CENTER FOR DRUG EVALUATION AND RESEARCH

APPLICATION NUMBER: 21-084

CLINICAL PHARMACOLOGY AND BIOPHARMACEUTICS REVIEW(S)
Clinical Pharmacology/Biopharmaceutics Review

Topical Skin Protectant
(Polymist F5A and Fomblin Y25)
Provided as a paste in 84gm packages
NDA 21-084
Reviewer: E.D. Bashaw, Pharm.D.

Department of the Army
USAMRMC
Fort Detrick, MD
Submission Date
19-AUG-1999

Review of an NDA

I. Background

Topical Skin Protectant (TSP) is a 50-50 mixture of two high molecular weight fluorine containing polymers: Polymist F5A [aka Teflon] (polytetrafluoroethylene, PTFE) and Fomblin Y25 (perfluoroalkylpolyether, PFPE). This combination is being developed by the US Army Medical Research & Material Command (USAMRMC) as a barrier cream to protect troops in the field from exposure to nerve and other chemical warfare agents. At the present time the standard issue chemical protective gear, the so called MOPP suit (mission oriented protective posture), has potential gaps in it at the wrist, neck and pantleg where the suit meets and must overlap other uniform elements, mask, gloves, boots, etc. At these points it is possible that exposure to chemical warfare agents could occur with deleterious results. TSP is being developed to provide an inert physical barrier to chemical agent penetration at these points. Troops in the field will be provided with tubes of TSP to be applied to these areas in generous amounts after donning their MOPP gear.

II. Recommendation

While chemical warfare (CW) agents have not been used on a large scale since World War I, the potential for their use has recently increased as it is seen as the “poor man’s” nuclear weapon (i.e. a weapon of mass destruction). As such the development of protective equipment and procedures has become a high priority within the military. Unfortunately, due to the extremely high lethality of these agents, real world challenge tests are not possible. The protective efficacy of this material has been tested in animal models and by the use of surrogate marker compounds in man. In both series of tests TSP was found to either inhibit or delay the penetration of the agent.

In terms of the in vivo absorption of TSP’s components (PTFE and PFPE) a study was done in healthy volunteers (n=13, 8M, 5F) simulating the use of this product under field conditions in a test chamber. Urines were collected and assayed following a two day exposure of 4 hours per day, using a 1H-NMR with a limit of quantification of 0.3ug/ml for organic fluorine and 2ug/ml for free fluorine. No fluorine was detected in the urine of the study subjects, demonstrating that the dermal absorption of TSP was minimal if any. Based on the results of this trial, and the relatively limited scope of use of this product the
product is acceptable from a biopharmaceutic standpoint for use ONLY in combination with the appropriate level MOPP gear for protection from chemical warfare agents. IT IS NOT A REPLACEMENT FOR ANY OF THE STANDARD PROTECTIVE CLOTHING AND SHOULD NOT BE VIEWED AS SUCH. In situations where CW exposure is rapid and unexpected, use of TSP should not be a hinderance to entry into proper protective clothing.

/S/
E. Dennis Bashaw, Pharm.D.
Senior Pharmacokineticist (HFD-540)
Division of Pharmaceutical Evaluation-III

Secondary Review, Arzu Selen, Ph.D.

/\S/ 1/2/84
Deputy Division Director

CC: NDA 21-084 (ORIG),
HFD-840/Div File
HFD-540/CSO/Cross
HFD-880(Bashaw)
HFD-880(Selen)
HFD-880(Lazor)
CDR. ATTN: B. Murphy
HFD-344(Viswanathan)
TSP-A Question Based Review

I. Background
II. Recommendation
III. Overview of Threat and Usage
 A. What is the threat?
 B. What is the current protective scheme?
IV. TSP
 A. What is TSP and how does it work?
 B. How was TSP evaluated?
 1.) In Vivo Absorption
 a.) Study Design
 b.) Analytical Methodology
 c.) Analytical Validation
 d.) Results
 2.) In Vivo Protective Challenge (summary only)
 a.) Test Agents
 3.) In Vitro Protective Challenge (summary only)

IV. Overview of Threat and Usage

A. What is the threat?

A United Nations report from 1969 defines chemical warfare agents as

"... chemical substances, whether gaseous, liquid or solid, which
might be employed because of their direct toxic effects on man,
animals and plants ... ".

The Chemical Weapons Convention defines chemical weapons as including not only toxic chemicals but also ammunition and equipment for their dispersal. Toxic chemicals are stated to be

"... any chemical which, through its chemical effect on living
processes, may cause death, temporary loss of performance, or
permanent injury to people and animals".

