CENTER FOR DRUG EVALUATION AND RESEARCH

APPLICATION NUMBER:

205858Orig1s000

PHARMACOLOGY REVIEW(S)

MEMORANDUM

Date:	May 1, 2014	
From:	Haleh Saber, Ph.D.	
	Pharmacology/Toxicology Supervisor	
	Division of Hematology Oncology Toxicology (DHOT)	
	Office of Hematology and Oncology Products (OHOP)	
Re:	Approvability for Pharmacology and Toxicology	
NDAs:	206545 and 205858	
Drug:	ZYDELIG (idelalisib)	
Indications:	Indolent non-Hodgkin lymphoma (iNHL) and chronic lymphocytic	
	leukemia (CLL); see the label for detailed information	
Applicant:	Gilead Sciences, Inc.	

Idelalisib is a small molecule PI3K inhibitor with selectivity toward PI3K δ . NDA 205858 was submitted in September 2013 for the NHL indication; NDA 206545 was submitted in December 2013 for the CLL indication. The nonclinical studies submitted to and reviewed under NDA 205858 cover both indications.

For detailed pharmacology/toxicology findings, see the primary review by Drs. Ramadevi Gudi and Natalie Simpson and for an overview of the nonclinical package see my Team Leader Memorandum, both archived under NDA 205858.

Recommendation: From a pharmacology/toxicology perspective, ZYDELIG may be approved for the proposed indications. There are no outstanding pharmacology/ toxicology issues. Also see Dr. John Leighton's concurrence, archived under NDA 205858.

This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

/s/

HALEH SABER 05/01/2014

MEMORANDUM

Zydelig (idelalisib)

 Date: April 18, 2014
To: File for NDA 205858
From: John K. Leighton, PhD, DABT Acting Director, Division of Hematology Oncology Toxicology Office of Hematology and Oncology Products

I have examined pharmacology/toxicology supporting review for Zydelig conducted by Drs. Gudi and Simpson, and secondary memorandum and labeling provided by Dr. Saber. I concur with Dr. Saber's conclusion that Zydelig may be approved and that no additional nonclinical studies are needed for the proposed indication.

This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

/s/

JOHN K LEIGHTON 04/18/2014

MEMORANDUM

Date:	April 17, 2014
From:	Haleh Saber, Ph.D.
	Pharmacology/Toxicology Supervisor
	Division of Hematology Oncology Toxicology (DHOT)
	Office of Hematology and Oncology Products (OHOP)
Re:	Approvability for Pharmacology and Toxicology
NDA:	205858
Drug:	ZYDELIG (idelalisib)
Indications:	Treatment of patients with refractory indolent B-cell Non-Hodgkin
	Lymphoma (iNHL) and chronic lymphocytic leukemia (CLL)
Applicant:	Gilead Sciences, Inc.

Idelalisib is a small molecule PI3K inhibitor with selectivity toward PI3K δ . PI3K δ is a kinase downstream of several receptors such as B-cell receptor (BCR), CD40 receptor, chemokine receptors CXCR4/5, IL-6 receptor, and integrins. These pathways are involved in B-cell proliferation, mobilization, and in homing to and maintenance of the tumor microenvironment. Idelalisib induced apoptosis and inhibited proliferation in cell lines derived from malignant B cells.

Pharmacology, safety pharmacology, pharmacokinetic/ADME (absorption, distribution, metabolism and excretion), and toxicology studies were conducted in *in vitro* systems and/or in animal species. Animal toxicology studies were conducted in appropriate species, using the administration route and dosing regimens that adequately addressed safety concerns in humans. Idelalisib-related toxicities in rats and dogs included findings in the following organs: liver (increased ALT, AST, and GGT, inflammation, and necrosis), heart (cardiomyopathy, inflammation, and fibrosis), pancreas (inflammation and low incidence acinar degeneration), lung (infiltration, alveolar macrophages), lymphoid tissues (depletion of lymphocytes), GI tract including the tongue (ulceration, hemorrhage, and inflammation), and male reproductive organs (spermatid depletion, testicular seminiferous tubule degeneration). Hemorrhage was occasionally observed, those included hemorrhage in the GI tract, thymus, and brain. Several of the toxicities reported (e.g. inflammation, cardiomyopathy, pancreatic acinar degeneration) may be due to the inhibition of CXCR4/5 pathways. Of note, CXCR5 is upstream from Bruton's tyrosine kinase (BTK). Inhibition of the BTK pathway may be associated with multiorgan inflammation and pancreatic acinar cell degeneration.

In pigmented Long-Evans rats, skin and eye uvea showed higher concentrations of idelalisib than that observed in Sprague-Dawley rats, suggesting that idelalisib or idelalisib-related materials (e.g. metabolites) bind to melanin. Clinical signs of, skin erythema and swelling have been reported in animals in the toxicology studies with low incidence of mononuclear infiltration.

In patients treated with ZYDELIG, liver toxicity (characterized by increased ALT, AST, and GGT), GI disturbance, and skin rash have been reported.

Idelalisib was not genotoxic in the bacterial mutagenesis (Ames) assay or *in vitro* chromosome aberration assay using human peripheral blood lymphocytes. Idelalisib was genotoxic in male rats in the *in vivo* micronucleus study; however, only at a high dose of 2000 mg/kg.

Two separate fertility studies were conducted. In one of the studies, male rats treated with idelalisib were mated with untreated females. Idelalisib caused decreased weight in epididymis and testis; however, there were no adverse effects on fertility parameters. In the second study, female rats given idelalisib were mated with untreated males. There were no adverse effects on fertility parameters in this study; however, there was a decrease in the number of live embryos at the highest dose tested. In an embryo-fetal developmental study, idelalisib caused malformations in rats when given to pregnant animals during the period of organogenesis at maternally toxic doses. Therefore, pregnancy category D is recommended. In the NDA review, the exposures used for animal-to-human AUC ratios were representative of different time-points; AUC₀₋₁₂ for humans and AUC₀₋₂₄ for animals. During the labeling review, it was determined that comparisons based on the same AUC time-point (i.e. AUC₀₋₂₄ in humans or 20.2 μ g.h/mL) was most appropriate. As a result, the exposure ratios in the label differ from those presented in the NDA review.

The nonclinical studies were reviewed by Drs. Ramadevi Gudi and Natalie Simpson. The nonclinical findings are summarized in the "Executive Summary" of the NDA review and reflected in the product label.

Recommendation: I concur with Drs. Gudi and Simpson that from a nonclinical perspective, ZYDELIG may be approved and that no additional nonclinical studies are needed to support approval of ZYDELIG for the proposed indications.

This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

/s/

HALEH SABER 04/17/2014

DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION CENTER FOR DRUG EVALUATION AND RESEARCH

PHARMACOLOGY/TOXICOLOGY NDA REVIEW AND EVALUATION

Application number:	205858
Supporting document/s:	1
Applicant's letter date:	September 10, 2013
CDER stamp date:	September 11, 2013
Product:	Zydelig (Idelalisib)
Indication:	Treatment of patients with refractory indolent B-cell
	Non-Hodgkin Lymphoma (iNHL) and chronic
	lymphocytic leukemia (CLL)
Applicant:	Gilead Sciences, Inc.
Review Division:	Division of Hematology Oncology Toxicology
	(DHOT) for Division of Hematology Products (DHP)
Reviewer:	Natalie E. Simpson, Ph.D.
	Ramadevi Gudi, Ph.D.
Supervisor/Team Leader:	Haleh Saber, Ph.D.
Division Director:	John Leighton, Ph.D., DABT (DHOT)
	Ann Farrell, M.D. (DHP)
Project Manager:	Mara B. Miller

Disclaimer

Except as specifically identified, all data and information discussed below and necessary for approval of NDA 205858 are owned by Gilead Sciences, Inc. or are data for which Gilead Sciences, Inc. has obtained a written right of reference. Any information or data necessary for approval of NDA 205858 that Gilead Sciences, Inc. does not own or have a written right to reference constitutes one of the following: (1) published literature, or (2) a prior FDA finding of safety or effectiveness for a listed drug, as reflected in the drug's approved labeling. Any data or information described or referenced below from reviews or publicly available summaries of a previously approved application is for descriptive purposes only and is not relied upon for approval of NDA 205858.

TABLE OF CONTENTS

1 E	XECUTIVE SUMMARY	10
1.1 1.2	INTRODUCTION BRIEF DISCUSSION OF NONCLINICAL FINDINGS	10 10
1.3	RECOMMENDATIONS	12
2 D	RUG INFORMATION	13
2.1 2.2 2.3 2.4	DRUG RELEVANT INDS, NDAS, BLAS AND DMFS DRUG FORMULATION COMMENTS ON NOVEL EXCIPIENTS.	13 13 13 14
2.5 2.6 2.7	COMMENTS ON IMPURITIES/DEGRADANTS OF CONCERN PROPOSED CLINICAL POPULATION AND DOSING REGIMEN REGULATORY BACKGROUND	14 15 15
3 S	TUDIES SUBMITTED	15
3.1 3.2 3.3	Studies Reviewed Studies Not Reviewed Previous Reviews Referenced	15 17 17
4 P	HARMACOLOGY	18
4.1 4.2 4.3	PRIMARY PHARMACOLOGY SECONDARY PHARMACOLOGY SAFETY PHARMACOLOGY	18 34 36
5 P	HARMACOKINETICS/ADME/TOXICOKINETICS	43
5.1 5.2	PK/ADME Toxicokinetics	43 59
6 G	SENERAL TOXICOLOGY	60
6.1 6.2	SINGLE-DOSE TOXICITY REPEAT-DOSE TOXICITY	60 61
7 G	SENETIC TOXICOLOGY	. 104
7.1 7.2 7.3	IN VITRO REVERSE MUTATION ASSAY IN BACTERIAL CELLS (AMES) IN VITRO ASSAYS IN MAMMALIAN CELLS IN VIVO CLASTOGENICITY ASSAY IN RODENT (MICRONUCLEUS ASSAY)	. 104 . 107 . 109
9 R	EPRODUCTIVE AND DEVELOPMENTAL TOXICOLOGY	. 111
9.1 9.2	FERTILITY AND EARLY EMBRYONIC DEVELOPMENT EMBRYONIC FETAL DEVELOPMENT	. 111 . 120
10	SPECIAL TOXICOLOGY STUDIES	. 129
11	INTEGRATED SUMMARY AND SAFETY EVALUATION	. 136

12	APPENDIX/ATTACHMENTS	144	ł
----	----------------------	-----	---

APPEARS THIS WAY ON ORIGINAL

Table of Tables

Table 1: Quantitative Composition of Idelalisib Tablets, 100 mg and 150 mg
specific Cell-based Assays
Table 4: ATP Km for PI3K α . PI3K β . PI3K δ and PI3K γ from TR-FRET Assav
Table 5: IC_{50} values GS-1101 for PI3K α . PI3K β . PI3K δ and PI3K γ
Table 6: Effect of ATP concentration on the IC_{50} value of GS-1101 on PI3K δ enzymatic activity
Table 7: Normalized Median Eluorescence Intensity (MEI) Signal for P-AKT (Ser473)
Alexa Fluor 488 Staining in CD20+/CD3- Follicular Lymphoma Cells Prepared from Fine
Table 8: Selectivity of GS-563117 using KINOMEscan [™] in vitro competitive binding
assav
Table 9: Mean Pharmacokinetic Parameters for IV and Oral Dosing of CAL-101 in Rats
Table 10: Mean Plasma Pharmacokinetic Parameters for CAL-101 Following a Bolus IV
Injection or Oral Administration in a Capsule at 1 mg/kg to Female Beagle Dogs (mean
+ StD $n = 3$)
Table 11: Metabolite Identification in the Excreta of Sprague-Dawley Rats 51
Table 12: Absorption Parameters of ¹⁴ C-GS-1101 in Normal Rats and Route of
Excretion Percentages of ¹⁴ C-GS-1101 in Normal and Bile Duct-Cannulated Rats 56
Table 13: Pharmacokinetic Parameters for Radioactivity in Blood and Plasma Collected
from Male Intact Dogs after a Single Oral Administration of 14C-GS-1101 (Group 1, 5
ma/ka)
Table 14: Plasma Protein Binding of IDELA and GS-563117 in Mouse, Rat. Dog. and
Human 59
Table 15: Mean % Change in Hematology Parameters Compared to Control on Day 29
in the 4-Week Rat Study
Table 16: Mean % Change in Clinical Chemistry Parameters Compared to Control in the
4-Week Rat Study
Table 17: Significant Changes in Organ Weights at the End of Dosing in the 4-Week Rat
Study
Table 18: Incidence and Grade of Histopathology Findings at 4-Wk Sacrifice in Male
Rats
Table 19: Incidence and Grade of Histopathology Findings at 4-Wk Sacrifice in Female
Rats
Table 20: Incidence and Grade of Histopathology Findings at 4-Wk Recovery Sacrifice
in Male Rats
Table 21: Toxicokinetic Parameters CAL-101 in Rat Plasma: Days 1 and 2867
Table 22: Change in Clinical Chemistry Parameters Compared to Control in Dog 4-Wk
Study
Table 23: Significant Changes in Organ Weights, Relative to Body Weight in Dogs at
the End of Dosing (4-Wk)70

Table 24: Significant Changes in Organ Weights, Relative to Body Weight in Dogs at	
the End of Recovery (4-Wk)	70
Table 25: Incidence and Grade of Histopathology Findings at 4-Wk Sacrifice in Male	
Dogs7	71
Table 26: Incidence and Grade of Histopathology Findings at 4-Wk Sacrifice in Female)
Dogs7	72
Table 27: Incidence and Grade of Histopathology Findings after 4-Wk Recovery in	
Female Dogs7	73
Table 28: Toxicokinetic Parameters CAL-101 in Dog Plasma: Days 1 and 287	73
Table 29: Cause of Death (13-week Rat Study)7	75
Table 30: Summary of Clinical Signs in 13-Week Rat Study7	75
Table 31: Summary of Organ Weight Changes in the 13-Week Rat Study	76
Table 32: Microscopic Findings with Increased Incidence and/or Severity in GS-1101-	
Treated Rats Compared to Controls (13-Week Study)7	77
Table 33: Toxicokinetic Parameters for GS-1101 in Rat Plasma: Days 1 and 907	78
Table 34: Cause of Death (6-Month Rat Study) 8	30
Table 35: Summary of Clinical Signs in 6-Month Rat Study	30
Table 36: Summary of Hematolotgy Findings in Male Rats in the 6-Month Study 8	32
Table 37: Summary of Hematolotgy Findings in Female Rats in the 6-Month Study	32
Table 38: Summary of Clinical Chemistry Parameters in the 6-Month Rat Study	33
Table 39: Summary of Macrosopic Findings in the 6-Month Rat Study	33
Table 40: Summary of Organ Weight Changes in the 6-Month Rat Study	34
Table 41: Microscopic Findings with Increased Incidence and/or Severity in GS-1101-	
Treated Rats Compared to Controls (6-Month Study)	35
Table 42: Toxicokinetic Parameters for GS-1101 in Rat Plasma: Days 0 and 181 8	38
Table 43: Toxicokinetic Parameters for GS-563117 in Rat Plasma: Days 0 and 1818	39
Table 44: Cause of Death (9-Month Dog Study)) 1
Table 45: Toxicities Observed in Dead Animals (9-Month Dog Study)) 1
Table 46: Changes in Body Weight Gain in Male Dogs During Recovery (9-Month	
Study)	93
Table 47: Changes in Body Weight Gain in Female Dogs During Recovery (9-Month	
Study)	94
Table 48: Summary of Hematology Findings in Male Dogs in the 9-Month Study) 5
Table 49: Summary of Hematology Findings in Female Dogs in the 9-Month Study9) 5
Table 50: Summary of Clinical Chemistry Parameters in Male Dogs in the 9-Month	
Study) 5
Table 51: Summary of Clinical Chemistry Parameters in Female Dogs in the 9-Month	
Study	96
Table 52: Summary of Macrosopic Findings in the 9-Month Dog Study	96
Table 53: Incidence of Selected Lymphoid System Histopathological Findings in the	
Beagle Dog, Study Week 39 Primary Necropsy	98
Table 54: Incidence of Selected Lymphoid System Histopathological Findings in the	
Beagle Dog, Study Week 51 Recovery Necropsy	99
Table 55: Incidence of Selected Intestinal Tract Histopathological Findings in Beagle	
Dogs, Study Week 39 Primary Necropsy 10)0

Table 56: Incidence of Selected Intestinal Tract Histopathological Findings in Beagle	
Dogs, Study Week 51 Recovery Necropsy 10	1
Table 57: Incidence of Selected Intestinal Tract Histopathological Findings in Beagle	
Dogs. Study Week 51 Recovery Necropsy (continued)	2
Table 58: Summary of Toxicokinetic Parameters for GS-1101 in Beagle Dogs (9-Month	_
Study)	3
Table 59: Summary of Toxicokinetic Parameters for GS-563117 in Readle Dogs (9-	5
Month Study)	4
Table 60: Plate Incorporation Average-Revertant Colonies/Plate in the Absence of S9	т
Mix	R
Table 61: Plate Incorporation Average-Revertant Colonies/Plate in the Presence of S9	5
Mix 10	R
Table 62: Pro-incubation Average-Povertant Colonies/Plate in the Absence of SQ Mix	5
Table 02. FTe-Incubation Average-Nevertant Colonies/Flate in the Absence of 39 with	6
Table 62: Dro incubation Average Devertant Colonics/Dista in the Drosones of S0 Mix	5
Table 05. Fre-incubation Average-Revenant Colonies/Frate in the Fresence of 59 Mix	7
Table 64: Desults for CAL 101 in the In Vitre Chromosome Aborration Associ	/ 0
Table 64. Results for CAL-TOT III the III vitro Chromosome Aberration Assay	с С
Table 65: Group Mean Micronucleus Results for CAL-101	J
Table 66: Mortalities In Male Rat Fertility Study	3
Table 67: Toxicities Observed in Male Rats with Mortalities in the Fertility Study 11.	3
Table 68: Results of Reproductive Performance in Male Rats	4
Table 69: Results of Spermatogenic Evaluations in Rats	4
Table 70: Summary of Macroscopic Findings in Male Rat Fertility Study	S
Table 71: Selected Mean Organ Weights at the Primary Necropsy (Grams) in the Male	
Rat Fertility Study	5
Table 72: Summary of Microscopic Findings in Male Rat Fertility Study 11	5
Table 73: Summary of Embryonic Data at Scheduled Necropsy in Females Mated with	
GS-1101 Treated Males	6
Table 74: Results of Reproductive Performance in Female Rat Fertility Study 119	9
Table 75: Summary of Embryonic Data at Scheduled Necropsy in GS-1101 Treated	
Females Mated with Untreated Males 120	С
Table 76: Clinical Signs in Dams Treated with GS-1101 in the Embryofetal Developmen	t
Study in Rats122	2
Table 77: Changes in Net Body Weight Gain (g) in Female Rats 123	3
Table 78: Toxicokinetic Parameters for GS-1101 in Plasma of Pregnant Female Rats	
	4
Table 79: Toxicokinetic Parameters for GS-536117 in Pregnant Female Rats 124	4
Table 80: Summary of Cesarean Section Data in Dams Treated with GS-1101 12	5
Table 81: Malformations and Variations Observed in Litters from Dams Treated with	
GS-1101	7
Table 82: Impurity Levels in Batches Used in Toxicology Studies	9
Table 83: Cause of Death in 4-Week Study Evaluating GS-1101 Impurites (Study No.	
TX-312-2012)	1
Table 84: Clinical Signs in Rats in the 4-Wk Impurity Study	1
Table 85: Summary of Hematology Findings in Rats in the 4-Wk Impurity Study 132	2
Table 86: Summary of Clinical Chemisty Findings in Rats in the 4-Wk Impurity Study 132	2

Table 87: Treatment-Releated Macroscopic Findings in Rats in the 4-Wk Impurity Study
Table 88: Treatment-Related Organ Weigt Changes in Rats in the 4-Wk Impurity Study
Table 89: Microscopic Findings with Increased Incidence or Severity in Rats in the 4-Wk Impurity Study 134
Table 90: Tabulated Summary of General Toxicology Studies 141 Table 91: Tabulated Summary of Reproductive and Developmental Toxicology Studies
Table 92: Cross-Species Comparison of Metabolite Exposure and Routes of Elimination 144

APPEARS THIS WAY ON ORIGINAL

Table of Figures

Figure 1: PI3K ₀ Signaling Pathways Targeted by Idelalisib in B-Cell Malignancies	
Mediate Survival, Proliferation, and Homing1	19
Figure 2: Screening of Primary Malignant B-cells from Patients with ALL, CLL, Acute	
Myeloid Leukemia (AML), or Myeloproliferative Neoplasm (MPN) or from Normal	
Healthy Volunteers (NHV)	21
Figure 3: GS-1101 Inhibits PI3Ko Signaling in Malignant B-cell Lines and Primary	
Patient Tumor Cells	21
Figure 4: GS-1101 Induces Apoptosis in Malignant B-cell Lines	22
Figure 5: GS-1101 Inhibits CLL Cell Chemotaxis Toward CXCL12 and CXCL132	24
Figure 6: GS-1101 Inhibits Migration Beneath TSt-4 or 9-15C Stromal Cells When CLL	_
Were Stimulated with Anti-IgM	24
Figure 7: The Mean Pseudoemperipolesis (+SEM) of CLL Cells from 9 Different	
Patients Beneath Fach of the 2 Types of Stromal Cells in the Presence or Absence of	
GS-1101	25
Figure 8: NI C- and BCR-induced Secretion of the Chemokines, CCI 3, CCI 4, and	-0
CXCI 13 by CLL Cells is Inhibited by GS-1101	26
Figure 9: GS-1101 (CAI -101) Inhibits Signalling Downstream of the BCR_CXCR4_and	4
CXCR5	27
Figure 10: Expression by Western Blotting of PI3K Type I Catalytic Sub-units in WSU-	- '
NHL and WSU-ESCCL Cell Lines Derived from FL Patients and Karpas-422 and RL	
Derived from Diffuse Large B-cell Lymphomas	31
Figure 11: Dose-dependent Inhibition of Viability in WSU-NHL and WSU-ESCCL Cells	
after 72 Hours of Treatment with GS-1101 Measured by alamarBlue Assay	32
Figure 12 ⁻ Analysis of the Proportion of WSU-NHL Cells Undergoing Apoptosis after 24	4
and 48 hours of GS-1101 Treatment Measured by AnnexinV Staining	33
Figure 13 ⁻ Analysis of the Proportion of WSU-NHL Cells Undergoing Apoptosis after 24	4
and 48 hours of GS-1101 Treatment Measured by Cleaved Caspase 3	33
Figure 14: CAL-101 and CAL-102 Inhibition of HERG Channel Activity	37
Figure 15: MAP Changes after Oral Administration of CAI -101 to Dogs	40
Figure 16: SAP Changes after Oral Administration of CAL-101 to Dogs	40
Figure 17: Mean Plasma Concentration Versus Time Profiles for Idelalisib Following	
Oral Administration in Suspension to Female Sprague-Dawley Rats (3 mg/kg) and in a	1
Cansule to Female Beadle Dogs (1 mg/kg) (mean + StD, $n = 3$)	15
Figure 18: Concentrations of ¹⁴ C-CAL-101 in Blood and Plasma of Sprague- Dawley	10
and Long Evans Rats	17
Figure 19. Highest Concentrations of ¹⁴ C-CAL-101 in the Tissues of Sprague- Dawley	• •
Rats	18
Figure 20: Proposed Biotransformation Pathway of GS-1101 in Rats	52
Figure 21: Concentrations of Radioactivity in Blood and Plasma at Specified Times after	er
a Single Oral Administration of ¹⁴ C-GS-1101 to Male Sprague-Dawley Rats (Group 2	
50 mg/kg	55
Figure 22: Concentrations of Radioactivity in Blood and Plasma at Specified Times after	⊃r
a Single Oral Dose of 14C-GS-1101 to Male Intact Dogs (Group 1, 5 mg/kg)	58
	50

Figure 23: Changes in Body Weight Gain in Male Dogs Administered GS-1101 by C	Dral
Gavage (9-Month Study)	92
Figure 24: Changes in Body Weight Gain in Female Dogs Administered GS-1101 by	у
Oral Gavage (9-Month Study)	93
Figure 25: Mean Body Weight in Female Rats During Gestation	. 123

APPEARS THIS WAY ON ORIGINAL

1 Executive Summary

1.1 Introduction

NDA 205858 has been submitted for idelalisib for the treatment of patients with refractory indolent B-cell non-Hodgkin lymphoma (iNHL) and chronic lymphocytic leukemia (CLL). Idelalisib is a kinase inhibitor with selectivity toward phosphatidylinositol 3-kinase p110 δ (PI3K δ) catalytic domain. The proposed clinical dose of 150 mg is administered orally as a tablet twice a day (BID). Nonclinical pharmacology, pharmacokinetic, and toxicology studies have been submitted to support the approval of idelalisib for the proposed indications.

1.2 Brief Discussion of Nonclinical Findings

Idelalisib (IDELA; GS-1101; CAL-101), is a kinase inhibitor with selectivity toward PI3Kδ. PI3Kδ is a downstream signal transducer for several receptors including B-cell receptor (BCR), CD40 receptor, chemokine receptor CXCR5, IL-6 receptor, and integrins. These pathways may be involved in B-cell proliferation, motility, and in homing to and maintenance of the tumor microenvironment in B-cell malignancies. The primary human metabolite of idelalisib, GS-563117, inhibits lymphocyte-oriented kinase (LOK) and Ste20-like kinase (SLK). According to the information at Cancer Genome Anatomy Project (CGAP), LOK is involved in lymphocyte migration and SLK is involved in apoptosis. GS-563117 is present in the plasma of healthy volunteers at higher levels (62% of drug-related material) than the parent drug (38% of drug-related material) following single oral dosing of idelalisib at 150 mg.

Idelalisib inhibits PI3K by binding to the ATP binding site of the catalytic subunit p110 δ . P110 δ is over-expressed in cell lines derived from patients with follicular lymphoma (small cleaved cell lymphoma or NHL). The (IC₅₀) of idelalisib for PI3K δ was 19 nM in an *in vitro* assay and the EC₅₀ was 8.9 nM in a cell-based assay. The primary human metabolite, GS-563117, is an inhibitor of LOK and SLK kinases with IC₅₀ values of 0.11 µM and 0.05 µM, respectively. Idelalisib inhibited cell viability and induced apoptosis in malignant B-cells. Idelalisib exhibited higher sensitivity for acute lymphoblastic leukemia (B-ALL) and CLL cells compared with acute myeloid leukemia (AML) and myeloproliferative neoplasm (MPN) cells, suggesting a greater activity potential for B-cell malignancies. Idelalisib inhibited CXCR4 and CXCR5 signaling and chemotaxis in CLL cells, as well as BCR signaling and chemokine secretion and CLL cell migration in an *in vitro* simulated tumor microenvironment.

In *in vivo* and *in vitro* safety pharmacology studies conducted, no clear drug-related effects were observed for idelalisib on neurological, cardiovascular, or respiratory function. However, drug-related cardiomyopathy and increased in the heart weight were observed in the rat in the repeat-dose toxicology studies (see below).

Orally administered idelalisib was absorbed rapidly (T_{max} 0.5 to 2 hours), with bioavailability less than 50% in the animals tested. Idelalisib was localized to most

tissues in the rat, but was relatively excluded from bone, brain, spinal cord, and eye lens. In Long-Evans rats, pigmented skin and eye uvea showed higher concentrations of idelalisib than that observed for the similar tissues in Sprague-Dawley rats, suggesting some association of drug-derived radioactivity with melanin. The pharmacokinetics of idelalisib are similar between rats and dogs and humans, however, the plasma level of the metabolite GS-563117 was lower in dogs (34%) and rats (1.4%) than humans (62%). Idelalisib was the most abundant analyte in plasma of rats and dogs (~90% in rats and ~60% in dogs). Idelalisib exhibited moderately high plasma protein binding in all species with the average free fraction values of 19%, 21%, and 16% for rat, dog, and human respectively. The hepatobiliary route was the primary route of excretion within 24 to 48 hours in rats and dogs, with the majority of idelalisib being detected in the feces and 6% or less in the urine.

Toxicities following repeated dosing of idelalisib in rats and/or dogs included findings in the following tissues/organs:

- hematopoietic/lymphoid system (lymphoid depletion, reduced weight of spleen and thymus, thymic hemorrhage and necrosis, myeloid and granulopoeitic hyperplasia),
- liver (increased liver enzymes, increased liver weight, inflammation, hepatocellular necrosis);
- gastrointestinal (GI) tract including the tongue (infiltration, hemorrhage, ulceration),
- heart; seen in rats only (myocardium infiltrate, fibrosis, increased heart weight);
- male reproductive systems (testicular seminiferous tubule degeneration, reduced testicular weight).

Inflammation was observed in several tissues (e.g. in the GI tract, pancreas, lungs, heart, and liver) and may be related to the inhibition of the CXCR5 pathway, involved in homing of B-cells. Skin may be also a target of idelalisib toxicity. In pigmented rats, idelalisib-related radioactivity was present in the eyes and skin at higher concentrations than what were reported for non-pigmented rats. Skin erythema, dryness, swelling, and redness have been observed in animals in toxicology studies.

An *in vitro* photo-toxicity study was conducted in the embryonic murine fibroblast BALB/c 3T3 cell line using Neutral Red uptake as a marker of cellular viability in the presence and absence of ultraviolet A (UVA) light exposure. The study was not reviewed by the Agency, however, based on the summary provided by the Applicant, results for idelalisib were inconclusive, while the primary human metabolite, GS-563117, induced photo-toxicity in the presence of UVA exposure.

General toxicology studies were done by the oral route and included 28-day studies in rats and dogs, a 13-week study in rats, a 6-month study in rats, and a 9-month study in dogs. There were mortalities in all rat studies with cause of deaths undetermined or related to liver toxicity. Cardiomyopathy was observed in unscheduled sacrifices and surviving rats in the 13-week and 6-month studies, with an increase in heart weight

observed in the 13-week study. In the 9-month dog study, mortality was attributed to systemic inflammation, with no signs of hepatotoxicity in this study.

Idelalisib did not induce mutations in the bacterial mutagenesis (Ames) assay and, was not clastogenic in the *in vitro* chromosome aberration assay using human peripheral blood lymphocytes. Idelalisib was genotoxic in males in the *in vivo* rat micronucleus study at a high dose of 2000 mg/kg. Carcinogenicity studies have not been conducted and are not necessary for the proposed indications.

Reproductive and developmental toxicology studies were conducted in rats to assess the effects of idelalisib on fertility and embryo-fetal development. In a fertility and early embryonic development study, idelalisib-treated male rats were mated to untreated female rats. In this study, idelalisib had no effect on reproductive function or fertility, despite decreased testis and epididymis weights, and reduced sperm counts. When idelalisib-treated female rats were paired with untreated male rats, there was an increase in pre-implantation and post-implantation loss, and early embryolethality, resulting in a 20% decrease in the number of live embryos at the high dose of 100 mg/kg (600 mg/m²).

The embryo-fetal development effects of idelalisib were studied in the rat. Idelalisib produced post-implantation loss and was teratogenic. Idelalisib was maternally toxic based on reductions in net body weight gain > 10% at the mid and high doses (75 and 150 mg/kg/day; 450 and 900 mg/m²/day) and clinical signs of maternal toxicity, most evident at the high dose. Adverse embryo-fetal findings at doses \geq 75 mg/kg/day (450 mg/m²/day) included decreased fetal weights, external malformations (short tail) and skeletal variations (delayed ossifications and/or unossification of the skull, vertebrae, and sternebrae). At 150 mg/kg/day (900 mg/m²/day) dose, idelalisib resulted in spontaneous abortion (urogenital loss, complete resorption, increased post-implantation loss, and reduced mean litter size) and malformations (vertebral agenesis with anury, microphthalmia/anophthalmia, and hydrocephaly) in live fetuses. The dose of 75 and 150 mg/kg/day of idelalisib in rats resulted in exposures (AUC) of approximately 25 and 60 times, respectively, the human exposure at the recommended dose of 150 mg BID.

As a kinase inhibitor, the teratogenic effects of idelalisib were expected and observed in rats at the mid and high doses tested. Based on teratogenicity findings, an embryo-fetal developmental study in a second species is not needed and pregnancy category D is recommended.

1.3 Recommendations

1.3.1 Approvability

From a Pharmacology/Toxicology perspective, approval of Zydelig is recommended for the proposed indications.

1.3.2 Additional Non Clinical Recommendations

None. From a Pharmacology/Toxicology perspective, no additional post-marketing commitments (PMCs) or post-marketing requirements (PMRs) are recommended for these indications.

1.3.3 Labeling

The recommendations to the Applicant's proposed labeling were discussed internally and communicated to the Applicant. Information in the nonclinical sections of the label reflects findings of studies reviewed within this document.

2 Drug Information

2.1 Drug

CAS Registry Number	870281-82-6
Generic Name	Idelalisib
Code Name	IDELA, GS-1101, CAL-101
Chemical Name	5-Fluoro-3-phenyl-2-[(1S)-1-(9H-purin-6
	ylamino)propyl]quinazolin-4(3H)-one
Molecular Formula/	C ₂₂ H ₁₈ FN ₇ O / 415.42 g/mol
Molecular Weight	
Structure or Biochemical Description	
Pharmacologic class	kinase inhibitor
	(Mechanism of action: PIK3 δ inhibition)

2.2 Relevant INDs, NDAs, BLAs and DMFs

The IND 101254 was the original submission for CAL-101 by Calistoga Pharmaceuticals.

2.3 Drug Formulation

Idelalisib (IDELA) tablets, 100 mg and 150 mg, are orange (100 mg) or pink (150 mg), oval-shaped, film-coated tablets, debossed with "GSI" on one side and "100" for 100 mg tablets or "150" for 150 mg tablets on the on the other side.

Table 1: Quantitative Composition of Idelalisib Tablets, 100 mg and 150 mg

(Excerpted from the Applicant's submission)

2.4 Comments on Novel Excipients

(b) (4)

The Applicant's specification of ^{(b)(4)} of ^{(b)(4)} in the drug substance is acceptable. The Applicant states that the permitted daily exposure (PDE) of ^{(b)(4)} is ^{(b)(4)} We agree with the PDE of ^{(b)(4)} and the proposed specification of ^{(b)(4)} Or ^{(b)(4)} Using the data available at NTP and the PDE equation available in ICH Q3C, we obtained PDEs comparable to what the Applicant provided.

