NORVIR®
(ritonavir) Capsules Soft Gelatin
(ritonavir) Oral Solution

WARNING

CO-ADMINISTRATION OF NORVIR WITH SEDATIVE HYPNOTICS, ANTIARRHYTHMICS, OR ERGOT ALKALOID PREPARATIONS MAY RESULT IN POTENTIALLY SERIOUS AND/OR LIFE-THREATENING ADVERSE EVENTS DUE TO POSSIBLE EFFECTS OF NORVIR ON THE HEPATIC METABOLISM OF CERTAIN DRUGS. SEE CONTRAINDICATIONS AND PRECAUTIONS SECTIONS.

DESCRIPTION

NORVIR (ritonavir) is an inhibitor of HIV protease with activity against the Human Immunodeficiency Virus (HIV).

Ritonavir is chemically designated as 10-Hydroxy-2-methyl-5-(1-methylethyl)-1- [2-(1-methylethyl)-4-thiazolyl]-3,6-dioxo-8,11-bis(phenylmethyl)-2,4,7,12- tetraazatridecan-13-oic acid, 5-thiazolylmethyl ester, [5S-(5R*,8R*,10R*,11R*)]. Its molecular formula is C_{37}H_{48}N_{6}O_{5}S_{2}, and its molecular weight is 720.95. Ritonavir has the following structural formula:

![Ritonavir Structural Formula](image)

Ritonavir is a white-to-light-tan powder. Ritonavir has a bitter metallic taste. It is freely soluble in methanol and ethanol, soluble in isopropanol and practically insoluble in water.

NORVIR soft gelatin capsules are available for oral administration in a strength of 100 mg ritonavir with the following inactive ingredients: Butylated hydroxytoluene, ethanol, gelatin, iron oxide, oleic acid, polyoxyl 35 castor oil, and titanium dioxide.
NORVIR oral solution is available for oral administration as 80 mg/mL of ritonavir in a peppermint and caramel flavored vehicle. Each 8-ounce bottle contains 19.2 grams of ritonavir. NORVIR oral solution also contains ethanol, water, polyoxyl 35 castor oil, propylene glycol, anhydrous citric acid to adjust pH, saccharin sodium, peppermint oil, creamy caramel flavoring, and FD&C Yellow No. 6.

CLINICAL PHARMACOLOGY

Microbiology

Mechanism of Action

Ritonavir is a peptidomimetic inhibitor of both the HIV-1 and HIV-2 proteases. Inhibition of HIV protease renders the enzyme incapable of processing the gag-pol polyprotein precursor which leads to production of non-infectious immature HIV particles.

Antiviral Activity In Vitro

The activity of ritonavir was assessed in vitro in acutely infected lymphoblastoid cell lines and in peripheral blood lymphocytes. The concentration of drug that inhibits 50% (EC50) of viral replication ranged from 3.8 to 153 nM depending upon the HIV-1 isolate and the cells employed. The average EC50 for low passage clinical isolates was 22 nM (n = 13). In MT4 cells, ritonavir demonstrated additive effects against HIV-1 in combination with either zidovudine (ZDV) or didanosine (ddI). Studies which measured cytotoxicity of ritonavir on several cell lines showed that > 20 µM was required to inhibit cellular growth by 50% resulting in an in vitro therapeutic index of at least 1000.

Resistance

HIV-1 isolates with reduced susceptibility to ritonavir have been selected in vitro. Genotypic analysis of these isolates showed mutations in the HIV protease gene at amino acid positions 84 (Ile to Val), 82 (Val to Phe), 71 (Ala to Val), and 46 (Met to Ile). Phenotypic (n = 18) and genotypic (n = 44) changes in HIV isolates from selected patients treated with ritonavir were monitored in phase I/II trials over a period of 3 to 32 weeks. Mutations associated with the HIV viral protease in isolates obtained from 41 patients appeared to occur in a stepwise and ordered fashion; in sequence, these mutations were position 82 (Val to Ala/Phe), 54 (Ile to Val), 71 (Ala to Val/Thr), and 36 (Ile to Leu), followed by combinations of mutations at an additional 5 specific amino acid positions. Of 18 patients for whom both phenotypic and genotypic analysis were performed on free virus isolated from plasma, 12 showed reduced susceptibility to ritonavir in vitro. All 18 patients possessed one or more mutations in the viral protease gene. The 82 mutation appeared to be necessary but not sufficient to confer phenotypic resistance. Phenotypic resistance was defined as a ≥ 5-fold decrease in viral sensitivity in vitro from baseline. The clinical relevance of phenotypic and genotypic changes associated with ritonavir therapy has not been established.

Cross-Resistance to Other Antiretrovirals

Among protease inhibitors variable cross-resistance has been recognized. Serial HIV isolates obtained from six patients during ritonavir therapy showed a decrease in ritonavir susceptibility in vitro but did not demonstrate a concordant decrease in susceptibility to saquinavir in vitro when compared to matched baseline isolates.
However, isolates from two of these patients demonstrated decreased susceptibility to indinavir in vitro (8-fold). Isolates from 5 patients were also tested for cross-resistance to amprenavir and nelfinavir; isolates from 2 patients had a decrease in susceptibility to nelfinavir (12- to 14-fold), and none to amprenavir. Cross-resistance between ritonavir and reverse transcriptase inhibitors is unlikely because of the different enzyme targets involved. One ZDV-resistant HIV isolate tested in vitro retained full susceptibility to ritonavir.

Pharmacokinetics

The pharmacokinetics of ritonavir have been studied in healthy volunteers and HIV-infected patients (CD4 ≥ 50 cells/µL). See Table 1 for ritonavir pharmacokinetic characteristics.

Absorption

The absolute bioavailability of ritonavir has not been determined. After a 600 mg dose of oral solution, peak concentrations of ritonavir were achieved approximately 2 hours and 4 hours after dosing under fasting and non-fasting (514 KCal; 9% fat, 12% protein, and 79% carbohydrate) conditions, respectively.

Effect of Food on Oral Absorption

When the oral solution was given under non-fasting conditions, peak ritonavir concentrations decreased 23% and the extent of absorption decreased 7% relative to fasting conditions. Dilution of the oral solution, within one hour of administration, with 240 mL of chocolate milk, Advera® or Ensure® did not significantly affect the extent and rate of ritonavir absorption. After a single 600 mg dose under non-fasting conditions, in two separate studies, the soft gelatin capsule (n = 57) and oral solution (n = 18) formulations yielded mean ± SD areas under the plasma concentration-time curve (AUCs) of 121.7 ± 53.8 and 129.0 ± 39.3 µg•h/mL, respectively. Relative to fasting conditions, the extent of absorption of ritonavir from the soft gelatin capsule formulation was 13% higher when administered with a meal (615 KCal; 14.5% fat, 9% protein, and 76% carbohydrate).

Metabolism

Nearly all of the plasma radioactivity after a single oral 600 mg dose of 14C-ritonavir oral solution (n = 5) was attributed to unchanged ritonavir. Five ritonavir metabolites have been identified in human urine and feces. The isopropylthiazole oxidation metabolite (M-2) is the major metabolite and has antiviral activity similar to that of parent drug; however, the concentrations of this metabolite in plasma are low. In vitro studies utilizing human liver microsomes have demonstrated that cytochrome P450 3A (CYP3A) is the major isoform involved in ritonavir metabolism, although CYP2D6 also contributes to the formation of M-2.

Elimination

In a study of five subjects receiving a 600 mg dose of 14C-ritonavir oral solution, 11.3 ± 2.8% of the dose was excreted into the urine, with 3.5 ± 1.8% of the dose excreted as unchanged parent drug. In that study, 86.4 ± 2.9% of the dose was excreted in the feces with 33.8 ± 10.8% of the dose excreted as unchanged parent drug. Upon multiple dosing, ritonavir accumulation is less than predicted from a single dose possibly due to a time and dose-related increase in clearance.
Table 1. Ritonavir Pharmacokinetic Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>n</th>
<th>Values (Mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{max} SS†</td>
<td>10</td>
<td>11.2 ± 3.6 µg/mL</td>
</tr>
<tr>
<td>C_{trough} SS†</td>
<td>10</td>
<td>3.7 ± 2.6 µg/mL</td>
</tr>
<tr>
<td>$V_{p/F}$ ‡</td>
<td>91</td>
<td>0.41 ± 0.25 L/kg</td>
</tr>
<tr>
<td>$t_1/2$</td>
<td></td>
<td>3 - 5 h</td>
</tr>
<tr>
<td>CL/F SS‡</td>
<td>10</td>
<td>8.8 ± 3.2 L/h</td>
</tr>
<tr>
<td>CL/F ‡</td>
<td>91</td>
<td>4.6 ± 1.6 L/h</td>
</tr>
<tr>
<td>CL$_R$</td>
<td>62</td>
<td>< 0.1 L/h</td>
</tr>
<tr>
<td>RBC/Plasma Ratio</td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td>Percent Bound*</td>
<td></td>
<td>98 to 99%</td>
</tr>
</tbody>
</table>

† SS = steady state; patients taking ritonavir 600 mg q12h.
‡ Single ritonavir 600 mg dose.
* Primarily bound to human serum albumin and alpha-1 acid glycoprotein over the ritonavir concentration range of 0.01 to 30 µg/mL.

Effects on Electrocardiogram

QTcF interval was evaluated in a randomized, placebo and active (moxifloxacin 400 mg once-daily) controlled crossover study in 45 healthy adults, with 10 measurements over 12 hours on Day 3. The maximum mean (95% upper confidence bound) time-matched difference in QTcF from placebo after baseline correction was 5.5 (7.6) milliseconds (msec) for 400 mg twice-daily ritonavir. Ritonavir 400 mg twice daily resulted in Day 3 ritonavir exposure that was approximately 1.5 fold higher than observed with ritonavir 600 mg twice-daily dose at steady state.

PR interval prolongation was also noted in subjects receiving ritonavir in the same study on Day 3. The maximum mean (95% confidence interval) difference from placebo in the PR interval after baseline correction was 22 (25) msec for 400 mg twice-daily ritonavir (See PRECAUTIONS – PR Interval Prolongation).

Special Populations

Gender, Race and Age

No age-related pharmacokinetic differences have been observed in adult patients (18 to 63 years). Ritonavir pharmacokinetics have not been studied in older patients.

A study of ritonavir pharmacokinetics in healthy males and females showed no statistically significant differences in the pharmacokinetics of ritonavir. Pharmacokinetic differences due to race have not been identified.

Pediatric Patients

Steady-state pharmacokinetics were evaluated in 37 HIV-infected patients ages 2 to 14 years receiving doses ranging from 250 mg/m2 twice-daily to 400 mg/m2 twice-daily in PACTG Study 310, and in 41 HIV-infected patients ages 1 month to 2 years at doses of 350 and 450 mg/m2 twice-daily in PACTG Study 345. Across dose groups, ritonavir steady-state oral clearance (CL/F/m2) was approximately 1.5 to 1.7 times faster in pediatric patients than in adult subjects. Ritonavir concentrations obtained after 350 to 400 mg/m2 twice-daily in pediatric patients > 2 years were comparable to those obtained in adults receiving 600 mg (approximately 330 mg/m2)
twice-daily. The following observations were seen regarding ritonavir concentrations after administration with 350 or 450 mg/m² twice-daily in children < 2 years of age. Higher ritonavir exposures were not evident with 450 mg/m² twice-daily compared to the 350 mg/m² twice-daily. Ritonavir trough concentrations were somewhat lower than those obtained in adults receiving 600 mg twice-daily. The area under the ritonavir plasma concentration-time curve and trough concentrations obtained after administration with 350 or 450 mg/m² twice-daily in children < 2 years were approximately 16% and 60% lower, respectively, than that obtained in adults receiving 600 mg twice-daily.

Renal Insufficiency

Ritonavir pharmacokinetics have not been studied in patients with renal insufficiency, however, since renal clearance is negligible, a decrease in total body clearance is not expected in patients with renal insufficiency.

