CENTER FOR DRUG EVALUATION AND RESEARCH

APPLICATION NUMBER: 21-107

CLINICAL PHARMACOLOGY AND BIOPHARMACEUTICS REVIEW(S)
New Drug Application
Clinical Pharmacology and Biopharmaceutics Review

NDA: 21-107
Type of Submission: NDA BM
Generic Name: Alosetron HCl
Formulation(s); Tablet - Immediate Release
Strength(s); 1 mg
Route(s) PO
Brand Name: Lotronex™
Sponsor: Glaxo Wellcome, Inc.
Research Triangle Park, NC
Submission Date(s): December 14, 1999
Reviewer: Ronald Evan Kavanagh, B.S. Pharm., Pharm.D., Ph.D.

I. SYNOPSIS

Submission contains a list of Ongoing or Planned Alosetron Phase II, III, and IV Clinical Trials and a list of patient registries.

As submission contains only 'non-PK' data (i.e. no biopharmaceutic, pharmacokinetic, or pharmacodynamic assessments), no Clinical Pharmacology/Biopharmaceutics Review is needed for this submission.

II. SIGNATURES

/S/
Ronald E. Kavanagh, BS Pharm, Pharm.D., Ph.D., OCPB/DPE-2

/S/
David Lee, Ph.D., Team Leader OCPB/DPE-2

CC:
NDA 21-107 (orig., 1 copy)
HFD-180 (Prizont, Senior, Levine)
HFD-870 (ChenME, Lee, Kavanagh)
CDR (B.Murphy)

APPEARS THIS WAY ON ORIGINAL
I. REQUESTS FOR POST-APPROVAL COMMITMENTS

The following requests for post-approval commitments are to be sent to the sponsor. These requests are based upon discussions at the FDA internal labeling meeting held January 4, 2000.

1. The sponsor is requested to commit to perform additional studies to clarify the metabolism and disposition of alosetron in vivo. Specific issues that should be addressed include the formation of N-desmethyl-alosetron and its metabolites, especially in Asians, and identification of the unidentified circulating metabolites from the mass balance study.

2. The sponsor is requested to commit to perform a pharmacokinetic study in subjects with hepatic impairment. In addition to alosetron kinetics, metabolite kinetic data should be examined.

3. The sponsor is requested to commit to perform additional in vitro pharmacology, drug metabolism, and drug interaction studies. These should include 5HT3 receptor affinities for any circulating or major metabolites including conjugates. Identification of P450 isozymes responsible for the formation of specific metabolites. Plus the effect of alosetron and its metabolites on N-acetyltransferase 1 (NAT1), monoamine oxidases, and P450 isozymes as appropriate.

II. SIGNATURES

Ronald Evan Kavanagh, B.S. Pharm., Pharm.D., Ph.D.
Division of Pharmaceutical Evaluation II
Office of Clinical Pharmacology and Biopharmaceutics

Jan 06, 2000
Date
FD - David Lee, Ph.D., Team Leader

1/6/2000

CC:
NDA 21-107 (orig., 1 copy)
HFD-180 (Prizont, Senior, Gallo-Torres, Ysem, Zhang)
HFD-181 (Levine)
HFD-850 (Lesko, Huang)
HFD-870 (M. Chen, Kavanagh, Lee)
HFD-340 (Vish)
Central Document Room (Barbara Murphy)

APPEARS THIS WAY ON ORIGINAL
New Drug Application
Clinical Pharmacology and Biopharmaceutics Review

NDA: 21-107
Type of Submission: NDA 1/P
Generic Name: Alosetron HCl
Formulation(s): Tablet - Immediate Release
Strength(s): 1 mg
Route(s): PO
Brand Name: Lotronex™
Sponsor: Glaxo Wellcome, Inc.
Research Triangle Park, NC
Submission Date(s): June 29, 1999
August 23, 1999
September 10, 1999
September 21, 1999
Reviewer: Ronald Evan Kavanagh, B.S. Pharm., Pharm.D., Ph.D.

I. SYNOPSIS

Alosetron is a 5HT₃ antagonist and the proposed indication is: "LOTRONEX is indicated for the treatment of Irritable bowel syndrome (IBS) in female patients whose predominant bowel symptom is diarrhea.

The proposed dosage regimen is '1 mg taken orally twice daily with or without food'.

