

HIGHLIGHTS OF PRESCRIBING INFORMATION

These highlights do not include all the information needed to use FILKRI safely and effectively. See full prescribing information for FILKRI.

FILKRI® (filgrastim-laha) injection, for subcutaneous or intravenous use

Initial U.S. Approval: 20XX

FILKRI (filgrastim-laha) is biosimilar* to NEUPOGEN® (filgrastim).

INDICATIONS AND USAGE

FILKRI is a leukocyte growth factor indicated to

- Decrease the incidence of infection, as manifested by febrile neutropenia, in patients with nonmyeloid malignancies receiving myelosuppressive anti-cancer drugs associated with a significant incidence of severe neutropenia with fever (1.1)
- Reduce the time to neutrophil recovery and the duration of fever, following induction or consolidation chemotherapy treatment of patients with acute myeloid leukemia (AML) (1.2)
- Reduce the duration of neutropenia and neutropenia-related clinical sequelae, e.g., febrile neutropenia, in patients with nonmyeloid malignancies undergoing myeloablative chemotherapy followed by bone marrow transplantation (BMT) (1.3)
- Reduce the incidence and duration of sequelae of severe neutropenia (e.g., fever, infections, oropharyngeal ulcers) in symptomatic patients with congenital neutropenia, cyclic neutropenia, or idiopathic neutropenia (1.4)
- Increase survival in patients acutely exposed to myelosuppressive doses of radiation (Hematopoietic Syndrome of Acute Radiation Syndrome) (1.5)

DOSAGE AND ADMINISTRATION

- Patients with cancer receiving myelosuppressive chemotherapy or induction and/or consolidation chemotherapy for AML
 - Recommended starting dose is 5 mcg/kg/day subcutaneous injection, short intravenous infusion (15 to 30 minutes), or continuous intravenous infusion. See Full Prescribing Information for recommended dosage adjustments and timing of administration (2.1)
- Patients with cancer undergoing bone marrow transplantation
 - 10 mcg/kg/day given as an intravenous infusion no longer than 24 hours. See Full Prescribing Information for recommended dosage adjustments and timing of administration (2.2)
- Patients with congenital neutropenia
 - Recommended starting dose is 6 mcg/kg subcutaneous injection twice daily (2.3)
- Patients with cyclic or idiopathic neutropenia
 - Recommended starting dose is 5 mcg/kg subcutaneous injection daily (2.3)
- Patients acutely exposed to myelosuppressive doses of radiation
 - 10 mcg/kg/day subcutaneous injection (2.4)
- Direct administration of less than 0.3 mL (180 mcg) is not recommended due to potential for dosing errors. (2.5)

DOSAGE FORMS AND STRENGTHS

- Injection: 300 mcg/0.5 mL in a single-dose prefilled syringe (3)

- Injection: 480 mcg/0.8 mL in a single-dose prefilled syringe (3)

CONTRAINDICATIONS

Patients with a history of serious allergic reactions to human granulocyte colony-stimulating factors such as filgrastim products or pegfilgrastim products. (4)

WARNINGS AND PRECAUTIONS

- Fatal splenic rupture: Evaluate patients who report left upper abdominal or shoulder pain for an enlarged spleen or splenic rupture. (5.1)
- Acute respiratory distress syndrome (ARDS): Evaluate patients who develop fever and lung infiltrates or respiratory distress for ARDS. Discontinue FILKRI in patients with ARDS. (5.2)
- Serious allergic reactions, including anaphylaxis: Permanently discontinue FILKRI in patients with serious allergic reactions. (5.3)
- Fatal sickle cell crises: Discontinue FILKRI if sickle cell crisis occurs. (5.4)
- Glomerulonephritis: Evaluate and consider dose-reduction or interruption of FILKRI if causality is likely. (5.5)
- Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukemia (AML): Monitor patients with breast and lung cancer using FILKRI in conjunction with chemotherapy and/or radiotherapy for signs and symptoms of MDS/AML. (5.8)
- Thrombocytopenia: Monitor platelet counts. (5.9)
- Aortitis: Aortitis has been reported in patients receiving filgrastim products. Discontinue FILKRI if aortitis is suspected. (5.15)

ADVERSE REACTIONS

Most common adverse reactions in patients:

- With nonmyeloid malignancies receiving myelosuppressive anti-cancer drugs ($\geq 5\%$ difference in incidence compared to placebo) are pyrexia, pain, rash, cough, and dyspnea. (6.1)
- With AML ($\geq 2\%$ difference in incidence) are pain, epistaxis and rash. (6.1)
- With nonmyeloid malignancies undergoing myeloablative chemotherapy followed by BMT ($\geq 5\%$ difference in incidence) is rash. (6.1)
- With severe chronic neutropenia (SCN) ($\geq 5\%$ difference in incidence) are pain, anemia, epistaxis, diarrhea, hypoesthesia and alopecia. (6.1)

To report SUSPECTED ADVERSE REACTIONS, contact Accord BioPharma at 1-866-941-7875 or FDA at 1800-FDA-1088 or www.fda.gov/medwatch.

See 17 for PATIENT COUNSELING INFORMATION and FDA-approved patient labeling.

*Biosimilar means that the biological product is approved based on data demonstrating that it is highly similar to an FDA-approved biological product, known as a reference product, and that there are no clinically meaningful differences between the biosimilar product and the reference product. Biosimilarity of FILKRI has been demonstrated for the condition(s) of use (e.g. indication(s), dosing regimen(s)), strength(s), dosage form(s), and route(s) of administration described in its Full Prescribing Information.

Revised: 01/2026

FULL PRESCRIBING INFORMATION: CONTENTS*

1 INDICATIONS AND USAGE

- Patients with Cancer Receiving Myelosuppressive Chemotherapy
- Patients with Acute Myeloid Leukemia Receiving Induction or Consolidation Chemotherapy
- Patients with Cancer Undergoing Bone Marrow Transplantation
- Patients with Severe Chronic Neutropenia
- Patients Acutely Exposed to Myelosuppressive Doses of Radiation (Hematopoietic Syndrome of Acute Radiation Syndrome)

2 DOSAGE AND ADMINISTRATION

- Dosage in Patients with Cancer Receiving Myelosuppressive Chemotherapy or Induction and/or Consolidation Chemotherapy for AML
- Dosage in Patients with Cancer Undergoing Bone Marrow Transplantation
- Dosage in Patients with Severe Chronic Neutropenia
- Dosage in Patients Acutely Exposed to Myelosuppressive

Doses of Radiation (Hematopoietic Syndrome of Acute Radiation Syndrome)

2.5 Important Administration Instructions

3 DOSAGE FORMS AND STRENGTHS

4 CONTRAINDICATIONS

5 WARNINGS AND PRECAUTIONS

- Splenic Rupture
- Acute Respiratory Distress Syndrome
- Serious Allergic Reactions
- Sickle Cell Disorders
- Glomerulonephritis
- Alveolar Hemorrhage and Hemoptysis
- Capillary Leak Syndrome
- Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukemia (AML)
- Thrombocytopenia

- 5.10 Leukocytosis
- 5.11 Cutaneous Vasculitis
- 5.12 Potential Effect on Malignant Cells
- 5.13 Simultaneous Use with Chemotherapy and Radiation Therapy Not Recommended
- 5.14 Nuclear Imaging
- 5.15 Aortitis

6 ADVERSE REACTIONS

- 6.1 Clinical Trials Experience
- 6.2 Postmarketing Experience

8 USE IN SPECIFIC POPULATIONS

- 8.1 Pregnancy
- 8.2 Lactation
- 8.4 Pediatric Use
- 8.5 Geriatric Use

10 OVERDOSAGE

11 DESCRIPTION

12 CLINICAL PHARMACOLOGY

- 12.1 Mechanism of Action
- 12.2 Pharmacodynamics
- 12.3 Pharmacokinetics
- 12.6 Immunogenicity

13 NONCLINICAL TOXICOLOGY

- 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility
- 13.2 Animal Toxicology and/or Pharmacology

14 CLINICAL STUDIES

- 14.1 Patients with Cancer Receiving Myelosuppressive Chemotherapy
- 14.2 Patients with Acute Myeloid Leukemia Receiving Induction or Consolidation Chemotherapy
- 14.3 Patients with Cancer Undergoing Bone Marrow Transplantation
- 14.4 Patients with Severe Chronic Neutropenia
- 14.5 Patients Acutely Exposed to Myelosuppressive Doses of Radiation (Hematopoietic Syndrome of Acute Radiation Syndrome)

16 HOW SUPPLIED/STORAGE AND HANDLING

17 PATIENT COUNSELING INFORMATION

* Sections or subsections omitted from the full prescribing information are not listed

FULL PRESCRIBING INFORMATION

1 INDICATIONS AND USAGE

1.1 Patients with Cancer Receiving Myelosuppressive Chemotherapy

FILKRI is indicated to decrease the incidence of infection, as manifested by febrile neutropenia, in patients with nonmyeloid malignancies receiving myelosuppressive anti-cancer drugs associated with a significant incidence of severe neutropenia with fever [*see Clinical Studies (14.1)*].

1.2 Patients with Acute Myeloid Leukemia Receiving Induction or Consolidation Chemotherapy

FILKRI is indicated for reducing the time to neutrophil recovery and the duration of fever, following induction or consolidation chemotherapy treatment of patients with acute myeloid leukemia (AML) [*see Clinical Studies (14.2)*].

1.3 Patients with Cancer Undergoing Bone Marrow Transplantation

FILKRI is indicated to reduce the duration of neutropenia and neutropenia-related clinical sequelae, e.g., febrile neutropenia, in patients with nonmyeloid malignancies undergoing myeloablative chemotherapy followed by bone marrow transplantation [*see Clinical Studies (14.3)*].

1.4 Patients with Severe Chronic Neutropenia

FILKRI is indicated for chronic administration to reduce the incidence and duration of sequelae of neutropenia (e.g., fever, infections, oropharyngeal ulcers) in symptomatic patients with congenital neutropenia, cyclic neutropenia, or idiopathic neutropenia [*see Clinical Studies (14.4)*].

1.5 Patients Acutely Exposed to Myelosuppressive Doses of Radiation (Hematopoietic Syndrome of Acute Radiation Syndrome)

FILKRI is indicated to increase survival in patients acutely exposed to myelosuppressive doses of radiation [*see Clinical Studies (14.5)*].

2 DOSAGE AND ADMINISTRATION

2.1 Dosage in Patients with Cancer Receiving Myelosuppressive Chemotherapy or Induction and/or Consolidation Chemotherapy for AML

The recommended starting dosage of FILKRI is 5 mcg/kg/day, administered as a single daily injection by subcutaneous injection, by short intravenous infusion (15 to 30 minutes), or by continuous intravenous infusion. Obtain a complete blood count (CBC) and platelet count before instituting FILKRI therapy and monitor twice weekly during therapy. Consider dose escalation in increments of 5 mcg/kg for each chemotherapy cycle, according to the duration and severity of the absolute neutrophil count (ANC) nadir. Recommend stopping FILKRI if the ANC increases beyond 10,000/mm³ [*see Warnings and Precautions (5.10)*].

Administer FILKRI at least 24 hours after cytotoxic chemotherapy. Do not administer FILKRI within the 24-hour period prior to chemotherapy [*see Warnings and Precautions (5.13)*]. A transient increase in neutrophil count is typically seen 1 to 2 days after initiation of FILKRI therapy.

Therefore, to ensure a sustained therapeutic response, administer FILKRI daily for up to 2 weeks or until the ANC has reached 10,000/mm³ following the expected chemotherapy-induced neutrophil nadir. The duration of FILKRI therapy needed to attenuate chemotherapy-induced neutropenia may be dependent on the myelosuppressive potential of the chemotherapy regimen employed.

2.2 Dosage in Patients with Cancer Undergoing Bone Marrow Transplantation

The recommended dosage of FILKRI following bone marrow transplantation (BMT) is 10 mcg/kg/day given as an intravenous infusion no longer than 24 hours. Administer the first dose of FILKRI at least 24 hours after cytotoxic chemotherapy and at least 24 hours after bone marrow infusion. Monitor CBCs and platelet counts frequently following marrow transplantation.

During the period of neutrophil recovery, titrate the daily dosage of FILKRI against the neutrophil response (see Table 1).