Hepatic Insufficiency

Dose-normalized steady-state ritonavir concentrations in subjects with mild hepatic insufficiency (400 mg twice-daily, n = 6) were similar to those in control subjects dosed with 500 mg twice-daily. Dose-normalized steady-state ritonavir exposures in subjects with moderate hepatic impairment (400 mg twice-daily, n= 6) were about 40% lower than those in subjects with normal hepatic function (500 mg twice-daily, n = 6). Protein binding of ritonavir was not statistically significantly affected by mild or moderately impaired hepatic function. No dose adjustment is recommended in patients with mild or moderate hepatic impairment. However, health care providers should be aware of the potential for lower ritonavir concentrations in patients with moderate hepatic impairment and should monitor patient response carefully. Ritonavir has not been studied in patients with severe hepatic impairment.

Drug-Drug Interactions

See also **CONTRAINDICATIONS, WARNINGS, and PRECAUTIONS - Drug Interactions**.

Table 2 and Table 3 summarize the effects on AUC and C\(_{\text{max}}\), with 95% confidence intervals (95% CI), of co-administration of ritonavir with a variety of drugs. For information about clinical recommendations see **PRECAUTIONS - Drug Interactions**.

Table 2. Drug Interactions - Pharmacokinetic Parameters for Ritonavir in the Presence of the Co-administered Drug (See PRECAUTIONS - Table 6 for Recommended Alterations in Dose or Regimen)

<table>
<thead>
<tr>
<th>Co-administered Drug</th>
<th>Dose of Co-administered Drug (mg)</th>
<th>Dose of NORVIR (mg)</th>
<th>n</th>
<th>AUC % (95% CI)</th>
<th>C(_{\text{max}}) (95% CI)</th>
<th>C(_{\text{min}}) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clarithromycin</td>
<td>500 q12h, 4 d</td>
<td>200 q8h, 4 d</td>
<td>22</td>
<td>↑ 12% (2, 23%)</td>
<td>↑ 15% (2, 28%)</td>
<td>↑ 14% (-3, 36%)</td>
</tr>
<tr>
<td>Didanosine</td>
<td>200 q12h, 4 d</td>
<td>600 q12h, 4 d</td>
<td>12</td>
<td>↔</td>
<td>↔</td>
<td>↔</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>400 single dose, day 1; 200 daily, 200 q6h, 4 d</td>
<td>8</td>
<td>↑ 12% (5, 20%)</td>
<td>↑ 15% (7, 22%)</td>
<td>↑ 14% (0, 26%)</td>
<td></td>
</tr>
<tr>
<td>Fluoxetine</td>
<td>30 q12h, 8 d</td>
<td>600 single dose, 1 d</td>
<td>16</td>
<td>↑ 19% (7, 34%)</td>
<td>↔</td>
<td>ND</td>
</tr>
<tr>
<td>Ketoconazole</td>
<td>200 daily, 7 d</td>
<td>500 q12h, 10 d</td>
<td>12</td>
<td>↑ 18% (-3, 52%)</td>
<td>↑ 10% (-11, 36%)</td>
<td>ND</td>
</tr>
<tr>
<td>Rifampin</td>
<td>600 or 300 daily, 10 d</td>
<td>500 q12h, 20 d</td>
<td>7, 9*</td>
<td>↓ 35% (7, 55%)</td>
<td>↓ 25% (-5, 46%)</td>
<td>↓ 49% (-14, 91%)</td>
</tr>
<tr>
<td>Voriconazole</td>
<td>400 q12h, 1 d; then 200 q12h, 8 d 400 q12h, 9 d</td>
<td></td>
<td></td>
<td>↔</td>
<td>↔</td>
<td>ND</td>
</tr>
</tbody>
</table>
Table 3. Drug Interactions - Pharmacokinetic Parameters for Co-administered Drug in the Presence of NORVIR (See PRECAUTIONS - Table 6 for Recommended Alterations in Dose or Regimen)

<table>
<thead>
<tr>
<th>Co-administered Drug</th>
<th>Dose of Co-administered Drug (mg)</th>
<th>Dose of NORVIR (mg)</th>
<th>n</th>
<th>AUC % (95% CI)</th>
<th>Cmax (95% CI)</th>
<th>Cmin (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alprazolam 1, single dose</td>
<td>500 q12h, 10 d</td>
<td>200 q8h, 4 d</td>
<td>12</td>
<td>↓ 12% (-5,30%)</td>
<td>↓ 16% (5, 27%)</td>
<td>ND</td>
</tr>
<tr>
<td>Clarithromycin 500 q12h, 4 d</td>
<td>500 q12h, 4 d</td>
<td>22</td>
<td>↑ 77% (56, 103%)</td>
<td>↑ 31% (15, 51%)</td>
<td>↑ 2.8-fold (2.4, 3.3X)</td>
<td></td>
</tr>
<tr>
<td>14-OH clarithromycin metabolite</td>
<td></td>
<td></td>
<td>↓ 100%</td>
<td>↓ 99%</td>
<td>↓ 100%</td>
<td></td>
</tr>
<tr>
<td>Desipramine 100, single dose</td>
<td>500 q12h, 12 d</td>
<td>14</td>
<td>↑ 145% (103, 211%)</td>
<td>↑ 22% (12, 35%)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>2-OH desipramine metabolite</td>
<td></td>
<td></td>
<td>↓ 15% (3, 26%)</td>
<td>↓ 67% (62, 72%)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Didanosine 200 q12h, 4 d</td>
<td>600 q12h, 4 d</td>
<td>12</td>
<td>↓ 13% (0, 23%)</td>
<td>↓ 16% (5, 26%)</td>
<td>↔</td>
<td></td>
</tr>
<tr>
<td>Ethinyl estradiol 50 µg single dose</td>
<td>500 q12h, 16 d</td>
<td>23</td>
<td>↓ 40% (31, 49%)</td>
<td>↓ 32% (24, 39%)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Fluticasone propionate aqueous nasal spray</td>
<td>200 mcg qd, 7 d</td>
<td>100 mg q12h, 7 d</td>
<td></td>
<td>↑ approximately 350-fold</td>
<td>↑ approximately 25-fold</td>
<td></td>
</tr>
<tr>
<td>Indinavir1 Day 14</td>
<td>400 q12h, 15 d</td>
<td>400 q12h, 15 d</td>
<td>10</td>
<td>↑ 6% (-14, 29%)</td>
<td>↓ 51% (40, 61%)</td>
<td>↑ 4-fold (2.8, 6.8X)</td>
</tr>
<tr>
<td>Day 15</td>
<td></td>
<td></td>
<td>↓ 7% (-22, 28%)</td>
<td>↓ 62% (52, 70%)</td>
<td>↑ 4-fold (2.5, 6.5X)</td>
<td></td>
</tr>
<tr>
<td>Ketoconazole 200 daily, 7 d</td>
<td>500 q12h, 10 d</td>
<td>12</td>
<td>↑ 3.4-fold (2.8, 4.3X)</td>
<td>↑ 55% (40, 72%)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Meperidine 50 oral single dose</td>
<td>500 q12h, 10 d</td>
<td>8</td>
<td>↓ 62% (59, 65%)</td>
<td>↓ 59% (42, 72%)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Normeperidine metabolite 2</td>
<td>5, single dose</td>
<td>500 q12h, 15 d</td>
<td>6</td>
<td>↑ 47% (-24, 345%)</td>
<td>↑ 87% (42, 147%)</td>
<td>ND</td>
</tr>
<tr>
<td>Methadone2</td>
<td>500 q12h, 15 d</td>
<td>11</td>
<td>↓ 36% (16, 52%)</td>
<td>↓ 38% (28, 46%)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Rifabutin 25-O-desacetyl rifabutin metabolite</td>
<td>150 daily, 16 d</td>
<td>500 q12h, 10 d</td>
<td>5</td>
<td>↑ 4-fold (2.8, 6.1X)</td>
<td>↑ 2.5-fold (1.9, 3.4X)</td>
<td>↑ 6-fold (3.5, 18.3X)</td>
</tr>
<tr>
<td>Sildenafil</td>
<td>100, single dose</td>
<td>500 BID, 8 d</td>
<td>28</td>
<td>↑ 11-fold</td>
<td>↑ 16-fold (13, 20X)</td>
<td>↑ 181-fold (ND)</td>
</tr>
<tr>
<td>Sulfamethoxazole3</td>
<td>800, single dose</td>
<td>500 q12h, 12 d</td>
<td>15</td>
<td>↓ 20% (16, 23%)</td>
<td>←</td>
<td>ND</td>
</tr>
<tr>
<td>Tadalafil 20 mg, single dose</td>
<td>200 mcg q12h</td>
<td>124%</td>
<td>↔</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theophylline 3 mg/kg q8h, 15 d</td>
<td>500 q12h, 10 d</td>
<td>13</td>
<td>↓ 43% (42, 45%)</td>
<td>↓ 32% (29, 34%)</td>
<td>↓ 57% (55, 59%)</td>
<td></td>
</tr>
<tr>
<td>Trazodone 50 mg, single dose</td>
<td>200 mg q12h, 10 d</td>
<td>10</td>
<td>↑ 2.4-fold</td>
<td>↑ 34%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethoprim3</td>
<td>160, single dose</td>
<td>500 q12h, 12 d</td>
<td>15</td>
<td>↑ 20% (3, 43%)</td>
<td>↔</td>
<td>ND</td>
</tr>
<tr>
<td>Vardenafil 5 mg</td>
<td>600 q12h</td>
<td>49-fold</td>
<td>↑ 13-fold</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voriconazole 400 q12h, 1 d; then 200 q12h, 8 d</td>
<td>5, single dose</td>
<td>12</td>
<td>↑ 9% (-17, 44%)</td>
<td>↓ 9% (-16, -2%)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Warfarin S-Warfarin</td>
<td>400 q12h, 12d</td>
<td>12</td>
<td>↑ 33% (-38, -27%)</td>
<td>↔</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>R-Warfarin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zidovudine 200 q8h, 4 d</td>
<td>300 q6h, 4 d</td>
<td>9</td>
<td>↓ 25% (15, 34%)</td>
<td>↓ 27% (4, 45%)</td>
<td>ND</td>
<td></td>
</tr>
</tbody>
</table>

1 Ritonavir and indinavir were co-administered for 15 days; Day 14 doses were administered after a 15%-fat breakfast (757 Kcal) and 9%-fat evening snack (236 Kcal), and Day 15 doses were administered after a 15%-fat breakfast (757 Kcal) and 32%-fat dinner (815 Kcal). Indinavir Cmin was also increased 4-fold. Effects were assessed relative to an indinavir 800 mg q8h regimen under fasting conditions.
2 Effects were assessed on a dose-normalized comparison to a methadone 20 mg single dose.
3 Sulfamethoxazole and trimethoprim taken as single combination tablet.
4 90% CI presented for R- and S-warfarin AUC and Cmax ratios.
INDICATIONS AND USAGE

NORVIR is indicated in combination with other antiretroviral agents for the treatment of HIV-infection. This indication is based on the results from a study in patients with advanced HIV disease that showed a reduction in both mortality and AIDS-defining clinical events for patients who received NORVIR either alone or in combination with nucleoside analogues. Median duration of follow-up in this study was 13.5 months.

Description of Clinical Studies

The activity of NORVIR as monotherapy or in combination with nucleoside reverse transcriptase inhibitors has been evaluated in 1446 patients enrolled in two double-blind, randomized trials.

Advanced Patients with Prior Antiretroviral Therapy

Study 247 was a randomized, double-blind trial (with open-label follow-up) conducted in HIV-infected patients with at least nine months of prior antiretroviral therapy and baseline CD4 cell counts ≤ 100 cells/µL. NORVIR 600 mg twice-daily or placebo was added to each patient's baseline antiretroviral therapy regimen, which could have consisted of up to two approved antiretroviral agents. The study accrued 1090 patients, with mean baseline CD4 cell count at study entry of 32 cells/µL. After the clinical benefit of NORVIR therapy was demonstrated, all patients were eligible to switch to open-label NORVIR for the duration of the follow-up period. Median duration of double-blind therapy with NORVIR and placebo was 6 months. The median duration of follow-up through the end of the open-label phase was 13.5 months for patients randomized to NORVIR and 14 months for patients randomized to placebo.