The most common dose related side effect with alosetron is constipation (28%), with a mean time to onset of 3 weeks. Gastrointestinal symptoms of all types were the most commonly reported adverse events. Additionally, 2 cases of ischemic bowel disease have been observed, as well as one case of elevated hepatic transaminases associated with hyperbilirubinemia.

There is a gender difference in alosetron’s efficacy with females but not males showing relief from IBS symptoms. The reason for the gender difference is unclear. However, there are several interesting observations.

Plasma concentrations in females are higher than in males, with mean peak plasma concentrations approximately 45 - 100% higher in women compared with men. Exposure to alosetron is quite variable with peak concentrations in women ranging from ng/ml. Concentrations are also higher in the elderly.

Higher concentrations are due to lower total body clearance, slightly greater bioavailability, and smaller volume of distribution. These differences in clearance and volume of distribution mostly disappear upon normalization. Except in elderly females where clearance still tends to be lower even after normalization.

In males, the duration of suppression of intradermal 5-HT induced flare response (8.9 hours) is similar to the length of time alosetron concentrations obtained with a 1 mg po dose are above the in vitro Ki. (The Ki is the concentration required for 50% 5HT₃ receptor blockade.)

Doses higher than 1 mg po did not suppress the flare response any further in men. Higher plasma concentrations in women would be expected to result in a longer duration of 5HT₃ receptor blockade in women.

In clinical studies, alosetron was administered bid with food. Food decreases alosetron absorption by 25%. Consequently, with bid administration with food there may be long periods without adequate 5HT₃ receptor blockade in men.
Inconsistent with this hypothesis is that in dose ranging studies, doses higher than 1 mg did not show any increase in efficacy in men. However, the studies may have been underpowered to show efficacy in men. In addition, two men with the greatest response in the flare response study had the lowest alosetron concentrations. This raises the possibility that active metabolites contribute to alosetron's efficacy.

Peak metabolite concentrations are 10 times peak alosetron concentrations and total metabolite exposure is ~13 fold greater than alosetron exposure. This is due to slower elimination and a smaller volume of distribution of the metabolites. 6-hydroxy-alosetron, which is twice as potent as alosetron was not detected in plasma, although the limit of detection was ~6 fold higher than the Ki for this metabolite. 6-OH alosetron is subsequently metabolized to 6-O-alosetron glucuronide. The pattern of fecal and urinary elimination of alosetron and its' metabolites is suggestive of enterohepatic recirculation of 6-OH alosetron resulting in 'prolonged' low level exposure. Whether this would add significantly to 5HT3 receptor blockade is unclear. Most of the rest of the circulating metabolites were not identified and Ki's were not reported.

Another inconsistency that argues against the mechanism of action being mediated via 5HT3 blockade the pattern of onset for efficacy. Efficacy increases rapidly over the first 2 weeks, but is not statistically different from placebo until after 4-5 weeks of treatment, after which efficacy plateau. This is inconsistent with alosetron's half-life of 1.5 hours and mean metabolite half-life of approximately twice as long. It's possible that efficacy may be related to alosetron induced alterations in steroid hormone production. Subjects receiving alosetron demonstrate a decrease in cortisol production that becomes greater with increasing treatment duration through at least 1 month (longer periods have not been studied). Alosetron, other imidazoles including ondansetron and ketoconazole also decrease cortisol production. For ketoconazole various enzymes responsible for steroid hormone production are inhibited to different degrees and a similar scenario would not be suprising with alosetron. Consequently, there may be metabolic shunting in the production of steroid hormones or alterations in regulatory feedback with the possibility of differences between men and women.

A pharmacokinetic/pharmacodynamic study to evaluate the effect on gastrointestinal motility was performed in men. Doses used were 4 mg and plasma alosetron sampling was inadequate to characterize any pharmacokinetic/pharmacodynamic relationships. In addition, variability in motility measurements were large. Consequently, no conclusions relating alosetron use, concentrations, or clinical efficacy to effects on motility can be made.

Absorption of alosetron appears to be complete with only 1% of the dose eliminated unchanged in feces, although there is a first pass effect of approximately 50%. Since alosetron is an imidazole with a pKa of 6.95 alterations in gastrointestinal pH could alter the absorption characteristics of alosetron. This has been shown to occur with other imidazoles and should be examined further.

