CENTER FOR DRUG EVALUATION AND RESEARCH

APPLICATION NUMBER:

202324Orig1s000

PHARMACOLOGY REVIEW(S)

MEMORANDUM

INLYTA (axitinib)

Date: January 23, 2012
To: File for NDA 202324
From: John K. Leighton, PhD, DABT Acting Director, Division of Hematology Oncology Toxicology Office of Hematology and Oncology Products

I have examined pharmacology/toxicology supporting review of Drs. Goheer, Putman and Aziz and labeling and secondary memorandum provided by Dr. Palmby. I concur with Dr Palmby's conclusion that INLYTA may be approved and that no additional nonclinical studies are needed for the proposed indication.

This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

/s/

JOHN K LEIGHTON 01/23/2012

DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION CENTER FOR DRUG EVALUATION AND RESEARCH

PHARMACOLOGY/TOXICOLOGY NDA REVIEW AND EVALUATION

	NDA 202324 1
	April 13, 2011
CDER stamp date:	
Product:	INLYTA (axitinib)
Indication:	Advanced renal cell carcinoma (RCC) after
	failure of one prior systemic therapy
Applicant:	
	10646 Science Center Drive
	San Diego
	CA 92121
Review Division:	<u> </u>
	(Division of Oncology Products 1)
Reviewer:	M. Anwar Goheer, Ph.D.
	Alexander H. Putman, Ph.D.
	Robeena Aziz, MPH, Ph.D.
0	Todd Palmby, Ph.D.
Division Director:	John Leighton, Ph.D.
	(Robert Justice, M.D., M.S.)
Project Manager:	Lisa Skarupa

Disclaimer

Except as specifically identified, all data and information discussed below and necessary for approval of NDA 202-324 are owned by Pfizer or are data for which Pfizer has obtained a written right of reference.

Any information or data necessary for approval of NDA 202-324 that Pfizer does not own or have a written right to reference constitutes one of the following: (1) published literature, or (2) a prior FDA finding of safety or effectiveness for a listed drug, as described in the drug's approved labeling. Any data or information described or referenced below from a previously approved application that Pfizer does not own (or from FDA reviews or summaries of a previously approved approved application) is for descriptive purposes only and is not relied upon for approval of NDA 202-324.

1.1.3 Labeling Review

All pertinent information from nonclinical studies conducted with axitinib that is included in the package insert can be found in the original Pharmacology/Toxicology review for NDA 202324. This labeling review includes calculations of exposure (AUC) ratios in animals as compared to humans at the recommended starting dose of 5 mg orally twice daily. The following sections of the package insert for axitinib were modified from the version proposed by the Applicant with input from the Pharmacology/Toxicology team and represent the FDA recommendations:

Under HIGHLIGHTS OF PRESCRIBING INFORMATION:

------INDICATIONS AND USAGE-------INLYTA is a kinase inhibitor indicated for the treatment of advanced renal cell carcinoma after failure of one prior systemic therapy. (1)

------WARNINGS AND PRECAUTIONS------

• INLYTA can cause fetal harm when administered to a pregnant woman based on its mechanism of action. Women of childbearing potential should be advised of the potential hazard to the fetus and to avoid becoming pregnant while receiving INLYTA. (5.12, 8.1)

Under FULL PRESCRIBING INFORMATION:

Under FULL PRESCRIBING INFORMATION Recommended Labeling	Comments/Justification
5 WARNINGS AND PRECAUTIONS	
5.12 Pregnancy	
INLYTA can cause fetal harm when administered to a pregnant woman based on its mechanism of action. There are no adequate and well-controlled studies in pregnant women using INLYTA. In developmental toxicity studies in mice, axitinib was teratogenic, embryotoxic and fetotoxic at maternal exposures that were lower than human exposures at the recommended clinical dose.	
Women of childbearing potential should be advised to avoid becoming pregnant while receiving INLYTA. If this drug is used during pregnancy, or if a patient becomes pregnant while receiving this drug, the patient should be apprised of the potential hazard to the fetus [see Use in Specific Populations (8.1)].	
8 USE IN SPECIFIC POPULATIONS	In the fertility and early embryonic
8.1 Pregnancy Pregnancy Category D [see Warnings and Precautions (5.12)].	development study (#06GR118), the AUC ₀₋₂₄ in female mice at 15 mg/kg/dose oral axitinib twice daily was 2850 ng*hr/mL, which is approximately 10 times the AUC in humans at the
There are no adequate and well-controlled studies with INLYTA in pregnant women. INLYTA can cause fetal harm when administered to a pregnant woman based on its mechanism of action. Axitinib was teratogenic, embryotoxic and fetotoxic in mice at exposures lower than human exposures at the recommended starting dose. If this drug is used during pregnancy, or if the patient becomes pregnant while receiving this drug, the patient should be apprised of the potential hazard to the fetus.	recommended starting dose of 265 ng*hr/mL. In the embryo-fetal developmental toxicity study (#06GR117), female mice receiving 1.5 mg/kg/dose twice daily had an AUC ₀₋₂₄ of 142 ng*hr/mL, which is approximately 0.5 times the human AUC of 265 ng*hr/mL. Mice in this study had an AUC ₀₋₂₄ of 39.5 ng*hr/mL at a dose of 0.5 mg/kg/dose twice daily, which is approximately 0.15 times the human AUC of 265 ng*hr/mL.
Oral axitinib administered twice daily to female mice prior to mating and through the first week of pregnancy caused an increase in post-implantation loss at all doses tested	

(≥ 15 mg/kg/dose, approximately 10 times the systemic exposure (AUC) in patients at the recommended starting dose). In an embryo-fetal developmental toxicity study, pregnant mice received oral doses of 0.15, 0.5 and 1.5 mg/kg/dose axitinib twice daily during the period of organogenesis. Embryo-fetal toxicities observed in the absence of maternal toxicity included malformation (cleft palate) at 1.5 mg/kg/dose (approximately 0.5 times the AUC in patients at the recommended starting dose) and variation in skeletal ossification at ≥ 0.5 mg/kg/dose (approximately 0.15 times the AUC in patients at the recommended starting dose).	
8.3 Nursing Mothers	
It is not known whether axitinib is excreted in human milk. Because many drugs are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from INLYTA, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.	
8.4 Pediatric Use	In the 28-day repeat-dose toxicology study in mice (#6750-
The safety and efficacy of INLYTA in pediatric patients have not been studied. Toxicities in bone and teeth were observed in immature mice and dogs administered oral axitinib twice daily for 1 month or longer. Effects in bone consisted of thickened growth plates in mice and dogs at \geq 15 mg/kg/dose (approximately 6 and 15 times, respectively, the systemic exposure (AUC) in patients at the recommended starting dose). Abnormalities in growing incisor teeth (including dental caries, malocclusions and broken and/or missing teeth) were observed in mice administered oral axitinib twice daily at \geq 5 mg/kg/dose (approximately 1.5 times the AUC in patients at the	145) the mean AUC ₀₋₂₄ at the dose of 15 mg/kg/dose oral axitinib twice daily was 1600 ng*hr/mL, which is approximately 6 times the AUC in humans at the recommended starting dose of 265 ng*hr/mL. In the 28-day repeat-dose toxicology study in dogs (#6750-143) the mean AUC ₀₋₂₄ at the dose of 15 mg/kg/dose twice daily was 4150 ng*hr/mL, which is approximately 15 times the AUC in humans at the recommended starting dose of 265 ng*hr/mL. In the 28-day repeat-dose toxicology study in mice (#6750-145) the mean AUC ₀₋₂₄ at the dose of 5 mg/kg/dose twice daily was 370 ng*hr/mL, which is approximately 1.5

recommended starting dose). Other toxicities of potential concern to pediatric patients have not been evaluated in juvenile animals.	times the AUC in humans at the recommended starting dose of 265 ng*hr/mL.
11 DESCRIPTION	
INLYTA (axitinib) is a kinase inhibitor. Axitinib has the chemical name <i>N</i> -methyl- 2-[3-((<i>E</i>)-2-pyridin-2-yl-vinyl)-1 <i>H</i> -indazol- 6-ylsulfanyl]-benzamide. The molecular formula is $C_{22}H_{18}N_4OS$ and the molecular weight is 386.47 Daltons. The chemical structure is:	
Axitinib is a white to light-yellow powder with a pKa of 4.8. The solubility of axitinib in aqueous media over the range pH 1.1 to pH 7.8 is in excess of 0.2 μ g/mL. The partition coefficient (n-octanol/water) is 3.5.	
INLYTA is supplied as red, film-coated tablets containing either 1 mg or 5 mg of axitinib together with microcrystalline cellulose, lactose monohydrate, croscarmellose sodium, magnesium stearate, and Opadry II red 32K15441 as inactive ingredients. The Opadry II red 32K15441 film coating contains lactose monohydrate, HPMC 2910/Hypromellose 15cP, titanium dioxide, triacetin (glycerol triacetate), and red iron oxide.	
12 CLINICAL PHARMACOLOGY	

12.1 Mechanism of Action

Axitinib has been shown to inhibit receptor tyrosine kinases including vascular endothelial growth factor receptors (VEGFR)-1, VEGFR-2, and VEGFR-3 at therapeutic plasma concentrations. These receptors are implicated in pathologic angiogenesis, tumor growth, and cancer progression. VEGF-mediated endothelial cell proliferation and survival were inhibited by axitinib *in vitro* and in mouse models. Axitinib was shown to inhibit tumor growth and phosphorylation of VEGFR-2 in tumor xenograft mouse models.

Axitinib was reported as genotoxic in the 13 in vivo mouse bone marrow NONCLINICAL TOXICOLOGY micronucleus assay rather than clastogenic, because results indicated an 13.1 Carcinogenesis, Mutagenesis, aneugenic mechanism lead to the Impairment of Fertility increase in micronucleated polychromatic erythrocytes. Carcinogenicity studies have not been conducted with axitinib. In the 26-week repeat-dose toxicology study in mice (#6750-148) and dogs Axitinib was not mutagenic in an *in vitro* (#6750-150), effects on the testes and bacterial reverse mutation (Ames) assay epididymis were observed in males at and was not clastogenic in the in vitro \geq 15 mg/kg/dose and \geq 1.5 mg/kg/dose, human lymphocyte chromosome aberration respectively, oral axitinib twice daily. assay. Axitinib was genotoxic in the in vivo The AUC₀₋₂₄ in males at 15 mg/kg/dose mouse bone marrow micronucleus assav. twice daily was 1885 ng*hr/mL in mice and at 1.5 mg/kg/dose twice daily was INLYTA has the potential to impair 12.3 ng*hr/mL in dogs, which is reproductive function and fertility in humans. approximately 7 and 0.1 times, In repeat-dose toxicology studies, findings in respectively, the AUC in humans at the the male reproductive tract were observed in recommended starting dose of 265 the testes/epididymis (decreased organ ng*hr/mL. weight, atrophy or degeneration, decreased numbers of germinal cells, hypospermia or Findings in the female reproductive tract abnormal sperm forms, reduced sperm were observed at $\geq 5 \text{ mg/kg/dose}$ twice density and count) at ≥15 mg/kg/dose daily in mice and dogs. In the 26-week administered orally twice daily in mice repeat-dose toxicology study in mice (approximately 7 times the systemic (#6750-148), the AUC₀₋₂₄ was 457.04 exposure (AUC) in patients at the ng*hr/mL in females at 5 mg/kg/dose recommended starting dose) and ≥ 1.5 twice daily, which is approximately 1.5 mg/kg/dose administered orally twice daily in times the AUC in humans (265 ng*hr/mL) dogs (approximately 0.1 times the AUC in at the recommended starting dose. In patients at the recommended starting dose). the 28-day repeat dose toxicology study Findings in the female reproductive tract in in dogs (#6750-143), the AUC₀₋₂₄ was 70 mice and dogs included signs of delayed ng*hr/mL in females at 5 mg/kg/dose sexual maturity, reduced or absent corpora twice daily, which is approximately 0.3 lutea, decreased uterine weights and uterine times the AUC in humans (265 ng*hr/mL) atrophy at \geq 5 mg/kg/dose (approximately at the recommended starting dose. 1.5 or 0.3 times the AUC in patients at the recommended starting dose compared to In the fertility and early embryonic mice and dogs, respectively).

In a fertility study in mice, axitinib did not affect mating or fertility rate when administered orally twice daily to males at any dose tested up to 50 mg/kg/dose following at least 70 days of administration In the fertility and early embryonic development study in mice (#06GR118), the AUC₀₋₂₄ in males at 50 mg/kg/dose twice daily, the highest dose tested, was 15200 ng*hr/mL, which is approximately 57 times the AUC (265 ng*hr/mL) in humans at the recommended starting

(approximately 57 times the AUC in patients at the recommended starting dose). In female mice, reduced fertility and embryonic viability were observed at all doses tested (≥ 15 mg/kg/dose administered orally twice daily) following at least 15 days of treatment with axitinib (approximately 10 times the AUC in patients at the recommended starting dose).	dose. The AUC ₀₋₂₄ in females at 15 mg/kg/dose twice daily in this study was 2850 ng*hr/mL, which is approximately 10 times the AUC (265 ng*hr/mL) in humans at the recommended starting dose.
---	---

This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

/s/

M A GOHEER 01/23/2012

TODD R PALMBY 01/23/2012

MEMORANDUM

Date:	January 6, 2012
From:	Todd R. Palmby, Ph.D.
	Acting Supervisory Pharmacologist
	Division of Hematology, Oncology Toxicology
To:	File for NDA 202324 axitinib
Re:	Approvability for Pharmacology and Toxicology
Indication:	Treatment of patients with advanced renal cell carcinoma after
	failure of one prior systemic therapy

Non-clinical pharmacology and toxicology studies to support axitinib NDA 202324 for the treatment of renal cell carcinoma after failure of one prior systemic therapy were reviewed by Anwar Goheer, Ph.D, Alexander H. Putman, Ph.D., and Robeena Aziz, MPH, Ph.D. Information included studies conducted with orally administered axitinib investigating the drug's pharmacology, toxicokinetics and ADME, safety pharmacology, general toxicology (mouse and dog), and genetic toxicity (*in vivo* and *in vitro*). Reproductive and developmental toxicology studies were conducted in mice to assess the effects of axitinib on fertility and embryo-fetal development. The studies cited in the review consist primarily of original research studies conducted by the applicant.

Pharmacology studies submitted to the NDA support that axitinib is a kinase inhibitor which binds to and inhibits the activity of multiple receptor tyrosine kinases including vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2 and VEGFR-3.

The most common adverse reactions observed with axitinib in patients (\geq 20% according to Highlights section of the label) were diarrhea, hypertension, fatigue, decreased appetite, nausea, dysphonia, palmar-plantar erythrodysesthesia (hand-foot) syndrome, weight decrease, vomiting, asthenia, and constipation. Safety pharmacology studies conducted with axitinib in mice, rats and dogs identified the potential for increased systolic blood pressure and decreased heart rate. In repeat-dose studies, toxicities in bone and teeth, spleen and thymus (in mice), and elevated cholesterol and triglycerides (in dogs) were not observed clinically, but may be relevant to patient risk under certain circumstances. Toxicities were observed throughout the gastrointestinal tract in mice and dogs.

Axitinib was not mutagenic in an *in vitro* bacterial reverse mutation (Ames) assay and was not clastogenic in the *in vitro* human lymphocyte chromosome aberration assay. However, axitinib was genotoxic in the *in vivo* mouse bone marrow micronucleus assay. Kinetochore staining results from the *in vivo* micronucleus assay indicated that the increases in micronucleated polychromatic erythrocytes were due to an aneugenic mechanism. Axitinib may impair reproductive function and fertility in males and females. In repeat-dose toxicology studies in mice and dogs, findings in the male reproductive tract were observed in the testes/epididymis at exposures approximately equivalent to and lower than patient exposure, respectively. Findings in the female reproductive tract in mice and dogs included signs of delayed sexual maturity, reduced or absent corpora lutea, decreased uterine weights and uterine atrophy at exposures approximately equivalent to exposure in patients.

In a fertility study in mice, axitinib did not affect mating or fertility rate when administered to males at any dose tested. Reduced fertility and embryonic viability were observed in female mice at all doses tested. Doses in this study resulted in systemic exposures greater than exposures in patients.

Axitinib is embryotoxic, fetotoxic, and teratogenic to mice, at exposures lower than human exposures at the recommended human starting dose. During a fertility and early embryonic development study, axitinib administered to female mice prior to mating and through the first week of pregnancy caused an increase in post-implantation loss. In an embryo-fetal developmental toxicity study, pregnant mice received oral axitinib twice daily during the period of organogenesis. Embryo-fetal toxicities observed in the absence of maternal toxicity included malformations (cleft palate) and variations in skeletal ossification (interfrontal ossification sites, incomplete ossification of the supraoccipitals). A no effect level for adverse embryo-fetal effects was not identified in this study. The potential benefit of axitinib in pregnant women in this patient population may outweigh the potential risk to the developing fetus. Therefore, Pregnancy Category D is recommended for the use of axitinib in this patient population.

Recommendations: I concur with Drs. Goheer's, Putman's and Aziz's conclusion that pharmacology and toxicology data support the approval of NDA 202324 for axitinib. There are no outstanding nonclinical issues that would preclude the approval of axitinib for the proposed indication.

This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

/s/

TODD R PALMBY 01/06/2012

DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION CENTER FOR DRUG EVALUATION AND RESEARCH

PHARMACOLOGY/TOXICOLOGY NDA REVIEW AND EVALUATION

Application number: Supporting document/s:	NDA 202324 1
	April 13, 2011
CDER stamp date:	•
Product:	INLYTA (axitinib)
Indication:	Advanced renal cell carcinoma (RCC) after
	failure of one prior systemic therapy
Applicant:	
	10646 Science Center Drive
	San Diego
	CA 92121
Review Division:	Division of Hematology Oncology Toxicology
	(Division of Oncology Products 1)
Reviewer:	M. Anwar Goheer, Ph.D.
	Alexander H. Putman, Ph.D.
	Robeena Aziz, MPH, Ph.D.
Acting Supervisor/Team Leader:	Todd Palmby, Ph.D.
Division Director:	John Leighton, Ph.D.
	(Robert Justice, M.D., M.S.)
Project Manager:	Lisa Skarupa

Disclaimer

Except as specifically identified, all data and information discussed below and necessary for approval of NDA 202-324 are owned by Pfizer or are data for which Pfizer has obtained a written right of reference.

Any information or data necessary for approval of NDA 202-324 that Pfizer does not own or have a written right to reference constitutes one of the following: (1) published literature, or (2) a prior FDA finding of safety or effectiveness for a listed drug, as described in the drug's approved labeling. Any data or information described or referenced below from a previously approved application that Pfizer does not own (or from FDA reviews or summaries of a previously approved application) is for descriptive purposes only and is not relied upon for approval of NDA 202-324.

TABLE OF CONTENTS

1	EXECUTIVE SUMMARY	.4
1.1 1.2 1.3	2 BRIEF DISCUSSION OF NONCLINICAL FINDINGS	.4
2	DRUG INFORMATION	. 6
2.1 2.2 2.3 2.4 2.5 2.6 2.7	 Relevant IND/s, NDA/s, and DMF/s Drug Formulation Comments on Novel Excipients Comments on Impurities/Degradants of Concern Proposed Clinical Population and Dosing Regimen 	.7 .7 .7 .7 .8
3	STUDIES SUBMITTED	. 8
3.1 3.2 3.3	2 STUDIES NOT REVIEWED	11
4	PHARMACOLOGY	15
4.1 4.2 4.3	2 SECONDARY PHARMACOLOGY	45
5	PHARMACOKINETICS/ADME/TOXICOKINETICS	64
6	GENERAL TOXICOLOGY	65
6.1 6.2		
7	GENETIC TOXICOLOGY	85
7.1 7.2 7.3	2 IN VITRO ASSAYS IN MAMMALIAN CELLS	85
8	CARCINOGENICITY:	86
9	REPRODUCTIVE AND DEVELOPMENTAL TOXICOLOGY	86
9.1 9.2		
10	SPECIAL TOXICOLOGY STUDIES1	02
11	INTEGRATED SUMMARY AND SAFETY EVALUATION1	09

12	APPENDIX/ATTACHMENTS	11	5
----	----------------------	----	---

1 Executive Summary

1.1 Introduction

NDA 202324 was submitted to the U.S. Food and Drug Administration as a full New Drug Application (NDA) for axitinib for the indication of the treatment of patients with advanced renal cell carcinoma (RCC). Axitinib is a new molecular entity kinase inhibitor, which inhibits multiple kinases including vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, and VEGFR-3. The proposed clinical starting dose of 5 mg is administered orally as a tablet twice daily. Nonclinical pharmacology, pharmacokinetic and toxicology studies have been submitted to support the approval of axitinib for the proposed indication.

1.2 Brief Discussion of Nonclinical Findings

Nonclinical primary pharmacology studies evaluated the ability of axitinib to inhibit the activity and function of Vascular Endothelial Growth Factor Receptors (VEGFRs), in vitro and in vivo, thereby inhibiting angiogenesis and tumor progression in experimental cancer models in mice. Utilizing biochemical and cell-based assays, axitinib was shown to inhibit receptor tyrosine kinases including VEGFR-1, VEGFR-2, and VEGFR-3 at therapeutic plasma concentrations. Additional in vitro studies demonstrated that axitinib was able to inhibit VEGF-stimulated endothelial cell survival, vascular tube formation, adhesion, migration, and induce endothelial cell apoptosis. Axitinib-induced alterations in endothelial cell function were demonstrated in vivo. Specifically, axitinib was shown to decrease vascular permeability and density in tumor xenografts in mice. Axitinib was shown to inhibit the phosphorylation of VEGFR-2 and PDGFR-β in tumor xenografts and produce tumor growth inhibition in experimental models of cancer in mice. Based on primary pharmacology data submitted with this NDA and on other FDA approved products which inhibit tyrosine kinases, the Established Pharmacologic Class of "kinase inhibitor" was determined to be both clinically meaningful and scientifically valid for axitinib.

In safety pharmacology studies, axitinib administered orally to mice and rats did not demonstrate signs of neurotoxicity or adverse effects on the respiratory system. Axitinib increased gastric emptying (stomach) in rats. There were no significant effects of axitinib on the *hERG* channel *in vitro* or on cardiac function (e.g., PR, QRS, QT, QTcB, QTcF) in dogs. Cardiovascular effects of axitinib may include increased systolic blood pressure and a concomitant decrease in heart rate, as demonstrated in mice, rats and dogs. Hypertension was observed in clinical trials conducted with axitinib.

Toxicities in bone and teeth were observed in immature mice and in dogs administered oral axitinib twice daily for 1 month or longer. Effects in bone consisted of thickened growth plates in mice and dogs at \geq 15 mg/kg/dose. Abnormalities in growing incisor teeth (including dental caries and broken and/or missing teeth) were observed in mice

administered oral axitinib twice daily for 26-weeks at \geq 5 mg/kg/dose. These toxicities are consistent with the activity of axitinib for inhibiting VEGFR, and should be considered when axitinib is administered to pediatric patients.

Other toxicities observed in mice and dogs administered axitinib included effects on the gastrointestinal tract with microscopic findings of inflammation, hyperplasia, necrosis, erosion and ulcers. These findings correlate to the gastrointestinal perforations observed clinically. In addition, elevated cholesterol and triglyceride levels in dogs suggest axitinib may have effects on lipid metabolism. In mice, lymphoid depletion was present in the spleen and thymus, but there were no significant correlating hematological findings.

The overall exposure (C_{max} and AUC) after repeated dosing in mice and dogs did not show significant and consistent accumulation. The increase in AUC value was slightly greater than dose proportional. This may suggest nonlinear toxicokinetics due to a combination of potential inhibition or saturation of elimination pathways.

In repeat-dose toxicology studies, findings in the male reproductive tract were observed in the testes/epididymis (decreased organ weight, atrophy or degeneration, decreased numbers of germinal cells, hypospermia or abnormal sperm forms, reduced sperm density and count) at \geq 15 mg/kg/dose twice daily in mice and \geq 1.5 mg/kg/dose twice daily in dogs. These doses correlate to systemic exposures (AUC) approximately 7 and 0.1 times, respectively, that in patients at the recommended starting dose in humans. Findings in the female reproductive tract in mice and dogs included signs of delayed sexual maturity, reduced or absent corpora lutea, decreased uterine weights and uterine atrophy at \geq 5 mg/kg/day. This dose correlates to a systemic exposure (AUC) approximately 1.5 or 0.3 times, respectively, the exposure in patients at the recommended starting dose.

In a fertility study in mice, axitinib did not affect mating or fertility rate when administered to males at any dose tested up to 50 mg/kg/dose (approximately 57 times the AUC in patients at the recommended starting dose) following at least 70 days of administration. Reduced fertility and embryonic viability were observed in female mice at all doses tested (≥15 mg/kg/dose) following at least 15 days of treatment with axitinib. This dose correlates to a systemic exposure (AUC) approximately 10 times that in patients at the recommended starting dose. Data from repeat-dose toxicology studies and this fertility study indicate axitinib has the potential to impair reproductive function and fertility in humans.

In reproduction and developmental toxicity studies, axitinib was teratogenic, embryotoxic and fetotoxic at maternal exposures that were lower than human exposures at the recommended starting dose. During a fertility and early embryonic development study, axitinib administered to female mice prior to mating and through the first week of pregnancy caused an increase in post-implantation loss. In an embryofetal developmental toxicity study, pregnant mice received oral axitinib twice daily during the period of organogenesis. Embryo-fetal toxicities observed in the absence of maternal toxicity included malformations (cleft palate) and variations in skeletal ossification (interfrontal ossification sites, incomplete ossification of the supraoccipitals).

See separate review

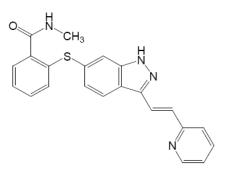
Standard genetic toxicology studies were conducted with axitinib. Axitinib was not mutagenic in an *in vitro* bacterial reverse mutation (Ames) assay and was not clastogenic in the *in vitro* human lymphocyte chromosome aberration assay. However, axitinib was genotoxic in the *in vivo* mouse bone marrow micronucleus assay.

1.3 **Recommendations**

1.3.1 Approvability

Approvable

There are no non-clinical findings that would preclude the approval of axitinib for the proposed indication.


- 1.1.2 Additional Non Clinical Recommendations None
- 1.1.3 Labeling

2 Drug Information

- 2.1DrugInlyta2.1.1CAS Registry Number (Optional)319460-85-0
- 2.1.2 Generic Name axitinib
- **2.1.3 Code Name** AG-013736
- 2.1.4 Chemical NameN-Methyl-2-[3-((E)-2-pyridin-2-yl-vinyl)-1H-indazol
6-ylsulfanyl]-benzamide
- 2.1.5 Molecular Formula/Molecular Weight

C₂₂H₁₈N₄OS / 386.47 Daltons

2.1.6 Structure

2.1.7 Pharmacologic class

Kinase inhibitor

(b) (4)

2.2 Relevant IND/s, NDA/s, and DMF/s

IND 63,662

2.3 Drug Formulation

Film coated immediate release tablet for oral administration

Composition of Axitinib 1 mg and 5 mg tablets	Composition	of Axitinib 1	mg and 5 r	ng tablets
---	-------------	---------------	------------	------------

Component	Function	Reference to Standard	1 mg Theoretical Unit and/or Formula	5 mg Theoretical Unit and/or Formula
Axitinib	Active	Pfizer	1.000 mg^1	5.000 mg^1
Microcrystalline Cellulose ²	(b) (4)	NF, Ph. Eur.,JP		(b) (4)
Lactose Monohydrate		NF, Ph. Eur., JP		
Croscarmellose Sodium		NF, Ph. Eur.,JP		
Magnesium Stearate		NF, Ph. Eur., JP		
(b) (4	1)			
Film Coat Opadry® II Red 32K15441 Total Finished Tablet		Pharmaceutical ³		
Note: NF=National Formula	ry; USP=the United Sta	tes Pharmacopeia;	Ph.Eur. =the Europea	an Pharmacopeia;
IP=Iananese Pharmaconeia				(h) (d

(excerpted from the Applicant's submission)

Name of Ingredients	Reference to Standard	Unit Formula	(mg/tablet)
		1 mg	5 mg
Hypromellose 2910 (b) (4)	USP, Ph. Eur, JP		(b) (4)
Titanium dioxide	USP, FCC, Ph. Eur, JP		
Lactose Monohydrate	NF, Ph. Eur, JP		
Triacetin (Glycerol Triacetate)	USP, FCC, JP, (Ph. Eur)		
Iron Oxide Red	NF, JPE		

Composition of Opadry® 33 red (32K15441)

(excerpted from the Applicant's submission)

2.4 Comments on Novel Excipients None

2.5 Comments on Impurities/Degradants of Concern

Axitinib drug substance contains the impurity ^{(b) (4)} which was demonstrated to be mutagenic in an *in vitro* Ames test. The proposed specification for controlling ^{(b) (4)} in the axitinib drug substance is ^{(b) (4)}. At the level of ^(b) (4) would be administered orally to a patient receiving the maximum recommended daily dose of axitinib of 20 mg/day. This is equivalent to the toxicologic threshold of concern (TTC) for genotoxic impurities.² The proposed specification for ^{(b) (4)} in axitinib drug substance is acceptable.

¹ Japan Chemical Industry Ecology-Toxicology & Information Center (JETOC), Japan; Mutagenicity Test Data of Existing Chemical Substances Based on the Toxicity Investigation System of the Industrial Safety and

Health Law, Supplement 3, 2005. Test summary result accessed via ToxNet: http://toxnet.nlm.nih.gov/ ² United States Food and Drug Administration: Center for Drug Evaluation and Research, 2008.

The axitinib drug substance also contains ^{(b)(4)} as an impurity in the drug substance. The applicant proposed a specification for ^{(b)(4)} in the axitinib drug substance of ^{(b)(4)}. Patients receiving the maximum recommended dose of axitinib, 20 mg/day, would be administered ^{(b)(4)}

This is well under what would be considered a reasonable permitted daily exposure (PDE) ^{(b)(4)}, so the proposed specification of ^{(b)(4)} in axitinib drug substance is acceptable.

2.6 Proposed Clinical Population and Dosing Regimen

The starting dose is 5 mg orally twice daily for the treatment of patients with advanced renal cell carcinoma.

2.7 Regulatory Background

Original IND (63,662) was submitted to the FDA on November 9, 2001.

3 Studies Submitted

3.1 Studies Reviewed

Studies were reviewed by Anwar Goheer, Ph.D. unless otherwise specified within each section.

PHARMACOLOGY

Primary Pharmacodynamics

Studies reviewed by Alexander H. Putman, Ph.D.

- 1. Biochemical Measurements of Receptor Tyrosine Kinase (Rtk) Inhibitory Potencies and Selectivity of AG-013736 (Axitinib). Study # AG-013736-NonclinPharm-001
- 2. Cellular Target Potency, Selectivity, and Functional Activity of AG-013736 (Axitinib). Study # AG-013736-NonclinPharm-002
- 3. AG-013736 *In Vivo* Target Modulation, Induction of Vascular Phenotypical Changes, Efficacious Plasma Concentrations, and Pharmacokinetics-Pharmacodynamics Correlation. Study # AG-013736-NonclinPharm-003
- 4. *In Vivo* Anti-Tumor Efficacy, Anti-Angiogenesis, and Biomarkers of AG-013736 (Axitinib) In Rodent Models of Cancer. Study # AG-013736-NonclinPharm-004

Secondary Pharmacodynamics

Guidance for Industry: Genotoxic and Carcinogenic Impurities in Drug Substances and Products: Recommended Approaches.

Study reviewed by Robeena Aziz, MPH, Ph.D.

1. Profiling Screen Data Report: To evaluate, in Radioligand Binding, and Tissue assays, the activity of compound AGP-58 (PT# 1010519).

Safety Pharmacology

Studies reviewed by Robeena Aziz, MPH, Ph.D.

Neurological effects:

1. Irwin Dose-Range in Mice Including Body Temperature and Locomotor Assessment. Study # VFF/488.

Pulmonary effects:

1. Evaluation of Respiratory Parameters in the Conscious Rat Using Whole Body Bias Flow Plethysmography. Study # VFF/491.

Gastrointestinal effects:

- 1. Charcoal Propulsion Test in Mice Following Oral Administration. Study # VFF/489.
- 2. Assessment of Effects on Gastric Emptying in Rats Following Oral Administration (Phenol Red Method). Study # VFF/490.

Cardiovascular effects:

- 1. Assessment of the Potential Effect of AG-013736 on *hERG* Potassium Current Stably Expressed in HEK293 Cells. Study # AG013736HERG.
- Ki Determination of AG-028458 (sulfoxide metabolite of AG-013736) in a Dofetilide Fluorescence Polarization Binding Assay. Study # DOF_GBLFP1_E-02102006.
- 3. Assessment of the Effect of PF-04621675 on hERG Potassium Current Stably Expressed in HEK293 Cells. Study # SP107.
- 4. Evaluation of Cardiovascular Effects of Oral AG-013736 in Mice. Study # SP4002.
- 5. Evaluation of Cardiovascular Effects of Oral AG-013736 in Mice. Study # SP4002-2.
- 6. Evaluation of Cardiovascular Effects of Oral AG-013736 in Mice. Study # SP0304.
- 7. Telemetric Evaluation of Cardiovascular Effects in the Conscious Dog. Study # VFF/492
- 8. Assessment of the Effects of AG-013736 on Blood Pressure and Heart Rate in Conscious, Telemetered Beagle Dogs. Study # SPT04-029.

GENERAL TOXICOLOGY

Single-dose toxicity

1. Single Dose Oral Gavage Toxicity and Toxicokinetic Study with AG-013736 in Dogs with a 14-Day Observation Period. Study # 6348-505.

Repeat-dose toxicity

- 1. 26-Week Oral Gavage Chronic Toxicity and Toxicokinetic Study with AG13736 in Mice with a 13-Week Interim Sacrifice and 4-Week Recovery Period. Study # 6750-148.
- 2. 26-Week Oral Gavage Chronic Toxicity and Toxicokinetic Study with AG13736 in Dogs with a 4-Week Recovery Period. Study # 6750-150.
- 3. 9-Month Oral Gavage Toxicity and Toxicokinetic Study of AG-013736 in Dogs with 8-Week Recovery. Study # 6348-470.

REPRODUCTIVE AND DEVELOPMENTAL TOXICOLOGY

Fertility and early embryonic development

1. Combined Oral (Gavage) Fertility and Developmental Toxicity Study in Mice Evaluating Twice Daily Administration of AG-013736. Study # LIA00238.

Embryofetal development

- 1. Oral (Gavage) Dosage-Range Finding Embryo-Fetal Development Toxicity Study in Mice Evaluating Twice Daily Administration of AG-013736. Study # LIA00236.
- 2. Oral (Gavage) Developmental Toxicity Study in Mice Evaluating Twice Daily Administration of AG-013736. Study # LIA00237.
- 3. Oral Dose Range-Finding Study of AG-013736 in Pregnant Rabbits. Study # 06GR178.

SPECIAL TOXICOLOGY

Local tolerance

1. Local Vascular Tissue Irritation Study of AG-013736 in Female New Zealand White Rabbits. Study # 05VEG009.

Other toxicology studies

1. Determination of the Phototoxic Potential of AG-013736 in The 3T3 Neutral Red Uptake (NRU) Phototoxicity Assay. Study # 05228.

- 2. Single Dose Oral (Gavage) Phototoxicity Study of AG-013736 in Hairless Mice. Study # RSA00087.
- 3. AG-013736: Report for the In Vitro Compatibility of the Parenteral Formulation with Human Blood. Study # SA1000.

3.2 Studies Not Reviewed

PHARMACOKINETICS/TOXICOKINETICS

- 1. Method Validation for AG-013736 in Dog Plasma Using LC/MS/MS. Study # 6750-300.
- 2. Method Validation for AG-013736 (Lower LLOQ) in Dog Plasma Using LC/MS/MS. Study # 6750-302.
- 3. Analytical Validation Report for a Liquid Chromatography / Tandem Mass Spectrometry (LC/MS/MS) Method for the Quantification of AG013736 in Mouse Plasma. Study # AG013736-PDM-006.
- 4. LC/MS/MS Analysis of AG13736 in Dog Plasma To Support ^{(b) (4)} Study Number 6750-143. Study # 197-09-12141.
- 5. To Investigate the Freezer Stability of AG13736 in Human Plasma at -70 and -20° C. Study # AG13736-PDM-025.
- 6. To Investigate the Light Stability of AG13736 in Human Plasma. Study # AG13736-PDM-026
- 7. To Investigate the Light Stability of AG13736 in Human Blood. Study # AG13736-PDM-027.
- 8. Analytical Re-Validation Report for a Liquid Chromatography / Tandem Mass Spectrometry (LCIMS/MS) Method for the Quantification of AG013736 in Dog Plasma. Study # 197-06-12140.
- 9. Validation of a High Performance Liquid Chromatographic-Mass Spectrometric Method for the Analysis of AG013736 and PF-3482595 in K3 EDTA Mouse Plasma. Study # LIA00260LX-06-988.
- 10. Long-Term Matrix Stability Assessment of AG-013736 and PF-3482595 in K3 EDTA Rabbit Plasma. Study # LIA00243SX-07-503
- 11. Validation of a High Performance Liquid Chromatographic-Mass Spectrometric Method for the Analysis of AG013736 and PF-3482595 in K3 EDTA Rabbit Plasma. Study # LIA00242LX-06-1118.
- 12. Long-Term Stability Assessment of AG-013736 and PF-3482595 in K3 EDTA Rabbit Plasma. Study # LIA00326SX-07-1205.
- 13. Validation of a High Performance Liquid Chromatographic-Mass Spectrometric Method for the Analysis of AG013736 and PF-3482595 in K3 EDTA Rabbit Plasma. Study # LIA00307LX-08-077.
- 14. Validation of a High Performance Liquid Chromatographic-Mass Spectrometric Method for the Analysis of AG013736 and PF-3482595 in K3 EDTA Dog Plasma. Study # RSA00018LX-05-220.