Today, thousands of poisonous substances are known but only a few are considered suitable for chemical warfare (CW). About 70 different chemicals have been used or stockpiled as CW agents during the 20th century. Today, only a few of these are considered of interest owing (see Appendix, Attachment I) to a number of demands that must be placed on a substance if it is to be of use as a CW agent.

- A presumptive agent must not only be highly toxic but also "suitably highly toxic" so that it is not too difficult to handle.
- The substance must be capable of being stored for long periods in containers without degradation and without corroding the packaging material.
- It must be relatively resistant to atmospheric water and oxygen so that it does not lose effect when dispersed.
- It must also withstand the heat developed when dispersed.

CW agents are frequently called war gases as a result of history, even though this is technically incorrect. During the First World War use was made of chlorine and phosgene which are gases at room temperature and normal atmospheric pressure. The CW agents used today are rarely gases. Normally they are liquids or solids. However, a certain amount of the substance is always in volatile form (the amount depending on how rapidly the substance evaporates) resulting in a sufficiently high gas concentration that may become poisonous. Both solid substances and liquids can also be dispersed in the air in atomized form as aerosols. An aerosol can easily enter the body through the respiratory organs in the same way as a gas.

Some CW agents can also penetrate the skin. This mainly concerns liquids but in some cases also gases and aerosols. Solid substances penetrate the skin slowly unless they are mixed with a suitable solvent. TSP itself was not formulated to preferentially address one threat over another. It is intended to be a general protective agent against a variety of CW agents.

B. What is the current protective scheme?

The current protective scheme used by the US Armed Forces is called MOPP for “Mission Oriented Protective Posture”. This is hierarchy of protection from 0 to 4, going from no protection to full protection. The current scheme is reproduced below in Table I. (see also Attachment 2)

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>MOPP 0</th>
<th>MOPP1</th>
<th>MOPP2</th>
<th>MOPP3</th>
<th>MOPP4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overgarment and Helmet Cover</td>
<td>Available</td>
<td>Worn</td>
<td>Worn</td>
<td>Worn</td>
<td>Worn</td>
</tr>
<tr>
<td>Vinyl Overboots</td>
<td>Available</td>
<td>Available</td>
<td>Worn</td>
<td>Worn</td>
<td>Worn</td>
</tr>
<tr>
<td>Mask and Hood</td>
<td>Carried</td>
<td>Carried</td>
<td>Carried</td>
<td>Worn</td>
<td>Worn</td>
</tr>
<tr>
<td>Gloves</td>
<td>Available</td>
<td>Carried</td>
<td>Carried</td>
<td>Carried</td>
<td>Worn</td>
</tr>
</tbody>
</table>

TSP is intended to compliment and NOT TO REPLACE any level of MOPP. It is anticipated that TSP will be applied at MOPP-1 when the protective overgarment is originally donned. TSP will be applied by the soldier to the area of the body where there are joints in the protective overgarment, i.e., the neck (mask/hood interface), wrists (jacket/glove), waist (jacket/pant), boot tops (pant/boots). In addition, TSP will be applied under the arms and in the groin area as it has been shown that mustard gas and its derivatives are particularly destructive to tissue that is in high humidity areas.
The following figure will be reproduced on each package of TSP and indicates where TSP should be applied. The order of application is indicated by number 1-6.

V. TSP

A. What is TSP and how does it work?

Topical Skin Protectant (TSP) is a 50-50 mixture of two high molecular weight fluorine containing polymers: Polymist F5A [aka Teflon] (polytetrafluoroethylene, PTFE) and Fomblin Y25 (perfluoroalkylpolyether, PFPE). TSP is only being developed as a barrier material for use as a protective agent against chemical warfare agents. Whether or not it is effective against biological agents (bacteria, viruses, proteins, etc) is unknown at this time and it should NOT be viewed as a general protective agent or used as a substitute for proper use of protective clothing, mask, or gloves.

Polymist F5A [aka Teflon] (polytetrafluoroethylene, PTFE)

\[
\begin{array}{c}
\text{F} \\
\text{F} \\
\text{C} - \text{C} - \\
\text{F} \\
\text{F}
\end{array}
\]
Polymist F5A is a polymer consisting of recurring tetrafluoroethylene units. Its predominant chemical structure is \((\text{CF}_2\text{CF}_2)\text{n}\). It is a white, free-flowing powder consisting of discrete particles of PTFE with an average particle size of \(\ldots\) Its melting point is \(327^\circ\text{C}\) and it is insoluble in water and common solvents. It is pH neutral and its specific gravity is 2.28 g/ml.