2.5 Comments on Impurities/Degradants of Concern

The proposed specifications in the drug substance are NMT ^{(b)(4)}% for impurity NMT ^{(b) (4)}% for impurity (b) (4) and NMT (b) (4) % for impurities (b) (4) ^{(b) (4)} which are above the ICH qualification threshold of 0.15%. With a and ^{(b) (4)} is clinical dose of 150 mg BID (300 mg/day; 185 mg/m²/day), the dose of (4), the dose of ^{(b) (4)} is (b) (4) (b) (4) and the dose of and (Table 2). In order to qualify the impurities above the ICH is qualification threshold, a one-month toxicology study in rats (Study # TX-312-2012) was conducted comparing two batches of idelalisib - one with lower levels of impurities

^{(b)(4)} Lot # ^{(b)(4)} and one with higher levels of impurity ^{(b)(4)} (Table 81). In this study, there were no

differences in toxicities observed in rats treated with low and high levels of impurities; and, toxicities were comparable to the rat general toxicology studies. Therefore, these impurities are considered gualified (Table 2).

Impurity	NDA 205858		Impurity Q	ualification study	Qualification
	Propose	d Specifications	in rats (TX-312-2012)		Determination
	in .	humans	L ot # (b)(4)		
			Lot		
	(300 m	ng; 185 mg/m²		(90 mg/kg; 540	
		BID)	mg.	/m ² dose)	
	%	Dose(mg/m ²)	%	Dose(mg/m ²)	
				(b) (4	Qualified
					Qualified
					Qualified
					Qualified

Table 2: Dose Based on Body Surface Area (mg/m²)

Additionally, there are two genotoxic impurities. The specifications proposed by the Applicant are NMT ^{(b)(4)} for ^{(b)(4)} and NMT ^{(b)(4)} for ^{(b)(4)}. Based on the patient population, these specifications are acceptable from a pharmacology/ toxicology perspective and meet the requirements set forth by ICH Q3A and Q3B.

2.6 Proposed Clinical Population and Dosing Regimen

Idelalisib will be administered orally at a dose of 150 mg twice a day (BID) to patients with indolent B-cell non-Hodgkin lymphoma (iNHL) or chronic lymphocytic leukemia (CLL). Indolent NHL is comprised of 4 indolent lymphomas (follicular lymphoma [FL], small lymphocytic lymphoma [SLL], lymphoplasmacytic lymphoma with or without Waldenstrom macroglobulinemia [LPL/WM], and marginal zone lymphoma [MZL]).

2.7 Regulatory Background

Calistoga Pharmaceuticals submitted their original application for CAL-101 under IND 101254 in 2008. In April 2011, Calistoga was acquired by Gilead Sciences, Inc. (Gilead). Gilead continued the development of CAL-101 and assigned the compound a Gilead identification number GS-1101. The NDA 205858 was received from Gilead on September 11, 2013 and filed on November 10, 2013.

3 Studies Submitted

3.1 Studies Reviewed

Primary Pharmacology

Study#	Title	Module
PC-312-2002	GS-1101, a p110 δ Selective Phosphatidylinositol-3-Kinase (PI3K) Inhibitor for the Treatment of B Cell Malignancies Inhibits PI3K Signaling and Cellular Viability	4.2.1.1
PC-312-2003	The Phosphoinositide 3'-Kinase Delta Inhibitor, GS-1101, Inhibits B-Cell Receptor Signaling and Chemokine Networks in Chronic Lymphocytic Leukemia	4.2.1.1
PC-312-2006	GS-1101 (CAL-101) is a Potent Selective Inhibitor of PI3K8: Isoform Selective Cell-Based	
PC-312-2007	Structure Determination of GS-1101 Bound to PI3K δ	4.2.1.1
PC-312-2008	Biochemical Assay to Access PI3K δ <i>in vitro</i> Potency and Isoform Selectivity	4.2.1.1
PC-312-2010	Effect of IDELA on Stimulated P-AKT Level in Malignant B-Cells Prepared from Biopsy Specimens from Patients with Follicular Lymphoma	4.2.1.1
PC-312-2011 The Effect of GS-1101 on Viability, Proliferation and Apoptosis of Two Follicular Lymphoma-Derived Cell Lines		4.2.1.1
PC-312-2012	Evaluation of GS-563117 for Inhibition of Class I PI3K Isoforms in a Biochemical Assay	4.2.1.1

Secondary Pharmacology

Study#	Title	Module
2408	Evaluation of Compounds on LOK and SLK Kinase Activities	4.2.1.2
CAL001-01-p-00001	Kinase Selectivity Profile for IDELA	4.2.1.2
CAL007-01-p-00001	Kinase Selectivity Profile of GS-563117	4.2.1.2

Safety Pharmacology

Study #	Title	Module
BHR00004	hERG Channel Inhibition by Test Compounds CAL-101 and CAL-102 Using a Rubidium Flux Method	4.2.1.3
BHR00041	41 A Cardiovascular and Respiratory Safety Pharmacology 41 Study of CAL-101 Administered Orally to Telemetered Beagle Dogs	
BHR00042	CAL-101: Single-Dose Safety Pharmacology Neurofunctional Assessment in Sprague-Dawley Rats	4.2.1.3

Pharmacokinetics

Study #	Study # Title			
	Absorption			
BHR00011	Pharmacokinetics and Bioavailability of CAL-101 Following Crossover Administration to Female Beagle Dogs	4.2.2.2		
BHR00012	BHR00012 Pharmacokinetics and Bioavailability of CAL-101 Following Intravenous and Oral Administration to Female Sprague-Dawley Rats			
	Distribution			
1503-058Tissue Distribution of Radioactivity by Quantitative Whole-Body Autoradiography in Sprague Dawley and Long Evans Rats Following a Single Oral Dose of 14C- CAL-1014.2.2.3				
AD-312-2009	Plasma Protein Binding of Idelalisib and GS-563117	4.2.2.3		
Metabolism				

AD-312-2002	Profiling and Identification of Metabolites in Selected Plasma, Urine, Bile, and Feces Samples from Dogs after Oral Administration of 14C-GS-1101	4.2.2.4	
AD-312-2004 Profiling and Identification of Metabolites in Selected Plasma, Urine, Bile, and Feces Samples from Rats after Oral Administration of 14C-GS-1101		4.2.2.4	
Excretion			
AD-312-2003	Pharmacokinetics, Absorption, and Excretion of 14C-GS- 1101 Following a Single Oral Administration to Rats	4.2.2.5	

Repeat-Dose Toxicology

Study#	Title	Module
TV 212 2006	A 9-Month Oral (Capsule) Toxicity Study of GS-1101 with	1232
17-312-2000	a 12-Week Recovery Period in Beagle Dogs	4.2.3.2
BHDOOOS	CAL-101: 28-Day Oral Toxicity Study with Toxicokinetics	1232
BHR00000	in Beagle Dogs with Recovery	4.2.3.2
TV 242 2005	A 6-Month Oral (Gavage) Toxicity Study of GS-1101 with	1232
17-312-2003	a 12-Week Recovery Period in Sprague Dawley Rats	4.2.3.2
BHDOOOO	CAL-101: 28-Day Oral Toxicity Study with Toxicokinetics	1232
BHIK00009	in Sprague-Dawley Rats with Recovery	4.2.3.2
TX-312-2001	GS-1101: A 13-Week Oral Toxicity Study in Rats with a 4-	1222
	Week Recovery Period	4.2.3.2

Genetic Toxicology

Study#	Title	Module
961805	CAL-101 Bacterial Mutation Test	4.2.3.3.1
961806	CAL-101 Chromosome Aberration Test	4.2.3.3.1
961807	CAL-101 Rat Micronucleus Test	4.2.3.3.2

Reproductive Toxicology

Study#	Title	Module
TV 212 2014	Evaluation of Orally (by Gavage) Administered GS-	
17-312-2014	1101 on Fertility in Male Rats	4.2.3.5.1
	Evaluation of Orally (by Gavage) Administered GS-	
TX-312-2016	1101 on Fertility and Early Embryonic Development to	4.2.3.5.1
	Implantation in Female Rats	
TY-312-2008	An Oral (Gavage) Embryo/Fetal Development Study of	12352
17-312-2000	GS-1101 in Rats	4.2.3.3.2

Special Toxicology

Study#	Title	Module
TX-312-2012	A 28-Day Oral Gavage Impurity Qualification Study of GS-1101 in the Sprague Dawley Rat	4.2.3.7.6

3.2 Studies Not Reviewed

Please refer to the Appendix for the list of studies submitted to the NDA that were not reviewed.

3.3 Previous Reviews Referenced

Study BHR00008 "CAL-101: 28-Day Oral Toxicity Study with Toxicokinetics in Beagle Dogs with Recovery", study BHR00009 "CAL-101: 28-Day Oral Toxicity Study with Toxicokinetics in Sprague-Dawley Rats with Recovery", study 961805 "CAL-101

Bacterial Mutation Test", study 961806 "CAL-101 Chromosome Aberration Test", and study 961807 "CAL-101 Rat Micronucleus Test" was reviewed under IND 101254 by Dr. Timothy Kropp. The reviews were modified to maintain format consistency for this NDA review.

4 Pharmacology

4.1 **Primary Pharmacology**

Idelalisib is a selective PI3K δ , Class I phosphatidylinositide 3-kinase (PI3K) inhibitor that competes with ATP for binding to the kinase domain of PI3K δ . Upon activation via cell surface receptor-ligand interactions, PI3K δ phosphorylates the second messenger phosphatidylinositol to generate phosphatidylinositol 3,4,5, trisphosphate (PIP3). PIP3 enables the transmission of cell surface receptor signaling by acting as a scaffold for the recruitment and activation of numerous intracellular signaling enzymes including the serine/threonine protein kinase Akt. Akt is an initiator of specific pathways that ultimately mediate positive pleotropic effects on cell survival, proliferation, growth, and metabolism.

PI3Kδ is a signaling molecule in normal and malignant B lymphocytes^{1,2}. PI3Kδ is involved in several signaling pathways such as the B-cell receptor (BCR), CD40, B-cell activating factor receptor (BAFFR), chemokine receptors CXCR4 and CXCR5, IL-6 receptor, and integrins (Figure 1). These pathways may be involved in B-cell proliferation, motility, and in homing to and maintenance of the tumor microenvironment in B-cell malignancies³. Hyperactivity and deregulation of the PI3K/Akt pathway is observed in human B-cell malignancies^{4,5}.

¹ Puri KD, Gold MR. Selective inhibitors of phosphoinositide 3-kinase delta: modulators of B-cell function with potential for treating autoimmune inflammatorydiseases and B-cell malignancies. Frontiers in immunology 2012;3:256.

² Young RM, Staudt LM. Targeting pathological B cell receptor signalling in lymphoid malignancies. Nat Rev Drug Discov 2013;12 (3):229-43.

³ Schrottner P, Leick M, Burger M. The role of chemokines in B cell chronic lymphocytic leukaemia: pathophysiological aspects and clinical impact. Ann Hematol 2010;89 (5):437-46.

⁴ Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nature reviews. Cancer 2009;9 (8):550-62.

⁵ Witzig TE, Kaufmann SH. Inh bition of the phosphatidylinositol 3- kinase/mammalian target of rapamycin pathway in hematologic malignancies. Current treatment options in oncology 2006;7 (4):285-94.

Figure 1: PI3Kδ Signaling Pathways Targeted by Idelalisib in B-Cell Malignancies Mediate Survival, Proliferation, and Homing

(Excerpted from the Applicant's submission)

In the primary and secondary pharmacology sections of this review, the potency, selectivity, and *in vitro* pharmacological activity of idelalisib are described. Key findings are listed below, followed by summaries of methods and results from reviewed studies.

Key Findings:

- Idelalisib has anticancer activity in cells derived from patients with B-cell malignancies.
- Idelalisib (≥ 1 µM) significantly reduced the induction and secretion of chemokines (CCL3 and CCL4) in primary CLL cells stimulated by anti-IgM or by co-culture with Nurse like cells (NLCs) at concentrations ≥ 0.5 µM.
- Idelalisib inhibited Akt and extracellular signal-regulated kinase phosphorylation in response to anti-IgM stimulation and in response to CXCL12 or CXCL13.
- > In a cell-based assay, GS-1101 inhibited PI3K δ signaling with an EC₅₀ of 8.9 nM. The IC₅₀ was 19 nM in *in vitro* assays using recombinant protein.
- Idelalisib caused dose-dependent apoptosis in malignant B-cell lines.
- Idelalisib inhibits PI3Kδ by binding to the ATP binding site of the catalytic subunit P110δ.
- ➢ P110δ is highly expressed in WSU-FSCCL and WSU-NHL, two cell lines derived from follicular lymphoma patients. GS-1101 treatment inhibited cell viability in both cell lines.

- Idelalisib, at a concentration of 0.1 μM, inhibited P-AKT (Ser473) an average of 86% (range 55-97%) in malignant B-cells prepared from biopsy specimens of 7 patients with follicular lymphoma.
- In a kinase screen, idelalisib inhibited other Class I PI3K isoforms between 83 and 97.3%; however, *in vitro* assays demonstrate that GS-1101 is between 110and 453-fold more selective for inhibition of PI3Kδ.
- > The primary human metabolite of GS-1101, GS-563117 (~62% in human plasma), is an inhibitor of LOK and SLK kinases with IC₅₀ values of 0.11 μ M and 0.05 μ M, respectively.

Study title: GS-1101, a p110 δ Selective Phosphatidylinositol-3-Kinase (PI3K) Inhibitor for the Treatment of B Cell Malignancies Inhibits PI3K Signaling and Cellular Viability

Study No.: PC-312-2002 Report Date: June 12, 2013 Study report location: eCTD 4.2.1.1. Conducting Laboratory: Gilead Sciences, Inc. GLP: No

PI3K δ inhibition by GS-1101 was assessed in a panel of malignant B-cell tumor lines and primary tumor cells from patients with CLL, mantle cell lymphoma (MCL) and B-ALL.

Cell Viability

A total of 134 leukemia patients and 5 control PBMC samples from normal healthy volunteers were tested for cell viability using a 3-carboxymethoxyphenyl)-2-(4-sulphenyl)-2H-tetrazolium assay. Significant sensitivity (defined as an EC₅₀ less than 1 μ M) to GS-1101 was observed in 23% of acute lymphoblastic Leukemia (B-ALL) samples (5/22), 26% of CLL samples (11/42), 3% of acute myeloid Leukemia (AML) samples (1/31), and 0% of Myeloproliferative Neoplasm (MPN) samples (0/39) suggesting a greater drug activity in patients with B-cell malignancies (Figure 2). Normal PBMCs showed no sensitivity to GS-1101.

Figure 2: Screening of Primary Malignant B-cells from Patients with ALL, CLL, Acute Myeloid Leukemia (AML), or Myeloproliferative Neoplasm (MPN) or from Normal Healthy Volunteers (NHV)

(Excerpted from the Applicant's submission)

Inhibition of Constitutive PI3K Signaling and Induction of Apoptosis

In SU-DHL-5/10, KARPAS, and CCRF-SB malignant B-cell lines from patients with diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), and B-ALL, respectively, GS-1101 (CAL-101) reduced phosphorylated RAC-alpha serine/threonine protein kinase (p-Akt^{S473}) and produced a concentration-dependent reduction in phosphorylated RAC-alpha serine/threonine protein kinase (pAktT308) and the downstream target S6 ribosomal protein with an EC₅₀ of 0.1-1.0 μ M as measured using Western or ELISA analysis (Figure 3)

Figure 3: Serum-starved cells were incubated with 1µM GS-1101 (CAL-101), and total cell lysates were subjected to Western blot analysis using anti–phospho-AktS473, anti-Akt, anti-phospho S6S235/236, and anti-S6 antibodies (supplemental data). Starved cells were incubated with vehicle or serial dilution of GS-1101 for 1 hour, and pAktT308, pS6S235/236, total Akt, and total S6 were detected by PathScan sandwich ELISA.

FACS analysis was used to measure Akt phosphorylation in cells derived from patients with CLL or MCL. GS-1101 at 100 nM resulted in a 60% reduction in constitutive levels of pAkt^{T308} (EC₅₀<100 nM) compared to untreated samples.

Phosphorylation of S473 in addition to T308 is required for full kinase activity and can occur through signals from the tumor microenvironment. The following tumor microenvironment signals caused rapid induction of pAkt^{S473} that could be inhibited by GS-1101:

- CD40 activation in primary CLL cells and BCR activation in primary MCL cells and the Jeko MCL cell line (complete inhibition by GS-1101 at 1μM)
- CXCR5 and CXCR4 activation (~80% inhibition by GS-1101 at 1μM)
- Activation of B-cell activating factor (BAFF) which is involved in the proliferation and differentiation of B cells (~80% inhibition by GS-1101 at 1μ M)

GS-1101 treatment (0.5-1 μ M) resulted in apoptosis induction and a dose-dependent, 2to 8-fold increase in both caspase 3 and PARP cleavage in SU-DHL-5, WSU-NHL (FL) and CCRF-SB malignant B-cell lines compared to vehicle controls (Figure 4).

Figure 4: GS-1101 Induces Apoptosis in Malignant B-cell Lines

A. CAL-101 induces apoptosis in diffuse large B-cell lymphoma, follicular lymphoma, and B-ALL cell lines. Cells were treated with vehicle or 0.5 or 1.0μM GS-1101 for 24 hours. The percentage of apoptotic cells was determined by annexin V–FITC/7-AAD staining followed by 2-color flow cytometric analysis. Percentages represent both annexin V-FITC/7-AAD negative and annexin V–FITC/7-AAD double-positive. Results are expressed as mean \pm SD. Statistically significant differences between means were determined using a one-way analysis of variance.

B. Cells were cultured in RPMI/10% fetal bovine serum with GS-1101 or vehicle alone for 24 hours, and cells were lysed and analyzed by PathScan Sandwich 96-well ELISA for the detection of cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase (PARP).

Data are expressed as the fold change and are representative of 3 separate experiments.

Study title: The Phosphoinositide 3'-kinase Delta Inhibitor, GS-1101, Inhibits Bcell Receptor Signaling and Chemokine Networks in Chronic Lymphocytic Leukemia

Study No.: PC-312-2003 Report Date: May 28, 2013 Study report location: eCTD 4.2.1.1. Conducting Laboratory: Gilead Sciences, Inc. GLP: No

Several *in vitro* assays were conducted that model the interactions of malignant B-cells and tumor environment which are thought to occur in patients with CLL. Chemotaxis assay, Migration assay, measurement of chemokine concentrations and immunoblotting assays are reviewed below. In these assays, CLL cells were stimulated through the Bcell receptors (BCR) with anti-IgM or through interactions induced by co-culture with Nurse-Like Cell (NLCs).

Chemotaxis Assay:

Chemotaxis assays across polycarbonate Transwell inserts were performed to determine the effect of GS-1101 on CLL cells. In the presence of 5 μ M of GS-1101, CLL cell chemotaxis was significantly reduced when allowed to migrate towards 200 ng/mL CXCL12 or 1 g/mL CXCL13 compared to control cells without chemokine. The mean (± SEM) number of cells migrating toward CXCL12 decreased from 7022 (± 1420) to 4044 (± 918), while the mean (± SEM) number of cells migrating toward CXCL13 decreased from 6179 (± 1742) to 2276 (± 470) compared to control cultures (See figure below excerpted from Applicant's NDA).

Figure 5: GS-1101 Inhibits CLL Cell Chemotaxis Toward CXCL12 and CXCL13

(Excerpted from the Applicant's submission)

Figure 5: The bar diagram represents the mean chemotaxis (\pm SEM) of CLL cells from 10 different patients in the presence or absence of GS-1101 (CAL-101). Chemotaxis toward both CXCL12 and CXCL13 was significantly inhibited by GS-1101, with P \leq 0.05, as indicated by the asterisks.

Migration Assay Evaluating CLL Pseudoemperipolesis

CLL cell (stimulated with anti-IgM) migration beneath murine stromal cells (9-15C and TSt-4), seeded onto collagen coated plates, was quantified when incubated with and without 5 μ M GS-11-1101. GS-1101 significantly reduced CLL cell migration beneath marrow stromal cells to 39.1% (± 4.6%) when 9-15C stromal cells were used, and from 191.1% (± 50.3) to 52.3% (± 7.3%) when TSt-4 stromal cells were used (See Figure 6).

Figure 6: GS-1101 Inhibits Migration Beneath TSt-4 or 9-15C Stromal Cells When CLL Were Stimulated with Anti-IgM

Figure 6: Representative phase-contrast photomicrographs displaying CLL cell migration beneath TSt-4 or 9-15C stromal cells. Pseudoemperipolesis is characterized by the dark appearance of CLL cells that

have migrated into the same focal plane as the stromal cells. There are numerous migrated CLL cells in the control wells (on the left), as indicated by the arrows, but only a few such cells in wells containing CLL cells pretreated with GS-1101 (CAL-101) (on the right).

Figure 7: The Mean Pseudoemperipolesis (±SEM) of CLL Cells from 9 Different Patients Beneath Each of the 2 Types of Stromal Cells in the Presence or Absence of GS-1101

(Excerpted from the Applicant's submission)

350 Pseudoemperipolesis (migrated cells %) 300 250 200 150 100 **50** 0 9-15C TSt-4 CAL-101 Control

Figure 7: Pseudoemperipolesis beneath TSt-4 or 9-15C stromal cells was significantly inhibited by GS-1101 (CAL-101), with P<0.05, as indicated by the asterisks.

Measurement of Chemokine Concentrations using ELISA:

The effect of GS-1101 on chemokine ligand 3 (CCL3) and chemokine ligand 4 (CCL4) protein secretion after stimulation of CLL cells with anti-IgM (10 µg/mL) or with NLCs was measured. Stimulation of the BCR with anti-IgM resulted in a marked increase in secreted levels of the chemokines CCL3 and CCL4 by CLL cells. This effect was significantly inhibited by GS-1101 at concentrations of 1 µM or greater. Co-culture with NLCs also similarly induced CLL cells to secrete high concentrations of CCL3 and CCL4 into the supernatants and this secretion was significantly inhibited by GS-1101 at concentrations of 0.5 µM or greater (See Figure 8).'

Legend for Figure 8:

- A) The bar diagram represents the mean supernatant concentrations of CLL3 and CCL4 from CLL cells cultured in complete medium (control), medium supplemented with 10 μg/mL of anti-IgM, or anti-IgM and various concentrations of GS-1101 (CAL-101). The secretion of CCL3 and CCL4 from CLL cells in the presence of anti-IgM mAbs was significantly inhibited by GS-1101, with P < 0.05 (*) compared to the results from the culture containing anti-IgM alone.</p>
- B) The bar diagram represents the mean CLL cell supernatant concentrations for CCL3 and CCL4 from CLL cells cocultured with or without (controls) NLCs. The secretion of CCL3 and CCL4 from CLL cells was significantly inhibited by GS-1101, with P < 0.05 (*) compared to the results from the control culture.</p>
- C) Lower concentrations of GS-1101, which are indicated next to each bar diagram and depicted by different shades of gray, also significantly reduced CCL3,
- D) And CCL4 from CLL cells cocultured with or without (controls) NLCs.
- E) The level of CXCL13 in NLC cocultures after treatment with GS-1101. The secretion of CXCL13 was reduced by GS-1101, with P ≤ 0.05 (*) to the results from control cultures.

Immunoblotting:

CLL cells were activated with anti-IgM, or CXCL12, or CXCL13 stimulation by stromal cells via CXCR4 or CXCR5 chemokine receptors in the presence or absence of GS-1101. CLL cell lysates were probed with phospho-specific antibodies to AKT and ERK1/2, and antibodies for total AKT, ERK1/2, and actin. GS-1101 inhibited

phosphorylation of the downstream signaling kinases AKT and ERK in response to anti-IgM stimulation, and in response to CXCL12 or CXCL13, respectively (See Figure 9).

Figure 9: GS-1101 (CAL-101) Inhibits Signalling Downstream of the BCR, CXCR4, and CXCR5

Study title: GS-1101 (CAL-101) is a Potent Selective Inhibitor of PI3K δ : Isoform Selective Cell-Based

Study No.: PC-312-2006 Report Date: June 6, 2013 Study report location: eCTD 4.2.1.1. Conducting Laboratory: Gilead Sciences, Inc. GLP: No

The cellular potency of GS-1101 (CAL-101) against all four of the Class I PI3K isoforms (PI3K α , PI3K β , PI3K δ , and PI3K γ) was determined.

For the analysis of PI3K α and PI3K β signaling, primary murine embryonic fibroblasts (MEFs) were stimulated for 10 minutes with platelet-derived growth factor (PDGF) or lysophosphatidic acid (LPA) prior to protein extraction and Western analysis to detect Akt and pAkt^{S473} levels. EC₅₀ values are based on a 50% reduction in relative phospho-Akt to total Akt levels compared to vehicle control.

For the analysis of GS-1101 on PI3K δ and PI3K γ signaling, basophil activation was measured in isolated human leukocytes (WBCs) using the Flow2 CAST® kit

Reference ID: 3482399

following manufacturer's instructions. Activated basophils are CCR3 and CD63 positive and were measured using flow cytometry. EC_{50} values are based on CCR3/CD63+ Basophils (50% reduction relative to control).

Table 3: Summary of GS-1101 Potency in PI3K α , PI3K β , PI3K δ and PI3K γ Isoform-specific Cell-based Assays

(Excerpted from the Applicant's submission)				
PI3K Isoform	Cell-based Assay and Stimulus	Primary Endpoint	EC ₅₀ ^a (nM)	Cell-based Delta Selectivity (fold)
РІЗКδ	Basophil and Anti- FceRI	CD63 expression	8.9 n=27	1
ΡΙ3Κα	Murine Embryonic Fibroblast and PDGF	pAKT	> 10,000 N=3	> 1,124
РІЗКβ	Murine Embryonic Fibroblast and LPA	рАКТ	1,419 N=4	159
ΡΙ3Κγ	Basophil and fMLP	CD63 expression	2,500 n=14	281

a EC₅₀ data are geometric mean values

In these primary cell-based *in vitro* assays, GS-1101 inhibited PI3K δ with an EC₅₀ of 8.9 nM. There was more than a 100-fold difference in the EC₅₀ for PI3K δ and PI3K γ , PI3K β and PI3K α isoforms, indicating selectivity toward PI3K δ in this assay.

Study title: Structure Determination of GS-1101 Bound to $PI3K\delta$

Study No.:	PC-312-2007
Report Date:	January 15, 2013
Study report location:	eCTD 4.2.1.1.
Conducting Laboratory:	Gilead Sciences, Inc.
GLP:	No

The crystal structure of GS-1101 bound to PI3K δ revealed that GS-1101 inhibits PI3K δ by binding to the ATP binding site of the kinase domain.

Study title: Biochemical Assay to Access PI3K δ in vitro Potency and Isoform Selectivity

Study No.: PC-312-2008 Report Date: May 28, 2013 Study report location: eCTD 4.2.1.1. Conducting Laboratory: Gilead Sciences, Inc. GLP: No

Enzymatic activity of the class I PI3K isoforms, expressed and purified as heterodimeric recombinant proteins, was measured using a time resolved fluorescence resonance energy transfer (TR-FRET) assay. The formation of 3,4,5-inositol triphosphate (PIP3)
molecule, in the presence of PI3K, ATP, and PIP2, is measured by its ability to compete with and displace fluorescently labeled PIP3 for binding to the GRP-1 pleckstrin homology domain protein, thereby decreasing TR-FRET. Therefore, inhibition of PI3K is measured as an increase in TR-FRET. Data are normalized based on a positive (1 μ M wortmanin) and negative (DMSO) controls and IC₅₀ values were calculated from the fit of the dose-response curves to a four-parameter equation.

The TR-FRET assay is generally more sensitive than the radioactivity format because it utilizes pM concentration of enzyme rather than nM and can accurately determine IC₅₀ values below 1 nM. For PI3K α , β , δ , between 25-50 picomolar (pM) was used in the assay and for PI3K γ , 2 nanomolar (nM) was used. The ATP Km values determined using the TR-FRET assay for each PI3K isoform were different (Table 4) and the Applicant decided to determine IC₅₀'s at 2 X Km ATP for each PI3K isoform in order to accurately compare compound selectivity between all four isoforms.

Table 4: ATP Km for PI3K α , PI3K β , PI3K δ and PI3K γ from TR-FRET Assay
(Excerpted from the Applicant's submission)

	TR-FRET ATP Km
ΡΙ3Κα	48 µM
ΡΙ3Κβ	279 μΜ
ΡΙ3Κδ	118 μM
ΡΙ3Κγ	37 µM

Table 5: IC₅₀ values GS-1101 for PI3K α , PI3K β , PI3K δ and PI3K γ

(Excerpted from the Applicant's submission)

	IC ₅₀ Values Determined at 2XKm ATP
ΡΙ3Κα	8600 nM
РІЗКβ	4000 nM
ΡΙ3Κδ	19 nM
ΡΙ3Κγ	2100 nM

GS-1101 is 453-fold more selective for PI3K δ relative to PI3K α , 210-fold more selective relative to PI3K β , and 110-fold more selective over PI3K γ (Table 5).

Table 6: Effect of ATP concentration on the IC₅₀ value of GS-1101 on PI3K δ enzymatic activity

(Excerpted from the Applicant's submission)

Increasing ATP concentrations from the concentration that was used in historical radioactive assays (20 μ M) to 200 μ M (2 X KmATP) results in weaker (less potent) IC₅₀ values for GS-1101 against PI3K δ (Table 6), which along with the crystal structure demonstrating that GS-1101 binds to the ATP binding site of PI3K δ (Study No. PC-312-2007) is consistent with a competitive mode of inhibition.

Study title: Effect of IDELA on Stimulated P-AKT Level in Malignant B-Cells Prepared from Biopsy Specimens from Patients with Follicular Lymphoma

Study No.:	PC-312-2010
Report Date:	May 30, 2013
Study report location:	eCTD 4.2.1.1.
Conducting Laboratory:	Gilead Sciences, Inc.
GLP:	No

IDELA (GS-1101), at a concentration of 0.1 μ M for 60 minutes, inhibited P-AKT (Ser473) an average of 86% (range 55-97%) in malignant B-cells prepared from biopsy specimens of 7 patients with follicular lymphoma and stimulated by crosslinking the BCR (Table 7, last column). P-AKT (Ser473) was measured by flow cytometry and anti-IgM/IgG was used for BCR stimulation for 15 minutes after treatment with GS-1101 or vehicle control. The percentage of the maximum inhibition of the BCR-stimulated signal that can be achieved by GS-1101 is calculated with the formula (% BCR stim control - % BCR stim + 0.1 μ M GS-1101) / (% BCR stim control – basal signal + 0.1 μ M GS-1101) x 100.

Table 7: Normalized Median Fluorescence Intensity (MFI) Signal for P-AKT (Ser473) Alexa Fluor 488 Staining in CD20+/CD3- Follicular Lymphoma Cells Prepared from Fine Needle Biopsies of 7 Patients

	`	1 11			,	
	Basal Signal Control ^a	Basal Signal +0.1µM GS-1101	% Inhibition of Basal Signal	BCR stim Control	BCR stim +0.1µM GS-1101	% Inhibition of Maximal Inhibition ^b
Patient 13	100	99	1	200	114	85
Patient 14	100	71	29	138	73	97
Patient 15	100	84	16	178	92	91
Patient 16	100	74	26	311	180	55
Patient 17	100	94	6	211	98	97
Patient 18	100	95	5	146	97	96
Patient 19	100	78	22	450	138	84

((Excerpted	from the	e Applican	t's submi	ssion)
	LYCEIDIER	ITOTT UT			3310117

a Data normalized for each patient unstimulated untreated MFI = 100%

b Calculated with the formula (% BCR stim control - % BCR stim + 0.1μM GS-1101) / (% BCR stim control – basal signal + 0.1μM GS-1101) x 100

Study title: The Effect of GS-1101 on Viability, Proliferation and Apoptosis of Two Follicular Lymphoma-Derived Cell Lines

Study No.:	PC-312-2011
Report Date:	May 29, 2013
Study report location:	eCTD 4.2.1.1.
Conducting Laboratory:	Gilead Sciences, Inc.
GLP:	No

Western Blot analysis demonstrated that P110 δ (the catalytic subunit of PI3K δ with kinase activity, containing the ATP binding site) was highly expressed in WSU-FSCCL and WSU-NHL, two cell lines derived from follicular lymphoma patients (Figure 10). These cell lines were selected for further evaluation of the activity of GS-1101 on viability, proliferation, and apoptosis

Figure 10: Expression by Western Blotting of PI3K Type I Catalytic Sub-units in WSU-NHL and WSU-FSCCL Cell Lines Derived from FL Patients and Karpas-422 and RL Derived from Diffuse Large B-cell Lymphomas

(Excerpted from the Applicant's submission)

The concentration of GS-1101 eliciting a 50 % effect on viability was 0.03μ M both for WSU-NHL and WSU-FSCCL at 72h (Figure 11).

Figure 11: Dose-dependent Inhibition of Viability in WSU-NHL and WSU-FSCCL Cells after 72 Hours of Treatment with GS-1101 Measured by alamarBlue Assay

(Excerpted from the Applicant's submission)

Treatment of WSU-FSCCL cells with 0.5 and 5 μ M GS-1101 for 24 hours resulted in an increased proportion of cells in the G1 phase of the cell cycle and a corresponding decrease in cells in S and G2/M (as measured by propidium iodide labeling of DNA and fluorescent flow cytometry). This was not observed in WSU-NHL cells, where there was no change in the proportion of cells in G1, S or G2/M phases of the cell cycle, but there was a 5-fold increase in the proportion of cells. Consistent with this observation, treatment of WSU-NHL cells with 0.5 or 5 μ M GS-1101 for 24h or 48h led to an increase in the proportion of AnnexinV positive cells (at 24h: DMSO: 20%, 0.5 μ M GS-1101: 31%) (Figure 12).

Figure 12: Analysis of the Proportion of WSU-NHL Cells Undergoing Apoptosis after 24 and 48 hours of GS-1101 Treatment Measured by AnnexinV Staining

(Excerpted from the Applicant's submission)

Similarly, the presence of cleaved caspase 3 or cleaved PARP was increased by 5.6and 5.8-fold respectively after 24h treatment of WSU-NHL cells with 0.5 μ M GS-1101 (Figure 13).

Figure 13: Analysis of the Proportion of WSU-NHL Cells Undergoing Apoptosis after 24 and 48 hours of GS-1101 Treatment Measured by Cleaved Caspase 3

(Excerpted from the Applicant's submission)

Study title: Evaluation of GS-563117 for Inhibition of Class I PI3K Isoforms in a Biochemical Assay

Study No.: PC-312-2012 Report Date: June 24, 2013 Study report location: eCTD 4.2.1.1. Conducting Laboratory: Gilead Sciences, Inc. GLP: No

The major metabolite of GS-1101, GS-563117 (also called CAL-244), was evaluated for its potential to inhibit PI3K δ and other Class I isoforms using the TR-FRET method (described in study number PC-312-2008).

