CENTER FOR DRUG EVALUATION AND RESEARCH

Approval Package for:

APPLICATION NUMBER: 21-038/S017

Trade Name: Precedex®

Generic Name: dexmedetomidine hydrochloride

Sponsor: Hospira, Inc.

Approval Date: 10/13/2010
CONTENTS

Reviews / Information Included in this NDA Review.

<table>
<thead>
<tr>
<th>Review Type</th>
<th>Included</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approval Letter</td>
<td>✓</td>
</tr>
<tr>
<td>Other Action Letters</td>
<td></td>
</tr>
<tr>
<td>Labeling</td>
<td>✓</td>
</tr>
<tr>
<td>REMS</td>
<td></td>
</tr>
<tr>
<td>Summary Review</td>
<td></td>
</tr>
<tr>
<td>Officer/Employee List</td>
<td></td>
</tr>
<tr>
<td>Office Director Memo</td>
<td></td>
</tr>
<tr>
<td>Cross Discipline Team Leader Review</td>
<td></td>
</tr>
<tr>
<td>Medical Review(s)</td>
<td></td>
</tr>
<tr>
<td>Chemistry Review(s)</td>
<td></td>
</tr>
<tr>
<td>Environmental Assessment</td>
<td></td>
</tr>
<tr>
<td>Pharmacology Review(s)</td>
<td></td>
</tr>
<tr>
<td>Statistical Review(s)</td>
<td></td>
</tr>
<tr>
<td>Microbiology Review(s)</td>
<td></td>
</tr>
<tr>
<td>Clinical Pharmacology/Biopharmaceutics Review(s)</td>
<td></td>
</tr>
<tr>
<td>Other Reviews</td>
<td>✓</td>
</tr>
<tr>
<td>Risk Assessment and Risk Mitigation Review(s)</td>
<td></td>
</tr>
<tr>
<td>Proprietary Name Review(s)</td>
<td></td>
</tr>
<tr>
<td>Administrative/Correspondence Document(s)</td>
<td>✓</td>
</tr>
</tbody>
</table>
APPLICATION NUMBER:
21-038/S017

APPROVAL LETTER
Dear Ms. Riggio:

Please refer to your Supplemental New Drug Application (sNDA) dated January 22, 2010, received January 25, 2010, submitted under section 505(b) of the Federal Food, Drug, and Cosmetic Act (FDCA) for Precedex (dexmedetomidine hydrochloride).

We acknowledge receipt of your amendments dated August 26 and September 20, 2010.

This “Prior Approval” supplemental new drug application provides for changes to the DOSAGE AND ADMINISTRATION, WARNINGS AND PRECAUTIONS, ADVERSE REACTIONS, USE IN SPECIFIC POPULATIONS, CLINICAL PHARMACOLOGY, NONCLINICAL TOXICOLOGY, and CLINICAL STUDIES sections of the package insert.

We have completed our review of this supplemental application, as amended, and it is approved, effective on the date of this letter, for use as recommended in the enclosed, agreed-upon labeling text.

CONTENT OF LABELING

As soon as possible, but no later than 14 days from the date of this letter, submit, using the FDA automated drug registration and listing system (eLIST), the content of labeling [21 CFR 314.50(l)] in structured product labeling (SPL) format, as described at http://www.fda.gov/ForIndustry/DataStandards/StructuredProductLabeling/default.htm, that is identical to the enclosed labeling (text for the package insert) and include the labeling changes proposed in any pending “Changes Being Effected” (CBE) supplements. Information on submitting SPL files using eLIST may be found in the guidance for industry titled “SPL Standard for Content of Labeling Technical Qs and As” at http://www.fda.gov/downloads/DrugsGuidanceComplianceRegulatoryInformation/Guidances/UCM072392.pdf.

The SPL will be accessible from publicly available labeling repositories.
Also within 14 days, amend all pending supplemental applications for this NDA, including pending “Changes Being Effected” (CBE) supplements, for which FDA has not yet issued an action letter, with the content of labeling [21 CFR 314.50(l)(1)(i)] in MS Word format that includes the changes approved in this supplemental application.

You may request advisory comments on proposed introductory advertising and promotional labeling. To do so, submit the following, in triplicate, (1) a cover letter requesting advisory comments, (2) the proposed materials in draft or mock-up form with annotated references, and (3) the package insert(s) to:

Food and Drug Administration
Center for Drug Evaluation and Research
Division of Drug Marketing, Advertising, and Communications
5901-B Ammendale Road
Beltsville, MD 20705-1266

You must submit final promotional materials and package insert(s), accompanied by a Form FDA 2253, at the time of initial dissemination or publication [21 CFR 314.(b)(3)(i)]. Form FDA 2253 is available at http://www.fda.gov/opacom/morechoices/fdaforms/cder.html; instructions are provided on page 2 of the form. For more information about submission of promotional materials to the Division of Drug Marketing, Advertising, and Communications (DDMAC), see http://www.fda.gov/AboutFDA/CentersOffices/CDER/ucm090142.htm.

All promotional materials that include representations about your drug product must be promptly revised to be consistent with the labeling changes approved in this supplement, including any new safety information [21 CFR 314.70(a)(4)]. The revisions in your promotional materials should include prominent disclosure of the important new safety information that appears in the revised package labeling. Within 7 days of receipt of this letter, submit your statement of intent to comply with 21 CFR 314.70(a)(4) to the address above or by fax to 301-847-8444.

LETTERS TO HEALTH CARE PROFESSIONALS

If you decide to issue a letter communicating important safety-related information about this drug product (i.e., a “Dear Health Care Professional” letter), we request that you submit, at least 24 hours prior to issuing the letter, an electronic copy of the letter to this NDA to the following address:

MedWatch Program
Office of Special Health Issues
Food and Drug Administration
10903 New Hampshire Ave
Building 32, Mail Stop 5353
Silver Spring, MD 20993
REPORTING REQUIREMENTS

We remind you that you must comply with reporting requirements for an approved NDA (21 CFR 314.80 and 314.81).

If you have any questions, call Allison Meyer, Regulatory Project Manager, at (301) 796-1258.

Sincerely,

[See appended electronic signature page]

Bob A. Rappaport, MD
Director
Division of Anesthesia and Analgesia Products
Office of Drug Evaluation II
Center for Drug Evaluation and Research

ENCLOSURE(S):
Content of Labeling
This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

/s/

BOB A RAPPAPORT
10/13/2010
CENTER FOR DRUG EVALUATION AND RESEARCH

APPLICATION NUMBER:
21-038/S017

LABELING
Precedex (dexmedetomidine hydrochloride) injection

For intravenous infusion following dilution

Initial U.S. Approval: 1999

 Dosage and Administration, Dosing Information (2.2) 09/2010
 Dosage and Administration, Administration with Other Fluids (2.5) 09/2010
 Warnings and Precautions (5) 09/2010
 Adverse Reactions, Clinical Studies Experience (6.1) 09/2010
 Use in Special Populations, Pregnancy (8.1) 09/2010
 Clinical Pharmacology, Pharmacokinetics (12.3) 09/2010
 Animal Toxicology and/or Pharmacology (13.2) 09/2010
 Clinical Studies, Intensive Care Unit Sedation (14.1) 09/2010

INDICATIONS AND USAGE

Precedex is a relatively selective alpha2-adrenergic agonist indicated for:

- Sedation of initially intubated and mechanically ventilated patients during treatment in an intensive care setting. Administer Precedex by continuous infusion not to exceed 24 hours. (1.1)
- Sedation of non-intubated patients prior to and/or during surgical and other procedures. (1.2)

DOSE AND ADMINISTRATION

Individualize and titrate Precedex dosing to desired clinical effect. (2.1)

Administer Precedex using a controlled infusion device. (2.1)

Dilute vial contents in 0.9% sodium chloride solution to achieve required concentration (4 mcg/mL) prior to administration. (2.4)

For Intensive Care Unit Sedation: Generally initiate at one mcg/kg over 10 minutes, followed by a maintenance infusion of 0.2 to 0.7 mcg/kg/hr. (2.2)

For Procedural Sedation: Generally initiate at one mcg/kg over 10 minutes, followed by a maintenance infusion initiated at 0.6 mcg/kg/hr and titrated to achieve desired clinical effect with doses ranging from 0.2 to 1 mcg/kg/hr. (2.2)

Alternative doses recommended for patients over 65 years of age and awake fiberoptic intubation patients. (2.2)

DOSE FORMS AND STRENGTHS

200 mcg/2 mL (100 mcg/mL) in a glass vial (3)