Fomblin Y25 (perfluoroalkylpolyether, PFPE)

\[
C_x\text{F}_{2x+1}-(O-\text{CF}(\text{CF}_3)-\text{CF}_2)_n-(O-\text{CF}_2)_m-O-C_y\text{F}_{2y+1}
\]

Where: \(x, y = 1,2, 3\) and \(n/m > 40\)

Variations in the values of \(x, y, m,\) and \(n\) result in Fomblin Y25 being a mixture of components with different molecular weights. The molecular weight distribution varies within certain limits to ensure specified physical and physiochemical properties; according to the applicant the relative concentrations of the different components cannot be fixed due to the nature of the production technology used. In this application it has a nominal molecular weight of 3,200.

As noted earlier TSP is a 50:50 mixture of these two fluorine-containing compounds. Like most fluorine polymers, these agents are relatively chemically inert except under extreme conditions of chemical attack. They function in TSP as a barrier between the skin and any potential chemical leakage from the MOPP suit. In and of itself, TSP has no inherent protective properties beyond being a barrier. It is not a replacement for use of protective gear and should only be considered a secondary barrier.

B. How was TSP evaluated?

1. In Vivo Absorption
 a. Study Design

Title: Potential Systemic Absorption of the Topical Skin Protectant (TSP)

Investigator:

Study Site:

Methods

This protocol is designed to assess the potential for TSP and/or its component parts to be absorbed systemically. A total of 13 healthy adult subjects (8 male and 5 female) were enrolled in the study.
Days 1 and 2 (baseline)
After meeting the eligibility criteria set forth in the protocol (designed to limit dietary fluorine intake), the subjects entered into a two day baseline period where 24hr urine collections were performed on an outpatient basis to establish their daily fluorine balance (a beverage diary was also kept).

Simulated Exposure
On days 3 and 4 each subject reported to the study unit where they were given a standard issue US Army BDU (battle dress uniform) to wear and a packet containing 84gm of TSP and instructions on how to apply the cream. Once the uniform has been put on and the TSP applied, the subjects were placed in a controlled environment chamber (65±2 degrees F, 50% humidity) where they were free to sit and read or study for one hour. At the end of this hour they will then don the other components of the MOPP level II outfit (except for the mask, hood and gloves). They will then be asked to walk around the chamber, up and down steps, and engage in light physical activity for an hour (water is available ad lib). At the end of the hour the subjects were allowed to remove the MOPP gear and again read or study for an additional 2 hours. After this time they were allowed to shower and leave the study unit. Twenty-four hour urine collections were obtained on these days.

Washout Phase
On day 5 the subjects again collected their urine for a final 24hr period. (An itemized and schematic representation of the study is attached in the Appendix as Attachment 3 & 4, respectively).

b.) Analytical Methodology
The objective of this trial was to assess the potential for fluorine absorption from TSP. It was recommended by this reviewer that the Army consider the use of NMR for sample analysis as it would provide the best potential for analytical recovery of fluorine levels as it would be able to detect both free and organically bound fluorine. The Army took the FDA up on this suggestion and has developed an analytical method for fluorine that has been validated down to 0.3 ug/ml as CF₃⁻ and 2 ug/ml as F⁻. Urine was chosen as the biologic fluid of interest as fluorine is primarily excreted in the urine and urinary toxicity is a common feature of fluorine exposure. In addition there is a regulatory history of using the urinary detection of fluorine as a pharmacokinetic assessment in the development of halogenated anesthetic agents (isoflurane, methoxyflurane, desflurane, etc.).

EDTA was added to urine collection containers at a ratio of 12-g EDTA per 3-liter urine to sequester multivalent cations (Ca²⁺, Al³⁺, etc.): If left untreated, inorganic fluoride in urine can complex with these cations, thus making detection by NMR difficult. Addition of EDTA reduces or abolishes this complication.
NMR is a sensitive method for the detection of both organic and inorganic fluoride present in samples. As implemented in this trial approximately 2-mL from each of the 5 collection days for every subject were removed from the labeled urine containers for NMR analysis. NMR urine samples were prepared by the addition of ———— at a ratio of 2:1 (urine to D:O) to provide a lock signal for NMR spectral data collection. ———— was performed using a spectrometer operating at a magnetic field strength of 7.05 Tesla and a spectrometer frequency for fluorine of 288.345 MHz. A sweep width of 20,000 Hz was used, since it enabled observation of NMR resonances for both inorganic fluoride (F-) and organically bound fluorine. Acquisition time for each transient was set at 0.750 seconds using a 90° pulse width (11 microseconds) with no delay between transients. Four thousand transients (NT=4000), requiring approximately 1 hour, were routinely collected for each sample. A priori a signal-to-noise (S/N) ratio of at least 3/1 was established to justify peak analysis. If an observation was made of apparent peaks having a S/N of less than three, then these peaks were validated by re-analysis of the sample using a greater number of transients (32,000) to ascertain if S/N could be enhanced at a rate proportional to (NT). Reproduced below is a representative spectrum from a spiked urine sample from one of the subjects.