Absorption

- 1. Pharmacokinetics and Bioavailability of Ag13736 in the Rat and Monkey. Study # AG013736-PDM-001.
- 2. Pharmacokinetics and Bioavailability of A613736 in Mice. Study # AG013736-PDM-012
- 3. Pharmacokinetics and Bioavailability of AG13736 in the Dog. Study # AG13736-PDM-013
- 4. Permeability of AG-013736 in the Caco-2 Cell Culture Model. Study # AG13736-PDM-021.
- Pharmacokinetics from Oral Administration of AG13736 to Wistar Rats
 (^{b)(4)} Study No. VFFI526). Study # AG13736-PDM-022.
- 6. Pharmacokinetics and Bioavailability of AGO13736 Clinical Tablets and Suspension in the Male Beagle Dog. Study # AG13736-PDM-033.
- 7. Pharmacokinetic Analysis of AG-013736 and AG-028458 in Plasma From A Study Conducted in Beagle Dogs Administered AG-013736 (^{b)(4)} Study Number SPT04-029). Study # AG13736-PDM-047.
- 8. Pharmacokinetics of AG-013736 in Mice Following an Oral Bid Dose Administration. Study # AG13736_15Jul10_132224.
- 9. Toxicokinetics of AG-013736 in Mice Following Oral Administration. Study # AG-013736-SP-4009-2BA.

Distribution

- 1. In Vitro Binding of AG-013736 in Human Albumin and Human α 1-Acid Glycoprotein. Study # 8216659.
- 2. (¹⁴C)-AG13736: Tissue Distribution, Blood and Plasma Pharmacokinetics and Excretion of Radioactivity Following a Single Oral Administration (50 mg/kg) To the Mouse. Study # AG013736-PDM-004.
- 3. Determination of Protein Binding and Blood to Plasma Concentration Ratio for AG13736 in Mouse, Dog, and Human. Study # AG013736-PDM-017.
- 4. Protein Binding of AG-013736 in Rat Plasma. Study # AG013736/22Jan09/171550.

Metabolism

- 1. *In Vitro* Metabolism of AG13736 in Human and Animal Liver Microsomes and Hepatocytes. Study # AG013736-PDM-003.
- 2. The Identification of Human Cytochrome P450 Isoforms Involved in the Metabolism of AG13736. Study # AG013736-PDM-019.
- 3. Profiling and Structure Elucidation of Metabolites of AG-013736 in Beagle Dogs Following a Single Oral Dose of [¹⁴C]AG-013736. Study # AG013736-PDM-037.
- 4. Profiling and Structure Elucidation of Metabolites of AG-013736 in Mice Following a Single Oral Dose of [¹⁴C]AG-013736. Study # AG013736-PDM-038.
- 5. Profiling and Identification of Metabolites of AGO13736 in Healthy Male Volunteers Following a Single Oral Dose of [¹⁴ C] AG-013736. Study # AG013736-PDM-043.

- 6. Identification of UDP-Glucuronosyl Transferases (UGT) Responsible for the Glucuronidation of AG-013736 in Humans. Study # AG013736-PDM-048.
- 7. AG-013736 Incubations with Aroclor-Induced Rat S-9 Fraction. Study # AG013736-PDM-052.
- 8. Non-involvement of Human Liver FMOs and Human Liver Sulfoxide Reductase in Metabolism of AG-013736 *in Vitro*. Study # AG013736-PDM-060.
- 9. Definitive Phenotyping and Kinetic Characterization of AG-013736 Metabolism. Study # AG013736/16Jan09/162654.
- 10. Identification of AG-013736 Metabolites Generated *In Vitro* By Recombinant CYP3A4, CYP3A5, CYP1A2, and CYP2C19. Study # AG013736/20Mar09/181146.

Excretion

- 1. Excretion of AG13736 Following A Single Oral Dose of [¹⁴C]-AG13736 to Male CD-1 Mice. Study # AG013736-PDM-029.
- 2. Excretion of AG13736 Following A Single Oral Dose of [¹⁴C]-AG13736 to Beagle Dogs. Study # AG013736-PDM-036.

Pharmacokinetic drug Interactions

- 1. Effects of AG-013736 on CYP450 Enzyme Regulation in Primary Cultures of Human Hepatocytes. Study # RR764-05388.
- 2. Evaluation of Inhibition of The Catalytic Activity of cDNA-expressed Human Uridine 5'-Diphosphoglucuronosyl Transferase (UGT) 1A1 by The Test Substance, AG-013736. Study # 301040127.
- 3. Evaluation of AG13736 as an Inhibitor of Human Cytochrome P450. Study # AG013736-PDM-020.
- 4. Evaluation of the CYP Inhibition Characteristics of AG-013736 Towards CYP1A2 and of AG-013887 Towards CYP1A2, CYP2C8 and CYP3A4. Study # AG013736-PDM-039.
- 5. Drug-Drug Interaction Risk Assessment for Ag-013736 As A Perpetrator Using Simcyp. Study # AG-013736/05Jun09/161413.
- 6. Simulation of Intestinal Concentrations of Axitinib Using Gastroplus. Study # AG-013736/09Apr09/154709.
- 7. Permeability and Transport Evaluations of AG-013736. Study # AG-013736/10Dec08/111529.
- 8. Simulation of the Effects of A CYP3A Inhibitor and Inducer on the Pharmacokinetic of Axitinib (AG-013736) Using Simcyp®. Study # AG-013736/19Jun09/190355.
- 9. The *In Vitro* Study of P-Glycoprotein Inhibition by AG-013736 (Axitinib) In Caco-2 Cells. Study # AG-013736/21Jan09/055543.

Other Pharmacokinetic Studies

- 1. Determination of the Human Plasma Compatibility of the AG-013736 Clinical Intravenous Formulation. Study # AG-013736-PDM-049.
- 2. Pharmacokinetics of AG-01373 (b)(4) in Dogs. Study # AG-

013736-PDM-050.

3.3 Previous Reviews Referenced

See attachment 1 for reviews

PHARMACOKINETICS/TOXICOKINETICS

1. Determination of plasma levels in rats following oral administration (study # VFF/526).

GENERAL TOXICOLOGY

Single-dose toxicity

1. Acute oral toxicity study in mice with AG013736 (^{b) (4)} study # 22337-0-800). ^{(b) (4)} unaudited draft report. Vol. 01, page 238.

Repeat-dose toxicity

^{(b) (4)} study # 6750-144). 1. 14-Day gavage toxicity study with AG013736 in mice (^{(b) (4)} audited draft report. Vol. 03, page 001. ^{(b) (4)} study # 6750-145). 2. 28-Day gavage toxicity study with AG013736 in mice (^{(b) (4)} audited draft report. Vol. 04, page 115. ^{(b) (4)} study # 6750-142). 3. 14-Day gavage toxicity study with AG013736 in dogs (^{(b) (4)} unaudited draft report. Vol. 05, page 264. ^{(b) (4)} study # 6750-143). 28-Day gavage toxicity study with AG013736 in dogs (4. ^{(b) (4)} audited draft report. Vol. 06, page 107.

GENETIC TOXICOLOGY

- 1. Microbial Reverse Mutation Assays. Study # 01-2191-02.
- 2. In Vitro Cytogenetic Assays. Study # 01-2191-03.
- 3. Mouse Micronucleus Assay. Study # 01-2191-01.

4 Pharmacology

4.1 **Primary Pharmacology**

Studies in this section were reviewed by Alexander H. Putman, Ph.D.

Study Title: AG-013736-NonclinPharm-001: Biochemical Measurements of Receptor Tyrosine Kinase (RTK) Inhibitory Potencies and Selectivity of AG-013736

AG-013736 was evaluated for its inhibitory activity against its intended target kinases, VEGFRs, and other kinases in the Type III, IV, and V receptor tyrosine kinase family. As shown in the summary table of results below, AG-013736 is an inhibitor of VEGFR-1 (FIt-1), various forms of the kinase VEGFR-2 (FLVK), and PDGFR- β . AG-013736 was more potent against the non-phosphorylated form of VEGFR kinases compared to the phosphorylated form.

Kinase	Ki (nM)	% Inhibition (axitinib concentration)	Experimental Conditions	
VEGFR-2-FLVK	1.10	76 (0.05µM)	10 nM recomb catalytic domain, 40 mM Mg ²⁺ , 10 mg/mL PGT, 8 mM ATP (for Ki) or 3 mM ATP (for % Inhition)	
Phospho-VEGFR- 2 -FLVK	7.20	43 (0.05µM)	40 nM recomb enzyme, 8mM ATP, 20 mM Mg ²⁺ , 5.1 mg/mL PGT	
VEGFR-2-Kin	0.740	73 (0.05µM)	10 nM recomb intracellular domain, 8 mM ATP, 40 mM Mg ²⁺ , 10 mg/mL Activation loop peptide	
Phospho-VEGFR- 2 -Kin	21.7	24 (0.05µM)	40 nM recomb catalytic domain, 1 mM ATP, 40 mM Mg ²⁺ , 10 mg/mL PGT	
VEGFR-2/FLK-1	ND	81 (0.05µM)	27.5 nM recomb catalytic domain, 3 mM ATP, 60 mM Mg ²⁺ , 2 nM Mn ²⁺ , 20 mg/mL PGT	
Phospho-VEGFR- 2/ FLK-1	ND	40 (0.05µM)	25 nM recomb catalytic domain, 1 mM ATP, 20 mM Mg ²⁺ , 5.1 mg/mL PGT	
VEGFR-1/Flt-1	2.75	75 (0.05µM)	40 nM recomb catalytic domain, 3 mM ATP, 40 mM Mg ²⁺ , 2 mM Mn ²⁺ , 20 mg/mL PGT	
PDGFR-β	1.27	82 (0.05µM)	76 nM recomb catalytic domain 558-1090aa, GST fusion, 2 mM ATP, 60 mM Mg ²⁺ , 2.5 mg/mL PGT	
CSF-1R	28.1	20 (0.05µM)	10 nM recomb catalytic domain, GST fusion, 2 mM ATP, 15 mM Mg ²⁺ , 1 mM Met2 peptide	
FGFR-1	47.6	75 (1µM)	124 nM recomb catalytic domain, 3 mM ATP, 60 mM Mg ²⁺ , 15 mg/mL PGT	
Phospho-FGFR-1	56.7	75 (1µM)	25 nM recomb catalytic domain, 1 mM ATP, 20 mM Mg ²⁺ , 5.1 mg/mL PGT	

Enzyme Inhibitory Activities of AG-013736 against Type III -V Family Kinases

All tests were conducted at Pfizer La Jolla (PGRD). The tests were performed in the presence of 50 nM recombinant enzymes; the data were fitted with tight-binding kinetic equations. ATP: Adenosine 5'-Triphosphate; CSF-1R: Colony scatter factor receptor-1; FGFR-1 kinase: human recombinant FGF receptor-1 kinase domain; FLVK: fibroblast growth factor (FGF)-like VEGFR-2 kinase; K_i : inhibitory constant; Met2: Receptor for hepatocyte growth factor; PGT: poly(Glu₄Tyr); PDGFR- β : GST fusion protein containing the amino acid residues between 558-1090 of PDGFR- β ; Phospho-FGFR-1: phosphorylated human recombinant FGF receptor-1 kinase domain; Phospho-VEGFR-2/FLK-1: phosphorylated mouse VEGFR-2 kinase domain; phospho-VEGFR-2-FLVK: phosphorylated FGF-like VEGFR-2 kinase; phospho-VEGFR-2-K_{in}: phosphorylated intracellular domain of VEGFR2; LJ: La Jolla.

(table excerpted from Applicant's package)

AG-013736 was also evaluated for its inhibitory activity against a variety of other kinases using panels that represent a cross-section of the approximately 500 known kinases. Results from the in-house (Pfizer-RTC, Cambridge, MA and former Agouron Pharmaceuticals/Warner-Lambert, La Jolla, CA) and external vendor

kinase screening are

summarized in the following two figures, respectively. At the 1 μ M concentration, AG-013736 only inhibited 10 non-PDGFR family kinases by more than 50%; Aurora-A (Aurora-2), Abl, Arg (murine), AMPK, AxI, MST2, MAPKAP-K1a, TRK-A, MAP4K4, and MARK1.

Summary of Kinase Selectivity of AG-013736 Measured by Pfizer

Other Kinases Ki (nM)		%Inhibition (1 μM AG- 013736)	Site of Assay	Experimental Conditions		
Abl	ND	99.1	RTC /Pfizer	Recomb enzyme, Km-level of ATP		
AKT1	ND	-4.05	RTC /Pfizer	Recomb enzyme,, Km-level of ATP		
Aurora-A	1.95 (IC50)	93.2	RTC /Pfizer	Recomb enzyme, Km-level of ATP		
BTK	ND	0	LJ/Pfizer	250 nM recomb catalytic domain, 3 μM ATP, 60 mM Mg ²⁺ , 20 mM PGT		
BTK	ND	-13.5	RTC /Pfizer	Recomb enzyme, K _m -level of ATP		
CDK1/CyclinB	ND	0	LJ/Pfizer	370 pM recomb enzyme, 25 µM ATP		
CDK2/CyclinA	ND	2	LJ/Pfizer	150 nM recomb enzyme, 250 μM ATP		
CDK2/CyclinA	ND	-6.73	RTC /Pfizer	Recomb enzyme, K _m -level of ATP		
CDK4/CyclinD3	ND	7	LJ/Pfizer	50 nM recomb enzyme, 250 µM ATP		
CDK6/cyclinD3	ND	0.65	RTC /Pfizer	Recomb enzyme, K _m -level of ATP		
CHK1	ND	0	LJ/Pfizer	10 nM CHK1-KH289 kinase domain, 150 μM ATP, 135 μM Syntide2		
CHK1	ND	1.32	RTC /Pfizer	Recomb enzyme, K _m -level of ATP		
CHK2	ND	2.43	RTC /Pfizer	Recomb enzyme, K _m -level of ATP		
CK2	ND	-15.5	RTC /Pfizer	Recomb enzyme, K _m -level of ATP		
СКІб	ND	16.6	RTC /Pfizer	Recomb enzyme, K _m -level of ATP		
CLK1	ND	-6.48	RTC /Pfizer	Recomb enzyme, K _m -level of ATP		
				11nM recomb catalytic domain, 2 mM ATP,		
cSRC	ND	3	LJ/Pfizer	20 mM Mg ²⁺ , 10 mM PGT		
ECK	ND	0.955	RTC /Pfizer	Recomb enzyme, K _m -level of ATP		
EGFR	ND	14.9	RTC /Pfizer	Recomb enzyme, K _m -level of ATP		
FAK	ND	12	LJ/Pfizer	100 nM recomb catalytic domain 409, 0.2 mM ATP, 40 mM Mg ²⁺ , 1mM FAKtide		
FGFR-1	ND	89.1	RTC /Pfizer	Recomb enzyme, K _m -level of ATP		
GSK3β	ND	-7.86	RTC /Pfizer	Recomb enzyme, K _m -level of ATP		
HGFR-P	2080	11	LJ/Pfizer	25 nM recomb catalytic domain, 75 μM ATP, 500 μM Met2 peptide		
ΙΚΚβ	ND	0.353	RTC /Pfizer	Recomb enzyme, K _m -level of ATP		
IKK _i	ND	6.53	RTC /Pfizer	Recomb enzyme, K _m -level of ATP		
INSR	ND	-3.89	RTC /Pfizer	Recomb enzyme, K_m -level of ATP		
IRK-P	ND	6	LJ/Pfizer	25 nM recomb catalytic domain, 2 mM ATP, 40 mM Mg ²⁺ , 15 mM PGT		
JAK3	ND	1.07	RTC /Pfizer	Recomb enzyme, K _m -level of ATP		
LCK	ND	7.01	RTC /Pfizer	Recomb enzyme, K _m -level of ATP		
LCK_P	ND	9	LJ/Pfizer	113 nM recomb catalytic domain, 1 mM ATP, 40 mM Mg ²⁺ , 25 mM PGT		
MAP3K9	ND	27.6	RTC /Pfizer	Recomb enzyme, K _m -level of ATP		
MAP4K4	ND	51.9	RTC /Pfizer	Recomb enzyme, K_m -level of ATP		
MAPK1/ERK2	ND	13.2	RTC /Pfizer	Recomb enzyme, K_m -level of ATP		
MAPKAP-K2	ND	-7.52	RTC /Pfizer	Recomb enzyme, K _m -level of ATP		
MARK1	ND	50.4	RTC /Pfizer	Recomb enzyme, K_m -level of ATP		
MASK	ND	13.3	RTC /Pfizer	Recomb enzyme, K _m -level of ATP		
MET	ND	21.6	RTC /Pfizer	Recomb enzyme, K _m -level of ATP		
MST2	ND	31.3	RTC /Pfizer	Recomb enzyme, K _m -level of ATP		
MYLK2	ND	-15	RTC /Pfizer	Recomb enzyme, K _m -level of ATP		
NEK2	ND	-6.45	RTC /Pfizer	Recomb enzyme, K _m -level of ATP		
PAK4	ND	6.93	LJ/Pfizer	25 nM recomb catalytic domain, 40 μM ATP, 10 mM Mg ²⁺ , 400 μM Peptide7		
PAK4	ND	8.25	RTC /Pfizer	Recomb enzyme, K _m -level of ATP		
				100 nM recomb catalytic domain S474A mutant,		
PAK4_S474A	ND	14.5	LJ/Pfizer	$555 \ \mu\text{M}$ ATP, 10 mM Mg ²⁺ , 500 μM Peptide7		

Other Kinases	K _i (nM)	%Inhibition (1 μM AG- 013736)	Site of Assay	Experimental Conditions	
PDK-1	ND	14.3	RTC /Pfizer	Recomb enzyme, K _m -level of ATP	
PDK1	ND	-5.94	RTC /Pfizer	Recomb enzyme, K _m -level of ATP	
PIM2	ND	5.03	RTC /Pfizer	Recomb enzyme, K _m -level of ATP	
PIM2	ND	9.89	RTC /Pfizer	Recomb enzyme, K _m -level of ATP	
РКА	ND	7.5	LJ/Pfizer	4 nM bovine heart, 100 μM ATP, 200 μM Kemptide peptide	
РКА	ND	3.7	RTC /Pfizer	Recomb enzyme, K _m -level of ATP	
РКСа	ND	10.8	LJ/Pfizer	2.4 nM recomb full length enzyme, 100 μM ATP, 200 μM Selectide peptide	
РКСβІІ	ND	1.69	RTC /Pfizer	Recomb enzyme, K _m -level of ATP	
ΡΚϹζ	ND	6.69	RTC /Pfizer	Recomb enzyme, K _m -level of ATP	
PLK	ND	0	LJ/Pfizer	10 nM PLK(37-336), 25 µM ATP	
РҮК2-Р	ND	0	LJ/Pfizer	40 nM recomb enzyme, 1 mM ATP, 40 mM Mg ²⁺ , 20 mM PGT	
РҮК2-Р	ND	2	LJ/Pfizer	40 nM recomb enzyme, 1 mM ATP, 40 mM Mg ²⁺ , 20 mM PGT	
ROCK1	ND	1.08	RTC /Pfizer	Recomb enzyme, K _m -level of ATP	
S6K T389E D3E	ND	10.7	RTC /Pfizer	Recomb enzyme, K _m -level of ATP	
SAPK2A/p38	ND	-0.223	RTC /Pfizer	Recomb enzyme, K _m -level of ATP	
SGK	ND	-0.32	RTC /Pfizer	Recomb enzyme, K _m -level of ATP	
SYK	ND	10.5	RTC /Pfizer	Recomb enzyme, K _m -level of ATP	
TAOK3	ND	7.3	RTC /Pfizer	Recomb enzyme, K _m -level of ATP	
TIE2-P	ND	45	LJ/Pfizer	18.2nM recomb catalytic domain, 0.1 mM ATP, 40 mM Mg ²⁺ , 250 mM Tietide	
TRK-A	ND	56.9	RTC /Pfizer	Recomb enzyme, K _m -level of ATP	

^aAll kinases were of human origin.

(table excerpted from Applicant's package)

concorning					
Enzyme	Source	% Inhibition (1 μM AG-013736)	Enzyme	Source	% Inhibition @ 1 μM
AMPK (r)	(b) (4)	84	MKK1 (rb)	(b) (4)	28
Arg (m)		94	MKK4 (m)		-2
Aurora-A		101	MKK6		14
Axl		76	MKK7ß		-5
Bmx		18	MSK1		23
CDK2/cyclin A		18	MST2	le l	72
CHK1		13	NEK2		27
CK1		16	NEK6	Ĩ	4
CK2		19	p70 S6K		24
CSK		41	PAK2		11
DYRK1a		20	PDGFR-α		101
EGFR		7	PDK1		37
EphB2		-2	PHK		1
FGFR-3		90	PKA		10
Flt-3		39	ΡΚΒδ ΡΗ		-2
GSK3β		0	PKCa		9
IGF-1R		27	PRAK		38
IKKß		8	ROCK-II		19
IR		5	SAPK2a/p38		21
JNK/SAPK1c		11	SAPK2b/p38ß2		2
MAPK2/ERK2 (m)		2	SAPK3/p38y		12
MAPKAP-K1a		59	SAPK4/p38∂		-1
MAPKAP-K2		6	SGK		20
			ZAP-70 (rb)		1

Summary of Kinase Selectivity AG-013736 Measured by External Vendor Kinase Screening

^aAll kinases were of human origin except (m) - mouse, (r) - rat, (rb) - rabbit. Note: Data can be found in Pfizer global database and in the local database "Kinase Selectivity 13736_9-28-

2006.xls." FLVK: fibroblast growth factor (FGF)-like VEGFR-2 kinase; Phospho-FLVK: phosphorylated FGF-like Lck: lymphocyte kinase; c-Src: Sarcoma kinase; FAK: focal adhesion kinase; Phospho-Pyk2: proline-rich tyrosine kinase 2; Phospho-IRK: insulin receptor kinase; BTK: Bruton's tyrosine kinase; CDK4: cyclin-dependent kinase 4; CDK2: cyclin-dependent kinase 2, CDK1: cyclin-dependent kinase 1, PKA: protein kinase A, PKC: protein kinase C, PLK: Polo-like kinase; Chk1: checkpoint kinase 1; Phospho-cMet: HGFR, hepatocyte growth factor receptor; EphB2: epherin B2 receptor; IGF-1R: insulin growth factor receptor-1.

(table excerpted from Applicant's package)

Study Title: AG-013736-NonclinPharm-002: Cellular Target Potency, Selectivity, and Functional Activity of AG-013736 (Axitinib)

To further characterize the activity of AG-013736 against a variety of cellular targets, including the Type III, IV, and V receptor tyrosine kinase family proteins (VEGFR-1, -2, and -3, PDGFR-q and - β , KIT, FGFR-1, FIt-3, and CSF-1R), three types of cellular assays were utilized. The first was an ELISA-based VEGFR-2 phosphorylation assay in transfected porcine aorta endothelial (PAE) cells, in the presence of 0.1% FBS and a low level of bovine serum albumin (BSA, 0.045%). The second was an immunoprecipitation and Western blot-based (IP/IB) assay using human umbilical vein endothelial cells (HUVEC) in the presence of 1% FBS + 2.3% BSA. The third, a VEGF-mediated cell survival assay in HUVEC in the presence of 1% FBS + 2.3% BSA, was based on the necessity of VEGF and bFGF as survival factors for endothelial cells.

(b) (4)

Key findings from cell-based assays and western-blot based assays are summarized in the tables below, respectively. Overall, the results from these studies suggest that AG-013736 inhibits the activity of VEGFR-1, -2, and -3 (in the sub-nanomolar range) and PDGFR and KIT (in the nanomolar range). Specifically, in the cell, AG-013736 inhibited VEGF-mediated autophosphorylation of VEGFR-1, 2 and 3, with IC50s of 0.09-0.12 nM, 0.2±0.06 nM, and 0.1-0.29 nM, respectively. AG-013736 had weaker inhibitory activity against PDGFR- α , PDGFR- β , and KIT, with IC50s of 5.0±1.0 nM, 1.6±0.4 nM, and 1.7±0.6 nM, respectively. AG-013736 was not a potent inhibitor of any other RTKs tested, including CSF-1R, FIt-3, FGFR-1, RET, EGFR, and cMet. Furthermore, in the VEGF-mediated cell survival assay, AG-013736 inhibited VEGF-mediated HUVEC survival with an IC50 of 0.24±0.09 nM and demonstrated approximately 1000-fold greater selectivity for VEGFR-2 versus FGFR-1.

Assay	Cell Line	Stimulant	IC ₅₀ (nM)	IC ₅₀ (ng/mL)
Receptor Phosphory	vlation Assays			
VEGFR-2	VEGFR-2/PAE	VEGF-A	0.20 ± 0.06	0.08 ± 0.02
VEGFR-1	HUVEC	VEGF-A	0.09 - 0.12	0.03 - 0.05
VEGFR-3	VEGFR-3/PAE	VEGF-C	0.10 - 0.29	0.04 - 0.11
PDGFR-β	PDGFR-β/PAE	PDGF-BB	1.60 ± 0.4	0.62 ± 0.2
KIT	KIT/PAE	SCF	1.70 ± 0.6	0.66 ± 0.2
Receptor Phosphory	vlation Assays in Tumor (Cells Lines		
Murine VEGFR-2	mVEGFR-2/NIH3T3	VEGF-A	0.18 ± 0.03	0.07 ± 0.01
PDGFR-α	PDGFR-a/ NIH3T3	PDGF-AA	5.0 ± 1.0	1.9 ± 0.4
CSF-1R	CSF-1R/NIH3T3	M-CSF	73 ± 18	28 ± 6.8
Flt-3	RS;411	Flt-3 ligand	>1000	> 388
Growth Factor-Med	liated Survival Assays			
VEGF-HUVEC ^a	HUVEC	VEGF	0.24 ± 0.09	0.09 ± 0.03
bFGF-HUVEC ^a	HUVEC	bFGF	237.9 ± 88.9	92.2 ± 34.4
VEGF-HUVEC ^b	HUVEC	VEGF	2.4 ± 0.9	0.9 ± 0.3
bFGF-HUVEC ^b	HUVEC	bFGF	2479 ± 1188	961 ± 460
Proliferation Assays	<u>s in Tumor Cell Lines^c</u>			
MV522 MTT	MV522	10% FBS	>10,000	NA
LLC MTT	LLC	10% FBS	>10,000	NA
M24met MTT	M24met	10% FBS	>10,000	NA

Note: All assays were performed in the presence of 0.045% BSA unless otherwise noted. IC_{50} s are expressed as average ± standard error of the mean (SEM), or a range if only two assays were performed. $IC_{50} = 50\%$ inhibitory concentration; PAE = porcine aorta endothelial cells; SCF = stem cell factor; M-CSF = macrophage colony stimulating factor; HUVEC = human umbilical vein endothelial cells; MTT = 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay; FBS = fetal bovine serum; NA = not applicable.

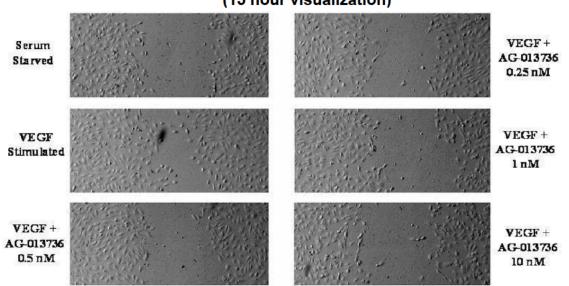
^a Assay performed in the presence of 1% fetal bovine serum without bovine serum albumin (BSA).

^b Assay performed in the presence of 1% fetal bovine serum and 2.3% bovine serum albumin (BSA).

^e After adjust for protein binding; Assay performed in the presence of 1% fetal bovine serum and 2.3% bovine serum albumin

^d Measured by the immunoprecipitation and immunoblotting method.

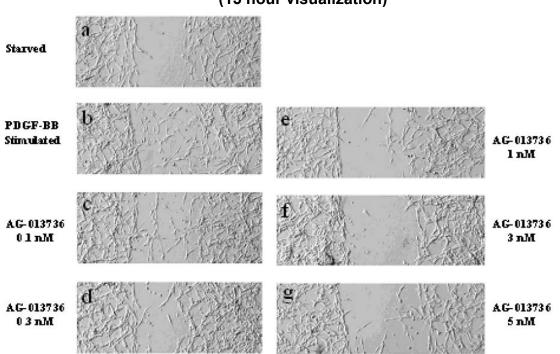
Target	VEGFR-2		VEGFR-1	VEGFR-3	PDGFR-β	KIT		
Cells	HUVEC	HUVEC	HUVEC	VEGFR-3/PAE	Hras-NIH/3T3	NCI H526		
Condition	1% FBS + 2.3% BSA	1% FBS	1% FBS + 2.3% BSA	0.1% FBS	2.3% BSA	0.5% FBS + 2.3% BSA		
Stimuli	VEGF-A	VEGF-A	VEGF-A	VEGF-C	PDGF-BB	SCF		
Observed IC ₅₀ (nM) (95% CI)	4.1 (3.1 - 5.4)	NA	1.0 (0.88 - 1.2)	NA	28.6 (12.6 - 64.7)	9.8 (5.5 - 17.6)		
Protein Binding Corrected IC ₅₀ (nM) (95% CI)	0.4	0.06	0.1	0.1 (0.08 - 0.12) and 0.29	2.9	0.98		


Summary of	f Results from Western Blot Assays
------------	------------------------------------

FBS = fetal bovine serum; BSA = bovine serum albumin. NA: not applicable. CI: confidence interval

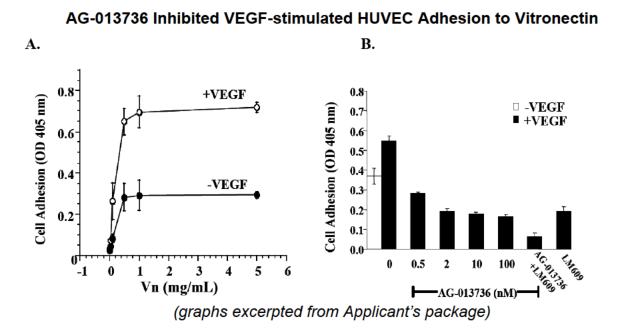
(tables excerpted from Applicant's package)

To determine whether AG-013736 could inhibit growth factor-mediated cell migration on extracellular matrix proteins, a cell migration assay was performed


As shown below, AG-013736 appeared to partially inhibit HUVEC migration towards the open space in the VEGF-mediated culture conditions. According to the Applicant, AG-013736 had no effect on cell migration in the PDGF-mediated culture conditions (data not shown).

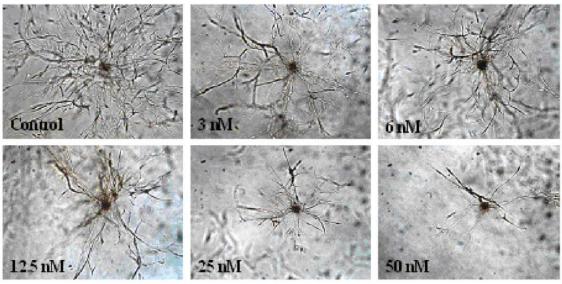
AG-013736 Inhibited VEGF-mediated HUVEC Migration (15 hour visualization)

(figure excerpted from Applicant's package)


Using the same assay with U87MG cells expressing a high level of PDGFR- β , AG-013736 blocked PDGF-BB mediated U87MG migration in a dose-dependent manner (See figure below).

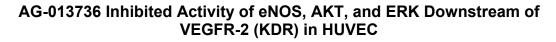
AG-013736 Inhibited PDGF-BB-mediated U87MG Migration (15 hour visualization)

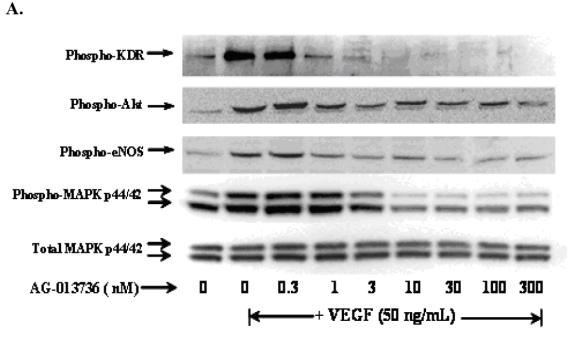
(figure excerpted from Applicant's package)


An additional experiment was conducted to determine whether AG-013736 could inhibit HUVEC adhesion on the extracellular matrix protein vitronectin (Vn), a ligand for integrin avb3 that is highly expressed on endothelial cells. As shown below, the addition of VEGF in the media enhanced HUVEC adhesion to Vn compared to 1% FBS alone (A). According to the Applicant, the increase in cell adhesion was not likely due to the mitogenic function of VEGF because the adhesion event reached a plateau in 2 hours, a timeframe much shorter than the doubling time of the cells (~ 24 hours). AG-013736 dose-dependently inhibited this VEGF-induced HUVEC adhesion to Vn, with a maximal inhibitory effect ~ 68% (B). Combining AG-013736 with LM609 (20 μ g/mL), a monoclonal antibody against integrin avb3, reduced cell adhesion by nearly 90% of cell adhesion (B).

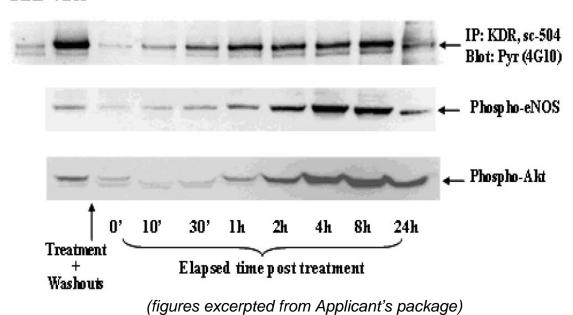
AG-013736 was also evaluated for its ability to inhibit vascular sprouting and tube formation in an *in vitro* 3-D fibrin system.

In this system, AG-013736 demonstrated dose-dependent inhibition of vascular sprouting and tube formation, as shown below.

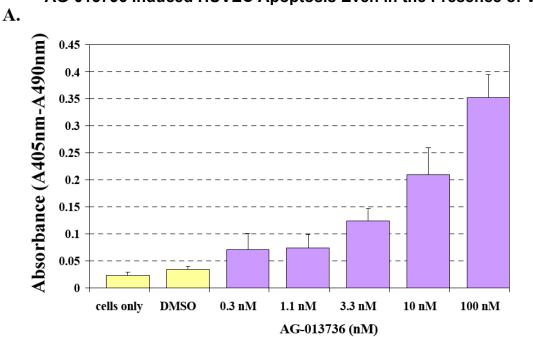

AG-013736 Inhibited 3-D Tube Formation from Spheroidal Endothelial Cells in the Fibrin Matrix

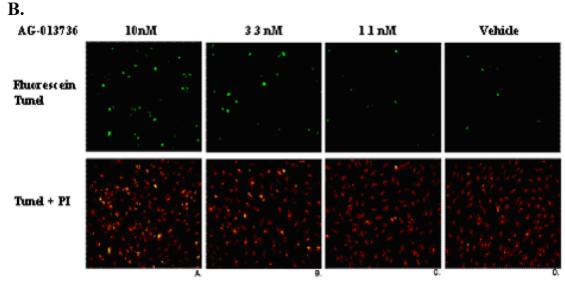


(figure excerpted from Applicant's package)


Immunoprecipitation and Western-blot analysis using HUVEC were utilized to measure the ability of AG-013736 to inhibit signaling molecules downstream of VEGF (Akt,

eNOS, and MAPK_{44/42} (ERK1/2)). As shown in the figure below (A), dose-dependent inhibition of Akt, eNOS, and ERK1/2 phosphorylation by AG-013736 was seen in HUVEC. Equal protein loading was demonstrated by the unchanged total MAPK_{44/42} signal across all samples (A, bottom row). The inhibition of VEGRF-2, eNOS and Akt phosphorylation by AG-013736 appeared to be reversible within \leq 24 hours (B).



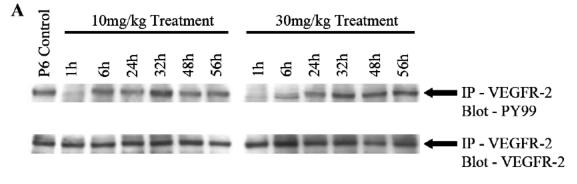

B. Basal VEGF

To measure apoptosis, an ELISA was used to detect cytoplasmic histone-associated DNA fragments in cell lysates. As shown below, 24 hour exposure of HUVEC to AG-013736 resulted in a dose-dependent induction of apoptosis, even in the presence of 20 ng/mL VEGF (A). A TUNEL immunocytochemistry analysis confirmed these results (B); the top panels show Apoptotic HUVEC cells displayed as green fluorescent cells, while the bottom panels show the addition of all cell nuclei stained red and double staining, colored yellow.

