Concomitant use of cyclosporine and furosemide may lead to flushing, sweating attacks, restlessness, nausea, increase in blood pressure, and tachycardia. In isolated cases, intravenous administration of furosemide in a high risk patient population, such as diabetics and patients receiving other vasodilating agents, has been associated with hypotension, cardiac arrest, and death. Use of furosemide concomitantly with chloral hydrate may result in additive depressant effects and increase the risk of hypotension. Use of furosemide concomitantly with lithium may result in increased serum lithium levels and symptoms of lithium toxicity.

Recent evidence suggests that furosemide glucuronide may compete with cyclosporine for renal tubular secretion. The possibility exists of decreased cyclosporine clearance and increased cyclosporine concentrations when furosemide and cyclosporine are administered concomitantly. In patients with renal insufficiency, coadministration of cyclosporine and furosemide has been associated with increased cyclosporine concentrations and toxic effects. Consequently, cyclosporine levels should be monitored when furosemide and cyclosporine are administered concomitantly, and dosage adjustments should be made as necessary.

Because tricyclic antidepressants are also excreted by the kidneys, patients receiving furosemide and tricyclic antidepressants may be at increased risk of toxicity. Syndrome of inappropriate antidiuretic hormone secretion may develop when furosemide is used in conjunction with other antidiuretic agents, such as desmopressin acetate (DDAVP). Use of furosemide with antihypertensive agents may result in additive hypotensive effects. Use of furosemide with agents that affect electrolyte balance, such as potassium-sparing diuretics, may result in additive effects. Use of furosemide with other natriuretic agents, such as other loop diuretics, may result in additive diuresis.

Acute renal failure has been reported in patients receiving concomitant treatment with furosemide and aminoglycoside antibiotics. The mechanism for this interaction is not known. Because of the many pharmacological and toxicological interactions with furosemide, caution should be exercised when it is used concomitantly with other drugs.

Carcinogenesis, Mutagenesis, Impairment of Fertility

Furosemide is an aromatic sulfonamide. Furosemide is a white to off-white, crystalline powder. It is very soluble in water and slightly soluble in ethanol. The molecular weight of furosemide is 255.4. The structural formula is:

\[
\text{C}_4\text{H}_3\text{NO}_5\text{S} = \text{C}_{4}\text{H}_3\text{O} - \text{NH} - \text{SO}_2\text{H}
\]

The CAS Registry Number is 54-31-9.

Recent evidence suggests that furosemide glucuronide may compete with cyclosporine for renal tubular secretion. The possibility exists of decreased cyclosporine clearance and increased cyclosporine concentrations when furosemide and cyclosporine are administered concomitantly. In patients with renal insufficiency, coadministration of cyclosporine and furosemide has been associated with increased cyclosporine concentrations and toxic effects. Consequently, cyclosporine levels should be monitored when furosemide and cyclosporine are administered concomitantly, and dosage adjustments should be made as necessary.

Because tricyclic antidepressants are also excreted by the kidneys, patients receiving furosemide and tricyclic antidepressants may be at increased risk of toxicity. Syndrome of inappropriate antidiuretic hormone secretion may develop when furosemide is used in conjunction with other antidiuretic agents, such as desmopressin acetate (DDAVP). Use of furosemide with antihypertensive agents may result in additive hypotensive effects. Use of furosemide with agents that affect electrolyte balance, such as potassium-sparing diuretics, may result in additive effects. Use of furosemide with other natriuretic agents, such as other loop diuretics, may result in additive diuresis.

Acute renal failure has been reported in patients receiving concomitant treatment with furosemide and aminoglycoside antibiotics. The mechanism for this interaction is not known. Because of the many pharmacological and toxicological interactions with furosemide, caution should be exercised when it is used concomitantly with other drugs.