The cumulative incidence of clinical disease progression or death during the double-blind phase of Study 247 was 26% for patients initially randomized to NORVIR compared to 42% for patients initially randomized to placebo. This difference in rates was statistically significant (see Figure 1).

Figure 1. Time to Disease Progression or Death During the Double-blind Phase of Study 247
The cumulative mortality through the end of the open-label follow-up phase for patients enrolled in Study 247 was 18% for patients initially randomized to NORVIR compared to 26% for patients initially randomized to placebo. This difference in rates was statistically significant (see Figure 2). Since the analysis at the end of the open-label phase includes patients in the placebo arm who were switched from placebo to NORVIR therapy, the survival benefit of NORVIR cannot be precisely estimated.

Figure 2. Survival of Patients by Randomized Treatment Regimen in Study 247

Figure 3 and Figure 4 summarize the mean change from baseline for CD4 cell count and plasma HIV RNA (copies/mL), respectively, during the first 24 weeks for the double-blind phase of Study 247.
Patients Without Prior Antiretroviral Therapy

In Study 245, 356 antiretroviral-naïve HIV-infected patients (mean baseline CD$_4$ = 364 cells/µL) were randomized to receive either NORVIR 600 mg twice-daily, zidovudine 200 mg three-times-daily, or a combination of these drugs. Figure 5 and Figure 6 summarize the mean change from baseline for CD$_4$ cell count.
and plasma HIV RNA (copies/mL), respectively, during the first 24 weeks for the double-blind phase of Study 245.

Figure 5. Mean Change from Baseline in CD₄ Cell Count (cells/μL) During Study 245

Figure 6. Mean Change from Baseline in HIV RNA (log copies/mL) During Study 245

CONTRAINDICATIONS

- When co-administering NORVIR with other protease inhibitors, see the full prescribing information for that protease inhibitor including contraindication information.
- NORVIR is contraindicated in patients with known hypersensitivity (e.g. toxic epidermal necrolysis (TEN) or Stevens Johnson syndrome) to ritonavir or any of its ingredients.

- Co-administration of NORVIR is contraindicated with the drugs listed in Table 4 (also see PRECAUTIONS - Table 5. Drugs that Should Not be Co-administered with NORVIR) because ritonavir mediated CYP3A inhibition can result in serious and/or life-threatening reactions. Voriconazole and St. John’s Wort are exceptions in that co-administration of NORVIR and voriconazole results in a significant decrease in plasma concentrations of voriconazole, and co-administration of NORVIR with St. John’s Wort may result in decreased ritonavir plasma concentrations.

<table>
<thead>
<tr>
<th>Drug Class</th>
<th>Drugs Within Class That Are CONTRAINDCATED With NORVIR **</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha1-adrenoreceptor antagonist</td>
<td>Alfuzosin HCL</td>
</tr>
<tr>
<td>Antiarrhythmics</td>
<td>Amiodarone, flecainide, propafenone, quinidine</td>
</tr>
<tr>
<td>Antifungal</td>
<td>Voriconazole (with ritonavir doses of 400 mg every 12 hours or greater)</td>
</tr>
<tr>
<td>Ergot Derivatives</td>
<td>Dihydroergotamine, ergonovine, ergotamine, methylergonoine</td>
</tr>
<tr>
<td>GI Motility Agent</td>
<td>Cisapride</td>
</tr>
<tr>
<td>Herbal Products</td>
<td>St. John’s Wort (hypericum perforatum)</td>
</tr>
<tr>
<td>HMG-CoA Reductase Inhibitors:</td>
<td>Lovastatin, simvastatin</td>
</tr>
<tr>
<td>Neuroleptic</td>
<td>Pimozide</td>
</tr>
<tr>
<td>PDE5 enzyme inhibitor</td>
<td>Sildenafil (Revatio®) only when used for the treatment of pulmonary arterial hypertension (PAH)</td>
</tr>
<tr>
<td>Sedative/hypnotics</td>
<td>Oral midazolam, triazolam</td>
</tr>
</tbody>
</table>

* see WARNINGS - Drug Interactions and PRECAUTIONS – Table 6. Established and Other Potentially Significant Drug Interactions for coadministration of sildenafil in patients with erectile dysfunction.

** For additional information for these contraindicated drugs, see also PRECAUTIONS –Table 5. Drugs that Should Not be Co-administered with NORVIR.

WARNINGS

ALERT: Find out about medicines that should NOT be taken with NORVIR. This statement is included on the product's bottle label.

When co-administering NORVIR with other protease inhibitors, see the full prescribing information for that protease inhibitor including WARNINGS.

Drug Interactions

NORVIR is a CYP3A inhibitor. Initiating treatment with NORVIR in patients receiving medications metabolized by CYP3A or initiating medications metabolized by CYP3A in patients already maintained on NORVIR may result in increased plasma concentrations of concomitant medications. Higher plasma concentrations of concomitant medications can result in increased or prolonged therapeutic or adverse effects, potentially leading to severe, life-threatening or fatal events. The potential for drug-drug interactions must be considered prior to and during therapy with NORVIR. Review of other medications taken by patients and monitoring of patients for adverse effects is recommended during therapy with NORVIR.
See **CONTRAINDICATIONS**- Table 4 for a listing of drugs that are contraindicated with NORVIR due to potentially life-threatening adverse events, significant drug interactions, or loss of virologic activity. Also, see **PRECAUTIONS** – Table 5 and Table 6 for drugs that should not be co-administered with NORVIR and for a listing of drugs with established and other significant drug interactions.

Allergic Reactions

Allergic reactions including urticaria, mild skin eruptions, bronchospasm, and angioedema have been reported. Rare cases of anaphylaxis, toxic epidermal necrolysis (TEN), and Stevens-Johnson syndrome have also been reported.

Hepatic Reactions

Hepatic transaminase elevations exceeding 5 times the upper limit of normal, clinical hepatitis, and jaundice have occurred in patients receiving NORVIR alone or in combination with other antiretroviral drugs (see Table 8). There may be an increased risk for transaminase elevations in patients with underlying hepatitis B or C. Therefore, caution should be exercised when administering NORVIR to patients with pre-existing liver diseases, liver enzyme abnormalities, or hepatitis. Increased AST/ALT monitoring should be considered in these patients, especially during the first three months of NORVIR treatment.

There have been postmarketing reports of hepatic dysfunction, including some fatalities. These have generally occurred in patients taking multiple concomitant medications and/or with advanced AIDS.

Pancreatitis

Pancreatitis has been observed in patients receiving NORVIR therapy, including those who developed hypertriglyceridemia. In some cases fatalities have been observed. Patients with advanced HIV disease may be at increased risk of elevated triglycerides and pancreatitis.

Pancreatitis should be considered if clinical symptoms (nausea, vomiting, abdominal pain) or abnormalities in laboratory values (such as increased serum lipase or amylase values) suggestive of pancreatitis should occur. Patients who exhibit these signs or symptoms should be evaluated and NORVIR therapy should be discontinued if a diagnosis of pancreatitis is made.

Diabetes Mellitus/Hyperglycemia

New onset diabetes mellitus, exacerbation of pre-existing diabetes mellitus, and hyperglycemia have been reported during postmarketing surveillance in HIV-infected patients receiving protease inhibitor therapy. Some patients required either initiation or dose adjustments of insulin or oral hypoglycemic agents for treatment of these events. In some cases, diabetic ketoacidosis has occurred. In those patients who discontinued protease inhibitor therapy, hyperglycemia persisted in some cases. Because these events have been reported voluntarily during clinical practice, estimates of frequency cannot be made and a causal relationship between protease inhibitor therapy and these events has not been established.
PRECAUTIONS

When co-administering NORVIR with other protease inhibitors, see the full prescribing information for that protease inhibitor including PRECAUTIONS.

General

Ritonavir is principally metabolized by the liver. Therefore, caution should be exercised when administering this drug to patients with impaired hepatic function (see WARNINGS and CLINICAL PHARMACOLOGY - Hepatic Insufficiency).

Resistance/Cross-resistance

Varying degrees of cross-resistance among protease inhibitors have been observed. Continued administration of ritonavir therapy following loss of viral suppression may increase the likelihood of cross-resistance to other protease inhibitors (see Microbiology).

Hemophilia

There have been reports of increased bleeding, including spontaneous skin hematomas and hemarthrosis, in patients with hemophilia type A and B treated with protease inhibitors. In some patients additional factor VIII was given. In more than half of the reported cases, treatment with protease inhibitors was continued or reintroduced. A causal relationship has not been established.

PR Interval Prolongation

Ritonavir prolongs the PR interval in some patients. Post marketing cases of second or third degree atrioventricular block have been reported in patients. NORVIR should be used with caution in patients with underlying structural heart disease, preexisting conduction system abnormalities, ischemic heart disease, cardiomyopathies, as these patients may be at increased risk for developing cardiac conduction abnormalities. The impact on the PR interval of co-administration of ritonavir with other drugs that prolong the PR interval (including calcium channel blockers, beta-adrenergic blockers, digoxin and atazanavir) has not been evaluated. As a result, co-administration of ritonavir with these drugs should be undertaken with caution, particularly with those drugs metabolized by CYP3A. Clinical monitoring is recommended. See CLINICAL PHARMACOLOGY - Effects on Electrocardiogram.

Fat Redistribution

Redistribution/accumulation of body fat including central obesity, dorsocervical fat enlargement (buffalo hump), peripheral wasting, facial wasting, breast enlargement, and "cushingoid appearance" have been observed in patients receiving antiretroviral therapy. The mechanism and long-term consequences of these events are currently unknown. A causal relationship has not been established.

Lipid Disorders

Treatment with NORVIR therapy alone or in combination with saquinavir has resulted in substantial increases in the concentration of total triglycerides and cholesterol. Triglyceride and cholesterol testing should be
performed prior to initiating NORVIR therapy and at periodic intervals during therapy. Lipid disorders should be managed as clinically appropriate. See PRECAUTIONS - Table 5 and Table 6 for additional information on potential drug interactions with NORVIR and HMG CoA reductase inhibitors.

Immune Reconstitution Syndrome

Immune reconstitution syndrome has been reported in HIV-infected patients treated with combination antiretroviral therapy, including NORVIR. During the initial phase of combination antiretroviral treatment, patients whose immune system responds may develop an inflammatory response to indolent or residual opportunistic infections (such as *Mycobacterium avium* infection, cytomegalovirus, *Pneumocystis jiroveci* pneumonia, or tuberculosis), which may necessitate further evaluation and treatment.

Information For Patients

A statement to patients and health care providers is included on the product's bottle label: ALERT: Find out about medicines that should NOT be taken with NORVIR. A Patient Package Insert (PPI) for Norvir is available for patient information.

Patients should be informed that NORVIR is not a cure for HIV infection and that they may continue to acquire illnesses associated with advanced HIV infection, including opportunistic infections.

Patients should be told that the long-term effects of NORVIR are unknown at this time. They should be informed that NORVIR therapy has not been shown to reduce the risk of transmitting HIV to others through sexual contact or blood contamination.

Patients should be advised to take NORVIR with food, if possible.

Patients should be informed to take NORVIR every day as prescribed. Patients should not alter the dose or discontinue NORVIR without consulting their doctor. If a dose is missed, patients should take the next dose as soon as possible. However, if a dose is skipped, the patient should not double the next dose.

Patients should be informed that redistribution or accumulation of body fat may occur in patients receiving antiretroviral therapy and that the cause and long term health effects of these conditions are not known at this time.

NORVIR may interact with some drugs; therefore, patients should be advised to report to their doctor the use of any other prescription, non-prescription medication or herbal products, particularly St. John's wort.

Patients receiving PDE5 inhibitors for erectile dysfunction (eg, sildenafil, tadalafil, or vardenafil) should be advised that they may be at an increased risk of associated adverse events including hypotension, visual changes, and sustained erection, and should promptly report any symptoms to their doctor. Concomitant use of sildenafil with NORVIR is contraindicated in patients with pulmonary arterial hypertension (PAH).