The IC₅₀ values of GS-563117 for PI3K δ , PI3K α , PI3K β , and PI3K γ were all greater than 10 µM in this assay, indicating that GS-563117 has substantially less inhibitory activity than GS-1101 against PI3K isoforms. The IC50 of GS-1101 was 19 nM for PI3K δ (see Study number PC-312-2008)

4.2 Secondary Pharmacology

Study title: Evaluation of Compounds on LOK and SLK Kinase Activities

Study No.: 2408 Report Date: December 22, 2010 Study report location: eCTD 4.2.1.2. Conducting Laboratory: Calistoga Pharma, Inc. GLP: No

The phosphotransferase activity of LOK and SLK protein kinase targets (~50-100 ng/assay) in the presence of CAL-101 (0.03-100 μ M) or the primary human metabolite of CAL-101, CAL-244 (GS-563117), was performed using radioisotope labeling of ATP (10 μ M ³³P-ATP). 1 μ M staurosporine was used as a positive control for LOK and SLK kinase inhibition.

At the highest concentration of 100 μ M, CAL-244 (the human metabolite, GS-563117) completely inhibited the activity of LOK and SLK, whereas CAL-101 only inhibited LOK and SLK by 33% and 27%, respectively, compared to the untreated control. The IC₅₀ values for CAL-244 inhibition of LOK and SLK were 0.11 μ M and 0.05 μ M, respectively. Therefore, CAL-244 was a stronger inhibitor than the parent drug and CAL-101 was a weak inhibitor of LOK and SLK protein kinases.

Study title: Kinase Selectivity Profile for IDELA

Study No.: CAL001-01-p-00001 Report Date: January 25, 2008 Study report location: eCTD 4.2.1.2. Conducting Laboratory: Calistoga Pharma, Inc. GLP: No

Six compounds at 10μ M, including IDELA (CAL-101), were screened against panel of 353 kinases⁶. Assays were performed in duplicate. The cutoff for being a positive hit

⁶ Fabian et al. (2005) Nature Biotechnology, vol. 23, p.329

was greater than 35% of the vehicle control, or greater than 65% kinase inhibition. Any inhibition below the cutoff for a positive hit was listed as "no hit" in the study report and actual values for % kinase inhibition were not provided.

CAL-101 tested positive for inhibiting PIK3CA (PI3K α), PIK3CA (E545K), PIK3CB (PI3K β), PIK3CD (PI3K δ), and PIK3CG (PI3K γ) to 17%, 18%, 0%, 0.35% and 2.7%, respectively, of the DMSO vehicle-treated control.

Study title: Kinase Selectivity Profile of GS-563117

Study No.:	CAL007-01-p-00001
Report Date:	October 26, 2010
Study report location:	eCTD 4.2.1.2.
Conducting Laboratory:	Gilead Sciences, Inc.
GLP:	No

The primary human metabolite of GS-1101, CAL-244 (GS-563117, Lot # 805-DJA-28K) at 10 μ M, was screened against panel of 442 kinases using KINOMEscanTM *in vitro* competitive binding assay by developed from the same technology used to screen the parent compound'. The ability of GS-563117 to compete with immobilized small molecule ligands for binding to a DNA-tagged kinase is measured via quantitative PCR of the DNA tag.

GS-563117 inhibits 9 kinases similar to or greater than PI3K δ and is therefore not selective for PI3K δ .

Table 8: Selectivity of GS-563117 using KINOMEscan[™] *in vitro* competitive binding assay

Ambit Gene Symbol	% Vehicle Control at 10µM
ABL1(H396P)-nonphosphorylated	18
LCK	27
LIMK2	26
LOK	0.1
MAP3K1	4.2
PIK3CD (PI3Kδ)	27
QSK	20
SIK2	34
SLK	1
TNNI3K	19

The following kinases were also inhibited to < 50% activity compared to the vehicle control by GS-563117: ABL1(H396P)-phosphorylated (43%), ABL1(M351T)-phosphorylated (37%), ABL1(T315I)-phosphorylated (40%), BRAF(V600E) (41%), DDR1 (44%), LIMK1 (47%), MKNK2 (44%), PIK3C2G (46%), PIK3CB (41%), and SIK (46%).

⁷ Fabian et al. (2005) Nature Biotechnology, vol. 23, p.329

4.3 Safety Pharmacology

Study title: HERG Channel Inhibition by Test Compounds CAL 101 and CAL 102 Using a Rubidium Flux Method

Study no:	BHR00004
Study report location:	4.2.1.3.
Conducting laboratory and location:	(b) (4)
GLP compliance:	No
QA statement:	NA
Drug, lot #, and % purity:	CAL-101, Lot # 22033-34, and CAL-102 (a structurally related compound to Cal - 101, Lot# 946-24-1); purity information was not provided. Both test articles are GS-1101 with different molecular weights.

Key study findings:

• Under the conditions tested, CAL-101 (idelalisib) and CAL-102 (a structurally related compound to CAL -101 before the lead compound was chosen) have no inhibitory effect on hERG channel at concentrations up to 50 μ M. The IC₅₀ of CAL-101 and CAL-102 on the hERG potassium channels was greater than 50 μ M.

Methods:

Strains/species/cell line:	Human HEK293 cells
Controls:	Vehicle: DMSO
Negative Control	Lidocaine
Positive control	Astemizole
Concentrations:	10 concentrations ranging from 0.0977 to 50 µM
Test system:	Rubidium flux-based method

Results:

Figure 14: CAL-101 and CAL-102 Inhibition of HERG Channel Activity

(Excerpted from the Applicant's submission)

Study title: A Cardiovascular and Respiratory Safety Pharmacology Study of CAL-101 Administered Orally to Telemetered Beagle Dogs

Study no: Study report location:	BHR00041 4.2.1.3
Conducting laboratory and location:	(b) (4)
Date of study initiation: GLP compliance:	November 4, 2007 Yes
QA statement:	Yes
Drug, lot #, and % purity:	CAL-101, Lot # 990547-31-07-07-01 10% w/w in Lactose Monohydrate

Key study findings:

- No toxicologically significant CAL-101 induced effects were seen on heart rate, arterial pressure, body temperature, or electrocardiographic intervals, under the conditions tested.
- Slight increases in systolic arterial pressure (SAP; increased up to 6%) and mean arterial pressure (MAP; increased up to 4%) were observed 60 to 90 minutes after the 5- and 20-mg/kg doses of CAL-101. These changes were small and transient and hence, not considered adverse.

Methods:

Doses:	0, 1, 5, 20 mg/kg/day
Frequency of dosing:	Single dose with monitoring up to 24 hours
Route of administration:	Orally via capsule
Dose volume:	NA
Formulation/Vehicle:	Lactose monohydrate at an amount
	equivalent to the amount of blend needed to
	dose
Species/Strain:	Dog / Beagle (telemetered non-naïve male
	dogs)
Number/Sex/Group:	4 males
Age:	>9 months old
Weight:	7 and 15 kg
Satellite groups:	None

Dose justification: Based on previous studies including 28-day study in dogs. -The lowest dose represented a projected noeffect dose level -The highest dose was not expected to cause toxicity that would interfere with collection of the cardiovascular or respiratory data. -The intermediate dose was present to assess

potential dose-response relationships.

Experimental Design	(excerpted fro	om the Applicant's	s Submission)
---------------------	----------------	--------------------	---------------

Treatment Number	Number of Animals Males ^a	umber of Animals Males ^a Test Material		Monitoring Period
1		Control ^e	0	2 hours before
2	4	CAL-101	1	dosing through
3	4		5	24 hours after
4			20	dosing

^a The same 4 animals were dosed in each dose session.

Animals were administered between 1 and 5 capsules; actual number of capsules administered was recorded in the raw data.

^c Control animals were dosed with lactose monohydrate at an amount equivalent to the amount of blend needed to dose Treatment 4 (corrected for the absence of CAL-101).

Schedule of Treatments

Animal Number	Session 1	Session 2	Session 3	Session 4
1001	Treatment 1	Treatment 2	Treatment 3	Treatment 4
1002	Treatment 2	Treatment 4	Treatment 1	Treatment 3
1003	Treatment 3	Treatment 1	Treatment 4	Treatment 2
1004	Treatment 4	Treatment 3	Treatment 2	Treatment 1

Session 1 = Study Day (D)1; Session 2 = D3; Session 3 = D8; Session 4 = D13

Observations and Results:

Mortality: No mortality occurred in the study.

Heart rate: unremarkable

Mean arterial pressure (MAP): MAP was increased by 3% to 4% approximately 60 to 90 minutes after dosing with both the 5- and 20-mg/kg doses of CAL-101. This change was transient and not considered adverse.

Figure 15: MAP Changes after Oral Administration of CAL-101 to Dogs

Systolic Arterial Blood Pressure (SAP): SAP was increased by 5% to 6% approximately 60 to 90 minutes after dosing with both the 5- and 20-mg/kg doses of CAL-101. This change was transient and not considered adverse.

Figure 16: SAP Changes after Oral Administration of CAL-101 to Dogs

Diastolic pressure: unremarkable	
Pulse pressure: unremarkable	
Electrocardiograph: unremarkable	
QT/QTc intervals: unremarkable	
Respiratory rate: unremarkable	
Body temperature: unremarkable	
Study title: CAL-101: Single-Dose S Assessment in Sprague-Dawley Ra Study no: Study report location: Conducting laboratory and location:	Safety Pharmacology Neurofunctional hts BHR00042 4.2.1.3
Date of study initiation: GLP compliance: QA statement: Drug, lot #, and % purity:	October 23, 2007 Yes Yes CAL-101, lot # 22033-51-38, purity 99.3%
Kay atudu findinga	

Key study findings:

No CAL101-induced neurobehavioral effects were noted, under the conditions tested.

Methods:

Doses:	0, 50, 100 and 150 mg/kg
Frequency of dosing:	Single dose with neurobehavioral observations at 1, 2,
	4, 8, and 24 hours post-dose
Route of	Oral gavage
administration:	
Dose volume:	10 mL/kg
Formulation/Vehicle:	0.5% (w/v) Carboxymethylcellulose (CMC) and 0.1% (v/v) TWEEN 80 in water
Species/Strain:	Sprague-Dawley rats
Number/Sex/Group:	Group 1: Vehicle - 13 males and 11 females
	Group 2: 50 mg/kg - 11 males and 12 females
	Group 3: 100 mg/kg - 9 males and 8 females
	Group 4: 150 mg/kg – 7 males and 9 females
Age:	10-12 weeks
Weight:	375 to 440 g
Satellite groups:	3/group
Dose justification:	Based on previous studies including 28-day study in rats.
	-The lowest dose represented a projected no-effect dose level
	-The highest dose was not expected to cause severe toxicity that would interfere with collection of the
	Functional Observational Battery (FOB) data.
	-The intermediate dose was present to assess potential dose-response relationships.

Observations:

FOB observations	Observation
Central Nervous System (CNS) activity and excitability:	Home cage and open field, vocalization, ease of removal from the home cage, response to handling, the presence of abnormal and/or stereotypical behavior, overall activity, arousal, and the incidence of rearing in the open field.
Autonomic Nervous System (ANS) Effects	Changes in palpebral closure, pupil response and diameter, presence of salivation, piloerection, urination and defecation frequency and consistency, lacrimation, and respiration.
Sensorimotor effects	Tactile and auditory reaction to stimuli, or the reaction to a painful stimulus as a timed response via tail flick measurement.
Neuromuscular effects	Body tone, impairment or abnormalities in gait, surface and air righting reflexes, grip performance (forelimb and hindlimb), and

Results:

CNS activity and excitability: unremarkable

Autonomic Nervous System (ANS) Effects: unremarkable

Sensorimotor Effects: unremarkable

Neuromuscular Effects: unremarkable

Body temperature: unremarkable

5 Pharmacokinetics/ADME/Toxicokinetics

5.1 PK/ADME

Study title: Pharmacokinetics and Bioavailability of CAL-101 Following Intravenous and Oral Administration to Female Sprague-Dawley Rats

Study no.: Study report location:	BHR00012 4.2.2.2.
Conducting laboratory and location:	(b) (4)
Date of study initiation: GLP compliance: QA statement: Drug, lot #, and % purity:	August 8, 2007 No NA CAL-101, Lot No. 21905-115-20, Purity: not listed

Key Study Findings

• The oral bioavailability of CAL-101 in rats is 39%.

Study Design:

((Excerpted from the Applicant's submission)						
	Treatment						

	ircaulent										
Group No.	No. of Females	Test Article	Dose Level (mg/kg)	Dose Conc. (mg/mL)	Dose Volume (mL/kg)	Vehicle	Dose Route	Flush			
1	3	CAL 101	3	3	1	10 % Ethanol/ Citrix Acid Buffer Solution	Intravenous	0.5 mL Saline			
2	3	CAL 101	3	3	1	0.5% w/v Carboxymethylcellulose/ 0.1% v/v Tween 80	Oral Gavage	NA			

NA= Not Applicable

Vehicle: 10% Ethanol/Citric acid buffer solution

Methods

- Whole blood samples (0.25 mL, K2EDTA anticoagulant) were collected at predose, 5, 15, 30, 60, 90 min, 2, 3, 4, 6, 8, 12, and 24 hours post-dose.
- Urine was collected on frozen cold packs from each animal, prior to dosing, 0-6, 6-12, and 12-24 hours post-dose.

Results

Table 9: Mean Pharmacokinetic Parameters for IV and Oral Dosing of CAL-101 inRats

Test article	AUC _{inf} (hr*ng/mL)	AUC _{inf} /Dose	C _{max} (ng/mL)	C _{max} /Dose	T _{max} (hr)	t _{1/2} (hr)	Vss (L/kg)	Cl (ml/min/kg)	F%
CAL-101 (IV)	1151±407	384±136	1437±220	479±73	0.08	1.89	2.49	478±19	NA
CAL-101 (oral)	422±67	141±22	129±49	43±16	3.00	1.52	NA	NA	39±13

F = Absolute bioavailability NA = Not applicable Dose = 3 mg/kg

Study Title: Pharmacokinetics and Bioavailability of CAL 101 Following Crossover Administration to Female Beagle dogs.

Study No.:	BHR00011
Report Date:	May 4, 2007
Study report location:	4.2.2.2.
Conducting Laboratory:	(b) (4)
GLP:	No
Drug, lot #, and % purity:	CAL-101, Lot No. 21905-115-20, Purity: not listed

Key Findings

• The oral bioavailability of CAL-101 in dogs is 48%.

					Treatment				
Session No.	Group No.	No. of Females	Test Article	Dose Level (mg/kg)	Dose Conc. (mg/mL)	Dose Volume (mL/kg)	Vehicle	Dose Route	Flush
I	1	3	CAL 101	1	1	1	10% Ethanol/ Citric Acid Buffer Solution	Intravenous Bolus	3 mL saline
п	1	3	CAL 101 (blend)	1	NA	NA	NA	Oral Capsule	20 mL Water
-	2	3	CAL 101 (blend)	1	NA	NA	NA	Oral Capsule	20 mL Water

(Study design excerpted from Applicant's submission)

Methods:

- The pharmacokinetics and bioavailability of CAL-101 was investigated following crossover administration to female Beagle dogs. CAL-101 was administered to female dogs at 1 mg/kg as a bolus injection or an encapsulated powder.
- Whole blood samples (1 mL; K2EDTA anticoagulant) were collected at pre-dose, 5, 15, 30, 60, 90 min, 2, 3, 4, 6, 8, 12, and 24 hours post-dose.

• Urine was collected on frozen cold packs from each animal, prior to dosing, 0-6, 6-12, and 12-24 hours post-dose.

Table 10: Mean Plasma Pharmacokinetic Parameters for CAL-101 Following a Bolus IV Injection or Oral Administration in a Capsule at 1 mg/kg to Female Beagle Dogs (mean \pm StD, n = 3)

Test article	Mean Body Weight (g)	AUC _{inf} * (hr*ng/mL)	C _{max} * (ng/mL)	T _{max} (hr)	t _{1/2} (hr)	Vss(L/kg)	Cl (ml/min/kg)	F%
CAL-101 (IV)	6.84±0.37	1432 ± 509	977 ± 314	0.08	2.31 ± 0.43	1.23 ± 0.30	0.76 ± 0.25	NA
CAL-101 (IV followed by oral)	7.65± 1.9	1081± 284	510± 62	0.5	2.31± 0.43	NA	NA	79± 23
CAL-101 (oral)	8.15±1.0	671 ± 277	209 ± 68	1.0	1.99 ± 0.10	NA	NA	48 ± 23

Excerpted	from the	Applicant's	s submission)
-----------	----------	-------------	---------------

CL= systemic clearance of the drug after intravenous administration; Vss = apparent steady-state volume of distribution of the drug; NA = not applicable; F = Absolute bioavailability

*Dose = 1 mg/mL, therefore AUC_{inf} and C_{max} values are equivalent to AUC_{inf}/Dose and C_{max}/Dose, respectively

When comparing PK parameters between studies BHR00011 and BHR00012, the systemic exposure/dose of idelalisib (C_{max} and AUC) was approximately 5-fold higher in dogs after oral dosing than in rats, possibly due to the higher clearance of idelalisib in rats.

Figure 17: Mean Plasma Concentration Versus Time Profiles for Idelalisib Following Oral Administration in Suspension to Female Sprague-Dawley Rats (3 mg/kg) and in a Capsule to Female Beagle Dogs (1 mg/kg) (mean ± StD, n = 3)

Study title: Tissue Distribution of Radioactivity by Quantitative Whole-Body Autoradiography in Sprague Dawley and Long Evans Rats Following a Single Oral Dose of 14C-CAL-101

Study no.: Study report location:	1503-058 4 2 2 3
Conducting laboratory and location:	(b) (4)
Date of study initiation:	April 20, 2010
GLP compliance:	No
QA statement:	NA
Drug, lot #, and % purity:	CAL-101 [purine ring-8-14C], Lot No.
	3579087 (originally from CAL-101 Lot No.
	60182-09-003), Purity: 98.1% (reverse
	phase HPLC)

Key Study Findings

- Biliary route is primary route of excretion, with the majority of CAL-101 being detected in the feces and less than 5% in the urine.
- All tissues in Sprague-Dawley (SD) rats, except large intestine and cecum, had reached maximal concentration at 1 hour postdose (35 of 37 tissues) and decreased 24-48 hours postdose.
- In LE rats, pigmented skin and pigmented eye uvea showed higher concentrations of CAL-101 than that observed for the similar tissues in SD rats, suggesting some association of drug-derived radioactivity with melanin.

Methods

Doses:	50 mg/kg
Frequency of dosing:	Once
Route of administration:	Oral gavage
Dose volume:	10 mL/kg
Formulation/Vehicle:	0.5% CMC, 0.1% TWEEN 80
Species/Strain:	Crl:CD(SD), Long Evans (LE)
Number/Sex/Group:	SD: 5 males + 2 spares
	LE: 2 males + 1 spare
Age:	6-12 weeks old
Weight:	275-300 g
Satellite groups:	None
Unique study design:	See table below for dose administration information

Animal	Group	Body Weight	1	Actual Dose Leve	l
Number	Number ^a	(g) .	(mg/kg)	(µCi/animal)	(µCi/kg)
101	1	335	53.25	69.2057	206.6
102	1	326	46.09	58.2985	178.8
103	1	328	52.25	66.4973	202.7
104	1	327	51.56	65.4108	200.0
105	1	324	51.21	64.3746	198.7
Mean		328	50.87	64.7574	197.4
SD		4	2.78	4.0344	10.8
201	2	328	49.42	62.8899	191.7
202	2	311	48.58	58.6202	188.5
Mean		320	49.00	60.7551	190.1
Overall Mean		326	50.34	63.6139	195.3
SD		7	2.46	4.0229	9.6
^a Group 1 animals were SD and Group 2 animals were LE. ^b The target dose level was 50 mg/kg (150 to 200 μCi/kg) and the target dose volume was 10 mL/xσ					

(Excerpted from the Applicant's submission)

- Blood samples were collected from one animal per time point at the designated terminal time points of 1, 4, 8, 24, and 72 hours postdose for SD rats or 4 and 72 hours postdose for LE rats.
- Urine and feces were collected from animals designated for 72 hour termination predose and at 0-24, 24-48, and 48-72 hours postdose.
- At each terminal time point of 1, 4, 8, 24, and 72 hours postdose for SD rats and 4 and 72 hours postdose for LE rats, one animal per time point was sacrificed for Quantitative Whole Body Autoradiography (QWBA) analysis.

Results

Figure 18: Concentrations of ¹⁴C-CAL-101 in Blood and Plasma of Sprague-Dawley and Long Evans Rats

In SD rats, T_{max} in blood and plasma were observed at 1 hour postdose, then declined 93% by 4 hours and then rose 29-39% by 8 hours before declining steadily to the 72 hour time point. Similar kinetics was observed in LE rats between 8 and 72 hours.

Blood to plasma ratios were relatively constant. Of the 95% ¹⁴C-CAL-101 (CAL-101 [purine ring-8-14C]) recovered at 72 hours in SD rats, 90% was in the feces, 4% in the urine, 0.9% in the cage rinses, and 0.03% in the cage wipe. Of the 90% of the dose

recovered in the feces, 89.9% was recovered within the first 48 hours, with 78.4% recovered within the first 24 hours. Similar trends were observed in LE rats.

Tissues with the highest concentrations of ¹⁴C-CAL-101 in SD rats 1 hour postdose are listed in Figure 19. The lowest concentrations (<500 ng-eq/g) were observed in the bone, brain and spinal cord, and eye lens. After 72 hours postdose, most tissues were BQL except for: kidney medulla (2,178 ng-eq/g), liver (1,189 ng-eq/g), kidney cortex (ctx) (766 ng-eq/g), testis (451 ng-eq/g), thyroid (415 ng-eq/g), stomach gastric mucosa (GM) (286 ng-eq/g), lymph node (198 ng-eq/g), and bone marrow (196 ng-e/g).

Figure 19: Highest Concentrations of ¹⁴C-CAL-101 in the Tissues of Sprague-Dawley Rats

The patterns and tissue concentrations observed in LE rats appeared similar to that observed in the SD rats, except that the pigmented skin of the LE rats showed a tissue concentration of 609 ng-eq/g at 72 hours postdose compared to BQL for non-pigmented skin in the SD rats at 72 hours postdose; and, the eye uvea showed a tissue concentration of 594 ng-eq/g at 72 hours postdose compared to BQL for eye uvea in the SD rats at 72 hours postdose.

Study title: Profiling and Identification of Metabolites in Selected Plasma, Urine, Bile, and Feces Samples from Rats after Oral Administration of ¹⁴C-GS-1101

Study no.:	AD-312-2004
Study report location:	4.2.2.4.
Conducting laboratory and location:	(b) (4)
Date of study initiation:	April 20, 2010
GLP compliance:	No
Drug, lot #, and % purity:	GS-1101 (CAL-101) [purine ring-8-14C], Lot No. 3579087, Purity: 96.2% (reverse phase HPLC); non-radiolabeled CAL- 101, Lot No. 1, no purity provided

Key Study Findings

- ¹⁴C-GS-1101 was metabolized in rats via oxidative defluorination, oxidation, dealkylation, glucuronidation, and glutathione conjugation, and subsequent mercapturic acid pathway biotransformation to N-acetylcysteine.
- In rat plasma, most of the circulating radioactivity (approximately 91 to 93%) was associated with unchanged parent drug through 8 hours postdose. GS-563117 (M30A; a metabolite present at high levels in human plasma) was detected at low levels (1.4%) in plasma.
- The unchanged parent drug was 13.5% in the feces at 72 hours postdose.
- In the bile-duct cannulated rats, the unchanged parent was 1.8% at 24 hours postdose. This indicates a relatively high metabolism.
- In bile duct-intact rats, the major route of elimination was in the feces and in bile duct-cannulated, the major route of elimination was hepato-biliary.

Methods

Doses: 50 mg/kg Frequency of dosing: Once Route of administration: Oral gavage Dose volume: 10 mL/kg Formulation/Vehicle: 0.5% CMC, 0.1% TWEEN 80 Species/Strain: Crl:CD(SD) Number/Sex/Group: See Study Design in AD-312-2003 Age: 6-8 weeks old Weight: 205-329 g Satellite groups: None

- Plasma samples were obtained from rats in Study AD-312-2003.
- Plasma samples obtained from Group 2 (bile duct-intact male rats) were pooled by time point (at 0.5, 1, 2, and 8 hours postdose).

- Urine samples collected from male rats in Group 1 (bile duct-intact) or Group 3 (bile duct-cannulated) were pooled (5% or 10% from each sample by weight for Group 1 or Group 3, respectively) to generate a single 0- to 24-hour pooled sample for each group.
- Bile samples collected from rats in Group 3 were pooled by time point to generate single 0- to 4-, 4- to 8-, and 8- to 24-hour pooled samples, including 10 or 20% (equivalent percent by interval) of each sample by weight.
- Feces samples collected from rats in Group 1 or Group 3 were pooled to generate 0-24 and 24-48 hour postdose samples for each group. Acidified methanol extraction was needed to isolate parent compound and metabolites from feces.
- The radioactivity in each pooled sample was determined by liquid scintillation counting (LSC) and metabolite profiling was conducted using HPLC and TopCount solid scintillation counting.

Results

After oral administration, most of the circulating radioactivity in plasma (approximately 91 to 93%) was associated with unchanged parent drug through 8 hours postdose. GS-563117 (M30A) was also detected in plasma at 1.4%. However, the level of parent drug at 24-72 hours postdose in bile and feces indicate high metabolism.

Unchanged parent accounted for 13.5% of the administered dose through 72 hours postdose in the feces of bile duct-cannulated rats and GS-563117 (M30A)/no structure proposed (M30B) were the predominant metabolites in feces at 9.38% and 1.72% in bile duct-intact and bile duct-cannulated rats, respectively.

Identified metabolites in excreta	Bile duct	Code	% of dose
Faces: Total Padiacativity*	intact		88.5
	cannulated		22.9
Linchanged percent	intact	CS 1101	10
Unchanged parent	cannulated	63-1101	13.5
Hydroxy-GS-1101-cysteine conjugate	intact	M10	8.21
CS 562117/ structure not proposed	intact		9.38
	cannulated	INISUA/INISUB	1.72
Hydroxy-GS-1101-3	intact	M21	3.93
Structure not proposed	intact	M32	3.43
desfluoro-mercapto-methoxy-GS-1101/desfluoro-	intact		6.50
mercapto-hydroxy-methoxy-GS-1101	cannulated	101307/101300	0.356
[desfluoro-hydroxy-GS-1101-S-S-desfluoro- hydroxy-GS-1101]-dimer	intact	M40	6.12
	intact		2.68
GS-1101-C₅H ₈ O₃-adduct	cannulated	M31	1 38
Other structures	intact		<2 10
Bile: Total Radioactivity**	cannulated		63.5
Unchanged parent	cannulated		1.77
Desfluoro-oxy-GS-1101-glutathione			
conjugate	cannulated	M12	31.6
Desfluoro-GS-1101-glutathione conjugate	cannulated	M7	3.99
GS-563129/hydroxy-GS-1101-glucuronide-			0.07
1/hydroxy-GS-1101-cysteineglycine conjugate	cannulated	MISA/MISB/MISC	6.37
GS-1101-glutathione conjugate/desfluoro-dioxy-	aannulatad		4.40
GS-1101-glutathione conjugate	cannulated	IVIZZA/IVIZZB	4.43
GS-563117	cannulated	M30A	2.02
Desfluoro-hydroxy-GS-1101-cysteine conjugate	cannulated	M10	1.52
Other structures	cannulated		<1.6
Liripe: Total radioactivity**	intact		3.05
	cannulated		5.54
GS-563117	intact	M30A	0.477
65-503117	cannulated	IVISUA	1.93
Hydroxy-puripe	intact	MA	0.290
	cannulated	IVI 4	0.300
Linknown structure	intact	M20	0.104
	cannulated	IVIZU	0.193
Structure not proposed	intact	M1	1.4
	cannulated		1.3

Table 11: Metabolite Identification in the Excreta of Sprague-Dawley Rats

a Final metabolite designation eluted in feces only

* Bile duct-intact and bile duct-cannulated measurements from feces taken through 48- and 72-hours postdose, respectively

** All measurements from bile and urine were taken through 24 hours post dose

Figure 20: Proposed Biotransformation Pathway of GS-1101 in Rats

Note: Pathways are proposed based on general knowledge of metabolism and do not imply definitive pathways. Direct experimentation was not performed.

Study Title: Profiling and Identification of Metabolites in Selected Plasma, Urine, Bile, and Feces Samples from Dogs after Oral Administration of 14C-GS-110.

Study No.:	AD-312-2002
Report Date:	February 20, 2013
Study report location:	4.2.2.4.
Conducting Laboratory:	(b) (4)
GLP:	No
Drug, lot #, and % purity:	GS-1101 (CAL-101) [purine ring-8-14C], Lot
	No. 3579087, Purity: 96.2% (reverse phase
	HPLC); non-radiolabeled CAL-101, Lot No.
	1, no purity provided

The purpose of this study was to evaluate the metabolic profiles of radioactivity derived from [^{14C}] idelalisib in pooled plasma, urine, bile, and feces from male Beagle dogs (bile duct-intact and bile duct-cannulated dogs) following oral administration at 5 mg/kg.

Key Findings

- ¹⁴C-GS-1101 was metabolized in dogs via oxidative defluorination, oxidation, dealkylation, glucuronidation, and glutathione conjugation. In pooled plasma, most of the circulating radioactivity (approximately 59%) was associated with unchanged parent drug through 24 hours postdose, contributing greater than 58% of total radioactivity AUC₀₋₂₄. GS-563117 (M30A; a metabolite present at high levels in human plasma) contributed approximately 34% of the total radioactivity exposure through 24 hours postdose.
- The major route of elimination of radioactivity in bile duct-intact dogs was feces, and in bile duct-cannulated dogs, the major route of elimination was hepato-biliary.
- In bile duct-cannulated dogs, hepato-biliary excretion was a major route of elimination of radioactivity, with 70% of the administered dose recovered in bile through 24 hours postdose.

Methods

- Plasma samples obtained from Group 1 (bile duct-intact male dogs) were pooled by time point (at 0.25, 0.5, 1, 2, 3, 4, 6, 8, 12, and 24 hours postdose).
- Urine samples collected from male bile duct-intact dogs in Group 1 at 0-8 and 8-24 hours postdose were pooled to generate a single 0- to 24-hour pooled sample, including 0.5% of each sample by weight.
- Urine samples collected from Group 2 (bile duct-cannulated male dogs) at 0-4, 4-8, and 8-24 hours postdose were pooled to generate a single 0- to 24-hour pooled sample, including 0.5% of each sample by weight.
- Bile samples collected from male bile duct-cannulated dogs in Group 2 at 0-1, 1-2, 2-4, 4-6, 6-8, 8-12, and 12-24 hours postdose were pooled to generate single 0- to 4-, 4- to 8-, and 8- to 24-hour pooled samples, including 5% of each sample by weight.
- Feces samples collected from male bile duct-intact dogs in Group 1 at 0-24, 24-48, and 48-72 hours postdose were pooled by collection interval, including 0.8% of each sample by weight.
- Feces samples collected from male bile duct-cannulated dogs in Group 2 at 0-24 and 24-48 hours postdose were pooled by collection interval, including 0.5% of each sample by weight.
- Radioactivity in the samples was profiled by radio-high performance liquid chromatography (HPLC) and metabolites were identified by co-chromatography with known standards and by using liquid chromatography-mass
- spectrometry (LC-MS and/or LC-MS/MS) methods.

Results

• After oral administration, most of the circulating radioactivity in pooled plasma, (approximately 59%) was associated with unchanged parent drug through 24

hours post-dose. GS-563117 (M30A) contributed approximately 34% of the total radioactivity exposure through 24 hours postdose.

 Unchanged parent drug accounted for 6.23% of the administered dose in bile duct-cannulated dogs and GS-563117 (M30A) was predominant metabolite at 5.35%.

Study title: Pharmacokinetics, Absorption, and Excretion of ¹⁴C-GS-1101 Following a Single Oral Administration to Rats

Study no.:	AD-312-2003
Study report location:	4.2.2.5.
Conducting laboratory and location:	(b) (4)
Date of study initiation:	May 1, 2012 (beginning of in-life portion)
GLP compliance:	No
QA statement:	NA
Drug, lot #, and % purity:	CAL-101 [purine ring-8-14C], Lot No. 3579087, Purity: 96.2% (reverse phase HPLC); nonradiolabeled CAL-101, Lot No. 1, no purity provided

Key Study Findings

- Radioactivity derived from ¹⁴C-GS-1101 (above 80%) was excreted within 24 hours after oral dosing and was below the limit of detection in plasma by 72 hours. Roughly 1% remained in the blood after 168 hours.
- A large percentage (64%) of radioactivity was eliminated in bile after oral dosing, indicating biliary excretion was the major route of elimination of ¹⁴C-GS-1101derived radioactivity.

Methods

50 mg/kg (5.511 mg of ¹⁴ C-GS-1101 combined
with 374.490 mg of GS-1101 and 76 mL of
vehicle)
Once
Oral gavage
10 mL/kg
0.5% CMC, 0.1% TWEEN 80
Crl:CD(SD)
See table below
6-8 weeks old
205-329 g
None

(Study design excerpted from the Applicant's submission)

	Number		Target	Target Dose	
	of Male	Dose	Dose Level	Volume	
Group	Animals	Route	(mg/kg)	(mL/kg)	Samples Collected
1	3	Oral	50	10	Urine, Feces, and Carcasses
2	15	Oral	50	10	Blood
3	3 BDC	Oral	50	10	Urine, Feces, Bile, and Carcasses

 BDC
 Bile duct-cannulated.

 Notes:
 The dose was approximately 100 μCi/kg.

- Cages for Groups 1 and 3 were rinsed after each 24-hour excreta and wiped after the final excreta for radioanalysis.
- Group 1 and 3 Urine was collected at 0-12 and 12-24 hours postdose, and at 24-hour intervals through 168 hours postdose. Feces were collected at 24-hour intervals through 168 hours postdose. The weight of each sample was recorded.
- Group 2 Blood (approximately 1 mL) was collected from a jugular vein at 0.25, 0.5, 1, 2, 4, 8, 12, 24, 48, 72, 120,144, and 168 hours postdose from three animals/time point.
- Group 3 Bile was collected at 0-2, 2-4, 4-6, 6-8, 8-12, and 12-24 hours postdose, and at 24-hour intervals through 168 hours postdose. The weight of each sample was recorded.
- Radioanalysis was conducted using LSC.