Table 1. Recommended Dosage Adjustments During Neutrophil Recovery in Patients with Cancer Following BMT

Absolute Neutrophil Count	FILKRI Dosage Adjustment
When ANC greater than 1,000/mm ³ for 3 consecutive days	Reduce to 5 mcg/kg/day ^a
Then, if ANC remains greater than 1,000/mm ³ for 3 more consecutive days	Discontinue FILKRI
Then, if ANC decreases to less than 1,000/mm ³	Resume at 5 mcg/kg/day

^a If ANC decreases to less than 1,000/mm³ at any time during the 5 mcg/kg/day administration, increase FILKRI to 10 mcg/kg/day, and then follow the above steps.

2.3 Dosage in Patients with Severe Chronic Neutropenia

Prior to starting FILKRI in patients with suspected chronic neutropenia, confirm the diagnosis of severe chronic neutropenia (SCN) by evaluating serial CBCs with differential and platelet counts, and evaluating bone marrow morphology and karyotype. The use of FILKRI prior to confirmation of a correct diagnosis of SCN may impair diagnostic efforts and may thus impair or delay evaluation and treatment of an underlying condition, other than SCN, causing the neutropenia.

The recommended starting dosage in patients with Congenital Neutropenia is 6 mcg/kg as a twice daily subcutaneous injection and the recommended starting dosage in patients with Idiopathic or Cyclic Neutropenia is 5 mcg/kg as a single daily subcutaneous injection.

Dosage Adjustments in Patients with Severe Chronic Neutropenia

Chronic daily administration is required to maintain clinical benefit. Individualize the dosage based on the patient's clinical course as well as ANC. In the SCN postmarketing surveillance study, the reported median daily doses of filgrastim were: 6 mcg/kg (congenital neutropenia), 2.1 mcg/kg (cyclic neutropenia), and 1.2 mcg/kg (idiopathic neutropenia). In rare instances, patients with congenital neutropenia have required doses of filgrastim greater than or equal to 100 mcg/kg/day.

Monitor CBCs for Dosage Adjustments

During the initial 4 weeks of FILKRI therapy and during the 2 weeks following any dosage adjustment, monitor CBCs with differential and platelet counts. Once a patient is clinically stable, monitor CBCs with differential and platelet counts monthly during the first year of treatment. Thereafter, if the patient is clinically stable, less frequent routine monitoring is recommended.

2.4 Dosage in Patients Acutely Exposed to Myelosuppressive Doses of Radiation (Hematopoietic Syndrome of Acute Radiation Syndrome)

The recommended dosage of FILKRI is 10 mcg/kg as a single daily subcutaneous injection for patients exposed to myelosuppressive doses of radiation. Administer FILKRI as soon as possible after suspected or confirmed exposure to radiation doses greater than 2 gray (Gy).

Estimate a patient's absorbed radiation dose (i.e., level of radiation exposure) based on information from public health authorities, biodosimetry if available, or clinical findings such as time to onset of vomiting or lymphocyte depletion kinetics.

Obtain a baseline CBC and then serial CBCs approximately every third day until the ANC remains greater than 1,000/mm³ for 3 consecutive CBCs. Do not delay administration of FILKRI if a CBC is not readily available.

Continue administration of FILKRI until the ANC remains greater than 1,000/mm³ for 3 consecutive CBCs or exceeds 10,000/mm³ after a radiation-induced nadir.

2.5 Important Administration Instructions

FILKRI (for subcutaneous use or intravenous use) is supplied in single-dose prefilled syringes [see *Dosage Forms and Strengths (3)*].

Administration Instructions for Subcutaneous Injection

Inject FILKRI subcutaneously in the outer area of upper arms, abdomen, thighs, or upper outer areas of the buttock. If patients or caregivers are to administer FILKRI, instruct them in appropriate injection technique and ask them to follow the subcutaneous injection procedures in the *Instructions for Use* for the prefilled syringe [see *Patient Counseling Information*

(17)].

If the patient or caregiver misses a dose of FILKRI, instruct them to contact their healthcare provider.

Patients who will self-administer and caregivers who will administer to the patient may benefit from training by a healthcare professional. Training should aim to demonstrate to those patients and caregivers how to measure the dose using the prefilled syringe, and the focus should be on ensuring that a patient or caregiver can successfully perform all of the steps in the Instructions for Use of FILKRI prefilled syringe with BD UltraSafe PlusTM Passive Needle Guard. If a patient or caregiver is not able to demonstrate that they can measure the dose and administer the product successfully, you should consider whether the patient is an appropriate candidate for self-administration of FILKRI [*see Instructions for Use*].

Instructions for the Prefilled Syringe

FILKRI prefilled syringe with BD UltraSafe PlusTM Passive Needle Guard is not designed to allow for direct administration of doses of less than 0.3 mL (180 mcg). The spring-mechanism of the needle guard apparatus affixed to the prefilled syringe interferes with the visibility of the graduation markings on the syringe barrel corresponding to 0.1 mL and 0.2 mL. The visibility of these markings is necessary to accurately measure doses of FILKRI less than 0.3 mL (180 mcg) for direct administration to patients. Thus, the direct administration to patients requiring doses of less than 0.3 mL (180 mcg) is not recommended due to the potential for dosing errors.

Persons with latex allergies should not administer the FILKRI prefilled syringe, because the needle cap contains dry natural rubber (derived from latex).

Prior to use, remove the prefilled syringe from the refrigerator and allow FILKRI to reach room temperature [between 20°C to 25°C (68°F to 77°F)] for a minimum of 30 minutes and a maximum of 24 hours. Discard any prefilled syringe left at room temperature for greater than 24 hours. Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever solution and container permit (the solution is clear and colorless). Do not administer FILKRI if particulates or discoloration are observed.

Discard unused portion of FILKRI in prefilled syringes. Do not save unused drug for later administration.

Administration Instructions for Dilution

If required for intravenous administration, FILKRI may be diluted in 5% Dextrose Injection, USP to concentrations between 5 mcg/mL and 15 mcg/mL. FILKRI diluted to concentrations from 5 mcg/mL to 15 mcg/mL should be protected from adsorption to plastic materials by the addition of Albumin (Human) to a final concentration of 2 mg/mL. When diluted in 5% Dextrose plus Albumin (Human), FILKRI is compatible with glass bottles, polyvinyl chloride (PVC) and polyolefin intravenous bags, and polypropylene syringes.

Do not dilute with Sodium Chloride Injection at any time because the product may precipitate.

Diluted FILKRI solution can be stored at room temperature between 20°C to 25°C (68°F to 77°F) for up to 24 hours. This 24-hour time period includes the time during room temperature storage of the infusion solution and the duration of the infusion.

3 DOSAGE FORMS AND STRENGTHS

FILKRI is a clear, colorless, preservative-free solution available as:

- Injection: 300 mcg/0.5 mL in a single-dose prefilled syringe
- Injection: 480 mcg/0.8 mL in a single-dose prefilled syringe

4 CONTRAINDICATIONS

FILKRI is contraindicated in patients with a history of serious allergic reactions to human granulocyte colony-stimulating factors such as filgrastim products or pegfilgrastim products [*see Warnings and Precautions (5.3)*].

5 WARNINGS AND PRECAUTIONS

5.1 Splenic Rupture

Splenic rupture, including fatal cases, has been reported following the administration of filgrastim products. Evaluate patients who report left upper abdominal or shoulder pain for an enlarged spleen or splenic rupture.

5.2 Acute Respiratory Distress Syndrome

Acute respiratory distress syndrome (ARDS) has been reported in patients receiving filgrastim products. Evaluate patients who develop fever and lung infiltrates or respiratory distress for ARDS. Discontinue FILKRI in patients with ARDS.

5.3 Serious Allergic Reactions

Serious allergic reactions, including anaphylaxis, have been reported in patients receiving filgrastim products. The majority of reported events occurred upon initial exposure. Provide symptomatic treatment for allergic reactions. Allergic reactions, including anaphylaxis, in patients receiving filgrastim products can recur within days after the discontinuation of initial anti-allergic treatment. Permanently discontinue FILKRI in patients with serious allergic reactions. FILKRI is contraindicated in patients with a history of serious allergic reactions to human granulocyte colony-stimulating factors such as filgrastim products or pegfilgrastim products.

5.4 Sickle Cell Disorders

Severe and sometimes fatal sickle cell crises can occur in patients with sickle cell disorders receiving filgrastim products. Discontinue FILKRI if sickle cell crisis occurs.

5.5 Glomerulonephritis

Glomerulonephritis has occurred in patients receiving filgrastim products. The diagnoses were based upon azotemia, hematuria (microscopic and macroscopic), proteinuria, and renal biopsy. Generally, events of glomerulonephritis resolved after dose reduction or discontinuation of filgrastim products. If glomerulonephritis is suspected, evaluate for cause. If causality is likely, consider dose-reduction or interruption of FILKRI.

5.6 Alveolar Hemorrhage and Hemoptysis

Alveolar hemorrhage manifesting as pulmonary infiltrates and hemoptysis requiring hospitalization have been reported in healthy donors treated with filgrastim products undergoing peripheral blood progenitor cell (PBPC) collection mobilization. Hemoptysis resolved with discontinuation of filgrastim products. The use of FILKRI for PBPC mobilization in healthy donors is not an approved indication.

5.7 Capillary Leak Syndrome

Capillary leak syndrome (CLS) has been reported after G-CSF administration, including filgrastim products, and is characterized by hypotension, hypoalbuminemia, edema and hemoconcentration. Episodes vary in frequency, severity and may be life-threatening if treatment is delayed. Patients who develop symptoms of capillary leak syndrome should be closely monitored and receive standard symptomatic treatment, which may include a need for intensive care.

5.8 Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukemia (AML)

Patients with Severe Chronic Neutropenia

Confirm the diagnosis of SCN before initiating FILKRI therapy.

MDS and AML have been reported to occur in the natural history of congenital neutropenia without cytokine therapy. Cytogenetic abnormalities, transformation to MDS, and AML have also been observed in patients treated with filgrastim products for SCN. Based on available data including a postmarketing surveillance study, the risk of developing MDS and AML appears to be confined to the subset of patients with congenital neutropenia. Abnormal cytogenetics and MDS have been associated with the eventual development of myeloid leukemia. The effect of filgrastim products on the development of abnormal cytogenetics and the effect of continued filgrastim products administration in patients with abnormal cytogenetics or MDS are unknown. Monitor patients for signs and symptoms of MDS/AML in these settings. If a patient with SCN develops abnormal cytogenetics or myelodysplasia, the risks and benefits of continuing FILKRI should be carefully considered.

Patients with Breast and Lung Cancer

MDS and AML have been associated with the use of filgrastim products in conjunction with chemotherapy and/or radiotherapy in patients with breast and lung cancer. Monitor patients for signs and symptoms of MDS/AML in these settings.

5.9 Thrombocytopenia

Thrombocytopenia has been reported in patients receiving filgrastim products. Monitor platelet counts.

5.10 Leukocytosis

Patients with Cancer Receiving Myelosuppressive Chemotherapy

White blood cell counts of 100,000/mm³ or greater were observed in approximately 2% of patients receiving filgrastim at dosages above 5 mcg/kg/day. In patients with cancer receiving FILKRI as an adjunct to myelosuppressive chemotherapy, to avoid the potential risks of excessive leukocytosis, it is recommended that FILKRI therapy be discontinued if the ANC surpasses 10,000/mm³ after the chemotherapy-induced ANC nadir has occurred. Monitor CBCs at least twice weekly during therapy. Dosages of FILKRI that increase the ANC beyond 10,000/mm³ may not result in any additional clinical benefit. In patients with cancer receiving myelosuppressive chemotherapy, discontinuation of filgrastim therapy usually resulted in a 50% decrease in circulating neutrophils within 1 to 2 days, with a return to pretreatment levels in 1 to 7 days.

5.11 Cutaneous Vasculitis

Cutaneous vasculitis has been reported in patients treated with filgrastim products. In most cases, the severity of cutaneous vasculitis was moderate or severe. Most of the reports involved patients with SCN receiving long-term filgrastim therapy. Hold FILKRI therapy in patients with cutaneous vasculitis. FILKRI may be started at a reduced dose when the symptoms resolve and the ANC has decreased.

5.12 Potential Effect on Malignant Cells

FILKRI is a growth factor that primarily stimulates neutrophils. The granulocyte colony-stimulating factor (G-CSF) receptor through which FILKRI acts has also been found on tumor cell lines. The possibility that FILKRI acts as a growth factor for any tumor type cannot be excluded. The safety of filgrastim products in chronic myeloid leukemia (CML) and myelodysplasia has not been established.