FULL PRESCRIBING INFORMATION: CONTENTS

1 INDICATIONS AND USAGE
 1.1 Intensive Care Unit Sedation
 1.2 Procedural Sedation

2 DOSAGE AND ADMINISTRATION
 2.1 Dosing Guidelines
 2.2 Dosage Information
 2.3 Dosage Adjustment
 2.4 Preparation of Solution
 2.5 Administration With Other Fluids
 2.6 Compatibility with Natural Rubber

3 DOSAGE FORMS AND STRENGTHS
 3.1 Drug Administration
 3.2 Hypotension, Bradycardia, and Sinus Arrest
 3.3 Transient Hypertension
 3.4 Arousability
 3.5 Withdrawal
 3.6 Tolerance and Tachyphylaxis
 3.7 Hepatic Impairment

5 WARNINGS AND PRECAUTIONS
 5.1 Drug Administration
 5.2 Hypotension, Bradycardia, and Sinus Arrest
 5.3 Transient Hypertension
 5.4 Arousability
 5.5 Withdrawal
 5.6 Tolerance and Tachyphylaxis
 5.7 Hepatic Impairment

6 ADVERSE REACTIONS
 6.1 Clinical Studies Experience
 6.2 Postmarketing Experience

7 DRUG INTERACTIONS
 7.1 Anesthetics, Sedatives, Hypnotics, Opioids
 7.2 Neuromuscular Blockers

8 USE IN SPECIFIC POPULATIONS
 8.1 Pregnancy
 8.2 Labor and Delivery
 8.3 Nursing Mothers
 8.4 Pediatric Use

None (4)

The most common adverse reactions (incidence greater than 2%) are hypotension, bradycardia, and dry mouth. (6.1)

Adverse reactions associated with infusions greater than 24 hours in duration include ARDS, respiratory failure, and agitation. (6.1)

To report SUSPECTED ADVERSE REACTIONS, contact Hospira, Inc at 1-888-441-4100 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

DRUG INTERACTIONS

Anesthetics, sedatives, hypnotics, opioids: Enhancement of pharmacodynamic effects. Reduction in dosage of Precedex or the concomitant medication may be required. (7.1)

USE IN SPECIFIC POPULATIONS

Geriatric patients: Dose reduction should be considered (2.2, 2.3, 5.1, 8.5)

Hepatic impairment: Dose reduction should be considered (2.1, 2.2, 2.3, 5.6, 8.6)

Pregnancy: Based on animal data, may cause fetal harm (8.1)

Nursing Mothers: Caution should be exercised when administered to a nursing woman (8.3)

Revised: 09/2010

Sections or subsections omitted from the full prescribing information are not listed.
1 FULL PRESCRIBING INFORMATION

1 INDICATIONS AND USAGE

1.1 Intensive Care Unit Sedation
Precedex® is indicated for sedation of initially intubated and mechanically ventilated patients during treatment in an intensive care setting. Precedex should be administered by continuous infusion not to exceed 24 hours.

Precedex has been continuously infused in mechanically ventilated patients prior to extubation, during extubation, and post-extubation. It is not necessary to discontinue Precedex prior to extubation.

1.2 Procedural Sedation
Precedex is indicated for sedation of non-intubated patients prior to and/or during surgical and other procedures.

2 DOSAGE AND ADMINISTRATION

2.1 Dosing Guidelines
- Precedex dosing should be individualized and titrated to desired clinical response.
- Precedex is not indicated for infusions lasting longer than 24 hours
- Precedex should be administered using a controlled infusion device.

2.2 Dosage Information

<table>
<thead>
<tr>
<th>INDICATION</th>
<th>DOSAGE AND ADMINISTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiation of Intensive Care Unit Sedation</td>
<td>For adult patients: a loading infusion of up to one mcg/kg over 10 minutes. For patients being converted from alternate sedative therapy: a loading dose may not be required [see Dosage and Administration: Maintenance of Intensive Care Unit Sedation (2.2)]. For patients over 65 years of age: a dose reduction should be considered [see Use in Specific Populations (8.5)]. For patients with impaired hepatic-function: a dose reduction should be considered [see Use in Specific Populations (8.6), Clinical Pharmacology (12.3)].</td>
</tr>
<tr>
<td>Maintenance of Intensive Care Unit Sedation</td>
<td>For adult patients: a maintenance infusion of 0.2 to 0.7 mcg/kg/hr. The rate of the maintenance infusion should be adjusted to achieve the desired level of sedation. For patients over 65 years of age: a dose reduction should be considered [see Use in Specific Populations (8.5)]. For patients with impaired hepatic function: a dose reduction should be considered [see Use in Specific Populations (8.6), Clinical Pharmacology (12.3)].</td>
</tr>
</tbody>
</table>
Initiation of Procedural Sedation

For adult patients: a loading infusion of one mcg/kg over 10 minutes. For less invasive procedures such as ophthalmic surgery, a loading infusion of 0.5 mcg/kg given over 10 minutes may be suitable.

For awake fiberoptic intubation patients: a loading infusion of one mcg/kg over 10 minutes.

For patients over 65 years of age: a loading infusion of 0.5 mcg/kg over 10 minutes [see Use in Specific Populations (8.5)].

For patients with impaired hepatic function: a dose reduction should be considered [see Use in Specific Populations (8.6), Clinical Pharmacology (12.3)].

Maintenance of Procedural Sedation

For adult patients: the maintenance infusion is generally initiated at 0.6 mcg/kg/hr and titrated to achieve desired clinical effect with doses ranging from 0.2 to 1 mcg/kg/hr. The rate of the maintenance infusion should be adjusted to achieve the targeted level of sedation.

For awake fiberoptic intubation patients: a maintenance infusion of 0.7 mcg/kg/hr is recommended until the endotracheal tube is secured.

For patients over 65 years of age: a dose reduction should be considered [see Use in Specific Populations (8.5)].

For patients with impaired hepatic function: a dose reduction should be considered [see Use in Specific Populations (8.6), Clinical Pharmacology (12.3)].

2.3 Dosage Adjustment

Due to possible pharmacodynamic interactions, a reduction in dosage of Precedex or other concomitant anesthetics, sedatives, hypnotics or opioids may be required when co-administered. [see Drug Interactions (7.1)].

Dosage reductions may need to be considered for patients with hepatic impairment, and geriatric patients [see Warnings and Precautions (5.6), Use in Specific Populations (8.6), Clinical Pharmacology (12.3)].

2.4 Preparation of Solution

Precedex must be diluted in 0.9% sodium chloride solution to achieve required concentration (4 mcg/mL) prior to administration. Preparation of solutions is the same, whether for the loading dose or maintenance infusion.

Strict aseptic technique must always be maintained during handling of Precedex.

To prepare the infusion, withdraw 2 mL of Precedex and add to 48 mL of 0.9% sodium chloride injection to a total of 50 mL. Shake gently to mix well.

Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever solution and container permit.

2.5 Administration with Other Fluids

Precedex infusion should not be co-administered through the same intravenous catheter with blood or plasma because physical compatibility has not been established.

Precedex has been shown to be incompatible when administered with the following drugs: amphotericin B, diazepam.

Precedex has been shown to be compatible when administered with the following intravenous fluids:

- 0.9% sodium chloride in water
- 5% dextrose in water
• 20% mannitol
• Lactated Ringer’s solution
• 100 mg/mL magnesium sulfate solution
• 0.3% potassium chloride solution

2.6 Compatibility with Natural Rubber
Compatibility studies have demonstrated the potential for absorption of Precedex to some types of natural rubber. Although Precedex is dosed to effect, it is advisable to use administration components made with synthetic or coated natural rubber gaskets.

3 DOSAGE FORMS AND STRENGTHS
200 mcg/2 mL (100 mcg/mL) in a glass vial

4 CONTRAINDICATIONS
None

5 WARNINGS AND PRECAUTIONS
5.1 Drug Administration
Precedex should be administered only by persons skilled in the management of patients in the intensive care or operating room setting. Due to the known pharmacological effects of Precedex, patients should be continuously monitored while receiving Precedex.

5.2 Hypotension, Bradycardia, and Sinus Arrest
Clinically significant episodes of bradycardia and sinus arrest have been reported with Precedex administration in young, healthy volunteers with high vagal tone or with different routes of administration including rapid intravenous or bolus administration.

Reports of hypotension and bradycardia have been associated with Precedex infusion. If medical intervention is required, treatment may include decreasing or stopping the infusion of Precedex, increasing the rate of intravenous fluid administration, elevation of the lower extremities, and use of pressor agents. Because Precedex has the potential to augment bradycardia induced by vagal stimuli, clinicians should be prepared to intervene. The intravenous administration of anticholinergic agents (e.g., glycopyrrolate, atropine) should be considered to modify vagal tone. In clinical trials, glycopyrrolate or atropine were effective in the treatment of most episodes of Precedex-induced bradycardia. However, in some patients with significant cardiovascular dysfunction, more advanced resuscitative measures were required.