Results

The mean radiopurity values from HPLC analysis of predose and postdose aliquots were 93.0 and 93.2%, respectively, confirming stability of the test article under the conditions of the study.

Figure 21: Concentrations of Radioactivity in Blood and Plasma at Specified Times after a Single Oral Administration of ¹⁴C-GS-1101 to Male Sprague-Dawley Rats (Group 2, 50 mg/kg)

(Excerpted from the Applicant's submission)

Absorption was rapid ($T_{max} = 1$ hr), the half-life in the plasma was 14.1 hours, and the majority of excretion occurred within 24 hours postdose, although roughly 1% remained in the blood through 168 hours postdose.

Table 12: Absorption Parameters of ¹⁴C-GS-1101 in Normal Rats and Route of Excretion Percentages of ¹⁴C-GS-1101 in Normal and Bile Duct-Cannulated Rats

Group	Bile		Absorption Blood (Plasma)				
	duct-	T _{max} (h)	C _{max}	AUC _{0-t}	t _{1/2}	Route	%
	intact		(ng eq/g)	(ng eq hr/g)			
1	Yes	ND	ND	ND	ND	Urine	3.04
						Feces	83.9
2	Yes	1.00 (1.00)	15000 (15700)	46048 (40657)	NC (14.1)	ND	ND
3	No	ND	ND	ND	ND	Urine	5.54
						Feces	19.2
						Bile	63.5

NC = Not calculated ND = Not determined

Note: The majority of urine and bile excretion occurring within 12 hours postdose.

Study title: Pharmacokinetics, Absorption, and Excretion of ¹⁴C-GS-1101 Following Oral Administration to Intact and Bile Duct-Cannulated Dogs

Study no.: Study report location: Conducting laboratory and location:	AD-312-2001 4.2.2.5. (b) (4)
Date of study initiation:	June 29, 2012 (beginning of in-life portion)
GLP compliance:	No
QA statement:	NA
Drug, lot #, and % purity:	CAL-101 [purine ring-8-14C], Lot No. 3579087, Purity: 96.2% (reverse phase HPLC); nonradiolabeled CAL-101, Lot No. 1, no purity provided

Key Study Findings

- Radioactivity derived from ¹⁴C-GS-1101 (above 88%) was excreted within 48 hours after oral dosing and was below the limit of detection in plasma by 72 hours.
- A large percentage (72%) of radioactivity was eliminated in bile after oral dosing, indicating biliary excretion was the major route of elimination of ¹⁴C-GS-1101derived radioactivity.

Methods

Doses:	5 mg/kg (6.090 mg of 14C-GS-1101 combined with 413.910 mg of GS-1101 and 420 mL of vehicle
Frequency of dosing:	Once
Route of administration:	Oral gavage)
Dose volume:	5 mL/kg
Formulation/Vehicle:	0.5% CMC, 0.1% TWEEN 80
Species/Strain:	Purebred Beagle dogs (bile duct-intact and three bile duct-cannulated)
Number/Sex/Group:	See table below
Age:	8 to 11 months
Weight:	8.5 to 11.2 kg
Satellite groups:	None

(Study design excerpted from the Applicant's submission)

	Number of Male	Dose	Target Dose Level	Target Dose Volume	
Group	Animals	Route	(mg/kg)	(mL/kg)	Samples Collected
1	3	Oral	5	5	Blood, Urine, and Feces
2	3 BDC	Oral	5	5	Urine, Feces, and Bile

BDC Bile duct-cannulated.

Note: The target dose was approximately 10 µCi/kg.

- Group 1 Urine was collected at 0-8 and 8-24 hours postdose, and at 24-hour intervals through 168 hours postdose.
- Group 1 Blood (approximately 5 mL) was collected via a jugular vein at 0.25, 0.5, 1, 2, 3, 4, 6, 8, 12, 24, 48, 72, 96, and 168 hours postdose.
- Group 1 and 2- Feces were collected at 24-hour intervals through 168 hours postdose.
- Group 2- Urine was collected at 0-4, 4-8, and 8-24 hours postdose, and at 24-hour intervals through 168 hours postdose.
- Group 2 Bile was collected at 0-2, 2-4, 4-6, 6-8, 8-12, and 12-24 hours postdose, and at 24-hour intervals through 168 hours postdose.
- Radioanalysis was conducted using LSC.

Results

The mean radiopurity values from HPLC analysis of predose and postdose aliquots were 95.6 and 94.8%, respectively, confirming stability of the test article under the conditions of the study.

Table 13: Pharmacokinetic Parameters for Radioactivity in Blood and Plasma Collected from Male Intact Dogs after a Single Oral Administration of 14C-GS-1101 (Group 1, 5 mg/kg)

Group (Bile duct		Excretion at 24 hours				
status)	T _{max} (h)	C _{max} (ng eq/g)	AUC _{0-t} (ng eq hr/g)	t _{1/2}	Route	%
					Urine	6.04± 1
(intact)	0.833 ± 0.3 (0.833+0.289)	2370±154 (3220+514)	12600 ± 1520 (17700 \pm 4510)	17.8±9.56 (30.3+31.0)	Feces	20.2±5
(intact)	(0.000±0.200)	(3220±314)	(17700±4010)	(00.0±01.0)	Bile	ND
					Urine	6.04± 1
2 (cannulated)	ND	ND	ND	ND	Feces	20.2 ±5
					Bile	71.7±4.9

ND = Not determined

Note: The majority of urine and bile excretion occurring within 12 hours postdose

Study title: Plasma Protein Binding of Idelalisib and GS-563117

Study No.: AD-312-2009 Report Date: February 08, 2013. Study report location: 4.2.2.3. Conducting Laboratory: GLP: No

Key Findings

- Idelalisib exhibited moderately high plasma protein binding in all species with the free fraction ranging from 9 to 25%.
- The average plasma protein binding was comparable in mouse, rat, and dog, ranging from 19% free (rat) to 21% free (dog).
- GS-563117, the oxidative metabolite of idelalisib was highly protein bound in humans with a free fraction of ~12%.
- In human plasma, idelalisib had an average free fraction of 16%; GS-563117, had a free fraction of 11.6%.

Methods

Plasma protein binding of idelalisib (IDELA) was assessed by equilibrium dialysis at substrate concentrations of 0.5 and 2 μ M in the mouse and rat and at 0.5 to 20 μ M in the dog and human. The oxidative metabolite of idelalisib, GS-563117, was assessed in humans at a concentration of 10 μ M.

Table 14: Plasma Protein Binding of IDELA and GS-563117 in Mouse, Rat,Dog, and Human

Encoire	Test Compound	Average Free Fraction (%) (n = 2)						Mean ±
Species		0.5 μM	1 µM	2 μΜ	5 μΜ	10 µM	20 µM	StD (%)
CD-1 Mouse		18.2	-	21.5	_	-	-	19.8 ± 2.3
Sprague Dawley Rat		19.3	-	18.1	-	-	-	18.7 ± 1.2
Dog (mixed breeds)	IDELA	16.7	22.8	19.6	22.2	-	22.5	20.7 ± 4.1
Uuman		12.4	20.3	12.2	16.1	19.2	15.8	16.3 ± 4.2
	GS-563117	-	-	-	-	11.6	-	11.6

(Excerpted from the Applicant's submission)

5.2 Toxicokinetics

Included in general toxicology studies.

6 General Toxicology

6.1 Single-Dose Toxicity

Rat:

In a single-dose, oral gavage study (Study No. 03-0004-42, non-GLP), Sprague-Dawley rats (main study, 2 animals/sex/group; TK animals, 3 animals/sex/group) were administered vehicle (0.2% hydroxypropyl methylcellulose and 0.5% TWEEN 80), 300, 900, and 1500 mg/kg idelalisib in a dose volume of 10 mL/kg on Day 1. Necropsy for main study and TK animals were on Days 5 and 2, respectively.

Toxicological findings were overall consistent with repeat-dose studies and included histopathology findings of depletion/necrosis of lymphocytes primarily from B-cells in multiple lymphoid organs and depletion/necrosis of hematopoietic cells in the bone marrow and spleen, inflammation in the GI tract, and hepatotoxicity.

There were no sex-related differences in C_{max} or AUC.

Dog:

A single-dose dog study (04-3166-N1, non-GLP) was conducted with idelalisib to assess MTD. Male and female dogs were assigned to 2 groups (2/sex/group). Animals assigned to Group 1 received a single dose in the order of 50, 25, and 10 mg/kg in consecutive weeks. Group 2 animals received a single dose at 200 mg/kg in Week 1.

- Two females administered 200 mg/kg idelalisib died within a few hours following administration.
- Clinical observations prior to death included yellow mucus fluid, emesis, tremors and tonic-clonic convulsions, vasoconstriction (blanching of skin and gums, and cold body), dyspnea, transient cessation of breathing following a forced inspiration, lethargy, and ataxia.
- Animals administered 25 and 50 mg/kg showed clinical signs of toxicity including weight loss (>10%), loose black stool containing yellow mucus, emesis, and decreased food consumption.
- Females showed higher AUC_{0-last} than males at 25 (3.4-fold) and 50 mg/kg (1.5-fold).
- MTD was considered to be < 25 mg/kg.

6.2 Repeat-Dose Toxicity

Study title: CAL-101: 28-Day Oral Toxicity Study with Toxicokinetics in Sprague-Dawley Rats with Recovery

Study no.: Study report location: Conducting laboratory and location:	BHR00009 4.2.3.2. (b) (4)
Date of study initiation: GLP compliance: QA statement:	August 8, 2007 Yes Yes
Drug, lot #, and % purity:	CAL-101, Lot. # 22033-51-38, Purity: 99.3%

Study was reviewed under IND 101254 by Dr. Timothy Kropp. The content and format of the review were slightly modified to fit this NDA review.

Key Study Findings

- There were several deaths at 100 (3 deaths) and 150 mg/kg (5 deaths).
- Target organs include bone marrow (major toxicity, but reversible), tongue, liver, and testis.
- Inflammatory changes were seen in the tongue, heart, liver parenchyma.
- Exposure was greater than dose proportional, accumulative, and higher in females than males.

Methods

Doses:	Vehicle, 50, 100, 150 mg/kg
Frequency of dosing:	Daily for 4 weeks, 4 week recovery
Route of administration:	Oral gavage
Dose volume:	10 mĽ/kg
Formulation/Vehicle:	0.5% CMC, 0.1% TWEEN 80
Species/Strain:	rat/Sprague-Dawley
Number/Sex/Group:	10 animals/sex/group
Age:	7 weeks old
Weight:	242-304 g for males; 189-296 g for females
Satellite groups:	6 animals/sex/group for TK plus,
	4/sex/group for recovery
Unique study design:	An FOB evaluation was performed
Deviation from study protocol:	Deviations did not negatively impact the quality or integrity of the data or the outcome of the study.

Observations and Results

Clinical signs:	Daily
Body weights:	Days -1, 7, 14, 21, 28, 35, 42, 29, 56

Food consumption:	Weekly
ECG:	Not conducted
Ophthalmoscopy:	Pre-test and within 4 days of sacrifice*
Hematology:	Before sacrifice*
Clinical chemistry:	Before sacrifice*
Coagulation:	Before sacrifice*
Urinalysis:	Pre-test and before sacrifice*
Gross pathology:	At sacrifice*
Organ weights:	At sacrifice*
Histopathology:	At sacrifice*
Toxicokinetics:	Days 1 and 28 at 0.5, 1, 2, 4, 8, 12, 16, 24 hr post-
	dose

* Sacrifice performed on Day 29

Mortality

- Almost all unscheduled deaths occurred during the recovery phase.
- The animal found dead on day 29 likely died due to blood collection error.

Below is a list of all animals that died early on study:

Sex	Dose (mg/kg)	Fate	Day
F	100	Found	12
		Dead	
Μ	100	Found	29
		Dead	
F	150	Moribund	31
		Euthanasia	
F	100	Moribund	33
		Euthanasia	
F	150	Moribund	34
		Euthanasia	
F	150	Moribund	34
		Euthanasia	
F	150	Found	34
		Dead	
F	100	Found	49
		Dead	
Μ	150	Moribund	50
		Euthanasia	

Bone marrow depletion, tongue ulceration and myeloid hyperplasia may have been involved in the morbidity/mortality of these animals, but the pathology findings do not completely reveal the cause of death.

Clinical Signs

- excessive salivation starting in the 3rd week of dosing (microscopic findings in the tongue correlated with hypersalivation noted throughout the study)
- o sparse hair coat, scabs, skin erythema and swelling
- o soft feces was noted in all animals in the high-dose (HD) group

Body Weights

Unremarkable

Food Consumption

Unremarkable

Ophthalmoscopy

Unremarkable

ECG

Not done

Hematology

Table 15: Mean % Change in Hematology Parameters Compared to Control onDay 29 in the 4-Week Rat Study

	LD 🖒	MD 🖒	HD δ	LD 🏳	MD ♀	HD ♀
Hemoglobin			-9			-15
Retic.		+33			+56	+166
WBC		-50	-47		-32	-47
LYM		-26	-40		-50	-44
EOS		-45	-44		-68	-53

Abbreviations: Retic., reticulocytes; WBC, white blood cells; LYM, lymphocytes; EOS, eosinophils; LD, low-dose 50 mg/kg; MD, mid-dose 100 mg/kg; HD, high-dose 150 mg/kg

- Decreases in hemoglobin were accompanied by similar decreases in HCT and RBC.
- Mean hemoglobin, hematocrit, and red blood cell counts remained depressed on day 57 despite increased reticulocytes.

Clinical Chemistry

Table 16: Mean % Change in Clinical Chemistry Parameters Compared to Controlin the 4-Week Rat Study

	MD 👌	HD δ	MD ♀	$HD \ Q$
Cholesterol				+27
Triglyerides				+127
ALP	-23	-31	-47	-48

• Samples taken from the animals prematurely euthanized had increases in ALT, AST, ALP, and GGT along with decreases in total protein, globulin, and albumin.

Urinalysis

Unremarkable

Gross Pathology

- In unscheduled deaths:
 - o large adrenal glands
 - o red, discolored mandibular and mesenteric lymph nodes
 - o pale pancreas
 - o discolored liver
 - o small thymus
 - o clear gelatinous accumulation in the thymus
 - o spleen
 - dark red and gelatinous accumulation in the thoracic cavity and mediastinum
- In the scheduled sacrifice:
 - o dark discoloration of left thymus in 1 low-dose male
 - enlarged mandibular lymph node and small spleen in mid-dose females

Organ Weights

Table 17: Significant Changes in Organ Weights at the End of Dosing in the 4-Week Rat Study

	LD 💍	MD 🖒	HD 👌	LD 🖓	$\mathbf{MD} \$	$\mathbf{HD} \mathrel{\bigcirc}$
Adrenal						-35
Glands						
Testes	-14	-22	-22			
Thymus		-26	-34	-16	-35	-39
Liver				+11	+25	+56
Pituitary				-14	-19	-19
Thyroid						+20
Salivary				+13	+19	+20
Glands						

• Organ weights after recovery were unremarkable

Histopathology

Adequate Battery Yes

Peer Review No signed statement, but study report stated that histopath sections would be reviewed by board certified pathologist
Histological Findings

		mg/kg			
	Туре	VC	25	100	200
Number examined		10	10	10	10
Bone marrow –	# affected				7
granulopoietic hyperplasia	avg grade				1.3
Bone marrow – myeloid	# affected			6	8
hyper plasia	avg grade			1.2	2.1
Bone marrow - erythroid	# affected			7	
depletion	avg grade			1.1	
*					
Heart – myocardium infiltrate	# affected		2	2	4
	avg grade		1	2	1.3
		,			
Epididymis – spermatozoa	# affected		1	2	7
hypoplasia	avg grade		1	1	1.2
Liver – parenchyma	# affected	3	4	9	7
inflammation	avg grade	2	1	1.2	1.6
I					
Testis – seminiferous tubule	# affected		1	7	9
degeneration	avg grade		1	1	1.3
		,			
Tongue – necrosis	# affected				1
	avg grade				4
Tongue - infiltration	# affected	1 1		5	2
i ongue – initiation	# affected			1.0	2

Table 18: Incidence and Grade of Histopathology Findings at 4-Wk Sacrifice inMale Rats

Grading: minimal=1, mild=2, moderate=3, severe=4. VC= Vehicle Control

Table 19: Incidence and Grade of Histopathology Findings at 4-Wk Sacrifice in
Female Rats

Type VC 50 100	150
Number examined 10 10 10	10
Bone marrow – # affected 1 6	7
granulopoietic hyperplasia avg grade 1 1.3	1.2
Bone marrow – myeloid # affected 4	8
hyper plasia avg grade 1	1.8
Bone marrow – erythroid # affected 1	6
depletion avg grade 1	1
Heart – myocardium infiltrate # affected 2	1
avg grade 2.5	2
Heart – fibrosis # affected	1
avg grade	2
Liver – parenchyma # affected 5 8	8
inflammation avg grade 1.2 1.3	1.8
Tongue – ulceration # affected 1	
avg grade 3	
Tongue – infiltration # affected 5 6	7
avg grade 1.2 2.5	1.7

Grading: minimal=1, mild=2, moderate=3, severe=4. VC= Vehicle Control

 Table 20: Incidence and Grade of Histopathology Findings at 4-Wk Recovery

 Sacrifice in Male Rats

		mg/kg			
	Туре	VC	50	100	150
Number examined		4	4	3	3
Bone Marrow – multifocal	# affected			2	1
depletion	avg grade			3	3
Testis - seminiferous tubule	# affected		1	2	1
degeneration	avg grade		2	1	2

Grading: minimal=1, mild=2, moderate=3, severe=4. VC= Vehicle Control

• Bone marrow cytology showed shifts towards immaturity for both myeloid and erythroid precursors in all treated animals and lower erythrocyte:lymphocyte ratios in the HD female.

Toxicokinetics

Table 21: Toxicokinetic Parameters CAL-101 in Rat Plasma: Days 1 and 28

	t _{1/2} (h)	C _{max} (ng/mL)	AUC ₀₋₂₄ (ng*h/mL)	AUC ₀₋₂₄ /dose
50 ්	2.5	6300	22000	440
100 💍	2	9200	58000	580
150 🖒	1.5	16000	170000	1100
·		•		•
50 🌳	2.2	8000	47000	94
100 🖓	1.9	16000	150000	150
150 ♀	1.6	27000	340000	2300

Day 1

Day 28

	t _{1/2} (h)	C _{max} (ng/mL)	AUC ₀₋₂₄ (ng*h/mL)	AUC ₀₋₂₄ /dose
50 ්	2.5	6600	36000	720
100 ්	1.9	16000	160000	1600
150 🖒	1.3	51000	590000	3900
50 🌳	2	13000	83000	1700
100 🖓	1.8	35000	300000	3000
150 ♀	Not est.	34000	500000	3300

Study title: CAL-101: 28-Day Oral Toxicity Study With Toxicokinetics in Beagle Dogs with Recovery

Study no.: Study report location:	BHR00008 4.2.3.2.
Conducting laboratory and location:	(b) (4)
Date of study initiation:	August 8, 2007
GLP compliance:	Yes
QA statement:	Yes
Drug, lot #, and % purity:	CAL-101, Lot. # 22033-51-38, Purity: 99.3%

Study was reviewed under IND 101254 by Dr. Timothy Kropp. The format and content of review were slightly modified to fit this NDA review.

Key Study Findings

- There was one death at 20 mg/kg/day on day 29. Primary toxicities were to the GI, liver, and lymphoid tissues.
- Bone marrow toxicities were also evident in hematology findings.

• There were CAL-101 findings relating to the eye (largely eye discharges); the relationship to the treatment is unclear.

Methods

Doses:	Lactose monohydrate, 2.5, 5, 20 mg/kg
Frequency of dosing:	Daily for 4 weeks, 4 week recovery
Route of administration:	Oral
Dose volume:	N/A
Formulation/Vehicle:	Capsules w/ lactose monohydrate powder
Species/Strain:	dog/Beagle
Number/Sex/Group:	4 animals/sex/group
Age:	5-8 months
Weight:	6.2-8.7 kg
Satellite groups:	3 animals/sex/group for TK and recovery
Unique study design:	None
Deviation from study protocol:	One HD male and one HD female were given
	Lactated Ringer's solution on multiple days due
	to dehydration. One HD male and two HD
	females were given 0.2 mg/kg meloxicam SC
	due to paw injury, edema, or eye pain. The
	female with ocular pain was also administered
	Vetropolycin HC topically. One MD male was
	given 0.2 mg/kg meloxicam due to mouth pain.

Observations and Results

Clinical signs:	Cageside twice daily and detailed weekly
Body weights:	Weekly
Food consumption:	Daily
ECG:	Pre- and postdose pretest and before sacrifice
Ophthalmoscopy/Audiology:	Pre-test and within 4 days of sacrifice
Hematology:	Pre-test and before sacrifice
Clinical chemistry:	Pre-test and before sacrifice
Coagulation:	Pre-test and before sacrifice
Urinalysis:	Pre-test and before sacrifice
Gross pathology:	At sacrifice
Organ weights:	At sacrifice
Histopathology:	At sacrifice
Toxicokinetics:	Days 1, 14 and 28 at 0.5, 1, 2, 4, 8, 12 hr post-dose.
	Days 2 and 29 at 16 and 24 hr post-dose

Mortality

• One HD female was euthanized in moribund condition on day 29.

Clinical Signs

• 2.5 mg/kg

- \circ soft feces
- 5 mg/kg
 - o soft feces
 - o eye squint
 - o vomiting/emesis
 - o skin erythema
- 20 mg/kg
 - o soft feces
 - o eye squint
 - o vomiting/emesis
 - o skin erythema
 - o green discolored eyes/discharge
 - o white ocular discharge
 - o lacrimation
 - red discolored eyes
 - o white and yellow discharge
 - o swelling in left eye of one male
 - Female with unscheduled death (developing starting day 10):
 - red discolored eyes
 - fecal blood
 - marked soft feces
 - lethargy
 - salivation
 - shivering
 - mouth ulcerations
 - thin
 - mucoid eye discharge

Body Weights

HD females lost weight (-8%) while control and LD groups gained weight at 8%. MD females gained at 2% (non-significant vs controls).

Food Consumption

Observation of low food consumption was approximately 5 times higher than control animals.

Ophthalmoscopy

Unremarkable other than that noted in clinical signs.

ECG

Unremarkable

Hematology

- Lymphocyte counts were down in treated females (16-35%).
- Basophil counts were down in all treated animals (~60%).
- HCT and HGB levels were increased only in animals which had signs of dehydration.

- Monocyte count was 7.2x baseline for the early death female on day 24.
- Bone marrow toxicities were also evident in hematology findings.

Clinical Chemistry

Table 22: Change in Clinical Chemistry Parameters Compared to Control in Dog4-Wk Study

	HD δ	HD♀
AST	4.7X	40.2X
ALT	2X	10.6X
ALP	2X	5.8X
GGT		2.4X

• All findings resolved by the end of recovery

Urinalysis

Unremarkable

Gross Pathology

- In the early death female:
 - o red, linear discoloration of the mucosa of the GI tissues
 - red, firm discoloration of the lung lobes
 - o white material in the trachea
 - o red discolored thymus
- In the 20 mg/kg surviving animals:
 - small thymus in 1/4 males and 1/3 females
 - red discoloration of the GI tissues

Organ Weights

Table 23: Significant Changes in Organ Weights, Relative to Body Weight in Dogsat the End of Dosing (4-Wk)

	HD 🖒	$\mathbf{HD} \stackrel{\frown}{\rightarrow}$
Thymus	-37%	-32%
Spleen	-38%	-22%

Table 24: Significant Changes in Organ Weights, Relative to Body Weight inDogs at the End of Recovery (4-Wk)

	LD 🖒	MD 🖒	HD 💍
Testes	-31%	-33	-55%

Histopathology

Adequate Battery Yes

Peer Review Yes, signed

Histological Findings

 The histopathology of the early death female was similar to the other 20 mg/kg females with greater severity as well as congestion and hemorrhage findings in the lung and liver.

Table 25: Incidence and Grade of Histopathology Findings at 4-Wk Sacrifice in Male Dogs

			mg	/kg	
	Туре	VC	2.5	5	20
Number examined		4	4	4	4
Ileum (Peyer's patch) -	# affected				3/3 [†]
lymphoid depletion	avg grade				3
• • • •					2
Lymph node, axillary –	# affected				3
lymphoid depletion	avg grade				2.7
Lymph node, inguinal -	# affected				2
lymphoid depletion	avg grade				2.5
		1		1	
Thymus - lymphoid	# affected				2
depletion	avg grade				4
Liver – Chronic	# affected			2	2
inflammation	avg grade			1	1
Liver – Hepatocellular	# affected	1		1	3
necrosis	avg grade	1		1	1.3
Liver – Hepatocellular	# affected				1
swelling	avg grade				2
Colon* – multifocal	# affected			1	1
hemorrhage	avg grade			2	1
Colon* - multifocal crypt	# affected				1
abscess	aug grade				1
4050053	avg graue				1
Colon* – mixed cell mucosal	# affected			1	
infiltration	avg grade			1	

Grading: minimal=1, mild=2, moderate=3, severe=4. VC= Vehicle Control

† No Peyer's patch was present in one of the HD males.
*Findings in the colon were replicated in the cecum, duodenum, ileum, jejunum, and rectum and are not included in the table

Table 26: Incidence and Grade of Histopathology Findings at 4-Wk Sacrifice inFemale Dogs

		mg/kg			
	Туре	VC	2.5	5	20
Number examined		4	4	4	3
Ileum (Peyer's patch) -	# affected				3
lymphoid depletion	avg grade				3
	-				
Lymph node, auxiliary –	# affected			1	1
lymphoid depletion	avg grade			2	3
_				-	
Lymph node, inguinal –	# affected			1	1
lymphoid depletion	avg grade			2	3
Thymus – lymphoid	# affected				1
depletion	avg grade				4
Thomas Isonahaid accessio	# affects 1				1
1 hymus – lymphoid necrosis	# affected				1
	avg grade				5
Liver - Chronic	# affected			1	2
inflammation	avg grade			1	1
	avg grade			1	1
Liver – Hepatocellular	# affected				2
necrosis	avg grade				1.5
Liver - Hepatocellular	# affected				2
swelling	no grade				2
	· _				
Colon* – multifocal	# affected				1
hemorrhage	avg grade				1
	1				
Colon* – multifocal crypt	# affected				1
abscess	avg grade				2
	I				
Colon* – mixed cell mucosal	L				1
infiltration					2
1 hymus – cortex necrosis	# attected				1
	avg grade				3

Grading: minimal=1, mild=2, moderate=3, severe=4. VC= Vehicle Control

Table 27: Incidence and Grade of Histopathology Findings after 4-Wk Recovery inFemale Dogs

			mg/kg				
	Туре	VC	2.5	5	20		
Number examined		3	3	3	3		
Ileum (Peyer's patch) -	# affected				2		
lymphoid depletion	avg grade				2		
Liver - Hepatocellular	# affected				1		
swelling	avg grade				1		

Grading: minimal=1, mild=2, moderate=3, severe=4. VC= Vehicle Control

Toxicokinetics

Table 28: Toxicokinetic Parameters CAL-101 in Dog Plasma: Days 1 and 28

IK parameters on day I									
Dose	Sex	C _{max}	AUC _{0-lim}	AUC/dose					
(mg/kg)		(µg/mL)	(µg*hr/mL)						
2.5	Μ	609	2130	852					
5	Μ	1400	5390	1078					
20	Μ	7170	56900	2845					
2.5	F	700	2920	1168					
5	F	1280	6420	1284					
20	F	6560	47600	2380					

TK parameters on day 1

TK parameters on day 28

Dose (mg/kg)	Sex	C _{max} (µg/mL)	AUC _{0-lim} (μg*hr/mL)	AUC/dose
2.5	Μ	873	4760	1904
5	Μ	1310	8490	1698
20	Μ	11500	113000	5650
		•		
2.5	F	638	3850	1540
5	F	1540	9280	1856
20	F	20500	292000	14600

Study title: GS-1101: A 13-Week Oral Toxicity Study In Rats With a 4-Week Recovery Period

Study no.: Study report location: Conducting laboratory and location:	TX-312-2001 4.2.3.2. (b) (4)
Date of study initiation:	July 22, 2010 (first dose)
GLP compliance:	Yes, signed
QA statement:	Yes, signed
Drug, lot #, and % purity:	GS-1101, Lot. # 60182-09-004, 99.8%

Key Findings:

- Statistically significant increase (14%-15%) in the absolute weights in the heart at 90 mg/kg/day compared to controls. There was a slight increase in the incidence and severity of cardiomyopathy in the heart in males at 90 mg/kg/day and in females at all dose levels compared to controls.
- Organs of toxicity: Heart, pancreas, tongue, and testes.

Methods

Doses:	0, 25, 50, 90 mg/kg/day
Frequency of dosing:	Daily for 13 weeks
Route of administration:	Oral gavage
Dose volume:	10 mL/kg
Formulation/Vehicle:	0.5% high viscosity
	carboxymethylcellulose/0.1% TWEEN 80 in
	deionized water
Species/Strain:	Crl:CD(SD)
Number/Sex/Group:	15 animals/sex/group
Age:	7 weeks old
Weight:	Males, 201-259 g; Females, 141-183 g
Satellite groups:	Toxicokinetic (TK): vehicle control, 3
	animals/sex/group; GS-1101-treated, 6
	animals/sex/group
Unique study design:	No
Deviation from study protocol:	Deviations did not impact the quality or integrity of the data or the outcome of the study.

Mortality

Two main study females were euthanized *in extremis* and two toxicokinetic females were found dead including euthanized *in extremis*.

Dose of	Animal	Sex	Fate	Day	Tox/	Potential cause of morbidity/ macroscopic
GS-1101	#				Tk	findings/ microscopic findings
(mg/kg/day)						
25	1111	F	EE	61	Tox	Severe unilateral ocular hemorrhage and
						inflammation attributed to trauma associated with
						periorbital bleeding procedures
	1153	F	FD	61	Tk	No remarkable findings
	1155	F	EE	28	Tk	No remarkable findings
90	1140	F	EE	51	Tox	Inflammation of the tongue and oral cavity
						(present in nasal sections), which may have been
						associated with gavage-related trauma and/or
						irritation associated with the presence of the test
						article.

Table 29: Cause of Death (13-week Rat Study)

EE euthanized in extremis, FD found dead

Clinical Signs

Clinical signs	No. of animals affected (No. of					 of observations) 			
		Ma	ales	-	Females				
Dose (mg/kg)	0	25	50	90	0	25	50	90	
Number of animals examined	15	15	15	15	15	15	15	15	
During dosing phase									
Activity decreased	0	0	0	0	0	0	0	1	
Hypersensitive to touch	0	0	0	0	0	0	0	1	
Salivation	0	0	0	0	0	0	0	2	
Material in pan/bedding, Red	0	0	0	0	0	0	0	2	
Lacrimation	0	0	0	0	0	0	0	1	
Material around eyes, Black	0	0	0	0	0	1	0	1	
Material around mouth, Brown	0	0	0	0	0	0	0	1	
Material around mouth, Red	0	0	0	0	0	0	0	1	
Material around nose, Red	0	0	0	0	0	0	0	1	
Swelling	0	0	0	0	0	0	0	1	
Eye discolored, Dark	0	0	0	0	0	1	0	0	
Deformity	0	0	0	1	0	0	0	0	
Pelage/Skin Scabbed area	0	0	0	4	0	0	0	1	
Hair discolored, Tan	0	0	0	0	0	0	0	1	
Hair discolored, Yellow	0	0	0	0	0	0	0	1	
Hair sparse	0	0	0	0	0	0	0	5	
Hair wet	0	0	0	0	0	0	0	3	
Scabbed area	0	0	0	0	0	0	0	1	
Skin dry	0	0	0	0	0	0	0	1	
Unkempt appearance	0	0	0	0	0	0	0	2	
Breathing audible	0	0	0	0	0	0	0	1	
During Recovery phase									
Number of animals examined	5	5	5	5	5	5	5	5	
Teeth cut	0	1	1	2	0	0	1	0	
Salivation	0	0	0	1	0	0	0	0	
Material around nose, Red	0	0	0	1	0	0	0	0	

Table 30: Summary of Clinical Signs in 13-Week Rat Study

Clinical signs	No. of animals affected (No. of observations)							
		Ма	ales		Females			
Dose (mg/kg)	0	25	50	90	0	25	50	90
Number of animals examined	15	15	15	15	15	15	15	15
Pelage/Skin Hair discolored, Red	0	0	0	1	0	0	0	0
Hair sparse	0	0	0	2	0	0	0	1
Hair wet	0	0	0	1	0	0	0	0
Unkempt appearance	0	0	0	1	0	0	0	0

Organ weights

- There was a 14% to 15% increase in the relative heart weights of males and females at 90 mg/kg/day compared to controls at the terminal necropsy.
- There was a 23% and 14% decrease in the relative testes and epididymides weights at 90 mg/kg.

Table 31: Summary of Organ Weight Changes in the 13-Week Rat Study

Test Article-related Organ Weight Changes - Terminal										
Male and remaie (Percent change relative to control)										
Dose level: mg/kg/day	2	25	5	0	90					
Sex	Μ	F	М	F	М	F				
Number Examined	10	10	10	10	10	10				
Testes (g)	↓7.3	NA	↓5.2	NA	↓23.1 ^b	NA				
Testes/BWt%	↓8.0	NA	↓11.2	NA	↓23.9 ^b	NA				
Testes/BrWt ratio	↓8.5	NA	↓7.7	NA	↓22.0 ^b	NA				
Epididymides (g)	↓1.6	NA	1.8	NA	↓13.6 ^a	NA				
Epididymides/BWt%	↓2.2	NA	↓4.5	NA	↓15.0 ^a	NA				
Epididymides/BrWt ratio	↓5.1	NA	↓0.7	NA	↓12.6ª	NA				
Heart (g)	↑7.8	↓4.6	15.9	↓0.8	13.8ª	14.8				
Heart/BWt%	↑ 7.1	13.4	↓0.2	1 4.2	↑12.1ª	1 23.2				
Heart/BrWt ratio	1 2.3	↓1.0	↑ 3.1	↓0.3	↑14.8 ^b	15.3				
Pituitary gland (g)	↓5.7	↓8.5	↑12.1	↓18.5ª	↓4.5	↓19.9ª				
Pituitary gland/BWt%	↓6.7	0.0	1 3.3	↓13.7	↓6.7	↓15.1				
Pituitary gland/BrWt ratio	↓4.1	↓4.5	<u>19.5</u>	↓17.1	↓2.7	↓18.9 ^a				
Thyroid/parathyroid (g)	0.0	↑17.7	0.0	17.7	↓8.0	123.5ª				
Thyroid/parathyroid										
/BWt%	$\downarrow 2.1$	128.8ª	↓8.3	[↑] 23.7	↓10.4	↑33.9 ⁰				
Thyroid/parathyroid/BrWt	1	A	1	A		A				
ratio	√4.1	124.7	↓5. 8	16.9	↓8.3	128.1ª				
^a Significantly different from con	trol; (p<0.	05)	↑ - Increased							
^b Significantly different from con	01)	↓ - Dec	reased							
BWt - Body Weight; BrWt - Bra	in Weight		M – Ma	ale						
NA – Not Applicable/Not Availa	able		F - Female							

(Excerpted from the Applicant's submission)

Test Article-related Organ Weight Changes - Recovery Male (Percent change relative to control)							
Dose level: mg/kg/day	25	50	90				
Number Examined	5	5	5				
Testes (g) Testes/BWt% Testes/BrWt ratio	↓13.9 ^b ↓17.9 ↓12.8 ^b	↓8.9 ^a ↑2.0 ↓6.1	↓27.5 ^b ↓21.7 ^a ↓25.5 ^b				
Epididymides (g) Epididymides/BWt% Epididymides/BrWt ratio	↑5.6 ↑0.5 ↑6.7	↓6.9 ↑4.1 ↓3.9	↓15.8ª ↓8.8 ↓13.3				
^a Significantly different from co ^b Significantly different from co BWt - Body Weight; BrWt - B	ontrol; (p<0.05) ontrol; (p<0.01) rain Weight	↑ - Increased ↓ - Decreased					

Histopathology

Adequate Battery Yes

Peer Review Yes, signed

Histological Findings

• Test article-related microscopic findings were present in the heart, pancreas, tongue, and testes.