5.13 Simultaneous Use with Chemotherapy and Radiation Therapy Not Recommended

The safety and efficacy of FILKRI given simultaneously with cytotoxic chemotherapy have not been established. Because of the potential sensitivity of rapidly dividing myeloid cells to cytotoxic chemotherapy, do not use FILKRI in the period 24 hours before through 24 hours after the administration of cytotoxic chemotherapy [see Dosage and Administration (2.2)].

The safety and efficacy of FILKRI have not been evaluated in patients receiving concurrent radiation therapy. Avoid the simultaneous use of FILKRI with chemotherapy and radiation therapy.

5.14 Nuclear Imaging

Increased hematopoietic activity of the bone marrow in response to growth factor therapy has been associated with transient positive bone-imaging changes. This should be considered when interpreting bone-imaging results.

5.15 Aortitis

Aortitis has been reported in patients receiving filgrastim products. It may occur as early as the first week after start of therapy. Manifestations may include generalized signs and symptoms such as fever, abdominal pain, malaise, back pain, and increased inflammatory markers (e.g., c-reactive protein and white blood cell count). Consider aortitis in patients who develop these signs and symptoms without known etiology. Discontinue FILKRI if aortitis is suspected.

6 ADVERSE REACTIONS

The following serious adverse reactions are discussed in greater detail in other sections of the labeling:

- Splenic Rupture [see Warnings and Precautions (5.1)]
- Acute Respiratory Distress Syndrome [see Warnings and Precautions (5.2)]
- Serious Allergic Reactions [see Warnings and Precautions (5.3)]
- Sickle Cell Disorders [see Warnings and Precautions (5.4)]
- Glomerulonephritis [see Warnings and Precautions (5.5)]
- Alveolar Hemorrhage and Hemoptysis [see Warnings and Precautions (5.6)]
- Capillary Leak Syndrome [see Warnings and Precautions (5.7)]

- Myelodysplastic Syndrome [*see Warnings and Precautions (5.8)*]
- Acute Myeloid Leukemia [*see Warnings and Precautions (5.8)*]
- Thrombocytopenia [*see Warnings and Precautions (5.9)*]
- Leukocytosis [*see Warnings and Precautions (5.10)*]
- Cutaneous Vasculitis [*see Warnings and Precautions (5.11)*]
- Aortitis [*see Warnings and Precautions (5.15)*]

6.1 Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared with rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice.

Adverse Reactions in Patients with Cancer Receiving Myelosuppressive Chemotherapy

The following adverse reaction data in Table 2 are from three randomized, placebo-controlled studies in patients with:

- small cell lung cancer receiving standard dose chemotherapy with cyclophosphamide, doxorubicin, and etoposide (Study 1)
- small cell lung cancer receiving ifosfamide, doxorubicin, and etoposide (Study 2), and
- non-Hodgkin's lymphoma (NHL) receiving doxorubicin, cyclophosphamide, vindesine, bleomycin, methylprednisolone, and methotrexate ("ACVBP") or mitoxantrone, ifosfamide, mitoguazone, teniposide, methotrexate, folic acid, methylprednisolone, and methotrexate ("VIM3") (Study 3).

A total of 451 patients were randomized to receive subcutaneous filgrastim 230 mcg/m² (Study 1), 240 mcg/m² (Study 2) or 4 or 5 mcg/kg/day (Study 3) (n = 294) or placebo (n = 157). The patients in these studies were median age 61 (range 29 to 78) years and 64% were male. The ethnicity was 95% Caucasian, 4% African American, and 1% Asian.

Table 2. Adverse Reactions in Patients with Cancer Receiving Myelosuppressive Chemotherapy (With ≥ 5% Higher Incidence in Filgrastim Compared to Placebo)

System Organ Class Preferred Term	Filgrastim (N = 294)	Placebo (N = 157)
Blood and lymphatic system disorders		
Thrombocytopenia	38%	29%
Gastrointestinal disorders		
Nausea	43%	32%
General disorders and administration site conditions		
Pyrexia	48%	29%
Chest pain	13%	6%
Pain	12%	6%
Fatigue	20%	10%
Musculoskeletal and connective tissue disorders		
Back pain	15%	8%
Arthralgia	9%	2%
Bone pain	11%	6%
Pain in extremity*	7%	3%
Nervous system disorders		
Dizziness	14%	3%
Respiratory, thoracic and mediastinal disorders		
Cough	14%	8%
Dyspnea	13%	8%
Skin and subcutaneous tissue disorders		
Rash	14%	5%
Investigations		
Blood lactate dehydrogenase increased	6%	1%
Blood alkaline phosphatase increased	6%	1%

* Percent difference (Filgrastim – Placebo) was 4%.

Adverse events with ≥ 5% higher incidence in filgrastim patients compared to placebo and associated with the sequelae of the underlying malignancy or cytotoxic chemotherapy delivered included anemia, constipation, diarrhea, oral pain, vomiting, asthenia, malaise, edema peripheral, hemoglobin decreased, decreased appetite, oropharyngeal pain, and

alopecia.

Adverse Reactions in Patients with Acute Myeloid Leukemia

Adverse reaction data below are from a randomized, double-blind, placebo-controlled study in patients with AML (Study 4) who received an induction chemotherapy regimen of intravenous daunorubicin days 1, 2, and 3; cytosine arabinoside days 1 to 7; and etoposide days 1 to 5 and up to 3 additional courses of therapy (induction 2, and consolidation 1, 2) of intravenous daunorubicin, cytosine arabinoside, and etoposide. The safety population included 518 patients randomized to receive either 5 mcg/kg/day filgrastim (n = 257) or placebo (n = 261). The median age was 54 (range 16 to 89) years and 54% were male.

Adverse reactions with $\geq 2\%$ higher incidence in filgrastim patients compared to placebo included epistaxis, back pain, pain in extremity, erythema, and rash maculo-papular.

Adverse events with $\geq 2\%$ higher incidence in filgrastim patients compared to placebo and associated with the sequelae of the underlying malignancy or cytotoxic chemotherapy included diarrhea, constipation, and transfusion reaction.

Adverse Reactions in Patients with Cancer Undergoing Bone Marrow Transplantation

The following adverse reaction data are from one randomized, no treatment-controlled study in patients with acute lymphoblastic leukemia or lymphoblastic lymphoma receiving high-dose chemotherapy (cyclophosphamide or cytarabine, and melphalan) and total body irradiation (Study 5) and one randomized, no treatment-controlled study in patients with Hodgkin's disease (HD) and NHL undergoing high-dose chemotherapy and autologous bone marrow transplantation (Study 6). Patients receiving autologous bone marrow transplantation only were included in the analysis. A total of 100 patients received either 30 mcg/kg/day as a 4-hour infusion (Study 5) or 10 mcg/kg/day or 30 mcg/kg/day as a 24-hour infusion (Study 6) filgrastim (n = 72), no treatment control or placebo (n = 28). The median age was 30 (range 15 to 57) years, 57% were male.

Adverse reactions with $\geq 5\%$ higher incidence in filgrastim patients compared to patients receiving no filgrastim included rash and hypersensitivity.

Adverse reactions in patients receiving intensive chemotherapy followed by autologous BMT with $\geq 5\%$ higher incidence in filgrastim patients compared to patients receiving no filgrastim included thrombocytopenia, anemia, hypertension, sepsis, bronchitis, and insomnia.

Adverse Reactions in Patients with Severe Chronic Neutropenia

The following adverse reaction data were identified in a randomized, controlled study in patients with SCN receiving filgrastim (Study 7). 123 patients were randomized to a 4-month observation period followed by subcutaneous filgrastim treatment or immediate subcutaneous filgrastim treatment. The median age was 12 years (range 7 months to 76 years) and 46% were male. The dosage of filgrastim was determined by the category of neutropenia. Initial dosage of filgrastim:

- Idiopathic neutropenia: 3.6 mcg/kg/day
- Cyclic neutropenia: 6 mcg/kg/day
- Congenital neutropenia: 6 mcg/kg/day divided 2 times per day

The dosage was increased incrementally to 12 mcg/kg/day divided 2 times per day if there was no response.

Adverse reactions with $\geq 5\%$ higher incidence in filgrastim patients compared to patients receiving no filgrastim included arthralgia, bone pain, back pain, muscle spasms, musculoskeletal pain, pain in extremity, splenomegaly, anemia, upper respiratory tract infection, and urinary tract infection (upper respiratory tract infection and urinary tract infection were higher in the filgrastim arm, total infection related events were lower in filgrastim treated patients), epistaxis, chest pain, diarrhea, hypoesthesia, and alopecia.

6.2 Postmarketing Experience

The following adverse reactions have been identified during post-approval use of filgrastim products. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

- splenic rupture and splenomegaly (enlarged spleen) [see *Warnings and Precautions (5.1)*]

- acute respiratory distress syndrome [*see Warnings and Precautions (5.2)*]
- anaphylaxis [*see Warnings and Precautions (5.3)*]
- sickle cell disorders [*see Warnings and Precautions (5.4)*]
- glomerulonephritis [*see Warnings and Precautions (5.5)*]
- alveolar hemorrhage and hemoptysis [*see Warnings and Precautions (5.6)*]
- capillary leak syndrome [*see Warnings and Precautions (5.7)*]
- leukocytosis [*see Warnings and Precautions (5.10)*]
- cutaneous vasculitis [*see Warnings and Precautions (5.11)*]
- Sweet's syndrome (acute febrile neutrophilic dermatosis)
- decreased bone density and osteoporosis in pediatric patients receiving chronic treatment with filgrastim products
- myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) in patients with breast and lung cancer receiving chemotherapy and/or radiotherapy [*see Warnings and Precautions (5.8)*]
- aortitis [*see Warnings and Precautions (5.15)*]
- extramedullary hematopoiesis

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Risk Summary

Available data from published studies, including several observational studies of pregnancy outcomes in women exposed to filgrastim products and those who were unexposed, have not established an association with use of filgrastim products during pregnancy and major birth defects, miscarriage, or adverse maternal or fetal outcomes (*see Data*). Reports in the scientific literature have described transplacental passage of filgrastim in pregnant women when administered \leq 30 hours prior to preterm delivery (\leq 30 weeks gestation). In animal reproduction studies, effects of filgrastim on prenatal development have been studied in rats and rabbits. No malformations were observed in either species. No maternal or fetal effects were observed in pregnant rats at doses up to 58 times the human doses. Filgrastim has been shown to have adverse effects in pregnant rabbits at doses 2 to 10 times higher than the human doses (*see Data*).

The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. All pregnancies have a background risk of birth defect, loss, or other adverse outcomes. In the U.S. general population, the estimated background risks of major birth defects and miscarriage in clinically recognized pregnancies is 2-4% and 15-20%, respectively.

Data

Human Data

Several observational studies based on the Severe Chronic Neutropenia International Registry (SCNIR) described pregnancy outcomes in women with severe chronic neutropenia (SCN) who were exposed to filgrastim products during pregnancy and women with SCN who were unexposed. No major differences were seen between treated and untreated women with respect to pregnancy outcome (including miscarriage and preterm labor), newborn complications (including birth weight), and infections. Methodological limitations of these studies include small sample size and lack of generalizability due to the underlying maternal condition.

Animal Data

Effects of filgrastim on prenatal development have been studied in rats and rabbits. No malformations were observed in either species. Filgrastim has been shown to have adverse effects in pregnant rabbits at doses 2 to 10 times higher than the human doses. In pregnant rabbits showing signs of maternal toxicity, reduced embryo-fetal survival (at 20 and 80 mcg/kg/day) and increased abortions (at 80 mcg/kg/day) were observed. In pregnant rats, no maternal or fetal effects were observed at doses up to 575 mcg/kg/day, which is approximately 58 times higher than the human dose of 10 mcg/kg/day.

Offspring of rats administered filgrastim during the peri-natal and lactation periods exhibited a delay in external differentiation and growth retardation (\geq 20 mcg/kg/day) and slightly reduced survival rate (100 mcg/kg/day)

8.2 Lactation

Risk Summary

There is published literature documenting transfer of filgrastim into human milk. There are a few case reports describing the use of filgrastim in breastfeeding mothers with no adverse effects noted in the infants. There are no data on the effects of filgrastim products on milk production. Other filgrastim products are secreted poorly into breast milk, and filgrastim products are not absorbed orally by neonates. The developmental and health benefits of breastfeeding should be considered along with the mother's clinical need for FILKRI and any potential adverse effects on the breastfed child from FILKRI or from the underlying maternal condition.