It should be noted that alosetron causes dose dependent constipation and the use of laxatives is recommended in the labeling, even though their use was excluded in clinical trials. This is noteworthy since patients might self medicate with magnesium containing laxatives, e.g. milk of magnesia, or with antacids for symptoms of IBS; and both classes of drugs increase gastrointestinal pH and might decrease alosetron absorption.

Because of the dose related constipation and the approximately 50% higher concentrations in elderly women compared to young women a subgroup analysis needs to be performed. This should include an analysis of efficacy and side effects in different age groups. In general, the elderly have a higher incidence of constipation even without drugs. If there is a higher incidence of dose related constipation in the elderly, a lower efficacy in younger women, or both due to differences in pharmacokinetics, the risk benefit profile of this agent would change depending upon the patient subgroup.

In vitro alosetron is metabolized by CYP IA2, 2C9 and 3A4. There is also significant metabolism by non-P450 metabolic pathways (11%). In vivo approximately 35% of the dose is metabolized to 6-OH-alosetron and 8.5% to 7-OH-alosetron, both of which undergo secondary glucuronidation. 20-25% of the dose is metabolized to a bisoxo compound, which is likely a monocarboxyl. There is also evidence for an
exoxide intermediate. Conflicting results are reported for N-desmethylation, with up to 30% of dose eliminated as N-desmethyl-alosetron in Japanese subjects, with none detected in 2 Caucasian males in the mass balance study. In total 13 metabolite peaks have been detected in human urine, although not all have been identified.

The non-P450 pathway accounting for 11% of the elimination in vitro was not examined further. However, considering that indoles are metabolized by monoamine oxidase, this pathway and its products should be examined, as well as the potential for alosetron to inhibit monoamine oxidase.

Hepatic insufficiency studies have not been performed.

Approximately, 6-7% of the dose is eliminated unchanged in the urine. However, there was a near doubling of mean AUC in subjects with creatinine clearances of < 30 ml/min. This might have been due to an imbalance in the study population, but there were too few subjects to confirm this. In addition, there was no examination if there is accumulation of active metabolites, and an assessment of the effect of end-stage renal disease on hepatic metabolism was not examined. Thus, no conclusions can be drawn regarding dosage adjustment in renal insufficiency. An additional study is thus needed to clarify if dosage adjustment is needed in renal insufficiency.

Ethnic group differences have not been adequately studied, although the consistent detection of N-desmethyl-alosetron in Japanese with none detected in Caucasians has not been explained. This might have clinical consequences, since the N-desmethyl metabolite is secondarily metabolized to an exoxide in lower animals.

Drug interaction studies are both conflicting and incomplete.

Information on the potential for alosetron to cause metabolic inhibition is incomplete. In vitro results of experiments examining the inhibition by alosetron for P450 isozymes are internally inconsistent. However, inhibition is most likely to occur with 1A2 and 2E1, and possibly with 3A4. The molar concentrations used, e.g. 200 and 2000 nM/L, are equivalent to alosetron concentrations of 165.4 and 1654 ng/ml respectively. Peak concentrations observed with a 1 mg dose were as high as 75 nM/L. Thus, plasma concentrations are in a range where P450 inhibition may be observed inconsistently in vivo with clinical doses. This data suggests that alosetron is an extremely potent enzyme inhibitor and the lack of consistently observed inhibition in vivo may be due to low concentrations relative to Ki in vivo and the variability in exposure between subjects.

Due to localization of CYPIIIA4 on the intestinal microvilli and higher alosetron concentrations in the intestines compared with plasma, oral bioavailability of some drugs with high intestinal first pass, such as cyclosporine or midazolam might increase significantly. Although there is the possibility of off label use of cisapride, which is metabolized by CYPIIIA4, to treat severe constipation, an interaction study showed no effect of alosetron on cisapride pharmacokinetics. However, interaction studies examining alosetron's effect on the bioavailability of certain orally administered drugs is still warranted.

In metabolic probe studies, alosetron inhibited CYP1A2 metabolism of caffeine and NAT2 metabolism of dapson. Formal in vivo drug interaction studies did not show inhibition of CYP1A2 metabolism of theophylline or CYPIIIA4 metabolism of other drugs. Based upon the data this reviewer does not believe there is a clinically significant inhibition of CYP1A2. The probe study was conducted after dosing for in vivo studies were not conducted on the effect on acetylation. Since, NAT2 is polymorphic and slow acetylation status has been shown to be clinically significant, inhibition of acetylation by alosetron should be examined further. Inhibition of NAT1 was not examined either in vitro or in vivo and should be assessed in vitro.