Patients receiving estrogen-based hormonal contraceptives should be instructed that additional or alternate contraceptive measures should be used during therapy with NORVIR.
Patients should be informed that NORVIR may produce changes in the electrocardiogram (e.g., PR prolongation). Patients should consult their physician if they experience symptoms such as dizziness, lightheadedness, abnormal heart rhythm, or loss of consciousness.

Laboratory Tests

Ritonavir has been shown to increase triglycerides, cholesterol, SGOT (AST), SGPT (ALT), GGT, CPK, and uric acid. Appropriate laboratory testing should be performed prior to initiating NORVIR therapy and at periodic intervals or if any clinical signs or symptoms occur during therapy. For comprehensive information concerning laboratory test alterations associated with reverse transcriptase inhibitors, physicians should refer to the complete product information for each of these drugs.

Drug Interactions

Ritonavir has been found to be an inhibitor of cytochrome P450 3A (CYP3A) both *in vitro* and *in vivo* (Table 3). Agents that are extensively metabolized by CYP3A and have high first pass metabolism appear to be the most susceptible to large increases in AUC (> 3-fold) when co-administered with ritonavir. Ritonavir also inhibits CYP2D6 to a lesser extent. Co-administration of substrates of CYP2D6 with ritonavir could result in increases (up to 2-fold) in the AUC of the other agent, possibly requiring a proportional dosage reduction. Ritonavir also appears to induce CYP3A as well as other enzymes, including glucuronosyl transferase, CYP1A2, and possibly CYP2C9.

Drugs that are contraindicated specifically due to the expected magnitude of interaction and potential for serious adverse events are listed both in CONTRAINDICATIONS - Table 4 and under Drugs That Should Not Be Co-administered with NORVIR in Table 5.

Those drug interactions that have been established based on drug interaction studies are listed with the pharmacokinetic results in CLINICAL PHARMACOLOGY - Table 2 and Table 3. The clinical recommendations based on the results of these studies are listed in Table 6. Established and Other Potentially Significant Drug Interactions. A systematic review of over 200 medications prescribed to HIV-infected patients was performed to identify potential drug interactions with ritonavir. There are a number of agents in which CYP3A or CYP2D6 partially contribute to the metabolism of the agent. In these cases, the magnitude of the interaction and therapeutic consequences cannot be predicted with any certainty.

When co-administering ritonavir with calcium channel blockers, immunosuppressants, some HMG-CoA reductase inhibitors, some steroids, or other substrates of CYP3A; or most antidepressants, certain antiarrhythmics, and some narcotic analgesics which are partially mediated by CYP2D6 metabolism, it is possible that substantial increases in concentrations of these other agents may occur, possibly requiring a dosage reduction (> 50%); examples are listed in Table 6. Established and Other Potentially Significant Drug Interactions.

When co-administering ritonavir with any agent having a narrow therapeutic margin, such as anticoagulants, anticonvulsants, and antiarrhythmics, special attention is warranted. With some agents, the metabolism may be
induced, resulting in decreased concentrations (see Table 6. Established and Other Potentially Significant Drug Interactions).

Table 5. Drugs that Should Not be Co-administered with NORVIR

<table>
<thead>
<tr>
<th>Drug Class: Drug Name</th>
<th>Clinical Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha Adrenergic Antagonant: alfuzosin</td>
<td>CONTRAINDIATED due to potential for serious reactions such as hypotension.</td>
</tr>
<tr>
<td>Antiarrhythmics: amiodarone, flecainide, propafenone, quinidine</td>
<td>CONTRAINDIATED due to potential for serious and/or life threatening reactions such as cardiac arrhythmias.</td>
</tr>
<tr>
<td>Antifungal: voriconazole</td>
<td>CONTRAINDIATED with ritonavir doses of 400 mg every 12 hours or greater due to significant decreases in voriconazole plasma concentrations and may lead to loss of antifungal response.</td>
</tr>
<tr>
<td>Ergot Derivatives: dihydrotreotamine, ergonovine, ergotamine, methylergonovine</td>
<td>CONTRAINDIATED due to potential for serious and/or life-threatening reactions such as acute ergot toxicity characterized by vasospasm and ischemia of the extremities and other tissues including the central nervous system.</td>
</tr>
<tr>
<td>GI Motility Agent: cisapride</td>
<td>CONTRAINDIATED due to potential for serious and/or life-threatening reactions such as cardiac arrhythmias.</td>
</tr>
<tr>
<td>Herbal Products: St. John's wort (hypericum perforatum)</td>
<td>CONTRAINDIATED as the combination may lead to loss of virologic response and possible resistance to NORVIR or to the class of protease inhibitors.</td>
</tr>
<tr>
<td>HMG-CoA Reductase Inhibitors: lovastatin, simvastatin</td>
<td>CONTRAINDIATED due to potential for serious reactions such as risk of myopathy including rhabdomyolysis.</td>
</tr>
<tr>
<td>Neuroleptic: pimozide</td>
<td>CONTRAINDIATED due to the potential for serious and/or life-threatening reactions such as cardiac arrhythmias.</td>
</tr>
<tr>
<td>PDE5 enzyme inhibitor: Sildenafil (Revatio®)</td>
<td>CONTRAINDIATED in the treatment of pulmonary arterial hypertension (PAH). A safe and effective dose has not been established when used with ritonavir. There is an increased potential for sildenafil-associated adverse events, including visual abnormalities, hypotension, prolonged erection, and syncope.</td>
</tr>
<tr>
<td>Sedative/hypnotics: oral midazolam, triazolam</td>
<td>CONTRAINDIATED due to potential for serious and/or life-threatening reactions such as prolonged or increased sedation or respiratory depression.</td>
</tr>
</tbody>
</table>

* see WARNINGS - Drug Interactions and PRECAUTIONS - Table 6. Established and Other Potentially Significant Drug Interactions for coadministration of sildenafil in patients with erectile dysfunction.

Table 6. Established and Other Potentially Significant Drug Interactions: Alteration in Dose or Regimen Recommended Based on Drug Interaction Studies or Predicted Interaction (see CLINICAL PHARMACOLOGY - Table 2 and Table 3 for Magnitude of Interaction)

<table>
<thead>
<tr>
<th>Concomitant Drug Class: Drug Name</th>
<th>Effect on Concentration of Ritonavir or Concomitant Drug</th>
<th>Clinical Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV Protease Inhibitor: atazanavir</td>
<td>When co-administered with Atazanavir plasma concentrations achieved with atazanavir 300 mg q.d and reduced doses of atazanavir ritonavir 100 mg q.d. are higher than those achieved with atazanavir 400 mg q.d. See the complete prescribing information for Reyataz® (atazanavir) for details on co-administration of atazanavir 300 mg q.d, with ritonavir 100 mg q.d.</td>
<td></td>
</tr>
<tr>
<td>HIV Protease Inhibitor: darunavir</td>
<td>When co-administered with reduced doses of ritonavir & darunavir (↑ AUC, ↑ Cmax, ↑ Cmin)</td>
<td>See the complete prescribing information for Prezista® (darunavir) for details on co-administration of darunavir 600 mg b.i.d. with ritonavir 100 mg b.i.d. or darunavir 800 mg q.d. with ritonavir 100 mg q.d.</td>
</tr>
<tr>
<td>HIV Protease Inhibitor: fosamprenavir</td>
<td>When co-administered with reduced doses of ritonavir & amprenavir (↑ AUC, ↑ Cmax, ↑ Cmin)</td>
<td>See the complete prescribing information for Lexiva® (fosamprenavir) for details on co-administration of fosamprenavir 700 mg b.i.d. with ritonavir 100 mg b.i.d., fosamprenavir 1400 mg q.d. with ritonavir 200 mg q.d. or fosamprenavir 1400 mg q.d. with ritonavir 100 mg q.d.</td>
</tr>
<tr>
<td>HIV Protease Inhibitor: indinavir</td>
<td>When co-administered with Indinavir plasma concentrations achieved with reduced doses of indinavir</td>
<td>Alterations in concentrations are noted when reduced doses of indinavir are co-administered with NORVIR.</td>
</tr>
</tbody>
</table>
and ritonavir ↑ indinavir (↔ AUC, ↓ C_{\text{max}}, ↑ C_{\text{min}})

HIV Protease Inhibitor: saquinavir

When co-administered with reduced doses of ritonavir ↑ saquinavir (↑ AUC, ↑ C_{\text{max}}, ↑ C_{\text{min}})

See the complete prescribing information for Invirase® (saquinavir) for details on co-administration of saquinavir 1000 mg b.i.d. with ritonavir 100 mg b.i.d. Saquinavir/ritonavir should not be given together with rifampin, due to the risk of severe hepatotoxicity (presenting as increased hepatic transaminases) if the three drugs are given together.

HIV Protease Inhibitor: tipranavir

When co-administered with reduced doses of ritonavir ↑ tipranavir (↑ AUC, ↑ C_{\text{max}}, ↑ C_{\text{min}})

See the complete prescribing information for Aptivus® (tipranavir) for details on co-administration of tipranavir 500 mg b.i.d. with ritonavir 200 mg b.i.d. There have been reports of clinical hepatitis and hepatic decompensation including some fatalities. All patients should be followed closely with clinical and laboratory monitoring, especially those with chronic hepatitis B or C co-infection, as these patients have an increased risk of hepatotoxicity. Liver function tests should be performed prior to initiating therapy with tipranavir/ritonavir, and frequently throughout the duration of treatment.

Non-Nucleoside Reverse Transcriptase Inhibitor: delavirdine

↑ ritonavir (↑ AUC, ↑ C_{\text{max}}, ↑ C_{\text{min}})

Appropriate doses of this combination with respect to safety and efficacy have not been established.

HIV CCR5 – antagonist: maraviroc

↑ maraviroc

Concurrent administration of maraviroc with ritonavir will increase plasma levels of maraviroc. For specific dosage adjustment recommendations, please refer to the complete prescribing information for Selzentry® (maraviroc).

Other Agents

Analgesics, Narcotic: tramadol, propoxyphene

A dose decrease may be needed for these drugs when co-administered with ritonavir.

Anesthetic: meperidine / normeperidine (metabolite)

Dosage increase and long-term use of meperidine with ritonavir are not recommended due to the increased concentrations of the metabolite normeperidine which has both analgesic activity and CNS stimulant activity (e.g., seizures).

Antialcoholics: disulfiram / metronidazole

Ritonavir formulations contain alcohol, which can produce disulfiram-like reactions when co-administered with disulfiram or other drugs that produce this reaction (e.g., metronidazole).

Antiarrhythmics: disopyramide, lidocaine, mexiletine

↑antiarrhythmics

Caution is warranted and therapeutic concentration monitoring is recommended for antiarrhythmics when co-administered with ritonavir, if available.

Anticancer Agents: dasatinib, nilotinib, vincristine, vinblastine

↑ anticancer agents

Concentrations of these drugs may be increased when co-administered with ritonavir resulting in the potential for increased adverse events usually associated with these anticancer agents.

For vincristine and vinblastine, consideration should be given to temporarily withholding the ritonavir containing antiretroviral regimen in patients who develop significant hematologic or gastrointestinal side effects when ritonavir is administered concurrently with vincristine or vinblastine. Clinicians should be aware that if the ritonavir containing regimen is withheld for a prolonged period, consideration should be given to altering the regimen to not include a CYP3A or P-gp inhibitor in order to control HIV-1 viral load.

A decrease in the dosage or an adjustment of the dosing interval of nilotinib and dasatinib may be necessary for patients requiring co-administration with strong CYP3A inhibitors such as NORVIR. Please refer to the nilotinib and dasatinib prescribing information for dosing instructions.

Anticoagulant: warfarin

↓ R-warfarin
↓↑ S-warfarin

Initial frequent monitoring of the INR during ritonavir and warfarin co-administration is indicated.

Anticonvulsants: carbamazepine, clonazepam, ethosuximide

↑anticonvulsants

Use with caution. A dose decrease may be needed for these drugs when co-administered with ritonavir and therapeutic concentration monitoring is recommended for these anticonvulsants, if available.