AG-013736 Induced HUVEC Apoptosis Even in the Presence of VEGF

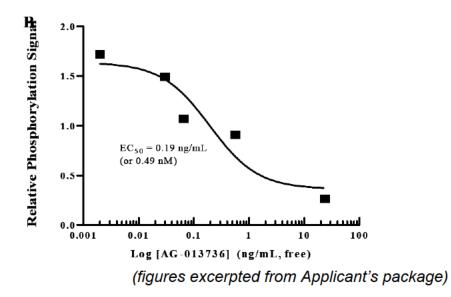
(figures excerpted from Applicant's package)

According to the Applicant, tumor cells that do not express the RTK targets were tested for any non-specific anti-proliferative activity or cytotoxic effect associated with AG-013736. The cells lines used were MV522 (human colon carcinoma), M24met (human melanoma), and LLC (murine Lewis lung carcinoma). AG-013736 did not exhibit any significant anti-proliferative activity in the proliferation assay (IC₅₀s >10 μ M; data not shown). Therefore, the Applicant concludes that the anti-tumor efficacy observed after AG-013736 treatment in the xenograft tumors models established from these cells is due to anti-angiogenesis of the vessels, not a direct anti-proliferation or cytotoxicity induction of the tumor cells.


Study Title: AG-013736-NonclinPharm-003: AG-013736 In Vivo Target Modulation, Induction of Vascular Phenotypical Changes, Efficacious Plasma Concentrations, and Pharmacokinetic-Pharmacodynamics Correlation

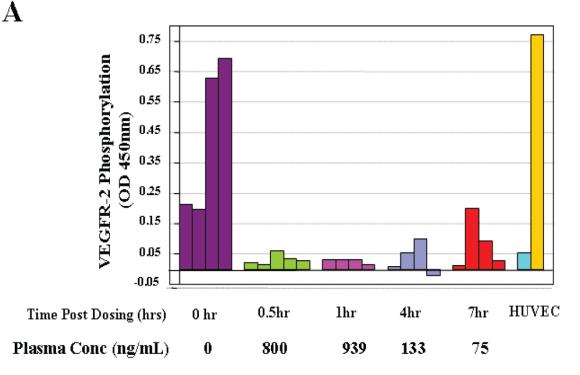
To determine if AG-013736 was able to modulate VEGFR-2 in angiogenic tissues *in vivo*, a series of studies were carried out in angiogenic retinal tissues of newborn rats and in the vasculature of the M24met human xenograft tumors in mice. According to literature, retinal tissues in neonatal rats have abundant angiogenic vessels, allowing relatively robust measurement and quantification of VEGFR-2 phosphorylation.

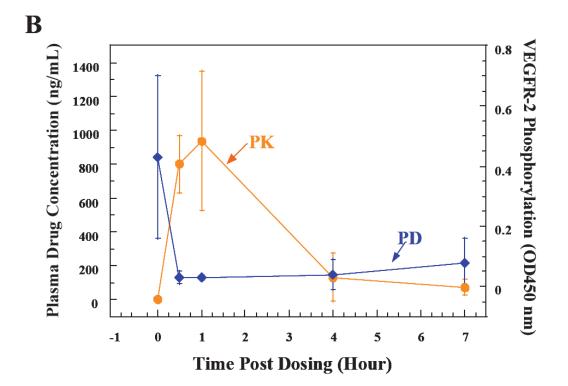
The first study treated newborn rats with two IP injections of AG-013968 (the HCI salt form of AG-013736) of 10 or 30 mg/kg. Immunoprecipitation and Western blot analysis were performed on retinal tissue for the determination of rat VEGFR-2 phosphorylation. As shown below, compared to vehicle-treated tissues, VEGFR-2 phosphorylation in the AG-013736-treated tissues was reduced by 80 – 90% one hour following treatment with either dose levels (A). In the low-dose group, the signal fully rebounded at 6 hours post-dose, when the unbound plasma drug concentration was 0.017 ± 0.02 ng/mL (or 0.04 ± 0.06 nM), well below IC₅₀ for VEGFR-2 (0.20 \pm 0.04 nM; obtained from cell-based assay in study AG-013736-NonclinPharm-002). In the high-dose group, a 50 – 60% recovery of phospho-VEGFR-2 signal occurred 6 – 24 hours post-dose. This was associated with an unbound plasma drug concentration of 0.57 ± 0.14 ng/mL (6 hour) and 0.066 \pm 0.008 ng/mL (24 hour), which translated to 1.5 \pm 0.36 nM (6 hour) and 0.17 \pm 0.02 nM (24 hour), respectively. The full activity of VEGFR-2 rebounded between 24– 32 hours post-dosing. Overall, the degree of target inhibition correlated to the plasma concentration of AG-013968 across the time points. According to the Applicant, a nonlinear regression analysis of the 30 mg/kg group using the sigmoidal dose response model in Prizm (Graphpad) revealed an EC₅₀ for target inhibition of 0.49 (± 3.1) nM or 0.19 ng/mL (B).

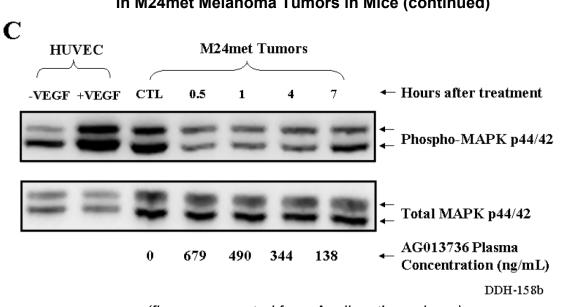

(b) (4)

Inhibition of Rat VEGFR-2 Phosphorylation in Retinal Tissues of Neonatal Rats and the Determination of EC50

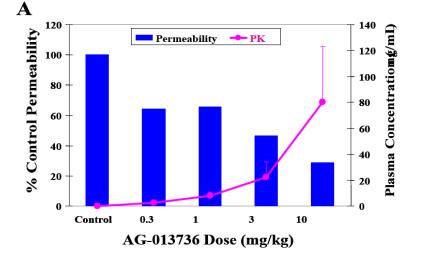
Elapsed	Unbound (2% Free) Plasma Concentration (ng/mL)					
Time	10 п	ıg/kg	30 mg/kg			
Hour	Average	Stdev	Average	Stdev		
1	7.83	1.91	> 20			
6	0.0172	0.0244	0.572	0.142		
24	0.0184	0.0262	0.0662	0.0084		
36	0	0	0.0302	0.0276		
48	BCR		BCR			
56	BCR		BCR			


BCR: Below the calibration range



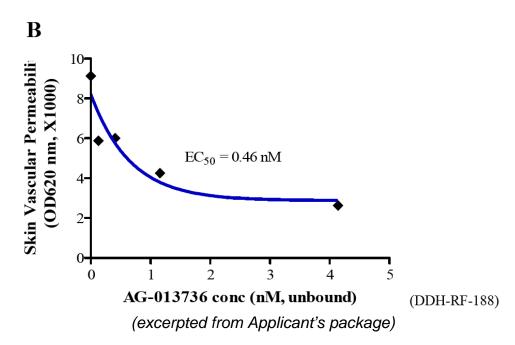

The second study utilized the M24met human melanoma xenograft model.

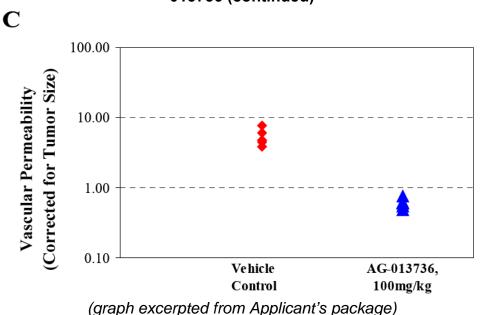
As shown below, the results of this study demonstrate that a single oral dose of AG-013736 (50 mg/kg) strongly suppressed murine VEGFR- 2 phosphorylation in tumor tissues for up to 7 hours compared to the vehicle-treated tumors (A). In the 30 mg/kg dose group, the level of VEGFR-2 phosphorylation in the tumors inversely correlated with AG-013736 plasma concentrations (B). Western blot analyses also showed that AG-013736 inhibited phospho-ERK (MAPK44/42), but not total ERK (C).



Single Dose of AG-013736 Significantly Reduced VEGFR-2 Phosphorylation in M24met Melanoma Tumors in Mice (continued)

(figures excerpted from Applicant's package)

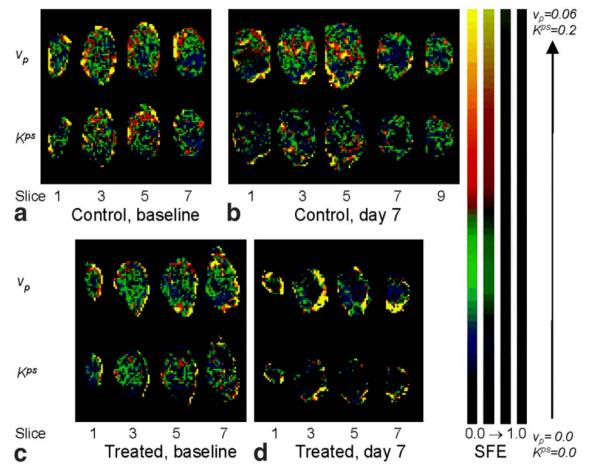

To measure the effect of AG-013736 on VEGF-mediated vascular permeability (VP), the Applicant utilized the Miles assay, which measures the extravasation of Evan's Blue dye from leaky vessels. As shown below, acute AG-013736 dose-dependently reduced VEGF-mediated vascular permeability in the skin of mice compared to vehicle treated control mice (A). Based on the pharmacokinetics and %VP inhibition, the effective concentration from this study was determined to be 0.46 nM (B). Utilizing an alternate method using FITC-dextran (MW of 250 kDa) as a tracer for assessing vessel permeability, AG-013736 was shown to reduce VP by 88% in MV522 human colon carcinoma tumors, compared to vehicle-treated tumors, following a single 100 mg/kg PO dose in mice (C).



Inhibition of Vascular Permeability in Skin and MV522 Tumor by AG-013736

Dose (mg/kg)	VP (x1000)	SD (x1000)	Total Plasma Conc (ng/mL)	SD	Free Plasma Conc (ng/mL)	Free Plasma Conc (nM)
control	9.13	4.07	0.00	0.00	0.00	0.00
0.3	5.88	2.81	2.50	1.00	0.05	0.13
1	6.00	3.94	8.00	2.83	0.16	0.41
3	4.25	2.75	22.50	11.47	0.45	1.16
10	2.63	2.31	80.25	42.77	1.61	4.14

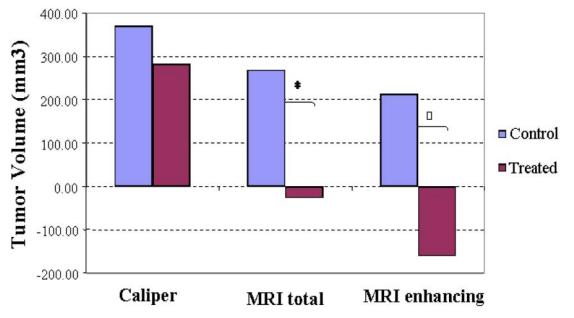
VP measured 1 hours post dose



Inhibition of Vascular Permeability in Skin and MV522 Tumor by AG-013736 (continued)

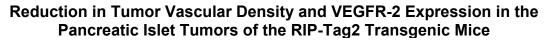
(graph excerpted norm Applicant's package)

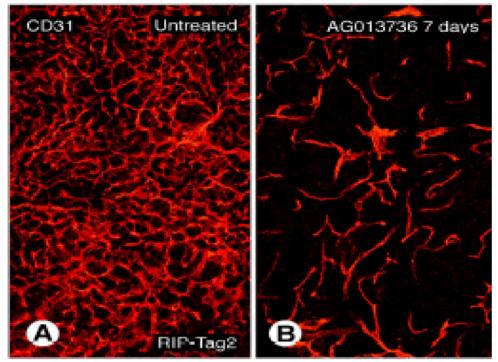
To evaluate the impact of AG-013736 on angiogenesis, vascular phenotypical changes of the BT474 human breast carcinoma xenograft tumors in mice were measured following 7 days of AG-013736 treatment by dceMRI. Vascular permeability was reported using the MRI parameters K_{trans} or K_{ps} (endothelial volume transfer constant), which are measures of vascular leakage of a contrast enhancement agent, Gd-DTPA or Albumin-Gd- DTPA. As shown below, AG-013736 treatment decreased the overall tumor blood flow. According to the sponsor, changes in vascular K_{trans} correlated with decreased microvessel density, cellular viability, and tumor growth.

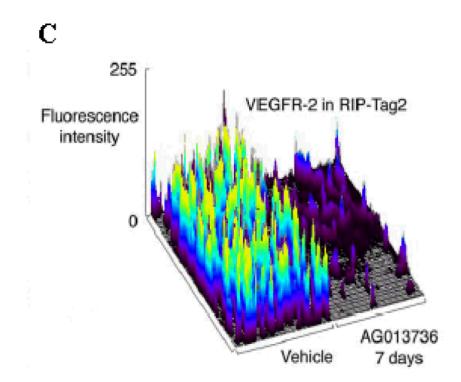

Anti-vascular Permeability and Tumor Growth by AG-013736 in the BT474 Model Assessed by dceMRI Analysis and Tumor Volume Assessments

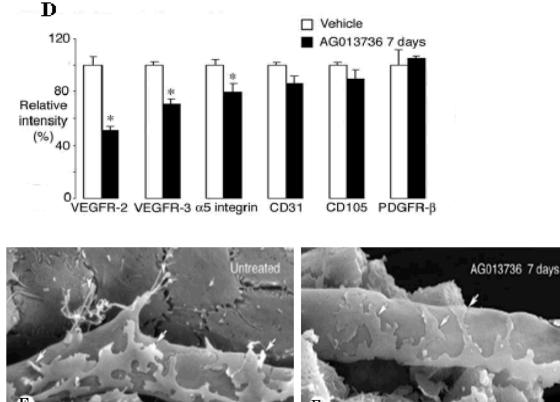
A tumor in the control group is shown at (a) baseline and (b) seven days after treatment; and a tumor in the AG-013736 treated group is shown (c) before, and (d) after seven days of AG-013736 treatment. In a-d, the upper row represents vp maps, while the lower row shows Kps maps. The color bars illustrate the relationship between hues and the values of the fitted values of Kps and vp, and between brightness and the fitting uncertainty (SFE). Brightness from the highest to the lowest represents the value of SFE from 0.0 to 1.0.

(figure excerpted from Applicant's package)

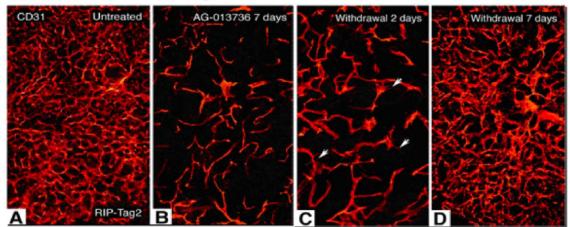

Within the same study, day 7 tumor volumes were measured using both a conventional digital caliper and dceMRI. The results, shown below, revealed that while the caliper measurements failed to show any significant difference in tumor volume, statistically significant reductions in tumor volume were found using MR measurements (\ddagger , P=0.0335) and MR enhancing volume (\Box , P=0.0090).




Anti-vascular Permeability and Tumor Growth by AG-013736 in the BT474 Model Assessed by dceMRI Analysis and Tumor Volume Assessments (continued)


Multiple studies were carried out ^{(b)(4)} to understand the molecular, cellular, and phenotypical changes in response to AG-013736 treatment by utilizing fluorescent-based (classic immunohistochemistry and confocal) microscopy and electron microscopy (EM). As shown below, utilizing the spontaneous pancreatic islet-cell tumors of RIP-Tag2 transgenic mice, AG-013736 treatment (25 mg/kg, IP or PO, BID, for 7 days) resulted in reduction in the tumor vascular density (A and B). According to the Applicant, by Day 7 of treatment, vascular density decreased more than 70%. Also by Day 7, surviving endothelial cells showed significant reductions in VEGFR-2, VEGFR-3, and α 5 integrin immunoreactivities expression (C and D). The Applicant also suggests that while α -SMA immunoreactive pericytes (see arrow in E and F) are loosely attached to CD31-positive endothelial cells, treatment with AG-013736 for 7 days results in more tightly attached α -SMA immunoreactive pericytes (E and F).

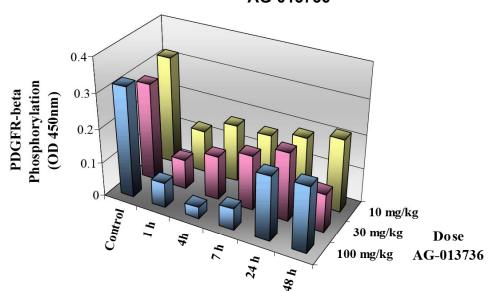
⁽graph excerpted from Applicant's package)



Reduction in Tumor Vascular Density and VEGFR-2 Expression in the Pancreatic Islet Tumors of the RIP-Tag2 Transgenic Mice (continued)

(figures excerpted from Applicant's package)

Following 7 days of withdrawal from AG-013736 treatment, confocal microscopy showed (below) RIP-Tag2 tumors fully revascularized, with tumor vascular density similar to untreated tumors. According to the Applicant, this suggests that best effect of AG-013736 therapy would be produced from uninterrupted daily treatment.



Tumor Blood Vessels Regrowth after Cessation of AG-013736 Treatment

Arrows mark vascular sprouts, i.e. the beginning of vascular regrowth (figure excerpted from Applicant's package)

Since previous studies showed that AG-013736 is also an inhibitor of PDGFR- β (IC₅₀=1.6 nM, i.e., approximately 10-fold higher than that for VEGFRs), the effect of AG-013736 treatment on PDGFR- β phosphorylation was examined in the C6 rat glioma tumor model grown in mice.

Mice bearing large C6 tumors were treated with AG-013736 at 10, 30, and 100 mg/kg (PO). A total of 3 injections of AG-013736 were given before tumors were collected to assess phospho-PDGFR- β using an ELISA-based assay. As shown below, AG-013736 dose- and time-dependently inhibited PDGFR- β phosphorylation in these tumors. AG-013736 at 100 mg/kg produced significant (90%) and sustained inhibition of PDGFR- β activity (>7 hours). In all dose groups the full activity of PDGFR- β did not return within 48 hours, although the drug concentration in the plasma was no longer detectable at 24 hours.

Dose-Dependent Inhibition of Tumor PDGFR-β Phosphorylation by AG-013736

Time Post	10mg/kg		30mg	/kg	100mg/kg		
Dose	% Signal	РК	% Signal	PK	% Signal	PK	
0	100.0	0.0	100.0	0.0	100.0	0.0	
1	39.1	37.1	30.8	123.7	22.9	586.7	
4	52.7	3.5	44.7	18.3	10.6	122.4	
7	52.2	2.9	56.3	2.2	19.5	16.7	
24	59.1	BDL	69.7	BDL	58.8	BDL	
48	66.7	BDL	na	BDL	60.0	BDL	

PK are in ng/mL; BDL: Below detection limit (1 ng/mL); na: not available (excerpted from Applicant's package)

Study Title: AG-013736-NonclinPharm-003: In Vivo Anti-tumor Efficacy, Antiangiogenesis, and Biomarkers or AG-013736 (Axitinib) in Rodent Models of Cancer.

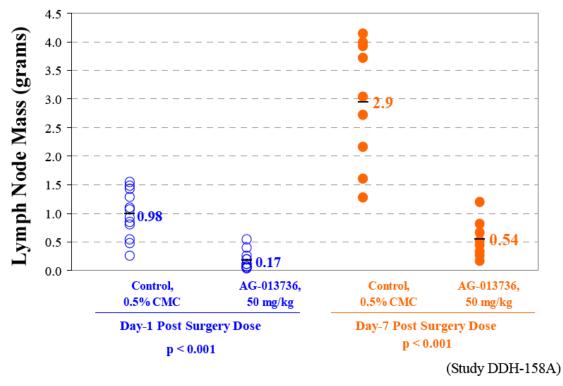
AG-013736 was evaluated for its in vivo anti-tumor efficacy in a variety of tumor models in rodent animals, including: 1) subcutaneously (sc) implanted human tumor xenograft models; 2) orthotopically implanted and spontaneously metastatic human tumor xenograft models; and 3) murine syngeneic tumor models.

In regard to the single agent anti-tumor efficacy of AG-013736 in sc or orthotopically implanted tumor models, the following table summarizes the experimental design, parameters, receptor tyrosine kinase (RTK) expression when available, and efficacy (% tumor growth inhibition (TGI)) of AG-013736. AG-013736 consistently and significantly demonstrated dose-dependent anti-tumor efficacy in tumor models of breast, colon, lung, pancreas, kidney, brain, skin and liver. According to the Applicant, significant TGI regardless of RTK expression status suggests that in the RTK- negative tumor models (as indicated in the table below), the anti-tumor efficacy was a consequence of in vivo anti-angiogenic activity of AG-013736.

· · · · · ·								
Disease Type	Model (Phospho- RTK Expression)	Study Description	Dose (mg/kg)	Regimen	Size at Start of Rx (mm ³)	Treat- ment Period (Days)	TGI (%)	Study ID
		Dose-dependent efficacy using AG-013968 (axitinib-HCl salt)	0.3 1 3 10 30 100	PO, BID	160 - 180	16	40 50 57 66 81 96	DDH-119
Colon Carcinoma	MV522 (None)	Dose-dependent TGI using axitinib	0.3 1 3 10 30 100 150 200	PO, BID	130	16	$ \begin{array}{r} -20 \\ 18 \\ 15 \\ 64 \\ 61 \\ 80 \\ 95 \\ 96 \\ \end{array} $	DDH- MG-371
Colon Ca	TGI using Alzet pump delivery of axitinib		1 mg/mL 3 mg/mL 10 mg/mL 20 mg/mL 30 mg/mL	Continuous infusion	100	14	20 31 79 94 85	DDH-KA- 302
	HT29 (ND)	Dose response TGI	10 30 100 150	PO, QD	101	16	51 76 99 99	HT29- e143
	HCT-116- GFP (ND)	TGI in (orthotopically implantation)	30 30	PO, BID	One day after implant	17 28	87 80	HCT-116 GFP (#3)
a		TGI via	60	PO, BID	90	18	50	DDH- MG-446
Breast Carcinoma	MDA-MB- 435\ HAL-Luc (None)	bioluminescent signal and conventional caliper measurements	10 100	PO, BID	130	11	Dose- dependent reduction in bioluminesc ent signal	DDH- MG-355
loma	LLC (PDGFR-β)	Dose-dependent efficacy using AG-013968 (axitinib·HCl salt)	1 3 10 30 100 300	PO, BID	< 50	18	33 49 75 68 69 Poorly tolerated	DDH-123
Lung Carcinoma	(грогк-р)	DGFR-β) TGI and anti- metastasis activity assessment		PO, BID (trocar implant) PO, BID (tail vein	Prophy- lactic dose	38 survival	73 ~ 11 days median	LLC- DCH-201
	NCI-H526 (SCLC) (KIT ⁺)	Efficacy and dose response	100 30 100	implant) PO, BID	180	16	survival 47 61	DDH- MG-293

Single Agent Anti-tumor Ef	ficacy of AG-013736 in Mice
----------------------------	-----------------------------

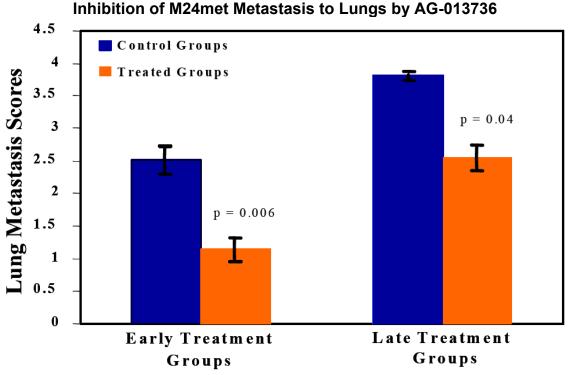
Disease Type	Model (Phospho- RTK Expression)	Study Description	Dose (mg/kg)	Regimen	Size at Start of Rx (mm ³)	Rx Period (Days)	TGI (%)	Study ID	
c a	•		3				42		
eatio nom	MiaPaCa-2 (ND)	Dose dependent TGI	30	PO, BID	100	15	75	MiaPaCa -e208S1	
Pancreatic Carcinoma	(111)	101	60				87		
	A375 (VEGFR-2,	Efficacy in established A375	10	PO, BID	350	14	38	DDH-MG-	
	PDGFR- β)	melanoma	30	10,010	550		59	268	
		Dose-dependent	3				60		
		TGI in sc implanted	10	PO, BID	120 - 160	13	49	DDH-163	
		M24met	30				73		
Melanoma	M24met (None)	Anti-metastasis activity in ID- implanted	50 (early Rx 7 days before surgery)		Primary tumor resection	23	Significant reduction in l.n. and lung		
Mel		M24met with either early or late start treatments	50 (late dose: 1 day before surgery)	PO, BID	when average tumor size ~ 400 mm ³	23	metastasis (both grps). Early dosing had greater effect	DDH- 158A	
	A2058 (ND;		3				36		
	activating	Dose-dependent	10	PO, BID	150	15	57	DDH-MY- 424	
	bRaf mutation)	TGI	30				65	424	
	matation)		100 10			41	83 55		
ll na			10			72	61	SN12C-	
Renal Cell Carcinoma	SN12C-	TGI in	30		Two days after	41	56		
ena ırci	GFP (ND)	orthotopically implanted RCC	30	PO, BID	implant	72	74	GFP	
n n n		1	100		1	41	63		
			100			72	70		
	C6	Dose-dependent	10 30		70 00	15	37 47	DDH-GW-	
13	(pPDGFRs)	TGI	100	PO, BID	70 - 80	15	64	247	
Glioma			100				44		
5	U87MG	Dose-dependent	30	PO, BID	46 - 72	17	69	DDH-GW-	
	(pPDGFRs)	TGI	60	10,010	10 /2	17	74	273	
						14	IP tumor		
NHL	Namalwa	Efficacy with	50	PO, BID	1 day after	22	burden reduction	DDH-RF-	
Z	(ND)	time course		-	implant	23	(days 22 & 23)	240	
нсс	Human Primary TGI		PO, BID	140-160	26	54	PFL-TR-		
H	tumors LIM- SH050 (ND)	101	30	PO, BID	140-100	20	45	C009.1	


Single Agent Anti-tumor Efficacy of AG-013736 in Mice (continued)

BID: twice daily; HCC: hepatocellular carcinoma; IP: intraperitoneal; L.n.: lymph node; ND: not determined; NHL: non-Hodgkin's lymphoma; PO: oral, RCC: renal cell carcinoma; TGI: tumor growth inhibition (tables excerpted from Applicant's package)

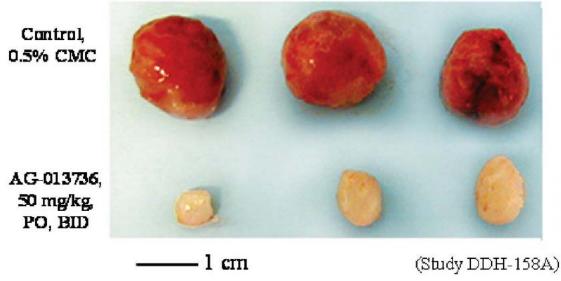
Among the various tumor models in rodents used to evaluate the efficacy of AG-013736, the M24met human melanoma model enabled the evaluation of multiple efficacy end points, including primary tumor growth, metastasis, and survival of animals. This model is based on an aggressive human melanoma that spontaneously metastasizes to lymph nodes and lungs in mice. According to the Applicant, removing primary tumors promotes the metastasis potential. Also, according to the Applicant, M24met cells express mutant p53 and are reported to express high levels of oncogenic molecules such as N-RAS, ERK, as well as integrin α 5 β 1 that are involved in tumor migration, adhesion and survival. The cells also express a low level of phospho-PDGFRs but not functional VEGFRs. Thus, as previously mentioned, anti-tumor efficacy should primarily be a consequence of AG-013736-induced in vivo anti-angiogenic activity.

Utilizing this tumor model, the first goal was to determine if AG-013736 could inhibit the growth of primary M24met tumors implanted subcutaneously in nude mice (study DDH-163, see table above). At dose levels of 3, 10, and 30 mg/kg, AG-013736 (PO, BID) significantly delayed tumor growth with TGIs of 60%, 49%, and 73%, respectively. According to the Applicant, statistically, TGIs from the 3 and 10 mg/kg AG- 013736 groups were not different from each other (p=0.4), whereas TGI in the group receiving 30 mg/kg AG-013736 was significantly greater than that of the 10 mg/kg dose group (p=0.033).


The second goal was to establish whether AG-013736 could inhibit spontaneous metastasis when M24met cells (2.5×10^6) were intradermally implanted in SCID (Balb/c) mice (DDH-158A, see table above). When the primary tumors reached the size of 300–400 mm₃, they were surgically removed to promote distant metastasis. For "Early Treatment" arms, the dosing of AG- 013736 (50 mg/kg, PO BID) started one week prior to primary tumor removal. For "Late Treatment" arms, the treatment started 1 day before the primary tumor removal. The total treatment time was 3 weeks for all groups. As shown below, at the end of the study, metastatic tumors in the lymph nodes (mainly at the ipsilateral and counter-ipsilateral sites, with occasional tumors found at the ingroinal sites) were weighed. AG-013736 significantly reduced metastatic potential in the lymph nodes (p<0.0001) compared to the control, following both "Early Treatment" and "Late Treatment".

Inhibition of Lymph Node Metastasis by AG-013736 in M24met Model

(graph excerpted from Applicant's package)

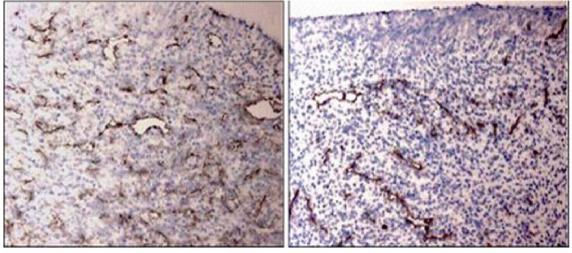

Lungs were fixed in Bouin solution and lung metastases were manually counted under the microscope by four independent scientists. As shown below, averaging the results demonstrated that AG-013736 significantly reduced metastatic potential in the lung (p=0.006) for the "Early Treatment" group. For the "Late Treatment" group, the inhibition of lung metastasis was significant (p=0.04) but attenuated when compared with the "Early Treatment" group.

(graph excerpted from Applicant's package)

The following tumor images are from the vehicle control and AG-013736-treated lymph nodes and lungs of mice that were in the "Early Rx" groups.

Lymph Node Metastatic Tumors in Control and AG-013736 Treated Groups of M24met Model

(figure excerpted from Applicant's package)


Reduced Lung Metastasis in AG-013736 "Early Treatment" Group (bottom row) Versus Control Group (top row)

(figure excerpted from Applicant's package)

As shown below, AG-013736 treatment also resulted in decreased microvessel density (MVD) in lymph node tumors following both "Early Treatment" and "Late Treatment", as demonstrated by CD-31 immunohistochemistry staining.

Tumor Vessels in Lymph Node Tumors of Control (left) and AG-013736 (right) Treatment Groups

Magnification = 10x.

(figure excerpted from Applicant's package)

4.2 Secondary Pharmacology

Studies in this section were reviewed by Robeena Aziz, MPH, Ph.D.

Study Title: 1010519: ProfilingScreen Data Report on Test Compound AG-013736 (AGP-58) Report #: 1010519 (b) (4) Conducting Laboratory and Location: Date of Study Initiation: October 2000 GLP Compliance: No QA Report: No Drug, lot #, and % purity: AG-013736 or AGP-58, 1918709 Concentration used: 10 uM Methods: Radioligand Displacement Assay against the following receptors or ion channels : adenosine A1 and A2A • adrenergic $\alpha 1$, $\alpha 2$, $\beta 1$, and $\beta 2$ bradykinin B2 calcium channel type L dopamine D1 and D2L estrogen ER α GABAA (agonist and chloride) channel); glucocorticoid glutamate (*N*methyl *D*-aspartate) • glutamate (non-selective) glycine (strychnine-sensitive) histamine H1 and H3 insulin muscarinic M1, M2, and M3 neuropeptide Y2, nicotinic acetylcholine (central) opiate (δ , κ , μ) phorbol ester purinergic (P2X, P2Y) serotonin (5-HT1, 5-HT2) • sigma (non-selective) sodium channel (site 2) tachykinin NK1 testosterone **Results and Conclusions:** Modest binding affinity in the low μM range was observed for the adenosine A_{2A} (Ki of 2.76 μ M), muscarinic M₂ (Ki of 2.23 μ M), and neuropeptide Y₂ (IC50 of 10 μM) receptors.

 In secondary functional assays, axitinib showed no activity (agonistic or antagonistic) for the A_{2A}, M2, or Y2 receptors at concentrations up to 30 μM.

- Axitinib did not show functional activity for any of the assayed receptors or ion channels at pharmacologically relevant concentrations.
- Summary of results are listed in Figures below. •

PT#: CODE:	1010519 AGP-58, AG-013736							September 23	, 2003 3:45 Page 8	
	EXPERIMEN	TAL RE	SUI	LTS - I	BIOC	CHEMI	CAL	ASSAY	YS	
Cat. #	TARGET	BATCH* SP	P. n=	CONC.	†9 -10 % ↓	$\begin{bmatrix} 6 \text{ INHIBITIO} \end{bmatrix}$ $\begin{bmatrix} 0 & -50 & 0 & 50 & 10 \\ ↓ & ↓ & ↓ & ↓ & ↓ \end{bmatrix}$	0	K	n _H	R
200510	Adenosine A1	27482 hum	2	10 µM	36					
200610	Adenosine Aza	27483 hum	2	10 µM	68					
		27701 hum	2	10 µM	67		4.91 µM	2.76 µM	0.975	
			2	1 µM	16					
			2	0.1 µM	6					
			2	10 nM	3					
203500	Adrenergic α1, Non-Selective	27375 rat	2	10 µM	13					
203900	Adrenergic α ₂ , Non-Selective	27568 rat	2	10 µM	13					
204010	Adrenergic β1	27562 hum	2	10 µM	31					
204110	Adrenergic β ₂	27561 hum	2	10 µM	2					
212610	Bradykinin B2	27489 hum	2	10 µM	-5	- I				
214600	Calcium Channel L-Type, Dihydropyridine	27490 rat	2	10 µM	-2					
219500	Dopamine D1	27508 hum	2	10 µM	4					
219600	Dopamine D _{2L}	27509 hum	2	10 µM	7					
226010	Estrogen ERa	27556 hum	2	10 µM	10					
226500	GABA _A , Agonist Site	27418 rat	2	10 µM	1					
226800	GABA _A , Chloride Channel,TBOB	27519 rat	2	10 µM	2					
232010	Glucocorticoid	27398 hum	2	10 µM	8					
233000	Glutamate, NMDA, Phencyclidine	27520 rat	2	10 µM	1					
235000	Glutamate, Non-Selective	27491 rat	2	10 µM	1					
239000	Glycine, Strychnine-Sensitive	27399 rat	2	10 µM	-2					
239500	Histamine H1, Central	27396 gp	2	10 µM	7					
239800	Histamine H ₃	27388 rat	2	10 µM	-12					
243000	Insulin	27577 rat	2	10 µM	-13					
252600	Muscarinic M1	27492 hum	2	10 µM	22					
<mark>252700</mark>	Muscarinic M ₂	27493 hum	2	<mark>10 µМ</mark>	62					
		27707 hum	2	<mark>10 µМ</mark>	<mark>69</mark>		6.26 µM	2.23 µM	1.66	
			2	1 μM	4	I				
			2	0.1 µM	2					
			2	10 nM	5					
252800	Muscarinic M ₃	27494 hum	2	10 µM	11					

* Batch: Represents compounds tested concurrently in the same assay(s). ‡ Partially soluble in in vitro test solvent.

