dosing Regimen | | | | | | <u>Lovenox</u> | <u>Placebo</u> | | | | | | 40 mg q.d. SC | q.d. SC | | | | | Indication (Post-Discharge) | n (%) | n (%) | | | | | All Treated Extended | 90 (100) | 89 (100) | | | | | Prophylaxis Patients | | | | | | | Treatment Failures | | | | | | | Total DVT (%) | 6 (7) ¹ | 18 (20) | | | | | | (95% CI ² : 3 to 14) | (95% CI: 12 to 30) | | | | | Proximal DVT (%) | 5 (6) ³ | 7 (8) | | | | | | (95% CI: 2 to 13) | (95% CI: 3 to 16) | | | | ¹ p value versus placebo = 0.008 In a second study, patients undergoing hip replacement surgery were treated, while hospitalized, with Lovenox 40 mg SC, initiated up to 12 hours prior to surgery. All patients were examined for clinical signs and symptoms of venous thromboembolic (VTE) disease. In a double-blind design, patients without clinical signs and symptoms of VTE disease were randomized to a post-discharge regimen of either Lovenox 40 mg (n = 131) once a day SC or to placebo (n = 131) for 3 weeks. A total of 262 patients were randomized in the study double-blind phase and all patients were treated. Patients ranged in age from 44 to 87 years (mean age 68.5 years) with 43.1% men and 56.9% women. Similar to the first study the incidence of DVT during extended prophylaxis was significantly lower for Lovenox compared to placebo, with a statistically significant difference in both total DVT (Lovenox 21 [16%] versus placebo 45 [34%]; p = 0.001) and proximal DVT (Lovenox 8 [6%] versus placebo 28 [21%]; p = <0.001). # 14.3 Prophylaxis of Deep Vein Thrombosis in Medical Patients with Severely Restricted Mobility During Acute Illness In a double blind multicenter, parallel group study, Lovenox 20 mg or 40 mg once a day SC was compared to placebo in the prophylaxis of deep vein thrombosis (DVT) in medical patients with severely restricted mobility during acute illness (defined as walking distance of <10 meters for ≤ 3 days). This study included patients with heart failure (NYHA Class III or IV); acute respiratory failure or complicated chronic respiratory insufficiency (not requiring ventilatory ²CI= Confidence Interval $^{^{3}}$ p value versus placebo = 0.537 support): acute infection (excluding septic shock); or acute rheumatic disorder [acute lumbar or sciatic pain, vertebral compression (due to osteoporosis or tumor), acute arthritic episodes of the lower extremities]. A total of 1102 patients were enrolled in the study, and 1073 patients were treated. Patients ranged in age from 40 to 97 years (mean age 73 years) with equal proportions of men and women. Treatment continued for a maximum of 14 days (median duration 7 days). When given at a dose of 40 mg once a day SC, Lovenox significantly reduced the incidence of DVT as compared to placebo. The efficacy data are provided below [see Table 20]. Table 20 Efficacy of Lovenox in the Prophylaxis of Deep Vein Thrombosis in Medical Patients with Severely Restricted Mobility During Acute Illness | | Dosing Regimen | | | |
--------------------------------|-----------------------------------|----------------------------------|-----------------------------------|--| | | Lovenox | Lovenox | Placebo | | | | 20 mg q.d. SC | 40 mg q.d. SC | | | | Indication | n (%) | n (%) | n (%) | | | All Treated Medical | 351 (100) | 360 (100) | 362 (100) | | | Patients During Acute | | | | | | Illness | | | | | | Treatment Failure ¹ | | | | | | Total VTE ² (%) | 43 (12.3) | 16 (4.4) | 43 (11.9) | | | Total DVT (%) | 43 (12.3) | 16 (4.4) | 41 (11.3) | | | | (95% CI ³ 8.8 to 15.7) | (95% CI ³ 2.3 to 6.6) | (95% CI ³ 8.1 to 14.6) | | | Proximal DVT (%) | 13 (3.7) | 5 (1.4) | 14 (3.9) | | ¹ Treatment failures during therapy, between Days 1 and 14 At approximately 3 months following enrollment, the incidence of venous thromboembolism remained significantly lower in the Lovenox 40 mg treatment group versus the placebo treatment group. ## 14.4 Treatment of Deep Vein Thrombosis with or without Pulmonary Embolism In a multicenter, parallel group study, 900 patients with acute lower extremity deep vein thrombosis (DVT) with or without pulmonary embolism (PE) were