Anticonvulsants: divalproex, lamotrigine, phenytoin

↓anticonvulsants

Use with caution. A dose increase may be needed for these drugs when co-administered with ritonavir and therapeutic concentration monitoring is recommended for these anticonvulsants, if available.
Antidepressants

<table>
<thead>
<tr>
<th>Antidepressant</th>
<th>Effect</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nefazodone, selective serotonin reuptake inhibitors (SSRIs): e.g. fluoxetine, paroxetine, tricyclics: e.g. amitriptyline, nortriptyline</td>
<td>↑ antidepressants</td>
<td>A dose decrease may be needed for these drugs when co-administered with ritonavir.</td>
</tr>
<tr>
<td>Bupropion</td>
<td>↓ bupropion, ↓ active metabolite, hydroxybupropion</td>
<td>Concurrent administration of bupropion with ritonavir may decrease plasma levels of both bupropion and its active metabolite (hydroxybupropion). Patients receiving ritonavir and bupropion concurrently should be monitored for an adequate clinical response to bupropion.</td>
</tr>
<tr>
<td>Desipramine</td>
<td>↑ desipramine</td>
<td>Dosage reduction and concentration monitoring of desipramine is recommended.</td>
</tr>
<tr>
<td>Trazodone</td>
<td>↑ trazodone</td>
<td>Concomitant use of trazodone and NORVIR increases plasma concentrations of trazodone. Adverse events of nausea, dizziness, hypotension and syncope have been observed following co-administration of trazodone and NORVIR. If trazodone is used with a CYP3A4 inhibitor such as ritonavir, the combination should be used with caution and a lower dose of trazodone should be considered.</td>
</tr>
<tr>
<td>Dronabinol</td>
<td>↑ dronabinol</td>
<td>A dose decrease of dronabinol may be needed when co-administered with ritonavir.</td>
</tr>
<tr>
<td>Ketoconazole, Itraconazole, Voriconazole</td>
<td>↑ ketoconazole, ↑ itraconazole, ↓ voriconazole</td>
<td>High doses of ketoconazole or itraconazole (> 200 mg/day) are not recommended. Coadministration of voriconazole and ritonavir doses of 400 mg every 12 hours or greater is contraindicated. Coadministration of voriconazole and ritonavir 100 mg should be avoided, unless an assessment of the benefit/risk to the patient justifies the use of voriconazole.</td>
</tr>
<tr>
<td>Colchicine</td>
<td>↑ colchicine</td>
<td>Patients with renal or hepatic impairment should not be given colchicine with ritonavir. Treatment of gout flares-co-administration of colchicine in patients on ritonavir: 0.6 mg (1 tablet) x 1 dose, followed by 0.3 mg (half tablet) 1 hour later. Dose to be repeated no earlier than 3 days. Prophylaxis of gout flares-co-administration of colchicine in patients on ritonavir: If the original colchicine regimen was 0.6 mg twice a day, the regimen should be adjusted to 0.3 mg once a day. If the original colchicine regimen was 0.6 mg once a day, the regimen should be adjusted to 0.3 mg once every other day. Treatment of familial Mediterranean fever (FMF)-co-administration of colchicine in patients on ritonavir: Maximum daily dose of 0.6 mg (may be given as 0.3 mg twice a day).</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>↑ clarithromycin</td>
<td>For patients with renal impairment the following dosage adjustments should be considered: • For patients with CLCR 30 to 60 mL/min the dose of clarithromycin should be reduced by 50%. • For patients with CLCR < 30 mL/min the dose of clarithromycin should be decreased by 75%.</td>
</tr>
</tbody>
</table>
No dose adjustment for patients with normal renal function is necessary.

Antimycobacterial: rifabutin
- **↑**: rifabutin and rifabutin metabolite
 - Dosage reduction of rifabutin by at least three-quarters of the usual dose of 300 mg/day is recommended (e.g., 150 mg every other day or three times a week). Further dosage reduction may be necessary.

Antimycobacterial: rifampin
- **↓**: rifampin
 - May lead to loss of virologic response. Alternate antimycobacterial agents such as rifabutin should be considered (see Antimycobacterial: rifabutin, for dose reduction recommendations).

Antiparasitic: atovaquone
- **↓**: atovaquone
 - Clinical significance is unknown; however, increase in atovaquone dose may be needed.

Antiparasitic: quinine
- **↑**: quinine
 - A dose decrease of quinine may be needed when co-administered with ritonavir.

β-Blockers: metoprolol, timolol
- **↑**: Beta-Blockers
 - Caution is warranted and clinical monitoring of patients is recommended. A dose decrease may be needed for these drugs when co-administered with ritonavir.

Bronchodilator: theophylline
- **↓**: theophylline
 - Increased dosage of theophylline may be required; therapeutic monitoring should be considered.

Calcium channel blockers: diltiazem, nifedipine, verapamil
- **↑**: calcium channel blockers
 - Caution is warranted and clinical monitoring of patients is recommended. A dose decrease may be needed for these drugs when co-administered with ritonavir.

Digoxin
- **↑**: digoxin
 - Concomitant administration of ritonavir with digoxin may increase digoxin levels. Caution should be exercised when coadministering ritonavir with digoxin, with appropriate monitoring of serum digoxin levels.

Endothelin receptor antagonists: bosentan
- **↑**: bosentan
 - Co-administration of bosentan in patients on ritonavir:
 - In patients who have been receiving ritonavir for at least 10 days, start bosentan at 62.5 mg once daily or every other day based upon individual tolerability.

 Co-administration of ritonavir in patients on bosentan:
 - Discontinue use of bosentan at least 36 hours prior to initiation of ritonavir.
 - After at least 10 days following the initiation of ritonavir, resume bosentan at 62.5 mg once daily or every other day based upon individual tolerability.

HMG-CoA Reductase Inhibitor:
- **↑**: atorvastatin
 - Use the lowest possible dose of atorvastatin or rosuvastatin with careful monitoring or consider other HMG-CoA reductase inhibitors such as pravastatin or fluvastatin in combination with NORVIR.

Immunosuppressants:
- **↑**: immunosuppressants
 - Therapeutic concentration monitoring is recommended for immunosuppressant agents when co-administered with ritonavir.

Inhaled Steroid:
- **↑**: fluticasone
 - Concomitant use of fluticasone propionate and NORVIR increases plasma concentrations of fluticasone propionate, resulting in significantly reduced serum cortisol concentrations. Co-administration of fluticasone propionate and NORVIR is not recommended unless the potential benefit to the patient outweighs the risk of systemic corticosteroid side effects.

Long-acting beta-adrenoceptor agonist:
- **↑**: salmeterol
 - Concurrent administration of salmeterol and ritonavir is not recommended. The combination may result in increased risk of cardiovascular adverse events associated with salmeterol, including QT prolongation, palpitations and sinus tachycardia.

Narcotic Analgesic:
- **↑**: methadone
 - Dosage increase of methadone may be considered.
- **↑**: fentanyl
 - Concentrations of fentanyl are expected to increase. Careful monitoring of therapeutic and adverse effects (including potentially fatal respiratory depression) is recommended when fentanyl is concomitantly administered with NORVIR.

Neuroleptics:
- **↑**: neuroleptics
 - A dose decrease may be needed for these drugs when co-administered with ritonavir.
| Oral Contraceptives or Patch Contraceptives: ethinyl estradiol | ↓ ethinyl estradiol | A pharmacokinetic study demonstrated that the concomitant administration of ritonavir 500 mg q. 12h. and a fixed-combination oral contraceptive resulted in reductions of the ethinyl estradiol mean C_{max} and mean AUC by 32% and 40%, respectively. Alternate methods of contraception should be considered.

| PDE5 Inhibitors: sildenafil, tadalafil, vardenafil | ↑ sildenafil ↑ tadalafil ↑ vardenafil | Particular caution should be used when prescribing sildenafil, tadalafil or vardenafil in patients receiving ritonavir. Co-administration of ritonavir with these drugs is expected to substantially increase their concentrations and may result in an increase in PDE5 inhibitor associated adverse events, including hypotension, syncope, visual changes, and prolonged erection.

Use of PDE5 inhibitors for pulmonary arterial hypertension (PAH):

Sildenafil (Revatio®) is contraindicated when used for the treatment of pulmonary arterial hypertension (PAH) because a safe and effective dose has not been established when used with ritonavir (see CONTRAINDICATIONS and PRECAUTIONS - Drug Interactions, Table 5).

The following dose adjustments are recommended for use of tadalafil (Adcirca™) with ritonavir:

Co-administration of ADCIRCA in patients on ritonavir:

In patients receiving ritonavir for at least one week, start ADCIRCA at 20 mg once daily. Increase to 40 mg once daily based upon individual tolerability.

Co-administration of ritonavir in patients on ADCIRCA:

Avoid use of ADCIRCA during the initiation of ritonavir. Stop ADCIRCA at least 24 hours prior to starting ritonavir. After at least one week following the initiation of ritonavir, resume ADCIRCA at 20 mg once daily. Increase to 40 mg once daily based upon individual tolerability.

Use of PDE5 inhibitors for the treatment of erectile dysfunction:

It is recommended not to exceed the following doses:

- Sildenafil: 25 mg every 48 hours
- Tadalafil: 10 mg every 72 hours
- Vardenafil: 2.5 mg every 72 hours.

Use with increased monitoring for adverse events.

| Sedative/hypnotics: buspirone, clorazepate, diazepam, estazolam, flurazepam, zolpidem | ↑ sedative/hypnotics | A dose decrease may be needed for these drugs when co-administered with ritonavir.

| Sedative/hypnotics: Parenteral midazolam | ↑ midazolam | Co-administration of oral midazolam with NORVIR is CONTRAINDICATED. Concomitant use of parenteral midazolam with NORVIR may increase plasma concentrations of midazolam. Co-administration should be done in a setting which ensures close clinical monitoring and appropriate medical management in case of respiratory depression and/or prolonged sedation. Dosage reduction for midazolam should be considered, especially if more than a single dose of midazolam is administered.

| Steroids: dexamethasone, fluticasone, prednisone | | A dose decrease may be needed for these drugs when co-administered with ritonavir.

| Stimulant: methamphetamine | ↑ methamphetamine | Use with caution. A dose decrease of methamphetamine may be needed when co-administered with ritonavir. |
Carcinogenesis and Mutagenesis

Carcinogenicity studies in mice and rats have been carried out on ritonavir. In male mice, at levels of 50, 100 or 200 mg/kg/day, there was a dose dependent increase in the incidence of both adenomas and combined adenomas and carcinomas in the liver. Based on AUC measurements, the exposure at the high dose was approximately 0.3-fold for males that of the exposure in humans with the recommended therapeutic dose (600 mg twice-daily). There were no carcinogenic effects seen in females at the dosages tested. The exposure at the high dose was approximately 0.6-fold for the females that of the exposure in humans. In rats dosed at levels of 7, 15 or 30 mg/kg/day there were no carcinogenic effects. In this study, the exposure at the high dose was approximately 6% that of the exposure in humans with the recommended therapeutic dose. Based on the exposures achieved in the animal studies, the significance of the observed effects is not known. However, ritonavir was found to be negative for mutagenic or clastogenic activity in a battery of in vitro and in vivo assays including the Ames bacterial reverse mutation assay using S. typhimurium and E. coli, the mouse lymphoma assay, the mouse micronucleus test and chromosomal aberration assays in human lymphocytes.

Pregnancy, Fertility, and Reproduction

Pregnancy Category B

There are no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if clearly needed.

Ritonavir produced no effects on fertility in rats at drug exposures approximately 40% (male) and 60% (female) of that achieved with the proposed therapeutic dose. Higher dosages were not feasible due to hepatic toxicity.

No treatment related malformations were observed when ritonavir was administered to pregnant rats or rabbits. Developmental toxicity observed in rats (early resorptions, decreased fetal body weight and ossification delays and developmental variations) occurred at a maternally toxic dosage at an exposure equivalent to approximately 30% of that achieved with the proposed therapeutic dose. A slight increase in the incidence of cryptorchidism was also noted in rats at an exposure approximately 22% of that achieved with the proposed therapeutic dose.