• Denotes item meeting criteria for significance † Results with \geq 50% stimulation or inhibition are highlighted. (Negative values correspond to <u>stimulation</u> of binding or enzyme activity) R=Additional Comments

gp=guinea pig; hum=human

			CONC.		†% INH			IC ₅₀	K	n _H
				%	$\downarrow \downarrow \downarrow$	0 50 ↓ ↓	100 ↓			
Neuropeptide Y ₂	27564 hum	2	<mark>10 µМ</mark>	52						
	27799 hum	2	10 µM	49				>10 µM		
		2	1 µM	6						
		2	0.1 µM	-17						
		2	10 nM	-3						
Nicotinic Acetylcholine, Central	27497 rat	2	10 µM	-5						
Opiate δ (OP1, DOP)	27498 hum	2	10 µM	17						
Opiate κ (OP2, KOP)	27499 hum	2	10 µM	6						
Opiate µ (OP3, MOP)	27500 hum	2	10 µM	23						
Phorbol Ester	27403 mouse	2	10 µM	2		1				
Purinergic P _{2x}	27569 rabbit	2	10 µM	-1						
Purinergic P _{2Y}	28599 rat	2	10 µM	10						
Serotonin (5- Hydroxytryptamine) 5-HT ₁ , Non-Selective	27521 rat	2	10 µM	4		I				
Serotonin (5- Hydroxytryptamine) 5-HT2, Non-Selective	27571 rat	2	10 µM	25						
Sigma, Non-Selective	27573 gp	2	10 µM	-1						
Sodium Channel, Site 2	27385 rat	2	10 µM	15						
Tachykinin NK1	27377 hum	2	10 µM	-4						
Testosterone	27567 rat	2	10 µM	2						
	Nicotinic Acetylcholine, Central Opiate δ (OP1, DOP) Opiate κ (OP2, KOP) Opiate μ (OP3, MOP) Phorbol Ester Purinergic P _{2X} Purinergic P _{2Y} Serotonin (5- Hydroxytryptamine) 5-HT ₁ . Non-Selective Serotonin (5- Hydroxytryptamine) 5-HT ₂ . Non-Selective Sigma, Non-Selective Sodium Channel, Site 2	27799 humNicotinic Acetylcholine, Central27497 ratOpiate δ (OP1, DOP)27498 humOpiate δ (OP2, KOP)27499 humOpiate μ (OP3, MOP)27500 humPhorbol Ester27403 mousePurinergic P2x27569 rabbitPurinergic P2x28599 ratSerotonin (5- Hydroxytryptamine) 5-HT1, Non-Selective27571 ratSerotonin (5- Hydroxytryptamine) 5-HT2, Non-Selective27573 gpSigma, Non-Selective27385 rat	27799 hum 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0piate δ (OP1, DOP) 27498 20piate κ (OP2, KOP) 27499 20piate μ (OP3, MOP) 27500 20piate μ (OP3, MOP) 27500 21 2403 Purinergic P _{2x} 27569 21 7403 mouse 2 27569 rabbit 2 Serotonin (5- 27521 rat 2 Hydroxytryptamine) 5-HT2- 27571 rat 2 Sigma, Non-Selective 27573 gp 2 Sodium Channel, Site 2 2738 rat 2	27799 hum 2 10 μM 2 1 μM 2 0.1 μM 2 0.1 μM 2 10 nM Nicotinic Acetylcholine, Central 27497 rat 2 10 μM Opiate δ (OP1, DOP) 27498 hum 2 10 μM Opiate δ (OP1, DOP) 27499 hum 2 10 μM Opiate κ (OP2, KOP) 27499 hum 2 10 μM Opiate μ (OP3, MOP) 27500 hum 2 10 μM Purinergic P _{2x} 27569 rabbit 2 10 μM Purinergic P _{2x} 27569 rabbit 2 10 μM Serotonin (5- Hydroxytryptamine) 5-HT ₁ , Non-Selective 27521 rat 2 10 μM Serotonin (5- Hydroxytryptamine) 5-HT ₂ , Non-Selective 27571 rat 2 10 μM Sigma, Non-Selective 27573 gp 2 10 μM Sodium Channel, Site 2 27385 rat 2 10 μM	27799 hum 2 10 μM 49 2 1 μM 6 2 0.1 μM -17 2 10 μM -17 2 10 μM -3 Nicotinic Acetylcholine, Central 27497 rat 2 10 μM 0piate δ (OP1, DOP) 27498 hum 2 10 μM 17 Opiate δ (OP1, DOP) 27498 hum 2 10 μM 17 Opiate κ (OP2, KOP) 27499 hum 2 10 μM 6 Opiate μ (OP3, MOP) 27500 hum 2 10 μM 2 Purinergic P _{2x} 27569 rabbit 2 10 μM 1 Purinergic P _{2x} 27569 rabbit 2 10 μM 1 Serotonin (S- Hydroxytryptamine) 5-HT ₁ , Non-Selective 27571 rat 2 10 μM 2 Sigma, Non-Selective 27573 gp 2 10 μM 1 Sodium Channel, Site 2 27385 rat 2 10 μM 15	27799 hum 2 10 μM 49 2 1 μM 6 2 0.1 μM -17 2 10 nM -3 Nicotinic Acetylcholine, Central 27497 rat 2 10 μM -5 Opiate δ (OP1, DOP) 27498 hum 2 10 μM 17 Opiate δ (OP1, DOP) 27499 hum 2 10 μM 6 Opiate κ (OP2, KOP) 27499 hum 2 10 μM 6 Opiate μ (OP3, MOP) 27500 hum 2 10 μM 23 Phorbol Ester 27569 rabbit 2 10 μM 10 Serotonin (5- 27521 rat 2 10 μM 10 Serotonin (5- 27571 rat 2 10 μM 4 Hydroxytryptamine) 5-HT2- 27573 gp 2 10 μM 25 Sigma, Non-Selective 27573 gp 2 10 μM -1 Sodium Channel, Site 2 27385 rat 2 10 μM 15	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27799 hum 2 10 μM 49 2 1 μM 6 2 0.1 μM -17 2 10 nM -3 Nicotinic Acetylcholine, Central 27497 rat 2 10 μM -5 Opiate δ (OP1, DOP) 27498 hum 2 10 μM 17 Opiate δ (OP1, DOP) 27499 hum 2 10 μM 6 Opiate κ (OP2, KOP) 27499 hum 2 10 μM 6 Opiate μ (OP3, MOP) 27500 hum 2 10 μM 23 Phorbol Ester 27403 mouse 2 10 μM 2 Purinergic P _{2x} 27569 rabbit 2 10 μM 10 Serotonin (5- 27521 rat 2 10 μM 4 Hydroxytryptamine) 5-HT ₂ . 27571 rat 2 10 μM 4 Sigma, Non-Selective 27573 gp 2 10 μM 1 Sigma, Non-Selective 27573 gp 2 10 μM 15	27799 hum 2 10 μM 49 >10 μM 2 1 μM 6 >10 μM 2 1 μM 6 >10 μM 17 2 0.1 μM -17 2 10 nM -3 10 μM -5 0 10 μM 2 10 μM 17 10 μM 17 10 μM 17 10 μM 17 10 μM 10 10 μM 17 10 μM 10 10 10 μM 10	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Cat. #	ASSALMANE	DATCH	115501, 51 10115		conc.	CRITERIA	REOI.	AG.	AIG1.	ĸ	
402020 449500 454500	Adenosine A _{2A} Muscarinic M ₂ Neuropeptide Y ₂	28887 28678 28680	platelet rich hum left atria, gp vas deferens, rat	2 2 2	30 μM	≥ 50% ≥ 50% ≥ 50%		5% -19% 4%	0% 0% 4%		

(figures excerpted from Applicant's package)

4.3 Safety Pharmacology

Studies in this section were reviewed by Robeena Aziz, MPH, Ph.D.

Neurological effects:

Study Title: VFF-488: AG13736 - Irwin Dose-Range in Mice Including Temperature and Locomotor Assessment

Key Study Findings:

- No signs of mortality or gross signs of toxicity during the 7-day post-dose observation period.
- No biologically significant effects on behavioral or physiological state, on body temperature and spontaneous locomotor activity at the maximum dose tested (30 mg/kg).

Report #:	VFF-488				
Conducting Laboratory and Location:	(b) (4)				
Date of Study Initiation:	July 5, 2001				
GLP Compliance:	Yes				
QA Report:	Yes (X), No ()				
Drug, lot #, and % purity:	AG13736, AC3088, 99%				
Doses: Species/strain: Number/sex/group or time point: Route; formulation; volume; and infusion rate: Age: Weight: Parameters:	0, 3, 10, and 30 mg/kg Mice/ CD-1 4 males/group Oral gavage single dose 0.5% w/v carboxymethylcellulose (CMC) 5 mL/kg/ Approximately 6 weeks 22 to 26 g • Behavior, • Skeletal muscle tone, • Reflexes, • Body temperatures • Overt autonomic and				
Methods	neurological effects Functional Observational Battery measurements taken pre-dosing, and at approximately at 30, 90, 150, and 300 minutes and 24 hours after dosing				

Pulmonary effects:

Study Title: VFF-491: AG13736 Evaluation of Respiratory parameters in the conscious rat using whole body bias flow plethysmography

Key Study Findings:

• No remarkable findings.

Report #: Conducting Laboratory and Location:

Date of Study Initiation GLP Compliance QA Report Drug, lot #, and % purity

VFF-491	
	(b) (4)
September 11, 2001	
Yes	
Yes (X), No ()	
AG13736; AC3088, >98%	

0, 50, 250, and 500 mg/kg (0, 300,

Doses:

		1500, and 3000 mg/m ²)
Species/strain:		Rat/ Winstar
Number/sex/group or time point:		8 males/group
Route; formulation; volume;	and	Oral Gavage single dose
infusion rate:		0.5% w/v carboxymethylcellulose
		(CMC)
		5 mL/kg
Age:		7 weeks
Weight:		160 to 213 grams
Parameters:		Respiratory rate, tidal volume, and
		minute volume.

Experimental conditions:

Group	Oral treatment	Animals/group	Dose (mg/kg)
1	0.5% w/v CMC	8	0
2	AG13736	8	50
3	AG13736	8	250
4	AG13736	8	500
5	Morphine sulphate	8	200
	(reference standard)		
6	AG13736	8	50
7	AG13736	8	250
8	AG13736	8	500

Results and Conclusion:

- No mortalities were observed.
- No effects on respiration rate, tidal volume, and/or minute volume.

Gastrointestinal effects:

Study Title: VFF-489: Charcoal Propulsion Test in Mice Following Oral Administration.

Key Study Findings:

• No remarkable findings.

Report #: Conducting Laboratory and Location:	VFF-489	(b) (4)
Date of Study Initiation: GLP Compliance: QA Report: Drug, lot #, and % purity:	July 18, 2001 Yes Yes (X), No () AG13736, AC3088, >99%	
Doses:	0, 3, 10, and 30 mg/kg	

d	Mice/ CD-1 10 males/group
and	Oral gavage single dose
	0.5% w/v carboxymethylcellulose
	(CMC)
	5 mL/kg
	Approximately 5 weeks
	20 to 24 grams
	Gastrointestinal irritancy
	 30 minutes after oral administratio
	and

- 30 minutes after oral administration animals received 0.25 ml of charcoal in water (5% w/v) by gavage.
- 30 minutes after charcoal administration, animals were sacrificed and checked for gastrointestinal irritancy

Experimental conditions:

Group	Oral treatment	Animals/group	Dose (mg/kg)
1	0.5% w/v CMC	10	0
2	AG13736	10	3
3	AG13736	10	10
4	AG13736	10	30
5	Morphine sulphate (reference standard)	10	200

Results and Conclusion:

- No mortalities were observed.
- No remarkable changes in terms of gastrointestinal irritancy were observed.

Study Title: VFF-490: Assessment of Effects on Gastric Emptying in Rats Following Oral Administration (Phenol Red Method).

Key Study Findings

 All doses produced increases in gastric emptying; however, statistically significant increases occurred at doses <a>10 mg/kg when compared to controls.

Report #: Conducting Laboratory and Location:	VFF-490	(b) (4
Date of Study Initiation: GLP Compliance: QA Report: Drug, lot #, and % purity:	August 16, 2001 Yes Yes (X), No () AG13736, AC3088, >98%)

red on absorbance spectra read (560 nm) for gastrointestinal

Doses: Species/strain: Number/sex/group or time point:		0, 3, 10, and 30 mg/kg Rat/ Winstar 10 males/group
Route; formulation; volume; infusion rate:	and	Oral gavage single dose 0.5% w/v carboxymethylcellulose (CMC)
		5 mL/kg
Age:		Approximately 7 weeks
Weight:		172 to 200 grams
Parameters:		Gastrointestinal irritancy
Methods		 Phenol red method of testing was
		used - 30 minutes after oral
		administration animals received 1.5 ml of marker solution (phenol red) by gavage
		 30 minutes later, rats were
		euthanized and stomach contents were homogenized in NaOH and

Experimental conditions:

Group	Oral treatment	Animals/group	Dose (mg/kg)
1	Standard (phenol red)	10	-
2	0.5% w/v CMC	10	0
3	AG13736	10	3
4	AG13736	10	10
5	AG13736	10	30
6	Morphine sulphate (reference standard)	10	20

Results and Conclusion:

- No mortalities were observed.
- All doses produced increases in gastric emptying; however, statistically significant increases occurred at doses ≥10 mg/kg when compared to controls. See Applicant's Table 1 below.

irritancy

TABLE 1

Group	Oral treatment	Dose (mg/kg)	% gastric emptying
1	Phenol red only	-	0.0
2	Vehicle	-	58.7
3	AG13736	5	73.9
4	AG13736	10	81.5*
5	AG13736	30	73.9*
6	Morphine sulphate	20	28.8**

Effects of oral administration of AG13736 on gastric emptying in the rat

Significance of difference from vehicle-treated group: p < 0.05, p < 0.01

(table excerpted from Applicant's package)

Cardiovascular effects:

Study Title: AG013736HERG: Assessment of the Potential Effect of AG-013736 on hERG Potassium Current Stably Expressed in HEK293 Cells

Report #: AG013736HERG Conducting Laboratory and Location: Pfizer Global Research and Development Safety Pharmacology, Drug Safety Evaluation Agouron Pharmaceuticals, Inc., San Diego, CA 92121 September 26, 2003 Date of Study Initiation GLP Compliance No QA Report Yes (), No (X) Drug, lot #, and % purity AG-013736; AC3273, 99.7% Vehicle DMSO Methods 3 µM Doses: Standard hERG assay using HEK293 cell line

Study Design:

Results and Conclusion:

• AG-013736 was tested at one concentration of 3µM. Higher concentrations could not be tested because 3 µM is the limit of AG-013736 solubility in hERG extracellular recording saline.

• At that nominal concentration of 3μ M, AG-013736 inhibited the hERG K+ current by $7 \pm 0.6\%$ (mean \pm SEM, N=6). See Applicant's Table 1 below.

Table 1. Inhibition of *hERG* potassium currents by AG-013736. Percent inhibition after 5 minutes drug exposure was calculated based on the ratio of the current in the presence of drug relative to the extrapolated control amplitude. Statistical analysis of the data was performed using a paired T-test (two-tailed) of the extrapolated control current amplitudes versus the current amplitudes in the presence of drug, in which p<0.05 is considered significant. See the Data Analysis section for a description of control data correction.

Observation	% Inhibition at 3 μM
1	6.0
2	8.5
3	6.0
4	5.5
5	8.2
6	7.9
Mean ± SEM	7.0 ± 0.6 , p< 0.05

(table excerpted from Applicant's package)

Study Title: DOF GBLFP1 E-02102006: Ki Determination of AG-028458 (sulfoxide metabolite of AG-013736) in Dofetilide Fluroescence Polorization Binding Assay

Report #: Conducting Laboratory and Location:	DOF GBLFP1 E-02102006 Pfizer Global Research and Development Biochemical Pharmacology San Diego, CA 92121
Date of Study Initiation	December 23, 2009
GLP Compliance	No
QA Report	Yes (), No (X)
Drug, lot #, and % purity	AG-028458 (sulfoxide metabolite of
	AG-013736); no other information was given
Methods	0.002, 0.006, 0.02, 0.064, 0.201, 0.635,
Doses:	2.01, 6.34, 20, 63.3, and 200 µM
Study Design:	To determine binding affinity using Cy3B tagged N-desmethyl dofetilide competitively bound to hERG cell HEK293

Results and Conclusion:

- The observed IC₅₀ is >200 μ M and the K_i is >79 μ M. See Applicant's Table below.
- The results suggest that the binding affinity (K_i) of AG-028458 (sulfoxide metabolite of AG-013736) may be predictive of functional hERG channel blockage.

AG-028458				
Dose [uM]	% Inhibition Replicate 1	% Inhibition Replicate 2	Average %Inhibition	500 Lone 190
200	49.0	44.9	46.9	80
63.3	20.4	16.3	18.4	70 60
20	2.7	-2.0	0.3	90
6.34	0.0	0.0	0.0	-
2.01	-0.7	-0.7	-0.7	1 2 2
0.635	3.4	-6.1	-1.4	ω •
0.201	-4.1	-0.7	-2.4	-10
0.064	-4.1	-8.2	-6.1	-20
0.02	-4.8	-5.4	-5.1	-30 -40
0.006	-4.1	-4.1	-4.1	50
0.002	0.0	-0.7	-0.3	.81 .1 Deve (uM) 10 190 Selfwirker Genes (640)

(table excerpted from Applicant's package)

Study Title: SP107: Assessment of the Effect of PF-04621675 on hERG Potassium Current Stably Expressed in HEK293 Cells

Report #: Conducting Laboratory and Location:	SP107 Pfizer Global Research and Development
	Biochemical Pharmacology
Date of Study Initiation	San Diego, CA 92121 August 13, 2007
GLP Compliance	No
QA Report	Yes (), No (X)
Drug, lot #, and % purity	PF-04621675-00-0002 (glucuronide conjugate of AG-013736); 118435-102-
	01, no purity info. provided
Methods	1, 3, 10, and 30 μM.
Doses:	
Study Design:	Standard hERG assay using HEK293 cell line

Results and Conclusion:

- PF-04621675, the glucuronide conjugate of AG-013736 and a primary metabolite of AG-013736 in humans, was tested at concentrations of 1, 3, 10, and 30 μ M. The highest concentration tested (30 μ M) is predicted to be >90 fold the human free C_{max}.
- PF-04621675 did not significantly inhibit the hERG current at any of the concentrations tested.

- The IC₅₀ value could not be determined because 50% inhibition was not achieved at the highest concentration tested (30 μ M).
- Therefore the IC₅₀ for PF-04621675 is >30 μ M. See Applicant's Table 1 below.

Cell number	% Inhibition 1 μM	% Inhibition 3 μM	% Inhibition 10 μM	% Inhibition 30 μM	Cell IC₅₀ μM
1	12.6	18.3	22.3	20.8	>30
2	-0.1	0.2	-3.9	-2.2	>30
3	-	5.4	7.0	11.6	>30
4	-	2.9	4.7	7.3	>30
5	-	-4.5	-8.3	-5.0	>30
6	-	-3.8	-8.9	-12.6	>30
7	-	-2.5	-4.8	-2.1	>30
8	-	1.6	3.0	2.4	>30
9	-	-2.2	-0.4	-4.8	>30
Mean \pm SEM	6.2 NS	1.7 ± 2.3 NS	1.2 ± 3.2 NS	1.7 ± 3.4 NS	>30

Table 1. Inhibition of *hERG* potassium currents by PF-04621675. Percent inhibition after 4 minutes compound exposure was calculated based on the ratio of the current in the presence of compound relative to the control current amplitude. NS=not significant.

(table excerpted from Applicant's package)

Study Title: SP4002: Evaluation of Cardiovascular Effects of Oral AG-013736 in Mice

Report #: Conducting Laboratory and Location: Date of Study Initiation GLP Compliance QA Report Drug, lot #, and % purity	SP4002 Pfizer Global Research and Development Safety Pharmacology, Drug Safety Evaluation San Diego, CA 92121 July, 2001 No Yes (), No (X) AG-013736, AG-013736, 99.8%
Doses: Species/strain: Number/sex/group or time point: Route; formulation; volume; and infusion rate:	0, 10, 30, and 100 mg/kg Mice/ C57/BL6 9 male/group Oral gavage twice daily (6 hours apart) for 4 consecutive days followed by 3 days recovery 0.5% w/v carboxymethylcellulose (CMC) 10 mL/kg

Age: Weight: Parameters: Approximately 5 weeks 20 to 24 grams Clinical signs (pre-dose on dosing days) Body weights Heart rate Systemic arterial blood pressures (systolic, diastolic, and mean pressure)

In addition, plasma samples (measuring AUC) were collected on Days 1 and 4 at al doses

Results and Conclusion:

- No mortalities were observed.
- Due to change in blood pressure observed in vehicle animals, the results (statistical analysis) were inconclusive.
- TK data showed AUC was 63, 1020, and 3720 ng*h/mL at 3, 30, and 100 mg/kg, respectively.

Study Title: SP4002-2: Evaluation of Cardiovascular Effects of Oral AG-013736 in Mice

Key Study Findings:

Study was repeated due to inconclusive results from Study No. SP4002.

Report #: Conducting Laboratory and Location: Date of Study Initiation GLP Compliance QA Report Drug, lot #, and % purity	SP4002-2 Pfizer Global Research and Development Safety Pharmacology, Drug Safety Evaluation San Diego, CA 92121 July, 2001 No Yes (), No (X) AG-013736, AG-013736, 99.8%
Doses: Species/strain: Number/sex/group or time point: Route; formulation; volume; and infusion rate:	0 and 30 mg/kg Mice/ C57/BL6 3 male/group for control; 6/male/group for AG-013736-treated Oral gavage twice daily (6 hours apart) for 4 consecutive days followed by 3 days recovery 0.5% w/v carboxymethylcellulose (CMC)

Age: Weight: Parameters: 10 mL/kg Approximately 5 weeks 20 to 24 grams Clinical signs (pre-dose on dosing days) Body weights Heart rate Systemic arterial blood pressures (systolic, diastolic, and mean pressure)

In addition, plasma samples were collected at 0.25, 1.5, 3, 6, 8, and 24 hours at 30 mg/kg

Results and Conclusion:

- No mortalities were observed.
- At 30 mg/kg and baseline, ↑ systolic 9-16%, ↑ diastolic 13-20%, and ↑ mean arterial 11-18%, compared to control.
- At 30 mg/kg and 1-8 hours post-dose, ↓ Heart rate; -10 to -13%.
- At 30 mg/kg and 16-24 hours post-dose, ↑ Heart rate; 10-14%.
- Heart rate and blood pressure remained ↑ 10-20% at times during the first 2 days of recovery and began to return to baseline values on recovery Day 3.
- Most systemic arterial blood pressure changes were the result of AG-013736 .

Study Title: SP0304: Evaluation of Chronic AG13736 Treatment in Conscious Telemeterized Wistar Rats

Key Study Findings:

- Temporal patterns of systolic blood pressure and heart rate showed changes in daily peak time and increased fluctuations, respectively at <a>300 mg/kg/day.
- Following withdrawal, systolic blood pressure and heart rate returned to vehicletreated values within 48 hours.

Report #: Conducting Laboratory and Location:	SP0304 Pfizer Global Research and Development Safety Pharmacology, Drug Safety Evaluation San Diego, CA 92121
Date of Study Initiation GLP Compliance QA Report Drug, lot #, and % purity	July, 2009 No Yes (), No (X) AG-013736, AC3088, 100%
Doses:	0, 100, 300, and 500 mg/kg/day

Species/strain: Number/sex/group or tir	ne point:		Rat/Wistar 9 M (vehicle); 11M (300 and 500 mg/kg/day)
Route; formulation; infusion rate:	volume;	and	Oral gavage twice daily (6 hours apart) for 7 days 0.5% w/v carboxymethylcellulose (CMC) 10 mL/kg
Age: Weight: Parameters:			Approximately 7 weeks 225-250 grams Clinical signs (pre-dose on dosing days) Body weights Heart rate Systemic arterial blood pressures (systolic, diastolic, and mean pressure)
			In addition, plasma samples were collected at 2, 6, 8, and 24 hours post dose

Experimental conditions:

Group	Oral treatment	Animals/group	Dose (mg/kg/day)
1	0.5% w/v CMC	9	0
2	AG13736	9	100
3	AG13736	11	300
4	AG13736	11	500

Results and Conclusion:

- No mortalities were observed.
- A modest dose-dependent elevation in systolic blood pressure (SBP) was observed in all treated animals compared to controls (See Applicant's Table 1)
- Doses of 300 and 500 mg/kg/day resulted in statistically significant increases in SBP on Days 2-4 of treatment (See Applicant's Table 1).
- SBP was significantly increased on Days 5-7 of treatment at 500 mg/kg/day only (See Applicant's Table 1).

	Table 1. Systolic Blood Pressure AG13736						
	Vehicle	100	(mg/kg/day) 100 300 500				
Day 0 (mmHg)	117±2	114±2	114±2	115±2			
Day 4 (mmHg)	116±1	117±1	118±2*	122±2*			
Day 7 (mmHg)	116±1	116±2	118±2	120±2*			
Day 14 (mmHg)	113±1	113±2	111±2	111±2			

-4-12- DL - J Dave service . . 1 0

SBP, systolic blood pressure.

* p<0.05 vs. Vehicle, Data represented as mean \pm SEM.

n=9 (vehicle, 100 mg/kg groups), n= 11 (300, 500 mg/kg groups)

(table excerpted from Applicant's package)

Lower HR was observed in the 300 mg/kg/day group only. ٠

Table 2. Heart Kate						
	Vehicle	AG13736 (mg/kg/day)				
		100	300	500		
Day 0 (bpm)	428±10	433±6	418±7	423±5		
Day 4 (bpm)	428±6	430±5	405±5*	416±5		
Day 7 (bpm)	421±5	425±4	398±7*	416±5		
Day 14 (mmHg)	405±5	411±4	400±6	409±4		

Table ? Heart Rate

SBP, systolic blood pressure.

* p<0.05 vs. Vehicle, Data represented as mean ± SEM.

n=9 (vehicle, 100 mg/kg groups), n= 11 (300, 500 mg/kg groups)

(table excerpted from Applicant's package)

- · Following withdrawal, SBP and heart rate returned to vehicle-treated values within 48 hours.
- AUC and C_{max} increased with increasing dose. See Applicant's Table 3 Plasma PK Table below.

	1 able 5. Flasma 1 mai macokinetics				
	AG13736 (mg/kg/day)				
	100	300	500		
T max (hr)	6.5±2.8	6.7±2.4	6.4±2.8		
C max total (ng/mL)	101.8±46	294.4±96	458.9±218		
C max free (ng/mL)	3.66±1	10.80±3	19.26±7		
AUC total (ng*hr/mL)	1080±573	3180±1060	4790±1060		
AUC free (ng*hr/mL)	38.88±19	110.40±29	199.22±66.3		

Table 3. Plasma	Pharmacokinetics
-----------------	-------------------------

n=9 (100 mg/kg group), n= 11 (300, 500 mg/kg groups) Data represent mean values ± STDEV

plasma protein binding in rat = 96.4%

(table excerpted from Applicant's package)

Study Title: VFF/492: Telemetric Evaluation of Cardiovascular Effects in the Conscious Dog (oral administration)

Key Study Findings:

No remarkable changes in ECG waveform intervals (PR, QRS, QT, QTcB, QTcF)

Report #:	VFF/492
Conducting Laboratory and Location:	(b) (4)
Date of Study Initiation	July 17, 2001
GLP Compliance	Yes
QA Report	Yes (X), No ()
Drug, lot #, and % purity	AG-013736, AC3088, >98%
Deese	0.2.10. and 20 mg///g/day
Doses: Species/strain:	0, 3, 10, and 30 mg/kg/day Dog/Beagle
Number/sex/group or time point:	1 M and 1 F
Route; formulation; volume; and	Oral gavage once with a 7 day wash
infusion rate:	out period
	0.5% w/v carboxymethylcellulose
	(CMC)
Ago:	2 mL/kg
Age: Weight:	297 days 10.5-13.1 kg
Parameters:	Behavior observations
· ····································	Arterial blood pressure (systolic,

diastolic, and mean) Heart rate ECG intervals (PR, QRS, QT, QTcB, and QTcF)

In addition, plasma samples were collected at pre-dose and 2 hours post-dose

Experimental conditions:

Group	Oral treatment	Animals/group	Dose (mg/kg/day)
1	0.5% w/v CMC	1	0
2	AG13736	1	3
3	AG13736	1	10
4	AG13736	1	30

Results and Conclusion:

- No mortalities were observed.
- No remarkable changes in ECG waveform intervals (PR, QRS, QT, QTcB, QTcF)
- No remarkable behavioral changes
- Mean combined plasma concentration at 30 mg/kg was 223.4 ng/mL.

Study Title: SPT04-029: Assessment of the Effects of AG-013736 on Blood Pressure and Heart Rate in Conscious, Telemetered Beagle Dogs

Key Study Findings:

 It is inconclusive whether the increase in arterial blood pressure and decrease in heart rate are test article related or a result of normal biological variation due both (1) the variability in baseline hemodynamic data between the treatment groups on Day 1 vs. Day 3 and (2) the high degree of inter-animal variability in the plasma concentrations.

Report #: Conducting Laboratory and Location:	SPT04-029 (b) (4)
Date of Study Initiation	October 24, 2004
GLP Compliance	Yes
QA Report	Yes (X), No ()
Drug, lot #, and % purity	AG-013736, 2737-C-1-P, >98%
Doses: Species/strain: Number/sex/group or time point: Route; formulation; volume; and	0, 10, 50, and 150 mg/kg/day Dog/Beagle 6M Oral gavage bid (6 hours apart) for 3

infusion rate:

Age: Weight: Parameters: days 0.5% w/v carboxymethylcellulose (CMC) 5 mL/kg 297 days 10.5-13.1 kg Clinical observations Body weights Arterial blood pressure (systolic, diastolic, and mean) Heart rate

In addition, plasma samples were collected at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 24 hours after drug administration on Days 1 and Day 5 to access exposure on AG-013736 (drug) and AG-028458 (sulfoxide metabolite)

Experimental conditions:

Group	Oral treatment	Animals/group	Dose (mg/kg/day)
1	0.5% w/v CMC	6	0
2	AG13736	6	10
3	AG13736	6	50
4	AG13736	6	150

Results and Conclusion:

- No mortalities were observed.
- Arterial blood pressure parameters increased during treatment when compared to vehicle or baseline during study Days 1 and 3.
- Heart rate tended to decrease over time.
- Both arterial blood pressure and heart rate trends were dose-related; however, the variability in baseline hemodynamic data between the treatment groups on Day 1 vs. Day 3 and the high degree of inter-animal variability in the plasma concentrations preclude a definitive conclusion on whether the trends noted in arterial blood pressure and heart rate are test article related or a result of normal biological variation.
- Mean pharmacokinetic parameter estimates for AG-013736 and AG-028458 are shown in the Tables below. Pharmacokinetic analysis could not be conducted for treatment group 1 (5 mg/kg/dose), since all plasma concentrations were below the limit of quantitation of 4.00 ng/mL (BLQ).

Pharmacokinetic	5 mg/kg/dose AG-013736				0	kg/dose 13736
Parameter	Dose 1	Dose 2	Dose 1	Dose 2	Dose 1	Dose 2
C _{max} (ng/mL)	BLQ	BLQ	81.5 (n = 6)	172 (n = 6)	124 (n = 6)	787 (n = 6)
AUC _{last} (ng: h/mL)	NA	NA	171 (n = 6)	394 (n = 6)	246 (n = 6)	5230 (n = 6)
t _{maxt} b (h)	NA	NA	2 (n = 3)	2^{a} (n = 3)	2 (n = 4)	3 ^a (n = 6)
t _{lastt} (h)	NA	NA	3 (n = 3)	4 ^a (n = 3)	5 (n = 4)	4 ^a (n = 6)
t _{1/2} (h)	NE	NE	0.39 (n = 1)	NE	NE	1.8 (n = 1)

Summary of Pharmacokinetic Parameter Estimates for AG-013736 on Study Day 5 after Repeat Oral Gavage Dose Administration of AG-013736

BLQ = Below the Quantitation Limit of 4.00 ng/mL

NA = Not Applicable

NE = Not Estimated

^a= Relative to the time of administration of Dose 2.

 b = Median for t_{max} and t_{last}

Summary of Pharmacokinetic Parameter Estimates for AG-028458 on Study Day 5 after
Repeat Oral Gavage Dose Administration of AG-013736

Pharmacokinetic	5 mg/kg/dose AG-028458		25 mg/kg/dose AG-028458		75 mg/kg/dose AG-028458	
Parameter	Dose 1	Dose 2	Dose 1 Dose 2		Dose 1	Dose 2
Cmax (ng/mL)	BLQ	BLQ	26.9 (n = 6)	37.3 (n = 6)	21.0 (n = 6)	111 (n = 6)
AUC _{last} (ng· h/mL)	NA	NA	62.0 (n = 6)	96.4 (n = 6)	51.4 (n = 6)	238 (n = 6)
t _{max} b (h)	NA	NA	1.5 (n = 4)	3 ^a (n = 5)	2 (n = 4)	3 ^a (n = 6)
t _{last} b (h)	NA	NA	3 (n = 4)	4 ^a (n = 5)	3.5 (n = 4)	4 ^a (n = 6)
t _{1/2} (h)	NE	NE	0.63 (n = 1)	NE	NE	NE

BLQ = Below the Quantitation Limit of 4.00 ng/mL

NA = Not Applicable

NE = Not Estimated

^a= Relative to the time of administration of Dose 2.

 b = Median for t_{max} and t_{last}

(tables excerpted from Applicant's package)

5 Pharmacokinetics/ADME/Toxicokinetics

Study title:

Determination of plasma levels in rats following oral administration (study # VFF/526). See Attachment 1.

6 General Toxicology

6.1 Single-Dose Toxicity

Study title: Acute Oral Toxicity Study in Mice with AG13736. Study # 22337-D-800. See Attachment 1

Study title: Single Dose Oral Gavage Toxicity and Toxicokinetic Study with AG-013736 in Dogs with a 14-Day Observation Period.

Study no.:	^{(b) (4)} - 6348-505
	Pfizer – 08LJ017
Study report location:	(b) (4)
Conducting laboratory and location:	(b) (4)
Date of study initiation:	15 May 2008
GLP compliance:	No
QA statement:	Yes
Drug, lot #, and % purity:	AG-0137736, lot # AXM-00-004A, 99.8% purity

Key Study Findings

- Single dose administration of AG-013736 up to 2000 mg/kg did not cause any mortality in dogs.
- There were no drug-related changes in body weight, food consumption or clinical pathology parameters.
- Combined male and female C_{max} and AUC₀₋₂₄ were approximately 499 ng/mL and 5070 ng*hr/mL, respectively

Methods Doses:	0, 500, 1000, and 2000 mg/kg
Frequency of dosing:	single dose
Route of administration:	Oral gavage
Dose volume:	5 mL/kg
Formulation/Vehicle:	0.5% carboxymethylcellulose
Species/Strain:	dog / Beagle
Number/Sex/Group:	3
Age:	8 to 9 months
Weight:	7.3 to 8.2 kg for males
	7.1 to 8.8 kg for females
Satellite groups:	None
Unique study design:	None
Deviation from study protocol:	None

Observations and Results

Mortality

- None
- •

Clinical Signs (Twice daily)

- 500 mg/kg Abnormal fecal excretion in one male
- 2000 mg/kg Vomiting and mucoid and discolored feces

Body Weights	(predose, dosing day and weekly after dosing)
No difference	
Feed Consumption	(Daily)
No difference	
Ophthalmoscopy	Not conducted
ECG	Not conducted

Hematology

• No significant difference (large variations and small number of animals)

Clinical Chemistry

• No difference

Urinalysis	Not conducted
Gross Pathology	Not conducted
Organ Weights	Not conducted
Histopathology	Not conducted

Toxicokinetics

(1, 4, 8, and 24 hours after dosing)

Mean toxicokinetic parameters						
Dose						
group		(ng∗hr/mL				
2	Μ	347±175	3.0±1.7	1950±1470		
	F	574±407	4.3±3.5	4740±4460		
3	Μ	334±381	16±13	2580±3170		
	F	177±151	16±13	1680±1880		

Dose	Sex	C _{max} (ng/mL)	T _{max} (hr)	AUC ₀₋₂₄
group				(ng∗hr/mL
4	Μ	295±490	2.0±1.7	3420±5780
	F	702±887	11±12	6720±9130

6.2 Repeat-Dose Toxicity

- Study title:14-Day Gavage Toxicity Study with AG13736 in Mice:Study #6750-144.See Attachment 1
- Study title: 28-Day Gavage Toxicity Study with AG13736 in Mice: Study # 6750-145. See Attachment 1

Study title: 26-Week Oral Gavage Chronic Toxicity and Toxicokinetic Study with AG13736 in Mice with a 13-Week Interim Sacrifice and 4-Week Recovery Period

Study no.:	^{(b) (4)} study # 6750-148
Study report location:	(b) (4)
Conducting laboratory and location:	(b) (4)
Date of study initiation:	24 August 2001
GLP compliance:	Yes
QA statement:	Yes
Drug, lot #, and % purity:	AG13736, lot # AC3088, 98% purity
Key Study Findings	

Key Study Findings

- Oral administration of AG13736 induced poor health, broken and/or missing tooth/teeth and malocclusion in a dose-dependent manner.
- STD₁₀ was 30 mg/kg/day.
- Spleen, testes and uterus weights were reduced in a dose-related manner and correlated with microscopic findings.
- AUC increase was slightly greater than dose proportional.

