CENTER FOR DRUG EVALUATION AND RESEARCH

APPLICATION NUMBER:
22-172s000

ENVIRONMENTAL ASSESSMENT
Memorandum

Date: August 20, 2007

From: Raanan A. Bloom, Ph.D.
OPS/IO/PARS

To: Scott N. Goldie
OPS/ONDQA/DPMA1

Through: Jon Clark, M.S.
OPS/IO/PARS

Subject: Seroquel® (quetiapine fumarate) 50, 200, 300, and 400 mg tablets for treatment of schizophrenia. NDA 022-172
Submission Date (Cover Letter): March 5, 2007

AstraZeneca Pharmaceuticals LP
1800 Concord Pike
PO Box 8355
Wilmington, DE 19803-8355

Background

Seroquel® is currently approved for treatment of schizophrenia (NDA 22-047; approval date May 17, 2007). NDA 22-172 has been submitted for an indication of schizophrenia. Pursuant to 21 CFR part 25, an environmental assessment, dated June 6, 2006, has been submitted in support of the application.

Review of the Current Submission

The EA was prepared in accordance with 21 CFR 25 by AstraZeneca Pharmaceuticals LP. The EA provides the identical information as was provided in the EA submitted under NDA 22-047. A full review of the EA may be found in the November 9, 2006, memorandum. A FONSI was issued for 22-047 on November 9, 2006.
The environmental fate and effects data submitted in this EA were previously submitted in an EA for related application NDA 20-639/S-016 and S-017 (December 30, 2002), which was reviewed and found adequate by Florian Zielinski (January 28, 2003).

The maximum quantity of quetiapine fumarate produced for direct use based on all AstraZeneca Pharmaceuticals LP drug products containing quetiapine in any of the next 5 years is expected to be (b)(4). The calculation includes the largest projected production forecast for direct use, per year, in the US market for the years 2006 to 2010 inclusive. The calculated Expected Introduction Concentration (EIC) of quetiapine is (b)(4) ppb.

Data previously submitted in the related EAs includes ecotoxicological studies of fish, daphnia, and algae. The most sensitive species tested is the bluegill sunfish. The EC50/EIC ratio for the bluegill sunfish is (b)(4), which is greater than (b)(4). In addition the EIC is lower than the NOEC for each of the species tested. This assessment indicates that the compound is not expected to be toxic to aquatic organisms at the expected environmental introduction concentration.

Comments and Conclusions

Based on an evaluation of the information provided in this and previous EAs for Seroquel® and in FDA guidance, no further testing is required and no adverse effects are expected from the introduction of quetiapine fumarate into the environment due to the use of Seroquel® (b)(4).

A Finding of No Significant Impact (FONSI) is recommended.
ENVIRONMENTAL ASSESSMENT

and

FINDING OF NO SIGNIFICANT IMPACT

for

Seroquel® (quetiapine fumarate) 50, 200, 300, and 400 mg tablets for treatment of schizophrenia

NDA 22-172

Food and Drug Administration
Center for Drug Evaluation and Research

August 20, 2007
FINDING OF NO SIGNIFICANT IMPACT

for

NDA 22-172

Seroquel® (quetiapine fumarate) 50, 200, 300, and 400 mg tablets for treatment of schizophrenia

The National Environmental Policy Act of 1969 (NEPA) requires all Federal agencies to assess the environmental impact of their actions. FDA is required under NEPA to consider the environmental impact of approving certain drug product applications as an integral part of its regulatory process.

The Food and Drug Administration, Center for Drug Evaluation and Research has carefully considered the potential environmental impact of this action and concluded that this action will not have a significant impact on the quality of the human environment. Therefore, an environmental impact statement will not be prepared.

NDA 22-047 requests approval of Seroquel® Tablets (quetiapine fumarate) for the treatment of schizophrenia. In support of its new drug application, AstraZeneca Pharmaceuticals LP prepared an environmental assessment (attached) in accordance with 21 CFR Part 25 which evaluates the potential environmental impacts from the use and disposal of this product.