Developmental toxicity observed in rabbits (resorptions, decreased litter size and decreased fetal weights) also occurred at a maternally toxic dosage equivalent to 1.8 times the proposed therapeutic dose based on a body surface area conversion factor.

Antiretroviral Pregnancy Registry

To monitor maternal-fetal outcomes of pregnant women exposed to NORVIR, an Antiretroviral Pregnancy Registry has been established. Physicians are encouraged to register patients by calling 1-800-258-4263.

Nursing Mothers

The Centers for Disease Control and Prevention recommend that HIV-infected mothers not breast-feed their infants to avoid risking postnatal transmission of HIV. It is not known whether ritonavir is secreted in human milk. Because of both the potential for HIV transmission and the potential for serious adverse reactions in nursing infants, mothers should be instructed not to breast-feed if they are receiving NORVIR.
Pediatric Use

In HIV-infected patients age > 1 month to 21 years, the antiviral activity and adverse event profile seen during clinical trials and through postmarketing experience were similar to that for adult patients.

Geriatric Use

Clinical studies of NORVIR did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal or cardiac function, and of concomitant disease or other drug therapy.

ADVERSE REACTIONS

When co-administering NORVIR with other protease inhibitors, see the full prescribing information for that protease inhibitor including ADVERSE REACTIONS.

Adults

The safety of NORVIR alone and in combination with nucleoside reverse transcriptase inhibitors was studied in 1270 adult patients. Table 7 lists treatment-emergent adverse events (at least possibly related and of at least moderate intensity) that occurred in 2% or greater of adult patients receiving NORVIR alone or in combination with nucleoside reverse transcriptase inhibitors in Study 245 or Study 247 and in combination with saquinavir in study 462. In that study, 141 protease inhibitor-naive, HIV-infected patients with mean baseline CD4 of 300 cells/µL were randomized to one of four regimens of NORVIR + saquinavir, including NORVIR 400 mg twice-daily + saquinavir 400 mg twice-daily. Overall the most frequently reported clinical adverse events, other than asthenia, among adult patients receiving NORVIR were gastrointestinal and neurological disturbances including nausea, diarrhea, vomiting, anorexia, abdominal pain, taste perversion, and circumoral and peripheral paresthesias. Similar adverse event profiles were reported in adult patients receiving ritonavir in other trials.

Table 7. Percentage of Patients with Treatment-emergent Adverse Events\(^1\) of Moderate or Severe Intensity Occurring in \(\geq 2\%\) of Adult Patients Receiving NORVIR

<table>
<thead>
<tr>
<th>Adverse Events</th>
<th>Study 245 Naive Patients(^2)</th>
<th>Study 247 Advanced Patients(^3)</th>
<th>Study 462 PI-Naive Patients(^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NORVIR + ZDV n = 116</td>
<td>NORVIR n = 117</td>
<td>ZDV n = 119</td>
</tr>
<tr>
<td>Abdominal Pain</td>
<td>5.2</td>
<td>6.0</td>
<td>5.9</td>
</tr>
<tr>
<td>Asthenia</td>
<td>28.4</td>
<td>10.3</td>
<td>11.8</td>
</tr>
<tr>
<td>Fever</td>
<td>1.7</td>
<td>0.9</td>
<td>1.7</td>
</tr>
<tr>
<td>Headache</td>
<td>7.8</td>
<td>6.0</td>
<td>6.7</td>
</tr>
<tr>
<td>Malaise</td>
<td>5.2</td>
<td>1.7</td>
<td>3.4</td>
</tr>
<tr>
<td>Pain (unspecified)</td>
<td>0.9</td>
<td>1.7</td>
<td>0.8</td>
</tr>
<tr>
<td>Syncope</td>
<td>0.9</td>
<td>1.7</td>
<td>0.8</td>
</tr>
<tr>
<td>Vasodilation</td>
<td>3.4</td>
<td>1.7</td>
<td>0.8</td>
</tr>
<tr>
<td>Category</td>
<td>Event</td>
<td>Event 1</td>
<td>Event 2</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Digestive</td>
<td>Anorexia</td>
<td>8.6</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>Constipation</td>
<td>3.4</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Diarrhea</td>
<td>25.0</td>
<td>15.4</td>
</tr>
<tr>
<td></td>
<td>Dyspepsia</td>
<td>2.6</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Fecal Incontinence</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Flatulence</td>
<td>2.6</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>Local Throat Irritation</td>
<td>0.9</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>Nausea</td>
<td>46.6</td>
<td>25.6</td>
</tr>
<tr>
<td></td>
<td>Vomiting</td>
<td>23.3</td>
<td>13.7</td>
</tr>
<tr>
<td>Metabolic and Nutritional</td>
<td>Weight Loss</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>Arthralgia</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Myalgia</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Nervous</td>
<td>Anxiety</td>
<td>0.9</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Circumoral Paresthesia</td>
<td>5.2</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>Confusion</td>
<td>0.0</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>Depression</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>Dizziness</td>
<td>5.2</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>Insomnia</td>
<td>3.4</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>Paresthesia</td>
<td>5.2</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>Peripheral Paresthesia</td>
<td>0.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>Somnolence</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>Thinking Abnormal</td>
<td>2.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Respiratory</td>
<td>Pharyngitis</td>
<td>0.9</td>
<td>2.6</td>
</tr>
<tr>
<td>Skin and Appendages</td>
<td>Rash</td>
<td>0.9</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Sweating</td>
<td>3.4</td>
<td>2.6</td>
</tr>
<tr>
<td>Special Senses</td>
<td>Taste Perversion</td>
<td>17.2</td>
<td>11.1</td>
</tr>
<tr>
<td>Urogenital</td>
<td>Nocturia</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

1 Includes those adverse events at least possibly related to study drug or of unknown relationship and excludes concurrent HIV conditions.
2 The median duration of treatment for patients randomized to regimens containing NORVIR in Study 245 was 9.1 months.
3 The median duration of treatment for patients randomized to regimens containing NORVIR in Study 247 was 9.4 months.
4 The median duration of treatment for patients in Study 462 was 48 weeks.

Adverse events occurring in less than 2% of adult patients receiving NORVIR in all phase II/phase III studies and considered at least possibly related or of unknown relationship to treatment and of at least moderate intensity are listed below by body system.

Body as a Whole

Abdomen enlarged, accidental injury, allergic reaction, back pain, cachexia, chest pain, chills, facial edema, facial pain, flu syndrome, hormone level altered, hypothermia, kidney pain, neck pain, neck rigidity, pelvic pain, photosensitivity reaction, and substernal chest pain.
Cardiovascular System
Cardiovascular disorder, cerebral ischemia, cerebral venous thrombosis, hypertension, hypotension, migraine, myocardial infarct, palpitation, peripheral vascular disorder, phlebitis, postural hypotension, tachycardia and vasospasm.

Digestive System
Abnormal stools, bloody diarrhea, cheilitis, cholestatic jaundice, colitis, dry mouth, dysphagia, eructation, esophageal ulcer, esophagitis, gastritis, gastroenteritis, gastrointestinal disorder, gastrointestinal hemorrhage, gingivitis, hepatic coma, hepatitis, hepatomegaly, hepatosplenomegaly, ileus, liver damage, melena, mouth ulcer, pancreatitis, pseudomembranous colitis, rectal disorder, rectal hemorrhage, sialadenitis, stomatitis, tenesmus, thirst, tongue edema, and ulcerative colitis.

Endocrine System
Adrenal cortex insufficiency and diabetes mellitus.

Hemic and Lymphatic System
Acute myeloblastic leukemia, anemia, ecchymosis, leukopenia, lymphadenopathy, lymphocytosis, myeloproliferative disorder, and thrombocytopenia.

Metabolic and Nutritional Disorders
Albuminuria, alcohol intolerance, avitaminosis, BUN increased, dehydration, edema, enzymatic abnormality, glycosuria, gout, hypercholesteremia, peripheral edema, and xanthomatosis.

Musculoskeletal System
Arthritis, arthrosis, bone disorder, bone pain, extraocular palsy, joint disorder, leg cramps, muscle cramps, muscle weakness, myositis, and twitching.

Nervous System
Abnormal dreams, abnormal gait, agitation, amnesia, aphasia, ataxia, coma, convulsion, dementia, depersonalization, diplopia, emotional lability, euphoria, grand mal convulsion, hallucinations, hyperesthesia, hyperkinesia, hypesthesia, incoordination, libido decreased, manic reaction, nervousness, neuralgia, neuropathy, paralysis, peripheral neuropathic pain, peripheral neuropathy, peripheral sensory neuropathy, personality disorder, sleep disorder, speech disorder, stupor, subdural hematoma, tremor, urinary retention, vertigo, and vestibular disorder.

Respiratory System
Asthma, bronchitis, dyspnea, epistaxis, hiccup, hypoventilation, increased cough, interstitial pneumonia, larynx edema, lung disorder, rhinitis, and sinusitis.
Skin and Appendages

Acne, contact dermatitis, dry skin, eczema, erythema multiforme, exfoliative dermatitis, folliculitis, fungal dermatitis, furunculosis, maculopapular rash, molluscum contagiosum, onychomycosis, pruritus, psoriasis, pustular rash, seborrhea, skin discoloration, skin disorder, skin hypertrophy, skin melanoma, urticaria, and vesiculobullous rash.

Special Senses

Abnormal electro-oculogram, abnormal electroretinogram, abnormal vision, amblyopia/blurred vision, blepharitis, conjunctivitis, ear pain, eye disorder, eye pain, hearing impairment, increased cerumen, iritis, parosmia, photophobia, taste loss, tinnitus, uveitis, visual field defect, and vitreous disorder.

Urogenital System

Acute kidney failure, breast pain, cystitis, dysuria, hematuria, impotence, kidney calculus, kidney failure, kidney function abnormal, kidney pain, menorrhagia, penis disorder, polyuria, urethritis, urinary frequency, urinary tract infection, and vaginitis.

Post-Marketing Experience

The following adverse events have been reported during post-marketing use of NORVIR. Because these reactions are reported voluntarily from a population of unknown size, it is not possible to reliably estimate their frequency or establish a causal relationship to NORVIR exposure.

Body as a Whole

Dehydration, usually associated with gastrointestinal symptoms, and sometimes resulting in hypotension, syncope, or renal insufficiency has been reported. Syncope, orthostatic hypotension, and renal insufficiency have also been reported without known dehydration.

Co-administration of ritonavir with ergotamine or dihydroergotamine has been associated with acute ergot toxicity characterized by vasospasm and ischemia of the extremities and other tissues including the central nervous system.

Redistribution/accumulation of body fat has been reported (see PRECAUTIONS - Fat Redistribution).

Cardiovascular System

First –degree AV block, second-degree AV block, third-degree AV block, right bundle branch block have been reported (See PRECAUTIONS – PR Interval Prolongation).

Cardiac and neurologic events have been reported when ritonavir has been co-administered with disopyramide, mexiletine, nefazodone, fluoxetine, and beta blockers. The possibility of drug interaction cannot be excluded.
Endocrine System

Cushing's syndrome and adrenal suppression have been reported when ritonavir has been co-administered with fluticasone propionate.

Hemic and Lymphatic System

There have been reports of increased bleeding in patients with hemophilia A or B (see PRECAUTIONS - Hemophilia).

Nervous System

There have been postmarketing reports of seizure. Also, see Cardiovascular System.

Skin and subcutaneous tissue disorders

Toxic epidermal necrolysis (TEN) has been reported.

Laboratory Abnormalities

Table 8 shows the percentage of adult patients who developed marked laboratory abnormalities.