Methods

Doses:	0 (control), 5, 15, 50 and 125 mg/kg/dose
Frequency of dosing:	twice daily (see table below for details)
Route of administration:	Oral gavage
Dose volume:	5 mL/kg/dose
Formulation/Vehicle:	0.5% carboxymethylcellulose
Species/Strain:	Crl:CD-1®(ICR)BR mice

Number/Sex/Group:	40
Age:	6 to 7 weeks
Weight:	25 to 34 g for males
-	20 to 28 g for females
Satellite groups:	100 animals/sex/group for PK
Unique study design:	None
Deviation from study protocol:	None

	Number o	f Animals	Dose Level	Dose Level	Concentration
Group	Male	Female	mg/kg/day	mg/kg/BID	mg/mL
			Μ	lain Study M	lice
1 (Control) ^{a,b}	40	40	0	0	0
2 (Low) ^a	30	30	10	5	1
3 (Mid) ^{a,b}	40	40	30	15	3
4 (Mid-High) ^{a,b} 5 (High) ^{a,b}	40	40	100	50	10
5 (High) ^{a,b}	40	40	250	125	25
			То	xicokinetic N	Aice
6 (Low)	100	100	10	5	1
7 (Mid)	100	100	30	15	3
8 (Mid-High)	100	100	100	50	10
9 (High)	100	100	250	125	25

a The first surviving 15 mice/sex/group (based on accession numbers) were sacrificed after at least 13 weeks of treatment.

b The subsequent first surviving 10 mice/sex/group (based on accession numbers) were sacrificed following at least 13 weeks of treatment and 4 weeks of recovery, except for the 250 mg/kg/day dose group where 8 males and 9 females were sacrificed.

c The remaining animals were sacrificed following 26 weeks of treatment (Terminal sacrifice).

(excerpted from the Applicant's submission)

Observations and Results

Mortality: Scheduled and unscheduled sacrifices or deaths

	Interim	Sacrifice	Recovery	Sacrifice	Terminal	Sacrifice	Mor	tality
Group/ Treatment	М	F	М	F	М	F	М	F
l (Control)	15	15	10	10	15	14	0	1
2 (Low - 10 mg/kg/day)	15	15	0	0	14	15	1	0
3 (Mid - 30 mg/kg/day)	15	15	10	10	13	14	2	1
(Mid High - 100 mg/kg/day)	15	15	10	10	11	11	4	4
5 (High - 250 mg/kg/day)	15	15	8	9	6	3	11	13

M = Males/ F = Females

(excerpted from the Applicant's submission)

Clinical Signs:

(twice daily)

• 100 and 250 mg/kg/day - Treatment-related increases in malocclusion, broken and/or missing tooth/teeth, poor health, hypoactivity, hunched posture, thinness, and/or rough hair coat

Body Weights: (weekly)

			y weight e	- 3- (3)							
Week	Sex		Group								
		1	2	3	4	5					
			Dos	se (mg/kg/d	ose)						
		0	5	15	50	125					
1-13	М	6.3±2.4	6.4±2.3	5.0±3.1	6.0±1.8	1.8*±5.1					
(interim phase)	F	4.4±1.6	4.4±1.5	4.3±1.6	3.9±1.5	2.5±2.8					
14-17	М	1.0±0.8	0	1.5±1.2	1.1±0.8	4.9*±3.6					
(recovery phase)	F	-	0	2.5*±1.4	1.2±0.5	2.6*±2.1					
		0.4±1.0									
14-26	М	0.9±0.7	1.2±1.1	1.1±1.4	-0.5±3.1	0					
(terminal phase)	F	0.1±1.8	1.0±1.1	0.9±1.1	1.4±1.9	0					

Mean body weight Change (g)

Statistically significant from control; $P \le 0.05$

Feed Consumption:

(weekly)

Mean Food consumption (g)

				P							
Week	Sex	Group									
		1	2	3	4	5					
		Dose (mg/kg/dose)									
		0	5	15	50	125					
1-13	М	498±30	502±40	494±41	482±23	458±28					
(interm phase)	F	452±27	458±25	441±21	430±20	426±24					
14-17	М	157±10	0	156±11	161±9	160±12					
(recovery phase)	F	158±12	0	163±15	157±11	154±13					
14-26	М	478±27	484±46	472±29	479±37	0					
(terminal phase)	F	457±33	471±31	453±31	442±37	0					

Ophthalmos	scopy:	No treatment related ocular find and 26.	ings during weeks 13, 17, 22
ECG:		Not conducted	
Hematology	/:	(Weeks 14, 18, 22, and 27). No dose-related effects	
Clinical Che	emistry:	No drug-related effects	
Urinalysis:		No drug-related effects	
Gross Path	ology:	0	
	Interim sacri	fice:	27-28 November 2001 (13 weeks)
	Recovery sa	crifice:	26-27 December 2001 (13 +4 weeks)
		crifice (250 mg/kg/day): crifice (all remaining animals):	22 January 2002 25-26 February 2002 ((26 weeks)

• Broken incisors in a dose-related manner, soft testes and small uteri of high dose animals.

Organ Weights:

• Reduced mean organ weight (relative and absolute) of spleen, testes, and uterus of mid and high dose animals.

Histopathology:

Yes
Yes

		Intern	iii Out							
Sex			Male					Female	е	
Group	1	2	3	4	5	1	2	3	4	5
Organ/finding Dose (mg/kg/day)	0	10	30	100	250	0	10	30	100	250
Adrenal, cortex, hyperplasia, subcapsular						4	0	0	1	7
hemorrhage						0	0	0	1	0
necrosis						0	0	0	1	0
Bone, femur, thickened growth plate	0	0	3	0	9	0	0	1	2	9
Bone, tibia, thickened growth plate	0	0	0	1	4	0	0	0	0	4
Cecum, hyperplasia, epithelial	0	0	0	3	10					
inflammation	0	1	1	1	13					
crypt gland necrosis	0	0	0	0	1					
Colon, hyperplasia, epithelial	1	0	0	0	3	0	0	0	0	1
crypt gland necrosis	0	0	0	0	2					
inflammation	0	0	1	0	1	0	0	0	0	2
Duodenum, hyperplasia					1					
crypt gland necrosis					1					
Epididymis, sperm, abnormal morphology	0	0	1	6	16					
Esophagus, necrosis						0	0	0	0	1
Gallbladder, inflammation						0	0	0	0	1
Heart, peri/epicardium, inflammation and						0	0	0	0	1
foreign material										
lleum, hyperplasia					1					
Incisor tooth, odontoblast,										

Interim Sacrifice

Sex	Male							Female	3	
Group	1	2	3	4	5	1	2	3	4	5
Organ/finding Dose (mg/kg/day)	0	10	30	100	250	0	10	30	100	250
degeneration/necrosis/drop out	0	0	6	5	15	0	0	1	10	10
dentin, degeneration/ malformation	0	12	16	14	19	0	6	14	17	17
ameloblast, degeneration	0	0	8	5	2	0	0	2	4	6
periodontal inflammation	0	0	0	0	5					
pulp cavity, inflammation/necrosis/	0	0	0	1	11	0	0	0	0	2
fibroplasia, pulp cavity, fibroplasia	0	0	0	0	4					
odontopathy	0	12	16	14	20	0	6	14	17	17
Kidney, pyelonephritis					2					
abscess				1	1	0	0	0	1	0
Liver, necrosis					2					
pigment			1	1	10	0	0	0	1	5
extramedullary hematopoiesis,					1	0	0	0	1	0
increased										
Lung, alveolus, macrophages, vacuolated	7				13	4	0	0	1	6
congestion	0	0	2	0	6	0	0	0	1	2
hemorrhage					1					
Marrow, femur, hyperplasia, myeloid	0	0	1	0	1	0	0	0	1	0
Marrow, rib, , hyperplasia, myeloid	0	0	1	0	1	0	0	0	1	0
Nerve, sciatic, degeneration						0	0	0	0	1
Ovary, bursa, cyst						0	0	0	1	1
Ovary, decreased corpora lutea						1	3	7	13	17
Seminal vesicle, abscess	0	0	0	1	1					
inflammation, suppurative	0	0	0	0	1					
Spleen, extramedullary										
hematopoiesis, increased	5	14	8	9	5	8	8	3	13	7
pigment	0	0	1	2	7	1	0	0	2	3
depletion, lymphoid	0	0	2	2	7	0	0	0	3	6
Stomach, hyperkeratosis				1	2					
acanthosis					1					
Testis, sperm, abnormal morphology	0	0	0	0	1		<u> </u>			
hypospermia	0	0	1	7	15					
Thyroid, inflammation						0	0	0	0	2
Thymus, depletion, lymphoid	0	0	2	0	5	1	0	0	2	4
perithymic, inflammation	0	0	1	0	0	0	0	0	0	1
Thyroid, follicle, cyst		1			1					
Trachea, peritracheal inflammation		1			1	0	0	0	0	1
Uterus, atrophy						0	0	0	1	10

Recovery Sacrifice

Sex			Male					Female	9	
Group	1	2	3	4	5	1	2	3	4	5
Organ/finding Dose (mg/kg/day)	0	10	30	100	250	0	10	30	100	250
Cecum, hyperplasia, epithelial	0	0	0	2	3					
inflammation	0	0	0	0	1					
Colon, hyperplasia, epithelial						0	0	0	0	2
Epididymis, sperm, abnormal										
morphology	0	0	1	2	3					
Eye, retina, degeneration	0	0	0	0	1					
cornea, mineralization						0	0	0	0	1
Gallbladder, inflammation						0	0	0	0	1
Incisor tooth, odontoblast,										
degeneration/necrosis/drop out	0	0	0	0	1					
dentin, degeneration/ malformation	0	0	0	3	6	0	0	0	1	4
ameloblast, degeneration	0	0	2	2	0					
periodontal inflammation	0	0	0	0	1	0	0	0	0	1
odontopathy	0	0	0	3	7	0	0	0	1	4

Sex			Male					Female	Э	
Group	1	2	3	4	5	1	2	3	4	5
Organ/finding Dose (mg/kg/day)	0	10	30	100	250	0	10	30	100	250
Kidney, pyelonephritis						0	0	0	0	2
Liver, necrosis						0	0	0	0	1
extramedullary hematopoiesis, increased						0	0	0	0	1
Lung, alveolus, macrophages, vacuolated	1	0	0		3	0	0	0	0	1
congestion	0	0	0	0	1					
pneumonia, interstitial	0	0	0	0	1	0	0	0	0	2
Marrow, rib, histiocytic infiltrate	0	0	0	0	1					
Ovary, follicle cyst						0	0	4	4	3
decreased corpora lutea						0	0	2	3	1
Spleen, pigment						0	0	0	0	1
Testis, hypospermia	1	0	0	1	2					
syncytial cells	0	0	0	1	0					
Uterus, atrophy						0	0	0	1	2
edema						0	0	0	1	0

Terminal Sacrifice

Sex			Male					Female	;	
Group	1	2	3	4	5	1	2	3	4	5
Organ/finding Dose (mg/kg/day)	0	10	30	100	250	0	10	30	100	250
Adrenal, medulla, unilaterally examined	0	0	0	0	2					
Bone, femur, thickened growth plate	0	0	0	0	2	1	1	1	0	5
Bone, tibia, thickened growth plate	0	0	0	0	1	1	0	1	0	1
Cecum, hyperplasia, epithelial	0	0	0	7	7	0	0	3	8	8
inflammation	0	2	3	9	8	0	0	5	11	9
crypt gland necrosis	0	0	0	0	1					
Colon, hyperplasia, epithelial	0	0	0	0	2	0	0	0	1	1
crypt gland necrosis	0	0	0	0	1	0	0	0	0	1
inflammation	0	0	0	0	2	0	0	0	1	1
Epididymis, sperm, abnormal										
morphology	0	1	0	2	7					
Eye, cornea, mineralization						0	0	0	0	1
Gallbladder, dilatation						0	0	0	0	1
erosion/inflammation/fibrosis						0	0	0	0	2
Incisor tooth, odontoblast,										
degeneration/necrosis/drop out	0	0	3	9	10	0	0	1	5	10
dentin, degeneration/ malformation	0	11	12	112	10	0	8	10	9	10
ameloblast, degeneration	0	1	0	2	3	0	4	0	2	4
periodontal inflammation	0	0	0	0	3	0	0	0	0	3
pulp cavity, inflammation/necrosis	0	1	0	2	3	0	0	1	0	2
pulp cavity, fibroplasia	0	0	0	1	0					
odontopathy	0	11	12	11	10	0	10	9	9	10
Kidney, abscess	0	0	0	0	1					
tubule vacuolation	0	0	0	0	1					
tubule, microconcretion						0	0	0	0	1
tubules, pigment						0	0	0	0	1
amyloidosis						0	0	0	0	1
Lacrimal gland, inflammation	2	1	0	1	5					
Liver, pigment	0	1	0	4	6	1	3	6	7	8
Lung, alveolus, macrophages,										
vacuolated	3	0	0	1	7	3	0	0	0	1
congestion	0	3	0	1	3	0	0	0	0	5
Optic nerve, degeneration						0	0	0	0	1
Ovary, decreased corpora lutea						1	4	9	11	10

NDA # 202-324

Sex			Male					Female	;	
Group	1	2	3	4	5	1	2	3	4	5
Organ/finding Dose (mg/kg/day)	0	10	30	100	250	0	10	30	100	250
Rectum, hyperplasia, epithelial	0	0	0	0	1					
inflammation						0	0	0	0	1
Spleen, extramedullary										
hematopoiesis, increased	4	6	4	6	7					
pigment	0	0	1	5	2	1	1	4	6	7
depletion, lymphoid	0	1	0	1	5	1	0	1	0	7
Stomach, erosion	0	0	0	0	2					
Testis, hypospermia	0	1	1	5	8					
Thymus, depletion, lymphoid	0	1	0	3	4	1	0	1	0	4
Urinary bladder, hemorrhage	0	0	0	1	0					
necrosis	0	0	0	1	0					
vacuolar change						0	0	0	0	2
uterus, atrophy						0	2	1	8	5

Special Evaluation:

None

Toxicokinetics:

(prior to dosing and 0.25, 0.5, 1, 2, 6, 6.5, 7, 8, 12 and 24 hours after dosing on day 1, week 13, and week 26)

Group mean A	G13736 toxicokinetics	s in mice following	oral administration

AG13736 Dose (mg/kg/day)	Group Mean AG13736 Toxicokinetic Parameters On Sex* Day 1, Week 13, and Week 26												
(Day 1			Week 1		Week 26					
		C _{max} (ng/mL)	T _{max} (hr)	AUC _{0-m} (ng.hr/mL)	C _{max} (ng/mL)	T _{max} (hr)	AUC _{0-24h} (ng.hr/mL)	C _{max} (ng/mL)	T _{max} (hr)	AUC _{2-24h} (ng.hr/mL)			
	м	190.90	6.5	496.97	94.50	0.5	427.44	108.13	6.5	342.74			
10	F	239.33	0.5	724.58	719.67	0.3	664.73	166.77	6.5	457.04			
	M + F	179.12	6.5	609.65	372.70	0.3	546.09	137.45	6.5	401.07			
	м	699.67	6.5	2011.78	345,33	0.5	1837.22	436.33	1.0	1885.68			
30	F	1137.00	6.5	3747.39	802.33	0.5	2955.85	817.67	0.5	2643.32			
	M + F	918.33	6.5	2879.55	573.83	0.5	2436.42	559.53	0.5	2262.19			
	м	2011.00	8.0	10996.08	1643.67	7.0	8067.28	2346.67	1.0	11297.13			
100	F	3560.00	1.0	13715.85	2490.00	0.5	15035.76	2460.00	8.0	15200.02			
	M + F	2666.67	1.0	12353.66	1618.20	7.0	11508.58	1842.17	8.0	13562.81			
	м	7090.00	6.5	32579.60	7853.33	8.0	32236.45	2460.00	7.0	14394.15			
250	F	7590.00	7.0	52525.57	5561.67	7.0	21511.68	3437.00	2.0	13800.88			
	M + F	6230.00	8.0	42114.54	5585.17	8.0	27150.32	3437.00	2.0	16834.43			

*Values were group means for n = 3 M or 3 F, or n = 6 M + F mice

Group mean values were calculated only if >50% of values were above the LLOQ (4 ng/mL)

Samples reported as BLQ (below limit of quantitation) were set equal to zero for TK calculation purposes.

(excerpted from the Applicant's submission)

BEST AVAILABLE COPY

NDA # 202-324

12,

- **Study title**: 14-Day Gavage Toxicity Study with AG13736 in Dogs: Study # 6750-142. See Attachment 1
- **Study title**: 28-Day Gavage Toxicity Study with AG13736 in Dogs: Study # 6750-143. See Attachment 1
- **Study title**: 26-Week Oral Gavage Chronic Toxicity and Toxicokinetic Study with AG13736 in Dogs with a 4-Week Recovery Period.

Study no.:	^{(b) (4)} 6750-150
Study report location:	(b) (4)
Conducting laboratory and loc	auon.
Date of study initiation:	August 22, 2001
GLP compliance:	Yes
QA statement:	Yes
Drug, lot #, and % purity:	AG13736, lot # AC3088
Key Study Findings	
	nale at 10 mg/kg/day were euthanized during weeks
17 and 18, respectively	I.
 Thymic lymphoid atrop 	hy was the major microscopic finding.
Methods	
Doses:	0.5, 1.5, 3.0, and 5.0 mg/kg/dose
Frequency of dosing:	Twice daily, at least 6 hours apart
Route of administration:	Oral gavage
Dose volume:	5 mL/kg/dose
Formulation/Vehicle:	0.5% carboxymethylcellulose
Species/Strain:	Beagle dogs
Number/Sex/Group:	See table below
Age:	7 to 10 months

7.5 to 12.4 kg

None

None

Weight:

Satellite groups:

Unique study design:

Deviation from study protocol: None

	No. of	Animals	Dose Level	Dose Level ^a	Concentration ^a
Group	Male	Female	(mg/kg/day)	(mg/kg/BID)	(mg/mL)
1 (Control) ^{b,c,d}	10	10	0	0	0
$2 (Low)^{c}$	8	8	1	0.5	0.1
3 (Mid) ^c	8	8	3	1.5	0.3
4 (Mid-High) ^{c,d}	11	11	6	3	0.6
5 (High) ^{c,d}	11	11	10	5	1.0

a The dose volume was 5 mL/kg/dose.

b Group 1 animals received the control article only.

c Four animals/sex in Groups 1 through 4 and four males and three females in Group 5 were sacrificed after at least 13 weeks of treatment.

d Two animals/sex in the control group and three animals/sex in Groups 4 and 5 were sacrificed following at least 13 weeks of treatment and 4 weeks of recovery.

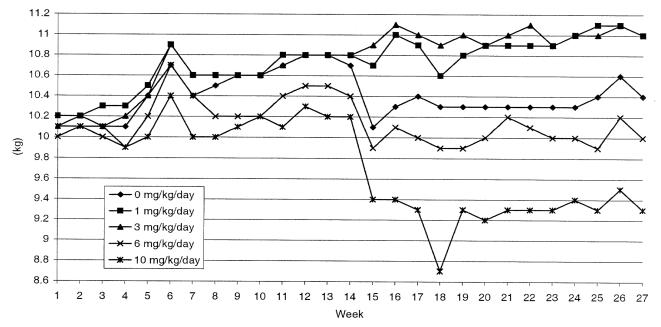
(excerpted from the Applicant's submission)

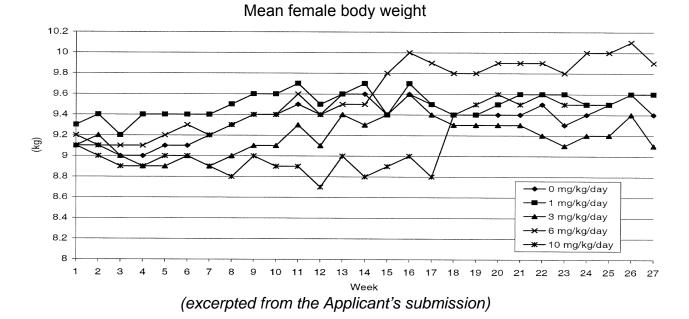
Observations and Results:

Mortality

(Twice daily)

• 10 mg/kg/day – Two females and one male were euthanized during weeks 12, 17 and 18, respectively.


Clinical Signs (Twice daily)


• 10 mg/kg/day – Dose dependent fecal abnormalities (colored feces, mucoid feces, liquid feces),

Body Weights (Weekly)

• 10 mg/kg/day – 12% decreased relative to control

Mean Male body weight

Feed Consumption (Weekly)

• 10 mg/kg/day - decreased

Ophthalmoscopy (Once before treatment and once during weeks 13, 17 and 26)

	Sex					е		Female						
		Group	1	2	3	4	5	1	2	3	4	5		
Ophthalmic	observations	Dose (mg/kg/day)	0	1	3	6	10	0	1	3	6	10		
Week 13	Lens, posterio	capsular, cataract, eye right	0	0	0	0	0	0	0	0	1	1		
		left	0	0	0	0	0	0	0	0	1	0		
	Vitreous floate	rs, eye-left	0	0	0	0	0	0	0	0	1	0		
Week 26	Lens, posterio	capsular ,cataract, eye-right	0	0	1	0	0	0	0	0	0	0		
	Vitreous floate	rs, eye-left	0	0	0	0	0	0	0	0	1	0		
Recovery	Lens, posterio	r capsular	0			0	0	0			0	1		
	cataract, eye-	right												

ECG

(Once before treatment and once during weeks 13, 17 and 26)

Week	Parameter			Male			Female							
		Group 1	Group 2	Group 3	Group 4	Group 5	Group 1	Group 2	Group 3	Group 4	Group 5			
13	Heart rate (beats/min)	4↓	7↓	3↑	6↓	2↑	5↑	25↑	9↓	0	6↑			
	P-R Int (second)	0	11↓	0	11↑	0	0	0	0	0	11↑			
	QRS Int (second)	0	0	0	20↓	0	25↑	0	0	0	0			
	Q-T Int (second)	6↑	0	5↓	5↑	5↑	5↓	11↓	0	6↓	5↓			

Changes in electrocardiographic data compared to baseline (%)

Week	Parameter			Male					Female	9	
		Group	Group	Group	Group 5						
		1	2	3	4	5	1	2	3	4	
26	Heart rate (beats/min)	3↓	8↓	0	0	4↑	38↑	22 ↑	5↓	2↑	12 ↑
	P-R Int (second)	0	0	11↑	22↑	0	0	0	11 ↑	11↑	11 ↑
	QRS Int (second)	25↑	25↑	25↑	0	0	25↑	25↑	25↑	0	0
	Q-T Int (second)	6↑	0	0	12↑	0	6↓	0	0	12 <u>↑</u>	12↓

Hematology Prior to treatment, during weeks 6 (end of week), 14 (beginning of week), 17 (end of week), and 27 (beginning of week).

• No dose-related hematological changes

Clinical Chemistry

• No dose-related changes

Urinalysis

• No dose-related changes

Gross Pathology

Interim sacrifice:	Day 91 of the study
Recovery sacrifice:	Day 123 of the study
Terminal sacrifice:	Day 183 of the study

Histopathology

Adequate Battery:	Yes
Peer Review:	Yes

Histological findings (interim sacrifice)

					/							
	Sex			Ма	le		Female					
	Group	1	2	3	4	5	1	2	3	4	5	
Dose (r	ng/kg/day	0	1	3	6	10	0	1	3	6	10	
Organ and findings Number of	of animals	4	4	4	4	4	4	4	4	4	3	
Epididymides, inflammation, chronic-activ	'e	0			2	0						
abnormal, sperm forms		1			1	1						
Kidney, infiltrate, lymphohistiocytic		0	1	2	0	0	0	0	0	1	0	
Liver, necrosis, individual hepatocyte		0	0	0	0	0	0	0	1	0	0	
Lung, inflammation, chronic		0	1	4	1	2	2	1	0	3	0	
infiltrate, macrophage, alveolar		0	0	0	0	0	1	0	0	0	0	
Ovary, inflammation, vascular/perivascula	ar						0	0	0	0	1	

	Sex	Male						Female					
	Group	1	2	3	4	5	1	2	3	4	5		
	Dose (mg/kg/day	0	1	3	6	10	0	1	3	6	10		
Organ and findings	Number of animals	4	4	4	4	4	4	4	4	4	3		
Spleen, pigment, increased		0			0	0	0			0	1		
Thymus, involution		0	1	0	1	0	1	1	1	1	0		
atrophy, lymphoid		0	0	0	0	0	0	0	0	0	3		

• There were no microscopic findings considered to be related to the administration of test article at the recovery sacrifice.

				-/							
Sex			Ма	le		Female					
Group	1	2	ი	4	5	1	2	ი	4	5	
Dose (mg/kg/day	0	1	ა	6	10	0	1	ა	6	10	
Organ and findings Number	4	4	4	4	3	4	4	4	4	3	
of animals											
Kidney, infiltrate, lymphohistiocytic	0	1	0	0	0	1	1	0	0	1	
Liver, necrosis, individual hepatocyte	0	0	0	0	0	0	0	0	1	0	
Spleen, pigment, increased	0	0	0	0	0	0	0	0	0	1	
Thymus, involution	2	2	3	3	2	1	2	3	2	1	

Histological findings (terminal sacrifice)

Toxicokinetics

Prior to dosing (days 85 and 176) and approximately 0.25, 0.5, 1, 2, 6, 6.5, 7, 8, 12, and 24 hours on days 1, 85 and 175.

AG13736 Dose (mg/kg/day)	Sex	Mean AG13736 Toxicokinetic Parameters On Day 1, 84, and 175									
(116/26/04))	002	Day 1 ^a				Day 84ª		Day 175°			
		C _{max} (ng/mL)	T _{mex} (hr)	AUC _{0-*} (ng.hr/mL)	C _{max} (ng/mL)	T _{max} (hr)	AUC ₀₋₂₄₆ (ng.hr/mL)	C _{max} (ng/mL)	T _{max} (hr)	AUC _{0-24h} (ng.hr/mL)	
	М	1.67 (3.14)	2.8 (3.3)	2.25 (2.03)	4.14 (4.72)	2.2 (2.4)	9.83 (8.73)	1.29 (0.53)	19.8 (8.5)	11.02 (5.87)	
1	F	6.02 (11.00)	2.4 (2.3)	14.30 (17.87)	3.79 (8.37)	8.9 (9.8)	24.46 (53.97)	1.85 (1.90)	8.5 (2.4)	6.08 (2.28)	
	M + F	3.99 (8.36)	2.6 (2.7)	8.67 (14.15)	3.96 (6.57)	5.5 (7.7)	17.15 (38.10)	1.57 (1.33)	14.1 (8.3)	8.55 (4.90)	
	м	6.66 (6.35)	2.5 (3.1)	22.20 (19.55)	2.26 (1.94)	4.7 (4.6)	11.88 (6.94)	7.28 (11.22)	4.3 (3.8)	12.30 (14.24)	
3	F	5.34 (2.65)	7.8 (0.5)	16.92 (6.70)	21.88 (31.94)	7.3 (3.0)	68.85 (86.27)	17.03 (19.30)	5.8 (2.5)	48.65 (39.85)	
	M + F	6.00 (4.75)	5.1 (3.5)	19.56 (14.38)	12.07 (24.07)	6.0 (4.0)	40.36 (66.04)	12.15 (15.52)	5.0 (3.1)	30.47 (33.84)	
	М	22.89 (17.64)	4.3 (3.4)	94.16 (80.16)	41.78 (80.23)	5.6 (3.3)	138.66 (249.29)	29.53 (24.09)	4.3 (3.2)	97.57 (78.81)	
6	F	15.76 (13.84)	3.9 (3.3)	52.20 (44.19)	50.12 (119.63)	6.4 (2.9)	158.23 (380.06)	56.54 (82.70)	6.0 (3.4)	176.37 (259.19)	
	M + F	19.32 (15.89)	4.1 (3.3)	73.18 (66.72)	45.95 (99.49)	6.0 (3.0)	148.45 (313.81)	43.03 (58.21)	5.1 (3.2)	136.97 (182.28)	
	М	127.06 (114.70)	2.4 (1.9)	319.89 (206.34)	89.01 (84.25)	5.6 (3.4)	350.72 (378.78)	286.37 (267.71)	5.7 (3.2)	959.09 (926.29)	
-10	F	46.95 (20.81)	2.4 (1.9)	187.97 (110.09)	60.32 (44.54)	7.4 (1.9)	216.88 (139.11)	8.59 (5.34)	7.7 (0.6)	29.43 (13.68)	
	M + F	87.01 (90.28)	2.4 (1.9)	253.93 (174.94)	75.35 (68.24)	6.5 (2.9)	286.99 (291.78)	147.48 (227.66)	6.7 (2.3)	494.26 (776.25)	

Mean Toxicokinetics

Mean (SD) values were calculated only if >50% of values were above the LLOQ (0.2 ng/ml)

Samples reported as BLQ (below limit of quantitation) were set equal to zero for PK calculation purposes.

Mean (SD) values calculated from 8M and 8F dogs for the 1 and 3 mg/kg/day dose groups and from 11M and 11F dogs for the 6 and 10 mg/kg/day dose groups.

"Mean (SD) values calculated from 4M and 4F dogs for the 1, 3, 6 mg/kg/day dose groups and from 3M and 3F dogs for the 10 mg/kg/day dose group.

Statistical analysis (Student's paired t-test) resulted in no significant differences for M + F TK parameters between Days 1 and 84 or between Days 1 and 175 at all doses. However, at the 1 mg/kg dose, Tmax was significantly different between Days 1 and 175, and at 10 mg/kg, Tmax was significantly different between Days 1 and 84.

(excerpted from the Applicant's submission)

Study title: 9-Month Oral Gavage Toxicity and Toxicokinetic Study of AG-

013736 in Dogs with 8-W		
Study no.:	^{(b) (4)} – 6348-470	
	Sponsor – 07LJ134	
Study report location:	electronic submission	
Conducting laboratory and location:		(b) (4)
Date of study initiation:	January 17, 2008	

Yes
Yes
AG-013736, lot # AXM-00-0004A
(GR01037), 99.93% purity

Key Study Findings

Mathada

- Administration of AG-013736 twice daily (approximately 6 hours apart) via oral gavage at 0.5, 1.5, or 3 mg/kg/dose twice daily for 39 weeks to male and female dogs did not cause any mortality.
- Treatment of AG-013736 did not affect the mean body weight, food consumption, ophthalmic or electrocardiographic evaluation.
- Treatment-related decreased testis weight of mid and high dose animals correlated with microscopic findings.
- Systemic exposure (C_{max} and AUC₀₋₂₄) indicated the slight accumulation.

Methods	
Doses:	0.5, 1.5 or 3.0 mg/kg/dose
Frequency of dosing:	Twice daily (~6 hours apart)
Route of administration:	Oral gavage
Dose volume:	2.5 mL/kg/dose or 5 mL/kg/day
Formulation/Vehicle:	0.5% CMC
Species/Strain:	Beagle dogs
Number/Sex/Group:	See table below
Age:	7-8 months
Weight:	6.8 to 9.4 kg for males
	5.6 to 7.3 kg for females
Satellite groups:	None
Unique study design:	None
Deviation from study protocol:	None

	No. of A	nimalsb	Levelc	Dose Concentration	
Groupa	Male	Female	(mg/kg/day)	(mg/kg/dose)	(mg/mL)
1 (Control)	6	6	0	0	0
2 (Low)	4	4	1	0.5	0.2
3 (Mid)	7	7	3	1.5	0.6
4 (High)	7	7	6	3.0	1.2

Group 1 received control article only. a

b Animals designated for recovery sacrifice (the last two animals/sex in Group 1; the last three animals/sex in Groups 3 and 4) in ascending order underwent 8 weeks of recovery following final dose administration. c Animals were dosed at a volume of 2.5 mL/kg/dose or 5 mL/kg/day.

(excerpted from the Applicant's submission)

Observations and Results

Mortality

(Twice daily)

• None

Clinical Signs

• Treatment related fecal abnormalities (no feces, liquid, mucoid, and nonformed feces, discolored feces) in a dose-response related manner.

Body Weights (Weekly)

• No drug-related effects

Feed Consumption (Daily)

• No dose- or duration of exposure-related effects

Ophthalmoscopy (Predose and on Days 106 and 259)

• No visible dose-related lesions

ECG (Predose and on Days 112 and 274)

 No clear test article-related effect on the PR, QRS or QT intervals as shown below.

				Dosi	ng Day 274	-Predose				Dosing Day	/ 274 - 1 - 2	Hours Po	stdose	
	Dose Level		RR Int	Heart Rate	QRS Int	PR Int	QT Int	QTc Int	RR Int	Heart Rate	QRS Int	PR Int	QT Int	QTc Int
Group	(mg/kg/day)		(msec)	(Beats/minute)	(msec)	(msec)	(msec)	(msec)	(msec)	(Beats/minute)	(msec)	(msec)	(msec)	(msec)
1	0	Mean	500	124	36	84	189	240	508	125	36	84	192	243
		SD	102.6	23.7	1.9	8.2	8.2	11.0	142.3	29.1	2.3	14.1	11.7	8.2
		Ν	6	6	6	6	6	6	6	6	6	6	6	6
2	1	Mean	562	110	35	96	192	233	571	106	37	98	192	232
		SD	124.8	21.8	2.0	19.2	11.9	10.4	60.4	12.0	1.5	18.5	5.8	6.4
		Ν	4	4	4	4	4	4	4	4	4	4	4	4
3	3	Mean	536	117	35	85	186	230	559	113	36	87	188	229*
		SD	112.4	26.8	2.2	7.8	10.1	5.9	121.0	31.0	2.0	10.9	12.9	6.4
		Ν	7	7	7	7	7	7	7	7	7	7	7	7
4	6	Mean	535	114	35	87	189	234	576	107	36	87	194	234
		SD	71.4	19.8	2.1	10.4	7.1	3.9	106.9	20.0	1.8	11.9	8.8	7.0
		Ν	7	7	7	7	7	7	7	7	7	7	7	7

Mean electrocardiographic data - Males

* P< or =0.05

(excerpted from the Applicant's submission)

				Dosi	ng Day 274	-Predose				Dosing Day	274 - 1 - 2	Hours Po	stdose	
Group	Dose Level (mg/kg/day)		RR Int (msec)	Heart Rate (Beats/minute)	QRS Int (msec)	PR Int (msec)	QT Int (msec)	QTc Int (msec)	RR Int (msec)	Heart Rate (Beats/minute)	QRS Int (msec)	PR Int (msec)	QT Int (msec)	QTc Int (msec)
1	0	Mean	442	139	34	86	179	235	429	144	34	83	180	239
		SD	69.2	23.1	2.0	8.6	12.5	8.5	83.8	23.5	1.9	7.3	18.4	9.7
		Ν	6	6	6	6	6	6	6	6	6	6	6	6
2	1	Mean	502	120	34	97	183	230	564	111	35	97	190	231
		SD	37.4	8.9	1.3	3.7	1.8	4.7	140.0	24.0	2.0	7.3	9.3	13.3
		Ν	4	4	4	4	4	4	4	4	4	4	4	4
3	3	Mean	554	110	35	89	187	228	671*	94*	36	87	198	227
		SD	79.3	16.9	2.7	10.3	10.2	9.3	149.8	22.2	2.7	8.1	14.1	7.0
		Ν	7	7	7	7	7	7	7	7	7	7	7	7
4	6	Mean	518	118	36	88	193	240	606	103*	37	90	201	238
		SD	72.2	16.5	1.7	10.5	11.4	5.7	126.2	22.6	2.2	8.7	13.2	7.3
		Ν	7	7	7	7	7	7	7	7	7	7	7	7

Mean electrocardiographic data - females

* P< or =0.05

(excerpted from the Applicant's submission)

Hematology

(predose and approximately 0.25, 0.5, 1, 2, 6 (immediately before second dose), 6.5, 7, 8, 12, and 24 hours postdose on Days 1, 36, 90, and 272 of the dosing phase)

• No treatment-related hematological changes

Clinical Chemistry

 Group 4 (6 mg/kg/day) – ↑ Cholesterol (1.3x control group mean) in females only on day 275 and reversed during the recovery period.

Urinalysis

- No drug-related effects
- **Gross Pathology** First 4 animals/sex in groups 1-4 were sacrificed and necropsied after 39 weeks of treatment. Remaining animals were sacrificed and necropsied after 39 weeks of administration followed by 8 weeks of recovery.