randomized to an inpatient (hospital) treatment of either (i) Lovenox 1.5 mg/kg once a day SC, (ii) Lovenox 1 mg/kg every 12 hours SC, or (iii) heparin IV bolus (5000 IU) followed by a continuous infusion (administered to achieve an aPTT of 55 to 85 seconds). A total of 900 patients were randomized in the study and all patients were treated. Patients ranged in age from 18 to 92 years (mean age 60.7 years) with 54.7% men and 45.3% women. All patients also received warfarin sodium (dose adjusted according to PT to achieve an International Normalization Ratio [INR] of 2.0 to 3.0), commencing within 72 hours of initiation of Lovenox or standard heparin therapy, and continuing for 90 days. Lovenox or standard heparin therapy was administered for a minimum of ² VTE = Venous thromboembolic events which included DVT, PE, and death considered to be thromboembolic in origin ³ CI = Confidence Interval 5 days and until the targeted warfarin sodium INR was achieved. Both Lovenox regimens were equivalent to standard heparin therapy in reducing the risk of recurrent venous thromboembolism (DVT and/or PE). The efficacy data are provided below [see Table 21]. Table 21 Efficacy of Lovenox in Treatment of Deep Vein Thrombosis with or without Pulmonary Embolism | | Dosing Regimen ¹ | | | | | |----------------------------|-----------------------------|----------------------|---------------|--|--| | | Lovenox Lovenox Hepar | | | | | | | 1.5 mg/kg q.d. SC | 1 mg/kg q12h SC | aPTT Adjusted | | | | | | | IV Therapy | | | | Indication | n (%) | n (%) | n (%) | | | | All Treated DVT Patients | 298 (100) | 312 (100) | 290 (100) | | | | with or without PE | | | | | | | Patient Outcome | | | | | | | Total VTE ² (%) | $13(4.4)^3$ | 9 (2.9) ³ | 12 (4.1) | | | | DVT Only (%) | 11 (3.7) | 7 (2.2) | 8 (2.8) | | | | Proximal DVT (%) | 9 (3.0) | 6 (1.9) | 7 (2.4) | | | | PE (%) | 2 (0.7) | 2 (0.6) | 4 (1.4) | | | ¹ All patients were also treated with warfarin sodium commencing within 72 hours of Lovenox or standard heparin therapy. Lovenox once a day versus heparin (-3.0 to 3.5) Lovenox every 12 hours versus heparin (-4.2 to 1.7). Similarly, in a multicenter, open-label, parallel group study, patients with acute proximal DVT were randomized to Lovenox or heparin. Patients who could not receive outpatient therapy were excluded from entering the study. Outpatient exclusion criteria included the following: inability to receive outpatient heparin therapy because of associated co-morbid conditions or potential for non-compliance and inability to attend follow-up visits as an outpatient because of geographic inaccessibility. Eligible patients could be treated in the hospital, but ONLY Lovenox patients were permitted to go home on therapy (72%). A total of 501 patients were randomized in the study and all patients were treated. Patients ranged in age from 19 to 96 years (mean age 57.8 years) with 60.5% men and 39.5% women. Patients were randomized to either Lovenox 1 mg/kg every 12 hours SC or heparin IV bolus (5000 IU) followed by a continuous infusion administered to achieve an aPTT of 60 to 85 seconds (in-patient treatment). All patients also received warfarin sodium as described in the previous study. Lovenox or standard heparin therapy was administered for a minimum of 5 days. Lovenox was equivalent to standard heparin therapy in reducing the risk of recurrent venous thromboembolism. The efficacy data are provided below [see Table 22]. ² VTE = venous thromboembolic event (DVT and/or PE) ³ The 95% Confidence Intervals for the treatment differences for total VTE were: Table 22 Efficacy of Lovenox in Treatment of Deep Vein Thrombosis | - | Dosing Regimen ¹ | | | |----------------------------|-------------------------------|---------------|--| | | <u>Lovenox</u> <u>Heparin</u> | | | | | 1 mg/kg q12h SC | aPTT Adjusted | | | | | IV Therapy | | | Indication | n (%) | n (%) | | | All Treated DVT Patients | 247 (100) | 254 (100) | | | Patient Outcome | | | | | Total VTE ² (%) | $13(5.3)^3$ | 17 (6.7) | | | DVT Only (%) | 11 (4.5) | 14 (5.5) | | | Proximal DVT (%) | 10 (4.0) | 