Caution should be exercised when administering Precedex to patients with advanced heart block and/or severe ventricular dysfunction. Because Precedex decreases sympathetic nervous system activity, hypotension and/or bradycardia may be expected to be more pronounced in patients with hypovolemia, diabetes mellitus, or chronic hypertension and in elderly patients.

In clinical trials where other vasodilators or negative chronotropic agents were co-administered with Precedex an additive pharmacodynamic effect was not observed. Nonetheless, caution should be used when such agents are administered concomitantly with Precedex.

5.3 Transient Hypertension
Transient hypertension has been observed primarily during the loading dose in association with the initial peripheral vasoconstrictive effects of Precedex. Treatment of the transient hypertension has generally not been necessary, although reduction of the loading infusion rate may be desirable.

5.4 Arousalability
Some patients receiving Precedex have been observed to be arousable and alert when stimulated. This alone should not be considered as evidence of lack of efficacy in the absence of other clinical signs and symptoms.

5.5 Withdrawal
Intensive Care Unit Sedation
With administration up to 7 days, regardless of dose, 12 (5%) Precedex subjects experienced at least 1 event related to withdrawal within the first 24 hours after discontinuing study drug and 7 (3%) Precedex subjects
experienced at least 1 event 24 to 48 hours after end of study drug. The most common events were nausea, vomiting, and agitation.

Tachycardia and hypertension requiring intervention in the 48 hours following study drug discontinuation occurred at frequencies of <5%. If tachycardia and/or hypertension occurs after discontinuation of Precedex supportive therapy is indicated.

Procedural Sedation
Withdrawal symptoms were not seen after discontinuation of short term infusions of Precedex (<6 hours).

5.6 Tolerance and Tachyphylaxis
Use of dexmedetomidine beyond 24 hours has been associated with tolerance and tachyphylaxis and a dose-related increase in adverse reactions [see Adverse Reactions (6.1)].

5.7 Hepatic Impairment
Since Precedex clearance decreases with severity of hepatic impairment, dose reduction should be considered in patients with impaired hepatic function [see Dosage and Administration (2.2)].

6 ADVERSE REACTIONS

6.1 Clinical Studies Experience
Because clinical trials are conducted under widely varying conditions, adverse reactions rates observed in the clinical trials of a drug cannot be directly compared to rates in clinical trials of another drug and may not reflect the rates observed in practice.

Use of Precedex has been associated with the following serious adverse reactions:
- Hypotension, bradycardia and sinus arrest [see Warnings and Precautions (5.2)]
- Transient hypertension [see Warnings and Precautions (5.3)]

Most common treatment-emergent adverse reactions, occurring in greater than 2% of patients in both Intensive Care Unit and procedural sedation studies include hypotension, bradycardia and dry mouth.

Intensive Care Unit Sedation
Adverse reaction information is derived from the continuous infusion trials of Precedex for sedation in the Intensive Care Unit setting in which 1007 patients received Precedex. The mean total dose was 7.4 mcg/kg (range: 0.8 to 84.1), mean dose per hour was 0.5 mcg/kg/hr (range: 0.1 to 6.0) and the mean duration of infusion of 15.9 hours (range: 0.2 to 157.2). The population was between 17 to 88 years of age, 43% > 65 years of age, 77% male and 93% Caucasian. Treatment-emergent adverse reactions occurring at an incidence of >2% are provided in Table 2. The most frequent adverse reactions were hypotension, bradycardia and dry mouth. [see Warnings and Precautions (5.2)].
Table 2. Adverse Reactions With an Incidence > 2%— Intensive Care Unit Sedation Population < 24 hours

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>All Precedex (N=1007) (%)</th>
<th>Randomized Precedex (N=798) (%)</th>
<th>Placebo (N=400) (%)</th>
<th>Propofol (N=188) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypotension</td>
<td>25%</td>
<td>24%</td>
<td>12%</td>
<td>13%</td>
</tr>
<tr>
<td>Hypertension</td>
<td>12%</td>
<td>13%</td>
<td>19%</td>
<td>4%</td>
</tr>
<tr>
<td>Nausea</td>
<td>9%</td>
<td>9%</td>
<td>9%</td>
<td>11%</td>
</tr>
<tr>
<td>Bradycardia</td>
<td>5%</td>
<td>5%</td>
<td>3%</td>
<td>0</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>4%</td>
<td>5%</td>
<td>3%</td>
<td>7%</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Dry mouth</td>
<td>4%</td>
<td>3%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>3%</td>
<td>3%</td>
<td>5%</td>
<td>3%</td>
</tr>
<tr>
<td>Hypovolemia</td>
<td>3%</td>
<td>3%</td>
<td>2%</td>
<td>5%</td>
</tr>
<tr>
<td>Atelectasis</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
<td>6%</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td>2%</td>
<td>2%</td>
<td>1%</td>
<td>6%</td>
</tr>
<tr>
<td>Agitation</td>
<td>2%</td>
<td>2%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>Tachycardia</td>
<td>2%</td>
<td>2%</td>
<td>4%</td>
<td>1%</td>
</tr>
<tr>
<td>Anemia</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>Hyperthermia</td>
<td>2%</td>
<td>2%</td>
<td>3%</td>
<td>0</td>
</tr>
<tr>
<td>Chills</td>
<td>2%</td>
<td>2%</td>
<td>3%</td>
<td>2%</td>
</tr>
<tr>
<td>Hyperglycemia</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>3%</td>
</tr>
<tr>
<td>Hypoxia</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>3%</td>
</tr>
<tr>
<td>Post-procedural hemorrhage</td>
<td>2%</td>
<td>2%</td>
<td>3%</td>
<td>4%</td>
</tr>
<tr>
<td>Pulmonary edema</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>3%</td>
</tr>
<tr>
<td>Hypocalcemia</td>
<td>1%</td>
<td>1%</td>
<td>0</td>
<td>2%</td>
</tr>
<tr>
<td>Acidosis</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>2%</td>
</tr>
<tr>
<td>Urine output decreased</td>
<td>1%</td>
<td>1%</td>
<td>0</td>
<td>2%</td>
</tr>
<tr>
<td>Sinus tachycardia</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>2%</td>
</tr>
<tr>
<td>Ventricular tachycardia</td>
<td><1%</td>
<td><1%</td>
<td>1%</td>
<td>5%</td>
</tr>
<tr>
<td>Wheezing</td>
<td><1%</td>
<td>1%</td>
<td>0</td>
<td>2%</td>
</tr>
<tr>
<td>Edema peripheral</td>
<td><1%</td>
<td>1%</td>
<td>1%</td>
<td>2%</td>
</tr>
</tbody>
</table>

* 26 subjects in the all Precedex group and 10 subjects in the randomized Precedex group had exposure for greater than 24 hours.

Adverse reaction information was also derived from the placebo-controlled, continuous infusion trials of Precedex for sedation in the surgical intensive care unit setting in which 387 patients received Precedex for less than 24 hours. The most frequently observed treatment-emergent adverse events included hypotension, hypertension, nausea, bradycardia, fever, vomiting, hypoxia, tachycardia and anemia (see Table 3).

Table 3: Treatment-Emergent Adverse Events Occurring in >1% Of All Dexmedetomidine-Treated Patients in the Randomized Placebo-controlled Continuous Infusion <24 Hours ICU Sedation Studies

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Randomized Dexmedetomidine (N=387) (%)</th>
<th>Placebo (N=379) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

297 298 299 300 301 302 303 304 305
<table>
<thead>
<tr>
<th>Condition</th>
<th>Precedex (%)</th>
<th>Midazolam (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypotension</td>
<td>28%</td>
<td>13%</td>
</tr>
<tr>
<td>Hypertension</td>
<td>16%</td>
<td>18%</td>
</tr>
<tr>
<td>Nausea</td>
<td>11%</td>
<td>9%</td>
</tr>
<tr>
<td>Bradycardia</td>
<td>7%</td>
<td>3%</td>
</tr>
<tr>
<td>Fever</td>
<td>5%</td>
<td>4%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>4%</td>
<td>6%</td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>Hypoxia</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Tachycardia</td>
<td>3%</td>
<td>5%</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>3%</td>
<td>4%</td>
</tr>
<tr>
<td>Anemia</td>
<td>3%</td>
<td>2%</td>
</tr>
<tr>
<td>Dry Mouth</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>Rigors</td>
<td>2%</td>
<td>3%</td>
</tr>
<tr>
<td>Agitation</td>
<td>2%</td>
<td>3%</td>
</tr>
<tr>
<td>Hyperpyrexia</td>
<td>2%</td>
<td>3%</td>
</tr>
<tr>
<td>Pain</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>Hyperglycemia</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>Acidosis</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>Pleural Effusion</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Oliguria</td>
<td>2%</td>
<td><1%</td>
</tr>
<tr>
<td>Thirst</td>
<td>2%</td>
<td><1%</td>
</tr>
</tbody>
</table>