Organ Weights

• Groups 3 and 4 – Dose-related decreased testis weights

Histopathology

Adequate Battery:	Yes
Peer Review:	No

Final phase sacrifice (39 week sacrifice)									
	Sex					Females			
	Dose group			3	4	1	2	3	4
	Dose (mg/kg/day)	0	1	3	6	0	1	3	6
Tissue with diagnoses	No. in group	4	4	4	4	4	4	4	4
Brain, infiltrate, lymphocytes/macrophages				0	1	0	0	0	2
mineralization				0	0	0	0	0	1
Epididymis, hypospermia		0	0	0	4				
debris, cellular, lumen		0	0	1	2				
infiltrate, lymphocytes/ma		1	1	0	0				
cribriform change, epithelium				2	0				
Testis, degeneration/atrophy	1	0	3	4					
syncytial cells		0	0	3	4				

Final phase sacrifice (39 week sacrifice)

Recovery Phase sacrifice

Sex			Male	S	Fer	nale	es
	Dose group	1	3	4	1	3	4
	Dose (mg/kg/day)	0	3	6	0	3	6
Tissue with diagnoses	No. in group	2	3	3	2	3	3
Epididymis, hypospermia		0	0	0			
debris, cellular, lumen		1	1	0			
infiltrate, lymphocytes/ma	1	1	0				
cribriform change, epithe	1	0	2				
Prostate, infiltrate, lymphocytes	s/macrophages	0	0	1			
Testis, degeneration/atrophy		0	0	0			
syncytial cells		1	1	0			
hypospermatogenesis		1	2	2			
hypoplasia	1	2	2				
spermatocele	0	0	1				
Ovary, atresia, follicle					2	2	3

Toxicokinetics

Summary of mean combined male and female toxicokinetics

Group	dose		Cmax ((ng/mL)			Tmax (hr)				AUC 0-24 (ng*hr/mL)			
	(mg/kg/	Day 1	Week	Week	Week	Day 1	Week	Week	Week	Day 1	Week	Week	Week	
	day)		6	13	39		6	13	39		6	13	39	
2	0.89	0.07	2.1±	1.7±	3.3±	1.3	1.0	1.0±	1.1±	0.25	3.9±	3.8±	6.9±	
			3.2	2.6	6.5			0.5	0.4		5.4	4.1	9.8	
3	2.56	2.4±	28.0±	14.1±	9.5±	0.8±	2.6±	2.5±	1.2±	6.5±	83.9±	46.2±	25.5±	
		4.8	27.3	20.9	17.0	0.4	4.5	4.5	0.6	12.5	90.8	65.6	49.0	
4	6.0	23.8±	51.1±	70.2±	31.8±	0.9±	1.1±	1.6±	1.6±	74.2±	133±	231±	114±	
		36.4	42.9	65.9	28.8	0.5	0.6	0.6	0.5	125	118	226	121	

Histopathology inventory:

Study	6750-148	6750-150	6348-470
Species	Mouse	Dog	Dog
Adrenals	X*	X*	
Aorta			Х
Bone Marrow smear	Х	Х	Х
Bone (femur)	Х	Х	Х
Brain	X X X* X	X X X* X	X*
Cecum	Х	Х	Х
Cervix			Х
Colon	Х	Х	Х
Duodenum	Х	Х	Х
Epididymis	X*	Х	Х
Esophagus	X X X* X X	X X X X X	X* X X X X X X X X X X X X X X
Eye	Х	Х	Х
Fallopian tube			
Gall bladder	X*	Х	X X
Gross lesions	X* X	X X	Х
Harderian gland			
Heart	X* X	X* X	X* X
lleum	Х	Х	Х
Injection site			
Jejunum	Х	X X*	X X*
Kidneys	X X* X	X*	X*
Lachrymal gland	Х		
Larynx			X X* X
Liver	X* X*	X* X*	X*
Lungs	X*	X*	Х
Lymph nodes,			
cervical			
Lymph nodes	Х	Х	
mandibular			
Lymph nodes,	Х	Х	Х
mesenteric			
Mammary Gland	Х	Х	Х
Nasal cavity			
Optic nerves	X X* X X*	X X* X X*	X X X X
Ovaries	X*	X*	X
Pancreas	X	X	X
Parathyroid	X*	X*	Х
Peripheral nerve			
Pharynx			

Study	6750-148	6750-150	6348-470
Species	Mouse	Dog	Dog
Pituitary	X*	X*	X
Prostate	X*	X*	X
Rectum	Х	Х	
Salivary gland	Х	Х	Х
Sciatic nerve	Х	Х	Х
Seminal vesicles	Х		
Skeletal muscle	Х	Х	Х
Skin	Х	Х	Х
Spinal cord	Х	X X*	X X*
Spleen	Х	X*	X*
Sternum	Х	X X	X X
Stomach	Х	Х	Х
Testes	Х	X*	X* X*
Thymus	Χ*	X*	X*
Thyroid	X*	X*	X X
Tongue	Х	Х	Х
Trachea	Х	Х	Х
Upper incisors			
Urinary bladder	Х	Х	Х
Uterus	Х	X*	Х
Vagina	X*	Х	Х
Zymbal gland			

X, histopathology performed *, organ weight obtained

7 Genetic Toxicology

7.1 *In Vitro* Reverse Mutation Assay in Bacterial Cells (Ames)

Study title: Microbial Reverse Mutation Assays: Study # 01-2191-02, see Attachment 1.

7.2 In Vitro Assays in Mammalian Cells

Study title: *In Vitro* Cytogenetic Assays: Study # 01-2191-03, see Attachment 1.

7.3 In Vivo Clastogenicity Assay in Rodent (Micronucleus Assay)

Study title: Mouse Micronucleus Assay: Study # 01-2191-01, see Attachment 1.

Carcinogenicity: None conducted 8

Reproductive and Developmental Toxicology 9

9.1 Fertility and Early Embryonic Development

Study title: Combined Oral (Gavage) Fertility and Developmental Toxicity Study in Mice Evaluating Twice Daily Administration of AG-013736.

Study no.:	^{(b) (4)} – LIA00238
	Sponsor – 06GR118
Study report location:	electronic submission
Conducting laboratory and location:	(b) (4)
Date of study initiation:	October 12, 2006
GLP compliance:	Yes
QA statement:	Yes
Drug, lot #, and % purity:	AG-013736, lot # EO10003889

Key Study Findings

- Toxicity was observed in both sexes at 250 mg/kg/day.
- In the present study, NOAEL for general toxicity was 100 and 250 mg/kg/day for females and males, respectively.
- NOAEL for reproductive toxicity was 30 mg/kg/day in males; no NOAEL for reproductive toxicity was established in females.
- Duration of cohabitation in 250 mg/kg females was increased (4.4 days) as compared to vehicle treated females (2.4 days).
- Fertility index of treated female mice decreased in a dose-related manner.
- The cauda epididymal sperm count of high dose males was reduced by 15% as compared to the vehicle control group value.
- Litter averages for corpora lutea and implantation among the four dose groups did not change significantly.

Methods Doses:

Frequency of dosing:

Dose volume:

Males – 0, 5, 15 or 50 mg/kg/dose (0, 10, 30 or 100 mg/kg/day) Females - 0, 15, 50 or 125 mg/kg/dose (0, 30, 100 or 250 mg/kg/day Twice daily, approximately 6 hours apart 5 mL/kg/dose Route of administration: Oral gavage

Formulation/Vehicle: Species/Strain: Number/Sex/Group: Age:	0.5% Carboxymethylcellulose, lot # 052K0203 Crl:CD1(ICR) mouse 22 70-80 days
Weight:	30-37 g for males
	26-32 g for females
Study design:	Cohabitation – one treated male mouse per untreated female mouse per cage, and consecutively one treated female mouse per untreated male mouse per cage.
Deviation from study protocol:	None
Dose period	Males – 70 days before cohabitation and continued (maximum of 14 days) till sacrifice.
	Females – 15 days before cohabitation and continued through DG 7.

Observations and Results

Mortality (twice daily)

- One male mouse in each of the 30 and 100 mg/kg/day dose groups was sacrificed due to intubation accident.
- One female mouse in the vehicle control group and one in the 30 mg/kg/day dose group were sacrificed and found dead, respectively.

Clinical Signs (twice daily)

• No drug-related observation

Body Weight (daily)

- Males No affect on body weights and body weight gains.
- Females Maternal body weight gain at 100 and 250 mg/kg/day was reduced relative to the vehicle control values.

Toxicokinetics (Day of study (DS) 12 or 13 at 0.5, 1 and 6.5 hours after the first dose of the day from group 1 females and 0 (prior to dose), 0.5, 1.0, 2, 6, 6.5, 7, 12, and 24 hours after the first dose from group 2 to 4 females)

	oral autilitistia		3-013730	o un uay 12	
Dose	Sex		max (mL)	T _{max} (h)	AUC ₍₀₋₂₄₎ (ng•h/mL)
(mg/kg/day)		Mean	SD	Mean	Mean
10	Male	175	79.3	7.0	947
	Male	853	208	6.5	3180
30	Female	602	245	6.5	2850
	Overall	728	245	6.5	3010
	Male	2860	633	6.5	15200
100	Female	4450	2350	6.5	15200
	Overall	3660	1770	6.5	15200
250	Female	7950	3420	7.0	47900

Mean toxicokinetics parameters of AG-013736 after oral administration of AG-013736 on day 12

Mean toxicokinetics parameters of PF-03482595 (metabolite) after oral administration of AG-013736 on day 12 of study.

Dose (ma/ha/day)	Sex		nax 'mL)	Tmax (h)	AUC(0-24) (ng•h/mL)
(mg/kg/day)		Mean	SD	Mean	Mean
10	Male	125	14.4	6.5	629
	Male	597	82.4	6.5	2150
30	Female	571	160	7.0	2720
	Overall	478	225	1.0	2430
	Male	1870	889	1.0	9740
100	Female	2590	922	6.5	9880
	Overall	2070	822	6.5	9830
250	Female	3710	2010	2.0	22500

(excerpted from Applicant's submission)

Stability and Homogeneity

• Samples were found within specification and stable.

Necropsy

- All male mice were sacrificed after the completion of the cohabitation. Right testis, left testis, left Epididymis (whole and caudal), right epididymis, seminal vesicles (with and without fluid) and prostate were individually weighed and fixed.
- Surviving female mice were sacrificed on DG 14. The number and distribution of corpora lutea were recorded. The uterus of each mouse was excised and examined for pregnancy, number and distribution of implantation site and viable and nonviable embryos.
- No drug-related gross lesions.

NDA # 202-324

Anwar Goheer, Ph.D.

Terminal body	weights and	organ	weights of males	

DOSAGE GROUP DOSAGE (MG/KG/DAY)a		I O (VEHICLE)	11 10	111 30	IV 100
MICE TESTED	N	22	22	22	22
INCLUDED IN ANALYSES	N	22	22	21b	21Ь
TERMINAL BODY WEIGHT	MEAN±5.D.	37.9 ± 2.4	38.6 ± 2.8	38.4 ± 2.3	37.0 ± 1.8
EPIDIDYNIS LEFT	MEAN±5.D.	0.0529 ± 0.0052	0.0550 ± 0.0056	0.0540 ± 0.0045	0.0526 ± 0.0047
CAUDA EPIDIDYMIS LEFT	MEAN±5.D.	0.0186 ± 0.0024	0.0205 ± 0.0029*	0.0200 ± 0.0023	0.0205 ± 0.0023*
FESTIS LEFT	MEAN±5.D.	0.1242 ± 0.0125	0.1256 ± 0.0173	0.1184 ± 0.0119	0.0967 ± 0.0132**
SEMINAL VESICLES WITH FLUID SEMINAL VESICLES	MEAN±S.D.	0.3520 ± 0.0576	0.4117 ± 0.0839*	0.3602 ± 0.0721 [20]c	0.3637 ± 0.0712
WITHOUT FLUID	MEAN±5.D.	0.1274 ± 0.0178	$0.1451 \pm 0.0184**$	0.13B0 ± 0.0229 [20]c	
EPIDIDYMIS RIGHT	MEAN±5.D.	0.0501 ± 0.0046		0.0532 ± 0.0055*	
FESTIS RIGHT	MEAN±5.D.	0.1300 ± 0.0132	0.1314 ± 0.0170	0.1298 ± 0.0189	0.1016 ± 0.0139**
PROSTATE	MEAN±S.D.	0.0247 ± 0.0077 [21]c	0.0220 ± 0.0068 [21]c	0.0221 ± 0.0067 [18]c	0.0225 ± 0.0052

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

a. Dosage occurred twice daily.

b. Excludes values for mice that were sacrificed due to dosing accidents.

- c. Excludes values for mice that had abnormal organs (weight affected), organs damaged (weight affected) or organ weights that appeared incorrectly recorded.
- * Significantly different from the vehicle control group value ($p\leq 0.05$).
- ** Significantly different from the vehicle control group value (p≤0.01).

(excerpted from the Applicant's submission)

Fertility Parameters (Mating/Fertility Index, Corpora Lutea, Preimplantation Loss, etc.):

• All mating and fertility parameters (days in cohabitation, fertility index) of treated male mice mated with untreated female mice were unaffected.

BEST AVAILABLE COPY

NDA # 202-324

Anwar Goheer, Ph.D.

DOSAGE GROUP			I			II III					IV		
DOSAGE (MG/KG/DAY)		7) 0	VEHIC]	LE)		10			30			100	
MICE TESTED	N		22			22			22			22	
INCLUDED IN ANALYSES	N		22			22			21;	9		21a	
VAS DEFERENS SPERM MOT	LITY												
NUMBER MOTILE	MEAN±S.D.	579.5	±	300.7	713.2	±	378.3	594.3	±	277.6	674.4	±	366.6
MOTILE PERCENT	MEAN±S.D.	88.2	ŧ	10.7	89.8	±	16.9**	93.0	±	4.2	90.6	±	13.6*
STATIC COUNT													
(NONMOTILE)	MEAN±S.D.	66.7	ŧ	46.2	49.2	±	38.5	48.0	ŧ	35.7	55.3	ŧ	65.0
TOTAL COUNT C	MEAN±S.D.	646.3	±	310.4	762.4	±	369.5	642.4	ŧ	298.0	729.7	t	359.3
CAUDA EPIDIDYMAL SPERM	COUNT												
SPERM COUNT d	MEAN±S.D.	80.0	±	20.6	78.0	±	26.3	72.1	±	19.9	67.9	±	19.2
		[21]b)		[21]	b					20]]	ь
SPERM DENSITY e	MEAN±S.D.	2491.27	±	565.65	2196.35	±	613.40	2099.14	±	575.28*	1914.26	±	502.29**
		[21]b)		[21]	b				1	[20]]	ь

Sperm motility, count and density of treated male mice

a. Excludes values for mice that were sacrificed due to dosing accidents.

b. Excludes values that appeared incorrect due to possible sampling error.

c. Sum of number motile and static count. Groups of five fields were evaluated until a sperm count of at least 200 was achieved or 20 fields were evaluated.

d. Sperm count used in the calculation of sperm density. Ten fields were evaluated.

e. The sperm density was calculated by dividing the sperm count by the volume in the image area (34.3 x 10⁻⁵ mL), multiplying by 2 (dilution factor) and multiplying by 10⁻⁵ to obtain the sperm concentration. The calculated sperm concentration value (rounded to 1 decimal place) was multiplied by 50 (volume) and divided by the weight of the left cauda epididymis (see Table A15 for the weight of the left cauda epididymis) to obtain the sperm density. The calculated value will vary by approximately 0.8% (excerpted from the Applicant's submission)

NDA # 202-324

Anwar Goheer, Ph.D.

DOSAGE GROUP DOSAGE (MG/KG/DAY)a		I (VEHICLE)	11 30	III 100	IV 250
MATING OBSERVATIONS:					
MICE IN COHABITATION b,c,d	N	21	22	22	22
DAYS IN COHABITATION e M	EAN±S.D.	2.4 ± 2.1	2.7 ± 2.3	2.8 ± 2.5	4.4 ± 3.5
MICE THAT MATED	N (%)	21(100.0)	22(100.0)	22(100.0)	22(100.0)
FERTILITY INDEX f	N/N (%)	19/ 21 (90.5)	15/ 22 (68.2)	7/ 22** (31.8)	4/ 22** (18.2)
AICE WITH CONFIRMED					
ATING DATES	N	20	22	22	22
MATED BY MALE e					
DAYS 1-7	N (%)	18(90.0)	20(90.9)	20(90.9)	19(86.4)
DAYS 8-14	N (%)	2(10.0)	2(9.1)	2(9.1)	3(13.6)
MICE PREGNANT/MICE IN					
COHABITATION	n/n	19/ 21	15/ 22	7/ 22**	4/ 22**
	(%)	(90.5)	(68.2)	(31.8)	(18.2)

Estrous cycling, mating and fertility of treated female mice

a. Dosage occurred twice daily on day 1 of study through day 7 of presumed gestation.

b. Excludes values for mouse 908, which was sacrificed on day 9 of study due to adverse clinical observations.

c. All treated female mice were inadvertently cohabited with treated male mice on the first night of cohabitation. As a result,
 5, 7, 8 and 4 treated female mice in the 0, 30, 100 and 250 mg/kg/day groups, respectively, had evidence that mating occurred.

d. Includes treated female mice that were inadvertently placed into cohabitation with treated male mice on the first night of cohabitation.

e. Restricted to mice with a confirmed mating date.

f. Number of pregnancies/number of mice that mated.

** Significantly different from the vehicle control group value $(p \le 0.01)$.

NDA # 202-324

Anwar Goheer, Ph.D.

DOSAGE GROUP DOSAGE (MG/KG/DAY)a		• •	11 30	111 100	IV 250
MICE TESTED b,c		21d	22	22	22
	N (%) N (%)	• •	15(68.2) 1(6.7)	7(31.8)** 0(0.0)	4(18.2)** 0(0.0)
MICE PREGNANT AND CAESAREAN-SECTIONED					
ON DAY 14 OF GESTATION	N	19e	14	7	4
CORPORA LUTEA	MEAN±S.D.	13.3 ± 1.4	13.8 ± 3.2	15.3 ± 6.5	12.5 ± 3.5
IMPLANTATIONS	MEAN±S.D.	13.0 ± 1.3	13.5 ± 3.1	13.7 ± 6.2	11.2 ± 2.8
VIABLE EMBRYOS	N MEAN±S.D.	235 12.4 ± 2.2	103 7.4 ± 4.4	17 2.4 ± 4.1	0 0.0 ± 0.0*
NONVIABLE EMBRYOS	N MEAN±S.D.	$\begin{array}{rrr} 13\\0.7 \pm 1.3\end{array}$	86 6.1 ± 4.4**	79 11.3 ± 7.6**	45 11.2 ± 2.8**
MICE WITH ANY NONVIABLE EMBRYOS	N (%)	6(31.6)	12(85.7)**	6(85.7)*	4(100.0)**
MICE WITH ALL NONVIABLE EMBRYOS	N (%)	0(0.0)	0(0.0)	4(57.1)**	4(100.0)**
MICE WITH VIABLE EMBRYOS	N (%)	19(100.0)	14(100.0)	3(42.8)**	0(0.0)**
PLACENTAE APPEARED NORMA	LfN(%)	19(100.0)	14(100.0)	3(100.0)	
% NONVIABLE EMBRYOS/LITTER f			45.2 ± 29.9**	54.9 ± 47.9	

Caesarean sectioning and litter observation of treated female mice

a. Dosage occurred twice daily on day 1 of study through day 7 of gestation.

b. All treated female mice were inadvertently cohabited with treated male mice on the first night of cohabitation for the treated females. As a result, 5, 7, 8 and 4 treated female mice in the 0, 30, 100 and 250 mg/kg/day groups, respectively, had evidence that mating occurred.

c. Includes treated female mice that were inadvertently placed into cohabitation with treated male mice on the first night of cohabitation.

- d. Excludes values for mouse 908, which was sacrificed on day 9 of study due to adverse clinical observations.
- e. Includes values for mouse 919, which did not have a confirmed mating date.
- f. Excludes values for litters with no viable embryos.
- * Significantly different from the vehicle control group value (p≤0.05).
- ** Significantly different from the vehicle control group value (p≤0.01).

(excerpted from the Applicant's submission)

9.2 Embryonic Fetal Development

Study title: Oral (Gavage) Dosage-Range Finding Embryo-Fetal Development Toxicity Study in Mice Evaluating Twice Daily Administration of AG-013736.

Study no:

^{(b) (4)} – LIA00236 Sponsor – 06GR116 electronic submission

Study report location:

Conducting laboratory and location:

Date of study initiation: GLP compliance: QA statement: Drug, lot #, and % purity: June 22, 2006 None None AG-013736, lot # E010003889,

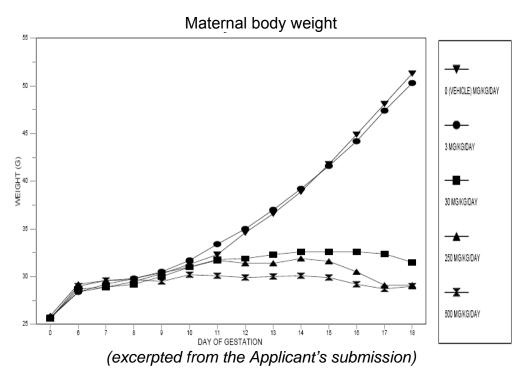
Key Study Findings

- AG-013736 did not cause any mortality up to 250 mg/kg/dose (500 mg/kg/day) from days 6 thorough 17 of presumed gestation in mice.
- Postimplantation loss (early resorptions) was increased at ≥3 mg/kg/day.
- 3 mg/kg/dose caused fetal gross findings.

Methods	
Doses:	1.5, 15, 125, 250 mg/kg/dose
	3, 30, 250, and 500 mg/kg/day
Frequency of dosing:	Twice daily, approximately 6 hours apart
Dose volume:	5 mL/kg
Route of administration:	oral gavage
Formulation/Vehicle:	0.5% carboxymethylcellulose (high viscosity)
Species/Strain:	Crl:CD1(1CR) mice
Number/Sex/Group:	8 presumed pregnant mice / group
Satellite groups:	33 animals at 125 mg/kg/dose for Toxicokinetics
Study design:	Dosed from DGs 6 through 17
Deviation from study protocol:	None

Observations and Results

Mortality (Twice daily)


- No mortality
- Clinical Signs

(Hourly for the first 4 hours after dosing)

• No clinical signs attributed to drug administration.

(b) (4)

Feed Consumption

- No effects
- Toxicokinetics

(DGs 17 or 18 at 0, 0.5, 1, 2, 6, 6.5, 7, 12, and 24 hours after the first dose).

Mean toxicokinetic parameters of AG-013736 (parent compound)

and PF-03482595 (main metabolite)						
	Analyte Dose Cmax Tmax AUC ₀₋₂₄					
		(mg/kg/day)	(µg/mL)	(h)	(µg.h/mL)	
	AG-013736	250	5.3	7	33.4	
	PF-03482595	250	3.2	2	21.4	

Stability and Homogeneity

• Within specification 90-110%

Necropsy

• No gross lesions

NDA # 202-324

Anwar Goheer, Ph.D.

Cesarean Section Data (Implantation Sites, Pre- and Post-Implantation Loss, etc.):

DOSAGE GROUP DOSAGE (MG/RG/DOSE)a DOSAGE (MG/RG/DAY)a			II 1.5 3	III 15 30	IV 125 250	V 250 500
MICE TESTED	N	в	8	8	8	8
PREGNANT	N (%)	B(100_0)	B(100_0)	B (100_0)	B (100.0)	B (100.0)
MICE PREGNANT AND CAESAREAN-SECTIONED ON DAY 18 OF GESTATION	N	в	8	8	8	8
CORPORA LUTEA	MEANHS.D.	12.5 ± 1.9	13.2 ± 1.0	12.5 ± 1.5	14.4 ± 2.3	14.0 ± 1.5
IMPLANTATIONS	MEANHS.D.	12.4 ± 1.8	12.9 ± 1.0	11.9 ± 1.6	13.8 ± 1.9	13.2 ± 1.0
LITTER SIZES	MEANHS.D.	12.0 ± 1.9	11.4 ± 1.6	0.1 ± 0.4	0.0 ± 0.0	0.0 ± 0.0
LIVE FETUSES	N MEAN±S.D.	96 12.0 ± 1.9	90 11.2 ± 1.6		0 0.0 ± 0.0	0 0.0 ± 0.0
DEAD FETUSES	N MEAN±S.D.	0 D_D ± 0.0	1 D.1 ± 0.4	0 0.0 ± 0.0	0 0.0 ± 0.0	0 0.0 ± 0.0
RESORPTIONS	MEANHS.D.	0.4 ± 0.5	1.5 ± 1.2	11.8 ± 1.4	13.8 ± 1.9	13.2 ± 1.0
EARLY RESORPTIONS	N MEAN±S.D.	2 D_2 ± 0.5	12 1.5 ± 1.2	94 11.8 ± 1.4	110 13.8 ± 1.9	106 13.2 ± 1.0
LATE RESORPTIONS	N MEAN±S.D.	1 D.1 ± 0.4	0 D.0 ± 0.0	0 0.0 ± 0.0	0 0.0 ± 0.0	0 0.0 ± 0.0
MICE WITH ANY RESORPTIO	NS N (%)	3(37.5)	7(87.5)	B(100_0)	B(100.0)	B(100.0)
MICE WITH ALL CONCEPTUS DEAD OR RESORBED	ES N (%)	D(0_0)	D(0.0)	7(87.5)	B (100.0)	B (100.0)
MICE WITH VIABLE FETUSE	S N (%)	B(100.0)	B(100_0)	1(12.5)	0(0.0)	0(0.0)
PLACENTAE APPEARED NORM	AL b N(%)	B(100.0)	B (100_0)	1 (100_0)	0(0.0)	0(0.0)

(excerpted from the Applicant's submission)

Offspring (Malformations, Variations, etc.):

Fetal gross external alterations

OSAGE GROUP		I	II	III	IV	v
OSAGE (MG/RG/DOSE) a		0 (VEHICLE)	1.5	15	125	250
OSAGE (MG/RG/DAY) B		D (VEHICLE)	3	30	250	500
JTTERS EVALUATED	N	8	В	1	0	0
TUSES EVALUATED	N	96	91	1	0	0
LIVE	N	96	90	1	0	0
DEAD	N	0	1 b	D	0	0
EYE: HULGE DEPRESSED						
LITTER INCIDENCE	N(%)	0(0.0)	0(0.0)	1(100.0)		
FETAL INCIDENCE	N (%)	0(0.0)	0(0.0)	1(100.0)c		
PALATE: CLEFT						
LITTER INCIDENCE	N(%)	0(0.0)	1(12.5)	1(100.0)		
FETAL INCIDENCE	N(%)	Q (0.D)	2 [2.2]	1(100.0)c		
BODY: EDEMA						
LITTER INCIDENCE	N (%)	0(0.0)	0(0.0)	1(100.0)		
FETAL INCIDENCE	N (%)	0(0.0)	0[0_0)	1(100.0)c		
BODY: CASTROSCHISIS						
LITTER INCIDENCE	N(%)	0(0.0)	0(0.0)	1(100.0)		
FETAL INCIDENCE	N(%)	0(0.0)	0(0.0)	1(100.0)c		
FORE AND/OR HINDLINES:	ROTATED					
LITTER INCIDENCE	N(%)	0(0.0)	2(25.0)	0(0.0)		
FETAL INCIDENCE	N(%)	0(0.0)	2 (2.2)	0(0.0)		
FORE AND/OR HINDLIMBS:	DIGITS ABSENT					
LITTER INCIDENCE	N(%)	0(0.0)	0[0.0)	1(100.0)		
FETAL INCIDENCE	N(%)	0 (0.0)	0 (0.0)	1(100.0)c		

a. Dosage occurred twice daily (approximately six hours apart) on days 6 through 17 of gestation.

b. Dead fetus was excluded from summarization.

c. Fetus 4019-6 had other gross external alterations.

(excerpted from the Applicant's submission)

Study title: Oral (Gavage) Developmental Toxicity Study in Mice Evaluating Twice Daily Administration of AG-013736.

Study no:	Sponsor – 06GR117
	Conducting Lab. – LIA00237
Study report location:	electronic submission
Conducting laboratory and location:	(b) (4)
Date of study initiation:	13 September 2006
GLP compliance:	Yes
QA statement:	Yes
Drug, lot #, and % purity:	AG-013736, lot # E010003889,

Key Study Findings

- AG-013736 at ≤ 1.5 mg/kg/dose did not cause any maternal toxicity.
- The developmental NOAEL was 0.15 mg/kg/dose.
- 1.5 mg/kg/dose group had increased occurrence of cleft palate.
- 0.5 mg/kg/dose group had increased common variations in skeletal ossification.

Methods	
Doses:	0.15, 0.5 and 1.5 mg/kg/dose
	(0.3, 1.0 and 3 mg/kg/day)
Frequency of dosing:	Twice daily approximately 6 hours apart
Dose volume:	5 mL/kg
Route of administration:	Oral gavage
Formulation/Vehicle:	0.5% carboxymethylcellulose (high viscosity)
Species/Strain:	CrI:CD1(1CR) mice
Number/Sex/Group:	22, see table below for details
Satellite groups:	yes
Study design:	Animals were dosed on days 6 through 17 of
	presumed gestation (DG). Animals were
	sacrificed on DG 18.
Deviation from study protocol:	None mentioned

Dosage Group	Dosageª (mg/kg/dose)	Total Dosage⁵ (mg/kg/day)	Concentration (mg/mL)	Dosage Volume (mL/kg)	Number of Mice
Ι	0	0	0	5	22 + 9 ^c
п	0.15	0.3	0.03	5	22 + 27 ^c
III	0.5	1	0.1	5	22 + 27 ^c
IV	1.5	3	0.3	5	22 + 27 ^c

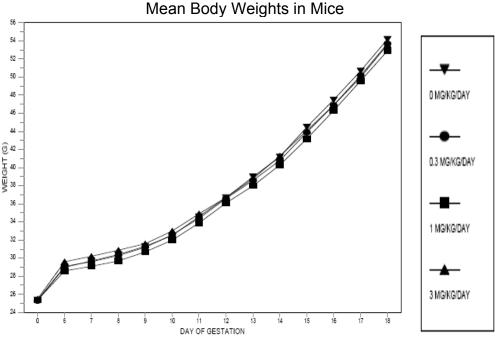
a. Dosages were administered twice daily, approximately six hours apart.

- b. The test article was considered 100% active/pure for the purpose of dosage calculations.
- c. Nine mice in Group I and 27 mice in each of Groups II through IV assigned for use in toxicokinetic sample collection.
- d. Mouse 3933 was removed from study before initiation of dosage administration on DG 6 due to body weight loss and was replaced with mouse 3989.
- e. Mouse 4069 was removed from study before initiation of dosage administration on DG 6 due to body weight loss and was replaced with mouse 4091.

(excerpted from the Applicant's submission)

Approximate age at arrival:	62 days
Weight on arrival day:	20-29 g
Weight at study assignment (DG 0):	21-29 g

Observations and Results


Mortality (one and 2 hours after each dosage)

• None

Clinical Signs (one and 2 hours after each dosage)

• No dose-related clinical changes

Body Weight (Daily)

(excerpted from the Applicant's submission)

Feed Consumption (Daily)

- No apparent effect
- Toxicokinetics

At 0, 0.5, 1, 2, 6, 6.5, 7, 12, and 24 hours after the first dosage on DG 17 or 18

and PF-03482595 (main metabolite)				
Analyte	Dose	Cmax	Tmax	AUC ₀₋₂₄
	(mg/kg/day)	(µg/mL)	(h)	(µg.h/mL)
Axitinib	0.3	3.5±3.1	7	11.1
	1	16.8*	0.5	39.5
	3	36±11.6	6.5	142
PF-03482595	0.3	0.0	0.0	0.0
	1	6.4*	0.5	6.0
	3	15.9*	1.0	76.0
	viation (OD) a	-1 1 - 1 - 1		

Mean toxicokinetic parameters of AG-013736 (parent compound) and PF-03482595 (main metabolite)

Standard deviation (SD) not calculated due to an $n\leq 2$.

Stability and Homogeneity

• ± 10% of intended concentration

Necropsy

Cesarean Section Data (Implantation Sites, Pre- and Post-Implantation Loss, etc.):

• The litter averages for corpora lutea, implantation, litter sizes, live fetuses, early and late resorptions, the percentage of resorbed conceptuses, and percentage of live male fetuses were comparable among the four dosage groups.

Cesarean sectioning observation					
DOSAGE GROUP DOSAGE (MG/KG/DOSE) a DOSAGE (MG/KG/DAY) a		I 0 0	II 0.15 0.3	III 0.5 1	IV 1.5 3
MICE TESTED	N	22	22	22	22
PREGNANT	N (%)	21(95.4)	19(86.4)	19(86.4)	18(81.8)
MICE PREGNANT AND CAESAREAN-SECTIONED ON DAY 18 OF GESTATION	N	21	19	19	18
CORPORA LUTEA	MEAN±S.D.	13.7 ± 2.3	12.9 ± 1.6	13.4 ± 1.6	13.8 ± 2.5
IMPLANTATIONS	MEAN±S.D.	13.3 ± 2.0	12.7 ± 1.4	12.8 ± 1.6	13.3 ± 2.4
LITTER SIZES	MEAN±S.D.	12.6 ± 2.1	11.9 ± 2.0	12.4 ± 1.5	12.3 ± 2.2
LIVE FETUSES	N MEAN±S.D.	264 12.6 ± 2.1	226 11.9 ± 2.0	235 12.4 ± 1.5	221 12.3 ± 2.2
DEAD FETUSES	N MEAN±S.D.	0 0.0 ± 0.0	1 0.0 ± 0.2	0 0.0 ± 0.0	0 0.0 ± 0.0
RESORPTIONS	MEAN±S.D.	0.7 ± 0.8	0.7 ± 1.2	0.5 ± 0.6	1.0 ± 1.2
EARLY RESORPTIONS	N MEAN±S.D.	12 0.6 ± 0.7	13 0.7 ± 1.1	7 0.4 ± 0.5	19 1.0 ± 1.2
LATE RESORPTIONS	N MEAN±S.D.	3 0.1 ± 0.5	1 0.0 ± 0.2	2 0.1 ± 0.3	0 0.0 ± 0.0
MICE WITH ANY RESORPTIO	NS N (%)	11(52.4)	7(36.8)	8(42.1)	11(61.1)
MICE WITH ALL CONCEPTUS DEAD OR RESORBED	ES N (%)	0(0.0)	0(0.0)	0(0.0)	0(0.0)
MICE WITH VIABLE FETUSE	SN(%)	21(100.0)	19(100.0)	19(100.0)	18(100.0)
PLACENTAE APPEARED NORM	AL N(%)	21(100.0)	19(100.0)	19(100.0)	18(100.0)

a. Dosage occurred twice daily (approximately 6 hours apart) on days 6 through 17 of gestation.

Litter observations

DOSAGE GROUP		 т	 II	 III	 IV
DOSAGE (MG/KG/DOSE) a DOSAGE (MG/KG/DAY) a		0 0	0.15 0.3	0.5 1	1.5 3
LIVE FETAL BODY WEIGHTS (GRAMS)/LITTER	MEAN±S.D.	1.27 ± 0.08	1.31 ± 0.07	1.27 ± 0.0B	1.22 ± 0.10
MALE FETUSES	MEAN±S.D.	1.29 ± 0.08	1.33 ± 0.06	1.28 ± 0.09	1.26 ± 0.09
FEMALE FETUSES	MEAN±S.D.	1.24 ± 0.10	1.28 ± 0.09	1.25 ± 0.07	1.17 ± 0.10

(excerpted from the Applicant's submission)

Group			1	2	3	4
Dose (mg/kg/d	ose)		0	015	0.5	1.5
Dose (mg/kg/d	ay)		0	0.3	1.0	3.0
Litters evaluate	ed	N	21	19	19	19
Fetuses evalua	ated	N	264	227	235	221
Live		N	264	226	235	221
Fetuses with a	ny alteration observed	N(%)	67 (25)	53 (23)	61 (26)	79 (36)**
Palate: cleft	litter incidence	N (%)	0	0	0	6 (33)
	fetal incidence	N (%)	0	0	0	6 (3)
Skull: frontals, contain an interfrontal						
litter incidence		N (%)	9 (42)	10 (53)	13 (68)	15 (83)
fetal incidence		N (%)	15 (11)	19 (16)	27 (22)*	34 (30)**
Skull: supraoco	cipitals, incomplete					
ossification						
litter incidence		N (%)	0	0	0	6 (33)**
fetal incidence		N (%)	0	0	0	12 (11)**
Vertebrae, caudal		Mean±SD	8.0±1.6	8.5±0.9	7.3±0.9	6.3±0.9**
Hind limb b	tarsals	Mean±SD	0.9±0.4	0.9±0.3	0.7±0.4	0.2±0.3**
	phalanges	Mean±SD	11±1.3	11.6±0.9	11.1±1.2	9.9±1.1**

Offspring (Malformations, Variations, etc.)

a. Dosage occurred twice daily (approximately 6 hours apart) on days 6 through 17 of gestation

* Significantly different from the control group ($p \le 0.05$)

** Significantly different from the control group value ($p \le 0.01$)

Study title: Oral Dose Range-Finding Study of AG-013736 in Pregnant Rabbits.

Study no:	Sponsor- 06GR178
Study report location:	electronic submission
Conducting laboratory and location:	Pfizer Global Research & Development
	Drug Safety Research & Development
	Eastern Point Road
	Groton, CT USA
Date of study initiation:	08 Oct 2006
GLP compliance:	Yes
QA statement:	Yes
Drug, lot #, and % purity:	AG-013736, lot # E10003889, purity 99.2%
	99.2%

Key Study Findings

- Maternal and developmental toxicity was observed at ≥10 mg/kg/day.
- Complete postimplantation loss occurred in all \geq 30 mg/kg/day animals.

Methods Doses:

5, 15, 50 and 150 mg/kg/dose

	(10, 30, 100 and 300 mg/kg/day)
Frequency of dosing:	BID, ~ 6 hours apart
Dose volume:	3 mL/kg
Route of administration:	Oral gavage
Formulation/Vehicle:	0.5% Carboxymethyl cellulose
Species/Strain:	New Zealand White rabbits
Number/Sex/Group:	6 females/group
Age	4.5 to 6.0 months
Weight	2.7 to 3.5 kg
Satellite groups:	None
Study design:	Animals were dosed from GD 7-19 and
	cesarean sections were performed on GD 29.
Deviation from study protocol:	None

Observations and Results

Mortality

(Twice daily)

Group	Dose	Death			
	(mg/kg/day)	Number	GD	Status	
2	10	1	26	Aborted &	
				euthanized	
3	30	1	17	Aborted &	
				euthanized	
		1	25	Euthanized	
4	100	6	24-26	Euthanized	
5	300	3	13	Euthanized	
		3	12-13	Died	

Clinical Signs (Twice daily)

- 30 mg/kg One animal had red fluid in/under the cage on GD 25
- 100 mg/kg All animals had red fluid in/under the cage, one animal had loose stool on GD 25.