![Figure 6.2.1-1](image)

Figure 6.2.1-1 Spectrum of Urine Sample Collected from Subject 6 on Day 1 to Which Was Added Known Amounts of CF$_3$COONa and NaF for Analysis as a Mixed Standard

Pulse Sequence:
Solvent: Urine:
Sweep Width:
Acquisition Time:
Pulse Width:
Delay Time:
Transients:

This figure shows the NMR spectrum at full spectral width of one of the mixed standards containing CF$_3$COONa and NaF. The chemical shifts of NMR peaks are expressed as parts per million (ppm) which is the difference in hertz between the reference frequency and the peak of interest divided by the spectrometer frequency. Peak heights and areas are in relative units. Conditions for NMR spectral acquisition are listed above and are explained in the associated text.

The single NMR peaks at chemical shifts of 57.90 parts per million (ppm) and at 13.36 ppm are characteristic of resonances for CF$_3$COONa and for NaF, respectively.

c.) Analytical Validation

Standard urine samples containing sodium trifluoroacetate (CF$_3$COONa) and sodium fluoride (NaF) were prepared at concentrations from 4 ug/mL to 160ug/mL for CF$_3$COONa and from 10ug/mL to 750 ug/ml for NaF. These samples were used to check instrument performance and to validate linearity of the method. Under these conditions, the resonances for CF$_3$ appeared as a sharp peak with negligible fluctuation in
peak position (0.1 ppm) from one urine sample to the next. F appeared as a broader peak with a fluctuation in its position of ____ ppm among samples. Plots of fluorine concentration as CF3COONa or NaF versus peak areas from these spectra yielded straight lines (correlation coefficients were always > 0.96). From these plots, limits of quantitation established ____ and ____ as the limits of quantitation of the method without secondary dilution of the controls. Additional dilutions of the lowest controls samples yielded limits of detection of ____ for CF3 and ____ for F for analyses conducted by collection of 4,000 transients. For 32,000 transients, the limits of detection were 0.3ug/mL F as CF3 and 2 ug/mL as F-. Attached in the appendix are the following figures:

Fig 1. Low resolution NMR spectrum of a standard sample.
Fig 2. High resolution (32,000 transients) NMR spectrum of Fig 1 sample centered on F peak.
Fig 3. High resolution (32,000 transients) NMR spectrum of Fig 1 sample centered on the CF3 peak.
Fig 4. NMR spectrum of TSP itself solubilized in DMSO
Fig 5. Low resolution NMR spectrum of subject 6, day 4 sample (following two days of exposure to TSP).
Fig 6. Representative standard curves for CF3 concentration.
Fig 7. Representative standard curves for F concentration.

Based on the information provided by the applicant and our review of the data (i.e., submitted spectrums, standard curve data, etc.) it appears that the analytical methodology was sensitive and reproducible for both organic and inorganic fluoride. The procedure of using a two stage analysis of samples (i.e., low resolution and confirmatory high resolution) is an acceptable method given that analysis of a single sample with 4,000 transients took an hour.

d.) Results

Examination of the data generated from this study indicates that TSP was essentially non-absorbed. No positive samples were identified from the urine of the individuals exposed to TSP in this study using 4,000 transients. In light of this finding the samples, being intact, were re-analyzed using 32,000 transients. Again no fluorine was detected in any of the samples, indicating that any fluorine, if present was at levels below 0.3ug/mL as CF3 and 2 ug/mL as F-

2.) In Vivo Protective Challenge
a.) Test Agents

A series of in vivo protective challenges were done using TSP and surrogates for CW agents. CW agents could not be used in vivo due to their extreme toxicity even in minute amounts (see Attachment 1 for LD50's). In discussion with the FDA throughout the development of this project a number of surrogate compounds were suggested and

PPM here means part per million SPECTRAL SHIFT not ppm as in 1ug/ml.
subsequently evaluated by the applicant. Specifically rhus antigen (the antigen present in poison ivy) and methyl nicotinate were used in the pivotal clinical trials that are reviewed in the medical review by Dr. Okun. These antigens while useful in that they provoke a cutaneous response even after low doses, they are, however, not ideal surrogates. One of the problems with these agents is that they are structurally unrelated to CW agents in terms of either molecular weight or solubility.