In a controlled clinical trial, Precedex was compared to midazolam for ICU sedation exceeding 24 hours duration. Key treatment emergent adverse events occurring in dexmedetomidine or midazolam treated patients in the randomized active comparator continuous infusion long-term intensive care unit sedation study are provided in Table 4. The number (%) of subjects who had a dose-related increase in treatment-emergent adverse events by maintenance adjusted dose rate range in the Precedex group is provided in Table 5.
Table 4: Key Treatment-Emergent Adverse Events Occurring in Dexmedetomidine- or Midazolam-Treated Patients in the Randomized Active Comparator Continuous Infusion Long-Term Intensive Care Unit Sedation Study

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Dexmedetomidine (N=244)</th>
<th>Midazolam (N=122)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypotension†</td>
<td>56%</td>
<td>56%</td>
</tr>
<tr>
<td>Hypotension requiring intervention</td>
<td>28%</td>
<td>27%</td>
</tr>
<tr>
<td>Bradycardia†</td>
<td>42%</td>
<td>19%</td>
</tr>
<tr>
<td>Bradycardia requiring intervention</td>
<td>5%</td>
<td>1%</td>
</tr>
<tr>
<td>Systolic Hypertension†</td>
<td>28%</td>
<td>42%</td>
</tr>
<tr>
<td>Tachycardia†</td>
<td>25%</td>
<td>44%</td>
</tr>
<tr>
<td>Tachycardia requiring intervention</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Diastolic Hypertension†</td>
<td>12%</td>
<td>15%</td>
</tr>
<tr>
<td>Hypertension†</td>
<td>11%</td>
<td>15%</td>
</tr>
<tr>
<td>Hypertension requiring intervention†</td>
<td>19%</td>
<td>30%</td>
</tr>
<tr>
<td>Hypokalemia</td>
<td>9%</td>
<td>13%</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>7%</td>
<td>2%</td>
</tr>
<tr>
<td>Agitation</td>
<td>7%</td>
<td>6%</td>
</tr>
<tr>
<td>Hyperglycemia</td>
<td>7%</td>
<td>2%</td>
</tr>
<tr>
<td>Constipation</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>Hypoglycemia</td>
<td>5%</td>
<td>6%</td>
</tr>
<tr>
<td>Respiratory Failure</td>
<td>5%</td>
<td>3%</td>
</tr>
<tr>
<td>Renal Failure Acute</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Acute Respiratory Distress Syndrome</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Generalized edema</td>
<td>2%</td>
<td>6%</td>
</tr>
<tr>
<td>Hypomagnesemia</td>
<td>1%</td>
<td>7%</td>
</tr>
</tbody>
</table>

†Includes any type of hypertension.

1. Hypotension was defined in absolute terms as Systolic blood pressure of <80 mmHg or Diastolic blood pressure of <50 mmHg or in relative terms as ≤30% lower than pre-study drug infusion value.
2. Bradycardia was defined in absolute terms as <40 bpm or in relative terms as ≤30% lower than pre-study drug infusion value.
3. Hypertension was defined in absolute terms as Systolic blood pressure >180 mmHg or Diastolic blood pressure of >100 mmHg or in relative terms as ≥30% higher than pre-study drug infusion value.
4. Tachycardia was defined in absolute terms as >120 bpm or in relative terms as ≥30% greater than pre-study drug infusion value.

The following adverse events occurred between 2 and 5% for Precedex and Midazolam, respectively: renal failure acute (2.5%, 0.8%), acute respiratory distress syndrome (2.5%, 0.8%), and respiratory failure (4.5%, 3.3%).
Table 5. Number (%) of subjects who had a dose-related increase in Treatment Emergent Adverse Events by maintenance adjusted dose rate range in the Precedex group

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>≤ 0.7* N = 95</th>
<th>> 0.7 to ≤ 1.1* N = 78</th>
<th>> 1.1* N = 71</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constipation</td>
<td>6%</td>
<td>5%</td>
<td>14%</td>
</tr>
<tr>
<td>Agitation</td>
<td>5%</td>
<td>8%</td>
<td>14%</td>
</tr>
<tr>
<td>Anxiety</td>
<td>5%</td>
<td>5%</td>
<td>9%</td>
</tr>
<tr>
<td>Oedema peripheral</td>
<td>3%</td>
<td>5%</td>
<td>7%</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>2%</td>
<td>4%</td>
<td>9%</td>
</tr>
<tr>
<td>Respiratory failure</td>
<td>2%</td>
<td>6%</td>
<td>10%</td>
</tr>
<tr>
<td>Acute respiratory distress syndrome</td>
<td>1%</td>
<td>3%</td>
<td>9%</td>
</tr>
</tbody>
</table>

*Average maintenance dose over the entire study drug administration

Procedural Sedation

Adverse reaction information is derived from the two trials for procedural sedation in which 318 patients received Precedex. The mean total dose was 1.6 mcg/kg (range: 0.5 to 6.7), mean dose per hour was 1.3 mcg/kg/hr (range: 0.3 to 6.1) and the mean duration of infusion of 1.5 hours (range: 0.1 to 6.2). The population was between 18 to 93 years of age, 30% ≥ 65 years of age, 52% male and 61% Caucasian.

Treatment-emergent adverse reactions occurring at an incidence of >2% are provided in Table 3. The most frequent adverse reactions were hypotension, bradycardia, and dry mouth [see Warnings and Precautions (5.2)]. Prespecified criteria for the vital signs to be reported as adverse reactions are footnoted below the table. The decrease in respiratory rate and hypoxia was similar between Precedex and comparator groups in both studies.

Table 6. Adverse Reactions With an Incidence > 2%—Procedural Sedation Population

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Precedex N = 318 (%)</th>
<th>Placebo N = 113 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypotension¹</td>
<td>54%</td>
<td>30%</td>
</tr>
<tr>
<td>Respiratory depression²</td>
<td>37%</td>
<td>32%</td>
</tr>
<tr>
<td>Bradycardia³</td>
<td>14%</td>
<td>4%</td>
</tr>
<tr>
<td>Hypertension⁴</td>
<td>13%</td>
<td>24%</td>
</tr>
<tr>
<td>Tachycardia⁵</td>
<td>5%</td>
<td>17%</td>
</tr>
<tr>
<td>Nausea</td>
<td>3%</td>
<td>2%</td>
</tr>
<tr>
<td>Dry mouth</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>Hypoxia⁶</td>
<td>2%</td>
<td>3%</td>
</tr>
<tr>
<td>Bradypnea</td>
<td>2%</td>
<td>4%</td>
</tr>
</tbody>
</table>

¹ Hypotension was defined in absolute and relative terms as Systolic blood pressure of <80 mmHg or ≤30% lower than pre-study drug infusion value, or diastolic blood pressure of <50 mmHg

² Respiratory depression was defined in absolute and relative terms as respiratory rate (RR)<8 beats per minute or >25% decrease from baseline

³ Bradycardia was defined in absolute and relative terms as <40 beats per minute or ≤30% lower than pre-study drug infusion value.

⁴ Hypertension was defined in absolute and relative terms as Systolic blood pressure >180 mmHg or ≥30% higher than pre-study drug infusion value or diastolic blood pressure of >100 mmHg.

⁵ Tachycardia was defined in absolute and relative terms as ≥120 beats per minute or ≥30% greater than pre-study drug infusion value.