Body Weight (Daily)

Body weight loss (%) vs. control					
Group	Dose	GD			
	Dose (mg/kg/day)	10	20	29	
2	10	-			
3	30	-	12	18	
4	100	4	16	-	
5	300	10	-	-	

Body weight loss (%) vs. control

Feed Consumption

(Daily)

• Food consumption was reduced in a dose-related manner compared to the control animals.

Toxicokinetics

On GD 19 at 0, 1, 2, 4, 6, 7, 8, and 10 hours post first dose

Mean toxicokinetics parameters of AG-013736 (parent compound) and PF-03482595 (metabolite) in pregnant rabbits

Analyte	Dose (mg/kg/day)	Cmax (ng/mL)	Tmax (h)	AUC ₀₋₂₄ (ng.h/mL)
AG-013736	10	5.6±6.2	7	54.4
PF-03482595	10	8.3±5.8	7	60.7

Necropsy

• Groups 4 and 5 – No animals survived to scheduled cesarean section.

Cesarean Section Data (Implantation Sites, Pre- and Post-Implantation Loss, etc.):

- Group 2 1 fetus from 1 animal had a short tail and 5/5 fetuses from another animal had bilateral local edema in the hind limbs.
- Groups 3, 4, 5 -- No litters were available for examination.

10 Special Toxicology Studies

Study title: Local Vascular Tissue Irritation Study of AG-013736 in Female New Zealand White Rabbits.

05VEG009
electronic submission
Pfizer Global Research & Development
Safety Sciences
10777 Science Center Dr
La Jolla, CA, USA
May 9, 2005
No
Yes
AG-013736, batch # 37806-ALL-109A

Key Study Findings

 Single intravenous and perivascular administration of AG-013736 at 1 mg/mL did not cause any local vascular irritation in female New Zealand White rabbits.

Methods	
Doses:	See table below
Frequency of dosing:	Single dose
Route of administration:	Intravenous and perivascular

Dose volume: Formulation/Vehicle:	See table below for details 65% polyethylene glycol 400:35% H ₂ O with 0.025 mg/mL butylated hydroxyanisole (BHA)
Species/Strain:	Female New Zealand White rabbits
Number/Sex/Group:	3 females/group
Age:	10-12 weeks
Weight:	~2.5 kg
Satellite groups:	None
Unique study design:	None
Deviation from study protocol:	None

Group Number	IV Dose (mg)	IV Dose Volume (uL)	PV Dose Volume (uL)	Dose Concentration, AG-013736 (mg/ml)	Number of Animals Females
1: Saline 2: Vehicle:	0	1000	50	0	3
(65%PEG400:35%H2O (w/w) with 0.025 mg/mL BHA	0	1000	50	0	3
3: AG-013736	1	1000	50	1	3

Observations and Results

Mortality

• None

Clinical Signs

(0, 1, 4 hours post dose on day 1, twice on day 2, and once prior to necropsy on day 3)

- Intravenous injection No signs of erythema or edema
- Perivascular injection Very slight to well defined erythema in groups 2 and 3 animals.
- Slight edema in group 3 animals

Body Weights

Mean Body Weights (kg)						
Treatment Dose Day 1 Day 3 % Change						
Saline	0	2.90±0.04	2.91±0.07	0.24		
Vehicle	0	2.90±0.0.09	2.92±0.05	1.93		
AG-013736	1	2.86±0.13	2.93±0.11	2.36		

Moon Rody Moighto (kg)

Histological Findings

• Minimal to moderate hemorrhage, subcutaneous edema and mixed inflammatory cell infiltrate at the intravenous or perivascular injections sites in all treated animals.

Study title: Determination of the Phototoxic Potential of AG-013736 in the 3T3 Neutral Red Uptake (NRU) Phototoxicity Assay.

	- ,
Study no.:	05228
Study report location:	electronic submission
Conducting laboratory and location:	Pfizer Global Research & Development Amboise, Safety Sciences Europe
	Route des Industries, Pocé-sur-Cisse
	37400 Amboise, France
Date of study initiation:	September 26, 2005
GLP compliance:	Yes
QA statement:	No
Drug, lot #, and % purity:	AG-013736, batch # NGMP2737C1P, active moiety 100%

Key Study Findings

- The cellular viability was significantly decreased (below the threshold of 80%) between 50 and 150 µg/mL of AG-013736 in the presence of UVA light.
- AG-013736 may have phototoxic potential *in vitro*.
- Methods: Balb/c 3T3, clone 31 mouse fibroblasts were treated with different concentrations of AG-013736 for about 1 hour and then irradiated with 5 joules/cm² of UV. The cell viability was measured approximately 24 hours after the irradiation. Chlorpromazine (positive) and sodium Lauryl Sulfate (negative) were used as controls. The IC₅₀ (-Irr), IC₅₀ (+Irr), PIF, and MPE value were calculated using SoftMaxPro 4.3, Molecular devices (software).

	Stock solu	tion	Working solutions	
Items	Concentration (mg/mL)	Vehicle	Concentrations tested (µg/mL)	<u>Vehicle</u>
CPZ	10	Water	$\begin{array}{r} 200-50-12.5-3.125-0.781-\\ 0.195-0.049-0.012 \end{array}$	EBSS
SLS	0.7	EBSS	$\begin{array}{c} 70-35-17.5-8.75-4.375-\\ 2.188-1.094-0.547\end{array}$	EBSS
AG-013736	15	DMSO	$\begin{array}{r} 150-50-16.667-5.556 \\ -1.852-0.617-0.206-0.069 \end{array}$	1% DMSO in EBSS

Observations and Results

Products	<u>IC50 (-Irr)</u> μg/mL	<u>IC50 (+Irr)</u> μ <u>α/mL</u>	PIF	MPE
Chlorpromazine Sodium Lauryl Sulfate	10.5 15.2	0.836 15.7	12.5 0.96	0.162 0.004
AG-013736 >	150	>150	а	b

^a: the PIF value cannot be determined for AG-013736 since no IC50 values could be determined

^b: MPE value for AG-013736 is considered not valid due to software limitations

(excerpted from the Applicant's submission)

Study title: Single Dose Oral (Gavage) Phototoxicity Study of AG-013736 In Hairless Mice.

^{(b) (4)} - RSA00087
Sponsor – 09LJ055
electronic submission
(b) (4)
September 28, 2009
Yes

GLP compliance: QA statement: Drug, lot #, and % purity: September 28, 2009 Yes Yes AG-013736, lot # AXM-00-0004A, 100% purity

Key Study Findings

 Oral administration of AG-013736 up to 100 mg/kg to female CrI:SKH1-hr hairless mice did not induce any skin reactions indicative of phototoxicity.

Methods: The test article, comparator article or vehicle treated animals were placed 1.2 meters from UVR source. Each treated mouse received UVR exposure over a period of 30±5 minutes. Doses: See table below Frequency of dosing: Single dose Route of administration: Oral Dose volume: See table below Formulation/Vehicle: Carboxymethylcellulose, lot # VL0190 8-Methoxypsoralen as a positive control Crl:SKH1-hr hairless female mice Species/Strain: Number/Sex/Group: See table below Ade: ~55 davs Weight: 19-26 g Satellite groups: yes

Unique study design: None Deviation from study protocol: None

	Mice	Formulation			UVR Expos	ure	
	per		Dosage	Concentration	Dosage Volume	Instrumental UVR	Interval ^a
Group	Group	Descriptor	(mg/kg)	(mg/mL)	(mL/kg)	Dose (MED)	(Minutes)
1	$6 + 6^{b}$	Vehicle	0	0	10	0.5	60 ± 10
2	$6 + 12^{b}$	AG-013736	3	0.3	10	0.5	60 ± 10
3	$6 + 12^{b}$	AG-013736	30	3	10	0.5	60 ± 10
4	$6 + 12^{b}$	AG-013736	100	10	10	0.5	60 ± 10
5	3	8-MOP	50	5	10	0.5	60 ± 10

a. Interval between formulation administration and UVR exposure, based on the median dosing time for each group.

b. Mice assigned to toxicokinetic phase were not restrained or exposed to UVR.

c. Phototoxicity phase animals were placed 1.2 meters from the UVR source at the time of the exposure.

(Excerpted from the Applicant's submission)

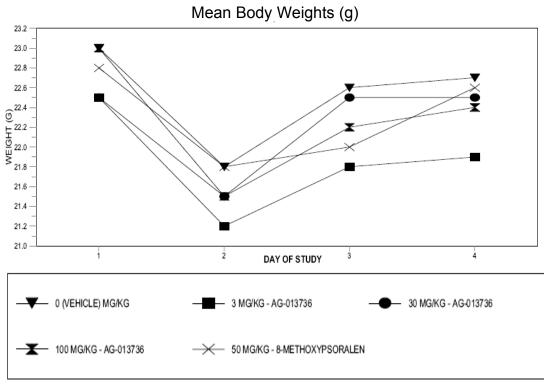
Observations and Results

Mortality

• None

Clinical Signs

(0.25, 1, 4, 24, 48, and 72 hours after UVR exposure)


GROUP DESCRIPTOR CONCENTRATION (MG/ML) DOSAGE (MG/KG)a UVR EXPOSURE (MED) INTERVAL (MINUTES)b	1 VEHICLE 0 0,5 60	2 AG-013736 0.3 3 0.5 60	3 AG-013736 3 30 0.5 60	4 AG-013736 10 100 0.5 60	5 8-methoxypsoralen 5 50 0.5 60
MICE TESTED	6	6	6	6	3
MORTALITY	0	0	0	0	0
SKIN REACTION OBSERVATIONS:					
SITE 1 - ERYTHEMA; GRADE 1	0/ 0	0/ 0	0/ 0	0/ 0	6/ 3
SITE 1 - EDEMA: GRADE 1	0/ 0	0/ 0	0/ 0	0/ 0	8/ 3
SITE 1 - SCAB(S)	0/ 0	0/ 0	0/ 0	0/ 0	6/ 3
CLINICAL OBSERVATIONS:					
SEDATED	1/ 1	4/ 4	5/ 5	4/4	1/ 1

N/N = Total number of observations/number of animals with observation MED = Minimal erythema dose

a = Formulation administration and UVR exposure occurred on day 1 of study

b = Approximate interval between formulation administration and UVR exposure (excerpted from the Applicant's submission)

Body Weights (Daily)

(excerpted from the Applicant's submission)

(1, 2, 4, and 24 hours postdose)

Dose Group	Dose Level (mg/kg/day)	C _{max} (ng/mL)	T _{max} (hr)	AUC ₀₋₂₄ (ng•hr/mL)
2	3	13.3	1.0	17.9
3	30	91.9	1.0	318
4	100	382	1.0	1080

(excerpted from the Applicant's submission)

Study title: AG-013736: Report for the In Vitro Compatibility of the Parenteral Formulation with Human Blood.

(b) (4)

Study no.: Study report location:	SA1000 electronic submission
Conducting laboratory and location:	Pfizer Inc.
	10646 Science Center Dr.
	San Diego, CA 92121
Date of study initiation:	April 11, 2005
GLP compliance:	Yes
QA statement:	Yes
Drug, lot #, and % purity:	AG-013736, lot # 00000704,

Key Study Findings

- AG-013736 did not cause hemolysis of human blood at 1:10, 1:6 and 1:3 ratios in PEG400.
- Hemolysis was observed at 1:2 ratios

Methods

Doses:	See below
Formulation/Vehicle:	65%/35% PEG 400/water for injection
Unique study design:	Samples were incubated, centrifuged,
	erythrocytes lysed and hemoglobin
	concentration determined at 450 nm.
Deviation from study protocol:	None

Tube Number	Whole Blood	Test Article or Vehicle	Dilution
1	500 μL	50µL	1:10
2	500 μL	100µL	1:6
3	500 μL	200µL	1:3
4	500 μL	500 µL	1:2
Tube Number	Whole Blood	Saline	Dilution
5	500 μL	50µL	1:10
6	500 μL	100µL	1:6
7	500 μL	200µL	1:3
8	500 μL	500 μL	1:2

(table excerpted from Applicant's submission)

(b) (4)

Observations and Results

Donor	Formulation	Form	nulatior	n or veł	nicle
	tested	1:10	1:6	1:3	1:2
A	AG-013736	0	4	0	21
	Vehicle	4	11	11	49
В	AG-013736	0	1	1	19
	Vehicle	12	5	1	27
С	AG-013736	1	0	0	12
	Vehicle	2	4	7	34
Hemolysis	AG-013736	0	0	0	17
(Mean percent)	Vehicle	6	7	7	37

11 Integrated Summary and Safety Evaluation

Pharmacology: Pharmacology studies identified that axitinib inhibits the activity and function of Vascular Endothelial Growth Factor Receptors (VEGFR-1, VEGFR-2 and VEGFR-3), *in vitro* and *in vivo*. VEGFR inhibition is the likely mechanism leading to inhibition of angiogenesis and tumor progression in mouse models of cancer. Axitinib also inhibits other receptor tyrosine kinases including platelet-derived growth factor receptor (PDGFR)- α and - β , and stem cell factor receptor (KIT). Axitinib inhibited VEGF-stimulated endothelial cell survival, vascular tube formation, adhesion, migration, and induced endothelial cell apoptosis *in vitro*. Axitinib was also shown to decrease vascular permeability and density, phosphorylation of VEGFR-2 and PDGFR- β , and tumor growth in mouse xenograft models.

Safety Pharmacology: In safety pharmacology studies, axitinib administered orally to mice and rats did not demonstrate signs of neurotoxicity or adverse effects on the respiratory system when administered as single doses. Axitinib induced increase gastric emptying (stomach) in rats, but did not affect charcoal propulsion in mice. There were no significant effects of axitinib or a major metabolite on the *hERG* channel *in vitro*

or on cardiac function (e.g., PR, QRS, QT, QTcB, QTcF) in dogs. Cardovascular effects were demonstrated in mice (30 mg/kg), rats (\geq 300 mg/kg) and dogs including increased systolic blood pressure and decreased heart rate.

General Toxicology: In order to better characterize the general toxicity of axitinib, the sponsor performed chronic toxicity studies in both mice (14 days, 28 days, and 26 weeks) and dogs (14 days, 28 days, 26 weeks and 9 months).

Male and female mice were dosed at 25, 125 or 250 mg/kg/dose twice daily (75, 375 or 750 mg/m²/dose BID) at a dose volume of 10 mL/kg for 14 days. Axitinib at 250 mg/kg/dose caused mortalities (5/138) and was associated with hypoactivity, rough hair coat, hunched posture, labored respiration, red nasal discharge and swelling in the axillary region. There were no changes in body weight, food consumption and ophthalmology. Decreased absolute thymus and testis/epididymis weights were observed in high dosed animals. Toxicokinetic and histopathology data were not submitted.

Axitinib administered twice daily to mice by oral gavage for 28 days at 125 mg/kg/dose (375 mg/m²/dose BID) resulted in 3% mortality. There were no effects on body weights, food consumption, hematology and serum chemistry. Microscopic findings were seen in the femur (thickened physeal cartilage) of males and females administered 15 or 125 mg/kg/dose (45 or 375 mg/m²/dose BID), in the ovaries (no corpora lutea) and in the testes (bilateral atrophy/degeneration) of animals given 125 mg/kg/dose (375 mg/m²/dose BID). There were no compound related microscopic changes in the thymus. A decrease in the absolute and relative thymus weights compared to control observed in high dose animals may be a stress-related secondary effect of axitinib. Thickening of the physeal cartilage (growth plate) in the femur was seen in 2 males and 1 female given 15 mg/kg/dose BID and in 11/16 males and 14/16 females from the 125 mg/kg/dose twice daily. This dose and duration dependent increase in the numbers of hypertrophic chondrocytes in the zone of cell maturation was more severe in females than in males (see Attachment 1 for details).

During a 26–week oral gavage chronic toxicity study with a 13-week interim sacrifice and 4-week recovery period, male and female mice were administered 0 (control), 5, 15, 50, and 125 mg/kg/dose (30, 90, 300, and 750 mg/m²/day) axitinib twice daily by oral gavage. The interim and terminal sacrifice animals were dosed for 13 and 26 weeks, respectively. Dose-related deceases in body weight and food consumption were noted in 50 and 125 mg/kg/dose animals. The increase in mortality rate at 125 mg/kg/dose resulted in the early sacrifice of the surviving animals of this group during week 22. This high incidence of mortality was associated with poor health, broken and/or missing tooth/teeth and malocclusion. The observations of malocclusion were observed between days 29 and 58. The broken and or missing teeth were noted following day 56 of treatment and after the recovery period. The dental finding correlated with microscopic observation of odontopathy in all treated animals at interim and terminal sacrifices. Hematological changes (~15% decreased erythrocytes) correlated with increased pigment in the spleen in dose- and duration-related manner. Spleen, testes and uterus weights were reduced in a dose-related manner and correlated with microscopic findings. Other treatment related microscopic changes included mucosal hyperplasia (cecum and colon), hypospermia in the testes and abnormal sperm forms in the epididymis, and decreased number of corpora lutea in the ovaries. These dose and duration dependent changes showed a decrease in severity during the recovery period. Lymphoid depletion seen in the spleen and thymus of high dose animals and mid dose males (50 mg/kg/dose) may be due to treatment-related stress. There were no apparent differences in the toxicokinetics between male and female mice. AUC value did not increase proportionally with the increase in dose levels. This may suggest nonlinear toxicokinetics due to a combination of potential inhibition or saturation of elimination pathways.

Dogs were dosed twice daily for 14 days via oral gavage. Axitinib at 150 mg/kg/dose (3 g/m²/dose) produced one (1/8) mortality. Clinical effects in high dose animals included thin appearance, hypoactivity, dehydration, and reddening of the gum that was associated with oral mucosal ulcer. Treatment related serum changes included increased cholesterol and triglycerides in the high dose animals suggesting a change in lipid metabolism. There were no treatment-related macroscopic changes. Toxicokinetic and histopathology data were not submitted.

The toxicity of axitinib administered twice daily via oral gavage for 28 days was investigated in dogs. Six of eight (4 males & 2 females) high dose (50 mg /kg/dose) dogs were euthanized. Clinical observations included dehydration, thin appearance, hypoactivity, abnormal stools, and hyperemic oral mucosa and/or oral ulcer. The weight loss in the 50 mg/kg/dose (1 g/m²/dose) group was associated with decreased food consumption. Serum chemistry results indicated that the compound affected lipid metabolism. Macroscopic findings were observed in the stomach, intestinal tract, and oral cavity. Histomorphologic findings were observed in the stomach (hemorrhage), small and large intestines (congestion/hemorrhage), pancreas (\downarrow zymogen granules and \uparrow acinar apoptosis), thymus (lymphoid depletion), oral mucosa (inflammation/ulcer), bone (thickening of the growth plate), testis (multinucleated cells), and ovaries (absence of corpora lutea). Toxicokinetic data was not submitted for this study (see attachment 1 for details).

In a third repeat dose toxicity study in dogs, axitinib was administered twice daily at 0.5, 1.5, 3, or 5 mg/kg/dose (10, 30, 60, or 100 mg/m²/dose) by oral gavage for 13 or 26 weeks. Four animals/sex in groups 1 to 4 and 4 males and 3 females in group 5 were sacrificed after 13 weeks of treatment. Two animals/sex in the control group and 3 animals/sex in groups 4 and 5 were sacrificed following at least 13 weeks of treatment and 4 weeks of recovery. Remaining animals (~4/sex/group) were sacrificed after 26 weeks of treatment. Fecal abnormalities were observed in a dose-related manner. Three high dose animals were euthanized due to extreme weigh loss. There were no clear dose-related ophthalmic abnormalities. There were no effects of axitinib on measured cardiographic intervals or heart rate. Two mid dose animals (3 mg/kg/dose) observed with sinus tachycardia may have been due to physiologic excitement. Thymic lymphoid atrophy was the major microscopic finding. The overall exposure (C_{max} and

AUC) after repeated dosing at 0.5, 1.5, 3, or 5 mg/kg/dose twice daily for 26 weeks was variable and did not show significant auto-induction or accumulation.

In a 9-month toxicity study with 8-week recovery, administration of axitinib twice daily (approximately 6 hours apart) at 0.5, 1.5 or 3.0 mg/kg/dose (20, 60, or 120 mg/m²/day) for 39 weeks did not cause any mortality in male and female dogs. Axitinib-related fecal abnormalities (no feces, liquid, mucoid, nonformed feces) did not correlate with any anatomic pathology findings in the gastrointestinal tract. Administration of axitinib did not affect the mean body weight, food consumption, ophthalmic or electrocardiographic evaluation. Testis weight decreased in a dose-related manner and correlated with histological findings. Histological findings in the testis (testicular degeneration/atrophy and syncytial cells) of mid and high dose animals correlated with decreased testis weight in a dose-related manner. These histological findings were not completely reversed at the end of the recovery phase. Systemic exposure (C_{max} and AUC₀₋₂₄) at 3 mg/kg/dose for weeks 6, 13, and 39 increased as compared to day 1, indicating potential slight drug accumulation. Gender related differences in mean exposure and extreme interanimal variability within treatment groups were observed. In conclusion, the no-observable-adverse-effect level (NOAEL) for males was 0.5 mg/kg/dose (10 mg/m²/dose), which corresponded to mean C_{max} and AUC₀₋₂₄ values of approximately 1.72 ng/mL and 5.12 ng*hr/mL, respectively, in week 39 of the dosing phase. The NOAEL for females was 3 mg/kg/dose (60 mg/m²/dose), which corresponded to mean C_{max} and AUC₀₋₂₄ values of 43.7 ng/mL and 162 ng*hr/mL, respectively.

Pharmacokinetics and Toxicokinetics: Single oral administration of axitinib to Wistar rats gave a dose proportional exposure between the low (50 mg/kg) and mid dose (250 mg/kg). Exposure at high dose (500 mg/kg) was higher between the high dose and lower doses, suggesting potential inhibition or saturation of elimination pathways or increased absorption. The $t_{1/2}$ was 1- 4 hours.

Genotoxicity: Axitinib was not a bacterial mutagen when tested up to the maximum concentration of 5 mg/plate. There was evidence of insolubility in tests at 5 mg/plate with all of the strains and cytotoxicity with one of the Salmonella strains (TA100). Axitinib did not show any clastogenic activity with and without metabolic activation in human lymphocyte cultures. However it induced dose-related increases in polyploid cells. Aneugenic potential of axitinib was assessed by an *in vivo* micronucleus assay. Oral administration of axitinib to mice for three consecutive days induced micronuclei in the polychromatic bone marrow erythrocytes (MNPCE) of males (≥1000 mg/kg) and females (≥500 mg/kg). Kinetochore staining analysis conducted on bone marrow smears from female mice administered axitinib showed that approximately 75% of the evaluated micronuclei were kinetochore positive.

Reproductive and developmental toxicology: A fertility and early embryonic development study was performed in mice to assess the effects of axitinib. Axitinib was administered to male mice twice daily (approximately 6 hours apart) at doses of 0 (vehicle), 5, 15 and 50 mg/kg/dose for at least 70 days before cohabitation and

continued through the day before sacrifice. Female mice received 0 (vehicle), 15, 50 and 125 mg/kg/dose axitinib beginning 15 days before cohabitation and continued through day 7 of presumed gestation (DG 7). Axitinib did not cause any mortality in male and female mice. There were no clinical observations or effects on body weights. Absolute and relative testis weights of 50 mg/kg/dose treated mice were reduced (20 to 22%) as compared to control animals. Sperm density was reduced in a dose-related manner. The cauda epididymal sperm count of high dose males was reduced by 15% as compared to the vehicle control group value. In female mice administered axitinib, the duration of cohabitation increased in the 125 mg/kg/dose dose group as compared to vehicle control mice (4.4 vs. 2.4 days) and fertility was decreased in a dosedependent manner. Mid (50 mg/kg/dose) and high dose (125 mg/kg/dose) dams had a 57% and 100% litter loss, respectively. Systemic exposure (C_{max} and AUC_{0-24h}) of axitinib (active drug) and PF-03482595 (major circulating metabolite) increased with increasing doses. The male reproductive no-observable-adverse-effect-level (NOAEL) was 5 mg/kg/dose (15 mg/m²/dose twice daily). A female reproductive and fertility NOAEL for axitinib was not identified in this study.

During a dose-range finding embryo-fetal development toxicity study in mice, axitinib was administered twice daily (approximately six hours apart) at doses of 0 (vehicle), 1.5, 15, 125, and 250 mg/kg/dose (0, 9, 90, 750, and 1500 mg/m²/day) to pregnant animals from gestation day (GD) 6 through 17. Toxicokinetics animals were dosed at 125 mg/kg/dose (750 mg/m²/day). Blood samples were collected on DG 6 and DG 17 at 0, 0.5, 1, 2, 6, 6.5, 7, 12, and 24 hours after the first dose of the day. There was no mortality, clinical signs or gross external alterations. The average maternal body weight on GD18 was 98%, 61%, 57%, and 57% of the vehicle control group value in the 1.5, 15, 125 and 250 mg/kg/dose groups, respectively. There were no apparent effects on feed consumption during the dosage period. Postimplantation loss (early resorptions) was increased at ≥ 1.5 mg/kg/dose (9 mg/m²/day) as compared to vehicle control group values. Fetal gross external examination revealed rotated hindlimbs, cleft palate, depressed eye bulges, absent digits on both forepaws, whole body edema, and gastroschisis were also observed at ≥ 1.5 mg/kg/dose (9 mg/m²/day).

In a definitive developmental toxicity study in mice, axitinib was administered orally via gavage twice daily (approximately 6 hours apart) at doses of 0.15, 0.5 and 1.5 mg/kg/dose (0.45, 1.5, and 4.5 mg/m²/dose) to pregnant animals on gestation days (GD) 6 through 17 to evaluate the effects of the drug on embryo-fetal development. All mice survived to scheduled necropsy. There were no drug-related effects on clinical signs, body weights or feed consumption at any dose level tested. Reductions in female fetal body weights were statistically significant in the 1.5 mg/kg/dose group as compared to control. Axitinib did not significantly effect litter averages for corpora lutea, implantations, litter sizes, live fetuses, or early and late resorptions in a dose-related manner. At 1.5 mg/kg/dose (9 mg/m²/day), axitinib caused skeletal variations (interfrontal ossification sites, incomplete ossification of the supraoccipitals) and increased fetal and litter incidences of cleft plate. Reversible delays in ossification included a reduction in the average number of ossified hindlimb phalanges and a

reduction in the average number of ossified caudal vertebrae, hindlimb tarsals and hindlimb phalanges at 0.5 and 1.5 mg/kg/dose (3 and 9 mg/m²/day).

In an embryo-fetal development dose range finding study in rabbits, axitinib was administered to timed-pregnant New Zealand White rabbits by oral gavage during Gestation days (GD) 7-19. Axitinib was administered twice daily, approximately 6 hours apart at doses levels of 5, 15, 50, and 150 mg/kg/dose (60, 180, 600, and 1800 mg/m²/dose). Cesarean sections were performed on all surviving animals on GD29. Maternal body weight loss occurred in a dose-related manner. Three high dose animals (150 mg/kg/dose) were found dead and the remaining animals were euthanized before scheduled necropsy. Axitinib adversely affected pregnancy outcome. Only 3, 4, and 6 pregnant animals remained in the 15, 5 and 0 mg/kg/dose (360, 120, and 0 mg/m²/day) groups, respectively, at the time of the scheduled cesarean section. Complete postimplantation loss occurred in all 15 mg/kg/dose animals. Maternal and developmental toxicity was observed at \geq 5 mg/kg/dose (120 mg/m²/day).

Local tolerance: Administration of 1 mg axitinib did not cause vascular or perivascular irritation at the injection sites in the ears in the NLW rabbits as compared to vehicle control.

Special toxicology studies: The phototoxic potential of axitinib was evaluated *in vitro* and *in vivo*. Female albino hairless CrI:SKH1 mice were administered axitinib orally (via gavage) as a single dose before exposure to radiation. The phototoxic potential of axitinib was compared with 8-Methoxypsoralen (positive control). A single administration of axitinib up to 100 mg/kg followed 60 ± 10 minutes later by a single exposure to solar-stimulated UVR did not induce any skin reactions indicative of phototoxicity. Skin reactions induced by 8-MOP included grade 1 erythema, grade 1 edema, and scab in 3 of 3 animals. All mice survived to scheduled sacrifice. T_{max} was observed at 1.0 hour and systemic exposure (C_{max} and AUC₀₋₂₄) increased with increasing doses.

In vitro, the cellular viability of Balb/c 3T3, clone 31 mouse fibroblasts, was significantly decreased (below the threshold of 80%) between 50 and 150 μ g/mL of axitinib in the presence of UV light. The photo irritation factor (PIF) and mean photo effect (MPE) value could not be calculated due to software limitations. Axitinib may have phototoxic potential *in vitro*.

Axitinib did not cause hemolysis in human whole blood at lower concentrations (1:10, 1:6 & 1:3). At a higher ratio in PEG400 (1:2 ratio), axitinib showed hemolytic potential.

(b) (4)

Appendix/Attachments 12

Attachment 1

Previous Reviews Referenced (IND 63,662)

PHARMACOKINETICS/TOXICOKINETICS

Determination of plasma levels in rats following oral administration 1. (b) (4) ^{(b) (4)} study # VFF/526).

Key study findings: Exposure was dose proportional between the low and mid dose, but was higher at high dose.

Conducting laboratory and location:

Date of study initiation:	31 July 2001
GLP compliance:	Yes
QA report:	yes () no (X)
Drug, lot #, and % purity:	AG13736, lot # AC3088, 98% purity
Formulation/vehicle:	0.5% w/v Carboxymethylcellulose

Dosing:

Species/strain:	Wistar rats
#/sex/group or time point (main study):	8 males
Satellite groups used for toxicokinetics or reco	overy: None
Age:	7 weeks
Weight:	155-185 g
Doses in administered units:	

Group	Dose	Number of animals		
	(mg/kg)	Cohort A	Cohort B	
1	Vehicle	4	4	
2	50	4	4	
3	250	4	4	
4	500	4	4	

Route, form, volume, and infusion rate: Oral

Observations and times:

Toxicokinetics:

Blood samples were collected from cohort A at 15 minutes and 1, 3, 6 and 12 hours post dose. Blood samples from cohort B were collected at 30 minutes and 2, 4, 8 and 24 hours after post dose.

Results:

Toxicokinetics:

-						
	Dose (mg/kg)	C _{max} (μg/mL)	T _{max} (hr)	T _{1/2} (hr)	C _{24hr} (µg/mL)	AUC ₀₋∞ (µg.hr/mL)
	50	0.03	3.0	1.1	BLQ	0.06
	250	0.18	1.0	3.5	BLQ	0.32
	500	1.20	2.0	4.1	BLQ	2.20

BLQ = below limit of quantification of 1 ng/mL.

GENERAL TOXICOLOGY

Single-dose toxicity

1. Acute oral toxicity study in mice with AG013736 (^{(b) (4)} study # 22337-0-800). ^{(b) (4)} unaudited draft report. Vol. 01, page 238.

Key study findings: The oral NOEL for mice is considered to be 2 g/kg.

Conducting laboratory and location:

Date of study initiation: GLP compliance: QA report: Drug, lot #, and % purity: Formulation/vehicle: April 18, 2001 Yes yes (X) no () AG13736, lot # AC3088, 98% purity 0.5% carboxymethylcellulose (b) (4)

Dosing:

Species/strain:	Crl:CD-1(ICR)BR		
#/sex/group (main study):	5 (total 10 animals)		
Satellite groups used for toxicokinetics or re	ecovery: None		
Age:	5 weeks		
Weight:	21-23 g for % and 19-20 for &		
Doses in administered units:	2000 mg/kg, 20 mL/kg		
Route, form, volume, and infusion rate:	Oral		

Observations and times:

Clinical signs:	Twice daily
Body weights:	Pre dose and days 7 and 14 post dose.
Gross pathology:	At necropsy on day 14 (abbreviated cervical, thoracic,
	and abdominal viscera)

Results:

Mortality:	None
Clinical signs:	No apparent dose-related effects
Body weights:	No effect
Gross pathology:	No drug-related gross findings

Repeat-dose toxicity

1. 14-Day gavage toxicity study with AG013736 in mice (^{(b)(4)} study # 6750-144). ^{(b)(4)} audited draft report. Vol. 03, page 001.

Key study findings: Twice daily gavage administration of AG13736 at 125 mg/kg for 14 days did not cause any toxicity in mice. The test compound at 250 mg/kg/BID caused 4% mortality.

Conducting laboratory and loc	ation:
Date of study initiation: GLP compliance: QA report: Drug, lot #, and % purity: Formulation/vehicle:	20 February 2001 Yes yes () no (X) {to be submitted with finalized report} AG13736, Lot # 2737-C-1P, and 98% purity 0.5% carboxymethylcellulose, Lot # PQ0167 from
Dosing: Species/strain: #/sex/group or time point (Satellite groups used for to Age: Weight:	

No. of	Do	se level			
animals/sex/group	mg/kg/dose	e mg/kg/day			
Main S	Study				
15	0	0			
15	25	50			
15	125	250			
15	250	500			
Toxicokinetic Study					
54	25	50			
54	125	250			
54	250	500			
	animals/sex/group Main 5 15 15 15 15 15 54 54	animals/sex/group mg/kg/dos Main Study 15 0 15 25 15 125 15 250 Toxicokinetic Study 54 25 54 125			

Doses in administered units:

Route, form, volume, and infusion rate:

Oral gavage, 10 mL/kg

Observations and times:

Clinical signs:	Twice daily
Body weights:	Weekly
Food consumption:	Prior to treatment and weekly thereafter
Ophthalmoscopy:	Prior to treatment and during week 2.
Hematology:	At termination
Clinical chemistry:	At termination.
Gross pathology:	At termination of the study
Organs weighed:	Adrenal, brain, heart, kidneys, liver, lung, ovaries, pituitary, prostate, salivary gland (mandibular), seminal vesicle, testes with epididymis, thymus and thyroids.
Histopathology:	Tissues were preserved and retained for possible future analysis.
Toxicokinetics:	On days 1 and 14 at 0.25, 0.5, 1, 2, and 6 hours immediately before the second dose, and 6.5, 7, and 8 hours post dose.
lto.	

Results:

Mortality:

Five males and 12 females were found dead or sacrificed in extremis.

Group	Dose	Main Study		Toxicokinetic	
	(mg/kg/BID	Male	Femal	Mal	Femal
)		е	е	е
1 (Control)	0	0	2	-	-
2 (Low)	25	1	2	0	0
3 (Mid)	125	0	6	0	0
4 (High)	250	1	1	3	1

The deaths of four males and one female in high dose group (4%) were attributed to the test compound.

		Remain noted a	•		to perfora	ated esophagus	
Clinical signs:		Hypoactivity, rough hair coat, recumbency and /or hunched posture, labored or audible respiration, cold to touch, red nasal discharge and swelling in the axillary					
		•		oserved in mo		• •	
Body weight	s:	Unaffe					
Food consur	nption:	No effe	ect				
Ophthalmos	сору:	Within normal limits					
Hematology	1	Decreased red blood cell count, hemoglobin and					
		hematocrit in high dosed females (maximum 20%)					
Clinical cher	nistry:	No effect					
Organ weights:		125 mg/kg/BID – Absolute thymus wt. (20% decreased in males compared to control)					
		250 mg/kg/BID – Absolute thymus wt. decreased (20% in					
		males, 29% in females) and decreased absolute					
		testis/epididymis wt. (12%).					
Gross pathology:		Perforation of the esophagus (1 male and 10 females)					
Histopathology:		Not performed					
Toxicokinetics:		TK data are not submitted. The following table is copied					
		from th	e Inves	tigator's Broc	hure.	•	_
		Day	C _{max}	T _{max}	AUC		
(ma/ka/c		lav)		(ua/mL)	(h)	(ua h/ml)	

Dose	Day	C _{max}	T _{max}	AUC
(mg/kg/day)		(µg/mL)	(h)	(µg.h/mL)
50	1	0.95	6.5	3.73
	14	0.9	7.0	6.23
250	1	2.89	6.5	21.15
	14	8.04	8.0	93.08
500	1	12.38	6.5	138.20
	14	10.2	8.0	122.58

2. 28-Day gavage toxicity study with AG013736 in mice (^{(b)(4)} study # 6750-145). ^{(b)(4)} audited draft report. Vol. 04, page 115.

Key study findings: The oral administration of the compound at 125 mg/kg/BID for 28 days produced 2% mortality in male and female mice. Testicular atrophy/degeneration and absence of corpora lutea were seen in high dose animals. Treatment related thickening of the physeal cartilage was noted in the femur of mid (15 mg/kg/BID) and high (125 mg/kg/BID) dose animals.