Quetiapine fumarate and its metabolites and conjugates may enter the aquatic environment from patient use and disposal. The toxicity of quetiapine fumarate to environmental organisms was characterized. The results indicate that the compound and its metabolites and conjugates are not expected to be toxic to aquatic organisms at the expected environmental introduction concentration.

At U.S. hospitals and clinics, empty or partially empty packages will be disposed of according to hospital or clinic procedures. Empty or partially empty containers from home use typically will be disposed by a community’s solid waste management system which may include landfills, incineration and recycling, while minimal quantities of the unused drug may be disposed in the sewer system.

The Center for Drug Evaluation and Research has concluded that the product can be used and disposed without any expected adverse environmental effects. Adverse effects are not anticipated upon endangered or threatened species or upon property listed in or eligible for listing in the National Register of Historic Places.
PREPARED BY:

Raanan A. Bloom, Ph.D.
Senior Environmental Officer
Office of Pharmaceutical Science
Center for Drug Evaluation and Research

CONCURRED BY:

Jon Clark, M.S.
Associate Director for Policy
Office of Pharmaceutical Science
Center for Drug Evaluation and Research

CONCURRED BY:

Moheb Nasr, Ph.D.
Director, Office of New Drug Quality Assessment
Office of Pharmaceutical Science
Center for Drug Evaluation and Research

Attachment:

Environmental Assessment
Appended Electronic Signature Page
Environmental Assessment of Quetiapine

Author: Gisela Holm, PhD
Ecotoxicologist
Global SHE Operations
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. DATE</td>
<td>4</td>
</tr>
<tr>
<td>2. NAME OF APPLICANT/PETITIONER</td>
<td>4</td>
</tr>
<tr>
<td>3. ADDRESS</td>
<td>4</td>
</tr>
<tr>
<td>4. DESCRIPTION OF PROPOSED ACTION</td>
<td>4</td>
</tr>
<tr>
<td>4.1 Requested approval</td>
<td>4</td>
</tr>
<tr>
<td>4.2 Need for action</td>
<td>4</td>
</tr>
<tr>
<td>4.3 Locations of use</td>
<td>4</td>
</tr>
<tr>
<td>4.4 Disposal sites</td>
<td>4</td>
</tr>
<tr>
<td>5. IDENTIFICATION OF SUBSTANCES THAT ARE THE SUBJECT OF THE PROPOSED ACTION</td>
<td>5</td>
</tr>
<tr>
<td>5.1 Nomenclature</td>
<td>5</td>
</tr>
<tr>
<td>5.1.1 Established name (U.S. Adopted name - USAN)</td>
<td>5</td>
</tr>
<tr>
<td>5.1.2 Brand/Proprietary name/tradename</td>
<td>5</td>
</tr>
<tr>
<td>5.1.3 Chemical names or genus/species of biologic product (e.g., virus)</td>
<td>5</td>
</tr>
<tr>
<td>5.1.3.1 Chemical abstracts (CA) index name</td>
<td>5</td>
</tr>
<tr>
<td>5.1.3.2 Systematic chemical name</td>
<td>5</td>
</tr>
<tr>
<td>5.2 Chemical abstracts service (CAS) registration number</td>
<td>5</td>
</tr>
<tr>
<td>5.3 Molecular formula</td>
<td>5</td>
</tr>
<tr>
<td>5.4 Molecular weight</td>
<td>5</td>
</tr>
<tr>
<td>5.5 Structural (graphic) formula/amino acid sequence</td>
<td>6</td>
</tr>
<tr>
<td>6. ENVIRONMENTAL ISSUES</td>
<td>6</td>
</tr>
<tr>
<td>6.1 Assessing Toxicity to Environmental Organisms</td>
<td>6</td>
</tr>
<tr>
<td>6.1.1 Environmental Fate of Released Substances</td>
<td>6</td>
</tr>
<tr>
<td>6.1.1.1 Identification of Substances of Interest</td>
<td>6</td>
</tr>
<tr>
<td>6.1.1.2 Physical and Chemical Characterization</td>
<td>8</td>
</tr>
<tr>
<td>6.1.1.3 Environmental Depletion Mechanisms</td>
<td>8</td>
</tr>
<tr>
<td>6.1.1.4 Environmental Concentrations</td>
<td>9</td>
</tr>
<tr>
<td>6.1.1.5 Summary</td>
<td>9</td>
</tr>
<tr>
<td>6.1.2 Environmental Effects of Released Substances</td>
<td>10</td>
</tr>
<tr>
<td>6.1.3 Summary</td>
<td>12</td>
</tr>
<tr>
<td>7. MITIGATION MEASURES</td>
<td>13</td>
</tr>
<tr>
<td>8. ALTERNATIVES TO THE PROPOSED ACTION</td>
<td>13</td>
</tr>
<tr>
<td>9. LIST OF PREPARERS</td>
<td>14</td>
</tr>
</tbody>
</table>
10. APPENDICES .. 15
10.1 Nonconfidential Appendices .. 15
10.1.1 Data Summary Table ... 15
10.2 Confidential Appendices .. 16
1. **DATE**