There is no information on the ability of alosetron to induce the metabolism of other drugs. Induction frequently occurs with continued dosing with drugs that initially cause inhibition.

The effect of enzyme inhibitors on alosetron pharmacokinetics has not been studied. Since alosetron
exhibits linear kinetics and the molar concentrations are so low, nonlinear kinetics should not occur, unless a metabolite that's a potent inhibitor is produced. Consequently, the only potential clinical issue would be the effect of shunting to various metabolic pathways.

The effect of enzyme inducers on alosetron pharmacokinetics has not been examined. Inducers could either decrease efficacy by decreasing alosetron exposure or increase efficacy and/or toxicity by increasing exposure to metabolites.

Potent inducers of CYP1A2 include dietary and environmental factors such as safrole in peppers, polyaromatic hydrocarbons in charbroiled meats and tobacco smoke, tryptophan pyrolysis products in charcoal broiled and fried meats and fish, and indoles in cabbage and brussel sprouts. Induction of elimination needs to be examined further.

The role of metabolites and their receptor binding, pharmacokinetics and in vitro potential to cause drug interactions have not been adequately examined and needs further investigation.

No bioequivalence studies with the to-be-marketed commercial scale batches have been performed. However, the to-be-marketed formulations are not qualitatively or quantitatively different from the development batches, and the pharmacokinetics for 4 mg development tablets and a 4 mg oral solution are similar and are dose proportional to the 1 mg tablets. Formulation effects are thus unlikely.

Due to the minimal difference in the to-be-marketed formulation compared with the clinical trial formulation. The bioequivalence requirement comparing Lotronex™ prepared in a 'commercial' batch to Lotronex™ clinical trial batches is waived.

Tablet dissolution of alosetron is rapid with near complete dissolution by Consequently, the sponsor has proposed a release specification, Q of dissolution at increased compression pressure resulted in an increase in tablet hardness and Dissolution data from recent commercial scale batches show a dissolved at compared to earlier batches and especially compared to clinical trial batches. The implications of this are unclear. Currently, proposed release specifications are just as likely to be obtained at yet would be more discriminating. Solutions other than water may be more discriminating. Additional information may be needed so that appropriate dissolution specifications can be set.

II. RECOMMENDATION

The Office of Clinical Pharmacology and Biopharmaceutics/Division of Pharmaceutical Evaluation II (OCPB/DPE-2) has reviewed NDA # 21-107 submitted June 29, 1999. The overall Human Pharmacokinetic Section requires additional studies. These studies would be acceptable as a phase IV commitment. Dissolution specifications need to be determined. This recommendation and the comments for the sponsor should be sent to the sponsor. Labeling counterproposals, and selected labeling comments, should be sent to the sponsor as appropriate.
Table of Contents

I. SYNOPSIS .. 1

II. RECOMMENDATION ... 4

 TABLE OF CONTENTS .. 5
 LIST OF TABLES .. 6
 LIST OF APPENDICES ... 8
 LIST OF ABBREVIATIONS ... 8

III. CHEMISTRY ... 10

 A. STRUCTURE ... 10
 B. MOLECULAR FORMULA ... 10
 C. MOLECULAR WEIGHT ... 10
 D. ISOMERISM AND STEREOISOMERISM ... 10
 E. pKa, PARTITION COEFFICIENT (LOG P), AND PH ... 10
 F. SOLID STATE FORMS ... 10
 G. SOLUBILITY ... 11
 H. TABLET FORMULATIONS ... 11
 1. Composition .. 11
 2. Formulations Used in Pharmacokinetic Studies .. 12
 I. DISSOLUTION ... 14
 J. BIOANALYTIC ASSAY VALIDATION ... 16
 1. Alosetron Assays .. 16
 2. Assays of Other Compounds .. 17