12 (4.7) | | | PE (%) | 2 (0.8) | 3 (1.2) | | ¹ All patients were also treated with warfarin sodium commencing on the evening of the second day of Lovenox or standard heparin therapy. # 14.5 Prophylaxis of Ischemic Complications in Unstable Angina and Non-Q-Wave Myocardial Infarction In a multicenter, double-blind, parallel group study, patients who recently experienced unstable angina or non-Q-wave myocardial infarction were randomized to either Lovenox 1 mg/kg every 12 hours SC or heparin IV bolus (5000 U) followed by a continuous infusion (adjusted to achieve an aPTT of 55 to 85 seconds). A total of 3171 patients were enrolled in the study, and 3107 patients were treated. Patients ranged in age from 25-94 years (median age 64 years), with 33.4% of patients female and 66.6% male. Race was distributed as follows: 89.8% Caucasian, 4.8% Black, 2.0% Asian, and 3.5% other. All patients were also treated with aspirin 100 to 325 mg per day. Treatment was initiated within 24 hours of the event and continued until clinical stabilization, revascularization procedures, or hospital discharge, with a maximal duration of 8 days of therapy. The combined incidence of the triple endpoint of death, myocardial infarction, or recurrent angina was lower for Lovenox compared with heparin therapy at 14 days after initiation of treatment. The lower incidence of the triple endpoint was sustained up to 30 days after initiation of treatment. These results were observed in an analysis of both all-randomized and all-treated patients. The efficacy data are provided below [see Table 23]. ² VTE = venous thromboembolic event (deep vein thrombosis [DVT] and/or pulmonary embolism [PE]). ³ The 95% Confidence Intervals for the treatment difference for total VTE was: Lovenox versus heparin (- 5.6 to 2.7). Table 23 Efficacy of Lovenox in the Prophylaxis of Ischemic Complications in Unstable Angina and Non-Q-Wave Myocardial Infarction (Combined Endpoint of Death, Myocardial Infarction, or Recurrent Angina) | | | , , | | | |------------------------|----------------|----------------|-----------|----------------| | | Dosing R | | | | | | Lovenox | <u>Heparin</u> | Reduction | <u>p Value</u> | | | 1mg/kg q12h SC | aPTT Adjusted | (%) | | | | | IV Therapy | | | | Indication | n (%) | n (%) | | | | All Treated Unstable | 1578 (100) | 1529 (100) | | | | Angina and Non-Q-Wave | | | | | | MI Patients | | | | | | Timepoint ² | | | | | | 48 Hours | 96 (6.1) | 112 (7.3) | 1.2 | 0.120 | | 14 Days | 261 (16.5) | 303 (19.8) | 3.3 | 0.017 | | 30 Days | 313 (19.8) | 358 (23.4) | 3.6 | 0.014 | All patients were also treated with aspirin 100 to 325 mg per day. The combined incidence of death or myocardial infarction at all time points was lower for Lovenox compared to standard heparin therapy, but did not achieve statistical significance. The efficacy data are provided below [see Table 24]. Table 24 Efficacy of Lovenox in the Prophylaxis of Ischemic Complications in Unstable Angina and Non-Q-Wave Myocardial Infarction (Combined Endpoint of Death or Myocardial Infarction) | | Dosing Regimen ¹ | | | | |------------------------|-------------------------------|---------------|-----------|----------------| | | <u>Lovenox</u> <u>Heparin</u> | | Reduction | <u>p Value</u> | | | 1 mg/kg q12h SC | aPTT Adjusted | (%) | | | | | IV Therapy | | | | Indication | n (%) | n (%) | | | | All Treated Unstable | 1578 (100) | 1529 (100) | | | | Angina and Non-Q-Wave | | | | | | MI Patients | | | | | | Timepoint ² | | | | | | 48 Hours | 16 (1.0) | 20 (1.3) | 0.3 | 0.126 | | 14 Days | 76 (4.8) | 93 (6.1) | 1.3 | 0.115 | | 30 Days | 96 (6.1) | 118 (7.7) | 1.6 | 0.069 | ¹ All patients were also treated with aspirin 100 to 325 mg per day. ² Evaluation timepoints are after initiation of treatment. Therapy continued for up to 8 days (median duration of 2.6 days). In a survey one year following treatment, with information available for 92% of enrolled patients, the combined incidence of death, myocardial infarction, or recurrent angina remained lower for Lovenox versus heparin (32.0% vs 35.7%). Urgent revascularization