⁶ Hypoxia was defined in absolute and relative terms as SpO₂ < 90% or 10% decrease from baseline

6.2 Postmarketing Experience
The following adverse reactions have been identified during post approval use of Precedex. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Hypotension and bradycardia were the most common adverse reactions associated with the use of Precedex during post approval use of the drug.
Table 7: Adverse Reactions Experienced During Post-approval Use of Precedex

<table>
<thead>
<tr>
<th>Body System</th>
<th>Preferred Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body as a Whole</td>
<td>Fever, hyperpyrexia, hypovolemia, light anesthesia, pain, rigors</td>
</tr>
<tr>
<td>Cardiovascular Disorders, General</td>
<td>Blood pressure fluctuation, heart disorder, hypertension, hypotension, myocardial infarction</td>
</tr>
<tr>
<td>Central and Peripheral Nervous System Disorders</td>
<td>Dizziness, headache, neuralgia, neuritis, speech disorder, convulsion</td>
</tr>
<tr>
<td>Gastrointestinal System Disorders</td>
<td>Abdominal pain, diarrhea, vomiting, nausea</td>
</tr>
<tr>
<td>Heart Rate and Rhythm Disorders</td>
<td>Arrhythmia, ventricular arrhythmia, bradycardia, hypoxia, atrioventricular block, cardiac arrest, extrasystoles, atrial fibrillation, heart block, t wave inversion, tachycardia, supraventricular tachycardia, ventricular tachycardia</td>
</tr>
<tr>
<td>Liver and Biliary System Disorders</td>
<td>Increased gamma-glutamyl transpepsidase, hepatic function abnormal, hyperbilirubinemia, alanine transaminase, aspartate aminotransferase</td>
</tr>
<tr>
<td>Metabolic and Nutritional Disorders</td>
<td>Acidosis, respiratory acidosis, hyperkalemia, increased alkaline phosphatase, thirst, hypoglycemia</td>
</tr>
<tr>
<td>Psychiatric Disorders</td>
<td>Agitation, confusion, delirium, hallucination, illusion</td>
</tr>
<tr>
<td>Red Blood Cell Disorders</td>
<td>Anemia</td>
</tr>
<tr>
<td>Renal disorders</td>
<td>Blood urea nitrogen increased, oliguria</td>
</tr>
<tr>
<td>Respiratory System Disorders</td>
<td>Apnea, bronchospasm, dyspnea, hypercapnia, hypoventilation, hypoxia, pulmonary congestion</td>
</tr>
<tr>
<td>Skin and Appendages Disorders</td>
<td>Increased sweating</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Hemorrhage</td>
</tr>
<tr>
<td>Vision Disorders</td>
<td>Photopsia, abnormal vision</td>
</tr>
</tbody>
</table>
7 DRUG INTERACTIONS

7.1 Anesthetics, Sedatives, Hypnotics, Opioids

Co-administration of Precedex with anesthetics, sedatives, hypnotics, and opioids is likely to lead to an enhancement of effects. Specific studies have confirmed these effects with sevoflurane, isoflurane, propofol, alfentanil, and midazolam. No pharmacokinetic interactions between Precedex and isoflurane, propofol, alfentanil and midazolam have been demonstrated. However, due to possible pharmacodynamic interactions, when co-administered with Precedex, a reduction in dosage of Precedex or the concomitant anesthetic, sedative, hypnotic or opioid may be required.

7.2 Neuromuscular Blockers

In one study of 10 healthy volunteers, administration of Precedex for 45 minutes at a plasma concentration of one ng/mL resulted in no clinically meaningful increases in the magnitude of neuromuscular blockade associated with rocuronium administration.

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Pregnancy Category C:
There are no adequate and well-controlled studies of Precedex use in pregnant women. In an in-vitro human placenta study, placental transfer of dexmedetomidine occurred. In a study in the pregnant rat, placental transfer of dexmedetomidine was observed when radiolabeled dexmedetomidine was administered subcutaneously. Thus, fetal exposure should be expected in humans, and Precedex should be used during pregnancy only if the potential benefits justify the potential risk to the fetus.

Teratogenic effects were not observed in rats following subcutaneous administration of dexmedetomidine during the period of fetal organogenesis (from gestation day 5 to 16) with doses up to 200 mcg/kg (representing a dose approximately equal to the maximum recommended human intravenous dose based on body surface area) or in rabbits following intravenous administration of dexmedetomidine during the period of fetal organogenesis (from gestation day 6 to 18) with doses up to 96 mcg/kg (representing approximately half the human exposure at the maximum recommended dose based on plasma area under the time-curve comparison). However, fetal toxicity, as evidenced by increased post-implantation losses and reduced live pups, was observed in rats at a subcutaneous dose of 200 mcg/kg. The no-effect dose in rats was 20 mcg/kg (representing a dose less than the maximum recommended human intravenous dose based on body surface area comparison). In another reproductive toxicity study when dexmedetomidine was administered subcutaneously to pregnant rats at 8 and 32 mcg/kg (representing a dose less than the maximum recommended human intravenous dose based on body surface area comparison) from gestation day 16 through weaning, lower offspring weights were observed. Additionally, when offspring of the 32 mcg/kg group were allowed to mate, elevated fetal and embryocidal toxicity and delayed motor development was observed in second generation offspring.

8.2 Labor and Delivery

The safety of Precedex during labor and delivery has not been studied.

8.3 Nursing Mothers

It is not known whether Precedex is excreted in human milk. Radio-labeled dexmedetomidine administered subcutaneously to lactating female rats was excreted in milk. Because many drugs are excreted in human milk, caution should be exercised when Precedex is administered to a nursing woman.

8.4 Pediatric Use

The efficacy, safety, and pharmacokinetics of Precedex in pediatric patients less than 18 years of age have not been established. Therefore, Precedex should not be used in this population.

8.5 Geriatric Use

Intensive Care Unit Sedation
A total of 729 patients in the clinical studies were 65 years of age and over. A total of 200 patients were 75 years of age and over. In patients greater than 65 years of age, a higher incidence of bradycardia and hypotension was observed following administration of Precedex [see Warnings and Precautions (5.2)].
Therefore a dose reduction may be considered in patients over 65 years of age [see Dosing and Administration (2.2) and Clinical Pharmacology (12.3)].

Procedural Sedation
A total of 131 patients in the clinical studies were 65 years of age and over. A total of 47 patients were 75 years of age and over. Hypotension occurred in a higher incidence in Precedex-treated patients 65 years or older (72%) and 75 years or older (74%) as compared to patients <65 years (47%). A reduced loading dose of 0.5 mcg/kg given over 10 minutes is recommended and a reduction in the maintenance infusion should be considered for patients greater than 65 years of age.

8.6 Hepatic Impairment
Since Precedex clearance decreases with increasing severity of hepatic impairment, dose reduction should be considered in patients with impaired hepatic function [see Dosing and Administration (2.2) and Clinical Pharmacology (12.3)].

9 DRUG ABUSE AND DEPENDENCE

9.1 Controlled Substance
Precedex (dexmedetomidine hydrochloride) is not a controlled substance.

9.2 Dependence
The dependence potential of Precedex has not been studied in humans. However, since studies in rodents and primates have demonstrated that Precedex exhibits pharmacologic actions similar to those of clonidine, it is possible that Precedex may produce a clonidine-like withdrawal syndrome upon abrupt discontinuation [see Warnings and Precautions (5.5)].

10 OVERDOSAGE
The tolerability of Precedex was studied in one study in which healthy subjects were administered doses at and above the recommended dose of 0.2 to 0.7 mcg/kg/hr. The maximum blood concentration achieved in this study was approximately 13 times the upper boundary of the therapeutic range. The most notable effects observed in two subjects who achieved the highest doses were first degree atrioventricular block and second degree heart block. No hemodynamic compromise was noted with the atrioventricular block and the heart block resolved spontaneously within one minute.

Five patients received an overdose of Precedex in the intensive care unit sedation studies. Two of these patients had no symptoms reported; one patient received a 2 mcg/kg loading dose over 10 minutes (twice the recommended loading dose) and one patient received a maintenance infusion of 0.8 mcg/kg/hr. Two other patients who received a 2 mcg/kg loading dose over 10 minutes, experienced bradycardia and/or hypotension. One patient who received a loading bolus dose of undiluted Precedex (19.4 mcg/kg), had cardiac arrest from which he was successfully resuscitated.

11 DESCRIPTION
Precedex (dexmedetomidine hydrochloride) injection is a sterile, nonpyrogenic solution suitable for intravenous infusion following dilution. Dexmedetomidine hydrochloride is the S-enantiomer of medetomidine and is chemically described as (+)-4-(S)-[1-(2,3-dimethylphenyl)ethyl]-1H-imidazole monohydrochloride. Precedex has a molecular weight of 236.7 and the empirical formula is C₁₃H₁₆N₂ · HCl and the structural formula is:

![Structural formula of dexmedetomidine hydrochloride](image)

Dexmedetomidine hydrochloride is a white or almost white powder that is freely soluble in water and has a pKa of 7.1. Its partition coefficient in-octanol: water at pH 7.4 is 2.89. Precedex is supplied as a clear, colorless, isotonic solution with a pH of 4.5 to 7.0. Each mL contains 118 mcg of dexmedetomidine hydrochloride
equivalent to 100 mcg of dexmedetomidine and 9 mg of sodium chloride in water. The solution is preservative-
free and contains no additives or chemical stabilizers.

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action
Precedex is a relatively selective alpha2-adrenergic agonist with sedative properties. Alpha2 selectivity is
observed in animals following slow intravenous infusion of low and medium doses (10-300 mcg/kg). Both
alpha1 and alpha2 activity is observed following slow intravenous infusion of high doses (≥ 1000 mcg/kg) or
with rapid intravenous administration.

12.2 Pharmacodynamics
In a study in healthy volunteers (N=10), respiratory rate and oxygen saturation remained within normal limits
and there was no evidence of respiratory depression when Precedex was administered by intravenous infusion at
doses within the recommended dose range (0.2 — 0.7 mcg/kg/hr).