IV. PHARMACOKINETICS / PHARMACODYNAMICS .. 18

 A. LINEARITY WITH DOSE ... 18
 1. Oral Administration ... 18
 2. Intravenous Administration .. 20
 B. MULTIPLE DOSE PHARMACOKINETICS - TIME INVARIENCE 21
 C. ABSORPTION AND BIOAVAILABILITY .. 24
 1. Bioavailability - Drug Substance ... 24
 2. Bioavailability - Drug Product .. 26
 3. Food Effect ... 28
 D. BIOEQUIVALENCE - WITH THE TO-BE-MARKETED FORMULATION 29
 E. DRUG METABOLISM .. 29
 1. In Vitro Oxidative Metabolism of Alosetron ... 29
 2. In Vivo Metabolism and Mass Balance of Alosetron ... 30
 3. Metabolite Kinetics ... 33
 F. RENAL ELIMINATION .. 35
 G. PROTEIN BINDING ... 35
 H. RBC PARTITIONING (WBP/91/047) .. 35
 I. ALOSETRON PHARMACOKINETICS - PHARMACODYNAMICS 35
 1. Pharmacokinetic - Pharmacodynamic Correlations ... 35
 a) 5-HT3 Receptor Blockade .. 35
 (1) Flare Response - IV Alosetron (Study GHP-90:16) 35
 (2) Flare Response - PO Alosetron (Study GHP-90:27) 37
 (3) PD - Colonic Motility (Study SB331007) ... 38
 2. 5-HT3 Receptor Affinities for Alosetron and Metabolites 38
 3. Metabolite Plasma Concentrations .. 39
 a) N-Desmethyl-Alosetron (GR87620) ... 39
 b) Hydroxymethyl-Alosetron (GR169307) ... 40
 c) 6-OH and 7-OH-Alosetron .. 40
 d) bis-Oxidized Alosetron (Dicarbonyl) .. 41
J. DRUG INTERACTIONS ... 43
 1. In Vivo Inhibition by Alosetron .. 43
 2. In Vivo Inhibition by Alosetron .. 44
 a) Metabolic Probes .. 44
 b) Theophylline (IA2) .. 45
 c) Min Ovral ... 47
 d) Haloperidol ... 47
 e) Cinapride (CYPIII A4) ... 48
 f) Cortisol Production ... 49
 3. Effect of Inhibitors on Alosetron Pharmacokinetics 51
 4. Effect of Inducers on Alosetron Pharmacokinetics 51
 5. Other Mechanisms .. 52
K. SPECIAL POPULATIONS .. 52
 1. Special Population - Elderly ... 52
 2. Special Population - Pediatrics 56
 3. Gender Effects ... 56
 4. Race & Ethnicity .. 60
 5. Renal Insufficiency .. 60
 6. Hepatic Insufficiency .. 63
 7. Tobacco Use .. 63
 8. Diet ... 63
 9. Achromohydrina .. 63
L. POPULATION PHARMACOKINETICS 63
 1. Sampling .. 64
 2. Basic Structural Model .. 65
 3. Predictability .. 65
 4. Dose Linearity ... 65
 5. Time Invariance ... 66
 6. Age ... 66
 7. Gender ... 66
 8. Race / Ethnicity .. 66
 9. Weight / Surface Area ... 66
 10. Volume of Distribution .. 66
 11. Diet ... 66
 12. Smoking .. 66
 13. Oral Contraceptive Use .. 66
 14. Pharmacodynamics .. 67
V. LABELING ... 67
A. CONVENTIONS USED .. 67
B. PACKAGE INSERT .. 68
VI. COMMENTS FOR THE SPONSOR ... 81
VII. SIGNATURES .. 82