8.4 Pediatric Use

FILKRI prefilled syringe with BD UltraSafe Plus™ Passive Needle Guard may not accurately measure volumes less than 0.3 mL due to interference of the needle spring mechanism design with the visibility of graduation markings. Therefore, the direct administration of a volume less than 0.3 mL (180 mcg) is not recommended due to the potential for dosing errors.

In patients with cancer receiving myelosuppressive chemotherapy, 15 pediatric patients median age 2.6 (range 1.2 to 9.4) years with neuroblastoma were treated with myelosuppressive chemotherapy (cyclophosphamide, cisplatin, doxorubicin, and etoposide) followed by subcutaneous filgrastim at doses of 5, 10, or 15 mcg/kg/day for 10 days (n = 5/dose) (Study 8). The pharmacokinetics of filgrastim in pediatric patients after chemotherapy are similar to those in adults receiving the same weight-normalized doses, suggesting no age-related differences in the pharmacokinetics of filgrastim. In this population, filgrastim was well tolerated. There was one report of palpable splenomegaly and one report of hepatosplenomegaly associated with filgrastim therapy; however, the only consistently reported adverse event was musculoskeletal pain, which is no different from the experience in the adult population.

The safety and effectiveness of FILKRI have been established in pediatric patients with SCN [*see Clinical Studies (14.4)*]. In a phase 3 study (Study 7) to assess the safety and efficacy of filgrastim in the treatment of SCN, 123 patients with a median age of 12 years (range 7 months to 76 years) were studied. Of the 123 patients, 12 were infants (7 months to 2 years of age), 49 were children (2 to 12 years of age), and 9 were adolescents (12 to 16 years of age). Additional information is available from a SCN postmarketing surveillance study, which includes long-term follow-up of patients in the clinical studies and information from additional patients who entered directly into the postmarketing surveillance study. Of the 731 patients in the surveillance study, 429 were pediatric patients < 18 years of age (range 0.9 to 17) [*see Indications and Usage (1.4), Dosage and Administration (2.5), and Clinical Studies (14.4)*].

Long-term follow-up data from the postmarketing surveillance study suggest that height and weight are not adversely affected in patients who received up to 5 years of filgrastim treatment. Limited data from patients who were followed in the phase 3 study for 1.5 years did not suggest alterations in sexual maturation or endocrine function.

Pediatric patients with congenital types of neutropenia (Kostmann's syndrome, congenital agranulocytosis, or Schwachman-Diamond syndrome) have developed cytogenetic abnormalities and have undergone transformation to MDS and AML while receiving chronic filgrastim treatment. The relationship of these events to filgrastim product administration is unknown [*see Warnings and Precautions (5.8) and Adverse Reactions (6)*].

The use of FILKRI to increase survival in pediatric patients acutely exposed to myelosuppressive doses of radiation is based on studies of filgrastim conducted in animals and clinical data supporting the use of filgrastim in other approved indications [*see Dosage and Administration (2.1 to 2.4) and Clinical Studies (14.5)*].

8.5 Geriatric Use

Among 855 subjects enrolled in 3 randomized, placebo-controlled trials of filgrastim-treated patients receiving myelosuppressive chemotherapy, there were 232 subjects age 65 or older, and 22 subjects age 75 or older. No overall differences in safety or effectiveness were observed between these subjects and younger subjects.

Clinical studies of filgrastim in other approved indications (i.e., BMT recipients, SCN and another indication) did not include sufficient numbers of subjects aged 65 and older to determine whether elderly subjects respond differently from younger subjects.

10 OVERDOSAGE

The maximum tolerated dose of filgrastim products has not been determined. In filgrastim clinical trials of patients with cancer receiving myelosuppressive chemotherapy, WBC counts > 100,000/mm³ have been reported in less than 5% of

patients, but were not associated with any reported adverse clinical effects. Patients in the BMT studies received up to 138 mcg/kg/day without toxic effects, although there was a flattening of the dose response curve above daily doses of greater than 10 mcg/kg/day.

11 DESCRIPTION

Filgrastim-laha, a leukocyte growth factor, is a 175 amino acid human granulocyte colony-stimulating factor (G-CSF) manufactured by recombinant DNA technology. Filgrastim-laha is produced by *Escherichia coli* (*E. coli*) bacteria into which has been inserted the human granulocyte colony-stimulating factor gene. Filgrastim-laha has a molecular weight of 18,800 daltons. The protein has an amino acid sequence that is identical to the natural sequence predicted from human DNA sequence analysis, except for the addition of an N-terminal methionine necessary for expression in *E. coli*. Because filgrastim-laha is produced in *E. coli*, the product is non-glycosylated and thus differs from G-CSF isolated from a human cell.

FILKRI (filgrastim-laha) injection is a sterile, clear, colorless, preservative-free liquid containing filgrastim-laha at a specific activity of $1.0 \pm 0.6 \times 10^8$ U/mg (as measured by a cell mitogenesis assay). The product is available in single-dose prefilled syringes for subcutaneous or intravenous use. The single-dose prefilled syringes contain either 300 mcg/0.5 mL or 480 mcg/0.8 mL of filgrastim-laha. The FILKRI drug product has a pH of 4.0. See table below for product composition of each single-dose prefilled syringe.

	300 mcg/0.5 mL Syringe	480 mcg/0.8 mL Syringe
Filgrastim-laha	300 mcg	480 mcg
glacial acetic acid	0.30 mg	0.472 mg
polysorbate 80	0.02 mg	0.032 mg
sodium hydroxide	0.03 mg	0.048 mg
sorbitol	25 mg	40 mg
Water for Injection USP q.s. ad*	0.5 mL	0.8 mL

* quantity sufficient to make

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Colony-stimulating factors are glycoproteins which act on hematopoietic cells by binding to specific cell surface receptors and stimulating proliferation, differentiation commitment, and some end-cell functional activation.

Endogenous G-CSF is a lineage-specific colony-stimulating factor that is produced by monocytes, fibroblasts, and endothelial cells. G-CSF regulates the production of neutrophils within the bone marrow and affects neutrophil progenitor proliferation, differentiation, and selected end-cell functions (including enhanced phagocytic ability, priming of the cellular metabolism associated with respiratory burst, antibody-dependent killing, and the increased expression of some cell surface antigens). G-CSF is not species-specific and has been shown to have minimal direct *in vivo* or *in vitro* effects on the production or activity of hematopoietic cell types other than the neutrophil lineage.

12.2 Pharmacodynamics

In phase 1 studies involving 96 patients with various nonmyeloid malignancies, filgrastim administration resulted in a dose-dependent increase in circulating neutrophil counts over the dose range of 1 to 70 mcg/kg/day. This increase in neutrophil counts was observed whether filgrastim was administered intravenous (1 to 70 mcg/kg twice daily), subcutaneous (1 to 3 mcg/kg once daily), or by continuous subcutaneous infusion (3 to 11 mcg/kg/day). With discontinuation of filgrastim therapy, neutrophil counts returned to baseline in most cases within 4 days. Isolated neutrophils displayed normal phagocytic (measured by zymosan-stimulated chemiluminescence) and chemotactic (measured by migration under agarose using N-formyl-methionyl-leucyl-phenylalanine [fMLP] as the chemotaxin) activity *in vitro*.

The absolute monocyte count was reported to increase in a dose-dependent manner in most patients receiving filgrastim; however, the percentage of monocytes in the differential count remained within the normal range. Absolute counts of both eosinophils and basophils did not change and were within the normal range following administration of filgrastim. Increases in lymphocyte counts following filgrastim administration have been reported in some normal subjects and patients with cancer.

White blood cell (WBC) differentials obtained during clinical trials have demonstrated a shift towards earlier granulocyte

progenitor cells (left shift), including the appearance of promyelocytes and myeloblasts, usually during neutrophil recovery following the chemotherapy-induced nadir. In addition, Dohle bodies, increased granulocyte granulation, and hypersegmented neutrophils have been observed. Such changes were transient and were not associated with clinical sequelae, nor were they necessarily associated with infection.

12.3 Pharmacokinetics

Filgrastim products exhibit nonlinear pharmacokinetics. Clearance is dependent on filgrastim product concentration and neutrophil count: G-CSF receptor-mediated clearance is saturated by high concentration of filgrastim products and is diminished by neutropenia. In addition, filgrastim products are cleared by the kidney.

Subcutaneous administration of 3.45 mcg/kg and 11.5 mcg/kg of filgrastim resulted in maximum serum concentrations of 4 and 49 ng/mL, respectively, within 2 to 8 hours. After intravenous administration, the volume of distribution averaged 150 mL/kg and the elimination half-life was approximately 3.5 hours in both normal subjects and subjects with cancer. Clearance rates of filgrastim were approximately 0.5 to 0.7 mL/minute/kg. Single parenteral doses or daily intravenous doses, over a 14-day period, resulted in comparable half-lives. The half-lives were similar for intravenous administration (231 minutes, following doses of 34.5 mcg/kg) and for subcutaneous administration (210 minutes, following filgrastim dosages of 3.45 mcg/kg). Continuous 24-hour intravenous infusions of 20 mcg/kg over an 11 to 20-day period produced steady-state serum concentrations of filgrastim with no evidence of drug accumulation over the time period investigated. The absolute bioavailability of filgrastim after subcutaneous administration is 60% to 70%.

Specific Populations

Patients Acutely Exposed to Myelosuppressive Doses of Radiation

The pharmacokinetics of filgrastim products is not available in patients acutely exposed to myelosuppressive doses of radiation. Based on limited pharmacokinetics data in irradiated non-human primates, the area under the time-concentration curve (AUC), reflecting the exposure to filgrastim in non-human primates at 10 mcg/kg dose of filgrastim, appears to be similar to that in humans at 5 mcg/kg. Simulations conducted using the population pharmacokinetic model indicates that the exposures to filgrastim at a filgrastim dose of 10 mcg/kg in patients acutely exposed to myelosuppressive doses of radiation are expected to exceed the exposures at a dose of 10 mcg/kg in irradiated non-human primates.

Pediatric Patients

The pharmacokinetics of filgrastim in pediatric patients after chemotherapy are similar to those in adult patients receiving the same weight-normalized doses, suggesting no age-related differences in the pharmacokinetics of filgrastim products [see *Use in Specific Populations (8.4)*].

Renal Impairment

In a study with healthy volunteers, subjects with moderate renal impairment, and subjects with end-stage renal disease (n = 4 per group), higher serum concentrations were observed in subjects with end-stage renal disease. However, dose adjustment in patients with renal impairment is not necessary.

Hepatic Impairment

Pharmacokinetics and pharmacodynamics of filgrastim are similar between subjects with hepatic impairment and healthy subjects (n = 12/group). The study included 10 subjects with mild hepatic impairment (Child-Pugh Class A) and 2 subjects with moderate hepatic impairment (Child-Pugh Class B). Therefore, FILKRI dose adjustment for patients with hepatic impairment is not necessary.

12.6 Immunogenicity

The observed incidence of anti-drug antibodies is highly dependent on the sensitivity and specificity of the assay. Differences in assay methods preclude meaningful comparisons of the incidence of anti-drug antibodies in the studies described below with the incidence of anti-drug antibodies in other studies, including those of filgrastim or of other filgrastim products.

While available data suggest that a small proportion of patients developed binding antibodies to filgrastim products, the nature and specificity of these antibodies has not been adequately studied. In clinical studies using filgrastim, the incidence of antibodies binding to filgrastim was 3% (11/333). In these 11 patients, no evidence of a neutralizing response was observed using a cell based bioassay. Because of the low occurrence of anti-drug antibodies, the effect of these antibodies on the pharmacokinetics, pharmacodynamics, safety, and/or effectiveness of filgrastim products is unknown.

Cytopenias resulting from an antibody response to exogenous growth factors have been reported on rare occasions in patients treated with other recombinant growth factors.

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

The carcinogenic potential of filgrastim products has not been studied. Filgrastim failed to induce bacterial gene mutations in either the presence or absence of a drug metabolizing enzyme system. Filgrastim had no observed effect on the fertility of male or female rats at doses up to 500 mcg/kg.

13.2 Animal Toxicology and/or Pharmacology

Filgrastim was administered to monkeys, dogs, hamsters, rats, and mice as part of a nonclinical toxicology program, which included studies up to 1-year duration.

In the repeated-dose studies, changes observed were attributable to the expected pharmacological actions of filgrastim (i.e., dose-dependent increases in white blood cell counts, increased circulating segmented neutrophils, and increased myeloid:erythroid ratio in bone marrow). Histopathologic examination of the liver and spleen revealed evidence of ongoing extramedullary granulopoiesis, and dose-related increases in spleen weight were seen in all species. These changes all reversed after discontinuation of treatment.