Table 8. Percentage of Adult Patients, by Study and Treatment Group, with Chemistry and Hematology Abnormalities Occurring in > 3% of Patients Receiving NORVIR

<table>
<thead>
<tr>
<th>Variable</th>
<th>Limit</th>
<th>Study 245 Naive Patients</th>
<th>Study 247 Advanced Patients</th>
<th>Study 462PI-Naive Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NORVIR + ZDV</td>
<td>NORVIR</td>
<td>ZDV</td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholesterol</td>
<td>> 240 mg/dL</td>
<td>30.7</td>
<td>44.8</td>
<td>9.3</td>
</tr>
<tr>
<td>CPK</td>
<td>> 1000 IU/L</td>
<td>9.6</td>
<td>12.1</td>
<td>11.0</td>
</tr>
<tr>
<td>GGT</td>
<td>> 300 IU/L</td>
<td>1.8</td>
<td>5.2</td>
<td>1.7</td>
</tr>
<tr>
<td>SGOT (AST)</td>
<td>> 180 IU/L</td>
<td>5.3</td>
<td>9.5</td>
<td>2.5</td>
</tr>
<tr>
<td>SGPT (ALT)</td>
<td>> 215 IU/L</td>
<td>5.3</td>
<td>7.8</td>
<td>3.4</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>> 800 mg/dL</td>
<td>9.6</td>
<td>17.2</td>
<td>3.4</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>> 1500 mg/dL</td>
<td>1.8</td>
<td>2.6</td>
<td>-</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>Fasting</td>
<td>1.5</td>
<td>1.3</td>
<td>-</td>
</tr>
<tr>
<td>Uric Acid</td>
<td>> 12 mg/dL</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hematology</td>
<td>Low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematocrit</td>
<td>< 30%</td>
<td>2.6</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>< 8.0 g/dL</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>≤ 0.5 x 10⁹/L</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RBC</td>
<td>< 3.0 x 10¹²/L</td>
<td>1.8</td>
<td>-</td>
<td>5.9</td>
</tr>
<tr>
<td>WBC</td>
<td>< 2.5 x 10⁹/L</td>
<td>-</td>
<td>0.9</td>
<td>6.8</td>
</tr>
</tbody>
</table>

- Indicates no events reported.
Pediatrics

Treatment-Emergent Adverse Events

NORVIR has been studied in 265 pediatric patients > 1 month to 21 years of age. The adverse event profile observed during pediatric clinical trials was similar to that for adult patients.

Vomiting, diarrhea, and skin rash/allergy were the only drug-related clinical adverse events of moderate to severe intensity observed in $\geq 2\%$ of pediatric patients enrolled in NORVIR clinical trials.

Laboratory Abnormalities

The following Grade 3-4 laboratory abnormalities occurred in $> 3\%$ of pediatric patients who received treatment with NORVIR either alone or in combination with reverse transcriptase inhibitors: neutropenia (9%), hyperamylasemia (7%), thrombocytopenia (5%), anemia (4%), and elevated AST (3%).

OVERDOSAGE

Acute Overdosage

Human Overdose Experience

Human experience of acute overdose with NORVIR is limited. One patient in clinical trials took NORVIR 1500 mg/day for two days. The patient reported paresthesias which resolved after the dose was decreased. A post-marketing case of renal failure with eosinophilia has been reported with ritonavir overdose.

The approximate lethal dose was found to be greater than 20 times the related human dose in rats and 10 times the related human dose in mice.

Management of Overdosage

NORVIR oral solution contains 43% alcohol by volume. Accidental ingestion of the product by a young child could result in significant alcohol-related toxicity and could approach the potential lethal dose of alcohol.

Treatment of overdose with NORVIR consists of general supportive measures including monitoring of vital signs and observation of the clinical status of the patient. There is no specific antidote for overdose with NORVIR. If indicated, elimination of unabsorbed drug should be achieved by emesis or gastric lavage; usual precautions should be observed to maintain the airway. Administration of activated charcoal may also be used to aid in removal of unabsorbed drug. Since ritonavir is extensively metabolized by the liver and is highly protein bound, dialysis is unlikely to be beneficial in significant removal of the drug. A Certified Poison Control Center should be consulted for up-to-date information on the management of overdose with NORVIR.

DOSAGE AND ADMINISTRATION

NORVIR is administered orally. It is recommended that NORVIR be taken with meals if possible. Patients may improve the taste of NORVIR oral solution by mixing with chocolate milk, Ensure®, or Advera® within one hour of dosing. The effects of antacids on the absorption of ritonavir have not been studied.
Adults

Recommended Dosage

The recommended dosage of ritonavir is 600 mg twice daily by mouth. Use of a dose titration schedule may help to reduce treatment-emergent adverse events while maintaining appropriate ritonavir plasma levels. Ritonavir should be started at no less than 300 mg twice daily and increased at 2 to 3 day intervals by 100 mg twice daily.

Dose modification for NORVIR

Dose reduction of NORVIR is necessary when used with other protease inhibitors: amprenavir, atazanavir, darunavir, fosamprenavir, saquinavir, and tipranavir. Prescribers should consult the full prescribing information and clinical study information of these protease inhibitors if they are co-administered with a reduced dose of ritonavir (See also, **WARNINGS-Drug Interactions** and **Table 6, Established and Other Potentially Significant Drug Interactions.**)

Pediatric Patients

Ritonavir should be used in combination with other antiretroviral agents (see **General Dosing Guidelines**). The recommended dosage of ritonavir in children > 1 month is 350 to 400 mg/m² twice daily by mouth and should not exceed 600 mg twice daily. Ritonavir should be started at 250 mg/m² and increased at 2 to 3 day intervals by 50 mg/m² twice daily. If patients do not tolerate 400 mg/m² twice daily due to adverse events, the highest tolerated dose may be used for maintenance therapy in combination with other antiretroviral agents, however, alternative therapy should be considered. When possible, dose should be administered using a calibrated dosing syringe.

<table>
<thead>
<tr>
<th>Body Surface Area (m²)</th>
<th>Twice Daily Dose 250 mg/m²</th>
<th>Twice Daily Dose 300 mg/m²</th>
<th>Twice Daily Dose 350 mg/m²</th>
<th>Twice Daily Dose 400 mg/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>0.6 mL (50 mg)</td>
<td>0.75 mL (60 mg)</td>
<td>0.9 mL (70 mg)</td>
<td>1.0 mL (80 mg)</td>
</tr>
<tr>
<td>0.25</td>
<td>0.8 mL (62.5 mg)</td>
<td>0.9 mL (75 mg)</td>
<td>1.1 mL (87.5 mg)</td>
<td>1.25 mL (100 mg)</td>
</tr>
<tr>
<td>0.50</td>
<td>1.6 mL (125 mg)</td>
<td>1.9 mL (150 mg)</td>
<td>2.2 mL (175 mg)</td>
<td>2.5 mL (200 mg)</td>
</tr>
<tr>
<td>0.75</td>
<td>2.3 mL (187.5 mg)</td>
<td>2.8 mL (225 mg)</td>
<td>3.3 mL (262.5 mg)</td>
<td>3.75 mL (300 mg)</td>
</tr>
<tr>
<td>1.00</td>
<td>3.1 mL (250 mg)</td>
<td>3.75 mL (300 mg)</td>
<td>4.4 mL (350 mg)</td>
<td>5 mL (400 mg)</td>
</tr>
<tr>
<td>1.25</td>
<td>3.9 mL (312.5 mg)</td>
<td>4.7 mL (375 mg)</td>
<td>5.5 mL (437.5 mg)</td>
<td>6.25 mL (500 mg)</td>
</tr>
<tr>
<td>1.50</td>
<td>4.7 mL (375 mg)</td>
<td>5.6 mL (450 mg)</td>
<td>6.6 mL (525 mg)</td>
<td>7.5 mL (600 mg)</td>
</tr>
</tbody>
</table>

Body surface area (BSA) can be calculated as follows:

\[
\text{BSA (m²)} = \sqrt{\frac{\text{Ht (Cm)} \times \text{Wt (kg)}}{3600}}
\]
General Dosing Guidelines

Patients should be aware that frequently observed adverse events, such as mild to moderate gastrointestinal disturbances and paraesthesias, may diminish as therapy is continued. In addition, patients initiating combination regimens with NORVIR and reverse transcriptase inhibitors may improve gastrointestinal tolerance by initiating NORVIR alone and subsequently adding reverse transcriptase inhibitors before completing two weeks of NORVIR monotherapy.

HOW SUPPLIED

NORVIR (ritonavir capsules) soft gelatin are white capsules imprinted with the corporate Abbott “A” logo, 100 and the Abbo-Code DS, available in the following package size:

Bottles of 120 capsules each (NDC 0074-6633-22).

Bottles of 30 capsules each (NDC 0074-6633-30).

Recommended Storage

Store soft gelatin capsules in the refrigerator between 2°-8°C (36°-46°F) until dispensed. Refrigeration of NORVIR soft gelatin capsules by the patient is recommended, but not required if used within 30 days and stored below 25°C (77°F). Protect from light. Avoid exposure to excessive heat.

NORVIR (ritonavir oral solution) is an orange-colored liquid, supplied in amber-colored, multi-dose bottles containing 600 mg ritonavir per 7.5 mL marked dosage cup (80 mg/mL) in the following size:

240 mL bottles (NDC 0074-1940-63).

Recommended Storage

Store NORVIR oral solution at room temperature 20°-25°C (68°-77°F). Do not refrigerate. Shake well before each use. Use by product expiration date.

Product should be stored and dispensed in the original container.

Avoid exposure to excessive heat. Keep cap tightly closed.

REFERENCES

Norvir 100 mg capsules are manufactured for:

Abbott Laboratories
North Chicago, IL 60064 U.S.A
Norvir Oral Solution is manufactured by:

Abbott Laboratories
North Chicago, IL 60064 U.S.A.

Rev. 12/2011
Read this Patient Information before you start taking NORVIR and each time you get a refill. There may be new information. This information does not take the place of talking to your doctor about your medical condition or your treatment.

What is the most important information I should know about NORVIR?

- **NORVIR can interact with other medicines and cause serious side effects.** It is important to know the medicines that should not be taken with NORVIR. See the section “Who should not take NORVIR?”

What is NORVIR?

NORVIR is a prescription anti-HIV medicine used with other anti-HIV medicines to treat people with human immunodeficiency virus (HIV) infection. NORVIR is a type of anti-HIV medicine called a protease inhibitor. HIV is the virus that causes AIDS (Acquired Immune Deficiency Syndrome).

When used with other HIV medicines, NORVIR may reduce the amount of HIV in your blood (called “viral load”). NORVIR may also help to increase the number of CD4 (T) cells in your blood which help fight off other infections. Reducing the amount of HIV and increasing the CD4 (T) cell count may improve your immune system. This may reduce your risk of death or infections that can happen when your immune system is weak (opportunistic infections). Patients who took NORVIR in clinical studies had significant reductions in both death and AIDS defining diseases; however NORVIR may not have these effects in all patients.

NORVIR does not cure HIV infection or AIDS. People taking NORVIR may still develop infections or other conditions associated with HIV infection. Some of these conditions are pneumonia, herpes virus infections, and Mycobacterium avium complex (MAC) infections.

Patients must stay on continuous HIV treatment to control infection and decrease HIV-related illnesses. Always practice safer sex by using a latex or polyurethane condom to lower the chance of sexual contact with any body fluids such as semen, vaginal secretions, or blood. Never re-use or share needles.

Ask your doctor if you have any questions on how to prevent passing HIV to other people.

Who should not take NORVIR?
Do not take NORVIR if you are allergic to ritonavir or any of the ingredients in NORVIR. See the end of this leaflet for a complete list of ingredients in NORVIR.

Do not take NORVIR with any of the following medicines:

- alfuzosin (Uroxatral)
- amiodarone (Cordarone, Nexterone, Pacerone), flecainide (Tambocor), propafenone (Rhythmol) or quinidine (Nuedext, Quinaglute, Cardioquin, Quinidex, and others)
- voriconazole (VFEnd) if Norvir dose is 400 mg every 12 hours or greater
- dihydroergotamine (D.H.E. 45, Embolex, Migranal), ergonovine, ergotamine (Cafergot, Ergomar) methylergonovine (Methergine)
- cisapride (Propulsid)
- St. John’s Wort (Hypericum perforatum)
- the cholesterol lowering medicines lovastatin (Mevacor, Altoprev, Advicor) or simvastatin (Zocor, Simcor, Vytorin)
- pimozide (Orap)
- sildenafil (Revatio) only when used for the treatment of pulmonary arterial hypertension
- oral midazolam or triazolam (Halcion)

Serious problems can happen if you or your child takes any of these medicines with NORVIR.