List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Solubility of Alosetron HCl at 21 °C</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Composition of Tablet Formulations used in Pharmacokinetic Studies</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Composition of Tablet Formulations used in Phase II Dose Ranging Studies</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>List of Pharmacokinetic Studies and Formulations Used</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>Proposed Dissolution Method and Specification for Lotronox® (alostron) 1 mg Tablets</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>Alosetron 1 mg Tablet Dissolution Data</td>
<td>14</td>
</tr>
<tr>
<td>Table 7</td>
<td>Alosetron Assays</td>
<td>16</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>----</td>
</tr>
<tr>
<td>Table 8</td>
<td>Assays for Drugs Used for In Vivo Drug Interaction Studies</td>
<td>17</td>
</tr>
<tr>
<td>Table 9</td>
<td>Pharmacokinetic Metrics After a Single Rising Oral Dose of Alosetron Solution in Grapefruit Juice</td>
<td>19</td>
</tr>
<tr>
<td>Table 10</td>
<td>Dose Normalized Pharmacokinetic Metrics after the First Dose - Protocol S3B-101</td>
<td>19</td>
</tr>
<tr>
<td>Table 11</td>
<td>Pharmacokinetic Metrics After a Single Rising Oral Dose in Japanese Males</td>
<td>20</td>
</tr>
<tr>
<td>Table 12</td>
<td>Pharmacokinetic Metrics After a 4 mg IV Dose - Protocol GHP.89.23</td>
<td>20</td>
</tr>
<tr>
<td>Table 13</td>
<td>Dose Linearity with Intravenous Administration</td>
<td>21</td>
</tr>
<tr>
<td>Table 14</td>
<td>Multiple Dose Pharmacokinetic Metrics - 3.5 days</td>
<td>22</td>
</tr>
<tr>
<td>Table 15</td>
<td>Multiple Dose Pharmacokinetic Metrics in Japanese Males - 6.5 days</td>
<td>22</td>
</tr>
<tr>
<td>Table 16</td>
<td>Multiple Dose Pharmacokinetic Metrics - 9.5 days - Protocol GPK.90.02</td>
<td>23</td>
</tr>
<tr>
<td>Table 17</td>
<td>Alosetron 1 mg po Multiple Dose Pharmacokinetic Metrics in Males and Females over 29 days - Protocol S3BB1011</td>
<td>23</td>
</tr>
<tr>
<td>Table 18</td>
<td>Alosetron 1mg po Multiple Dose Pharmacokinetic Metrics in Males - 29 days</td>
<td>24</td>
</tr>
<tr>
<td>Table 19</td>
<td>Absolute Bioavailability of Alosetron Drug Substance - Study GHP.89:44</td>
<td>25</td>
</tr>
<tr>
<td>Table 20</td>
<td>Alosetron Solution - Additional Oral Pharmacokinetic Metrics</td>
<td>25</td>
</tr>
<tr>
<td>Table 21</td>
<td>Absolute Bioavailability of Alosetron Drug Substance and Drug Product - Protocol GHP.90:13</td>
<td>26</td>
</tr>
<tr>
<td>Table 22</td>
<td>Relative Bioavailability of Alosetron Tablets and Solution - Protocol GHP.90:13</td>
<td>26</td>
</tr>
<tr>
<td>Table 23</td>
<td>Absolute Bioavailabilities in Young and Elderly Males and Females with a 2 mg Tablet (Formulation F) - Study C92-058</td>
<td>27</td>
</tr>
<tr>
<td>Table 24</td>
<td>Effect of Food on Alosetron Absorption - Protocol S3BB1004</td>
<td>28</td>
</tr>
<tr>
<td>Table 25</td>
<td>Effect of Food on Alosetron Absorption - Protocol AS-03 - Japan</td>
<td>29</td>
</tr>
<tr>
<td>Table 26</td>
<td>In Vitro P450 Isozyme Metabolism of Alosetron</td>
<td>30</td>
</tr>
<tr>
<td>Table 27</td>
<td>Recovery for Metabolite U3 and Daughter Metabolites</td>
<td>32</td>
</tr>
<tr>
<td>Table 28</td>
<td>Recovery for Metabolite F1/ Monocarboxyl</td>
<td>33</td>
</tr>
<tr>
<td>Table 29</td>
<td>Pharmacokinetic metrics for alosetron and total radioactivity</td>