6 June 2006

2. **NAME OF APPLICANT/PETITIONER**

AstraZeneca Pharmaceuticals LP

3. **ADDRESS**

AstraZeneca Pharmaceuticals LP
1800 Concord Pike
PO Box 8355
Wilmington, DE 19803-8355

4. **DESCRIPTION OF PROPOSED ACTION**

4.1 **Requested approval**

AstraZeneca LP is filing an NDA pursuant to section 505(b) of the Federal Food, Drug and Cosmetic Act for Seroquel® 50 mg, 200 mg, 300 mg and 400 mg tablets packaged in bottles and hospital unit dose packages. An environmental assessment (EA) is being submitted pursuant to 21 CFR part 25. The EA is compiled in accordance with ‘Guidance for Industry, Environmental Assessment of Human Drug and Biologics Applications’ CDER, CBER, FDA July 1998.

4.2 **Need for action**

Seroquel is currently marketed for the treatment of schizophrenia and acute mania. An application has been filed to register Seroquel tablets.

4.3 **Locations of use**

Usage of Seroquel tablets will occur in households, but also in hospitals throughout the United States.

4.4 **Disposal sites**

Empty or partially empty packages from U.S. hospitals, pharmacies or clinics will be disposed of according to hospital, pharmacy, or clinic procedures.
5. IDENTIFICATION OF SUBSTANCES THAT ARE THE SUBJECT OF THE PROPOSED ACTION

5.1 Nomenclature
See CMC module, Nomenclature and Structure.

5.1.1 Established name (U.S. Adopted name - USAN)
Quetiapine fumarate

5.1.2 Brand/Proprietor name/tradename
Seroquel

5.1.3 Chemical names or genus/species of biologic product (e.g., virus)

5.1.3.1 Chemical abstracts (CA) index name
Ethanol[2–(2–[4–(dibenzo[b,f][1,4]– thiazepin–11–yl–1) piperazinyl]ethoxy]– (E)–2–butenedioate(2:1)

5.1.3.2 Systematic chemical name
IUPAC name:
Bis[2–(2–[4–(dibenzo[b,f][1,4]– thiapin –11–yl)piperazin–1–yl] ethoxy) ethanol]fumarate

5.2 Chemical abstracts service (CAS) registration number
Quetiapine fumarate: 111974-72-2
Base: 111974-69-7

5.3 Molecular formula
Quetiapine fumarate consists of two base components and one acid component.

C_{46}H_{54}N_{6}O_{8}S_{2} (quetiapine fumarate)
C_{21}H_{25}N_{3}O_{2}S (base)

5.4 Molecular weight
Quetiapine fumarate consists of two base components and one acid component.

883.1 (quetiapine fumarate)
767 (quetiapine = 2 x base)
6. ENVIRONMENTAL ISSUES

6.1 Assessing Toxicity to Environmental Organisms

6.1.1 Environmental Fate of Released Substances

6.1.1.1 Identification of Substances of Interest

After oral administration, quetiapine is eliminated almost completely by metabolism, as <1% of the excreted dose can be recovered in urine and faeces as the parent compound (quetiapine) (Appendix I – Confidential). Approximately 73% of the dose is excreted as metabolites in urine and 20% is excreted in faeces (Appendix I – Confidential). Eleven of the metabolites have been identified, some of which are conjugates of either the metabolites or the parent compound. The conjugates of the parent compound accounts for approximately 1.4% of the given dose. There are two main excreted human metabolites of quetiapine; the sulfoxide acid metabolite (M 289,886) (Fig. 1), and the parent acid metabolite (M 289,663) (Fig. 2). Both metabolites are mainly excreted via urine, but a small amount of each metabolite is also excreted via the faeces. The excretion of M 289,886 altogether represents approximately 28% (24% via urine + 4% via faeces) of the given dose, whereas the excretion of M 289,663 represents approximately 29% (27% + 2%) of the given dose.