14 CLINICAL STUDIES

14.1 Patients with Cancer Receiving Myelosuppressive Chemotherapy

The safety and efficacy of filgrastim to decrease the incidence of infection, as manifested by febrile neutropenia, in patients with nonmyeloid malignancies receiving myelosuppressive anti-cancer drugs were established in a randomized, double-blind, placebo-controlled trial conducted in patients with small cell lung cancer (Study 1).

In Study 1, patients received up to 6 cycles of intravenous chemotherapy including intravenous cyclophosphamide and doxorubicin on day 1; and etoposide on days 1, 2, and 3 of 21 day cycles. Patients were randomized to receive filgrastim (n = 99) at a dose of 230 mcg/m² (4 to 8 mcg/kg/day) or placebo (n = 111). Study drug was administered subcutaneously daily beginning on day 4, for a maximum of 14 days. A total of 210 patients were evaluable for efficacy and 207 were evaluable for safety. The demographic and disease characteristics were balanced between arms with a median age of 62 (range 31 to 80) years; 64% males; 89% Caucasian; 72% extensive disease and 28% limited disease.

The main efficacy endpoint was the incidence of febrile neutropenia. Febrile neutropenia was defined as an ANC < 1,000/mm³ and temperature > 38.2°C. Treatment with filgrastim resulted in a clinically and statistically significant reduction in the incidence of infection, as manifested by febrile neutropenia, 40% for filgrastim-treated patients and 76% for placebo-treated patients (p < 0.001). There were also statistically significant reductions in the incidence and overall duration of infection manifested by febrile neutropenia; the incidence, severity and duration of severe neutropenia (ANC < 500/mm³); the incidence and overall duration of hospital admissions; and the number of reported days of antibiotic use.

14.2 Patients with Acute Myeloid Leukemia Receiving Induction or Consolidation Chemotherapy

The safety and efficacy of filgrastim to reduce the time to neutrophil recovery and the duration of fever, following induction or consolidation chemotherapy treatment of patients with acute myeloid leukemia (AML) was established in a randomized, double-blind, placebo-controlled, multi-center trial in patients with newly diagnosed, de novo AML (Study 4).

In Study 4 the initial induction therapy consisted of intravenous daunorubicin days 1, 2, and 3; cytosine arabinoside days 1 to 7; and etoposide days 1 to 5. Patients were randomized to receive subcutaneous filgrastim (n = 259) at a dose of 5 mcg/kg/day or placebo (n = 262) from 24 hours after the last dose of chemotherapy until neutrophil recovery (ANC \geq 1,000/mm³ for 3 consecutive days or \geq 10,000/mm³ for 1 day) or for a maximum of 35 days. The demographic and disease characteristics were balanced between arms with a median age of 54 (range 16 to 89) years; 54% males; initial white blood cell count (65% < 25,000/mm³ and 27% > 100,000/mm³); 29% unfavorable cytogenetics.

The main efficacy endpoint was median duration of severe neutropenia defined as neutrophil count < 500/mm³. Treatment with filgrastim resulted in a clinically and statistically significant reduction in median number of days of severe neutropenia, filgrastim-treated patients 14 days, placebo-treated patients 19 days (p = 0.0001: difference of 5 days (95% CI: -6.0, -4.0)). There was a reduction in the median duration of intravenous antibiotic use, filgrastim-treated patients: 15 days versus placebo-treated patients: 18.5 days; a reduction in the median duration of hospitalization, filgrastim-treated patients: 20 days versus placebo-treated patients: 25 days.

There were no statistically significant differences between the filgrastim and the placebo groups in complete remission rate (69% - filgrastim, 68% - placebo), median time to progression of all randomized patients (165 days - filgrastim, 186 days - placebo), or median overall survival (380 days - filgrastim, 425 days - placebo).

14.3 Patients with Cancer Undergoing Bone Marrow Transplantation

The safety and efficacy of filgrastim to reduce the duration of neutropenia in patients with nonmyeloid malignancies undergoing myeloablative chemotherapy followed by autologous bone marrow transplantation was evaluated in 2 randomized controlled trials of patients with lymphoma (Study 6 and Study 9). The safety and efficacy of filgrastim to reduce the duration of neutropenia in patients undergoing myeloablative chemotherapy followed by allogeneic bone marrow transplantation was evaluated in a randomized placebo-controlled trial (Study 10).

In Study 6, patients with Hodgkin's disease received a preparative regimen of intravenous cyclophosphamide, etoposide, and BCNU ("CVP"), and patients with non-Hodgkin's lymphoma received intravenous BCNU, etoposide, cytosine arabinoside and melphalan ("BEAM"). There were 54 patients randomized 1:1:1 to control, filgrastim 10 mcg/kg/day, and filgrastim 30 mcg/kg/day as a 24-hour continuous infusion starting 24 hours after bone marrow infusion for a maximum of 28 days. The median age was 33 (range 17 to 57) years; 56% males; 69% Hodgkin's disease and 31% non-Hodgkin's lymphoma.

The main efficacy endpoint was duration of severe neutropenia ANC < 500/mm³. A statistically significant reduction in the median number of days of severe neutropenia (ANC < 500/mm³) occurred in the filgrastim-treated groups versus the control group (23 days in the control group, 11 days in the 10 mcg/kg/day group, and 14 days in the 30 mcg/kg/day group [11 days in the combined treatment groups, p = 0.004]).

In Study 9, patients with Hodgkin's disease and non-Hodgkin's lymphoma received a preparative regimen of intravenous cyclophosphamide, etoposide, and BCNU ("CVP"). There were 43 evaluable patients randomized to continuous subcutaneous infusion filgrastim 10 mcg/kg/day (n = 19), filgrastim 30 mcg/kg/day (n = 10) and no treatment (n = 14) starting the day after marrow infusion for a maximum of 28 days. The median age was 33 (range 17 to 56) years; 67% males; 28% Hodgkin's disease and 72% non-Hodgkin's lymphoma.

The main efficacy endpoint was duration of severe neutropenia. There was statistically significant reduction in the median number of days of severe neutropenia (ANC < 500/mm³) in the filgrastim-treated groups versus the control group (21.5 days in the control group versus 10 days in the filgrastim-treated groups, p < 0.001). The number of days of febrile neutropenia was also reduced significantly in this study (13.5 days in the control group versus 5 days in the filgrastim-treated groups, p < 0.0001).

In Study 10, 70 patients scheduled to undergo bone marrow transplantation for multiple underlying conditions using multiple preparative regimens were randomized to receive filgrastim 300 mcg/m²/day (n = 33) or placebo (n = 37) days 5 through 28 after marrow infusion. The median age was 18 (range 1 to 45) years, 56% males. The underlying disease was: 67% hematologic malignancy, 24% aplastic anemia, 9% other. A statistically significant reduction in the median number of days of severe neutropenia occurred in the treated group versus the control group (19 days in the control group and 15 days in the treatment group, p < 0.001) and time to recovery of ANC to ≥ 500/mm³ (21 days in the control group and 16 days in the treatment group, p < 0.001).

14.4 Patients with Severe Chronic Neutropenia

The safety and efficacy of filgrastim to reduce the incidence and duration of sequelae of neutropenia (that is fever, infections, oropharyngeal ulcers) in symptomatic adult and pediatric patients with congenital neutropenia, cyclic neutropenia, or idiopathic neutropenia was established in a randomized controlled trial conducted in patients with severe neutropenia (Study 7).

Patients eligible for Study 7 had a history of severe chronic neutropenia documented with an ANC < 500/mm³ on three occasions during a 6-month period, or in patients with cyclic neutropenia 5 consecutive days of ANC < 500/mm³ per cycle. In addition, patients must have experienced a clinically significant infection during the previous 12 months. Patients were randomized to a 4-month observation period followed by filgrastim treatment or immediate filgrastim treatment. The median age was 12 years (range 7 months to 76 years); 46% males; 34% idiopathic, 17% cyclic and 49% congenital neutropenia.

Filgrastim was administered subcutaneously. The dose of filgrastim was determined by the category of neutropenia. Initial dose of filgrastim:

- Idiopathic neutropenia: 3.6 mcg/kg/day

- Cyclic neutropenia: 6 mcg/kg/day
- Congenital neutropenia: 6 mcg/kg/day divided 2 times per day

The dose was increased incrementally to 12 mcg/kg/day divided 2 times per day if there was no response.

The main efficacy endpoint was response to filgrastim treatment. ANC response from baseline ($< 500/\text{mm}^3$) was defined as follows:

- Complete response: median ANC $> 1,500/\text{mm}^3$
- Partial response: median ANC $\geq 500/\text{mm}^3$ and $\leq 1,500/\text{mm}^3$ with a minimum increase of 100%
- No response: median ANC $< 500/\text{mm}^3$

There were 112 of 123 patients who demonstrated a complete or partial response to filgrastim treatment.

Additional efficacy endpoints included a comparison between patients randomized to 4 months of observation and patients receiving filgrastim of the following parameters:

- incidence of infection
- incidence of fever
- duration of fever
- incidence, duration, and severity of oropharyngeal ulcers
- number of days of antibiotic use

The incidence for each of these 5 clinical parameters was lower in the filgrastim arm compared to the control arm for cohorts in each of the 3 major diagnostic categories. An analysis of variance showed no significant interaction between treatment and diagnosis, suggesting that efficacy did not differ substantially in the different diseases. Although filgrastim substantially reduced neutropenia in all patient groups, in patients with cyclic neutropenia, cycling persisted but the period of neutropenia was shortened to 1 day.

14.5 Patients Acutely Exposed to Myelosuppressive Doses of Radiation (Hematopoietic Syndrome of Acute Radiation Syndrome)

Efficacy studies of filgrastim products could not be conducted in humans with acute radiation syndrome for ethical and feasibility reasons. Approval of this indication was based on efficacy studies conducted in animals and data supporting the use of filgrastim for other approved indications [*see Dosage and Administration (2.1 to 2.4)*].

Because of the uncertainty associated with extrapolating animal efficacy data to humans, the selection of human dose for FILKRI is aimed at providing exposures to filgrastim that exceed those observed in animal efficacy studies. The 10 mcg/kg daily dose is selected for humans exposed to myelosuppressive doses of radiation because the exposure associated with such a dose is expected to exceed the exposure associated with a 10 mcg/kg dose in non-human primates [*see Clinical Pharmacology (12.3)*]. The safety of filgrastim at a daily dose of 10 mcg/kg has been assessed on the basis of clinical experience in approved indications.

The efficacy of filgrastim was studied in a randomized, blinded, placebo-controlled study in a non-human primate model of radiation injury. The planned sample size was 62 animals, but the study was stopped at the interim analysis with 46 animals because efficacy was established. Rhesus macaques were randomized to a control (n = 22) or treated (n = 24) group. Animals were exposed to total body irradiation of 7.4 ± 0.15 Gy delivered at 0.8 ± 0.03 Gy/min, representing a dose that would be lethal in 50% of animals by 60 days of follow-up (LD50/60). Starting on day 1 after irradiation, animals received daily subcutaneous injections of placebo (5% dextrose in water) or filgrastim (10 mcg/kg/day). Blinded treatment was stopped when one of the following criteria was met: ANC $\geq 1,000/\text{mm}^3$ for 3 consecutive days, or ANC $\geq 10,000/\text{mm}^3$ for more than 2 consecutive days within study day 1 to 5, or ANC $\geq 10,000/\text{mm}^3$ any time after study day 5. Animals received medical management consisting of intravenous fluids, antibiotics, blood transfusions, and other support as required.

Filgrastim significantly (at 0.023 level of significance) reduced 60-day mortality in the irradiated non-human primates: 21% mortality (5/24) in the filgrastim group compared to 59% mortality (13/22) in the control group.

16 HOW SUPPLIED/STORAGE AND HANDLING

FILKRI (filgrastim-laha) injection is a clear, colorless, preservative-free solution supplied as:

Single-dose prefilled syringe with 27 gauge, $\frac{1}{2}$ inch needle with an UltraSafe® Plus™ Passive Needle Guard, containing

300 mcg/0.5 mL of filgrastim-laha.

- Carton of 1 prefilled syringe (NDC 69448-008-63).
- Carton of 10 prefilled syringes (NDC 69448-008-03).

Single-dose prefilled syringe with 27 gauge, $\frac{1}{2}$ inch needle with an UltraSafe[®] PlusTM Passive Needle Guard, containing 480 mcg/0.8 mL of filgrastim-laha.