12.3 Pharmacokinetics
Following intravenous administration, dexmedetomidine exhibits the following pharmacokinetic parameters: a
rapid distribution phase with a distribution half-life (t1/2) of approximately 6 minutes; a terminal elimination
half-life (t1/2) of approximately 2 hours; and steady-state volume of distribution (Vss) of approximately 118
liters. Clearance is estimated to be approximately 39 L/h. The mean body weight associated with this clearance
estimate was 72 kg.

Table 8. Mean ± SD Pharmacokinetic Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>10 min/12 hrs</th>
<th>10 min/24 hrs</th>
<th>10 min/24 hrs</th>
<th>35 min/24 hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precedex Target Plasma Concentration (ng/mL) and Dose (mcg/kg/hr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t1/2*, hour</td>
<td>1.78 ± 0.30</td>
<td>2.22 ± 0.59</td>
<td>2.23 ± 0.21</td>
<td>2.50 ± 0.61</td>
</tr>
<tr>
<td>CL, liter/hour</td>
<td>46.3 ± 8.3</td>
<td>43.1 ± 6.5</td>
<td>35.3 ± 6.8</td>
<td>36.5 ± 7.5</td>
</tr>
<tr>
<td>Vss, liter</td>
<td>88.7 ± 22.9</td>
<td>102.4 ± 20.3</td>
<td>93.6 ± 17.0</td>
<td>99.6 ± 17.8</td>
</tr>
<tr>
<td>Avg Css #, ng/mL</td>
<td>0.27 ± 0.05</td>
<td>0.27 ± 0.05</td>
<td>0.67 ± 0.10</td>
<td>1.37 ± 0.20</td>
</tr>
</tbody>
</table>

* Presented as harmonic mean and pseudo standard deviation.
Mean Css = Average steady-state concentration of Precedex. The mean Css was calculated based on post-
dose sampling from 2.5 to 9 hours samples for 12 hour infusion and post-dose sampling from 2.5 to 18 hours
for 24 hour infusions.
The loading doses for each of the above indicated groups were 0.5, 0.5, 1 and 2.2 mcg/kg, respectively.

Dexmedetomidine pharmacokinetic parameters after Precedex maintenance doses of 0.2 to 1.4 mcg/kg/hr for
>24 hours were similar to the PK parameters after Precedex maintenance dosing for < 24 hours in other studies.
The values for clearance (CL), volume of distribution (V), and t1/2 were 39.4 L/hr, 152 L, and 2.67 hours,
respectively.

Distribution
The steady-state volume of distribution (Vss) of dexmedetomidine was approximately 118 liters.
Dexmedetomidine protein binding was assessed in the plasma of normal healthy male and female subjects. The
average protein binding was 94% and was constant across the different plasma concentrations tested. Protein
binding was similar in males and females. The fraction of Precedex that was bound to plasma proteins was
significantly decreased in subjects with hepatic impairment compared to healthy subjects.
The potential for protein binding displacement of dexmedetomidine by fentanyl, ketorolac, theophylline, digoxin and lidocaine was explored in vitro, and negligible changes in the plasma protein binding of Precedex were observed. The potential for protein binding displacement of phenytoin, warfarin, ibuprofen, propranolol, theophylline and digoxin by Precedex was explored in vitro and none of these compounds appeared to be significantly displaced by Precedex.

Metabolism
Dexmedetomidine undergoes almost complete biotransformation with very little unchanged dexmedetomidine excreted in urine and feces. Biotransformation involves both direct glucuronidation as well as cytochrome P450 mediated metabolism. The major metabolic pathways of dexmedetomidine are: direct N-glucuronidation to inactive metabolites; aliphatic hydroxylation (mediated primarily by CYP2A6) of dexmedetomidine to generate 3-hydroxy-dexmedetomidine, the glucuronide of 3-hydroxy-dexmedetomidine, and 3-carboxy-dexmedetomidine; and N methylation of dexmedetomidineto generate 3-hydroxy N-methyl-dexmedetomidine, 3-carboxy N-methyl-dexmedetomidine, and dexmedetomidine-N-methyl O-glucuronide.

Elimination
The terminal elimination half-life ($t_{1/2}$) of dexmedetomidine is approximately 2 hours and clearance is estimated to be approximately 39 L/h. A mass balance study demonstrated that after nine days an average of 95% of the radioactivity, following intravenous administration of radiolabeled dexmedetomidine, was recovered in the urine and 4% in the feces. No unchanged dexmedetomidine was detected in the urine. Approximately 85% of the radioactivity recovered in the urine was excreted within 24 hours after the infusion. Fractionation of the radioactivity excreted in urine demonstrated that products of N-glucuronidation accounted for approximately 34% of the cumulative urinary excretion. In addition, aliphatic hydroxylation of parent drug to form 3-hydroxy-dexmedetomidine, the glucuronide of 3-hydroxy-dexmedetomidine, and 3-carboxylic acid-dexmedetomidine together represented approximately 14% of the dose in urine. N-methylation of dexmedetomidine to form 3 hydroxy N-methyl dexmedetomidine, 3-carboxy N-methyl dexmedetomidine, and N methyl O glucuronide dexmedetomidine accounted for approximately 18% of the dose in urine. The N Methyl metabolite itself was a minor circulating component and was undetected in urine. Approximately 28% of the urinary metabolites have not been identified.

Gender:
There was no observed difference in Precedex pharmacokinetics due to gender.

Geriatrics:
The pharmacokinetic profile of Precedex was not altered by age. There were no differences in the pharmacokinetics of Precedex in young (18 – 40 years), middle age (41 – 65 years), and elderly (>65 years) subjects.

Pediatrics:
The pharmacokinetic profile of Precedex has not been studied in pediatric patients.

Hepatic Impairment:
In subjects with varying degrees of hepatic impairment (Child-Pugh Class A, B, or C), clearance values for Precedex were lower than in healthy subjects. The mean clearance values for patients with mild, moderate, and severe hepatic impairment were 74%, 64% and 53% of those observed in the normal healthy subjects, respectively. Mean clearances for free drug were 59%, 51% and 32% of those observed in the normal healthy subjects, respectively.

Although Precedex is dosed to effect, it may be necessary to consider dose reduction in subjects with hepatic impairment [see Dosage and Administration (2.2), Warnings and Precautions (5.6)]

Renal Impairment:
Precedex pharmacokinetics (C_{max}, T_{max}, AUC, $t_{1/2}$, CL, and VSS) were not significantly different in patients with severe renal impairment (creatinine clearance: <30 mL/min) compared to healthy subjects.

Drug Interactions:
In vitro studies: In vitro studies in human liver microsomes demonstrated no evidence of cytochrome P450 mediated drug interactions that are likely to be of clinical relevance.
13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Animal carcinogenicity studies have not been performed with dexmedetomidine.

Dexmedetomidine was not mutagenic in vitro, in either the bacterial reverse mutation assay (E. coli and Salmonella typhimurium) or the mammalian cell forward mutation assay (mouse lymphoma). Dexmedetomidine was clastogenic in the in vitro human lymphocyte chromosome aberration test with, but not without, rat S9 metabolic activation. In contrast, dexmedetomidine was not clastogenic in the in vitro human lymphocyte chromosome aberration test with or without human S9 metabolic activation. Although dexmedetomidine was clastogenic in an in vivo mouse micronucleus test in NMRI mice, there was no evidence of clastogenicity in CD-1 mice.

Fertility in male or female rats was not affected after daily subcutaneous injections of dexmedetomidine at doses up to 54 mcg/kg (less than the maximum recommended human intravenous dose on a mcg/m² basis) administered from 10 weeks prior to mating in males, and 3 weeks prior to mating and during mating in females.

13.2 Animal Toxicology and/or Pharmacology

There were no differences in the adrenocorticotropic hormone (ACTH)-stimulated cortisol response in dogs following a single dose of dexmedetomidine compared to saline control. However, after continuous subcutaneous infusions of dexmedetomidine at 3 mcg/kg/hr and 10 mcg/kg/hr for one week in dogs (exposures estimated to be within the clinical range), the ACTH-stimulated cortisol response was diminished by approximately 27% and 40%, respectively, compared to saline-treated control animals indicating a dose-dependent adrenal suppression.

14 CLINICAL STUDIES

The safety and efficacy of Precedex has been evaluated in four randomized, double-blind, placebo-controlled multicenter clinical trials in 1185 patients.

14.1 Intensive Care Unit Sedation

Two randomized, double-blind, parallel-group, placebo-controlled multicenter clinical trials included 754 patients being treated in a surgical intensive care unit. All patients were initially intubated and received mechanical ventilation. These trials evaluated the sedative properties of Precedex by comparing the amount of rescue medication (midazolam in one trial and propofol in the second) required to achieve a specified level of sedation (using the standardized Ramsay sedation scale) between Precedex and placebo from onset of treatment to extubation or to a total treatment duration of 24 hours. The Ramsay Level of Sedation Scale is displayed in Table 6.