The remaining identified excreted metabolites each account for less than 5% of the given dose, except for the sulfoxide (ICI 213,841), which accounts for approximately 6% of the given dose (Appendix I – Confidential).
Figure 1. Structural formula for the sulfoxide acid metabolite (M 289,886).

Figure 2. Structural formula for the parent acid metabolite (M 289,663).
Environmental Assessment
Document No. CNS.000-139-123

The pharmacological effect of the two main excreted metabolites (M 289,886 and M 289,663) was tested in vitro (Appendix I – Confidential). Neither of these metabolites showed any pharmacological activity in terms of binding affinity and behavioural tests of dopamine antagonism. Regarding the remaining metabolites, four of them showed potencies similar to or greater than the parent compound. The unconjugated forms of these metabolites represent 4.5% of a given dose.

6.1.1.2 Physical and Chemical Characterization

Water solubility

1600 mg/L at pH 7 (Appendix II - Confidential)

Dissociation constants (pKa) (22°C)

(Appendix III – Confidential)

pKa₁ = 6.8
pKa₂ = 3.3

Octanol/Water Partition Coefficient (25°C)

log Kow = 1.4 at pH 5 (Appendix IV - Confidential)
log Kow = 2.7 at pH 7 (Appendix IV - Confidential)
log Kow = 2.6 at pH 9 (Appendix IV - Confidential)

Vapour pressure

Not determined. Quetiapine is a solid and hence its vapour pressure is assumed to be very low (<10⁻⁶ Pa).

6.1.1.3 Environmental Depletion Mechanisms

Photolysis

No data.

Biodegradation

Aerobic degradation

The aerobic biodegradation of quetiapine fumarate was assessed according to guideline OECD 301F (Appendix V - Confidential). In this test, aerobic micro-organisms from a sewage treatment works are used to investigate their potential to readily degrade a substance. The results showed that quetiapine fumarate is not readily biodegradable (BOD₂₈/ThOD <0.6).

Anaerobic degradation

The anaerobic biodegradation was assessed according to the UK Department of the
Environment test method (Appendix VI - Confidential). The results showed that quetiapine fumarate is not anaerobically biodegradable under the conditions of the test.

Hydrolysis

The stability of quetiapine fumarate in aqueous buffer solutions was assessed according to the US FDA Environmental Assessment (EA) Technical Assistance Document 3.09 (Appendix III – Confidential). The extent of hydrolysis at 50°C, at pH 5, 7 and 9, was <10% after 5 days. These data indicate that quetiapine fumarate is hydrolytically stable, with an estimated half-life of ≥1 year at 25°C.

Adsorption to soil

The soil sorption and desorption of quetiapine was assessed according to the US FDA EA Technical Assistance Document 3.08 (Appendix VII – Confidential).

<table>
<thead>
<tr>
<th>Soil type</th>
<th>% organic carbon</th>
<th>% clay</th>
<th>pH</th>
<th>Mean Kd</th>
<th>Mean Koc</th>
<th>% recovery from soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nebo</td>
<td>1.6</td>
<td>28</td>
<td>4.9</td>
<td>3600</td>
<td>220,000</td>
<td>1</td>
</tr>
<tr>
<td>East Jubilee</td>
<td>2.2</td>
<td>13</td>
<td>5.8</td>
<td>180</td>
<td>8,000</td>
<td>6</td>
</tr>
<tr>
<td>Kenny Hill</td>
<td>3.1</td>
<td>14</td>
<td>7.7</td>
<td>45</td>
<td>1,400</td>
<td>19</td>
</tr>
</tbody>
</table>

From the results on the three soils tested, it is evident that the Kd may vary in different soils. However, the data suggests that quetiapine will be essentially immobile.