- Carton of 1 prefilled syringe (NDC 69448-009-63).
- Carton of 10 prefilled syringes (NDC 69448-009-03).

The needle cap of the prefilled syringe contains dry natural rubber (a derivative of latex) [see *Dosage and Administration* (2.5)].

Store FILKRI refrigerated at 2°C to 8°C (36°F to 46°F) in the original carton to protect from light. Do not leave FILKRI in direct sunlight. Avoid freezing; if frozen, thaw in the refrigerator before administration. Discard FILKRI if frozen more than once. Do not shake.

17 PATIENT COUNSELING INFORMATION

Advise the patient to read the FDA-approved patient labeling (Patient Information and Instructions for Use). Review the steps for direct patient administration with patients and caregivers. Training by the healthcare provider should aim to ensure that patients and caregivers can successfully perform all of the steps in the *Instructions for Use* of FILKRI prefilled syringe, including showing the patient or caregiver how to measure the required dose, particularly if a patient is on a dose other than the entire prefilled syringe. If a patient or caregiver is not able to demonstrate that they can measure the dose and administer the product successfully, you should consider whether the patient is an appropriate candidate for self-administration of FILKRI.

Advise patients of the following risks and potential risks with FILKRI:

- Rupture or enlargement of the spleen may occur. Symptoms include left upper quadrant abdominal pain or left shoulder pain. Advise patients to report pain in these areas to their physician immediately [see *Warnings and Precautions* (5.1)].
- Dyspnea, with or without fever, progressing to Acute Respiratory Distress Syndrome, may occur. Advise patients to report dyspnea to their physician immediately [see *Warnings and Precautions* (5.2)].
- Serious allergic reactions may occur, which may be signaled by rash, facial edema, wheezing, dyspnea, hypotension, or tachycardia. Advise patients to seek immediate medical attention if signs or symptoms of hypersensitivity reaction occur [see *Warnings and Precautions* (5.3)].
- In patients with sickle cell disease, sickle cell crisis and death have occurred. Discuss potential risks and benefits for patients with sickle cell disease prior to the administration of human granulocyte colony-stimulating factors [see *Warnings and Precautions* (5.4)].
- Glomerulonephritis may occur. Symptoms include swelling of the face or ankles, dark colored urine or blood in the urine, or a decrease in urine production. Advise patients to report signs or symptoms of glomerulonephritis to their physician immediately [see *Warnings and Precautions* (5.5)].
- There may be an increased risk of Myelodysplastic Syndrome and/or Acute Myeloid Leukemia in patients with congenital neutropenia who receive filgrastim products and in patients with breast and lung cancer who receive filgrastim products in conjunction with chemotherapy and/or radiation therapy. Symptoms of MDS and AML may include tiredness, fever, and easy bruising or bleeding. Advise patients to report to their physician signs and symptoms of MDS/AML [see *Warnings and Precautions* (5.8)].
- Cutaneous vasculitis may occur, which may be signaled by purpura or erythema. Advise patients to report signs or symptoms of vasculitis to their physician immediately [see *Warnings and Precautions* (5.11)].
- Aortitis may occur. Symptoms may include fever, abdominal pain, malaise, back pain, and increased inflammatory markers. Advise patients to report signs and symptoms of aortitis to their physician immediately [see *Warnings and Precautions* (5.15)].

Advise patients acutely exposed to myelosuppressive doses of radiation (Hematopoietic Syndrome of Acute Radiation Syndrome) that efficacy studies of filgrastim products for this indication could not be conducted in humans for ethical and feasibility reasons and that, therefore, approval of this use was based on efficacy studies conducted in animals [see *Clinical Studies* (14.5)].

Instruct patients who self-administer FILKRI using the prefilled syringe of the:

- Importance of following the applicable Instructions for Use.
- Dangers of reusing needles or syringes.
- Importance of following local requirements for proper disposal of used syringes and needles.
- Importance of informing the healthcare provider if difficulty occurs when measuring or administering partial contents of the FILKRI prefilled syringe.

FILKRI® (filgrastim-laha)

Manufactured by:

Accord BioPharma Inc.,
8041 Arco Corporate Drive, Suite 200, Raleigh, NC 27617 USA
U.S. License Number: 2105

Manufactured at:

Intas Pharmaceuticals Limited
Plot no: 423/P/A, Sarkhej-Bavla Highway,
Moraiya, Ahmedabad, Gujarat 382213, India

Patient Information
FILKRI® (fil kree)
(filgrastim-laha)
injection

What is FILKRI?

FILKRI is a man-made form of granulocyte colony-stimulating factor (G-CSF). G-CSF is a substance produced by the body. It stimulates the growth of neutrophils, a type of white blood cell important in the body's fight against infection.

Acute Radiation Syndrome: The effectiveness of filgrastim for this use was only studied in animals, because it could not be studied in people.

Do not take FILKRI if you have had a serious allergic reaction to human G-CSFs such as filgrastim products or pegfilgrastim products.

Before you take FILKRI, tell your healthcare provider about all of your medical conditions, including if you:

- have a sickle cell disorder.
- have kidney problems.
- are receiving radiation therapy.
- are allergic to latex. The needle cover on the prefilled syringe contains dry natural rubber (derived from latex). You should not give FILKRI using the prefilled syringe if you have latex allergies.
- are pregnant or plan to become pregnant. It is not known if FILKRI will harm your unborn baby.
- are breastfeeding or plan to breastfeed. It is not known if FILKRI passes into your breast milk.

Tell your healthcare provider about all the medicines you take, including prescription and over-the-counter medicines, vitamins, and herbal supplements.

How will I receive FILKRI?

- **FILKRI injections can be given by a healthcare provider by intravenous (IV) infusion or under your skin (subcutaneous injection). Your healthcare provider may decide subcutaneous injections can be given at home by you or your caregiver. If FILKRI is given at home, see the detailed "Instructions for Use" that comes with your FILKRI for information on how to prepare and inject a dose of FILKRI.**
- You and your caregiver should be shown how to prepare and inject FILKRI before you use it, by your healthcare provider.
- Your healthcare provider will tell you how much FILKRI to inject and when to inject it. Do not change your dose or stop FILKRI unless your healthcare provider tells you to.
- You should not inject a dose of FILKRI less than 0.3 mL (180 mcg) from a FILKRI prefilled syringe. A dose less than 0.3 mL cannot be accurately measured using the FILKRI prefilled syringe.
- If you are receiving FILKRI because you are also receiving chemotherapy, your dose of FILKRI should be injected **at least 24 hours before or 24 hours after** your dose of chemotherapy. Your healthcare provider will do blood tests to monitor your white blood cell count, and if necessary, adjust your FILKRI dose.
- If you are receiving FILKRI because you have been suddenly (acutely) exposed to an amount of radiation that can affect your bone marrow (Acute Radiation Syndrome), you will need to have blood tests about every 3 days during treatment with FILKRI to check your white blood cell count.
- If you miss a dose of FILKRI, talk to your healthcare provider about when you should give your next dose.

What are the possible side effects of FILKRI?

FILKRI may cause serious side effects, including:

- **Spleen rupture.** Your spleen may become enlarged and can rupture. A ruptured spleen can cause death. Call your healthcare provider right away if you have pain in the left upper stomach (abdomen) area or your left shoulder.
- **A serious lung problem called acute respiratory distress syndrome (ARDS).** Call your healthcare provider or get emergency medical help right away if you have shortness of breath with or without a fever, trouble breathing, or a fast rate of breathing.
- **Serious allergic reactions.** FILKRI can cause serious allergic reactions. These reactions can cause a rash over your whole body, shortness of breath, wheezing, dizziness, swelling around your mouth or eyes, fast heart rate, and sweating. If you have any of these symptoms, stop using FILKRI and call your healthcare provider or get emergency medical help right away.
- **Sickle cell crises.** You may have a serious sickle cell crisis, which could lead to death, if you have a sickle cell disorder and receive FILKRI. Call your healthcare provider right away if you have symptoms of sickle cell crisis such as pain or difficulty breathing.

- **Kidney injury (glomerulonephritis).** FILKRI can cause kidney injury. Call your healthcare provider right away if you develop any of the following symptoms:
 - swelling of your face or ankles
 - blood in your urine or dark colored urine
 - you urinate less than usual
- **Capillary leak syndrome.** FILKRI can cause fluid to leak from blood vessels into your body's tissues. This condition is called "Capillary Leak Syndrome" (CLS). CLS can quickly cause you to have symptoms that may become life-threatening. Get emergency medical help right away if you develop any of the following symptoms:
 - swelling or puffiness and are urinating less than usual
 - trouble breathing
 - swelling of your stomach area (abdomen) and feeling of fullness
 - dizziness or feeling faint
 - a general feeling of tiredness
- **Myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML).**
 - FILKRI may increase the risk of developing a precancerous condition called MDS or a type of blood cancer called AML in people who were born with low white blood cell counts (congenital neutropenia).
 - If you have breast cancer or lung cancer, when FILKRI is used with chemotherapy and radiation therapy, or with radiation therapy only, you may have an increased risk of developing MDS or AML.
 - Symptoms of MDS and AML may include tiredness, fever, and easy bruising or bleeding.
 - Call your healthcare provider if you develop any of these symptoms during treatment with FILKRI.
- **Decreased platelet count (thrombocytopenia).** Your healthcare provider will check your blood during treatment with FILKRI. Tell your healthcare provider if you have unusual bleeding or bruising during treatment with FILKRI. This could be a sign of decreased platelet counts, which may reduce the ability of your blood to clot.
- **Increased white blood cell count (leukocytosis).** Your healthcare provider will check your blood during treatment with FILKRI.
- **Inflammation of your blood vessels (cutaneous vasculitis).** Tell your healthcare provider right away if you develop purple spots or redness of your skin.
- **Inflammation of the aorta (aortitis).** Inflammation of the aorta (the large blood vessel which transports blood from the heart to the body) has been reported in patients who received filgrastim products. Symptoms may include fever, abdominal pain, feeling tired, and back pain. Call your healthcare provider if you experience these symptoms.

The most common side effects experienced in patients receiving FILKRI include:

- Patients with cancer receiving chemotherapy: fever, pain, rash, cough, and shortness of breath
- Patients with acute myeloid leukemia receiving chemotherapy: pain, nose bleed, and rash
- Patients with cancer receiving chemotherapy followed by bone marrow transplant: rash
- Patients with severe chronic neutropenia: pain, decreased red blood cells, nose bleed, diarrhea, reduced sensation, and hair loss

These are not all the possible side effects of FILKRI. Call your healthcare provider for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088.

How should I store FILKRI?

- Store FILKRI in the refrigerator between 36°F to 46°F (2°C to 8°C).
- **Do not freeze.** If FILKRI is accidentally frozen, allow the prefilled syringe to thaw in the refrigerator before injecting.
- **Do not use a FILKRI prefilled syringe that has been frozen more than 1 time.** Throw it away and use a new prefilled syringe.
- Keep FILKRI in the original carton to protect from light or physical damage. Do not leave FILKRI in direct sunlight.
- Do not shake FILKRI.
- Take FILKRI out of the refrigerator 30 minutes before use and allow it to reach room temperature, 68°F to 77°F (20°C to 25°C), before preparing an injection.
- Throw away (dispose of) any FILKRI that has been left at room temperature for longer than 24 hours.
- After you inject your dose, throw away (dispose of) any unused FILKRI left in the prefilled syringes. **Do not** save unused FILKRI in the prefilled syringes for later use.

Keep FILKRI and all medicines out of the reach of children.

General information about the safe and effective use of FILKRI.

Medicines are sometimes prescribed for purposes other than those listed in a Patient Information leaflet. Do not use FILKRI for a condition for which it was not prescribed. Do not give FILKRI to other people, even if they have the same symptoms that you have. It may harm them. You can ask your pharmacist or healthcare provider for information about FILKRI that is written for healthcare professionals.