Carcinogenesis, Mutagenesis, Impairment of Fertility

Furosemide is an aromatic sulfonamide. Furosemide is a white to off-white, crystalline powder. It is very soluble in water and slightly soluble in ethanol. The molecular weight of furosemide is 255.4. The structural formula is:

\[
\text{C}_4\text{H}_3\text{NO}_5\text{S} = \text{C}_{4}\text{H}_3\text{O} - \text{NH} - \text{SO}_2\text{H}
\]

The CAS Registry Number is 54-31-9.
Furosemide are dehydration, blood volume reduction, therapy withdrawn. Severe, furosemide dosage should be reduced or

Hematologic Reactions

System and listed by decreasing severity.

Renal Function. (See

Decreased renal function, care should be taken

Drug may be greater in patients with impaired renal

Disease or other drug therapy.

Include sufficient numbers of subjects aged 65 and

During the first weeks of life, it may increase the risk of

Incidence in fetuses from the control group.

Abortions when administered to rabbits between Days

Dose of 600 mg/day also caused ma

Mice, rats and rabbits.

Weights.

Nursing Mothers

Pregnancy only if the potential benefit justifies the potential

Adequate and well-controlled studies in pregnant

Maximal rec

Has been shown to cause unexplained maternal deaths

In human cells

Induce sister chromatid exchange in hu

Rat liver S9 at the highest dose tested. Furosemide did

Incubation

Pineapple-peach flavored, orange-colored

Dispensed.

Solutions permitted to 15° to 30°C (59° to 86°F). [See

NDC 0054-4301-29: Bottle of 500 tablets.

NDC 0054-4299-25: Bottle of 100 tablets.

NDC 0054-8299-25: Unit dose amber blisters, 10

NDC 0054-4297-31: Bottle of 1000 tablets.

Furosemide Tablets USP

Cautious, usually starting at the low end of the dosing

Dose adjustment for the elderly patient should be

Effective diuretic dose in the rat and 8 times the maxi

Age but was ques

In vitro

Not induce sister chromatid exchange in hu

Furosemide in pediatric patients is 2 mg/kg body weight,

Geriatric Use.

When doses exceeding 80 mg/day are given for

Treatment of overdosage is supportive and consists

Edema

Times that of adult rats.

Acute intragastric toxicity in neonatal rats is 7 to 10

Because it appears in breast milk, caution should

Furosemide produced no impairment of fertility in

The effects of furosemide on embryonic and fetal

Nephrocalcinosis/nephrolithiasis has also been

Whenever adverse reactions are moderate or

3. Hyperuricemia

1. Hyperglycemia

7. Bullous pemphigoid

5. Acute generalized exanthematous pustulosis

1. Toxic epidermal necrolysis

6. Anemia

3. Agranulocytosis

1. Aplastic anemia

7. Xanthopsia

4. Dizziness

2. Systemic vasculitis

10. Nausea

9. Constipation

8. Diarrhea

4. Increased liver enzymes

3. Jaundice (intrahepatic cholestatic jaundice)

Administration

The usual initial dose of oral furo

In general, dose selection for the

PRECAUTIONS: Geriatric Use.

When doses exceeding 80 mg/day are given for

Percentage when furosemide is added to the regimen. As

Cautious, usually starting at the low end of the dosing

Dose adjustment for the elderly patient should be

Furosemide in pediatric patients is 2 mg/kg body weight,

Geriatric Use.

When doses exceeding 80 mg/day are given for

Treatment of overdosage is supportive and consists

Edema

Times that of adult rats.

Acute intragastric toxicity in neonatal rats is 7 to 10

Because it appears in breast milk, caution should

Furosemide produced no impairment of fertility in

The effects of furosemide on embryonic and fetal

Nephrocalcinosis/nephrolithiasis has also been

Whenever adverse reactions are moderate or

3. Hyperuricemia

1. Hyperglycemia

7. Bullous pemphigoid

5. Acute generalized exanthematous pustulosis

1. Toxic epidermal necrolysis

6. Anemia

3. Agranulocytosis

1. Aplastic anemia

7. Xanthopsia

4. Dizziness

2. Systemic vasculitis

10. Nausea

9. Constipation

8. Diarrhea

4. Increased liver enzymes

3. Jaundice (intrahepatic cholestatic jaundice)

Administration

The usual initial dose of oral furo