It should be noted that the Kd values are not proportional to the carbon content, so the Koc is not likely to be a reliable predictor of adsorption to soil (or sewage sludge). It is more likely that the adsorption is dependent on pH, with higher adsorption in more acidic soils. There is also evidence to suggest that the adsorption of quetiapine is irreversible, especially in more acidic soils.

6.1.1.4 Environmental Concentrations

The Expected Introduction Concentration (EIC) is based on all AstraZeneca Pharmaceuticals LP drug products containing quetiapine fumarate. See Appendix VIII – Confidential.

6.1.1.5 Summary

The use of quetiapine fumarate is likely to result mainly in metabolites and, to a lesser extent, the active moiety entering the environment, since it is almost completely metabolised after consumption. The metabolites are mainly excreted via urine (73%), and to a lesser extent via faeces (20%). Based on the physico-chemical properties of quetiapine fumarate (log Kow 2.7,
water solubility = 1600 mg/L and vapour pressure <10^-6 Pa) it is predicted that most of the active moiety (quetiapine) will be partitioned into the aqueous phase during wastewater treatment. However, the log K_{ow} may not be a very reliable predictor of adsorption and some adsorption to sludge may occur depending on the pH. The aqueous streams containing quetiapine will then subsequently be passed to the aquatic environment. When estimating the Expected Introduction Concentration (EIC), it is assumed that all quetiapine ends up in the aquatic environment, but that only 43% is present in potentially active forms, since it is known that the two major metabolites showed no pharmacological activity when tested in vitro.

In the aquatic environment, quetiapine is not likely to be hydrolytically degraded, and there is no evidence to suggest that biodegradation will be significant. However, quetiapine is not likely to bioaccumulate in aquatic organisms.

6.1.2 Environmental Effects of Released Substances

The following ecotoxicological studies were performed with quetiapine fumarate:

Activated sludge, respiration inhibition test (NB screening test)

The respiration inhibition of activated sludge was assessed according to the Ecological and Toxicological Association of Dyestuffs Manufacturing Industries (ETAD) method 103 (Appendix IX - Confidential). No inhibition was observed at concentrations up to 100 mg/L.

Blue-green alga, *Microcystis aeruginosa*

The toxicity to the blue-green alga, *M. aeruginosa* was assessed according to the FDA Environmental Assessment (EA) Technical Assistance Document 4.01 (Appendix X – Confidential).

Based on the largest specific growth rates during the study (21 days):

- No observed effect (P=0.05) concentration (NOEC) = 32 mg/L
- Lowest significant effect (P=0.05) concentration = 64 mg/L

Based on maximum cell densities achieved (21 days):

- NOEC (P=0.05) = 4.0 mg/L
- Lowest significant effect (P=0.05) concentration = 8.0 mg/L

Green alga, *Selenastrum capricornutum*

The toxicity to green alga, *Selenastrum capricornutum* was assessed according to the FDA EA Technical Assistance Document 4.01 (Appendix XI – Confidential).

Based on the largest specific growth rates during the study (14 days):
NOEC (P=0.05) \(= 2.5\) mg/L

Lowest significant effect (P=0.05) concentration \(= 5.0\) mg/L

Based on maximum cell densities achieved (14 days):

NOEC (P=0.05) \(= 2.5\) mg/L

Lowest significant effect (P=0.05) concentration \(= 5.0\) mg/L

Water-flea, *Daphnia magna*

The long-term toxicity to *Daphnia magna* was assessed according to the FDA EA Technical Assistance Document 4.09 (Appendix XII - *Confidential*).

Based on reproduction (21 days):

NOEC \(= 18\) mg/L

Lowest Observed Effect Concentration (LOEC) \(= 32\) mg/L

Based on length (21 days):

NOEC \(= 18\) mg/L

LOEC \(= 32\) mg/L

Rainbow trout (Oncorhynchus mykiss)**

The toxicity of quetiapine fumarate to rainbow trout was assessed according to the FDA EA Technical Assistance Document 4.11 (Appendix XIII - *Confidential*).