Table 32: Microscopic Findings with Increased Incidence and/or Severity in GS-1101-Treated Rats Compared to Controls (13-Week Study)

Treatment-Related Microscopic Findings				No. of animals affected							
Terminal Necropsy			Males Females								
Dose (mg/	kg)		0	25	50	90	0	25	50	90	
Number of	animals examined		10	10	10	10	10	10	10	10	
Organ	Finding	Severity									
Testes	Partial depletion,	-minimal	0	1	1	7	NA	NA	NA	NA	
	spermatocyte/spermatid	-mild	0	0	0	3	NA	NA	NA	NA	
Heart	Cardiomyopathy	-minimal	4	3	3	6	0	1	2	2	
		-mild	0	1	0	1	0	0	0	0	
Pancreas	Inflammation,	-minimal	4	2	7	2	0	1	0	0	
	subacute/chronic	-mild	1	1	1	3	0	0	0	0	
		-moderate	0	0	0	2	0	0	0	0	
	Hemorrhage	-minimal	2	2	2	4	0	1	0	0	
Tongue	Inflammation, subacute	-minimal	0	0	0	0	0	0	1	1	
		-mild	0	0	0	0	0	0	0	2	
		-moderate	0	0	0	0	0	0	0	1	
	Erosion/ulcer	-minimal	0	0	0	0	0	0	0	2	
Recovery Necropsy				Males Females							
Testes	Partial depletion, spermatid	-minimal	0	0	0	3	NA	NA	NA	NA	

NA = not present in animal

Toxicokinetics

Table 33: Toxicokinetic Parameters for GS-1101 in Rat Plasma: Days 1 and 90

Day	Dose (mg/kg/day)	Sex	AUC ₀₋₂₄ (hr•ng/mL)	AUC _{0-tisst} (hr•ng/mL)	C _{max} (ng/mL)	t _{1/2} (hr)	T _{max} (hr)
1	25	Male	3500	2890	1200	2.33	1.00
		Female	13300	9170	3500	2.91	0.500
		Combined	8390	6030	2350	2.62	0.750
	50	Male	12300	10900	2860	1.74	1.00
		Female	27600	27600	5110	2.32	1.00
		Combined	19900	19200	3980	2.03	1.00
	90	Male	25100	25100	4630	2.45	2.00
		Female	85400	85400	9210	2.40	1.00
		Combined	55200	55200	6920	2.42	1.50
90	25	Male	7370	7370	1980	3.46	1.00
		Female	30900	30900	6330	2.26	0.500
		Combined	19100	19100	4160	2.86	0.750
	50	Male	45000	45000	5130	2.38	1.00
		Female	73300	73300	10100	2.04	1.00
		Combined	59100	59100	7640	2.21	1.00
	90	Male	114000	114000	10200	2.49	2.00
		Female	172000	172000	15100	2.11	1.00
		Combined	143000	143000	12700	2.30	1.50

(Excerpted from the Applicant's submission)

Study title: A 6-Month Oral (Gavage) Toxicity Study of GS-1101 with a 12 Week Recovery Period in Sprague Dawley Rats

Study no.: Study report location: Conducting laboratory and location:	TX-312-2005 4.2.3.2. (b) (4)
Date of study initiation: GLP compliance: QA statement: Drug, lot #, and % purity:	December 14, 2011 (first dose) Yes, signed Yes, signed GS-1101, Lot. # 1101-AC-1P-DKS-11 1204-23, 99.8%

Key Study Findings

- There were five mortalities, four of which are likely drug-related. One mortality at the low dose was due to malignant lymphoma, which may be incidental.
- Common microscopic findings in animals found dead were decreased lymphocytes in the spleen, hemorrhage of the thymus, and dilatation of the urinary bladder. Other microscopic findings in the 90 mg/kg/day males found dead were cardiomyopathy, hypertrophy of the adrenal cortex, inflammation of the pancreas, and alveolar macrophages in the lungs.
- At all doses, there were increases in white blood cells (lymphocytes, neutrophils, monocytes, and basophils).
- Organs of toxicity: hematopoietic system, reproductive organs, kidneys, heart, liver, lungs, and pancreas. Axonal degeneration in the peripheral nerves and

hemorrhage in the brain of one male were also observed at low incidence in males at 90 mg/kg/day.

 GS-1101 was readily absorbed, accumulated with repeat-dosing, and exposures (AUC and C_{max}) were dose-dependent with greater than 2-fold higher exposures in females. The toxicokinetic profile of the metabolite GS-563117 was similar to the parent GS-1101, despite the fact that the parent compound was not readily converted to its metabolite in rats.

Methods

Doses:	0, 25, 50, 90 mg/kg/day
Frequency of dosing:	Daily for 26 weeks
Route of administration:	Oral gavage
Dose volume:	10 mL/kg
Formulation/Vehicle:	0.5% high viscosity
	carboxymethylcellulose/0.1% TWEEN 80 in
	deionized water
Species/Strain:	Crl:CD(SD)
Number/Sex/Group:	15 animals/sex/group
Age:	7 weeks old
Weight:	Males, 201-259 g; Females, 141-183 g
Satellite groups:	Toxicokinetic (TK): vehicle control, 3
	animals/sex/group; GS-1101-treated, 9
	animals/sex/group
Unique study design:	No
Deviation from study protocol:	Deviations did not impact the quality or integrity of the data or the outcome of the study.

Observations and Results

Mortality:	Twice daily
Clinical signs ^a :	Twice daily (once daily during recovery); detailed
	examinations prior to dosing initiation, weekly during
	dosing and recovery, and prior to necropsy*
Body weights:	Twice prior to dosing phase initiation, weekly during the
	dosing and the recovery periods, at necropsy*
Food consumption ^a :	Approximately weekly throughout the study, beginning 6
	days prior to randomization.
ECG:	Not conducted
Ophthalmoscopy:	Study week -1 (all animals) and on all surviving
	toxicology group animals near the end of the dosing
	period
Hematology ^{a,b} :	At necropsy*
Clinical chemistry ^{a,b} :	At necropsy*
Coagulation ^{a,b} :	At necropsy*
Urinalysis ^{a,b} :	At necropsy*
Gross pathology ^a :	At necropsy*

Organ weights ^a :	At necropsy*
Histopathology ^a :	At necropsy*
Toxicokinetics:	Days 0 and 181
	Controls:
	 Prior to dosing and 2 hours post-dose
	GS1101treated groups:
	 Predose and approximately 0.5, 1, 2, 4, 8, and 24 hours postdose.

a = not conducted on TK animals; b = animals were fasted overnight

*10 animals/sex/group were scheduled to be euthanized after 182 days of dosing (primary). The remaining animals, \leq 5 animals/sex/group, were scheduled to be euthanized for necropsy following an 84-day non-dosing period (recovery). Necropsy was scheduled for TK animals on Day 182.

Mortality

Five animals were found dead prior to the dosing phase necropsy.

Table 34: Cause of Death (6-Month Rat Study)
--

Dose of GS-1101 (mg/kg/day)	Animal #	Sex	Day Found Dead	Potential cause of morbidity/ macroscopic findings/ microscopic findings
25	4703	Male	137	Malignant lymphoma which histologically involved the liver, spleen, bone marrow, pancreas, and axillary lymph node
	4791	Female	73	Undetermined/ unremarkable macroscopic findings/ mild acute inflammation of the renal pelvis, mild luminal dilatation of the urinary bladder, and minimal splenic marginal zone decreased lymphocytes
50	4794	Female	106	Undetermined/ unremarkable macroscopic findings/ mild luminal dilatation of the urinary bladder and mild splenic marginal zone decreased lymphocytes
90	4666	Male	55	Undetermined/ one white area on seminal vesicles/ moderate chronic inflammation in the pancreas and moderate splenic marginal zone decreased lymphocytes
	4707	Male	177	Undetermined/ multiple depressed areas of the kidneys/ minimal chronic progressive nephropathy, moderate lacrimal gland atrophy and harderian gland alteration, minimal splenic marginal zone decreased lymphocytes, and minimal thymic cortex decreased lymphocytes

Clinical Signs

Table 35: Summary of Clinical Signs in 6-Month Rat Study

Clinical signs	No. of animals affected (No. of observations)							
		Ma	ales	Females				
Dose (mg/kg)	0	25	50	90	0	25	50	90
Number of animals examined	15	15	15	15	15	15	15	15
During dosing phase								
Hair loss dorsal trunk				1(1)				

Clinical signs	No. of animals affected (No. of observations)							
	Males				Females			
Dose (mg/kg)	0	25	50	90	0	25	50	90
Number of animals examined	15	15	15	15	15	15	15	15
Swollen right hindlimb				1(2)				
Scabbing dorsal trunk			1(2)	- (-/				1(1)
Upper incisor(s) broken		1(1)	2(10)					1(2)
Upper incisor(s) missing			· · · /					1(1)
Reddened facial area								1(1)
Wet yellow material urogenital area		1(1)						1(2)
Dried yellow material urogenital area	1(1)							1(1)
At time of dose								
Wet red material around nose				1(1)				
Red material on cage floor				1(1)				
Swollen right forelimb				1(2)				
Swollen left hindlimb				1(1)				
Swollen right hindlimb				1(6)				
Clear discharge left eye								1(1)
Clear discharge right eye	1(1)							2(2)
Reddened facial area								1(2)
Reddened left forelimb		1(4)	1(1)					1(5)
Reddened right forelimb								1(5)
Wet yellow material urogenital area								1(2)
Dried yellow material urogenital area								2(4)
Dried yellow material anogenital area								1(1)
1-2 hours post dose								
Swollen right forelimb				1(2)				
Swollen right hindlimb				1(7)				
Wet red material around nose			1(1)	1(1)				
Soft feces				1(1)				
Clear discharge left eye						1(1)		1(1)
Clear discharge right eye								
Dried red material around mouth								1(1)
Reddened facial area								1(2)
Reddened left forelimb		1(2)						1(5)
Reddened right forelimb		1(2)						1(5)
Wet yellow material urogenital area								4(22)
Wet yellow material ventral trunk								1(1)
Wet yellow material anogenital area								1(1)
Dried yellow material urogenital area								2(3)
Dried yellow material anogenital area								1(2)
Dried red material forelimb(s)								2(4)

Body Weights

No toxicologically significant changes

Food Consumption

Unremarkable

Ophthalmoscopy

Unremarkable

ECG

Not conducted

Hematology

Males

Table 36: Summary of Hematolotgy Findings in Male Rats in the 6-Month Study

Index	Mean		Percentage deviation from Control								
	Cor	ntrol	25 mg/kg		50 m	ng/kg	90 mg/kg				
	0 m	g/kg	00								
	WK	WK	WK	WK	WK	WK	WK	WK			
	26	38	26	38	26	38	26	38			
HDW (g/dL)	2.87	2.19	3	6	11*	-1	9	2			
Retic. Abs.	196.8	183.6	-2	4	6	27	11	17			
Retic.%	2.1	2.0	0	0	5	30	10	15			
Platelets Abs.	1165	961	2	2	11	-10	16	3			
WBC Abs.	8.02	7.29	14	7	12	31	24	11			
Lymphocytes Abs.	6.01	5.23	22	13	15	34	28	13			
Neutrophils Abs.	1.57	1.58	-8	-7	0	28	13	6			
Monocytes Abs.	0.23	0.28	13	-14	17	4	30	11			
Eosinophils Abs.	0.12	0.13	-33	-23	-17	-31	-25	8			
Basophils Abs.	0.2	0.2	0	0	50	100	50	50			
LUC Abs.	0.07	0.05	-14	20	29	140	43	20			
LUC%	0.9	0.8	-33	0	0	50	11	-13			

Table 37: Summary of Hematolotgy Findings in Female Rats in the 6-Month Study

Index	Mean		Percentage deviation from Control								
	Cor	ntrol	25 mg/kg		50 m	ig/kg	90 mg/kg				
	0 m	g/kg									
	WK	WK	WK	WK	WK	WK	WK	WK			
	26	38	26	38	26	38	26	38			
HDW (g/dL)	2.53	2.09	8**	-6	11**	-6	12**	1			
RDW%	11.6	11.8	6**	-4	9**	-2	9**	3			
Retic. Abs.	152.6	153.4	12	1	21*	-5	16	21			
Retic.%	1.8	1.9	11	0	22	-11	17	21			
Platelets Abs.	1121	956	0	2	2	9	5	-6			
WBC Abs.	4.75	5.17	4	4	30	-1	36*	9			
Lymphocytes Abs.	3.86	3.55	6	19	36	16	31	24			
Neutrophils Abs.	0.64	0.61 ^a	2	41	3	18	81*	56			
Monocytes Abs.	0.12	0.12 ^a	-9	25	8	17	25	25			
Eosinophils Abs.	0.07	0.08	-14	0	-14	13	-29	13			
Basophils Abs.	0.01	0.01	0	0	100	0	0	100			
LUC Abs.	0.04	0.02	-25	100	0	100	50	100			
LUC%	0.8	0.5	-13	40	-13	40	0	20			

* = $p \le 0.05$; ** = $p \le 0.01$; - = decrease; 0 = no change

Abbreviations: HDW, hemoglobin distribution width; RDW, red blood cell distribution width; WBC, white blood cells; LUC, large unstained cells; Abs., absolute number of cells (thousands/µL)

a - Outlier (one control recovery female, No. 4812) excluded from analysis by reviewer

Clinical Chemistry

Index	Me	an		Percent	age devia	ation from	Control		
	Cor	ntrol	25 m	25 mg/kg		ng/kg	90 m	ng/kg	
	0 m	g/kg						0 0	
	WK	WK	WK	WK	WK	WK	WK	WK	
	26	38	26	38	26	38	26	38	
Males									
Globulin (g/dL)	2.6	2.6	-8	0	-4	-4	-4	-4	
A:G Ratio	1.55	1.62	5	-1	10**	0	10**	1	
Bilirubin (mg/dL)	0.04	0.03	25	0	0	0	-25	-33	
Cholesterol (mg/dL)	76	68	-12	7	11	19	24	16	
Triglycerides (mg/dL)	85	86	-31	1	12	30	-9	35	
Phosphorous (mg/dL)	5.9	5.7	0	0	10*	4	9	2	
Females									
Globulin (g/dL)	3	2.9	-10*	0	-10	-7	-13**	-3	
A:G Ratio	1.54	1.68	17**	-2	12**	4	18**	1	
Bilirubin (mg/dL)	0.10	0.08	-20*	-13	-30**	-13	-40**	0	
Cholesterol (mg/dL)	81	89	15	-12	24	-17	22	15	

Table 38: Summary of Clinical Chemistry Parameters in the 6-Month Rat Study

* = $p \le 0.05$; ** = $p \le 0.01$; - = decrease; 0 = no change

Abbreviations: A:G, Albumin to Globulin ration; AST, aspartate aminotransferase

• There was considerable variability in values obtained from control animals making it difficult to determine the drug-related effects of GS-1101 on clinical chemistry parameters (e.g., AST).

Urinalysis

Unremarkable

Gross Pathology

Table 39: Summary of Macrosopic Findings in the 6-Month Rat Study

Treatment findings	related macroscopic	No. of animals affected							
		Males Femal							
Dose (mg/	kg)	0	25	50	90	0	25	50	90
Number of	animals examined	0/10/5	1*/9/ 5	0/10/ 5	2*/8/ 5	0/10/ 5	1*/9/ 5	1*/9/ 5	0/10/ 5
Thymus	Area(s), dark red		1*/0/ 0	0/0/1	0/2/1	0/0/1		0/1/ 1	0/1/ 1
	Small	0/1/ 0			0/2/ 0				0/1/ 1
Uterus	Contents, clear fluid		N	Ą		0/1/ 0	0/1/ 0	0/3/ 0	0/2/ 0
Testes	Small	0/1/ 0 NA							

Number of animals examined and affected: Early deaths*/Terminal necropsy / **Recovery necropsy** Empty cells = no test-article related changes

NA= Not Applicable, tissue does not exist in this sex

Organ Weights

Group		Percent	age devi	ation from	Control		
		25 mg	/kg/day	50 mg	/kg/day	90 mg/	/kg/day
Ne	cropsy	Term	Recov	Term	Recov	Term	Recov
Number of ar	nimals examined	9	5	10	5	8	5
Males							
Spleen	Absolute (g)	-12	11	-19*	62	-18*	21
	Relative BW (%)	-7	12	-13	55	-12	15
	Relative Brain	-11	8	-16	59	-16	18
	(%)						
Epididymis	Absolute (g)	-2	0	-11*	-3	-23**	-2
	Relative BW (%)	3	0	-5	-6	-18*	-8
	Relative Brain						-4
	(%)	-1	-3	-9	-5	-21**	
Testis	Absolute (g)	-3	-3	-13*	-6	-24**	-5
	Relative BW (%)	2	-2	-7	-9	-19*	-10
	Relative Brain						-7
	(%)	-2	-5	-12*	-8	-23**	
Liver	Absolute (g)	-8	0	-1	4	8	10
	Relative BW (%)	-2	0	6	0	16**	4
	Relative Brain						8
	(%)	-7	-2	1	3	10	
Number of anir	nals examined	9	5	9	5	10	5
Females							-
Spleen	Absolute (g)	-9	-10	-13	-12	-8	-4
	Relative BW (%)	-12	-5	-18	-8	-7	-1
	Relative Brain						
	(%)	-10	-10	-13	-11	-8	-6
Uterus/	Absolute (g)	-9	-17	-3	-16	-18	-6
Cervix	Relative BW (%)	-14	-11	-10	-12	-19	-4
	Relative Brain						
	(%)	-10	-17	-4	-15	-21	-8

Table 40: Summary of Organ Weight Changes in the 6-Month Rat Study

* = $p \le 0.05$; ** = $p \le 0.01$; - = decrease; 0 = no change; BW = body weight; Term = terminal necropsy; Recov = recovery necropsy

• There was a dose-dependent (not statistically significant) increase in lung organ weight (up to 16%) in recovery males at 90 mg/kg/day that was not observed in the dosing phase.

Histopathology

Adequate Battery Yes

Peer Review Yes, signed

Histological Findings

Table 41: Microscopic Findings with Increased Incidence and/or Severity in GS 1101-Treated Rats Compared to Controls (6-Month Study)

Treatment-Related Microscopic Findings				١	lo. of anim	als affected				
				M	ales			Fer	nales	_
Dose (mg/kg)	- 1		0	25	50	90	0	25	50	90
Number of anima	als examined ^{a,b,c}	•	0/10/ 5	1*/t/ r	0/t/ r	2*/8/ 5	0/10/ 5	1*/t/ r	1*/t/ r	0/10/ 5
Organ	Finding	Severity								
Adrenal,	Hypertrophy	Total	0/0/2			1*/1/ 1	0/0/1	0/0/1	0/0/1	0/2/ 3
Cortex		Minimal	0/0/2			0/1/ 1	0/0/1			0/0/ 2
		Mild				1*/0/ 0			0/0/1	0/1/ 1
		Moderate						0/0/1		0/1/ 0
	Angiectasis	Minimal								0/0/1
	Cyst	Present						0/0/1		
Brain	Hemorrhage	Mild				0/1/ 0				
Colon ^a	Diverticulum	Present							0/1/ 0	
Epididymides [□]	Luminal	Minimal				0/1/ 0		-	NΔ	
	debris, cellular					0/1/0			N/1	-
Harderian	Degeneration	Total	0/2/ 2		0/1/-	0/4/ 1	0/1/ 0			0/1/ 2
glands		Minimal	0/1/ 1		0/1/-	0/2/1				0/0/1
		Mild	0/1/ 1			0/1/ 0	0/1/ 0			0/1/ 1
		Moderate				0/1/ 0				
Heart	Cardio-	Total	0/1/ 2			1*/4/ 2	0/1/ 1			
	myopathy	Minimal	0/0/1			1*/3/ 2				
		Mild	0/1/ 1			0/1/0	0/1/ 1			
	Infiltrate,	Mild								
	mixed cell,									0/0/1
	vascular									
Kidneys ^a	Calculus	Present	0/1/ 1			0/0/ 2	0/1/ 1			0/1/ 0
	Cyst	Present								0/0/1
Lac. Gland	Atrophy	Total	0/0/1			1*/0/ 0				
Exor		Mild	0/0/1							
		Moderate				1*/0/ 0				
	Infiltrate,	Minimal				2*/0/ 0				
	mononuclear					270/0				
Liver	Focus,	Minimal								0/1/0
	Basophilic cell									0/1/0
	Focus,	Minimal								- / - /-
	Eosinophilic									0/1/ 0
	cell									
	Fibrosis,	Minimal								0/0/1
	peribiliary									
LN, axillary	Erythrocytosis,	Moderate				0/0/1				
	sinus	Tatal	0/0/0			0/4/2	0/0/0		A*/ /	0/0/2
LN, mandibular	Erythrocytosis,	10tal	0/2/2			0/4/3	0/2/2		1"/-/-	0/3/3
	sinus	Minimai	0/2/2			0/2/2	0/2/1		4+//	0/2/1
		Moderate				0/2/1	0/0/1		T"/-/-	0/4/0
		Milel								0/1/2
LN, mediastinal ^d	infiltrate, histiocyte	IVIIIO	NA	NA	0/0/1	NA				
LN, mesenteric	Erythrocytosis,	Minimal	0/0/1			0/2/ 0				
	Infiltrate,	Minimal				0/0/4				
	histiocyte					0/0/1				

Treatment-Related Microscopic Findings			No. of animals affected							
		-		M	ales			Fer	nales	
Dose (mg/kg)			0	25	50	90	0	25	50	90
Number of anima	als examined ^{a,b,c}		0/10/ 5	1*/t/ r	0/t/ r	2*/8/ 5	0/10/ 5	1*/t/ r	1*/t/ r	0/10/5
Organ	Finding	Severity								
Lungs ^a	Infiltrate,	Minimal								
	mononuclear,					0/1/ 0				
	perivascular									
	Infiltrate,	Minimal								
	mononuclear,		0/1/ 0			0/2/ 0	0/1/ 1			
	subpleural	-	- / - /-						- / - / /	
	Macrophages,	Iotal	0/1/0			1*/0/ 1	0/0/1		0/0/1	0/0/1
	alveolar	Minimal	0/1/ 0			0/0/1	0/0/1		0/0/4	0/0/1
		Mild				1*/0/ 0			0/0/1	
Nerve, Sciatic	Degeneration, axonal	Moderate				0/1/ 0				
Ovaries ^d	Cyst, Luteal,	Present							1*/0/_	0/2/0
	present			1	NΔ				1 /0/-	0/2/0
	Cyst,	Present		I			0/0/1			0/1/ 0
	Paraovarian			ſ	1	1	0,0,1			0/1/0
Pancreas	Degeneration,	Minimal				0/1/ 0				
	Hyperplasia.	Minimal				0 / 4 / 0				
	acinar	_				0/1/ 0				
	Inflammation,	Total	0/0/1			1*/3/ 0				
	chronic	Minimal	0/0/1			0/2/ 0				
		Mild				0/1/ 0				
		Moderate				1*/0/ 0	-			
Pituitary	Cyst, Rathke's Pouch	Present								0/0/1
Prostate ^d	Hyperplasia	Minimal				0/0/1			NA	
Seminal	Decreased	Mild				0/0/1				
vesicles	secretion					0/0/1		. I		-
Skin	Infiltrate,	Minimal				0/1/ 0				
	mononuclear					0/1/0				
Soft Tissue-	#B	Present								
Ihor	Hibernoma,		NA	NA	NA	0/0/1				
Oninglaged	benign	Total	0/0/4	4*/0/0		0/0/2	-			
Spinal cord	Degeneration,	Minimal	0/0/1	17/0/0		0/0/2				
	anundi	Moderato	0/0/1	1*/∩/ ∩		0/0/2				
Sploop ^{b,C}	Decreased	Total	0/1/0	0/6/0	0/9/1	2*/9/ 2		1*/5/0	1*/6/0	0/0/0
Spieen	lymphocytes	Minimal	0/1/0	0/6/0	0/0/1	2 /0/3 1*/2/2		1*/5/0	0/5/0	0/9/0
	marginal zone	Mild	0/1/0	0/0/0	0/3/1	0/4/1		1/3/0	0/3/ 0 1*/1/ 0	0/6/0
		Moderate			0/4/0	0/4/1 1*/2/0			1 / 1/0	0/0/0
	Infiltrate	Mild			0/1/0	1/2/0				
	histiocyte	Wind			0/0/1					
Testes	Degeneration,	Minimal								
	seminiferous					0/1/ 0		1	NA	
	tubules,									
Thurses	Dilateral	Total	0/7/9	1*/5/0	0/5/4	1*/5/0	0/4/4	1*/0/0	1*/0/4	0/4/4
rnymus	петноппаде	Minimal	0/7/3	1 /5/U	0/5/1	1*/0/ 2	0/4/1	0/2/0	0/2/1	0/4/4
		Mild	U/// 3	U/5/U	0/0/0	0/2/2	0/4/1	U/3/U	U/Z/1 1*/0/0	0/3/4
		IVIIIU		1/U/ U	0/0/1	0/2/0		1/0/ U	I /U/ U	U/ I/ U

Treatment-Related Microscopic Findings			No. of animals affected								
			Males					Females			
Dose (mg/kg)			0	25	50	90	0	25	50	90	
Number of animals examined ^{a,b,c}			0/10/ 5	1*/t/ r	0/t/ r	2*/8/ 5	0/10/ 5	1*/t/ r	1*/t/ r	0/10/ 5	
Organ	Finding	Severity									
Thyroid glands ^a	Cyst, Ultimobranchi al	Present	0/3/ 2			0/3/ 4	0/2/ 2			0/6/ 3	
	Hyperplasia, follicular cell	Minimal	0/0/ 0			0/0/1					
Uterus ^ª	#B Polyp, endometrial stromal	Present							0/0/1		

Number of animals examined and affected: Early deaths*/ Terminal necropsy / **Recovery necropsy** (minus symbol (-) means animals were not evaluated). The number of animals examined for terminal (t) and recovery (r) varied for the 25 and 50 mg/kg/day groups.

empty cell = no change or not evaluated; NA = not present in animal

- a Microscopic examination was performed for all animals found dead and from all animals in the vehicle control and 90 mg/kg/day groups at the scheduled necropsies.
- b The gross lesions, epididymides, testes, thymus, Peyer's patches, and spleen (primary necropsy only) were examined from all animals in the 25 and 50 mg/kg/day groups at the primary and recovery necropsies.
- c The spleen was not examined for 25 and 50 mg/kg/day recovery females.
- d Select animals from the 25 and/or 50 mg/kg/day dosing groups were examined.

Other noteworthy findings:

- In one moribund male at 90 mg/kg/day and two moribund females, one each at 25 and 50 mg/kg/day, the ileum and jejunum were too autolyzed to examine.
- In the 25 mg/kg/day moribund female, the Peyer's patches were too autolyzed to examine.
- One moribund male at 25 mg/kg/day had lymphoma in the liver, axillary lymph nodes, bone marrow (femur and sternum), pancreas, spleen, and systemic tumors.
- The following microscopic findings were present in moribund animals, but were also present at similar incidence and severity in GS-1101 treated animals as in concurrent controls and are likely not treatment related:
 - Pigment, porphyrin (Harderian glands)
 - Infiltrates, neutrophil, pelvis (kidneys)
 - > Nephropathy, chronic progressive (kidneys)
 - Mineralization (kidneys)
 - Decreased lymphocytes (cortex of thymus and Peyer's patches)
 - Alteration Harderian gland (Lac. Gland Exor)
 - Pigment, brown (pancreas)
 - > Dilatation, lumen (urinary bladder and cervix and uterus (females only))
- Skeletal muscle degeneration and hemorrhage of the lungs, mesenteric lymph nodes, and Harderian glands are noteworthy microscopic findings, but were observed in control and GS-1101 treated animals at similar incidence and severity.

Special Evaluation

None

Toxicokinetics

<u>GS-1101</u>

- Exposures (AUC and C_{max}) to GS-1101 increased with increasing dose. The increases in C_{max} were approximately proportional between the 25 and 90 mg/kg/day dose levels while the increases in AUC_{0-t} were generally greater than dose-proportional between the 25 and 90 mg/kg/day dose levels.
- There was accumulation of GS-1101 as values for C_{max} and AUC_{0-t} were higher on study day 181 than on study day 0, with greater than 2-fold differences observed in AUC_{0-t} values.
- GS-1101 was readily absorbed, with T_{max} values ranging from 0.5 to 1.0 hours on study day 0 and from 0.5 to 4.0 hours on study day 181.
- T_{1/2} values for males and females ranged from 1.2 to 3.4 hours on study day 0 and from 2.9 to 3.8 hours on study day 181.
- Females had higher C_{max} and AUC_{0-t} values than males, with greater than 2-fold differences generally observed on study day 0.

Table 42: Toxicokinetic Parameters for GS-1101 in Rat Plasma: Days 0 and 181

Interval	Dose Group	Dose Level (mg/kg/day)	Sex	C _{max} (ng/mL)	T _{max} (hr)	AUC _{0-t} (ng·hr/mL)	C _{last} (ng/mL)	T _{last} (hr)	t _{1/2} (hr)	AR
Day 0	2A	25	Μ	1297	0.500	3394	21.7	8.00	1.32	NA
			F	3113	0.500	7855	101	8.00	1.61	NA
			MF	2205	0.500	5480	61.5	8.00	1.52	NA
	3A	50	М	2453	1.00	7090	63.4	8.00	1.24	NA
			F	5960	1.00	18738	27.4	24.0	3.37	NA
			MF	4207	1.00	13277	27.4	24.0	3.65	NA
	4A	90	М	6510	1.00	17824	285	8.00	1.80	NA
			F	10987	1.00	55727	19.0	24.0	2.55	NA
			MF	8748	1.00	37990	19.0	24.0	2.73	NA
Day 181	2A	25	М	2210	1.00	10635	10.9	24.0	3.08	3.13
1			F	3930	0.500	23018	54.3	24.0	3.80	2.93
			MF	2992	1.00	16861	37.0	24.0	3.75	3.08
	3A	50	м	4837	1.00	43738	21.3	24.0	2.91	6.17
			F	8570	1 00	54954	35.9	24.0	2.87	2.93
			MF	6703	1.00	49346	28.6	24.0	2.88	3.72
	4A	90	М	8217	4.00	104217	34.6	24.0	NC	5.85
			F	15500	1 00	181567	262	24.0	3 35	3.26
			MF	10950	4.00	143074	171	24.0	NC	3.77

(Excerpted from the Applicant's submission)

NA Not applicable

NC Not calculated due to the lack of a distinct elimination phase. Note: Combined data is based on the analysis of the combined concentration data of both sexes

AR = accumulation ratio

<u>GS-563117</u>

• Exposures (AUC and C_{max}) to GS-563117 increased with increasing dose in a dose-proportional manner. Gender differences were less than 2-fold.

- There was accumulation of GS-563117 after multiple dosing of the parent compound, although accumulation ratios were lower than for GS-1101.
- GS-563117 readily appeared in plasma, with T_{max} values of 1 hours on Day 0 and ranging from 1 to 8 hours on Day 181.
- The AUC_{0-t} metabolite to parent (M/P) ratios ranged from 0.00559 to 0.0328, indicating that GS-1101 is not extensively converted to GS-563117 in rats following oral gavage administration of GS-1101.

Table 43: Toxicokinetic Parameters for GS-563117 in Rat Plasma: Days 0 and 181

	(Excerpt	ed	from	the	Applica	ant's	sub	missi	on)	
		GS-1101									
	Dose	Dose Level		Cmax	T _{max}	AUC _{0-t}	Clast	Tlast	t _{1/2}		
Interval	Group	(mg/kg/day)	Sex	(ng/mL)	(hr)	(ng·hr/mL)	(ng/mL)	(hr)	(hr)	AR	M/P Ratio
D 0	24	25		22.4	1.00	02.2	11.0	4.00	NC	NIA	0.0242
Day 0	ZA	23	N	33.4	1.00	82.2	11.9	4.00	NC	INA	0.0242
			F	47.4	1.00	92.4	11.2	4.00	NC	NA	0.0118
			MF	40.4	1.00	87.4	11.6	4.00	NC	NA	0.0159
	3A	50	М	97.1	1.00	218	24.7	4.00	NC	NA	0.0307
			F	92.9	1.00	218	27.8	4.00	NC	NA	0.0117
			MF	95.0	1.00	218	26.2	4.00	NC	NA	0.0164
	4A	90	м	161	1 00	585	9 10	8 00	1.68	NA	0.0328
	4.1	20	F	152	1 00	378	96.1	4 00	NC	NA	0.00678
			MF	157	1.00	589	10.3	8.00	1.79	NA	0.0155
Day 181	2A	25	Μ	52.5	1.00	133	28.5	4.00	NC	1.62	0.0125
			F	69.3	1.00	280	14.3	8.00	3.44	3.03	0.0122
			MF	60.9	1.00	247	13.1	8.00	3.52	2.83	0.0146
	3A	50	м	86.2	1 00	454	59.6	8 00	NC	2.09	0 0104
			F	170	1.00	562	20.4	8.00	3.85	2.57	0.0102
			ME	132	1.00	502	44.5	8.00	7.25	2.37	0.0102
			IVII	152	1.00	508	44.5	0.00	1.20	2.55	0.0105
	4A	90	М	155	8.00	980	155	8.00	NC	1.67	0.00940
			F	167	1.00	1015	157	8.00	NC	2.69	0.00559
			MF	156	8.00	997	156	8.00	NC	1.69	0.00697

NA Not applicable

NC Not calculated due to the lack of a distinct elimination phase.