<td>34</td>
</tr>
<tr>
<td>Table 30</td>
<td>Suppression of 5-HT Induced Flare Response by IV Alosetron</td>
<td>36</td>
</tr>
<tr>
<td>Table 31</td>
<td>Alosetron 90 min Concentrations</td>
<td>38</td>
</tr>
<tr>
<td>Table 32</td>
<td>5-HT3 Receptor Affinities for Alosetron and Metabolites</td>
<td>39</td>
</tr>
<tr>
<td>Table 33</td>
<td>Reported Circulating Concentrations of Alosetron and Metabolites</td>
<td>39</td>
</tr>
<tr>
<td>Table 34</td>
<td>Peak Mean Concentrations of N-Desmethyl-Alosetron after Single Doses in Japanese Males</td>
<td>40</td>
</tr>
<tr>
<td>Table 35</td>
<td>N-Desmethyl-Alosetron Mean Peak Concentrations</td>
<td>40</td>
</tr>
<tr>
<td>Table 36</td>
<td>Summary of Alosetron Metabolite Information</td>
<td>42</td>
</tr>
<tr>
<td>Table 37</td>
<td>P450 Inhibitory Potential of Alosetron</td>
<td>43</td>
</tr>
<tr>
<td>Table 38</td>
<td>Summary of Change in Probe-Drug Cocktail Ratios between Day -8 and Day 30</td>
<td>44</td>
</tr>
<tr>
<td>Table 39</td>
<td>Effect of Alosetron on Theophylline and Theophylline Metabolite Kinetics (CYPIA2)</td>
<td>46</td>
</tr>
<tr>
<td>Table 40</td>
<td>Pharmacokinetic Metrics for Levonorgestrel and Ethinyl Estradiol in Presence and Absence of Alosetron</td>
<td>47</td>
</tr>
<tr>
<td>Table 41</td>
<td>Haloperidol Pharmacokinetic Metrics in the Presence and Absence of Alosetron</td>
<td>47</td>
</tr>
<tr>
<td>Table 42</td>
<td>Cisapride Pharmacokinetic Metrics in Presence and Absence of Alosetron</td>
<td>49</td>
</tr>
<tr>
<td>Table 43</td>
<td>12 Hour Urinary 6β-Hydroxy cortisol Excretion (mcgs)*</td>
<td>50</td>
</tr>
<tr>
<td>Table 44</td>
<td>Urinary 12 Hour 6β-Hydroxy cortisol Excretion - Study S3BA1001*</td>
<td>51</td>
</tr>
<tr>
<td>Table 45</td>
<td>Pharmacokinetic Metrics in Young and Elderly with Multiple Dosing</td>
<td>53</td>
</tr>
<tr>
<td>Table 46</td>
<td>p-Values 1st Dose Metrics vs. Day 28 Metrics</td>
<td>53</td>
</tr>
<tr>
<td>Table 47</td>
<td>Subject Demographics in Study GPK.90:01</td>
<td>53</td>
</tr>
<tr>
<td>Table 48</td>
<td>Pharmacokinetic Metrics of Alosetron in Young and Elderly Males - Study GPK.90:01</td>
<td>54</td>
</tr>
<tr>
<td>Table 49</td>
<td>Normalized Alosetron Pharmacokinetic Metrics with Age - Protocol GPK.90:01</td>
<td>54</td>
</tr>
<tr>
<td>Table 50</td>
<td>Alosetron Pharmacokinetic Metrics with Age After Intravenous Dosing - Protocol C92-058</td>
<td>55</td>
</tr>
<tr>
<td>Table 51</td>
<td>Alosetron Pharmacokinetic Metrics with Age After Oral Dosing - Protocol C92-058</td>
<td>55</td>
</tr>
<tr>
<td>Table 52</td>
<td>Normalized Alosetron Pharmacokinetic Metrics with Age - Protocol C92-058</td>
<td>56</td>
</tr>
<tr>
<td>Table 53</td>
<td>Studies with Pharmacokinetic Data in Women</td>
<td>57</td>
</tr>
<tr>
<td>Table 54</td>
<td>Pharmacokinetic Metrics in Male and Females after 57 Doses - Protocol S3BB1011</td>
<td>57</td>
</tr>
<tr>
<td>Table 55</td>
<td>Gender Effect on Alosetron Plasma Concentrations - Protocol S3B-102</td>
<td>58</td>
</tr>
<tr>
<td>Table 56</td>
<td>Gender Effects - Protocol C92-058</td>
<td>59</td>
</tr>
</tbody>
</table>
Table 57 Normalized Alosetron Pharmacokinetic Metrics with Age - Protocol C92-058 59
Table 58 Subject Demographics in Alosetron Renal Impairment Study 61
Table 59 Effect of Renal Insufficiency on Alosetron Pharmacokinetics 62
Table 60 Alosetron Population Pharmacokinetic Study - Subject Demographics 64