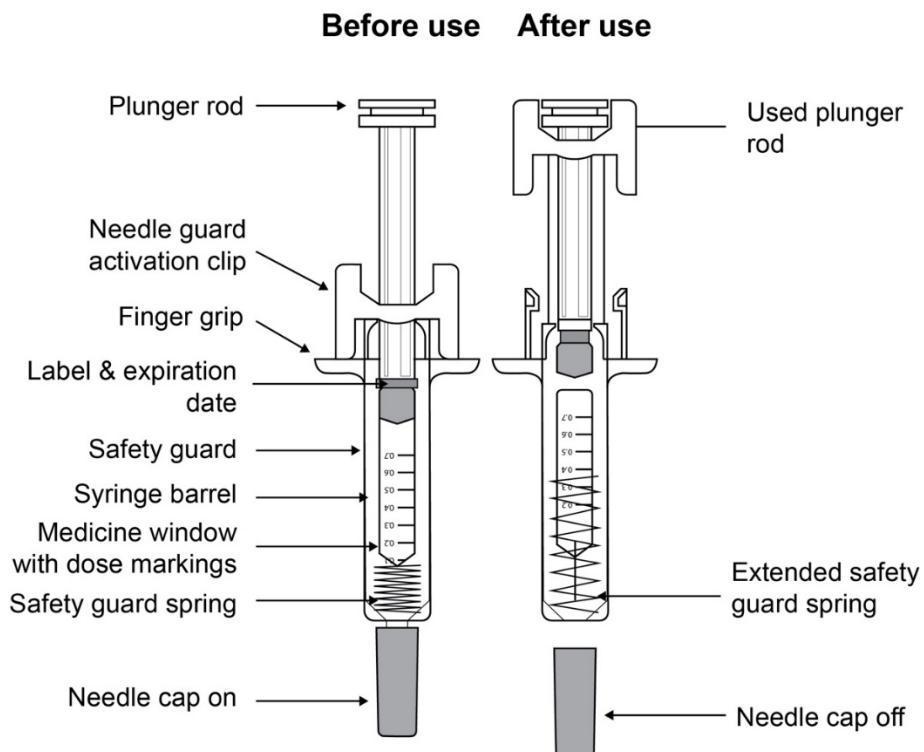
What are the ingredients in FILKRI?

Active ingredient: filgrastim-laha

Inactive ingredients: glacial acetic acid, polysorbate 80, sodium hydroxide, sorbitol, and Water for Injection

Manufactured by: Accord BioPharma Inc., 8041 Arco Corporate Drive, Suite 200, Raleigh, NC 27617 USA

US License No. 2105


Manufactured at: Intas Pharmaceuticals Limited, Plot no: 423/P/A, Sarkhej-Bavla Highway, Moraiya, Ahmedabad, Gujarat 382213, India

This Patient Information has been approved by the U.S. Food and Drug Administration.

Issued: 01/2026

Instructions for Use
FILKRI® (fil kree)
(filgrastim-laha)
injection
Single-Dose Prefilled Syringe

Guide to parts

Figure 1

Important: The needle is covered by the gray needle cap before use.

Important

Read the Patient Information for important information you need to know about FILKRI before using these Instructions for Use.

Before you use a FILKRI prefilled syringe, read this important information.

Storing your prefilled syringe

- Store the prefilled syringe in the refrigerator between 36°F to 46°F (2°C to 8°C).
- **Do not** freeze. If FILKRI is accidentally frozen, allow the prefilled syringe to thaw in the refrigerator before injecting.
- **Do not** use a FILKRI prefilled syringe that has been frozen more than 1 time. Throw it away and use a new prefilled syringe.
- Keep the prefilled syringe in the original carton to protect from light or physical damage.
- Take the prefilled syringe out of the refrigerator 30 minutes before use and allow it to reach room temperature, 68°F to 77°F (20°C to 25°C), before preparing an injection.
- Throw away (dispose of) any prefilled syringe that has been left at room temperature for longer than 24 hours.
- After you inject your dose, throw away (dispose of) any unused FILKRI left in the prefilled syringe. **Do not** save unused FILKRI in the prefilled syringe for later use.

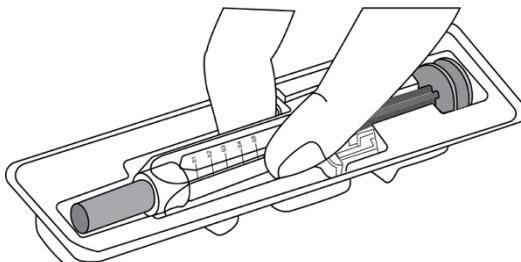
- **Keep FILKRI and all medicines out of the reach of children.**

Using your prefilled syringe

- **It is important that you do not try to give the injection unless you or your caregiver has received training from your healthcare provider.**
- **Do not** inject a dose of FILKRI less than 0.3 mL (180 mcg) from a FILKRI prefilled syringe. A dose less than 0.3 mL cannot be accurately measured using the FILKRI prefilled syringe.
- Make sure the name FILKRI appears on the carton and prefilled syringe label.
- **Do not** use a prefilled syringe after the expiration date on the label.
- **Do not** shake the prefilled syringe.
- **Do not** remove the gray needle cap from the prefilled syringe until you are ready to inject.
- **Do not** use the prefilled syringe if the carton is open or damaged.
- **Do not** use a prefilled syringe if it has been dropped on a hard surface. The prefilled syringe may be broken even if you cannot see the break. Use a new prefilled syringe.
- The prefilled syringe has a needle guard that will be activated to cover the needle after the injection is given. The needle guard will help prevent needle stick injuries to anyone who handles the prefilled syringe.
- Avoid touching the syringe needle guard wings before use. Touching them may cause the syringe needle guard to be activated too early.
- **The gray needle cap on the prefilled syringe contains dry natural rubber (made from latex). Tell your healthcare provider if you are allergic to latex. You should not give FILKRI using the prefilled syringe if you have latex allergies.**

Call your healthcare provider if you have any questions.

Step 1: Prepare


A. Remove the prefilled syringe carton from the refrigerator.

Put the original carton with any unused prefilled syringes back in the refrigerator.

Remove the syringe tray from the carton. On a clean, well-lit surface, place the syringe tray at room temperature for **30** minutes before you give an injection.

- **Do not** use the prefilled syringe if the carton is damaged.
- **Do not** try to warm the prefilled syringe by using a heat source such as hot water or microwave.
- **Do not** leave the prefilled syringe in direct sunlight.
- **Do not** shake the prefilled syringe.

Open the tray by peeling away the cover. Grab the safety guard to remove the prefilled syringe from the tray (see Figure 2).

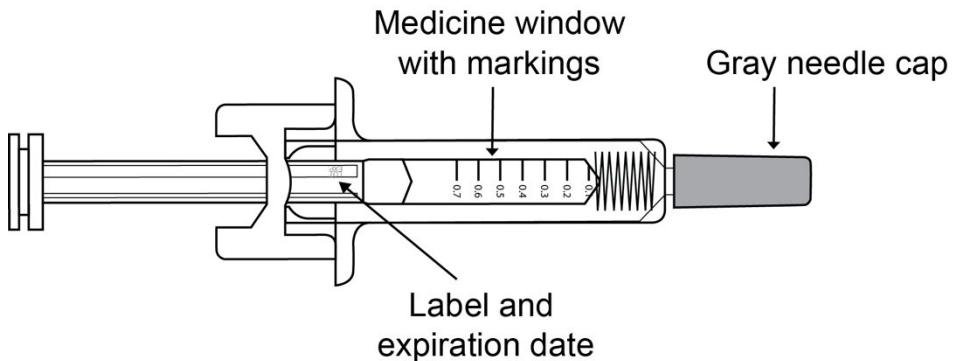


Figure 2

For safety reasons:

- **Do not** grab the plunger rod.
- **Do not** grab the gray needle cap.

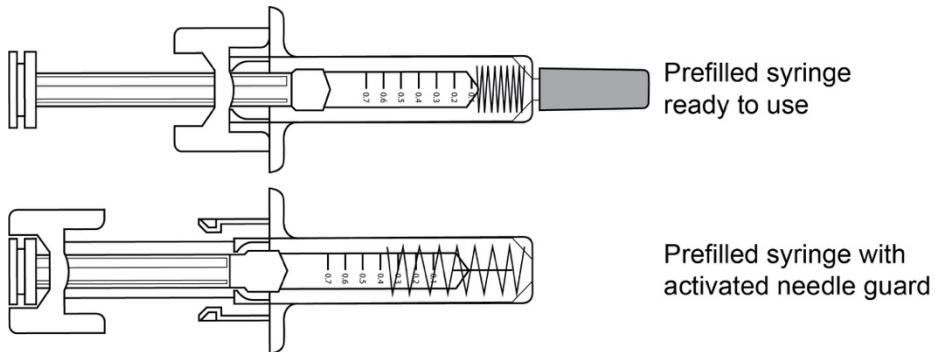
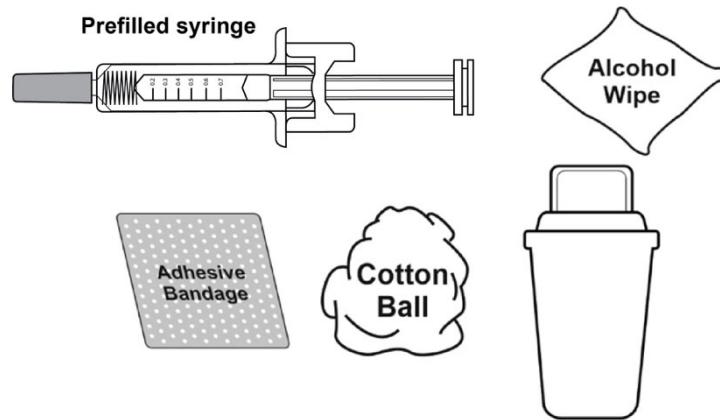

B. Inspect the medicine and prefilled syringe (see Figure 3).

Figure 3

Turn the prefilled syringe so you can see the medicine window and markings. Make sure the medicine in the prefilled syringe is clear and colorless.

- **Do not** use the prefilled syringe if:
 - The medicine is cloudy or discolored or contains flakes or particles.
 - Any part appears cracked or broken.
 - The prefilled syringe has been dropped.
 - The gray needle cap is missing or not securely attached.
 - The expiration date printed on the label has passed.
 - The needle guard is activated. Check to make sure that the plastic transparent needle guard is covering the barrel of the glass syringe. If transparent needle guard is covering the needle cap, the needle guard has already been activated (see Figure 4). **Do not** use the prefilled syringe if the needle guard has been activated. Get another prefilled syringe that has not been activated and is ready to use.

Figure 4


- In all cases, use a new prefilled syringe and call your healthcare provider.

C. Gather all materials needed for your injection (see Figure 5).

Wash your hands thoroughly with soap and water.

On a clean, well-lit work surface, place the:

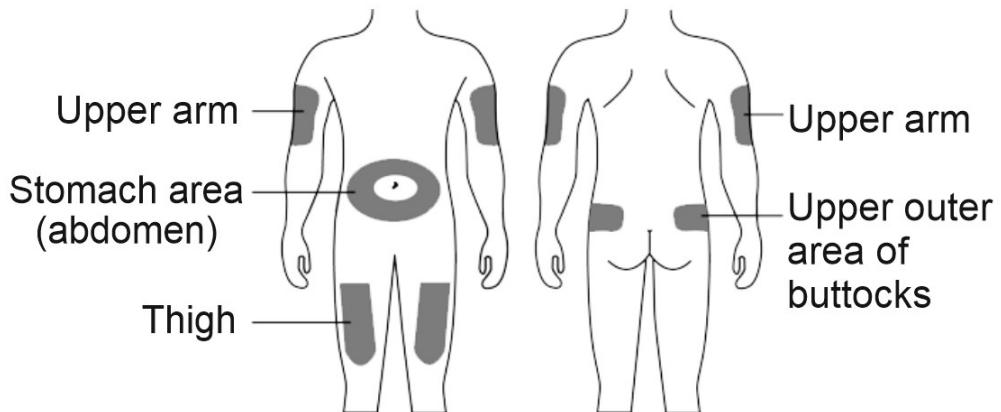

- Prefilled syringe
- Alcohol wipe
- Cotton ball or gauze pad
- Adhesive bandage
- Sharps disposal container

Figure 5

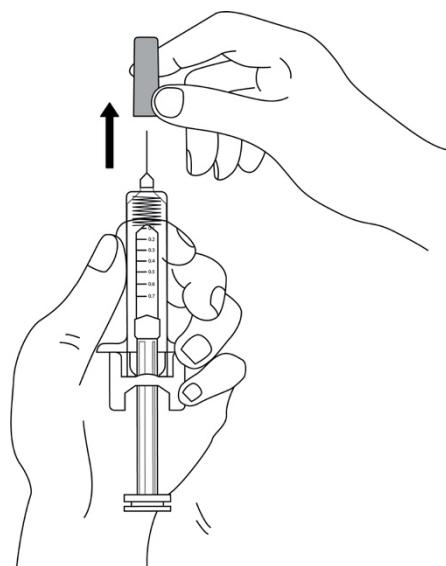
Step 2: Get ready

D. Prepare and clean your injection site (see Figure 6).

Figure 6

You can use:

- Thigh
- Stomach area (abdomen), except for a 2-inch area right around your navel (belly button)
- Upper outer area of your buttocks (only if someone else is giving you the injection)
- Outer area of upper arm (only if someone else is giving you the injection)


Clean your injection site with an alcohol wipe.