<table>
<thead>
<tr>
<th>Clinical Score</th>
<th>Level of Sedation Achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Asleep, no response</td>
</tr>
<tr>
<td>5</td>
<td>Asleep, sluggish response to light glabellar tap or loud auditory stimulus</td>
</tr>
<tr>
<td>4</td>
<td>Asleep, but with brisk response to light glabellar tap or loud auditory stimulus</td>
</tr>
<tr>
<td>3</td>
<td>Patient responds to commands</td>
</tr>
<tr>
<td>2</td>
<td>Patient cooperative, oriented, and tranquil</td>
</tr>
<tr>
<td>1</td>
<td>Patient anxious, agitated, or restless</td>
</tr>
</tbody>
</table>

In the first study, 175 patients were randomized to receive placebo and 178 to receive Precedex by intravenous infusion at a dose of 0.4 mcg/kg/hr (with allowed adjustment between 0.2 and 0.7 mcg/kg/hr) following an initial loading infusion of one mcg/kg intravenous over 10 minutes. The study drug infusion rate was adjusted to maintain a Ramsay sedation score of ≥ 3. Patients were allowed to receive “rescue” midazolam as needed to augment the study drug infusion. In addition, morphine sulfate was administered for pain as needed. The primary outcome measure for this study was the total amount of rescue medication (midazolam) needed to
maintain sedation as specified while intubated. Patients randomized to placebo received significantly more midazolam than patients randomized to Precedex (see Table 8).

A second prospective primary analysis assessed the sedative effects of Precedex by comparing the percentage of patients who achieved a Ramsay sedation score of ≥ 3 during intubation without the use of additional rescue medication. A significantly greater percentage of patients in the Precedex group maintained a Ramsay sedation score of ≥ 3 without receiving any midazolam rescue compared to the placebo group (see Table 8).

Table 10: Midazolam use as rescue medication during intubation (ITT)

<table>
<thead>
<tr>
<th>Study One</th>
<th>Placebo N=175</th>
<th>Precedex N=178</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean total dose (mg) of midazolam</td>
<td>19 mg</td>
<td>5 mg</td>
<td>0.0011*</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>53 mg</td>
<td>19 mg</td>
<td></td>
</tr>
<tr>
<td>Categorized midazolam use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 mg</td>
<td>43 (25%)</td>
<td>108 (61%)</td>
<td><0.001**</td>
</tr>
<tr>
<td>0-4 mg</td>
<td>34 (19%)</td>
<td>36 (20%)</td>
<td></td>
</tr>
<tr>
<td>>4 mg</td>
<td>98 (56%)</td>
<td>34 (19%)</td>
<td></td>
</tr>
</tbody>
</table>

ITT (intent-to-treat) population includes all randomized patients.

*ANOVA model with treatment center. **Chi-square

A prospective secondary analysis assessed the dose of morphine sulfate administered to patients in the Precedex and placebo groups. On average, Precedex-treated patients received less morphine sulfate for pain than placebo-treated patients (0.47 versus 0.83 mg/h). In addition, 44% (79 of 178 patients) of Precedex patients received no morphine sulfate for pain versus 19% (33 of 175 patients) in the placebo group.

In a second study, 198 patients were randomized to receive placebo and 203 to receive Precedex by intravenous infusion at a dose of 0.4 mcg/kg/hr (with allowed adjustment between 0.2 and 0.7 mcg/kg/hr) following an initial loading infusion of one mcg/kg intravenous over 10 minutes. The study drug infusion was adjusted to maintain a Ramsay sedation score of ≥ 3. Patients were allowed to receive “rescue” propofol as needed to augment the study drug infusion. In addition, morphine sulfate was administered as needed for pain. The primary outcome measure for this study was the total amount of rescue medication (propofol) needed to maintain sedation as specified while intubated.

Patients randomized to placebo received significantly more propofol than patients randomized to Precedex (see Table 9).

A significantly greater percentage of patients in the Precedex group compared to the placebo group maintained a Ramsay sedation score of ≥ 3 without receiving any propofol rescue (see Table 9).
Table 11: Propofol use as rescue medication during intubation (ITT)

<table>
<thead>
<tr>
<th>Study Two</th>
<th>Placebo N=198</th>
<th>Precedex N=203</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean total dose (mg) of propofol Standard deviation</td>
<td>513 mg 782 mg</td>
<td>72 mg 249 mg</td>
<td><0.0001*</td>
</tr>
<tr>
<td>Categorized propofol use</td>
<td></td>
<td></td>
<td><0.001**</td>
</tr>
<tr>
<td>0 mg</td>
<td>47 (24%)</td>
<td>122 (60%)</td>
<td></td>
</tr>
<tr>
<td>0-50 mg</td>
<td>30 (15%)</td>
<td>43 (21%)</td>
<td></td>
</tr>
<tr>
<td>>50 mg</td>
<td>121 (61%)</td>
<td>38 (19%)</td>
<td></td>
</tr>
</tbody>
</table>

*ANOVA model with treatment center. **Chi-square

A prospective secondary analysis assessed the dose of morphine sulfate administered to patients in the Precedex and placebo groups. On average, Precedex-treated patients received less morphine sulfate for pain than placebo-treated patients (0.43 versus 0.89 mg/h). In addition, 41% (83 of 203 patients) of Precedex patients received no morphine sulfate for pain versus 15% (30 of 198 patients) in the placebo group.

In a controlled clinical trial, Precedex was compared to midazolam for ICU sedation exceeding 24 hours duration. Precedex was not shown to be superior to midazolam for the primary efficacy endpoint, the percent of time patients were adequately sedated (81% versus 81%). In addition, administration of Precedex for longer than 24 hours was associated with tolerance, tachyphylaxis, and a dose-related increase in adverse events [see Adverse Reactions (6.1)].

14.2 Procedural Sedation

The safety and efficacy of Precedex for sedation of non-intubated patients prior to and/or during surgical and other procedures was evaluated in two randomized, double-blind, placebo-controlled multicenter clinical trials. Study 1 evaluated the sedative properties of Precedex in patients having a variety of elective surgeries/procedures performed under monitored anesthesia care. Study 2 evaluated Precedex in patients undergoing awake fiberoptic intubation prior to a surgical or diagnostic procedure.

In Study 1, the sedative properties of Precedex were evaluated by comparing the percent of patients not requiring rescue midazolam to achieve a specified level of sedation using the standardized Observer’s Assessment of Alertness/Sedation Scale (Table 10).

Table 12 Observer’s Assessment of Alertness/Sedation

<table>
<thead>
<tr>
<th>Assessment Categories</th>
<th>Responsiveness</th>
<th>Speech</th>
<th>Facial Expression</th>
<th>Eyes</th>
<th>Composite Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responds readily to name spoken in normal tone</td>
<td>Normal</td>
<td>Normal</td>
<td>Clear, no ptosis</td>
<td>5 (alert)</td>
<td></td>
</tr>
<tr>
<td>Lethargic response to name spoken in normal tone</td>
<td>Mild slowing or thickening</td>
<td>Mild relaxation</td>
<td>Glazed or mild ptosis (less than half the eye)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Responds only after name is called loudly and/or repeatedly</td>
<td>Slurring or prominent slowing</td>
<td>Marked relaxation (slack jaw)</td>
<td>Glazed and marked ptosis (half the eye or more)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Responds only after mild prodding or shaking</td>
<td>Few recognizable words</td>
<td>--</td>
<td>--</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Does not respond to mild prodding or shaking</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1 (deep sleep)</td>
<td></td>
</tr>
</tbody>
</table>
Patients were randomized to receive a loading infusion of either Precedex 1 mcg/kg, Precedex 0.5 mcg/kg, or placebo (normal saline) given over 10 minutes and followed by a maintenance infusion started at 0.6 mcg/kg/hr. The maintenance infusion of study drug could be titrated from 0.2 mcg/kg/hr to 1 mcg/kg/hr to achieve the targeted sedation score (Observer’s Assessment of Alertness/Sedation Scale ≤ 4). Patients were allowed to receive rescue midazolam as needed to achieve and/or maintain an Observer’s Assessment of Alertness/Sedation Scale ≤ 4. After achieving the desired level of sedation, a local or regional anesthetic block was performed. Demographic characteristics were similar between the Precedex and comparator groups. Efficacy results showed that Precedex was more effective than the comparator group when used to sedate non-intubated patients requiring monitored anesthesia care during surgical and other procedures. (see Table 10)

In Study 2, the sedative properties of Precedex were evaluated by comparing the percent of patients requiring rescue midazolam to achieve or maintain a specified level of sedation using the Ramsay Sedation Scale score ≥ 2 (Table 6). Patients were randomized to receive a loading infusion of Precedex 1 mcg/kg or placebo (normal saline) given over 10 minutes and followed by a fixed maintenance infusion of 0.7 mcg/kg/hr. After achieving the desired level of sedation, topicalization of the airway occurred. Patients were allowed to receive rescue midazolam as needed to achieve and/or maintain an Ramsay Sedation Scale > 2. Demographic characteristics were similar between the Precedex and comparator groups. For efficacy results see Table 10.