procedures were performed less frequently in the Lovenox group as compared to the heparin group, 6.3% compared to 8.2% at 30 days (p = 0.047). ## 14.6 Treatment of Acute ST-Segment Elevation Myocardial Infarction In a multicenter, double-blind, double-dummy, parallel group study, patients with acute ST-segment elevation myocardial infarction (STEMI) who were to be hospitalized within 6 hours of onset and were eligible to receive fibrinolytic therapy were randomized in a 1:1 ratio to receive either Lovenox or unfractionated heparin. Study medication was initiated between 15 minutes before and 30 minutes after the initiation of
fibrinolytic therapy. Unfractionated heparin was administered beginning with an IV bolus of 60 U/kg (maximum 4000 U) and followed with an infusion of 12 U/kg per hour (initial maximum 1000 U per hour) that was adjusted to maintain an aPTT of 1.5 to 2 times the control value. The IV infusion was to be given for at least 48 hours. The enoxaparin dosing strategy was adjusted according to the patient's age and renal function. For patients younger than 75 years of age, enoxaparin was given as a single 30 mg intravenous bolus plus a 1 mg/kg SC dose followed by an SC injection of 1 mg/kg every 12 hours. For patients at least 75 years of age, the IV bolus was not given and the SC dose was reduced to 0.75 mg/kg every 12 hours. For patients with severe renal insufficiency (estimated creatinine clearance of less than 30 mL per minute), the dose was to be modified to 1 mg/kg every 24 hours. The SC injections of enoxaparin were given until hospital discharge or for a maximum of eight days (whichever came first). The mean treatment duration for enoxaparin was 6.6 days. The mean treatment duration of unfractionated heparin was 54 hours. When percutaneous coronary intervention was performed during study medication period, patients received antithrombotic support with blinded study drug. For patients on enoxaparin, the PCI was to be performed on enoxaparin (no switch) using the regimen established in previous studies, *i.e.* no additional dosing, if the last SC administration was less than 8 hours before balloon inflation, IV bolus of 0.3 mg/kg enoxaparin if the last SC administration was more than 8 hours before balloon inflation. All patients were treated with aspirin for a minimum of 30 days. Eighty percent of patients received a fibrin-specific agent (19% tenecteplase, 5% reteplase and 55% alteplase) and 20% received streptokinase. Among 20,479 patients in the ITT population, the mean age was 60 years, and 76% were male. Racial distribution was: 87% Caucasian, 9.8% Asian, 0.2% Black, and 2.8% other. Medical history included previous MI (13%), hypertension (44%), diabetes (15%) and angiographic ² Evaluation timepoints are after initiation of treatment. Therapy continued for up to 8 days (median duration of 2.6 days). evidence of CAD (5%). Concomitant medication included aspirin (95%), beta-blockers (86%), ACE inhibitors (78%), statins (70%) and clopidogrel (27%). The MI at entry was anterior in 43%, non-anterior in 56%, and both in 1%. The primary efficacy end point was the composite of death from any cause or myocardial reinfarction in the first 30 days after randomization. Total follow-up was one year. The rate of the primary efficacy end point (death or myocardial re-infarction) was 9.9% in the enoxaparin group, and 12.0% in the unfractionated heparin group, a 17% reduction in the relative risk, (P=0.000003) [see Table 25]. Table 25 Efficacy of Lovenox in the Treatment of Acute ST-Segment Elevation Myocardial Infarction | | Enoxaparin | UFH | Relative Risk | P Value | |--|-------------|-------------|---------------------|----------| | | (N=10,256) | (N=10,223) | (95% CI) | _ , | | Outcome at 48 hours | n (%) | n (%) | | | | Death or Myocardial Re-infarction | 478 (4.7) | 531 (5.2) | 0.90 (0.80 to 1.01) | 0.08 | | Death | 383 (3.7) | 390 (3.8) | 0.98 (0.85 to 1.12) | 0.76 | | Myocardial Re-infarction | 102 (1.0) | 156 (1.5) | 0.65 (0.51 to 0.84) | < 0.001 | | Urgent Revascularization | 74 (0.7) | 96 (0.9) | 0.77 (0.57 to 1.04) | 0.09 | | Death or Myocardial Re-infarction or Urgent