(b) (4)

Conducting laboratory and location:

24 April 2001
yes
yes (X)
AG13736, Lot # AC3088, 98% purity
0.5% carboxymethylcellulose, Lot # PQ0167 from
(b) (4)

Dosing:

Species/strain:	Crl:CD-1®(ICR)BR mice
#/sex/group or time point (main study):	16
Satellite groups used for toxicokinetics or	recovery: 57/sex/group
Age:	6 weeks
Weight:	males (25-35 g),
	females (20-26 g)

Doses in administered units:

Group	No. of	C	Dose level		
	animals/sex/group	mg/kg/do:	se	mg/kg/day	
	Main S	Study			
1 (Control)	16	0	0		
2 (Low)	16	5	10		
3 (Mid)	16	15	30		
4 (High)	16	125 250			
	Toxicokine	tic Study			
2 (Low)	57	5	10		
3 (Mid)	57	15	30		
4 (High)	57	125 250			

6 hours (±15 minutes) between doses

Route, form, volume, and infusion rate: Oral gavage, 10 mL/kg

Observations and times:

Clinical signs:	Twice daily
Body weights:	Weekly
Food consumption:	Prior to treatment and weekly thereafter
Ophthalmoscopy:	Prior to treatment and during week 2.
Hematology:	At termination
Clinical chemistry:	At termination.
Gross pathology:	At termination of the study
Organs weighed:	See histopathology inventory for this IND
Histopathology:	See histopathology inventory
Toxicokinetics:	On days 1 and 28 at 0.25, 0.5, 1, 2, and 6 hours
	immediately before the second dose, and 6.5, 7, and 8
	hours post dose.

Results:

Mortality:

~	incy i						
	Group	Dose level	N0. of deaths (day)		Combined deaths (%)		
	-	mg/kg/BID	Main	Toxicokinetics	Main	Toxicokinetics	
			study		study		
	1 (Control)	0	1M (3)		3		
	2 (Low)	5		1M (12)		1	
	3 (Mid)	15					
	4 (High)	125		1M & 2F (11,		3	
				18 & 19)			

The deaths of control male and one high dose female were attributed to a gavage error.

Clinical signs:	125 mg/kg/BID - Yellow discoloration of the fur in the perianal region
Body weights:	125 mg/kg/BID – Decreased (only 6% of control)
Food consumption:	No difference
Ophthalmoscopy:	No abnormal ophthalmic findings.
Hematology:	No effect (small increases in MCV and MCH values)
Clinical chemistry:	125 mg/kg/BID - ↑alkaline phosphatase (17% in male and 35% in female)
Organ weights:	125 mg/kg/BID – absolute testis/epididymis (19% \downarrow Vs control), absolute thymus weight (\downarrow 40% in male and 20% in female Vs control)
Gross pathology:	No treatment-related changes

Histopathology:

	Sex		Ma	ale			Fei	male	;
Organ	Group	1	2	3	4	1	2	3	4
Testis, atrophy/degeneration, bi		0	0	0	5				
Atrophy/degeneration, ur	nilateral	1	2	0	0				
Mineralization		1	0	0	0				
Unilaterally examined		0	0	1	0				
Epididymis, aspermia, unilateral		0	0	1	0				
Ovary, corpora lutea, absent						2	4	0	11
Bone, femur, thickened, cartilage,		0	0	2	11	0	0	1	14
Physeal									

The severity of hypertrophic chondrocytes in the zone of cell maturation was greater in females than in males as shown below.

sidentee er eertenty er anekened prijeedt ed aldge, ternet					
	Sex		Male		nale
	Group	3	4	3	4
	Number	16	16	16	16
	Examined				
Minimal		0	3	0	5
Slight		0	3	0	5
Moderate		0	0	0	2
Moderately severe		0	0	0	2
Total		2	11	1	14

Incidence of severity	y of thickened ph	yseal cartilage, femur
		Jeest et al al ge, let let

Toxicokinetics: Data not submitted. The following table is copied from the Investigator's Brochure.

Dose	Day	C _{max}	T _{max}	AUC
(mg/kg/day)		(µg/mL)	(h)	(µg.h/mL)
10	1	0.10	0.5	0.27
	28	0.13	6.5	0.37
30	1	0.42	0.5	1.02
	28	0.46	1.0	1.66
250	1	2.42	2.0	11.89
	28	4.64	8.0	23.72

AUC and C_{max} are proportional to dose.

3. 14-Day gavage toxicity study with AG013736 in dogs (^{b)(4)} study # 6750-142). ^{b)(4)} unaudited draft report. Vol. 05, page 264.

Key study findings: AG13736 produced one mortality in the 150 mg/kg/BID dogs. The no-observable-effect was observed in the 25 mg/kg/twice daily dogs.

Conducting laboratory and location:	(b) (4)

Date of study initiation:	14 February 2001
GLP compliance:	Yes
QA report:	yes () no (X)
Drug, lot #, and % purity:	Not provided

Formulation/vehicle:	0.5%

0.5% carboxymethylcellulose, Lot # PQ0167 supplied by

Dosing:

Species/strain:	Beagles
#/sex/group or time point (main study):	4
Satellite groups used for toxicokinetics or rea	covery: None
Age:	6 months
Weight:	8 to 11 kg for male and 7-9 kg
-	for female

Doses in administered units:

Group	Dosage level		Dose level	
	(mg/kg/dose)		(mg/kg/day)	
	Days 1-9	Days 10-	Days 1-	Days 10-
	-	14	9	14
1	0	0	0	0
(Control)				
2. (Low)	12.5	25	25	50
3. (Mid)	25	50	50	100
4. (High)	75	150	150	300

There was 6 hours ±30 minutes interval between doses.

Route, form, volume, and infusion rate:

Oral gavage

Observations and times:

Clinical signs: Body weights:	Twice daily Weekly
Food consumption:	Weekly
Ophthalmoscopy:	Prior to treatment and during week 2
EKG:	Prior to treatment and near the end of week 2.
Hematology:	Day 13
Clinical chemistry:	Day 13
Gross pathology:	At necropsy
Organs weighed:	Adrenal, brain, heart, kidney, liver with drained gallbladder, lung, ovary, pituitary, prostate, salivary gland, testis, thymus, thyroid with parathyroid.
Histopathology:	Not submitted (preserved tissues are not evaluated).
Toxicokinetics:	Days 1 and 14 at 0, 0.5, 1, 2, 3, 4, 6 hours (5 minutes prior to the second dose), 7, 8, 10, and 24 hours post dose.

Results:

Mortality: 150/300 mg/kg/day – 1 female sacrificed in extremis on day 14. Clinical signs: 150/300 mg/kg/day – Thin appearance, hypoactivity, dehydration, and reddening of the gums

Body weights:

Sex	Male		Female	
Group	3	4	3	4
% age change Vs control	↓9	↓21	↓7	↓13

Food consumption:	150/300 mg/kg/day – \downarrow 19-29% in male and 24-44% in female compared to control values
Ophthalmoscopy:	No treatment related ophthalmoscopic findings
Electrocardiography:	According to the sponsor "Electrocardiographic findings were within normal limits and comparable across groups". The data is not submitted.
Hematology:	150/300 mg/kg/day – Absolute reticulocyte (↓89% in male & 98% in female) and % reticulocytes(↓ 91% in male & 75% in female)

Clinical chemistry: Percent increase compared to control value

Sex	Male		Female	
Group	3	4	3	4
Cholesterol	12	121	26	74
Triglycerides		129		137
Total protein		29		15

Organ weights: Absolute organ weights compared to control value

Sex	Male		Female	
Group	3	4	3	4
Thymus	↓ 13%	↓ 50%		↓ 37%
Liver	↑ 5%	↑ 11%	13% ↑	↑ 23%

Gross pathology: Histopathology: Toxicokinetics: No treatment related findings

Not done

Data not submitted. The following table is copied from the Investigator's Brochure.

Dose	Day	C _{max}	T _{max} (h)	AUC
(mg/kg/day)		(µg/mL)		(µg.h/mL)
50	1	1.63±1.39	7.0±2.3	6.64±5.31
	14	0.60±0.35	5.4±3.8	3.33±3.41
100	1	3.60±1.69	6.1±2.4	13.9±8.3
	14	1.17±0.96	6.4±2.4	6.83±4.96
300	1	8.41±5.54	6.4±2.3	41.1±32.7
	14	2.57±2.05	6.4±3.1	24.9±24.0

C_{max} and AUC are proportional to dose.

4. 28-Day gavage toxicity study with AG013736 in dogs (^{(b) (4)} study # 6750-143). ^{(b) (4)} Vol. 06, page 107.

Key study findings: Twice daily oral administration of AG13736 at 100 mg/kg/day produced 75% mortality. The compound produced toxicity at all doses tested.

Conducting laboratory and location:

Date of study initiation: 20 April 2001	
GLP compliance: Yes	
QA report: yes () no (X) to be submitted	
Drug, lot #, and % purity: AG13736, Lot # AC3088, 98% purity	
Formulation/vehicle: 0.5% carboxymethylcellulose, Lot # PQ0	0167 from
(b) (4)	

Dosing:

· 9·		
Species/strain:		Beagles
#/sex/group (main study):		4
Satellite groups used for tox	icokinetics or	recovery: None
Age:		9 months
Weight:		% 8-10 kg, & 7-9 kg
Doses in administered units:	:	
	Craum	Decere level

Group	Dosage level		
	mg/kg/dose mg/kg/day		
1 (Control)	0	0	
2 (Low)	5	10	
3 (Mid)	15	30	
4 (High)	50	100	

6 hours between doses.

Route, form, volume, and infusion rate:

Oral gavage, 5 mL/kg/dose

Observations and times:

Clinical signs:	Twice daily
Body weights:	Weekly
Food consumption:	Weekly
Ophthalmoscopy:	Prior to treatment and during week 4
EKG:	Prior to treatment and near the end of week 4
Hematology:	Near the end of week 4 and prior to unscheduled sacrifices
Gross pathology:	At necropsy
Organs weighed:	See histopathology inventory for list of organs
Histopathology:	See histopathology inventory
Toxicokinetics:	On days 1 and 28 at 0, 0.25, 0.5, 1, 2, 3, 6, 6.5, 7, 8, 9, 12, and 24 hours after the first dose

Results:

	•			euthanized in ale), 17 (1	
10 & 30 mg/kg/day – Abnormal stools and hyperemia of					
				2	
•	• •				
Diauycaiula (lied		- 50) (Jiruay i	7.	
Changes in body weight (% initial)					
Croup	Males		males		
3(30 mg/kg/day)					
+ (100 mg/kg/ddy)	Ψ Ζ Ι	\checkmark	17		
Food consumption:					
	Jonsun				
	М	_	Females	6	
3 (30 mg/kg/day)			65		
4 (100 mg/kg/day)	3	1	44		
				• • • •	
No treatment-related	ophtha	almosco	opic find	ings	
According to the sponsor "Electrocardiographic findings were within normal limits and comparable across groups". The data is not submitted					
	female), or 18 (2 10 & 30 mg/kg/day – the oral mucosa 100 mg/kg/day – Deh hypoactivity, abr mucosa and/or u (heart rate =180 bradycardia (heart Changes in body weil Group 3 (30 mg/kg/day) 4 (100 mg/kg/day) Changes in food of Group 3 (30 mg/kg/day) 4 (100 mg/kg/day) No treatment-related According to the spor were within normal	female), or 18 (2 males 10 & 30 mg/kg/day – Abnorn the oral mucosa. 100 mg/kg/day – Dehydratic hypoactivity, abnormal mucosa and/or ulcers. (heart rate =180 bpm) of bradycardia (heart rate Changes in body weight (% Group Males 3 (30 mg/kg/day) ↓ 11 4 (100 mg/kg/day) ↓ 21 Changes in food consum Group Males 3 (30 mg/kg/day) ↓ 21 Changes in food consum Group Males 3 (30 mg/kg/day) ↓ 21 Changes in food consum Group Males 3 (30 mg/kg/day) ↓ 3 No treatment-related ophthat According to the sponsor "E were within normal limits a	female), or 18 (2 males). 10 & 30 mg/kg/day – Abnormal stores the oral mucosa. 100 mg/kg/day – Dehydration, thin hypoactivity, abnormal stools, mucosa and/or ulcers. One fee (heart rate =180 bpm) on day bradycardia (heart rate = 56) of the construction of the constr	female), or 18 (2 males). 10 & 30 mg/kg/day – Abnormal stools and the oral mucosa. 100 mg/kg/day – Dehydration, thin appeara hypoactivity, abnormal stools, and hyp mucosa and/or ulcers. One female ha (heart rate =180 bpm) on day 13 and a bradycardia (heart rate = 56) on day 1 Changes in body weight (% initial) Group Sex Males Females 3 (30 mg/kg/day) ↓ 11 ↓ 15 4 (100 mg/kg/day) ↓ 21 ↓ 17 Changes in food consumption (% contr Group Sex Males Females 3 (30 mg/kg/day) 85 65 4 (100 mg/kg/day) 31 44 No treatment-related ophthalmoscopic find According to the sponsor "Electrocardiogra	

Hematology:

Changes in hematology parameters (% initial)

	Sex	Ma	ale	Female		
	Group	3	4	3	4	
Reticulocytes (%)		↓ 75	-			
Absolute		↓ 63	-		↓ 47	
reticulocytes						
- Samples not available						

Samples not available

Clinical chemistry: Changes in clinical chemistry parameters (% initial)

	Sex	Ma	le	Fen	nale			
	Group	3	4	3	4			
Cholester	Cholesterol		-	↑ 20	↑ 23			
Triglycerides		↑ 27	-	↑ 53	↑ 64			
		-						

Samples not available -

Urinalysis: Organ weights: Gross pathology:

Comparable between groups 100 mg/kg/day – Thymus (\downarrow 67% in females Vs control) 100 mg/kg/day - Dark mucosa/dark areas in the stomach, jejunum, cecum, and colon.

Histopathology:

Treatment-related histomorphologic findings are shown below.

Incidence and severity of microscopic observations in pyloric stomach

Sex		M	ale		Female				
Group	1	2	3	4	1	2	3	4	
Number Examined	4	4	4	4	4	4	4	4	
Hemorrhage									
Unremarkable	4	4	3	1	4	4	4	2	
Minimal	0	0	1	0	0	0	0	0	
Slight	0	0	0	0	0	0	0	1	
Moderate	0	0	0	2	0	0	0	0	
Moderately Severe	0	0	0	1	0	0	0	1	
Mean Severity Grade	0	0	0.3	2.5	0	0	0	1.5	
Chronic Active Inflammation									
Unremarkable	4	4	3	3	4	4	4	2	
Minimal	0	0	1	1	0	0	0	1	
Slight	0	0	0	0	0	0	0	1	
Mean Severity Grade	0	0	0.3	0.3	0	0	0	0.8	
Necrosis									
Unremarkable	4	4	3	4	4	4	4	3	
Minimal	0	0	1	0	0	0	0	0	
Moderate	0	0	0	0	• 0	0	0	1	
Mean Severity Grade	0	0	0.3	0	0	0	0	0.8	
Ulcer					_			ć	
Present	0	0	0	0	0	0	0	1	

		SIC	maci					
Sex		M	ale			Fen	nale	
Group	1	2	3	4	1	2	3	4
Number Examined	4	4	4	4	4	4	4	4
Cardiac Stomach								_
Unremarkable	4	3	3	4	4	4	4	3
Minimal	0	1	1	0	0	0	0	16
Mean Severity Grade	0	0.3	0.3	0	0	0	0	0.3
Fundic Stomach								
Unremarkable	3	4	4	3	4	4	4	4
Minimal	1	0	0	0	0	0	0	0
Slight	0	0	0	1ª	0	0	0	0
Mean Severity Grade	0.3	0	0	0.5	0	0	0	0
Pyloric Stomach								_
Unremarkable	4	4	3	1	4	4	4	2
Minimal	0	0	0	2	0	0	0	1
Slight	0	0	1	1*	0	0	0	1 ^b
Mean Severity Grade	0	0	0.5	1.0	0	0	0	0.8
(Cardiac + Fundic + Pyloric) Stomach								
Unremarkable	3	3	3	1	4	4	4	2
Minimal	1	1	1	2	0	0	0	1
Slight	0	0	1	1	0	0	0	1
Mean Severity Grade	0.3	0.3	0.5	1.0	0	0	0	1.0

Incidence and severity of fibrinoid necrosis/inflammation in the submucosal vessels of stomach

a Animal number H38580 had lesions in both fundic and pyloric stomach. b Animal number H38597 had lesions in both cardiac and pyloric stomach.

Incidence and severity of congestion/hemorrhage in small and large intestine

Sex		Ma	de		Female				
Group	1	2	3	4	1	2	3	4	
Number Examined	4	4	4	4	4	4	4	4	
Duodenum								_	
Minimal	0	0	0	2	0	0	0	0	
Slight	0	0	0	0	0	0	0	1	
Mean Severity Grade	0	0	0	0.5	0	0	0	0.5	
Jejunum							_		
Minimal	-1	0	0	0	0	0	0	0	
Slight	0	0	0	0	0	0	0	1	
Mean Severity Grade	0.3	0	0	0	0	0	0	0.5	
Ileum									
Minimal	0	0	0	1	0	0	0	0	
Slight	0	0	0	2	0	0	1	0	
Moderate	0	0	0	0	0	0	0	1	
Mean Severity Grade	0	0	0	1.3	0	0	0.5	0.8	
Cecum				_	<u>^</u>	~	0		
Minimal	0	0	0	2	0	0	0	1	
Slight	0	0	0	1	0	0	0	0	
Mean Severity Grade	0	0	0	1.0	0	0	0	0.3	
Colon						•	0	0	
Minimal	0	0	0	2	0	0	0	0	
Slight	0	0	0	2	0	0	0	0	
Moderate	0	0	0	0	0	0	0	0.8	
Mean Severity Grade	0	0	0	1.5	0	0	U	0.8	
Rectum			_		•	•	•	•	
Minimal	0	0	0	1	0	0	0	0	
Slight	0	0	0	2	0	0	0	1	
Mean Severity Grade	0	0	0	1.3	0	0	0	0.5	

Sex	Male					Female				
Group	1	2	3	4	1	2	3	4		
Number Examined	4	4	4	4	4	4	4	4		
Decreased Zymogen Granules										
Unremarkable	4	4	0	0	4	3	1	0		
Minimal	0	0	2	0	0	1	2	0		
Slight	0	0	1	0	0	0	1	1		
Moderate	0	0	1	1	0	0	0	1		
Moderately Severe	0	0	0	3	0	0	0	2		
Mean Severity Grade	0	0	1.8	3.8	0	0.3	1.0	3.3		
Acinar Cell Proliferation										
Unremarkable	4	4	0	0	4	4	1	0		
Minimal	0	0	3	0	0	0	2	1		
Slight	0	0	0	0	0	0	1	1		
Moderate	0	0	1	1	0	0	0	2		
Moderately Severe	0	0	0	3	0	0	0	0		
Mean Severity Grade	0	0	1.5	3.8	0	0	1.0	2.3		
Increased Acinar Cell										
Apoptosis										
Unremarkable	4	4	4	2	4	4	3	2		
Minimal	0	0	0	2	0	0.	1	2		
Mean Severity Grade	0	0	0	0.5	0	0	0.3	0.5		

	• •	~ ·			
Incidence and	SEVERITY O	tmicroscor	nic observa	tione in	nancreas
	Sevency 0	1 11110103000			panocas

Incidence and severity of lymphoid depletion in thymus

Sex	Male				Female				
Group	1	2	3	4	1	2	3	4	
Number Examined	4	4	4	4	4	4	4	4	
Lymphoid Depletion									
Unremarkable	3	3	2	0	4	4	1	0	
Minimal	1	1	1	0	0	0	1	1	
Slight	0	0	1	2	0	0	2	2	
Moderate	0	0	0	2	0	0	0	1	
Mean Severity Grade	0.3	0.3	0.8	2.5	0	0	1.3	2.0	

Sex		М	ale			Fen	nale	
Group	1	2	3	4	1	2	3	4
Number Examined	4	4	4	4	4	4	4	4
Inflammation, Chronic Active								
Unremarkable	4	4	3	1	4	4	4	0
Slight	0	0	0	2	0	0	0	1
Moderate	0	0	1	1	0	0	0	3
Mean Severity Grade	0	0	0.8	1.8	0	0	0	2.8
Ulcer								
Unremarkable	4	4	3	1	4	4	4	1
Present	0	0	1	3	0	0	0	3
Necrosis								
Unremarkable	4	4	4	3	4	4	4	1
Minimał	0	0	0	0	0	0	0	1
Slight	0	0	0	1	0	0	0	1
Moderate	0	0	0	0	0	0	0	1
Mean Severity Grade	0	0	0	0.5	0	0	0	1.5

Incidence and severity of microscopic observations in tongue

Incidence and severity of microscopic observations in oral cavity

Sex		М	ale			Fen	nale	
Group	1	2	3	4	1	2	3	4
Number Examined	0	0	2	4	0	1	2	4
Chronic Active Inflammation								
Minimal	0	0	1	0	0	0	0	0
Slight	0	0	0	1	0	0	1	0
Moderate	0	0	1	3	0	1	1	3
Severe	0	0	0	0	0	0	0	1
Mean Severity Grade	0	0	2.0	2.8	0	3.0	2.5	3.5
Ulcer								
Present	0	0	0	3	0	0	1	4

Sex		М	ale			Fer	nale	
Group	1	2	3	4	1	2	3	4
Number Examined	4	3	4	4	3	4	4	2
Growth Plate, Thickened								
Not Examined	0	1	0	0	1	0	0	2
Minimal	0	0	2	0	0	0	0	0
Slight	0	0	0	3	0	0	0	0
Mean Severity Grade	0.0	0.0	0.5	1.5	0.0	0.0	0.0	0.0

Incidence and severity of thickening of growth plate in rib

(excerpted from the Applicant's submission)

• 100 mg/kg/day – Hypocellularity in the bone marrow (femur) of males and multinucleated cells in the seminiferous tubules

• ≥10 mg/kg/day – delayed sexual maturity in females (2 at 10 mg/kg/day, 3 at 30 mg/kg/day and 2 at 100 mg/kg/day) as evidenced by presence of small follicles and absence of corpora lutea in the ovary, and presence of inactive uterus and mammary gland.

Toxicokinetics:	Data not submitted.	The following table is copied from the
	Investigator's Broch	ure.

Dose	Day	C _{max}	T _{max} (h)	AUC
(mg/kg/day)		(µg/mL)		(µg.h/mL)
10	1	0.41±0.24	5.6±3.3	1.68±1.21
	28	0.04±0.03	4.9±3.7	0.07±0.07
30	1	1.00±0.98	3.4±2.3	5.25±6.45
	28	0.97±1.56	5.9±3.3	4.15±6.09
100	1	0.72±0.78	7.0±7.8	3.71±3.56
	28	0.82	5.5	4.40

GENETIC TOXICOLOGY

1. Microbial Reverse Mutation Assays. (Pfizer Study # 01-2191-02). Vol. 07, Page 001.

Key findings: AG13736 did not induce mutation in Ames test up to 5 mg/plate with or without metabolic activation (S9).

Conducting laboratory and location:Drug Safety Evaluation Department, Pfizer
Global Research and Development, Pfizer Inc.,
Groton, Connecticut 06340.Date of study initiation:April 17, 2001GLP compliance:Yes
yes (X) no ()Drug, lot #, and % purity:AG13736, lot # 2737-C-1P (also referred to as
AC3088), 98% purityFormulation/vehicle:DMSO

Methods:

Strains: Salmonella typhimurium strains TA 1535, TA 1537, TA 98, and TA100. Escherichia coli strain WP2 uvrA pKM101. Concentration selection criteria: Insolubility (precipitate) and cytotoxicity Basis of concentration selection: Preliminary plate incorporation assay Range finding studies: Yes

Test agent stability:	Stable	
Analysis:	90-110 %	
Metabolic activation system	: S9 fro	m Aroclor 1254-induced rats
Exposure conditions:	37 ⁰ C	
Incubation and sampling	times:	~48 hours for E. coli and ~72 hours for
Salmonella		
No. of replicates:		3
Counting method:		Electronically or manually
Criteria for positive results:	A rep	oducible dose-related 2-fold increase
	over t	he control

Results:

			in mutation a	j			
Compound	Concentration	S9	TA98	TA100	TA1535	TA1537	WP2
	(mg/plate)						uvrA
							pKM101
DMSO	0.1 mL	-	31±5	132±11	20±3	10±5	159±33
		+	28±12	135±5	20±5	14±8	203±13
AG13736	1.5	-	22±3	125±9	20±5	9±3	170±14
		+	22±6	144±14	23±5	8±3	184±25
	5.0	-	20±2	125±6	22±11	8±4	157±15
		+	24±3	129±8	15±3	9±4	145±9
2-Nitrofluorene	0.005	-	1134±262				
9-Aminoacridine	0.04	-				72±9	
ENNG	0.005	-					1881±28
Nitrofurantoin	0.002	-		1193±1			
				27			
Sodium nitrite	2	-			361±35		
2-Anthramine	0.005	+		1496±9	302±36		
				6			

Bacterial mutation assav

Conclusions: Concentration-related cytotoxicity was observed at 5 mg/plate in the absence of S9 metabolic activation. No evidence of significant concentration-related increases in the number of revertant colonies compared to negative control were observed.

2. In Vitro Cytogenetic Assays. (Pfizer Study # 01-2191-03). Vol. 07, Page 053.

Key findings: AG13736 did not induce structural chromosome aberration in human lymphocyte cultures *in vitro* either with or without metabolic activation.

Conducting laboratory and location	Drug Safety Evaluation Department, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut 06340.
Date of study initiation: GLP compliance:	April 20, 2001 Yes
QA reports:	yes (X) no ()
Drug, lot #, and % purity: Formulation/vehicle:	AG13736, lot # 2737-C-IP (AC3088), 98% purity DMSO
Methods:	
Cell line:	Human peripheral lymphocytes
Concentration selection cr	, , , , , , , , , , , , , , , , , , ,
	chromosome damage (50% suppression of the
Basis of concentration	mitotic index compared to negative control), selection: Preliminary cytotoxicity assays
Range finding studies:	
Test agent stability:	data not submitted
Metabolic activation system	
Vehicle:	DMSO
Positive controls:	Mitomycin-C (without S9) and
Expedure conditions:	cyclophosphamide (+ S9) 37 ⁰ C
Exposure conditions: Incubation and samplir	
incubation and samplin	or 24 hours (3 hours followed by
	a 21 hours recovery in fresh complete medium)
	without S9.
No. of replicates:	Duplicate
Criteria for positive results	
	as compared to negative control.

Results:

HUMAN LYMPHOCYTE ABERRATION ASSAY: SUMMARY OF TEST

Treatment ^a	Mean (%) Mitotic Suppression ^b	Total Cells Analyzed	Mean (%) Abnormal Cells ^c	p- Value ^d	Mean (%) Polyploid Cells ^e	
Negative Cont	<u>rol</u> : DMSO					
1.00%	0	200	1.0	,	0.4	
<u>Test Article:</u> A (µg/ml)	G13736					
0.220*						
0.370	5	200	2.0	0.343	2.7	
1.04	32	200	1.0	>0.500	5.0	
1.73	37					
2.88	56	200	1.5	0.500	9.8	
4.80**						

3 HOUR TREATMENT WITHOUT METABOLIC ACTIVATION

Positive Control: Mitomycin-C

0.400 37 100 30.0 < 0.001

a: Two replicate cultures evaluated for each treatment group; when possible 100 cells per culture are analyzed for chromosome damage.

b: Mean (%) Mitotic Suppression = [One minus the quotient (Mean Test Article Mitotic Index / Mean Negative Control Mitotic Index)] (x) 100.
c: Mean (%) Abnormal Cells = Sum of % Abnormal Cells for duplicate cultures / 2.

d: Data analyzed by 1-tailed Fisher's Exact test for increases in abnormal cells compared to the negative control values.

e: Mean (%) Polyploid = Sum of % Polyploidy for duplicate cultures / 2.

Abbreviations:

--: Dashes indicate data not available or determined.
 -: Cultures treated with test article concentrations ≤0.220 µg/ml were not evaluated.
 *: Cultures treated with test article concentrations ≥4.80 µg/ml were not evaluated since sufficient mitotic suppression was achieved at a lower concentration.

HUMAN LYMPHOCYTE ABERRATION ASSAY: SUMMARY OF TEST

3 HOUR TREATMENT WITH METABOLIC ACTIVATION

Treatment ^a	Mean (%) Mitotic Suppression ^b	Total Cells Analyzed	Mean (%) Abnormal Cells ^C	p- Value ^d	Mean (%) Polyploid Cells ^e
Negative Control: DMSC		Analyzed	0013	value	<u>.</u> Uells [_]
1.00%	0	200	1.0	. 	0.6
<u>Test Article</u> : AG13736 (µg/ml)					
0.050*	,				
0.080	11	200	1.5	0.500	0.8
2.88	15	200	1.0	>0.500	7.0
4.80	57	200	0.5	>0.500	19.5
8.00**	70	·			
Positive Control: Cyclopl	hosphamide				
10.0	11	100	24.0	<0.001	
	· · · -	-			

	WI	24 HOUR T THOUT METAB				
Treatment ^a		Mean (%) Mitotic Suppression ^b	Total Cells Analyzed	Mean (%) Abnormal Cells ^C	p- Value ^d	Mean (%) Polyploid Cells ^e
Negative Cor	trol: DMSO					
1.00%		0	200	1.0		0.6
<u>Test Article</u> : (µg/ml)	AG13736					
0.130*					,	'
0.220		16	200	0.0	>0.500	0.8
0.370		31	200	0.0	>0.500	1.4
0.620		47	200	0.5	>0.500	12.7
1.04**		93				
Positive Cont	<u>rol</u> : Mitomycin-C					
0.050		33	100	27.0	<0.001	
	(Excerp	ted from the	e Applica	ant's subr	nission)	

HUMAN LYMPHOCYTE ABERRATION ASSAY: SUMMARY OF TEST

Conclusions: There was no significant increase in the number of abnormal cells aberrations compared to concurrent negative control at any concentration evaluated. However, the no effect level (NOEL) for AG13736 induced polyploidy in this system was less than 0.220 μg/mL.

3. Mouse Micronucleus Assay. (Pfizer Study # 01-2191-01). Vol. 07, Page 085.

Key findings: AG13736 induced micronuclei in bone marrow PCE of male and female mice at doses \geq 1000 and 500 mg/kg, respectively.

Conducting laboratory and locatio	n: Drug Safety Evaluation Department, Pfizer
	Global Research and Development, Pfizer Inc.,
	Groton, Connecticut 06340.
Date of study initiation:	April 23, 2001
GLP compliance:	Yes
QA reports:	yes (X) no()
Drug, lot #, and % purity:	AG13736, lot # AC3088, 99% purity
0, , , , ,	

Methods:

Strains/species:	Crl: CD-1 (ICR)BR VAF/Plus® mice
#/sex/group	5 (Test) and 3 (PK)
Basis of dose selection:	Single dose mouse gavage toxicity study
Test agent stability:	Stable (±10 % range)
Negative controls:	0.5% methylcellulose

Positive controls:	Mitomycin C (0.5 mg/kg by intraperitoneal injection)
Exposure conditions: Doses used in definitive study:	Once per day for three days 500, 1000, and 2000 mg/kg/day

Results:

Test 1:	Mouse micronucleus assay in treated animals compared to negative control animals						
Compound	Dose	Wt gain (%)		PCE (%)		MNPCE (%)	
-	(mg/kg)	Male	Female	Male	Female	Male	Female
Methylcellulose	0.5 %	13.2	0.4	67.4	73.8	0.16	0.12
		± 5.1	± 3.3	± 3.8	± 7.3	± 0.14	±. 010
Mitomycin C	0.5	8.1	7.7	52.9	66.8	2.33	1.98
		± 1.8	± 3.7	± 7.1	± 7.6	± 0.79	± 0.07
AG13736	500	8.7	4.5	45.8	69.6	0.13	0.66
		± 6.3	± 3.3	± 10.5	± 8.1	± 0.09	± 0.29
	1000	12.9	4.2	24.7	42.2	1.57	1.46
		± 5.1	± 5.9	± 13.6	± 15.0	± 0.7	± 1.30
	2000	0.3 ± 5.5	5.3 ± 3.7	2.1 ± 1.2	3.3 ± 4.4	*	1.65

PCE: Polychromatic erythrocyte % MNPCE: Percentage of micronucleated PCE

*: No data due to toxicity at 2000 mg/kg.

AG13736 at 2000 mg/kg produced severe cytotoxicity in the bone marrow in both males (2.1% PCE) and females (3.3% PCE) compared to negative control. The compound produced an elevation in MNPCE at 1000 and 500 mg/kg in males and females, respectively, when compared to the concurrent vehicle control values.

Test 2:

Mouse micronucleus assay in treated females compared to negative control females

negative benael ternales					
Compound	Dose	Wt. gain	PCE (%)	MNPCE (%)	
	(mg/kg)	(%)			
methylcellulose	0.5%	-1.4±4.6	62.0±6.5	0.08±0.08	
Mitomycin C	0.5	0.9±5.5	48.7±6.9	1.60±0.20	
AG13736	60	2.1±3.5	38.4±5.5	0.15±0.05	
	125	5.1±5.4	42.7±11.2	0.10±0.05	
	250	5.4±6.3	52.5±7.0	0.09±0.07	
	500	3.7±3.2	29.9±18.0	0.47±0.36	

AG13736 produced ~6 fold elevation in MNPCE at 500 mg/kg compared to vehicle control.

Test #	Dose	Gender	C _{max}	T _{max}	AUC _{0-last}
	(mg/kg)		(µg/mL)	(h)	(µg.h/mL)
`2	60	F	1.32	1	2.25
2	125	F	2.22	1	5.24
2	250	F	3.54	4	18.35
2	500	F	8.52	2	40.81
		М	11.57	4	58.55
1	2000	F	51.83	4	361.49
		М	28.70	2	307.76

Mean pharmacokinetic	parameters	of AG13736 in mice	Ļ
	purumeters		•

The increase in exposure (C_{max} and AUC) was approximately dose proportional. C_{max} and AUC values were higher for males than females at 500 mg/kg/day, but were lower in males than females at 2000 mg/kg/day.

Kinetochore staining analysis was conducted on the bone marrow smears from two females treated with 500 mg/kg of AG13736. The results showed that ~75% of the evaluated micronuclei were kinetochore positive. This limited data suggest an aneuploidy mechanism for the induction of micronuclei seen in this study.

Conclusions: Oral administration of AG13736 for three consecutive days induced micronuclei in the polychromatic bone marrow erythrocytes of male (≥ 1000 mg/kg) and female (≥ 500 mg/kg) mice.

This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

/s/

M A GOHEER 01/06/2012

TODD R PALMBY 01/06/2012

PHARMACOLOGY/TOXICOLOGY FILING CHECKLIST FOR NDA/BLA or Supplement

NDA Number: 202-324 Applicant: Pfizer

Stamp Date: April 13, 2011

Drug Name: INLYTA tablets NDA Type: NME (Axitinib)

On **<u>initial</u>** overview of the NDA application for filing:

	Content Parameter	Yes	No	Comment
1	Is the pharmacology/toxicology section organized in accord with current regulations and guidelines for format and content in a manner to allow substantive review to begin?	\checkmark		CTD format
2	Is the pharmacology/toxicology section indexed and paginated in a manner allowing substantive review to begin?	\checkmark		Electronic submission
3	Is the pharmacology/toxicology section legible so that substantive review can begin?	\checkmark		
4	Are all required (*) and requested IND studies (in accord with 505 b1 and b2 including referenced literature) completed and submitted (carcinogenicity, mutagenicity, teratogenicity, effects on fertility, juvenile studies, acute and repeat dose adult animal studies, animal ADME studies, safety pharmacology, etc)?	\checkmark		Carcinogenicity – not done/not required Mutagenicity – done Teratogenicity – done Fertility – not required Juvenile studies – not done/not required Acute and repeat dose toxicity – done (26- week in mice & dogs and 9-month in dogs) ADME – done Safety pharmacology – done(cardio, local tolerance)
5	If the formulation to be marketed is different from the formulation used in the toxicology studies, have studies by the appropriate route been conducted with appropriate formulations? (For other than the oral route, some studies may be by routes different from the clinical route intentionally and by desire of the FDA).	\checkmark		Similar formulations were used in pivotal preclinical and clinical studies
6	Does the route of administration used in the animal studies appear to be the same as the intended human exposure route? If not, has the applicant <u>submitted</u> a rationale to justify the alternative route?			Same route of administration

	Content Parameter	Yes	No	Comment
7	Has the applicant <u>submitted</u> a statement(s) that all of the pivotal pharm/tox studies have been performed in accordance with the GLP regulations (21 CFR 58) <u>or</u> an explanation for any significant deviations?			
8	Has the applicant submitted all special studies/data requested by the Division during pre-submission discussions?	\checkmark		
9	Are the proposed labeling sections relative to pharmacology/toxicology appropriate (including human dose multiples expressed in either mg/m2 or comparative serum/plasma levels) and in accordance with 201.57?	V		
10	Have any impurity – etc. issues been addressed? (New toxicity studies may not be needed.)			Appears sufficient
11	Has the applicant addressed any abuse potential issues in the submission?		\checkmark	
12	If this NDA/BLA is to support a Rx to OTC switch, have all relevant studies been submitted?			Not applicable. This NDA is NME

IS THE PHARMACOLOGY/TOXICOLOGY SECTION OF THE APPLICATION FILEABLE? _____Yes

If the NDA/BLA is not fileable from the pharmacology/toxicology perspective, state the reasons and provide comments to be sent to the Applicant: N/A

Please identify and list any potential review issues to be forwarded to the Applicant for the 74day letter: None

Reviewing Pharmacologist

Date

Team Leader/Supervisor

Date

This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

/s/

M A GOHEER 05/13/2011

WHITNEY S HELMS 05/13/2011