Note: Combined data is based on the analysis of the combined concentration data of both sexes.

Dosing Solution Analysis

Test-article formulations were prepared weekly, divided into aliquots for daily dispensation, and stored refrigerated (2°C to 8°C). Samples for homogeneity determination were collected from the top and bottom strata. Samples for concentration analysis were collected from the middle stratum.

The analyzed dosing formulations were found to contain 97.3% to 103% of the test article which was within the ^{(b)(4)} SOP range of target concentrations for suspensions (85% to 115%), as well as met the ^{(b)(4)} SOP requirement for homogeneity and, after 8 days of refrigerated storage, resuspension homogeneity. The test article was not detected in the vehicle formulation that was administered to the vehicle control group (Group 1).

Study title: A 9-Month Oral (Capsule) Toxicity Study of GS-1101 with a 12-Week Recovery Period in Beagle Dogs

Study no.: Study report location:	TX-312-2006 4.2.3.2.
Conducting laboratory and location:	(b) (4)
Date of study initiation:	
GLP compliance:	Yes
QA statement:	Yes
Drug, lot #, and % purity:	GS-1101, Lot # 1101-AC-1P-DKS-11- 1204-23, Purity 99.8%

Key Study Findings

- Two unscheduled deaths related to GS-1101. The cause of death for these 2 animals was systemic inflammation in multiple organs and decreased lymphocytes in peripheral lymphoid tissues.
- Target organs of toxicity were the lymphoid system (decreased lymphocytes and inflammation) and gastro-intestinal tract (red areas, inflammatory changes, and crypt dilatation).
- Exposure to GS-1101 generally increased with the increase in dosage level from 2.5 to 7.5 mg/kg/day.

Methods

st article
rol
dose
l kg to 8.2
Applicant se study :002)
roi Jose I kg to Applica se stud 2002)

Observations and Results

Mortality:	Twice daily
Clinical signs:	Twice daily
Body weights:	Weekly
Food consumption:	Daily

FCG.	Study week 2 and study week 38
Ophthelmeseenu	Study wook 2 and study wook 20
Ophthalmoscopy:	Study week 1 and study week 38
Hematology:	Day -8 (study week -2) and 14 (week -2') on the
	report tables), study weeks 13, 38, and 51
Clinical chemistry:	Day -8 (study week -2) and 14 (week -2') on the report
	tables), study weeks 13, 38, and 51
Coagulation:	Day -8 (study week -2) and 14 (week -2') on the report
	tables), study weeks 13, 38, and 51
Urinalysis:	Day -8 (study week -2) and 14 (week -2') on the report
	tables), study weeks 13, 38, and 51
Gross pathology:	At necropsy
Organ weights:	At necropsy
Histopathology:	At necropsy
Toxicokinetics:	On study days 91, 182, and 272, and at 1, 2, 4, 8, 16, and 24 hours after dose administration on study days 0 and 272.

Mortality

Table 44: Cause of Death (9-Month Dog Study)

GS-1101 (mg/kg)	Animal #	Sex	Day	Potential cause of death
2.5	1376	F	231 (week 33)	GS-1101-related - systemic inflammation
7.5	1364	М	145 (week 20)	GS-1101-related - systemic inflammation

Table 45: Toxicities Observed in Dead Animals (9-Month Dog Study)

GS-1101 (mg/kg)	Toxicities	
2.5 Animal	Clinical	Injected sclera, reddened ears, reddened gums, soft feces, emesis, hunched posture, and intermittent tremors.
# 1376	Gross necropsy	Dilated lateral ventricles in the brain.
	Histopathology	Decreased lymphocytes in the spleen, thymus, mandibular lymph nodes, and Peyer's patches; moderate perivascular mixed cell infiltrate and multifocal microabscesses in the brain; mild perivascular mixed cell infiltrate in the spinal cord meninges; and mild granulocyte infiltrate in the rectum
7.5 Animal # 1364	Clinical	Clear discharge and injected sclera, excessive salivation, soft mucoid feces, thin body condition, decreased activity, impaired equilibrium, and vocalization upon handling
	Gross necropsy	1 nodule on the palate and dark red areas in the colon

Histopathology	decreased lymphocytes in the spleen, thymus, lymph nodes (mandibular, mesenteric, and axillary), and Peyer's patches; hypercellular bone marrow; vascular inflammation in multiple tissues including the stomach, colon, cecum, heart, kidneys, liver, and skeletal muscle; granulocyte infiltrates in the duodenum, jejunum, ileum, colon, cecum, and rectum; neutrophilic inflammation in the heart and lungs; and moderate testicular seminiferous tubule
	degeneration.

Clinical Signs

Clear discharge and injected sclera of the eyes at 2.5, 5 and 7.5 mg/kg in males and females and reddened facial area at 7.5 mg/g in both males and females. These clinical findings generally resolved during the recovery period.

Body Weights

- At the end of 38 weeks mean body weights were 11% and 9% lower than the vehicle control group in the 7.5 mg/kg/day group males and females, respectively.
- At the end of dosing, the mean body weights in 5 mg/kg/day group males and females were 8.5% and 6.7%, respectively, lower than the vehicle control group.

Figure 23: Changes in Body Weight Gain in Male Dogs Administered GS-1101 by Oral Gavage (9-Month Study)

(Excerpted from the Applicant's submission)

(Excerpted from the Applicant's submission)

Table 46: Changes in Body Weight Gain in Male Dogs During Recovery (9-Month Study)

(Excerpted from the Applicant's submission)

Table 47: Changes in Body Weight Gain in Female Dogs During Recovery (9-Month Study)

(Excerpted from the Applicant's submission)

Food Consumption

Unremarkable

Ophthalmoscopy

Unremarkable

ECG

Unremarkable

Hematology

Potentially GS-1101-related hematology alterations included reversible,

- Lower absolute basophil counts in the 2.5, 5, and 7.5 mg/kg/day group males and females at study weeks 13 and 38.
- Lower absolute large unstained cell (LUC) counts in the 5 and 7.5 mg/kg/day group males at study week 38, 2.5, 5, and 7.5 females at study weeks 13 and 38.

		Mean			P	ercenta	ge devia	ation fro	m Cont	rol - Ma	les	
		Contro	bl	2	2.5 mg/k	g		5 mg/kg	l	7	7.5 mg/k	g
Index		0 mg/k	g									
		Week			Week			Week			Week	
	13	38	51	13	38	51	13	38	51	13	38	51
			Rec			Rec			Rec			Rec
Basophils	0.09	0.07	0.05	-44.4	-57.1	40.0	-66.7	-71.4	0.0	-77.8	-71.4	-20.0
Absolute												
LUC%	0.6	0.4	0.6	-33.3	-25.0	16.7	-50.0	-75.0	0.0	-33.3	-50.0	-33.3
LUC	0.06	0.04	0.06	-33.3	-25.0	33.3	-50.0	-75.0	-16.7	-16.7	-75.0	-50.0
Absolute												

Table 48: Summary of Hematology Findings in Male Dogs in the 9-Month Study

Table 49: Summary of Hematology Findings in Female Dogs in the 9-Month Study

		Mean			Pei	rcentage	e deviat	ion fron	n Contro	ol - Fema	ales			
Index		Contro	a	2.5 mg/kg				5 mg/kg	I	7	7.5 mg/kg			
in dox		Week	<u>.</u>	Week 13 38 51				Week		Week				
	13	38	51	13	38	51	13	38	51	13	38	51		
			Rec.			Rec.			Rec.			Rec.		
Neutrophils	5.39	4.70	5.11	-3.2	5.5	1.2	12.4	13.8	-26.8	62.5	52.8	13.9		
Absolute														
Basophils	1.1	1.1	0.6	-54.5	-63.6	-50.0	-72.7	-72.7	16.7	-63.6	-81.8	0.0		
Basophils	0.10	0.09	0.04	-60.0	-55.6	-25.0	-80.0	-77.8	-25.0	-60.0	-77.8	50.0		
Absolute														
LUC%	0.7	0.7	0.7	-2.9	-42.9	-14.3	-57.1	-57.1	14.3	-57.1	-71.4	-14.3		
LUC Absolute	0.07	0.06	0.06	-57.1	-50.0	-16.7	-57.1	-66.7	-16.7	-42.9	-83.3	-16.7		

Clinical Chemistry

Table 50: Summary of Clinical Chemistry Parameters in Male Dogs in the 9-MonthStudy

		Mean			P	ercenta	ge devia	ation fro	m Cont	rol - Ma	es	
		Contro	ol	2	2.5 mg/k	g		5 mg/kg	I	7	7.5 mg/k	g
Index		0 mg/k	g									
		Week	Z		Week			Week			Week	
	13	38	51	13	38	51	13	38	51	13	38	51
			Rec.			Rec.			Rec.			Rec.
Albumin (g/dL)	3.4	3.7	3.9	2.9	0.0	-3	-3	-8	-18	-8	0.0	0.0
Total Protein	5.6	5.9	6.4	-4	-5	-8	-7	-10	-20	-7	-5	-5
(g/dL)												
ALP (U/L)	60.	39.	38.	7	23	16	5	15	0.0	55	21	34
Triglyceride(m	28.	34.	44.	7	3	-41	0.0	0.0	-34	29	21	-16
g/dL)												
SDH (U/L)	2.	3.	4.	0	33	-25	50	100	0	50	100	25

SDH= Sorbitol Dehydrogenase

Table 51: Summary of Clinical Chemistry Parameters in Female Dogs in the 9-Month Study

		Mean			Pe	rcentage	e deviat	ion fron	n Contro	ol - Fem	ales	
Index		Contro 0 mg/k	ol (g	2	2.5 mg/k	g		5 mg/kg	I		7.5 mg/k	g
		Week	Υ.		Week			Week			Week	
	13	38	51	13	38	51	13	38	51	13	38	51
			Rec.			Rec.			Rec.			Rec.
Albumin (g/dL)	3.5	3.7	3.5	0.0	0.0	3	0.0	-3	6	3	0.0	6
Total Protein (g/dL)	5.7	6.0	5.8	-5	-7	-3	-7	-8	-3	-5	-8	-2
Globulin (g/dL)	2.2	2.4	2.3	-14	-25	-13	-14	-21	-13	-14	-25	-13
A/G Ratio	1.63	1.58	1.53	16	32	20	17	27	21	20	38	20
GGT (U/L)	1.4	1.4	1.9	7	-14	11	-50	-7	79	-29	129	63

Urinalysis

Unremarkable

Gross Pathology

Table 52: Summary of Macrosopic Findings in the 9-Month Dog Study

Treatment-Related	d Macroscopic Findings			No. of	anima	als affe	cted		
			Mal	es			Fem	ales	
Dose (mg/kg)		0	2.5	5	7.5	0	2.5	5	7.5
Number of animal	s examined	4/2	4/2	4/2	*3/2	4/2	*3/2	4/2	4/2
Colon	-area dark red	2/-	1/-	-/-	-/1	1/-	-/-	-/-	-/1
lleum	-area dark red	-/1	-/-	-/-	-/-	-/-	-/1	-/-	-/1
	-ileo-colico junction, reddened	-/-	-/-	-/-	-/-	-/-	-/1	-/-	-/-
Liver	-area yellow	-/-	-/-	-/-	-/-	-/-	-/-	-/1	-/-
Mammary gland	-swollen	-/-	-/-	-/-	-/-	1/-	1/-	-/-	-/1
Skin	-Mass	-/-	-/-	-/-	1/-	1/-	-/-	-/-	-/-
Spleen	-areas, white	-/-	-/-	1/-	-/-	-/-	-/-	1/-	-/-
Thymus	-small	-/-	-/-	1/-	-/-	-/-	-/-	-/-	-/-
Cervix	-swollen	NA	NA	NA	NA	-/-	-/-	-/-	1/-
Ovaries	-swollen	NA	NA	NA	NA	1/-	-/-	-/-	1/-
	-cyst	NA	NA	NA	NA	-/-	1/-	-/-	1/-
Pituitary	-cyst	-/-	-/-	-/-	-/-	-/-	1/-	1/-	-/-
Vagina	-swollen	NA	NA	NA	NA	-/-	-/-	-/-	1/-
Uterus	-swollen	NA	NA	NA	NA	2/-	-/-	-/-	1/-
	-nodule(s)	NA	NA	NA	NA	-/-	-/1	-/-	-/-

Number of animals examined and affected: Early deaths*/ Terminal necropsy / Recovery necropsy - = no change; NA = not present in animal

Organ Weights

Unremarkable

Histopathology

Adequate Battery: Yes

Peer Review: Yes

Special Evaluation: Lymphoid System and Intestinal Tract

GS-1101-related microscopic finding:

Lymphoid system: Lymphoid system changes included decreased lymphocytes, primarily involving typical B-cell regions, with lesser effects in typical T-cell regions, in the spleen, lymph nodes (mandibular, mesenteric, and axillary), and Peyer's patches in the 2.5, 5, and/or 7.5 mg/kg/day group males and females at the primary necropsy.

Intestinal tract: Inflammatory changes in the intestinal tract including increased amounts of granulocyte infiltrates in the jejunum, ileum, colon, and/or rectum as compared to the vehicle control group, and crypt dilatation in the colon, cecum, and/or rectum in 5, and/or 7.5 mg/kg/day group males and females.

Recovery: Minimal to mild decreased lymphocytes in the spleen and mesenteric lymph node of 1 of 2 males in the 7.5 mg/kg/day group and increased severity of granulocyte infiltrates in the ileum in the 7.5 mg/kg/day group males as compared to the vehicle control, 2.5, or 5 mg/kg/day groups.

Histological Findings

(Excerpte	ed fron	n the A	pplica	nt's sub	omissi	ion)		
	ż.	M	ales	1		Fen	ales	
Dosage (mg/kg/day):	0	2.5	5	7.5	0	2.5	5	7.5
Spleen ³	4	4	4	3	4	2	4	4
Decreased Lymphocytes	-	7	7	3	-	2	7	7
(Incidence as a %)	(0)	(100)	(100)	(100)	(0)	(100)	(100)	(100
(Incluence as a 70)	(0)	(100)	(100)	(100)	(0)	(100)	(100)	(100)
Mild	20 - 2 2002	0	0	0		1	1	1
Madaata		1	4	2	-	2	1	0
Moderate	100	0	2	0	-	0	3	3
Severe	-	0	0	1	-	0	0	0
Lymph Node, Mandibular ^a Decreased	4	4	4	3	4	3	4	4
Lymphocytes Cortex	0	4	4	3	0	2	4	4
(Incidence as a %)	(0)	(100)	(100)	(100)	(0)	(67)	(100)	(100
Minimal	(9)	2	0	1	(9)	1	1	1
Mild	820	2	1	1	22	0	2	2
Moderate		0	3	1		1	1	1
Moderate	10	0	3	< T	5	1	1	1
Lymph Node, Mesenteric ^a Decreased	4	4	4	3	4	3	4	4
Lymphocytes, Cortex	0	1	4	3	0	1	4	4
(Incidence as a %)	(0)	(25)	(100)	(100)	(0)	(33)	(100)	(100
Minimal	-	1	1	1	-	1	2	1
Mild		0	2	1	-	0	1	0
Moderate	-	0	1	1	-	0	1	3
Lymph Node, Axillary ^a	4	4	4	3	4	3	4	4
Decreased								
Lymphocytes, Cortex	0	2	2	3	0	2	3	4
(Incidence as a %)	(0)	(50)	(50)	(100)	(0)	(67)	(75)	(100)
Minimal	-	1	0	0	≂:	1	0	0
Mild	5 7 5	1	0	0		0	1	0
Moderate	-	0	2	2	-	1	2	3
Severe		0	0	1	7	0	0	1
Peyer's Patches a	4	4	4	3	4	3	4	4
Decreased Lymphocytes	0	1	3	2	0	0	2	3
(Incidence as a %)	(0)	(25)	(75)	(67)	(0)	(0)	(50)	(75)
Minimal		1	3	2	-	-	2	0
Mild	-	0	0	0	2	22	0	2
Moderate		0	0	0			0	1

Table 54: Incidence of Selected Lymphoid System Histopathological Findings in
the Beagle Dog,Study Week 51 Recovery Necropsy

		Ma	ales	Females				
Dosage (mg/kg/day):	0	2.5	5	7.5	0	2.5	5	7.5
Spleen ^a	2	2	2	2	2	2	2	2
Decreased Lymphocytes	0	0	0	1	0	0	0	0
(Incidence as a %)	(0)	(0)	(0)	(50)	(0)	(0)	(0)	(0)
Minimal	-	-	-	1	-	-	-	-
Lymph Node, Mesenteric ^a	2	2	2	2	2	2	2	2
Decreased								
Lymphocytes, Cortex	0	0	0	1	0	0	0	0
(Incidence as a %)	(0)	(0)	(0)	(50)	(0)	(0)	(0)	(0)
Mild	-	-	-	1	-	-	-	-

APPEARS THIS WAY ON ORIGINAL

Table 55: Incidence of Selected Intestinal Tract Histopathological Findings inBeagle Dogs, Study Week 39 Primary Necropsy

		Ma	ales		Females					
Dosage (mg/kg/day):	0	2.5	5	7.5	0	2.5	5	7.5		
Jejunum ^a	4	4	4	3	4	3	4	4		
Infiltrate Granulocyte	4	4	4	3	4	3	4	4		
(Incidence as a %)	(100)	(100)	(100)	(100)	(100)	(100)	(100)	(100)		
Minimal	4	4	3	3	3	3	4	4		
Mild	0	0	1	0	1	0	0	0		
Ileum ^a	4	4	4	3	4	3	4	4		
Infiltrate, Granulocyte	4	4	4	3	4	3	4	4		
(Incidence as a %)	(100)	(100)	(100)	(100)	(100)	(100)	(100)	(100)		
Minimal	2	4	1	3	4	2	1	2		
Mild	2	0	3	0	0	1	3	2		
Cecum ^a	4	4	4	3	4	3	4	4		
Dilatation, Crypts	0	0	0	0	0	0	2	0		
(Incidence as a %)	(0)	(0)	(0)	(0)	(0)	(0)	(50)	(0)		
Minimal	2 <u>-</u>	12	-	-2		2	2			
Infiltrate, Granulocyte	1	2	4	3	2	2	4	2		
(Incidence as a %)	(25)	(50)	(100)	(100)	(50)	(67)	(100)	(50)		
Minimal	1	2	1	3	2	2	4	2		
Mild	0	0	3	0	0	0	0	0		
Colon ^a	4	4	4	3	4	3	4	4		
Dilatation, Crypts	0	0	2	0	0	0	0	0		
(Incidence as a %)	(0)	(0)	(50)	(0)	(0)	(0)	(0)	(0)		
Minimal	-2	-	2			121	- <u>-</u>	2		
Infiltrate, Granulocyte	2	2	3	0	0	1	3	3		
(Incidence as a %)	(50)	(50)	(75)	(0)	(0)	(33)	(75)	(75)		
Minimal	2	2	2	~	Ξ.	1	2	3		
Mild	0	0	1	2	2	0	1	0		
Rectum ^a	4	4	4	3	4	3	4	4		
Dilatation, Crypts	2	2	0	2	2	0	3	4		
(Incidence as a %)	(50)	(50)	(0)	(67)	(50)	(0)	(75)	(100)		
Minimal	2	2	- <u>-</u>	2	2	2	3	1		
Mild	0	0	÷	0	0	÷	0	3		

(Excerpted from the Applicant's submission)

^a = Number of tissues examined from each group.
Table 56: Incidence of Selected Intestinal Tract Histopathological Findings inBeagle Dogs, Study Week 51 Recovery Necropsy

		Ma	ales			Fen	nales	
Dosage (mg/kg/day):	0	2.5	5	7.5	0	2.5	5	7.5
Jejunum ^a	2	2	2	2	2	2	2	2
Dilatation, Crypts	0	0	1	1	0	0	1	0
(Incidence as a %)	(0)	(0)	(50)	(50)	(0)	(0)	(50)	(0)
Minimal	-	-	1	1	-	-	1	-
Infiltrate, Granulocyte	2	2	2	2	2	2	2	2
(Incidence as a %)	(100)	(100)	(100)	(100)	(100)	(100)	(100)	(100)
Minimal	2	2	2	2	2	1	2	1
Mild	0	0	0	0	0	1	0	1
leum ^a	2	2	2	2	2	2	2	2
Infiltrate, Granulocyte	2	2	2	2	2	2	2	2
(Incidence as a %)	(100)	(100)	(100)	(100)	(100)	(100)	(100)	(100)
Minimal	2	2	2	0	2	1	2	1
Mild	0	0	0	2	0	1	0	1

Table 57: Incidence of Selected Intestinal Tract Histopathological Findings inBeagle Dogs, Study Week 51 Recovery Necropsy (continued)

		Ma	ales			Fen	nales	
Dosage (mg/kg/day):	. 0	2.5	5	7.5	0	2.5	5	7.5
Cecum ^a	2	2	2	2	2	2	2	2
Infiltrate, Granulocyte	0	0	0	1	1	2	1	1
(Incidence as a %)	(0)	(0)	(0)	(50)	(50)	(100)	(50)	(50)
Minimal	-	-	-	1	0	2	1	1
Moderate	-	-	-	0	1	0	0	0
Colon ^a	2	2	2	2	2	2	2	2
Dilatation, Crypts	0	0	0	0	1	0	0	0
(Incidence as a %)	(0)	(0)	(0)	(0)	(50)	(0)	(0)	(0)
Minimal	-	-	-	-	1	-	-	-
Infiltrate, Granulocyte	0	0	0	0	1	0	0	0
(Incidence as a %)	(0)	(0)	(0)	(0)	(50)	(0)	(0)	(0)
Mild	-	-	-	-	1	-	-	-
Rectum ^a	2	2	2	2	2	2	2	2
Dilatation, Crypts	1	2	1	0	2	0	0	0
(Incidence as a %)	(50)	(100)	(50)	(0)	(100)	(0)	(0)	(0)
Minimal	1	2	1	-	2	-	-	-
Infiltrate, Granulocyte	1	1	1	1	2	1	1	2
(Incidence as a %)	(50)	(50)	(50)	(50)	(100)	(50)	(50)	(100)
Minimal	1	1	1	1	2	1	1	2
Intestinal Tract, Overall (Jejunum - Rectum) ª	2	2	2	2	2	2	2	2
Dilatation, Crypts	1	2	1	1	2	0	1	0
(Incidence as a %)	(50)	(100)	(50)	(50)	(100)	(0)	(50)	(0)
Minimal	1	2	1	1	2	-	1	-
Infiltrate, Granulocyte	2	2	2	2	2	2	2	2
(Incidence as a %)	(100)	(100)	(100)	(100)	(100)	(100)	(100)	(100)
Minimal	2	2	2	0	1	1	2	0
Mild	0	0	0	2	0	1	0	2
Moderate	0	0	0	0	1	0	0	0

(Excerpted from the Applicant's submission)

Toxicokinetics

- Exposure to GS-1101 generally increased with the increase in dosage level from 2.5 to 7.5 mg/kg/day.
- The increases in mean plasma C_{max} and AUC_{0-t} were roughly proportional between the 2.5 and 7.5 mg/kg/day dosage levels.

- Sex differences were generally less than 2-fold in GS-1101 mean C_{max} and $AUC_{0\text{-t}}$ values.
- In general, both C_{max} and AUC_{0-t} increased on study day 272 compared to that determined on study day 0 among all treatment groups.
- Mean T_{max} values for males and females ranging from 1.5 to 5.7 hours on study day 0 and from 1.6 to 5.7 hours on study day 272.
- Mean $t_{1/2}$ values for males and females ranging from 3 to 5.2 hours on study day 0, and from 3.5 to 7.2 hours on study day 273.

(E	excerpted from	m the Applicant	's submission)
(-	AU	JC _{0-t}	C	max
Dosage	(ng•h	ır/mL)	(ng	/mL)
	Day 0	Day 272	Day 0	Day 272
Males				
2.5 mg/kg/day	3053	3891	745	792
5 mg/kg/day	3579	8550	660	1372
7.5 mg/kg/day	12878	18451	2130	2401
Females				
2.5 mg/kg/day	1630	6292	490	1410
5 mg/kg/day	2707	10677	677	1690
7.5 mg/kg/day	3471	15884	770	2933
Males and Females				
2.5 mg/kg/day	2342	4982	617	1073
5 mg/kg/day	3143	9614	669	1531
7.5 mg/kg/day	8175	17051	1450	2691

Table 39. Summary	Dogs (9-Month Study)	101 03-303117	III Deagle		
(Ex	(Excerpted from the Applicant's submission)					
Dosage	AUC _{0-t} C _{max} (ng•hr/mL) (ng/mL)					
	Day 0	Day 272	Day 0	Day 272		
Males				•		
2.5 mg/kg/day	1145	1103	201	151		
5 mg/kg/day	1511	2002	183	201		
7.5 mg/kg/day	3822	3473	528	292		
Females						
2.5 mg/kg/day	1024	1980	180	268		
5 mg/kg/day	1395	2514	260	281		
7.5 mg/kg/day	2193	4022	324	509		
Males and Females						
2.5 mg/kg/day	1084	1502	191	204		
5 mg/kg/day	1453	2258	222	241		
7.5 mg/kg/day	3008	3772	426	410		

Table 50: Summary of Toxicokinetic Parameters for GS-563117 in Beagle

Dosing Solution Analysis

Analysis of the test article formulations was not conducted for this study as the test article supplied by the Applicant was administered as the drug substance in capsules, without any further modification.

Genetic Toxicology 7

7.1 In Vitro Reverse Mutation Assay in Bacterial Cells (Ames)

Study title: CAL-101 Bacterial Mutation Test

Study no.: Study report location:	961805 4 2 3 3 1	
Conducting laboratory and location:		(b) (4)
Date of study initiation:	4 Oct 2007	
GLP compliance:	Yes	
QA statement:	Yes	
Drug, lot #, and % purity:	CAL-101, 22033-51-31, 99.3%	

Study was reviewed under IND 101254 by Dr. Timothy Kropp. The review was slightly modified in format and content to fit this NDA review.

Key Study Findings

• CAL-101 is negative *In Vitro* Reverse Mutation Assay in Bacterial Cells (Ames)

Methods: Plate incorporation and pre-incubation

Strains:	S. typhimurium strains TA98, TA100,
Concentrations in definitive study:	1.58, 5, 15.58, 50, 158, 500, 1581, 5000 µg/plate
Basis of concentration selection:	No toxicity was noted at any of the concentrations with or without activation up to 5000 µg/plate except for strain TA100 in the pre-incubation assay. No precipitation was noted at any concentration.
Negative control:	DMSO
Formulation/Vehicle:	DMSO
Incubation & sampling time:	48-72 hr incubation @ 37±0.1°C. Pre- incubation was 30 min.
Strain All S9 activated strains TA98 TA100, TA1535 TA1537 WP2 <i>uvr</i> A	Positive control 2-aminoanthracene (2-AA) 2-Nitrofluorene (2-NF) sodium azide (SA) 9-aminoacridine (9-AA) Methyl Meathanesulfonate (MMS)

Study Validity:

The mean revertant colony counts of the vehicle controls for each strain were close to or within the historical control range of the laboratory

Appropriate positive control compounds (with S9 mix) induced increases in revertant colony numbers to at least twice the concurrent vehicle control levels with the appropriate bacterial strain (1.5x for strain TA100), confirming sensitivity of the test system and activity of the S9 mix.

Results

• No substantial increases in the revertant colony counts were obtained with any strain following exposure to the test article in either the plate incorporation or pre-incubation assay in the absence or presence of S9 mix.

The detailed results of the assays are displayed in tables below.

Dose µg/plate	TA98	TA100	TA1535	TA1537	WP2 <i>uvr</i> A
DMSO	28	126	19	13	42
50	29	141	22	15	39
158	30	136	27	11	37
500	26	138	20	12	36
1581	35	143	18	17	43
5000	30	120	16	10	47
Positive	188	604	301	208	154
control					

Table 60: Plate Incorporation Average-Revertant Colonies/Plate in the Absence ofS9 Mix

Table 61: Plate Incorporation Average-Revertant Colonies/Plate in the Presence ofS9 Mix

Dose µg/plate	TA98	TA100	TA1535	TA1537	WP2 <i>uvr</i> A
DMSO	38	138	21	17	58
50	43	179	23	15	61
158	43	162	25	13	51
500	48	175	23	13	61
1581	38	148	19	13	54
5000	38	130	22	12	60
Positive	348	984	335	130	378
control					

Table 62: Pre-incubation Average-Revertant Colonies/Plate in the Absence of S9Mix

Dose µg/plate	TA98	TA100*	TA1535	TA1537	WP2 <i>uvr</i> A
DMSO	33	132	19	11	39
50	28	143	19	12	45
158	29	143	20	15	43
500	26	132	16	12	49
1581	24	125	23	8	48
5000	26	144	22	13	46
Positive	141	508	334	1539	1137
control					

*TA100 was exposed to 5.0, 15.8, 50, 158, 500, and 1581µg/plate. There was an incomplete lawn (reduced background lawn) due to toxicity at 1581 µg/plate.

Dose µg/plate	TA98	TA100*	TA1535	TA1537	WP2 <i>uvr</i> A
DMSO	45	132	22	16	57
50	39	139	20	13	51
158	42	146	20	12	59
500	37	138	27	18	64
1581	32	148	24	17	61
5000	31	145	23	11	63
Positive control	339	955	268	135	395

Table 63: Pre-incubation Average-Revertant Colonies/Plate in the Presence of S9Mix

*TA100 was exposed to 5.0, 15.8, 50, 158, 500, and 1581µg/plate. There was an incomplete lawn (reduced background lawn) due to toxicity at 1581 µg/plate.

7.2 In Vitro Assays in Mammalian Cells

Study title: CAL-101 Test Chromosome Aberration Test

Study no.: Study report location: Conducting laboratory and location:	961806 4 2 3 3 1	(b) (4)
Date of study initiation: GLP compliance: QA statement: Drug, lot #, and % purity:	4 Oct 2007 Yes Yes CAL-101, 22033-51-38, 99.3 %	

Study was reviewed under IND 101254 by Dr. Timothy Kropp. The review was slightly modified in format and content to fit this NDA review.

Key Study Findings

• CAL-101 is negative in the *in vitro* chromosome aberration assay in whole blood human lymphocyte cultures in presence or absence of S9 mix up to at least 50% cytotoxic dose level.

Methods: *In vitro* chromosome aberration test in human peripheral blood lymphocytes

Cell line:	Whole blood human peripheral blood
	lymphocytes
Concentrations in definitive study:	32, 64, 128, 256 µg/mL without activation
	and 64, 128, 256, 500 µg/mL with activation
Basis of concentration selection:	Visible precipitate at ≥500 µg/mL and the
	top dose selected for analysis produced at
	least a 50% decrease in relative mitotic
	index compared to concurrent control. In

	addition, the next two lower concentrations were also subjected to examination to ensure that at least three levels were analyzed in the event of excessive cell toxicity at the selected high level.
Negative control:	DMSÓ
Positive control:	Mitomycin C (MMC) in the absence of S9 mix and cyclophosphamide (CP) in the presence S9 mix.
Formulation/Vehicle:	DMSO
Incubation & sampling time:	4 hours with 17 hour recovery in presence or absence of S9 mix or 21 hours in the absence of S9 mix at approximately 37°C in a humidified atmosphere containing 5% CO ₂ ; All cultures were treated with colcemid 2 hours prior to harvest to arrest the cells in metaphase stage.

Study Validity

The vehicle/negative control results were within the historical control range. The positive control produced a significant increase in the incidence of aberrant cells compared with the concurrent control.

Results

Conc. (µg/mL)	Treatment time	S9 Mix	RMI (%)	% aberrant cells
DMSO	4 hours	-	100	1.0
CAL-101				
64.0	4 hours	-	46	1.5
128	4 hours	-	52	1.0
256	4 hours	-	24	0.0
MMC, 0.20	4 hours	-	63	14.5**
DMSO	4 hours	+	100	2.0
CAL-101				
64.0	4 hours	+	78	1.5
128	4 hours	+	71	0.0
256	4 hours	+	51	2.5
500ppt	4 hours	+	0	NA
CP, 12.0	4 hours	+	75	12.0**
DMSO	21 hours	-	100	2.0
CAL-101				
64.0	21 hours	-	66	0.5

Table 64: Results for CAL-101 in the In Vitro Chromosome Aberration Assay

128	21 hours	-	94	0.5
256	21 hours	-	39	0.5
MMC, 0.20	21 hours	-	41	14.5**

RMI = Relative Mitotic Index (vehicle = 100%); ppt = visible precipitate; NA= not applicable; ** p ≤ 0.001 (highly significant)

7.3 In Vivo Clastogenicity Assay in Rodent (Micronucleus Assay)

Study title: CAL-101 Rat Micronucleus Test

Study no: Study report location: Conducting laboratory and location:	961807 4.2.3.3.2.	(b) (4)
Date of study initiation: GLP compliance: QA statement: Drug, lot #, and % purity:	09 October 2007 Yes Yes CAL-101, 22033-51-38, 99.3%	

Study was reviewed under IND 101254 by Dr. Timothy Kropp. The review was slightly modified in format and content to fit this NDA review.

Key Study Findings

- CAL-101 was positive at high dose, 2000 mg/kg in males, but not in females.
- Statistically significant increase with dose response in the incidence of micronucleated immature erythrocytes was observed, with a group mean value for high dose males (4.8 in the initial reading and 5.6 in the additional reading) slightly outside the laboratory historical negative control range (0.0 to 4.7) at the 24 hour sampling time.
- The relevance of this positive finding of high dose in males only in humans is unknown. However, this is not an issue and acceptable for this patient population.