List of Appendices

APPENDIX 1 Comparative Molar Doses and Exposure of Alosetron and Other Compounds 83
APPENDIX 2 Alosetron Metabolic Pathways 85
APPENDIX 3 Extent and Duration of Suppression of Flare Response by Alosetron 93
APPENDIX 4 Cortisol Production, Urinary 6-β-Hydroxy cortisol Excretion, and Alosetron Exposure 97
APPENDIX 5 Dietary Inducers of CYPIA2 100

List of Abbreviations

5-HT 5-Hydroxytryptamine (Serotonin)
6-β-OH-Cortisol 6-beta-hydroxycortisol
ACTH Adrenocorticotropic Hormone
AE Adverse Effect or Adverse Event
Ax Amount eliminated in the urine
Ax Amount eliminated in the urine through time X
ANOVA Analysis of Variance
APCI/LC/MS/MS Atmospheric Pressure Chemical Ionization / Liquid Chromatography / Mass Spectrometry
AUCa-b area under the plasma-concentration-time curve from time a to time b
AUC0b area under the plasma-concentration-time curve from time 0 to time b
AUCm area under the plasma-concentration-time curve for metabolites
AUCp area under the plasma-concentration-time curve for parent compound
BW/OW Black/White/Oriental
BID Bis In Diem (Twice daily)
BSA Body Surface Area
CIE Chemotherapy Induced Emesis
Cl Clearance
CF Clearance determined after oral drug administration and uncorrected for absorption
Clcr Creatinine Clearance
Clm Clearance of Metabolite
Clp or Cip Clearance of Parent Compound
Cmax maximum measured concentration
Cmin minimum measured concentration
CV Coefficient of variation
DPEII Division of Pharmaceutical Evaluation II
Eh Hepatic Extraction Ratio
F Fraction of dose that's systemically bioavailable
Fabs Fraction of dose absorbed
Fdose Fraction of dose
Fg Fraction of dose available after first pass through the gastrointestinal mucosa
Fh Fraction of dose available after first pass through the liver
fm Fraction Metabolized
FMO Flavin Monoxygenase
FSH Follicle Stimulating Hormone
Fsys Fraction of dose that's systemically bioavailable
Fsystemic........... Fraction of dose that's systemically available after first pass
GI.................. Gastrointestinal
gluc or GLUC........ Glucuronide
h or hr or hrs........ hour or hours
HAPC................ High Amplitude Propulsive Contractions
HCG.................. Human Chorionic Gonadotropin
IV.................... Intravenous
ka.................... Absorption rate constant
km.................... Rate constant for metabolism
kp.................... Rate constant for elimination of parent compound
L..................... Liter(s)
L/Hr.................. Liters per hour
LC/APCI/MS/MS........ Liquid Chromatography - Atmospheric Pressure Chemical Ionization - Tandem Mass Spectrometry
LH.................... Luteinizing Hormone
LLOQ.................. lower limit of quantitation
LS.................... SAS geometric least squares
mcg/L................ micrograms/Liter
M/F.................. Male/Female
MAO.................. Monoamine Oxidase
min.................. Minutes
n.................... Number of subjects/observations
NAT................... N-Acetyltransferase
NAT1................. N-Acetyltransferase 1
NAT2................. N-Acetyltransferase 2
NDA................... New Drug Application
nM or nM/L............ nanomol or nanomoles/Liter
NS.................... Not Significant
°C..................... Degrees Centigrade
OCPB.................. Office of Clinical Pharmacology and Biopharmaceutics
PK.................... Pharmacokinetic
PK-PD................ Pharmacokinetic - Pharmacodynamic
PO.................... per os (by mouth)
qd.................... quinque diem (once daily)
Qh.................... Hepatic Blood Flow
RBC................... Red Blood Cell
RP - HPLC - UV...... Reverse Phase High Pressure Liquid Chromatography with Ultraviolet Detection
SD.................... Standard Deviation
SEE.................... Standard Error of the Estimate
Soln.................. Solution
t1/2................... half-life
t1/2m.................. half-life of metabolites
t1/2p.................. half-life of parent compound
Tab................... Tablet
tlag.................. Lag time for absorption
Tmax.................. Time to maximum concentration
USP.................. United States Pharmacopeia
UV.................... Ultraviolet
V/F.................. Volume of Distribution uncorrected for bioavailability
Vdβ.................. Volume of Distribution beta (Calculation based on clearance)
Vf................... Mean Volume of Distribution of Metabolites
Vp.................. Volume of Distribution of Parent Compound
Vss.................. Volume of Distribution at Steady State
λz.................. Elimination Rate Constant for terminal elimination phase
μM.................. micromoles or micromoles/liter