Revascularization | 548 (5.3) | 622 (6.1) | 0.88 (0.79 to 0.98) | 0.02 | | Outcome at 8 Days | | | | | | Death or Myocardial Re-infarction | 740 (7.2) | 954 (9.3) | 0.77 (0.71 to 0.85) | < 0.001 | | Death | 559 (5.5) | 605 (5.9) | 0.92 (0.82 to 1.03) | 0.15 | | Myocardial Re-infarction | 204 (2.0) | 379 (3.7) | 0.54 (0.45 to 0.63) | < 0.001 | | Urgent Revascularization | 145 (1.4) | 247 (2.4) | 0.59 (0.48 to 0.72) | < 0.001 | | Death or Myocardial Re-infarction or Urgent
Revascularization | 874 (8.5) | 1181 (11.6) | 0.74 (0.68 to 0.80) | <0.001 | | Outcome at 30 Days | | | | | | Primary efficacy endpoint
(Death or Myocardial Re-infarction) | 1017 (9.9) | 1223 (12.0) | 0.83 (0.77 to 0.90) | 0.000003 | | Death | 708 (6.9) | 765 (7.5) | 0.92 (0.84 to 1.02) | 0.11 | | Myocardial Re-infarction | 352 (3.4) | 508 (5.0) | 0.69 (0.60 to 0.79) | < 0.001 | | Urgent Revascularization | 213 (2.1) | 286 (2.8) | 0.74 (0.62 to 0.88) | < 0.001 | | Death or Myocardial Re-infarction or Urgent
Revascularization | 1199 (11.7) | 1479 (14.5) | 0.81 (0.75 to 0.87) | <0.001 | Note: Urgent revascularization denotes episodes of recurrent myocardial ischemia (without infarction) leading to the clinical decision to perform coronary revascularization during the same hospitalization. CI denotes confidence intervals. The beneficial effect of enoxaparin on the primary end point was consistent across key subgroups including age, gender, infarct location, history of diabetes, history of prior myocardial infarction, fibrinolytic agent administered, and time to treatment with study drug (see Figure 1); however, it is necessary to interpret such subgroup analyses with caution. Figure 1. Relative Risks of and Absolute Event Rates for the Primary End Point at 30 Days in Various Subgroups \ast ^{*} The primary efficacy end point was the composite of death from any cause or myocardial re-infarction in the first 30 days. The overall treatment effect of enoxaparin as compared to the unfractionated heparin is shown at the bottom of the figure. For each subgroup, the circle is proportional to the number and represents the point estimate of the treatment effect and the horizontal lines represent the 95 percent confidence intervals. Fibrin-specific fibrinolytic agents included alteplase, tenecteplase and reteplase. Time to treatment indicates the time from the onset of symptoms to the administration of study drug (median, 3.2 hours). The beneficial effect of enoxaparin on the primary end point observed during the first 30 days was maintained over a 12 month follow-up period (see Figure 2). There is a trend in favor of enoxaparin during the first 48 hours, but most of the treatment difference is attributed to a step increase in the event rate in the UFH group at 48 hours (seen in Figure 2), an effect that is more striking when comparing the event rates just prior to and just subsequent to actual times of discontinuation. These results provide evidence that UFH was effective and that it would be better if used longer than 48 hours. There is a similar increase in endpoint event rate when enoxaparin was discontinued, suggesting that it too was discontinued too soon in this study. The rates of major hemorrhages (defined as requiring 5 or more units of blood for transfusion, or 15% drop in hematocrit or clinically overt bleeding, including intracranial hemorrhage) at 30 days were 2.1% in the enoxaparin group and 1.4% in the unfractionated heparin group. The rates of intracranial hemorrhage at 30 days were 0.8% in the enoxaparin group 0.7% in the unfractionated heparin group. The 30-day rate of the composite endpoint of death, myocardial re-infarction or ICH (a measure of net clinical benefit) was significantly lower in the enoxaparin group (10.1%) as compared to the heparin group (12.2%). ### 16 HOW SUPPLIED/STORAGE AND HANDLING Lovenox is available in two concentrations [see Tables 26 and 27]: Table 26 100 mg/mL Concentration | | Anti-Xa | Package Size | Label Color | NDC# | |---|-----------------------|--------------|-------------|---------| | Dosage