Methods

Doses in definitive study:	500, 1000 and 2000 mg/kg
Frequency of dosing:	Single
Route of administration:	Oral gavage
Dose volume:	10 mL/kg
Formulation/Vehicle:	0.5% w/v carboxymethylcellulose (high
	viscosity)/0.1% v/v TWEEN 80
Species/Strain:	rat/Sprague-Dawley
Number/Sex/Group:	5/sex/dose/harvest time
Basis of dose selection:	Standard limit dose of 2000 mg/kg was used
Negative control:	0.5% w/v carboxymethylcellulose (high
	viscosity)/0.1% v/v TWEEN 80
Positive control:	Cyclophosphamide (monohydrate) 20 mg/kg
Exposure conditions	24 and 48 h (positive control, 24 h only)
Incubation/sampling:	Doses: 500, 1000, 2000 mg/kg
Analysis	Toxicity was determined out of 1000
Analysis	ervtbrocytes per animal
	Clastogenicity was determined out of 2000
	polychromatic erythrocytes (PCE) per animal
	poryonnoniano eryuniooyies (r or) per animar

Study Validity

The incidence of micronucleated immature erythrocytes for the vehicle control group was within the laboratory historical vehicle/negative control range. In addition, the positive control group showed a statistically significant increase in the incidence of micronucleated immature erythrocytes ($p \le 0.01$).

Interpretation of Results

A positive response is normally indicated by a statistically significant dose-related (where appropriate) increase in the incidence of micronucleated immature erythrocytes ($p \le 0.01$). In this case, individual and/or group mean values should also exceed the laboratory historical control range.

Results

Dose (mg/kg)	Sampling time	% PCE	% MN Males	% MN Females
Vehicle control	24 hours	47.9	0.8	1.4
CAL-101				
500 mg/kg	24 hours	41.0	2.6	1.6
1000 mg/kg	24 hours	47.1	2.6	3.0
2000 mg/kg	24 hours	45.3	4.8	1.8
CP, 20 mg/kg	24 hours	38.7*	39.7**	32.3
Vehicle control	48 hours	54.1	1.8	2.0

Table 65: Group Mean Micronucleus Results for CAL-101

Dose (mg/kg)	Sampling time	% PCE	% MN Males	% MN Females
CAL-101				
2000 mg/kg	48 hours	37.2**	2.6	2.8
	Ado	ditional Slide Read	ling	
Vehicle control	24 hours	40.8	2.6	2.0
CAL-101				
500 mg/kg	24 hours	37.8	2.0	2.2
1000 mg/kg	24 hours	42.9	3.8	4.4
2000 mg/kg	24 hours	41.9	5.6	2.6
CP, 20 mg/kg	24 hours	36.6	38.3**	33.0**

Significantly different from control group (group 1) value: * - $P \le 0.01$ ** - $P \le 0.001$

9 **Reproductive and Developmental Toxicology**

9.1 Fertility and Early Embryonic Development

Study title: Evaluation of Orally (by Gavage) Administered GS-1101 on Fertility in Male Rats

Study no.:	^{(b) (4)} 604019
Study report location:	4.2.3.5.1. TX-312-2014
Conducting laboratory and location:	(b) (4)

Date of study initiation:	June, 07 2012
GLP compliance:	Yes
QA statement:	Yes
Drug, lot #, and % purity:	GS-1101, Lot # 60182-09-004, Purity
	99.8%

Key Study Findings:

- Dose related decreased testicular and epididymal weights (at all doses) and sperm concentration (at mid- and high-dose).
- No test article-related effects on male reproductive function: mating, fertility, or copulation indices, or pre-coital intervals (mean time to mating).
- There were no apparent adverse effects in females that were mated with treated male rats in regard to endpoints measured.

Methods

Doses:	0, 25, 50, or 100 mg/kg/day
Frequency of dosing:	Daily for ~14 weeks
Dose volume:	10 mL/kg/day
Route of administration:	Oral
Formulation/Vehicle:	0.5% high viscosity carboxymethylcellulose and
	0.1% TWEEN 80 in deionized water
Species/Strain:	CrI:CD(SD) rats
Number/Group:	35 males/group for treatment; 25* females/group
	untreated for breeding purposes.

Study design excerpted from Applicant's submission:

*males were paired with an additional female if the initial female did not have evidence of mating, resulting in 28 total females in Groups 1 and 4

Observations and Results

Mortality:	Males:Twice daily
Clinical signs:	Males:Twice daily;
	Untreated Females: on gestation days days 0, 7, and
	15.
Body weights:	Males:Twice weekly;
	Untreated Females: on gestation days 0, 7, and 15
Food consumption:	Males: Twice weekly
Breeding Procedures:	The 25 male rats/group selected for evaluation of

	reproductive toxicity were paired with females on a 1:1 basis within each treatment group following 70 days of dosing for the males.
Spermatogenic	At scheduled necropsy
Endpoint Evaluations	
Gross pathology:	At necropsy
Gestation	Day 15
Laparohysterectomy	
Organ weights:	At necropsy
Histopathology:	At necropsy

Mortality

Treated Males

Two males at 25 mg/kg/day and one male at 50 mg/kg/day were found dead or euthanized *in extremis* during the study. See details in the table below

GS-1101	Animal #	Sex	Day	Potential cause of death
(mg/kg)				
25	58450	М	34	Undetermined
25	58560	М	33	Fractured hard palate
50	58491	М	91	Undetermined

Table 66: Mortalities in Male Rat Fertility Study

Table 67: Toxicities Observed in Male Rats with Mortalities in the Fertility Study

GS-1101	Toxicities observed at necropsy
(mg/kg)	
25	no clinical findings were noted at the daily examinations
Animal	
#58450	
25	41 g body weight loss occurred during study days 28-31 and gasping
Animal	was noted on the day of euthanasia; red material around the eyes
#58560	and nose and malaligned upper incisors on study days 30-33
50	several incidences of red material and lacrimation around
Animal # 58491	the eyes and broken and malaligned upper incisors during study days 30-91 at the daily examinations.

Clinical Signs

Unremarkable

Body Weight

Unremarkable

Food Consumption

Unremarkable

Reproductive Performance

(Excerpt	ted from the	e Applican	it's submis	sion)	
]	Dosage Level	(mg/kg/dav)		(b) (4) HC ^b
Parameter	0 ^a	25	50	100 ^a	Mean (Range)
No. of Gravid Females	25	21	22	25	
No. of Nongravid Females with Evidence of Mating	2	1	0	0	
No. of Nongravid Females without Evidence of Mating	1	2	3	3	
Male Mating Index (%) (n)	100.0 (25)	91.7 (24)	88.0 (25)	100.0 (25)	98.9 (92.0-100.0
Male Fertility Index (%) (n)	92.0 (25)	87.5 (24)	88.0 (25)	100.0 (25)	95.8 (84.0-100.0
Male Copulation Index (%) (n)	92.0 (25)	95.5 (24)	100.0 (25)	100.0 (25)	97.2 (88.0-100.0
Pre-Coital Interval (days) (n)	2.7 (25)	3.5 (22)	2.8 (22)	2.8 (25)	2.8 (1.8-4.4)

Necropsy

Spermatogenic Endpoint Evaluations

Statistically significant decreases in epididymal concentrations and weights as well as testicular weights were observed compared to the concurrent vehicle control.

(Excerpted from the Applicant's submission)							
Dose (mg/kg/day):	0	25	50	100	^{(b) (4)} HC Mean (Range)		
Main Study Period:							
Motility (%)	85	83	83	81	82.6 (78.0-90.0)		
Left epididymis weight (g)	0.71	0.65*	0.64**	0.60**	0.68 (0.59-0.76)		
Left epididymis concentration (millions/g)	686.9	655.6	586.0*	570.9*	554.6 (307.1-786.5)		
Left testis weight (g)	1.84	1.52**	1.54**	1.29**	1.75 (1.66-1.84)		
Left testis concentration (millions/g)	101.9	105.6	98.6	97.5	121.9 (80.5-147.9)		
Recovery Period:							
Motility (%)	87	88	88	92	NA		
Left epididymis weight (g)	0.67	0.66	0.66	0.66	NA		
Left epididymis concentration (millions/g)	544.7	576.9	590.2	611.1	NA		
Left testis weight (g)	1.85	1.81	1.77	1.84	NA		
Left testis concentration (millions/g)	109.5	84.9	99.7	94.1	NA		

Gross pathology

Table 70: Summary of Macroscopic Findings in Male Rat Fertility Study

Dose (mg/kg/day)	0	25	50	100
# Rats examined	25	24	24	25
Left testis - small	0	1	2	3
Right testis - small	0	1	2	3
Kidneys	0	0	0	1
-contents, white precipitate				
Lymph node, mandibular -	0	0	0	1
enlarged				

Organ Weights

Г

Table 71: Selected Mean Organ Weights at the Primary Necropsy (Grams) in the Male Rat Fertility Study								
(Excerpted from the Applicant's submission)								
	Males (mg/kg/day)							
Parameter	0	25	50	100				
Cauda Epididymis, Left	0.3486	0.3151*	0.3056**	0.2946**				
Cauda Epididymis, Right	0.3806	0.3389**	0.3323**	0.3151**				
Epididymis, Left	0.71	0.65*	0.64**	0.60**				
Epididymis, Right	0.75	0.69*	0.70*	0.63**				
Testis, Left	1.84	1.52**	1.54**	1.29**				
Testis, Right	1.83	1.53**	1.53**	1.29**				
* = Significantly different from the ** = Significantly different from the	e control group at 0. ne control group at (05 using Dunnett's 0.01 using Dunnett	s test 's test					

Histopathology

Table 72: Summary of Microscopic Findings in Male Rat Fertility Study

Microscopic Cellular Debris in the Right Epididymis at the Primary Necropsy							
Dose (mg/kg/day)	0	25	50	100			
# Rats examined	25	NA	1	25			
Cellular debris	19	-	0	25*			
Minimal	16	-	-	2			
Mild	3	-	-	23			
* = Statistically significant con	npared to the	control group at	o<0.05 using Fishe	r's Exact test			

Untreated Females

Mortality

All females survived to the scheduled necropsies.

NDA # 205858

Clinical signs

Unremarkable

Gestation body weights

Unremarkable

Female Macroscopic Findings

Unremarkable

Gestation Day 15 Laparohysterectomy

Fertility Parameters (Mating/Fertility Index, Corpora Lutea, Preimplantation Loss, etc.)

Table 73: Summary of Embryonic Data at Scheduled Necropsy in Females Matedwith GS-1101 Treated Males

Dose (mg/kg)	Control	25	50	100
Number of females pregnant (gravid females)	23	21	22	25
Corpora lutea				
Total	411	359	388	420
Average/animal (mean)	17.9	17.1	17.6	17.5
Implantation sites				
Total	379	339	355	407
Average/animal (mean)	16.5	16.1	16.1	16.3
Preimplantation loss (%)	7.3	5.3	8.7	8.0
Postimplantation loss (%)	5.9	7.1	4.8	6.4
Resorptions (early resorptions)	22	24	16	24
Total	22 E 0		10	24
% (resorptions/implantation sites x100%	5.ð	7.1	4.5	5.9
Average/animal (mean)	1.0	1.1	0.7	1.0
Viable fetuses				
Total	357	315	339	383
% (viable/total fetuses x 100%)	94	92.9	95.2	94.1
Average/animal (mean)	15.5	15	15.4	15.3

Study title: Evaluation of Orally (by Gavage) Administered GS-1101 on Fertility and Early Embryonic Development to Implantation in Female Rats

Study no.:	^{(b) (4)} -604028
Study report location:	4.2.3.5.1. TX-312-2016
Conducting laboratory and location:	^{(b) (4)}
Date of study initiation: GLP compliance: QA statement: Drug, lot #, and % purity:	August, 17 2012 Yes Yes GS-1101, Lot # 60182-09-004, Purity 99.8%

Key Study Findings:

- One female dosed at 100 mg/kg had a completely resorbed litter. This female had a normal pattern of estrous cyclicity, and normal mating and reproductive indices, including normal numbers of corpora lutea and implantation sites. This female at 100 mg/kg/day had a lower ovarian weight.
- An increase in post-implantation loss and early embryolethality at 100 mg/kg, resulting in a 20% decrease in the number of live embryos was observed.
- No test article-related effects on female reproductive function: mating, fertility, or copulation indices, or pre-coital intervals (mean time to mating).

Methods

Doses:	0, 25, 50, or 100 mg/kg/day
Frequency of dosing:	Daily for 14 days before cohabitation; treatment continued through gestation day 7
Dose volume:	10 mL/kg/day
Route of administration:	Oral
Formulation/Vehicle:	0.5% high viscosity carboxymethylcellulose and 0.1% TWEEN 80 in deionized water
Species/Strain:	Crl:CD(SD) rats
Number/Group:	25 females/group for treatment; 25 untreated males/group

Study Design (excerpted from Applicant's NDA)

Observations and Results

Mortality:	Females: Twice daily
Clinical signs:	Females: Twice daily
Body weights:	Twice weekly;
	Gestation days 0, 3, 7, 10, 13, and 15
Food consumption:	Twice weekly
	Gestation days 0, 3, 7, 10, 13, and 15
Breeding Procedures:	The animals were cohabited on a 1:1 basis within each
	treatment group following 14 days of treatment for the
	females.
Gross pathology:	At necropsy
Gestation	Day 15
Laparohysterectomy	
Organ weights:	At necropsy

Mortality

All females in the vehicle control, 25, 50, and 100 mg/kg/day groups survived to the scheduled necropsies.

Clinical Signs

Unremarkable

Body Weight

Lower mean body weight gain was noted at 100 mg/kg/day (2 females; nos. 65422, the animal with complete resorption, and 65475 that lost 107 g and 41 g, respectively, of body weight during gestation days 7-15).

Food Consumption

Significantly (p<0.01 or p<0.05) lower mean food consumption was noted in the 100 mg/kg/day group (2 females; 65422, the animal with complete resorption, and 65475).

Reproductive Performance

Table 74: Results of Reproductive Performance in Female Rat Fertility Study

		(b) (4) HC ^a			
Parameter	0	25	50	100	Mean (Range)
No. of Gravid Females	24	24	24	23	
No. of Nongravid Females with					
Evidence of Mating	0	1	0	2	
No. of Nongravid Females					
without Evidence Mating	1	0	1	0	
Female Mating Index (%) (n)	96.0 (24)	100.0 (25)	96.0 (24)	100.0 (25)	99.3 (92.0-100.0)
Female Fertility Index (%) (n)	96.0 (24)	96.0 (24)	96.0 (24)	92.0 (23)	96.6 (84.0-100.0)
Female Conception Index (%) (n)	100.0 (24)	96.0 (24)	100.0 (24)	92.0 (23)	97.3 (85.0-100.0)
Estrous Cycle Length (days) (n)	4.1 (25)	4.1 (25)	4.0 (25)	4.0 (25)	4.2 (3.6-5.1)
Pre-Coital Interval (days) (n)	3.8(24)	2.8 (25)	2.8 (24)	3.1 (24)	2.8 (2.0-3.6)
^a = ^{(b) (4)} historical control data					

(Excerpted from the Applicant's submission)

Reduction in female mating index (%) and female fertility index (%) compared to concurrent control. However, these values were within the laboratory's historical control range.

Gross Pathology

A single female (no. 65404) in the 100 mg/kg/day group did not have evidence of mating during the breeding period but delivered 1 pup 8 days following the final day of cohabitation that was found partially cannibalized; 2 live fetuses and an early resorption were present *in utero*. The breeding period for this animal was complete and separated from male.

Organ Weights

Unremarkable

GESTATION DAY 15 LAPAROHYSTERECTOMY

	Control	25 mg/kg	50 mg/kg	100 mg/kg
Number of females pregnant (gravid	24	24	24	22
females)				
Corpora lutea				
Total	389	383	389	331
Average/animal (mean)	16.2	16.0	16.2	15.0
Implantation sites				
Total	376	361	366	315
Average/animal (mean)	15.7	15	15.3	14.3
Preimplantation loss (%)	3.2	6.2	5.7	5.0
Postimplantation loss (%)	5.7	13.1	5.3	11.6
Resorptions (early resorptions)				
Total	20	41	20	32
% (resorptions/implantation sites x100%	5.3	11.4	5.5	10.2
Average/animal (mean)	1.0	1.1	0.7	1.0
Viable fetuses	250			
Total	300	320	346	283
% (viable/total fetuses x 100%) Average/animal (mean)	94.3	86.9	94.7	88.4

Table 75: Summary of Embryonic Data at Scheduled Necropsy in GS-1101 TreatedFemales Mated with Untreated Males

9.2 Embryonic Fetal Development

Study title: An Oral (Gavage) Embryo/Fetal Development Study of GS-1101 in Rats

Study no.: Study report location:	TX-312-2008 4.2.3.5.2
Conducting laboratory and location:	(b) (4)
Date of study initiation:	January 16, 2012 (first dose)
GLP compliance:	Yes, signed
QA statement:	Yes, signed
Drug, lot #, and % purity:	GS-1101, lot#1101-AC-1P-DKS-11-1204 23, Purity: 99.8% (HPLC)

Key Study Findings

- There was one test-article related maternal death at the high dose of 150 mg/kg/day.
- Clinical signs of urogenital blood loss correlated with complete resorptions, increased post-implantation loss, and decreased mean litter size in the 150 mg/kg/day group.

- At doses ≥ 75 mg/kg/day, the net reduction in the maternal body weight gain was > 10% compared to controls, and the presence of external malformations and skeletal variations in fetuses were observed.
- AUC_{0-t} for GS-1101 increased greater than dose proportionally and there was accumulation with repeated dosing.

Methods

Doses:	0, 25, 75, and 150 mg/kg/day
Frequency of dosing:	Daily on Gestational Days (GD) 6-17
Dose volume:	10 mL/kg
Route of administration:	Oral gavage
Formulation/Vehicle:	0.5% high viscosity carboxymethylcellulose
	(CMC) /0.1% Polysorbate 80, in deionized water
Species/Strain:	Crl:CD(SD) rats
Number/Sex/Group:	25/females/group
Satellite groups:	TK: 4/females/group (control), 8/females/group
	(GS-1101 treated animals)
Study design:	See table below
Deviation from study protocol:	None that affected the integrity or overall interpretation of results

					·/		
Group		Decese Level	Dosage	Number o	f Females		
Group		Dosage Level	volume		h		
Number	Treatment	(mg/kg/day)	(mL/kg)	EFD"	TK		
1	Vehicle Control	0	10	25	4		
2	GS-1101	25	10	25	8		
3	GS-1101	75	10	25	8		
4	GS-1101	150	10	25	8		
^a = Embryo/fetal development phase, ⁽⁰⁾⁽⁴⁾ -604007							
^b = Toxicokinetic phase, $^{(b)(4)}604007T$							

(Study design table excerpted from the Applicant's submission)

Observations and times:

Mortality	Twice daily
Clinical Signs	Daily from GD 0 through 20
Body Weight	GD 0, 6-18 (daily), and 20 (TK animals at GD 0, 6-17 (daily))
Food	GD 0, 6-18 (daily), and 20
Consumption	
Toxicokinetics	Control animals:
	 0 (predose) and 2 hours post-dose
	GS-1101 treated animals:
	• GD 6 and 17 at 0 (predose), 0.5, 2, 4, 8, and 24 hours post-dose
Cesarean	At necropsy*
section data	
Offspring	At necropsy*

* Necropsy performed on GD 20

Observations and Results

Mortality

One female in the 150 mg/kg/day group was found dead on GD 20. Final body weight results indicated a 39 g loss from GD 6. Clinical findings for this female consisted of red material on the urogenital area (beginning on gestation day 12), red vaginal discharge (on gestation day 15), and red material on the ventral abdominal/thoracic areas and cage papers, and body and limbs that were pale and cool on day prior to death.

Clinical Signs

Clinical signs	No. of animals affected (No. of observations)				
Dose (mg/kg/day)	0	25	75	150	
Number of animals examined	15	15	15	15	
Hair loss, right forelimb	5 (24)	4 (30)	5 (24)	7 (67)	
Hair loss, left forelimb	4 (15)	3 (27)	5 (28)	6 (55)	
Hair loss, urogenital area			2 (15)	1 (7)	
Hair loss, right hindlimb			1 (2)	2 (16)	
Hair loss, left hindlimb				3 (16)	
Hair loss, ventral abdominal area			1 (4)	1 (10)	
Hair loss, dorsal abdominal area			1 (2)	1 (1)	
Hair loss, right lateral abdominal area				1 (8)	
Hair loss, left lateral abdominal area				1 (4)	
Scabbing, right forelimb				1 (4)	
Wet red material, urogenital area	1 (1)			3* (10)	
Dried red material found on cage papers				1* (1)	
Dried red material urogenital area			1 (1)	3 (4)	
Wet red material ventral abdominal area				1* (1)	
Wet red material ventral thoracic area				1* (1)	
Body pale				1* (1)	
Body cool				1 *(1)	
Limbs cool				2* (2)	
Limbs pale				2* (2)	

Table 76: Clinical Signs in Dams Treated with GS-1101 in the EmbryofetalDevelopment Study in Rats

* Clinical signs in the female found dead

• Wet red material was observed 1-2 hours post-dose on the urogenital area in 2 females at 150 mg/kg/day and 1 female at 75 mg/kg/day beginning on GD 13. Wet red material on the cage paper (3 females) and red vaginal discharge (5 females) were also observed postdose in the 150 mg/kg/day group and corresponded to the high incidence of post implantation loss in this group.

Body Weight

Statistically significant lower mean body weight gains (including gravid uterine weight) were observed in the 150 mg/kg/day group compared to controls beginning on GD 6. At 75 mg/kg/day, there was a statistically significant decrease (~ 6 to 7%) in mean body weight gain in treated animals compared to controls on GD 18 and 20 and is likely the result of lower mean gravid uterine and fetal body weights.

(Including Gravid Uterine Weights)

There was a dose-dependent decrease in net body weight gain (after deducting the gravid uterine weight) between GD 6 and 20, however the decrease was only statistically significant at the high dose (25% decrease).

Table 77: Changes in Net Body	y Weight Gain	(g) in Female Rats
-------------------------------	---------------	--------------------

Dose GS-1101 (mg/kg/day)	Female Rats								
	Initial BW	Terminal BW	Gravid Uterine Wt.	Net BW	Net BW∆	Net BW %∆			
Control	259	422	88.8	333.1	74.3				
25	259	412	85.8	326.3	67.7	9%↓			
75	257	393**	72.2**	320.9	63.6	14%↓			
150	260	330**	13.9**	315.8	55.9**	25% ↓			

(Se	parating	out	Gravid	Uterine	Weights)
-----	----------	-----	--------	---------	----------

 Δ = percent change compared to the control mean ** = significantly different from control group; p \leq 0.01

Food Consumption

There was a statistically significant reduction in food consumption (g/animal/day) at doses \geq 75 mg/kg/day that correlated in reduced body weight gain.

Toxicokinetics

<u>GS-1101:</u>

- Exposure increased with the increase in dose level from 25 to 150 mg/kg/day.
- The increase in C_{max} was approximately dose proportional between the 25 to 150 mg/kg/day dose levels, while the increase in AUC_{0-t} was greater than dose proportional.
- Accumulation of 20 to 215 % based on AUC was observed after multiple dosing in rats.

Table 78: Toxicokinetic Parameters for GS-1101 in Plasma of Pregnant FemaleRats

(Table excerpted from the Applicant's submission)								
	Dose	Dose Level	C _{max}	T _{max}	AUC _{0-t}	Tlast	Clast	
Interval	Group	(mg/kg/day)	(ng/mL)	(hr)	(ng·hr/mL)	(hr)	(ng/mL)	AR
GD 6	2	25	4,418	0.500	24,391	24.0	8.19	NA
	3	75	11,777	2.00	79,606	24.0	30.6	NA
	4	150	19,275	2.00	251,445	24.0	100	NA
GD 17	2	25	5,335	2.00	29,106	8.00	1,780	1.19
	3	75	18,675	4.00	250,775	24.0	58.3	3.15
	4	150	34,975	4.00	584,117	24.0	10,605	2.32

NA = Not applicable

GS-563117 metabolite:

- Exposure increased with the increase in dose level from 25 to 150 mg/kg/day.
- The increases in C_{max} and AUC_{0-t} were approximately dose proportional between the 25 to 150 mg/kg/day dose levels.
- Accumulation of 263% based on AUC was observed at 150 mg/kg/day after multiple dosing in rats.
- GS-1101 was not readily converted to GS-563117 based on low metabolite to parent compound (M/P) ratios.

Table 79: Toxicokinetic Parameters for GS-536117 in Pregnant Female Rats

Interval	Dose Group	Dose Level (mg/kg/day)	C _{max} (ng/mL)	T _{max} (hr)	AUC _{0-t} (ng·hr/mL)	T _{last} (hr)	C _{last} (ng/mL)	AR	M/P
GD 6	2	25	62.4	0.500	279	8.00	13.5	NA	0.0114
	3	75	147	2.00	827	8.00	29.1	NA	0.0104
	4	150	308	2.00	1,651	8.00	169	NA	0.00657
GD 17	2	25	46.9	2.00	291	8.00	21.9	1.04	0.0100
	3	75	124	4.00	782	8.00	80.1	0.946	0.00312
	4	150	327	8.00	5,996	24.0	163	3.63	0.0103

(Table excerpted from the Applicant's submission)

NA = Not applicable

Group 2 = 25 mg/kg/day; Group 3 = 75 mg/kg/day; Group 4 = 150 mg/kg/day

Dosing Solution Analysis

Test-article formulations were prepared weekly, divided into aliquots for daily dispensation, and stored refrigerated (2°C to 8°C). Samples for homogeneity determination were collected from the top, middle, and bottom strata of the 2.5, 7.5, and 15 mg/mL dosing formulations prepared for dosing on GD 6 and from the top and bottom following 6 days for storage and mixing using a magnetic stirrer for 30 minutes. Samples for concentration determination were taken from the middle.

The analyzed dosing formulations were within ^{(b) (4)} SOP range for suspensions (85% to 115%) and were homogeneous, with the following exception. The analyzed concentration of the 25 January 2012 Group 4 formulation was 75.2% of target. However, this formulation was not used for dose administration and a new formulation was prepared.

Necropsy

The female in the 150 mg/kg/day group that was found dead on GD 20 was noted with dark red matting on the skin (ventral abdominal area, urogenital area, and hind limbs) and dark red contents of the vagina. This female had 16 early resorptions *in utero*.

Nodules on the spleen and small thymus were noted in different female at 150 mg/kg/day.

Cesarean Section Data (Implantation Sites, Pre- and Post-Implantation Loss, etc.)

- Gravid uterine weights were significantly lower at doses ≥ 75 mg/kg/day (19% decrease at 75 mg/kg/day and 84% at 150 mg/kg/day when compared to controls) and it correlated with reduced maternal body weight gain.
- Fourteen of 24 surviving females in the 150 mg/kg/day group had entirely resorbed litters (primarily early resorptions), resulting in a post-implantation loss value of 89.3% per litter compared to 3.7% in concurrent controls and an 89% decrease in mean litter size (mean litter size was 1.6 in GS-1101 treated dams compared to ~15 for concurrent and historical controls).
- Decreased mean fetal weights of 37% at 150 mg/kg/day and 10.5% at 75 mg/kg/day compared to concurrent controls were observed, however the mean fetal weight of 3.4 g at 75 mg/kg/day fell within the historical range.

Dose group		1	2	3	4	Historical Control 1998-2010	
Dose (mg/kg/day)		0 (vehicle)	25	75	150	Mean	Range
Rats tested	N	25	25	25	25	4166	
Pregnant	N	24	25	25	25	4026	
	%	96	100	100	100	96.6	76.0-100

Table 80: Summary of Cesarean Section Data in Dams Treated with GS-1101

Dose group		1	2	3	4	Historio 199	Historical Control 1998-2010	
Dose (mg/kg/day)		0 (vehicle)	25	75	150	Mean	Range	
No. died or	Ν	0	0	0	1	6		
sacrificed moribund	%	0	0	0	4	6		
No. aborted or with	Ν	0	0	0	14			
litter	%	0	0	0	56			
Laparohysterectomy	Ν	24	25	25	24*	4160		
Dams with live fetuses	Ν	24	25	25	24*	4015		
Corpora Lutea	Ν	420	405	397	408			
	MEAN	17.5	16.2	15.9	17.0	17.2	14.5-19.4	
Implantation sites	Ν	379	375	369	368			
Implantation sites	MEAN	15.8	15.0	14.8	15.3	15.9	13.0-17.6	
Pre-implantation loss	% per litter	9.3	7.4	6.4	8.2	7.3	1.5-15.7	
Litter sizes	MEAN	15.2	14.7	13.6	1.6**	15.1	12.2-17.1	
Live fetuses	Ν	365	368	340	39**	60839		
	% per litter	96.3	98.2	92.7	10.7**	95.1	90.1-98.0	
	MEAN	15.2	14.7	13.6	1.6**			
Dead fetuses	Ν	0	0	0	0			
	MEAN	0.0	0.0	0.0	0.0			
No. Resorptions	MEAN	0.6	0.3	1.1	13.3			
Early resorptions	Ν	14	7	28	320			
	% per litter	3.7	1.8	7.1	87.0**	4.8	1.5-9.9	
	MEAN	0.6	0.3	1.1	13.3			
Late resorptions	Ν	0	0	1	9			
	% per litter	0	0	0.3	2.3	0.1	0.0-0.8	
	MEAN	0.0	0.0	0.0	0.4			
Post-implantation loss	% per litter	3.7	1.8	7.3	<mark>89.3**</mark>	4.9	2.0-9.9	
Males	Ν	188	181	160	22			
	% per litter	51.5	49.1	45.3	53.3	49.9	43.1-56.7	

Dose group		1	2	3	4	Historio 199	cal Control 8-2010
Dose (mg/kg/day)		0 (vehicle)	25	75	150	Mean	Range
	MEAN	7.8	7.2	6.4	0.9		
Females	N	177	187	180	17		
	% per litter	48.5	50.9	54.7	46.7	50.1	43.3-56.9
	MEAN	7.4	7.5	7.2	0.7		
Fetal weights (g)	MEAN	3.8	3.8	3.4**	2.4**	3.7	3.4-3.9
	%Δ		0	-10.5	-36.8		

* Female found dead was not evaluated

** Statistically significant; p≤0.01

Bold = value is outside of the historical control range

% per litter =sum of percent affected per litter of a given parameter / number of total litters Δ = percent change relative to control mean

Offspring (Malformations, Variations, etc.)

GS-1101 related external malformations were observed at doses \geq 75 mg/kg/day that were not observed in concurrent controls and fell outside the historical range. However, evaluation of fetal morphology at 150 mg/kg/day was somewhat limited by the test article-related effects on embryo/fetal survival and the small number of viable fetuses available for examination.

Table 81: Malformations and Variations Observed in Litters from Dams Treated with GS-1101

Dose (mg/kg/day)	Control	25	75	150	Historical co 1998-:	ontrol data 2010
External malformations					Number affected or % per litter	Range
Number of litters	24	25	25	10	3942	
Number of fetuses examined	365	368	340	39	59744	
Short tail	L 1 F 1	L 0 F 0	L 1 F 2	L 9 F 16	L 3 F 3	
% per litter	0.0	0.0	0.5	66.0*	0.0	0.0-0.3
Anury	L 0 F 0	L 0 F 0	L 0 F 0	L 3 F 10		
% per litter	0.0	0.0	0.0	13.8		
Vertebral Agenesis (with anury)	L 0 F 0	L 0 F 0	L 0 F 0	L 3 F 3	L 10 ^a F 10 ^a	
% per litter	0.0	0.0	0.0	6.8	0.0 ^a	0.0-0.3 ^a
Microphthalmia/anophthalmia	L 1 F 1	L 0 F 0	L 1 F 1	L 1 F 1	L 18 F 18	
% per litter	0.2	0.0	0.3	5	0.0	0.0-0.5

Dose (mg/kg/day)	Control	25	75	150	Historical c 1998-	ontrol data 2010
% per litter with external malformations	0.2	0.0	0.8	86.7*	0.1	0.0-1.3
Visceral malformations						
Number of litters	24	25	25	10	3942	
Number of fetuses examined	365	368	340	39	59550	
Hydrocephaly	L 0	L 0	L0	L 1	L 9	
	F 0	F O	F 0	F 1	F 9	
% per litter	0.0	0.0	0.0	1.0	0.0	0.0-0.8
% per litter with visceral malformations	0.0	0.0	0.0	1.0	0.1	0.0-0.9
Skeletal variations						
Number of litters	24	25	25	10	3941	
Number of fetuses examined	365	368	340	39	59537	
Cervical centrum no. 1	L 18	L 17	L 12	L 0	L 3004	
ossified	F 68	F 79	F 28	F 0	F 11969	
% per litter	19.6	20.7	9.7	0.0*	20.4	6.6-35.8
Sternebra(e) nos. 5 and/or 6	L 11	L 11	L 19	L 10	L 1415	
whossined % per litter	F 28 7 6	F 20 6 8	F 20	F 23	F 3908	0.0-26.1
Reduced ossification of the	1.0	0.0	10.1	1 10	1.62	0.0-20.1
vertebral arch(es)	F 1	F 0	F 8	F 17	F 67	
% per litter	0.2	0.0	3.9	63.7*	0.1	0.0-1.1
Sternebra(e) nos. 1, 2, 3,	L 1	L0	L 2	L 4	L 106	
and/or 4 unossified	F 1	F 0	F 2	F 7	F 114	
% per litter	0.2	0.0	2.2	18.0	0.2	0.0-1.3
Pubis unossified	L 1	L 0	L0	L 3	L 36	
	F 1	F O	F O	F 6	F 42	
% per litter	0.2	0.0	0.0	16.7	0.1	0.0-2.3
Reduced ossification of the		LO	L2		L 45	
SKUII % por littor		FU	F 2	50	F 52	0.0-1.0
% per litter with ekcletel	25.7	26.9	2.3	01 2*	22.7	19.0 50.4
variations	35.7	30.0	39.7	91.2	33.7	16.0-50.4
Total Affected Fetuses with Malformations (% per litter)	0.2	0.0	0.8	86.7*	0.3	0.0-1.6
Total Affected Fetuses with Developmental Variations (% per litter)	36.0	37.3	40.3	91.2**	33.9	17.1-51.1

a. Historical control data was presented under skeletal malformations
* Statistically significant (p≤0.01); L = number of litters affected; F = number of fetuses affected; **bold** values = outside of the historical control range

% per litter = sum of percent malformed per litter / number of litters with live fetuses

Other noteworthy findings:

- The fetus with microphthalmia/anophthalmia at 150 mg/kg/day was one of only two live fetuses in a litter which contributed to a high 5% per litter value for this malformation. While of low incidence, this is likely a toxicologically significant finding since the percent per litter is higher than the control and higher than the historical range.
- The fetus with hydrocephaly also displayed vertebral agenesis.
- The reduced ossification sites at 75 and 150 mg/kg/day also occurred in the presence of low fetal weight.

10 Special Toxicology Studies

Study title: A 28-Day Oral Gavage Impurity Qualification Study of GS-1101 in the Sprague Dawley Rat

Key Study Findings

- Targets include organs of the lymphatic system and digestive tract, eyes, heart, organs of the exocrine system (including the kidneys), and testis.
- There were no additional toxicities related to the impurities. Toxicological findings between the lots with high ^{(b) (4)} and lower ^{(b) (4)} impurities were similar; findings were also similar to the 28-day and 6-month rat studies.