96 h LC\(_{50}\) = 22.0 mg/L

96 h NOEC = 1.0 mg/L

Bluegill sunfish (Lepomis macrochirus**)**

The toxicity of to rainbow trout was assessed according to the FDA EA Technical Assistance Document 4.11 (Appendix XIV - *Confidential*).

96 h LC\(_{50}\) = 19.3 mg/L

96 h NOEC = 1.8 mg/L

According to the short-term ecotoxicological tests, quetiapine fumarate shows low short-term toxicity to fish but no short-term toxicity to microorganisms in activated sludge. The long-term ecotoxicological tests show toxicity to algae and blue-green algae at mg/L concentration levels. The long-term effect of quetiapine to the water-flea *D. magna* appears to be minor. In addition, there were no observed sublethal effects at the Maximum Expected Environmental Concentration (MEEC).
In summary, the available ecotoxicological data indicate that quetiapine is not very toxic to aquatic organisms.

No rapid, complete depletion mechanism has been identified for quetiapine fumarate. However, the result from the microbial inhibition screening test above indicates that the drug substance does not inhibit respiration of activated sludge microorganisms. Therefore, it is not thought to disrupt wastewater treatment processes. Furthermore, as the log K_{ow} is $<$3.5 (see Physical and Chemical Characterization), the compound is not likely to bioaccumulate in aquatic organisms.

Based on the NOECs for the different ecotoxicological studies, the most sensitive species is fish. Since data are available for fish, *Daphnia* and algae, a Tier 2 assessment factor of 100 is justified. Hence a safety factor of 100 is applied to the lowest acute LC$_{50}$ of 19.3 mg/L (bluegill sunfish).

96 h LC$_{50}$ = 19.3 mg/L = 19300 µg/L

EC$_{50}$/EIC (Appendix VIII - Confidential) = 19300/EIC >100 (assessment factor), and no effects were observed at MEEC, i.e. no further testing is needed.

6.1.3 Summary

The intended use of quetiapine fumarate is likely to result mainly in metabolites entering the environment, since it is almost completely metabolised after consumption. Approximately 73% of the metabolites are excreted in the urine and 20% in the faeces. It is predicted that most of the active moiety (quetiapine) will be partitioned into the aqueous phase during wastewater treatment.

In the aquatic environment, quetiapine is not likely to be hydrolytically degraded, and there is no evidence to suggest that biodegradation will be significant. However, quetiapine is not likely to bioaccumulate in aquatic organisms.

Quetiapine fumarate shows short-term toxicity to fish but not to microorganisms in activated sludge. The long-term studies indicate that quetiapine is not very toxic to aquatic organisms.

When estimating the Expected Introduction Concentration (EIC), it is assumed that all quetiapine ends up in the aquatic environment, but that only 43% is present in potentially active forms, since it is known that the two major metabolites are essentially inactive. The rest of the excreted metabolites were assumed to exhibit the same pharmacological effects as the parent compound, due to the insufficient information available.

The EIC is based on all AstraZeneca Pharmaceuticals LP drug products containing quetiapine (Appendix VIII – Confidential).

Comparing the EIC with the lowest LC$_{50}$ from the most sensitive species (bluegill sunfish) using an assessment factor of 100 gives:
EC\textsubscript{50}/EIC = 19300 / EIC >100 (assessment factor)

In conclusion, since the ratio of the EC\textsubscript{50} for the most sensitive of the acute toxicity test organisms to the expected introduction concentration is over two orders of magnitude larger than the assessment factor, and no effects were observed at MEEC, no adverse environmental effects are anticipated as a consequence of the use of quetiapine.

7. MITIGATION MEASURES

No adverse environmental effects are anticipated due to the use of quetiapine fumarate. Therefore, no mitigation measures are needed.

8. ALTERNATIVES TO THE PROPOSED ACTION

No potential adverse environmental effects have been identified for the proposed action. Therefore, no alternatives to the proposed action will be proposed.
9. **LIST OF PREPARERS**

Gisela Holm, Ecotoxicologist, Global SHE Operations, AstraZeneca, Södertälje, Sweden since six years, Ph.D. Stockholm University, 19 years of experience in environmental research and consulting.