What should I tell my doctor before taking NORVIR?

Before taking NORVIR, tell your doctor if you:

- have liver problems, including Hepatitis B or Hepatitis C.
- have heart problems
- have high blood sugar (diabetes).
- have bleeding problems or hemophilia.
- are pregnant or plan to become pregnant. It is not known if NORVIR can harm your unborn baby. **Pregnancy Registry:** You and your doctor will need to decide if taking NORVIR is right for you. If you take NORVIR while you are pregnant, talk to your doctor about how you can take part in the Antiretroviral Pregnancy Registry. The purpose of the registry is to follow the health of you and your baby.
- are breastfeeding or plan to breastfeed. Do not breastfeed if you are taking NORVIR. You should not breastfeed if you have HIV because of the chance of passing HIV to your baby. Talk with your doctor about the best way to feed your baby. The Centers for Disease Control and Prevention (CDC) recommends that HIV-infected mothers not breastfeed to avoid the risk of passing HIV infection to your baby.

Tell your doctor about all the medicines you take including prescription and nonprescription medicines, vitamins, and herbal supplements. Taking NORVIR and certain other medicines may affect each other causing serious side effects. NORVIR may affect the way other medicines work and other medicines may affect how NORVIR works.
Especially tell your doctor if you take:

- medicine to treat HIV
- estrogen-based contraceptives (birth control). NORVIR might reduce the effectiveness of estrogen-based contraceptives. You must take additional precautions for birth control such as a condom.
- medicine for pain such as tramadol (Ryzolt, Ultracet, Conzip, Ultram), propoxyphene, or meperidine (Demerol),
- medicine to treat alcohol abuse such as disulfiram (Antabuse)
- medicine for your heart such as disopyramide (Norpace), lidocaine (Xylocaine Viscous), mexiletine, digoxin (Lanoxin), nifedipine (Procardia, Adalat, Afeditab CR), diltiazem (Cardiem, Dilacor, Cartia, Diltzac, Dilt, Taztia, Tiazac) or verapamil (Calan, COVERA, Isoptin, Tarka, Verelan)
- medicines for panic disorder or anxiety such as buspirone, clorazepate, diazepam, estazolam, flurazepam, and zolpidem
- medicine for cancer such as dasatinib (Sprycel), nilotinib (Tasigna) vincristine, or vinblastine
- warfarin (Coumadin, Jantoven)
- medicine for seizures such as carbamazepine (Carbatrol, Equetro, Tegretol, Epitol), clonazepam (Klonopin), ethosuximide (Zarontin, Ethosuximide), divalproex (Depakote, Divalproex Sodium), lamotrigine (Lamictal) or phenytoin (Dilantin, Phenytek)
- medicine for depression such as nefazodone, bupropion (Wellbutrin, Aplenzin, Zyban), desipramine (Norpramin) or trazadone, fluoxetine (Prozac), paroxetine (Paxil), amitriptyline, or nortriptyline
- medicine for nausea and vomiting such as dronabinol (Marinol) or perphenazine
- medicine for fungal infections such as ketoconazole (Nizoral), itraconazole (Sporanox, Onmel) or voriconazole (VFend)
- colchicine (Colcrys, Col-Probenecid, Probenecid and Colchicine)
- medicine for infections such as clarithromycin (Prevpac, Biaxin), rifabutin (Mycobutin), rifampin (Rimactane, Rifadin, Rifater, Rifamate), atovaquone (Mepron, Malarone), quinine (Qualaquin) or metronidazole (Flagyl, Helidac, Metrocream)
- medicine used to treat blood pressure, a heart attack, heart failure, or to lower pressure in the eye such as metoprolol (Lopressor, Toprol-XL), timolol (Cosopt, Betimol, Timoptic, Isotolol, Combigan)
- medicine for lung disease such as theophylline and salmeterol (Serevent)
- bosentan (Tracleer)
- medicine to prevent organ transplant failure such as cyclosporine (Gengraf, Sandimmune, Neoral), tacrolimus (Prograf), sirolimus (Rapamune)
- steroids such as dexamethasone, fluticasone (Advair Diskus, Veramyst, Flovent, Flonase) or prednisone
- a narcotic medicine such as methadone (Methadose, Dolophine Hydrochloride) or fentanyl (Abstral, Actiq, Fentora, Lazanda, Onsolis, Duragesic)
- medicine to treat schizophrenia such as risperidone (Risperdal) or thioridazine
• medicine to treat erectile dysfunction or pulmonary hypertension such as sildenafil (Viagra, Revatio), vardenafil (Levitra, Staxyn), tadalafil (Cialis, Adcirca)

• midazolam by injection

• methamphetamine (Desoxyn)

• cholesterol lowering medicine such as atorvastatin (Lipitor) or rosuvasatin (Crestor)

This is not a complete list of medicines that you should tell your doctor that you are taking. Ask your doctor provider or pharmacist if you are not sure if your medicine is one that is listed above.

Know the medicines you take. Keep a list of them to show your doctor or pharmacist when you get a new medicine. Do not start any new medicines while you are taking NORVIR without first talking with your doctor.

How should I take NORVIR?

• Take NORVIR exactly as prescribed by your doctor.

• You should stay under a doctor's care when taking NORVIR. Do not change your dose of NORVIR or stop treatment without talking with your doctor first.

• If your child is taking NORVIR, your child’s doctor will decide the right dose based on your child's height and weight. Tell your doctor if your child’s weight changes. Your child should take NORVIR with food. If your child does not tolerate NORVIR Oral Solution, ask your child’s doctor for advice.

• Take NORVIR with food if possible.

• NORVIR Oral Solution is peppermint or caramel flavored. You can take it alone, or may improve the taste by mixing it with 8 ounces of chocolate milk, Ensure®, or Advera®. NORVIR oral solution should be taken within 1 hour if mixed with these fluids. Ask your doctor, nurse or pharmacist about other ways to improve the taste of NORVIR Oral Solution.

• Do not run out of NORVIR. Get your NORVIR prescription refilled from your doctor or pharmacy before you run out.

• If you miss a dose of NORVIR, take it as soon as possible and then take your next scheduled dose at its regular time. If it is almost time for your next dose, wait and take the next dose at the regular time. Do not double the next dose.

• If you take too much NORVIR, call your local poison control center or go to the nearest hospital emergency room right away.

What are the possible side effects of NORVIR?

NORVIR can cause serious side effects including:

• See “What is the most important information I should know about NORVIR?”

• Liver disease. Some people taking NORVIR in combination with other anti-HIV medicines have developed liver problems which may be life-threatening. Your doctor should do regular blood tests during your combination treatment with NORVIR. If you have chronic hepatitis B or C infection, your doctor should check your blood tests more often because you have an increased chance of developing liver problems. Tell your doctor if you have any of the below signs and symptoms of liver problems:

 • loss of appetite
• pain or tenderness on your right side below your ribs
• yellowing of your skin or whites of your eyes
• itchy skin

• **Swelling of your pancreas (Pancreatitis).** NORVIR can cause serious pancreas problems, which may lead to death. Tell your doctor right away if you have signs or symptoms of pancreatitis such as:
 • nausea
 • vomiting
 • stomach (abdominal) pain

• **Allergic Reactions.** Sometimes these allergic reactions can become severe and require treatment in a hospital. You should call your doctor right away if you develop a rash. Stop taking NORVIR and get medical help right away if you have any of the following symptoms of a severe allergic reaction:
 • trouble breathing
 • wheezing
 • dizziness or fainting
 • throat tightness or hoarseness
 • fast heartbeat or pounding in your chest (tachycardia)
 • sweating
 • swelling of your face, lips or tongue
 • muscle or joint pain
 • blisters or skin lesions
 • mouth sores or ulcers

• **Changes in the electrical activity of your heart called PR prolongation.** PR prolongation can cause irregular heartbeats. Tell your doctor right away if you have symptoms such as:
 • dizziness
 • lightheadedness
 • feel faint or pass out
 • abnormal heart beat

• **Increase in cholesterol and triglyceride levels.** Treatment with NORVIR may increase your blood levels of cholesterol and triglycerides. Your doctor should do blood tests before you start your treatment with NORVIR and regularly to check for an increase in your cholesterol and triglycerides levels.

• **Diabetes and high blood sugar (hyperglycemia).** Some people who take protease inhibitors including NORVIR can get high blood sugar, develop diabetes, or your diabetes can get worse. Tell your doctor if you notice an increase in thirst or urinate often while taking NORVIR.

• **Changes in your immune system (Immune reconstitution syndrome) can happen when you start taking HIV medicines.** Your immune system may get stronger and begin to fight infections that have been hidden in your body for a long time. Call your doctor right away if you start having new symptoms after starting your HIV medicine.

• **Change in body fat.** These changes can happen in people who take antiretroviral therapy. The changes may include an increase amount of fat in the upper back and neck (“buffalo hump”), breast, and around the back and stomach area. Loss of fat from the legs, arms, and face may also happen. The exact cause and long-term health effects of these conditions are not known.
• **Increased bleeding for hemophiliacs.** Some people with hemophilia have increased bleeding with protease inhibitors including NORVIR.

The most common side effects of NORVIR include:

- feeling weak or tired
- nausea
- vomiting
- diarrhea
- loss of appetite
- abdominal pain
- changes in taste
- tingling feeling or numbness in hands or feet or around the lips
- headache
- dizziness

NORVIR liquid contains a large amount of alcohol. If a toddler or young child accidentally drinks more than the recommended dose of NORVIR, it could make him/her sick from too much alcohol. Contact your local poison control center or emergency room immediately if this happens.

Tell your doctor if you have any side effect that bothers you or that does not go away.

These are not all of the possible side effects of NORVIR. For more information, ask your doctor or pharmacist.

Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088.

How do I Store NORVIR?

- Store NORVIR Oral Solution at room temperature between 68°F to 77°F (20°C to 25°C).
- Do not refrigerate NORVIR Oral Solution.
- Shake NORVIR Oral Solution well before each use.

Store NORVIR soft gelatin capsules in the refrigerator between 36°F to 46°F (2°C to 8°C) NORVIR soft gelatin capsules may be stored below 77°F (25°C) is used within 30 days.

- Protect NORVIR Soft Gelatin Capsules from light.
- Keep NORVIR Soft Gelatin Capsules and NORVIR Oral Solution away from heat.
- Store NORVIR Soft Gelatin Capsules and NORVIR Oral Solution in the original container.
- Use NORVIR Soft Gelatin Capsules and NORVIR Oral Solution by the expiration date on the bottle.

Keep NORVIR and all medicines out of the reach of children.

General information about NORVIR

Medicines are sometimes prescribed for purposes other than those listed in a Patient Information Leaflet. Do not use this medicine for a condition for which it was not prescribed. Do not share this medicine with other people.
This leaflet summarizes the most important information about NORVIR. If you would like more information, talk to your doctor. You can ask your doctor or pharmacist for information about NORVIR that is written for healthcare professionals.

For more information, call 1-800-633-9110.

What are the ingredients in NORVIR?

Active ingredient: ritonavir

Inactive ingredients:
NORVIR Soft Gelatin Capsules: butylated hydroxytoluene, ethanol, gelatin, iron oxide, oleic acid, polyoxyl 35 castor oil, and titanium dioxide

NORVIR Oral Solution: ethanol, water, polyoxyl 35 castor oil, propylene glycol, anhydrous citric acid to adjust pH, saccharin sodium, peppermint oil, creamy caramel flavoring, and FD&C Yellow No. 6.

This Patient Information has been approved by the U.S. Food and Drug Administration.

Norvir 100 mg capsules are manufactured for:

Abbott Laboratories
North Chicago, IL 60064 U.S.A

Norvir Oral Solution is manufactured by:

Abbott Laboratories
North Chicago, IL 60064 U.S.A.

* The brands listed are trademarks of their respective owners and are not trademarks of Abbott Laboratories. The makers of these brands are not affiliated with and do not endorse Abbott Laboratories or its products.

Rev. 12/2011