- Let your skin dry.
- **Do not** touch this area again before injecting.

If you want to use the same injection site, make sure it is not the same spot on the injection site area you used for a previous injection.

- **Do not** inject into areas where the skin is tender, bruised, red, or hard. Avoid injecting into areas with scars or stretch marks.

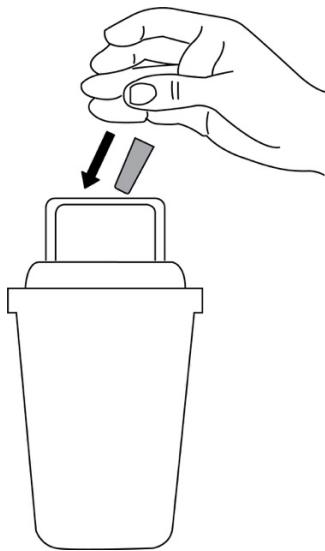
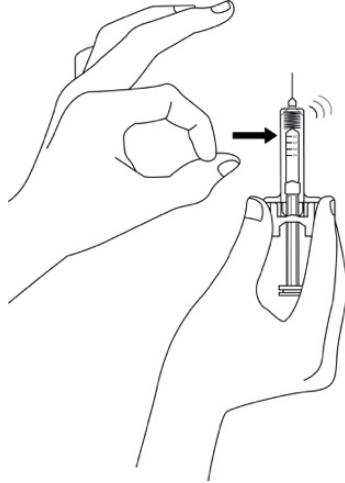

E. Hold the prefilled syringe by the syringe barrel. Carefully pull the gray needle cap straight off and away from your body (see Figure 7).

Figure 7

- **Do not** remove the gray needle cap from the prefilled syringe until you are ready to inject.
- **Do not** twist or bend the gray needle cap.
- **Do not** hold the prefilled syringe by the plunger rod.
- **Do not** put the gray needle cap back onto the prefilled syringe.

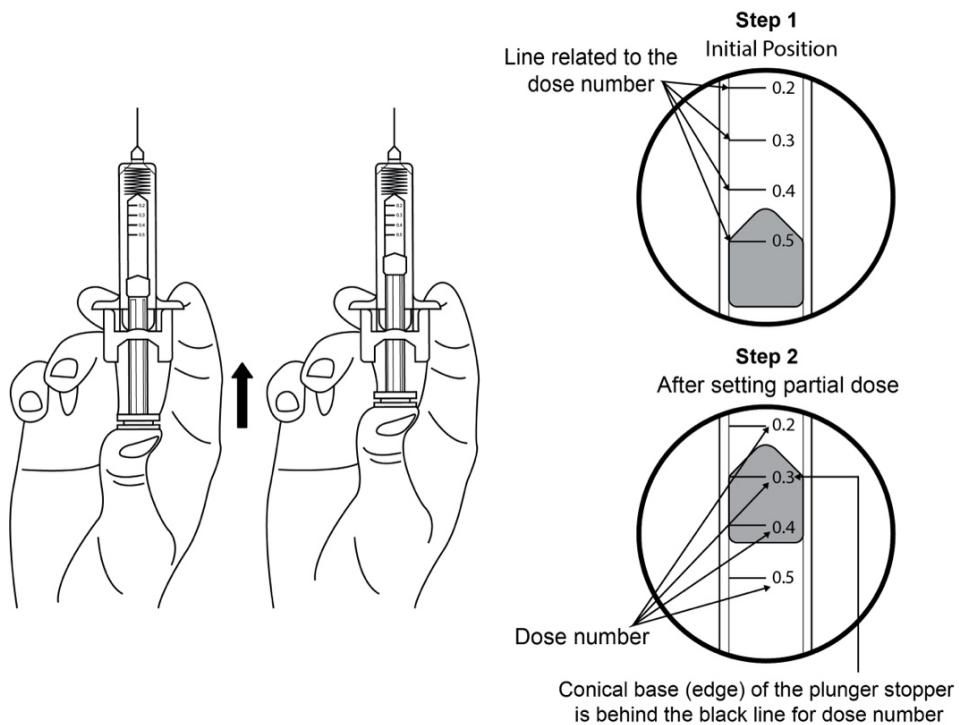
Important: Throw the gray needle cap into the sharps disposal container (see Figure 8).

Figure 8



F. Check your prescription before you inject your dose.

Your healthcare provider has prescribed either a “full” syringe dose or a “partial” syringe dose of FILKRI.

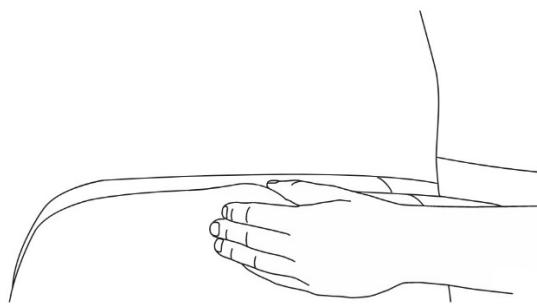

- If you are prescribed a full dose, you will inject all of the medicine from your prefilled syringe. **For a full dose, go directly to Step 3: Subcutaneous (under the skin) injection.**
- **If you are prescribed a partial dose of FILKRI, start with Step G below.**

G. Point the needle up and gently tap the syringe body with your fingers until the air bubble rises to the top of the syringe (See Figure 9).

Figure 9

H. Slowly push the plunger rod up to the line on the syringe barrel that matches your prescribed dose (see Figure 10).

Figure 10


Be careful not to activate the needle guard before use. **Do not use FILKRI prefilled syringe that has been activated.**

As you push the plunger rod up, air and extra medication is removed. Check to make sure the end of the conical base (edge) of the plunger stopper lines up with the syringe markings for your prescribed dose. See Figure 10 for an example of a dose of 0.3 mL. Your dose may be different than example shown. If you remove too much medicine, get a new prefilled syringe and start again at **Step 1**.

- Call your healthcare provider if you have problems measuring your prescribed dose.

Step 3: Subcutaneous (under the skin) injection

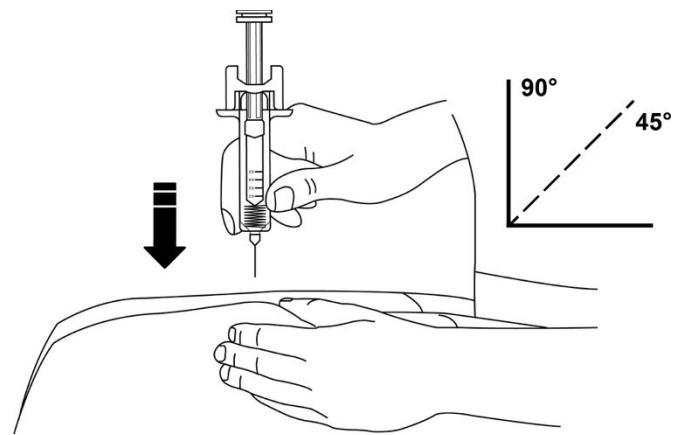

- I. Pinch your injection site to create a firm surface (see Figure 11).

Figure 11

Important: Keep skin pinched while injecting.

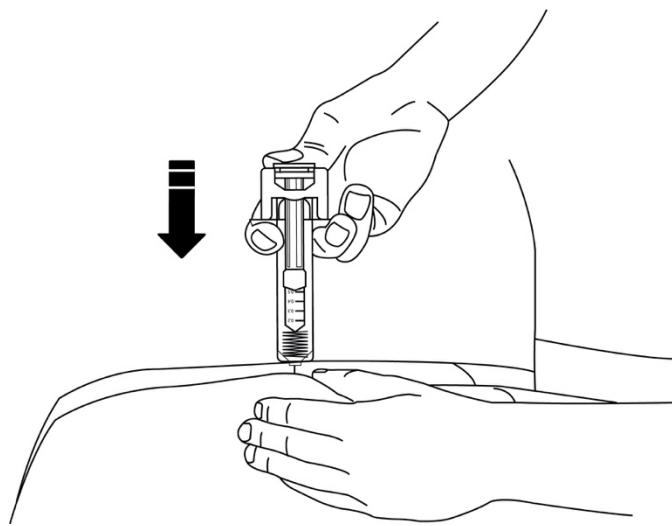
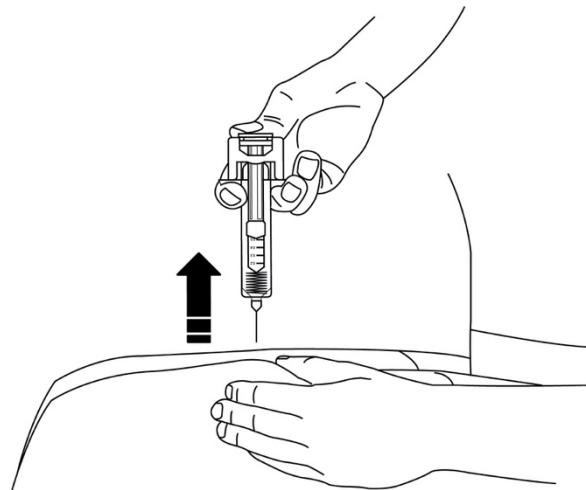

- J. Hold the pinch. Insert the needle into the skin at 45 to 90 degrees (see Figure 12).

Figure 12


K. Using slow and constant pressure, push the plunger rod until it reaches the bottom (see Figure 13).

- **Do not** pull back the plunger rod while the needle is inserted.

Figure 13

L. When done, keep the plunger fully pressed down while you carefully pull the needle straight out from the injection site (Figure 14).

Figure 14

Important: When you remove the syringe, if it looks like the medicine is still in the syringe barrel, this means you have not received a full dose. Call your healthcare provider right away.

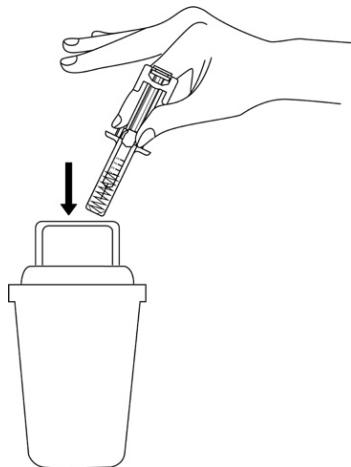

M. Slowly release the plunger and allow the needle guard to automatically cover the exposed needle (see Figure 15).

Figure 15

Step 4: Finish

N. Discard (throw away) the used prefilled syringe (see Figure 16).

Figure 16

- Put the used prefilled syringe in an FDA-cleared sharps disposal container right away after use. **Do not throw away (dispose of)** the prefilled syringe in your household trash.
- If you do not have an FDA-cleared sharps disposal container, you may use a household container that is:
 - made of a heavy-duty plastic,
 - can be closed with a tight-fitting, puncture-resistant lid, without sharps being able to come out,
 - upright and stable during use,
 - leak-resistant, and
 - properly labeled to warn of hazardous waste inside the container.
- When your sharps disposal container is almost full, you will need to follow your community guidelines for the right way to dispose of your sharps disposal container. There may be state or local laws about how you should throw away used needles and syringes. For more information about safe sharps disposal, and for specific information about sharps disposal in the state that you live in, go to the FDA's website at: <http://www.fda.gov/safesharpsdisposal>
- **Do not** reuse the prefilled syringe.
- **Do not** recycle the prefilled syringe or sharps disposal container or throw them into household trash.

Important: Always keep the sharps disposal container out of the reach of children.

O. Examine the injection site.

If there is blood, press a cotton ball or gauze pad on your injection site. **Do not** rub the injection site. Apply an adhesive bandage if needed.

This Instructions for Use has been approved by the U.S. Food and Drug Administration.

FILKRI® (filgrastim-laha)

Manufactured by:

Accord BioPharma Inc.
8041 Arco Corporate Drive, Suite 200, Raleigh, NC 27617 USA

U.S. License No. 2105

Manufactured at:

Intas Pharmaceuticals Limited
Plot No. 423/P/A, Sarkhej-Bavla Highway,
Moraiya, Ahmedabad, Gujarat 382213, India

Approved: 01/2026