Table 13. Key Efficacy Results of Procedural Sedation Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Loading Infusion Treatment Arm</th>
<th>Number of Patients Enrolled</th>
<th>% Not Requiring midazolam rescue</th>
<th>Confidence interval on the difference vs. placebo</th>
<th>Mean (SD) Total Dose (mg) of Rescue midazolam Required</th>
<th>Confidence intervals of the mean rescue dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study 1</td>
<td>Precedex 0.5 mcg/kg</td>
<td>134</td>
<td>40</td>
<td>37 (27,48)</td>
<td>1.4 (1.7)</td>
<td>-2.7 (-3.4, -2.0)</td>
</tr>
<tr>
<td></td>
<td>Precedex 1 mcg/kg</td>
<td>129</td>
<td>54</td>
<td>51 (40,62)</td>
<td>0.9 (1.5)</td>
<td>-3.1 (-3.8, -2.5)</td>
</tr>
<tr>
<td></td>
<td>placebo</td>
<td>63</td>
<td>3</td>
<td>–</td>
<td>4.1 (3.0)</td>
<td>–</td>
</tr>
<tr>
<td>Study 2</td>
<td>Precedex 1 mcg/kg</td>
<td>55</td>
<td>53</td>
<td>39 (20,57)</td>
<td>1.1 (1.5)</td>
<td>-1.8 (-2.7, -0.9)</td>
</tr>
<tr>
<td></td>
<td>placebo</td>
<td>50</td>
<td>14</td>
<td>–</td>
<td>2.9 (3.0)</td>
<td>–</td>
</tr>
</tbody>
</table>

*Based on ITT population defined as all randomized and treated patients.

*bNormal approximation to the binomial with continuity correction.

16 HOW SUPPLIED/STORAGE AND HANDLING

Precedex (dexmedetomidine hydrochloride) injection, 200 mcg/2 mL (100 mcg/mL) is available in 2 mL clear glass vial. Vials are intended for single use only.

Store at controlled room temperature, 25°C (77°F) with excursions allowed from 15 to 30°C (59 to 86°F). [See USP.]

17 PATIENT COUNSELING INFORMATION

Precedex is indicated for short-term intravenous sedation. Dosage must be individualized and titrated to the desired clinical effect. Blood pressure, heart rate and oxygen levels will be monitored both continuously during the infusion of Precedex and as clinically appropriate after discontinuation.

- When Precedex is infused for more than 6 hours, patients should be informed to report nervousness, agitation, and headaches that may occur for up to 48 hours.
- Additionally, patients should be informed to report symptoms that may occur within 48 hours after the administration of Precedex such as: weakness,
confusion, excessive sweating, weight loss, abdominal pain, salt cravings, diarrhea, constipation, dizziness or light-headedness.

Manufactured and Distributed by:
Hospira, Inc.
Lake Forest, IL 60045 USA
Licensed from:
Orion Corporation
Espoo, Finland

©Hospira, Inc. 2010
Printed in USA

HOSPIRA, INC., LAKE FOREST, IL 60045 USA
CENTER FOR DRUG EVALUATION AND RESEARCH

APPLICATION NUMBER:
21-038/S017

OTHER REVIEW(S)
REGULATORY PROJECT MANAGER LABELING REVIEW

Division of Anesthesia and Analgesia Products

Application Number: 21038/S017

Name of Drug: Precedex (dexmedetomidine hydrochloride) Injection

Applicant: Hospira

Material Reviewed:

Submission Date(s): 1/22/10, 8/26/10, 9/20/10

Receipt Date(s): 1/25/10, 8/26/10, 9/21/10

Submission Date of Structure Product Labeling (SPL): 9/20/10

Type of Labeling Reviewed: WORD

Background and Summary

The following supplement was submitted subsequent to the Safety information from has been added, as well as information from post-marketing commitments 3, 6, and 7. The Package Insert from Supplement 017 was compared to Supplement 010 which was approved on October 17, 2008.

Review

Please note that the sponsor’s proposed omissions are indicated by strikeovers, inclusions by underlined text.

10 Page(s) of Draft Labeling have been Withheld in Full as b4 (CCI/TS) immediately following this page.
There were no differences in the adrenocorticotropic hormone (ACTH)-stimulated cortisol response in dogs following a single dose of dexmedetomidine compared to saline control. However, after continuous subcutaneous infusions of dexmedetomidine at 3 mcg/kg/hr and 10 mcg/kg/hr for one week in dogs (exposures estimated to be within the clinical range), the ACTH-stimulated cortisol response was diminished by approximately 27% and 40%, respectively, compared to saline-treated control animals indicating a dose-dependent adrenal suppression.

Dexmedetomidine had no effect on adrenocorticotropic hormone-stimulated cortisol release in dogs after a single dose; however, after the subcutaneous infusion of Precedex for one week, the cortisol response to adrenocorticotropic hormone was diminished by approximately 40%, indicating adrenal insufficiency.

14.1 Intensive Care Unit Sedation
Table 6: Ramsay Level of Sedation Scale
Table 7: Midazolam use as rescue medication during intubation (ITT)
Table 8: Propofol use as rescue medication during intubation (ITT)

In a controlled clinical trial, Precedex was compared to midazolam for ICU sedation exceeding 24 hours duration. Precedex was not shown to be superior to midazolam for the primary efficacy endpoint, the percent of time patients were adequately sedated (81% versus 81%). In addition, administration of Precedex for longer than 24 hours was associated with tolerance, tachyphylaxis, and a dose-related increase in adverse events [see Adverse Reactions (6.1)].

16 HOW SUPPLIED/STORAGE AND HANDLING

The remaining sections of the package insert have not changed.

Recommendations

This supplement is recommended for approval.

Allison Meyer
Sr. Regulatory Health Project Manager

Supervisory Comment/Concurrence:
CSO LABELING REVIEW OF PLR FORMAT
This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

/s/

ALLISON MEYER
09/23/2010

PARINDA JANI
09/24/2010

DIONNE L PRICE
09/28/2010

SRIKANTH C NALLANI
09/28/2010

RAMESH RAGHAVACHARI
09/28/2010

ADAM M WASSERMAN
09/28/2010

ARTHUR F SIMONE
09/29/2010
CENTER FOR DRUG EVALUATION AND RESEARCH

APPLICATION NUMBER:
21-038/S017

ADMINISTRATIVE and CORRESPONDENCE DOCUMENTS
DEPARTMENT OF HEALTH AND HUMAN SERVICES

Food and Drug Administration
Silver Spring, MD 20993

NDA 021038/S-017

Hospira, Inc.
275 N. Field Drive
Dept. 0389, Building H2-2
Lake Forest, IL 60045-5046

Attention: Pamela J. Riggio, M.S.
Regulatory Project Manager

Dear Ms. Riggio:

We have received your supplemental new drug application submitted under section 505(b) of the Federal Food, Drug, and Cosmetic Act for the following:

Name of Drug Product: Dexmedetomidine Hydrochloride Injection (Precedex)
NDA Number: 021038
Supplement number: 017
Date of supplement: January 22, 2010
Date of receipt: January 25, 2010

This supplemental application proposes revisions to the adverse reaction section of the package insert.

Unless we notify you within 60 days of the receipt date that the application is not sufficiently complete to permit a substantive review, we will file the application on March 26, 2010 in accordance with 21 CFR 314.101(a).

Please cite the application number listed above at the top of the first page of all submissions to this application. Send all submissions, electronic or paper, including those sent by overnight mail or courier, to the following address:

Food and Drug Administration
Center for Drug Evaluation and Research
Division of Anesthesia and Analgesia Products
5901-B Ammendale Road
Beltsville, MD 20705-1266
If you have questions, call me at (301) 796-1258.

Sincerely,

{See appended electronic signature page}

Allison Meyer
Senior Regulatory Health Project Manager
Division of Anesthesia and Analgesia Products
Office of Drug Evaluation II
Center for Drug Evaluation and Research
Application Type/Number	Submission Type/Number	Submitter Name	Product Name
NDA-21038 | SUPPL-001 | HOSPIRA INC | PRECEDEX

This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

/s/

ALLISON MEYER
04/01/2010