Persons consulted:

Jill Bailey, Seroquel Global Demand Manager, Supply Chain & Logistics, AstraZeneca, Alderley Park, UK

Donna Caster, Manager, AstraZeneca Pharmaceuticals LP, Wilmington, USA

Norb Ealer, Associate Director, Technical Regulatory Affairs AstraZeneca Pharmaceuticals LP, Wilmington, USA

Richard Murray-Smith, BSc, AstraZeneca, Brixham, UK

Greg Rullo, CMC Regulatory Director, AstraZeneca Pharmaceuticals LP, Wilmington, USA

Helen Winter Ph.D. Associate Director, Clinical Pharmacokinetics, Experimental Medicine, AstraZeneca Pharmaceuticals LP, Wilmington, USA

Testing laboratory:

Brixham Environmental Laboratory, AstraZeneca, Brixham, UK
10. APPENDICES

10.1 Nonconfidential Appendices

10.1.1 Data Summary Table

All test results from the environmental effect studies are expressed as ppm of quetiapine fumarate.

<table>
<thead>
<tr>
<th>DATA SUMMARY TABLE FOR QUETIAPINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICAL/CHEMICAL CHARACTERIZATION</td>
</tr>
<tr>
<td>Water Solubility</td>
</tr>
<tr>
<td>Dissociation Constants (22°C)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Log Octanol/Water Partition</td>
</tr>
<tr>
<td>Coefficient (log Kₒₒ) (25°C)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Vapour Pressure or Henry’s Law Constant</td>
</tr>
<tr>
<td>Sorption / Desorption (Kₒₒ)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

DEPLETION MECHANISMS

<table>
<thead>
<tr>
<th>Hydrolysis</th>
<th>t₁/₂ at 25°C ≥ 1 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerobic Biodegradation</td>
<td>Not readily biodegradable (BOD₂₈/ThOD <0.6)</td>
</tr>
<tr>
<td>Anaerobic degradation</td>
<td>Not degradable</td>
</tr>
<tr>
<td>Soil Biodegradation</td>
<td>No data</td>
</tr>
<tr>
<td>Photolysis</td>
<td>No data</td>
</tr>
<tr>
<td>Metabolism</td>
<td>Almost completely metabolised, <1% of the dose can be recovered as quetiapine</td>
</tr>
</tbody>
</table>
ENVIRONMENTAL EFFECTS

<table>
<thead>
<tr>
<th>Microbial Inhibition</th>
<th>No inhibition up to 100 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute toxicity</td>
<td></td>
</tr>
<tr>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>96 h LC50 = 22.0 ppm 96 h NOEC = 1.0 ppm</td>
</tr>
<tr>
<td>Bluegill sunfish (Lepomis macrochirus)</td>
<td>96 h LC50 = 19.3 ppm 96 h NOEC = 1.0 ppm</td>
</tr>
<tr>
<td>Chronic Toxicity</td>
<td></td>
</tr>
<tr>
<td>Green alga (Selenastrum capricornutum):</td>
<td>Max. cell densities (MCD) 14 d NOEC = 2.5 ppm MCD 14 d lowest significant effect = 5.0 ppm Growth rate 14 d NOEC = 2.5 ppm Growth rate 14 d lowest significant effect = 5.0 ppm</td>
</tr>
<tr>
<td>Blue-green alga (Microcystis aeruginosa):</td>
<td>MCD 14 d NOEC = 4.0 ppm MCD 14 d lowest significant effect = 8.0 ppm Growth rate 14 d NOEC = 32 ppm Growth rate 14 d lowest significant effect = 64 ppm</td>
</tr>
<tr>
<td>Water flea (Daphnia magna):</td>
<td>21 d reproduction NOEC = 18 ppm 21 d reproduction LOEC = 32 ppm 21 d length NOEC = 18 ppm 21 d length LOEC = 32 ppm</td>
</tr>
</tbody>
</table>

10.2 Confidential Appendices

1 Page has been Withheld in Full following this page as B4 (TS)

16 (17)
This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

/s/

Jon E. Clark
8/28/2007 09:45:43 AM

Moheb Nasr
9/5/2007 08:21:44 AM