3.) In Vitro Challenge

In vitro challenges were conducted using a combination of live CW agents with animals and CW detector tape and human skin testing. Normally for the animal and detector tape challenges thickened soman was applied to an area that had previously been treated with TSP. The challenges lasted, on average, for four hours, and TSP under a variety of conditions was able to either completely protect the skin from exposure or to delay the time and rate of penetration significantly compared to control animals. However, it should be noted that for soman exposure 100% and for VX exposure 67% of all animals registered some drop in plasma acetylcholinesterase activity. (please see the non-clinical pharmacology review by Dr. Lynda Reid for details on these studies)

In man, the applicant has provided results of in vivo testing looking at the penetration of TSP into the skin using an elemental x-ray technique and scanning electron microscopy.

In this study the sponsor applied TSP to various skin samples obtained primarily from cosmetic-surgery procedures. Approximately 200mg of TSP was placed on the surface of full thickness skin samples from which the adipose layer had been removed. The skin was subsequently placed in petri dishes containing 10ml of phosphated buffered saline (PBS) to keep the tissue moist over a contact time of 1 hour.

The skin samples were then prepared for analysis via elemental x-ray dispersion microanalysis by excision of non-treated skin and slicing the treated area down the middle to provide a cross section of tissue for bombardment with x-rays. In general the results of this analysis showed no penetration of Fluorine beyond the stratum corneum.

2 CW Detector Tape changes in color in response to exposure to CW agents. It is used in the field as a frontline warning system.
See Fig. VIII. This figure is representative of the LOW quality of the submitted documentation of the materials. [According to the accompanying text fluorine containing areas (TSP) should be a bright orange color.] While not definitive in nature, even the low quality of the presented material supports the conclusion that TSP is not absorbed systemically.
NDA 21-084

Attachments

APPEARS THIS WAY
ON ORIGINAL
MOPP Level and Time to Go to MOPP-4

<table>
<thead>
<tr>
<th>Minutes to Go to MOPP-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOPP-0</td>
</tr>
<tr>
<td>No Gear Worn</td>
</tr>
<tr>
<td>MOPP-1</td>
</tr>
<tr>
<td>Overgarment + Helmet Cov.</td>
</tr>
<tr>
<td>MOPP-2</td>
</tr>
<tr>
<td>Add Overboots</td>
</tr>
<tr>
<td>< Minute to don mask, hood, gloves</td>
</tr>
<tr>
<td>MOPP-3</td>
</tr>
<tr>
<td>Add Mask + Hood</td>
</tr>
<tr>
<td>(Seconds to don gloves)</td>
</tr>
</tbody>
</table>

CPE Worn at Each MOPP Level

![CPE Worn at Each MOPP Level](http://www.gulflink.osd.mil/mopp/fig3.htm)
Topical Skin Protectant (TSP) Test

Subject Arrives at MRI

Subject is:
- [] Given the package of topical cream used by the army.
- [] Instructed on the application of the topical cream.
- [] Issued Army clothing supplied by the Army.
- [] Directed to the bathroom to apply the cream and change into Army issued clothing.

Experimenter: ______

Time: _______

Tag#: ______

Empty topical cream package is returned to the experimenter.

Subject is escorted to the environmental chamber.

Experimenter: ______

Room#: ______

Once the subject is in the room, the 4 hour test period begins.

Experimenter: ______

Time: _______

Subject relaxes for one hour.

Subject puts on mop suit and begins light exercise for one hour.

Experimenter: ______

Time: _______

After one hour of light exercise, subject removes mop suit and subject can relax and read for two hours.

Experimenter: ______

Time: _______

After four hours, from beginning of test period subject leaves environmental chamber.

Experimenter: ______

Time: _______

Subject is escorted back to change area, takes shower and changes to street clothing.

Experimenter: ______

Time: _______

Time subject left building: ______

Experimenter: ______

Time: _______

Deviations:
Chart 1. Flow chart of subject TSP application and activities.
Potential Systemic Absorption of the Topical Skin Procecurc (TSP)

Figure 6. This figure illustrates separate linearity determinations for CF₂COONa, among many such determinations that were performed. The variation in best-fit parameters is evident. See also Figure 7.

Figure 7. This figure illustrates separate linearity determinations for NaF, among many such determinations that were performed. The variation in best-fit parameters is evident. See also Figure 6.
Figure 7. X-ray microanalysis SEM map of TSP ICD #2289 on human skin for one hour displaying clumps of fluorinated material only on the surface. Tissue processed as outlined in Materials and Methods. (D = dermis, E = epidermis, SC = stratum corneum, TSP = topical skin protectant).