Unit / Strength ¹ | Activity ² | (per carton) | | 0075- | | Prefilled Syringes ³ | | | | | | 30 mg/0.3 mL | 3000 IU | 10 syringes | Medium Blue | 0624-30 | | 40 mg/0.4 mL | 4000 IU | 10 syringes | Yellow | 0620-40 | | Graduated Prefilled Syringes ³ | | | | | | 60 mg/0.6 mL | 6000 IU | 10 syringes | Orange | 0621-60 | | 80 mg/0.8 mL | 8000 IU | 10 syringes | Brown | 0622-80 | | 100 mg/1 mL | 10,000 IU | 10 syringes | Black | 0623-00 | | Multiple-Dose Vial ⁴ | | | | | | 300 mg/3 mL | 30,000 IU | 1 vial | Red | 0626-03 | ¹ Strength represents the number of milligrams of enoxaparin sodium in Water for Injection. Lovenox 30 and 40 mg prefilled syringes, and 60, 80, and 100 mg graduated prefilled syringes each contain 10 mg enoxaparin sodium per 0.1 mL Water for Injection. ² Approximate anti-Factor Xa activity based on reference to the W.H.O. First International Low Molecular Weight Heparin Reference Standard. ³ Each Lovenox prefilled syringe is for single, one-time use only and is affixed with a 27 gauge x 1/2 inch needle. ⁴ Each Lovenox multiple-dose vial contains 15 mg benzyl alcohol per 1 mL as a preservative. Table 27 150 mg/mL Concentration | Dosage Unit / Strength ¹ | Anti-Xa
Activity ² | Package Size (per carton) | Syringe
Label Color | NDC #
0075- | |---|----------------------------------|---------------------------|------------------------|----------------| | Graduated Prefilled Syringes ³ | | | | | | $120\;mg\:/\:0.8\;mL$ | 12,000 IU | 10 syringes | Purple | 2912-01 | | 150 mg / 1 mL | 15,000 IU | 10 syringes | Navy Blue | 2915-01 | ¹ Strength represents the number of milligrams of enoxaparin sodium in Water for Injection. Lovenox 120 and 150 mg graduated prefilled syringes contain **15 mg enoxaparin sodium per 0.1 mL** Water for Injection. Store at 25°C (77°F); excursions permitted to 15-30°C (59-86°F) [see USP Controlled Room Temperature]. Do not store the multiple-dose vials for more than 28 days after the first use. ## Keep out of the reach of children. ## 17 PATIENT COUNSELING INFORMATION If patients have had neuraxial anesthesia or spinal puncture, and particularly, if they are taking concomitant NSAIDs, platelet inhibitors, or other anticoagulants, they should be informed
to watch for signs and symptoms of spinal or epidural hematoma, such as tingling, numbness (especially in the lower limbs) and muscular weakness. If any of these symptoms occur the patient should contact his or her physician immediately. Additionally, the use of aspirin and other NSAIDs may enhance the risk of hemorrhage. Their use should be discontinued prior to enoxaparin therapy whenever possible; if co-administration is essential, the patient's clinical and laboratory status should be closely monitored [see *Drug Interactions* (7)]. ### Patients should also be informed: - of the instructions for injecting Lovenox if their therapy is to continue after discharge from the hospitals. - it may take them longer than usual to stop bleeding. - they may bruise and/or bleed more easily when they are treated with Lovenox. ² Approximate anti-Factor Xa activity based on reference to the W.H.O. First International Low Molecular Weight Heparin Reference Standard. ³ Each Lovenox graduated prefilled syringe is for single, one-time use only and is affixed with a 27 gauge x 1/2 inch needle. - they should report any unusual bleeding, bruising, or signs of thrombocytopenia (such as a rash of dark red spots under the skin) to their physician [see *Warnings and Precautions* (5.1, 5.5)]. - to tell their physicians and dentists they are taking Lovenox and/or any other product known to affect bleeding before any surgery is scheduled and before any new drug is taken [see *Warnings and Precautions* (5.3)]. - to tell their physicians and dentists of all medications they are taking, including those obtained without a prescription, such as aspirin or other NSAIDs [see *Drug Interactions* (7)]. sanofi-aventis U.S. LLC Bridgewater, NJ 08807 Multiple-dose vials are also manufactured by DSM Pharmaceuticals, Inc. Greenville, NC 27835 © 2009 sanofi-aventis U.S. LLC