Table 82: Impurit	y Levels in Bato	ches Used in Tox	cicology Studies
-------------------	------------------	------------------	------------------

Lot #					Ob	served	Impuritie	s				
												(0) (4)
Proposed Limit	NMT	(b) (4)	NMT	(b) (4)	NMT	(b) (4)	NMT	(b) (4)	NMT	(b) (4)	NMT	(b) (4)
				(b) (4)				(b) (4)				
											1	(b) (4)
Note: None of th used in qualification thre	ese impur the 6-moi shold of	rities we nth rat, (b) (4)	ere found 9-month	in any o dog, and	ther toxic I EFD stu	cology b udies, in	atches ex which lev	cept for vels of in	Lot No. npurities	were be	elow the	(b) (4) ICH

Μ	et	ho	ds	
			u0	

Doses:	Vehicle, 90	^{(b) (4)} lower	r impurity levels),
	25 and 90 mg/kg	(b) (4)	higher impurity
	levels)		
Frequency of dosing:	Daily for 4 weeks		
Route of administration:	Oral gavage		
Dose volume:	10 mL/kg		
Formulation/Vehicle:	0.5% high viscosity (deionized water	CMC, 0.19	% TWEEN 80 in
Species/Strain:	rat/Sprague-Dawley		
Number/Sex/Group:	10 animals/sex/grou	р	
Age:	7 weeks old		
Weight:	175 g to 224 g for ma females	ales; 149	g to 187 g for
Satellite groups:	3 animals/sex/group	for TK co	ntrol animals:
	9/sex/group for TK for animals	or	^{(b) (4)} treated
Unique study design:	None		
Deviation from study protocol:	Deviations did not ne or integrity of the dat study.	egatively in a or the o	mpact the quality utcome of the

Observations and Results

Mortality:	Twice daily
Clinical signs:	Twice daily
Body weights:	Pre-test and weekly
Food consumption:	Pre-test and weekly
ECG:	Not conducted
Ophthalmoscopy:	Pre-test and during the final week of dosing
Hematology:	At necropsy*
Clinical chemistry:	At necropsy*
Coagulation:	At necropsy*
Urinalysis:	At necropsy*
Gross pathology:	At necropsy*
Organ weights:	At necropsy*
Histopathology:	At necropsy*
Toxicokinetics:	Days 0 and 27:
	Control animals
	2 hours postdose
	^{(b) (4)} treated animals:
	• 0.5, 1, 2, 4, 8, and 24 hr postdose

* Scheduled necropsy was on Day 28

Mortality

• Deaths appear to be related to blood sampling and/or gavage error.

Table 83: Cause of Death in 4-Week Study Evaluating GS-1101 Impurites (Study No. TX-312-2012)

Dose of (b) (4) (mg/kg/day)	Animal #	Sex	Day Found Dead	Potential cause of morbidity/ macroscopic findings
25	1641	Female (TK)*	27	Undetermined/none as determined by the Applicant
90	1574	Male	28	Died during blood collection at euthanasia/ Discoloration/swollen thymus; discoloration, dark red trachea
	1592	Female (TK)*	177	Gavage error/ none as determined by the Applicant

* Only macroscopic, TK, and body weight evaluations were conducted for TK animals

Clinical Signs

Table 84: Clinical Signs in Rats in the 4-Wk Impurity Study

No. of animals affected (No. of observations)							
Vehicle	00 mg/kg/dov	25 mg/kg/dov	(b) (4)				
Control	90 mg/kg/day	25 mg/kg/day	90 mg/kg/day				
10	10	10	10				
			-				
	2 (3)	1 (3)	2* (5)				
		2 (2)					
			1 (1)				
	No. Vehicle Control 10	No. of animals affected Vehicle Control 90 mg/kg/day 10 2 (3)	No. of animals affected (No. of observa Vehicle Control 90 mg/kg/day 25 mg/kg/day 10 10 10 2 (3) 1 (3) 2 (2) 10				

* Observed in male that died (No. 1574)

Body Weights

The level of impurities had no effect on body weight gain. Body weight gain at the 90 mg/kg dose was 38% from Days 0-27 compared to 35% body weight gain for controls. Body weight gain at the 90 mg/kg dose was 33% from Days 0-27.

Food Consumption

Unremarkable

Ophthalmoscopy

Corneal crystals were present in three out of ten 90 mg/kg/day ^{(b)(4)} treated females on Day 23, which is slightly higher than the incidence in control females pretest (2 out of 10 females) and identical to control males on Day 23. This finding is likely not treatment related.

ECG

Not conducted

Hematology

Index	Me	an	Percentage deviation from Control						
	Cor	ntrol	90 mg/kg		25 mg/kg		90 mg/kg		
	0 m	g/kg		(0) (4)		(0) (4)		(0) (4)	
	М	F	М	F	М	F	М	F	
HDW (g/dL)	2.37	2.45	7**	13**	0	7	4	13**	
RDW%	12.0	11.1	3	6**	0	3	0	4*	
Retic. Abs.	141.1	123.5	7	23	6	-11	3	2	
Retic.%	1.8	1.6	6	25	11	-13	0	0	
Platelets Abs.	909	896	-2	6	17	16	1	5	
WBC Abs.	8.46	6.20	-5	30	1	12	10	62*	
Lymphocytes									
Abs.	6.58	5.07	1	14	12	16	22	55**	
Neutrophils									
Abs.	1.56	0.67 ^a	-28*	176	-37*	22	-38*	173	
Monocytes									
Abs.	0.15	0.15	-7	87*	-27	-20	0	40	
Eosinophils									
Abs.	0.09	0.08	-22	0	0	0	-44**	-13	
Basophils Abs.	0.2	0.1	0	100	0	100	50	200	
LUC Abs.	0.06	0.04	-33	50	-50*	0	0	125*	
LUC%	0.7	0.7	-29	14	-43**	-29	-14	14	

Table 85: Summary of Hematology Findings in Rats in the 4-Wk Impurity Study

* $P \le 0.05$, ** $P \le 0.01$ compared to control a – Outlier (one control female, No. 1649) excluded from analysis by reviewer

Clinical Chemistry

Table 86: Summary of Clinical Chemisty Findings in Rats in the 4-Wk Impurity
Study

Index	Mean		Percentage deviation from Control							
	Cor	ntrol	90 mg/kg		25 m	ng/kg	90 mg/kg			
	0 m	g/kg		(b) (4)	(b) (4)			(b) (4)		
	М	F	M	F	М	F	M	F		
Albumin (g/dL)	4.0	4.1	3	5	0	2	0	5		
Globulin (g/dL)	2.5	2.5	-8	-4	-4	0	-8	0		
A:G Ratio	1.61	1.67	11.2**	7.2**	3	1	10**	6*		
Total bilirubin										
(mg/dL)	0.01	0.03	0	-67	0	-33	0	-33		
Direct	0.03	0.03	-33	-67	-33	-33	-67	-33		
Indirect	0.01	0.01	-100	0	-100	0	-100	0		
Cholesterol										
(mg/dL)	63	71	-3	11	-10	-4	-6	16*		
Calcium (mg/dL)	10.5	10.3	2	3	1	2	1	4*		
Phosphorus										
(mg/dL)	9.1	7.1	-4	10	-9	1	-6	11		
Potassium										
(mEq/L)	6.15	5.48	-9	8	-8	0	-8	4		

* $P \le 0.05$, ** $P \le 0.01$ compared to control

Urinalysis

Mean urine osmolarity increased 34% and 12% compared to vehicle control in males and females at 90 mg/kg/day ^{(b)(4)} respectively, however the standard deviation was very high in all groups making the significance of this observation unclear.

Gross Pathology

Table 87: Treatment-Releated Macroscopic Findings in Rats in the 4-Wk Impurity Study

Treatment-related macroscopic findings			No. of animals affected							
	-		Males Fe					ales		
Dose (mg/kg)		1	2	3	4	1	2	3	4	
Number of animals e	examined	0/10	0/10	0/10	1*/9	0/10	0/10	0/10	0/10	
Cavity, cranial	Contents, dark red				0/1					
Seminal vesicles	Small			0/1		NA				
Thymus	Discoloration, dark red				1*/1					
	Swollen				1*/0					
	Area(s), Dark red	0/2		0/2	0/1	0/3	0/2	0/1	0/1	
Trachea	Discoloration, dark red				1*/0					
Thyroid glands	vroid glands Small								0/1	
Uterus Contents, clear fluid		NA 0/2			0/2		0/1	0/1		
Group 1=vehicle control; Group 2=90 mg/kg/day			^{(b) (4)} Group 3=25 mg/kg				(b) (⁴⁾ Grou	p 4=90	

mg/kg/day

Number of animals examined and affected: Early deaths*/Terminal necropsy

Empty cells = no test-article related changes

NA= Not Applicable, tissue does not exist in this sex

Organ Weights

Table 88: Treatment-Related Organ Weigt Changes in Rats in the 4-Wk Impurity Study

Group		% deviation from control						
		2			3	4		
Gender		М	F	М	F	М	F	
Number of anim	als examined	10	10	10	10	9	10	
Adrenal	Absolute (g)	4	15	3	8	19	14	
glands	Relative BW (%)	6	14	0	11	25*	14	
	Relative Brain (%)	4	14	1	6	20	13	
Spleen	Absolute (g)	-14	-12	-7	-12	-11	-6	
	Relative BW (%)	-12	-12 -15 -9 -12		-12	-9	-6	
	Relative Brain (%)	-13	-13	-9	-13	-9	-7	
Testis	Absolute (g)	-4		1	NA	-11*	NA	
	Relative BW (%)	-3	NA	-2		-10**		
	Relative Brain (%)	-5		-2		-10*		
Liver	Absolute (g)	0	16**	2	5	5	13*	
	Relative BW (%)	1	11**	-1	4	6	13**	
	Relative Brain (%)	0	14*	0	3	6	12	
Thymus	Absolute (g)	-6	-17	4	-9	-10	-20	
	Relative BW (%)	-5	-20*	1	-9	-9	-20*	
	Relative Brain (%)	-6	-19*	2	-10	-9	-20*	
Uterus/ Cervix	Absolute (g)	ΝΙΔ	-31	ΝΑ	-22	ΝΛ	-25	
	Relative BW (%)	IN/A	-35*	IN/A	-22		-27*	

Group	% deviation from control							
		2	3			4		
Gender	М	F	М	F	М	F		
Number of animals examined	10	10	10	10	9	10		
Relative Brain (%)		-32		-23		-25		
D < 0.05 ** D < 0.01 compared to control								

* $P \le 0.05$, ** $P \le 0.01$ compared to control Group 2=90 mg/kg/day ^{(b) (4)} Group 3=25 mg/kg

^{(b) (4)}Group 4=90 mg/kg/day

(b) (4)

The Applicant noted that despite differences in organ weights in test-article treated animals compared to controls, all mean values fell within the ^{(b) (4)} historical control reference ranges.

Histopathology

Adequate Battery Yes

Peer Review Yes (for spleen only)

Histological Findings

Table 89: Microscopic Findings with Increased Incidence or Severity in Rats in
the 4-Wk Impurity Study

Treatment-Related Microscopic Findings			No. of animals affected								
			Males				Females				
Dose (mg/kg))		1	2	3	4	1	2	3	4	
Number of ar	nimals examined		0/10	0/10	0/10	1*/9	0/10	0/10	0/10	0/10	
Organ	Finding	Severity									
Cecum	Dilatation, glandular	Minimal				0/1					
Esophagus	Hemorrhage	Minimal				1*/0					
Eyes	Dysplasia,	Total		0/4	0/2†	0/4		0/2†			
-	retinal	Minimal		0/4	0/2†	0/3		0/2†			
		Mild				0/1					
Heart	Cardio-	Total		0/3	0/1	0/1					
	myopathy	Minimal									
		Mild									
	Cyst, valvular	Present				0/1					
Kidneys	Inflammation, Chronic	Minimal		0/2		1*/0	0/1		0/3	0/2	
	Cyst	Present	0/3	0/3	0/0	0/4		0/2	0/2	0/1	
	Infiltrate, mononuclear	Minimal					0/1	0/2	0/1	0/2	
Larnyx	Hemorrhage	Minimal				1*/0					
LN, axillary	Erythrocytosis, sinus	Moderate									
	Hemorrhage	Minimal						0/1			
LN,	Hemorrhage	Total	0/1		0/1	0/1	0/4	0/4	0/2		
mandibular		Minimal	0/1		0/1		0/1				
		Mild				0/1	0/3	0/2	0/1		
		Moderate						0/2	0/1		
	Hyperplasia, Lymphoid	Moderate			0/1						
LN,	Erythrocytosis,	Minimal		0/1		1*/0					

Treatment-Related Microscopic Findings			No. of animals affected								
								Females			
Dose (mg/kg)			1	2	3	4	1	2	3	4	
Number of ar	nimals examined		0/10	0/10	0/10	1*/9	0/10	0/10	0/10	0/10	
Organ	Finding	Severity									
mesenteric	sinus										
Lungs	Infiltrate,	Minimal						0/1			
	eosinophil,										
	perivascular	NA ¹		0/4	0/4	0/4	0/4	0/4	0.10		
	Infiltrate, mononuclear	Minimai		0/1	0/1	0/1	0/1	0/1	0/2		
	Macrophages, alveolar	Minimal	0/1				0/2	0/1			
Ovaries	Cyst	Present						0/1			
Rectum	Infiltrate,	Minimal				0/1					
	mixed										
	inflammatory										
	cell										
	Inflammation, subacute	Minimal						0/1			
Seminal	Decreased	Severe			0/1			•	•		
vesicles	secretion								-	-	
Skeletal	Infiltrate,	Minimal		0/1		0/2	0/2				
muscle	mononuclear										
Spleen	Decreased	Total	0/2	0/10	0/8	1*/9		0/8	0/8	0/10	
	lymphocytes,	Minimal	0/2	0/2	0/4	0/1			0/8	0/1	
	marginal zone	Mild		0/4	0/3	1*/1	- 4.	0/3			
		Moderate		0/3	0/1	0/5	0/1	0/3		0/4	
		Severe		0/1		0/2		0/2		0/5	
	Fibrosis	Minimal			0/1			0/1			
Stomach, Glandular	Inflammation, subacute	Minimai						0/1			
Stomach, Non-	Edema, submucosal	Mild								0/1	
glandular	Infiltrate, mononuclear	Minimal						0/1			
Thymus	Hemorrhage	Total	0/3		0/3	1*/1	0/3	0/4	0/6		
,		Minimal	0/3		0/3	0/1	0/3	0/4	0/6		
		Mild				1*/0					
	Hyperplasia, epithelial	Minimal			0/2		0/2	0/4	0/3	0/3	
	Decreased	Mild	0/1	0/2		0/2	0/1	0/8	0/2	0/6	
Thuroid	Infiltrato	Minimal		0/1				0/1			
glands	mononuclear	IVIII III TAI		0/1				0/1			
	Ectopic Thymus	Present	0/1	0/1		1*/1			0/1		
	Hemorrhage	Minimal				1*/0					
Tongue	Granuloma	Present		0/1			0/1				
	Inflammation,	Minimal						0/2			
	chronic										
Trachea	Hemorrhage	Minimal				1*/0					
Urinary	Hyperplasia,	Moderate								0/1	
Bladder	epithelial										

Treatment-Related Microscopic Findings			No. of animals affected								
		Μ	ales		Females						
Dose (mg/kg)			1	2	3	4	1	2	3	4	
Number of animals examined		0/10	0/10	0/10	1*/9	0/10	0/10	0/10	0/10		
Organ	Finding	Severity									
	Inflammation,	Mild								0/1	
	chronic active										

Number of animals examined and affected: Early deaths*/ Terminal necropsy / Recovery necropsy

Group 1 = control; Group 2=90 mg/kg/day ^{(b) (4)} Group 3=25 mg/kg ^{(b) (4)} Group 4=90 mg/kg/day

empty cell = no change or not evaluated; † = similar incidence/lower severity compared to control recovery male rats in 6-month rat study and is likely a background finding.

Toxicokinetics

<u>GS-1101:</u>

- TK parameters including T_{max}, T_{1/2}, sex differences in exposure, and accumulation were generally comparable between ^{(b)(4)} and consistent with TK observations in general toxicology rat studies. However, in females administered 90 mg/kg/day ^{(b)(4)}, the observed T_{max} of 8 hours on Day 27 was higher than the range of T_{max} values observed for ^{(b)(4)} in this study and GS-1101 in the general toxicology rat studies (between 0.5 and 4 hours).
- Exposures (C_{max} and AUC) for 90 mg/kg/day ^{(b) (4)} were generally higher than 90 mg/kg/day ^{(b) (4)} on Day 27.

GS-563117:

• Exposure to GS-563117 was similar for both ^{(b)(4)} and as observed in general rat toxicology studies, very little of ^{(b)(4)} was converted to the metabolite (M/P ratios ranged from roughly 0.003 to 0.02 at 90 mg/kg/day doses).

11 Integrated Summary and Safety Evaluation

Idelalisib is a PI3Kδ kinase inhibitor indicated for the treatment of patients with refractory indolent B-cell Non-Hodgkin Lymphoma (iNHL) and chronic lymphocytic leukemia (CLL). Nonclinical pharmacology, pharmacokinetic, and toxicology studies have been submitted to support the approval of idelalisib for this indication.

Pharmacology

Idelalisib is a kinase inhibitor that was selective for inhibition of PI3 kinases when screened against a panel of 353 kinases in an *in vitro* kinase assay. Inhibition of PI3K δ is through binding of the drug to the ATP-binding site of P110 δ (the catalytic subunit). P110 δ is overexpressed in WSU-FSCCL and WSU-NHL, two cell lines derived from patients with follicular lymphoma. Idelalisib treatment inhibited cell viability in both cell lines. The concentration of idelalisib that resulted in 50% inhibition (IC₅₀) of PI3K δ was 19 nM in *in vitro* assays using recombinant protein. The EC₅₀ was 0.1-1 μ M
based on Akt phosphorylation when primary tumor samples and malignant B-cell lines were treated with idelalisib. In a cell-based assay, GS-1101 inhibited PI3K_δ signaling with an EC₅₀ of 8.9 nM. Idelalisib caused dose-dependent apoptosis in malignant B-cell lines and reduced the induction of chemokines in primary CLL cells stimulated by anti-IgM or by co-culture with Nurse like cells (NLCs) at concentrations $\geq 0.5 \ \mu$ M. Idelalisib inhibited Akt and extracellular signal-regulated kinase phosphorylation in response to anti-IgM stimulation and in response to CXCL12 or CXCL13. The secretion of chemokines CCL3 and CCL4 was significantly inhibited by idelalisib at concentrations of 1 µM or greater. Idelalisib exhibited sensitivity in cell viability in B-ALL and CLL cells compared with AML and MPN cells, suggesting a greater activity against B-cell malignancies. Idelalisib, at a concentration of 0.1 µM, inhibited P-AKT (Ser473) an average of 86% (range 55-97%) in malignant B-cells prepared from biopsy specimens of 7 patients with follicular lymphoma. In a kinase screen, idelalisib inhibited other Class I PI3K isoforms between 83 and 97.3%, however, in vitro assays demonstrate that GS-1101 is between 110- and 453-fold more selective for inhibition of PI3K δ . The primary human metabolite of idelalisib, GS-563117 is an inhibitor of LOK and SLK kinases with IC_{50} values of 0.11 μ M and 0.05 μ M, respectively.

Both *in vivo* and *in vitro* safety pharmacology studies were conducted to assess the effects of idelalisib on neurological, cardiovascular, and respiratory function. The IC₅₀ for the *in vitro* hERG potassium current was estimated to be greater than 50 μ M. Idelalisib did not induce toxicologically significant cardiovascular and respiratory effects *in vivo* up to 20 mg/kg (400 mg/m²) in telemetered dogs or neurobehavioral effects in rats up to 150 mg/kg (900 mg/m²). However, drug-related cardiomyopathy and increased in the heart weight were observed in the rat in the repeat-dose toxicology studies (see below).

Pharmacokinetics/ADME/Toxicokinetics

Orally administered idelalisib was absorbed rapidly, with bioavailability ranging from 39 to 48% in the tested rodent (rat) and non-rodent (dog) species, respectively. Oral administration of 50 mg/kg (300 mg/m²) radioactive idelalisib to rats reached maximal concentration at 1 hour postdose (in 35 of 37 tissues) and decreased 24-48 hours postdose, but was relatively excluded from bone, brain, spinal cord, and eye lens. In Long-Evans rats, pigmented skin and eve uvea showed higher concentrations of idelalisib than that observed for the similar tissues in Sprague-Dawley rats, suggesting some association of drug-derived radioactivity with melanin. In rats and dogs, idelalisib was the most abundant analyte in plasma (~91 to 93% in rats and ~59% dogs), with GS-563117 being the most abundant circulating metabolite. Idelalisib exhibited moderately high plasma protein binding in all species with the average free fraction values of 18.7%, 20.7%, and 16.3% for rat, dog, and human respectively; and, ~12% in humans for the oxidative metabolite GS-563117 (Table 14). Hepatobiliary route was the primary route of excretion within 24 to 48 hours in rats and dogs, with the majority of idelalisib being detected in the feces and 6% or less in the urine. Radioactivity derived from radiolabeled idelalisib (above 80% in rats and above 88% in dogs) was excreted within 24 hours in rats and 48 hours in dogs after oral dosing and was below the limit of

detection in plasma by 72 hours; roughly 1% remained in rats or was below the limit of quantitation in dogs in the blood after 168 hours. The half-life in rats following a single oral dose of 3 mg/kg (18 mg/m²) was 1.5 hours and was 2 hours for an oral dose of 1 mg/kg (20 mg/m²) in dogs. The pharmacokinetics of idelalisib are similar between rats and dogs and humans, however, the levels of metabolite GS-563117 differed among species and was detected at 62%, 34%, and 1.4% in human, dog, and rat plasma, respectively. Based on similarities in pharmacokinetics for idelalisib between humans and animals, the animal models for pharmacology are predictive of the time course of pharmacologic activity of the drug, and can be relied upon for predicting activity of alternative regimens in the clinical setting. The pharmacokinetics for GS-563117 was different between humans and animals, with the non-rodent (dog) species as the most comparable. Therefore, the animal models for pharmacology are not expected to be highly predictive of the pharmacologic activity of GS-563117 in the human.

General Toxicology

The primary target organ toxicities following repeated dosing of idelalisib in rats and/or dogs were the hematopoietic/lymphoid system, liver, male reproductive system, heart (in rats only), and the GI tract. The skin may also be a target based on the adverse findings in the skin in toxicology studies and a relatively high concentration of radioactive materials in the skin of pigmented rats in the ADME studies. In an in vitro assay, the human metabolite (GS-563117) caused photo-toxicity upon UVA exposure.

Repeat-dose toxicology studies with oral administration of idelalisib daily were conducted in Sprague-Dawley rats and Beagle dogs in order to fully characterize idelalisib-induced toxicities. Studies reviewed included 28-day general toxicology studies in rats and dogs, a 13-week study in rats, a 6-month study in rats, and a 9-month study in dogs. In the 28-day studies, there was mortality in rats at doses \geq 100 mg/kg (600 mg/m²) and in a dog at 20 mg/kg (400 mg/m²). The probable cause of death in the 28-day rat study included liver toxicity. In the premature death in the 28-dog study, primary toxicities were to the GI tract, liver, and lymphoid tissues.

There were also mortalities at doses $\geq 25 \text{ mg/kg} (150 \text{ mg/m}^2)$ in the rat 6-month study and at doses $\geq 2.5 \text{ mg/kg} (50 \text{ mg/m}^2)$ in the 9-month dog study. The cause of deaths in the 9-month dog study was systemic inflammation. Cardiomyopathy was observed in dead and surviving rats at doses of 90 mg/kg/day (540 mg/m²) in the 13-week and 6month studies. There was also a 14% to 15% increase in the relative heart weights of males and females at 90 mg/kg/day compared to controls (14-15% increase in the absolute weights) in the 13-week study.

In the 6-month rat study, teeth abnormalities (broken or missing) were observed at low incidence, but are consistent with other kinase inhibitors in rats. Other clinical signs observed among studies are reddened extremities and face, alopecia, excessive salivation, yellow discharge from urogenital area, soft feces, clear discharge from eyes, and eye squint. Clinical signs are delayed and generally appear after 28-days of dosing.

There were no significant effects of idelalisib on RBC parameters in chronic toxicology studies, however, reticulocytes increased 166% in female rats dosed at 150 mg/kg/day (900 mg/m²/day) for 28 days. The common findings in hematology parameters among the general toxicology studies were lymphoid hypocellularity in the bone marrow, decreased spleen and thymus weights, and lymphocyte infiltrates in multiple organs, confirming the lymphoid toxicities associated with the mechanism of action of idelalisib.

Genetic Toxicology

Idelalisib was negative in an *in vitro* bacterial reverse mutation (Ames) assay and *in vitro* cytogenetic assay using human lymphocytes. Idelalisib tested positive in the *in vivo* rat micronucleus assay at the highest dose, 2000 mg/kg in males with evidence of perturbation of erythropoiesis. Carcinogenicity studies have not been conducted and are not necessary for NDA approval for the proposed indication.

Reproductive and Developmental Toxicology

Reproductive toxicology studies consisted of 2 fertility studies and an embryofetal developmental (EFD) study. The studies were conducted in rats.

In the repeat-dose male fertility study, treated male rats (25, 50, or 100 mg/kg/day; 150, 300, 600 mg/m²/day of idelalisib) were mated with untreated females. Idelalisib decreased testis and epididymis weights (all dose levels), and reduced sperm counts (at mid- and high-dose) with no effect on reproductive indices. The low dose in males resulted in an exposure (AUC) that is approximately equal to the exposure in patients at the recommended dose of 150 mg twice daily. In the repeat-dose female fertility study, treated female rats (25, 50, or 100 mg/kg/day; 150, 300, 600 mg/m²/day of idelalisib) were mated with untreated males. There were no adverse effects on fertility parameters; however, the high dose (100 mg/kg or 600 mg/m²) resulted in an increase in pre-implantation loss, post-implantation loss, and early embryolethality, resulting in a 20% decrease in the number of live embryos. The high dose in females resulted in an exposure (AUC) that is approximately 30-fold the exposure in patients at the recommended dose of 150 mg twice daily.

Toxicokinetic evaluations were not performed in the fertility studies, therefore, relevant comparison of exposures in animals and humans for idelalisib labeling will be based on the rat AUC at 25 mg/kg on Day 181 (10,635 ng•h/mL) in the 6-month rat study for males and the rat AUC at 100 mg/kg from the 28-day toxicology study (30,000 ng•h/mL) for females.

In the embryo-fetal developmental repeat-dose study, pregnant rats were administered oral doses of idelalisib during the period of organogenesis at doses of 25, 75, and 150 mg/kg/day (150, 450, 900 mg/m²/day). At the high dose of 150 mg/kg/day (900 mg/m²/day), idelalisib resulted in increased post-implantation loss, reduced mean litter size, reduced fetal body weights, reduced skeletal ossification, and increased incidences of short tail, anury, vertebral agenesis and hydrocephaly as well as skeletal developmental variations in rats at doses that also produced maternal toxicity (death of 1 female at 150 mg/kg/day; 900 mg/m²/day). Additionally, microphthalmia/anophthalmia

was noted in 1 fetus each in the vehicle control, 75, and 150 mg/kg/day (0, 450, and 900 mg/m²/day) groups. Skeletally, this finding consisted of orbits that were smaller than normal. Although this finding occurred similarly in these 3 groups, the mean litter proportion (5.0% per litter) in the 150 mg/kg/day (900 mg/m²/day) group for microphthalmia and/or anophthalmia was higher than the concurrent control group (0.2% per litter) and above the maximum mean value in the ^{(b)(4)} historical control data (0.5% per litter). At doses \geq 75 mg/kg/day (450 mg/m²/day) short tail malformations and skeletal developmental variations such as reduced fetal skeletal ossification were observed at higher incidences than concurrent and historical controls. The dose of 75 mg/kg (450 mg/m²/day) was also maternally toxic based on reduction in net body weight gain > 10% (after deducting the gravid uterine weight).

The reproductive and developmental toxicology studies suggest that administration of idelalisib may pose a risk for embryo-fetal toxicity. A Pregnancy category D is recommended. Relevant comparison of exposures in animals and humans for idelalisib labeling will be based on the rat AUC on GD 17 at the lowest dose with embryofetal toxicity (250,775 ng•h/mL at 75 mg/kg dose) and the human AUC of 10,081 ng•h/mL following administration of the recommended clinical dose of 150 mg BID. The dose of 75 and 150 mg/kg/day of idelalisib in rats resulted in exposures (AUC) of approximately 25 and 60 times, respectively, the human exposure at the recommended dose of 150 mg BID.

Table 90: Tabulated Summary of General Toxicology Studies

Species (Study #)	Route Duration	N/sex/dose	mg/kg (mg/m²)	Significant findings
Rat/Sprague- Dawley (Crl) (Study No. BHR00009)	Oral gavage Once daily for 4 weeks (4 week recovery)	<u>Main study:</u> 14/sex/dose <u>TK:</u> Controls: 3/sex/dose GS-1101: 6/sex/dose	CAL-101 0 ^a , 50, 100, 150 (0, 300, 600, 900)	 There were several deaths at 100 (3 deaths) and 150 mg/kg (5 deaths). Target organs include bone marrow (major toxicity, but reversible), tongue, liver, and testis. Inflammatory changes were seen in the tongue, heart, liver parenchyma. Exposure was greater than dose proportional, accumulative, and higher in females than males.
Dog/Beagle (Study No. BHR00008)	Oral capsule Once daily for 4 weeks (4 week recovery)	<u>Main study:</u> 7/sex/dose	CAL-101 0 ^a , 2.5, 5, 20 (0, 50, 100, 400)	 There was one death at 20 mg/kg/day on day 29. Primary toxicities were to the GI, liver, and lymphoid tissues. Bone marrow toxicities were also evident in hematology findings. There were CAL-101 findings relating to the eye (largely eye discharges); the relationship to the treatment is unclear.
Rat/Sprague- Dawley (Crl) (Study No. TX-312-2001)	Oral gavage Once daily for 13 weeks (4 week recovery)	<u>Main study:</u> 15/sex/dose <u>TK:</u> Controls: 3/sex/dose GS-1101: 6/sex/dose	GS-1101 0 ^b , 25, 50, 90 (0, 150, 300, 540)	 Statistically significant increase (14%-15%) in the absolute weights in the heart at 90 mg/kg/day compared to controls. There was a slight increase in the incidence and severity of cardiomyopathy in the heart in males at 90 mg/kg/day and in females at all dose levels compared to controls. Organs of toxicity: Heart, pancreas, tongue, and testes.
Rat/Sprague- Dawley (Crl) (Study No. TX-312-2005)	Oral gavage Once daily for 26 weeks (12 week recovery)	Main study: 15/sex/dose <u>TK:</u> Controls: 3/sex/dose GS-1101: 9/sex/dose	GS-1101 0 ^b , 25, 50, 90 (0, 150, 300, 540)	 There were five mortalities, four of which are likely drug-related. One mortality at the low dose was due to malignant lymphoma, which may be incidental. Common microscopic findings in animals found dead were decreased lymphocytes in the spleen, hemorrhage of the thymus, and dilatation of the urinary bladder. Other microscopic findings in the 90 mg/kg/day males found dead were cardiomyopathy, hypertrophy of the adrenal cortex, inflammation of the pancreas, and alveolar macrophages in the lungs. At all doses, there were increases in white blood cells (lymphocytes, neutrophils, monocytes, and basophils). Organs of toxicity: hematopoietic system, reproductive organs, kidneys, heart, liver, lungs, and pancreas. Axonal degeneration in the pripheral nerves and hemorrhage in the brain of one male were also observed at low incidence in males at 90 mg/kg/day. GS-1101 was readily absorbed, accumulated with repeat-dosing, and exposures (AUC and C_{max}) were dosedependent with greater than 2-fold higher

Species (Study #)	Route Duration	N/sex/dose	mg/kg (mg/m²)	Significant findings
				exposures in females. The toxicokinetic profile of the metabolite GS-563117 was similar to the parent GS-1101, despite the fact that the parent compound was not readily converted to its metabolite in rats.
Dog/Beagle (Study No. TX-312-2005)	Oral capsule Once daily for 39 weeks (12 week recovery)	<u>Main study:</u> 6/sex/dose	GS-1101 0 ^c , 2.5, 5, 7.5 (0, 50, 100, 150)	 Two unscheduled deaths related to GS- 1101. The cause of death for these 2 animals was systemic inflammation in multiple organs and decreased lymphocytes in peripheral lymphoid tissues. Target organs of toxicity were the immune system (decreased lymphocytes and inflammation) and gastro-intestinal tract (red areas, inflammatory changes, and crypt dilatation). Exposure to GS-1101 generally increased with the increase in dosage level from 2.5 to 7.5 mg/kg/day.
Impurities/Rat/ Sprague- Dawley (Crl) (Study No. TX-312-2012)	Oral Gavage for 28 days	<u>Main study:</u> 10/sex/dose	(b) (4) 0 , 90 (0, 540) (b) (4) 0 , 25 , 90 (0, 150, 540) See Table 82 for % impurities	 Targets include organs of the lymphatic system and digestive tract, eyes, heart, organs of the exocrine system (including the kidneys), and testis. There were no additional toxicities related to levels of impurities. Toxicological findings between the lots with high ^{(b) (4)} (^{(b) (4)}) and lower ^{(b) (4)} impurities were similar; findings were also similar to the 28-day and 6-month rat studies.

a = 0.5% high viscosity carboxymethylcellulose/0.1% TWEEN 80 in water b = lactose monohydrate in gelatin capsule

c = empty capsulesd = spiked impurity lot

Table 91: Tabulated Summary of Reproductive and Developmental Toxicology Studies

Fertility - Males			
Study #	^{(b) (4)} -604019		
Title	Evaluation of Orally (by Gavage) Administered GS-		
	1101 on Fertility in Male Rats		
Methods	Males dosed daily for 14 weeks (10 weeks before		
	cohabitation and 4 weeks during cohabitation)		
Key Study Findings	Dose related decreased epididymis, cauda		
	epididymis, and testes weights and decreased		
	epididymal sperm concentration in all GS-1101		
	dose groups with no test article-related effects on		
	male reproductive function. There were no		
	apparent adverse effects in females that were		
	mated with treated male rats in regard to endpoints		
	measured.		
Species	Rat/ Sprague-Dawley (Crl)		
Doses	0, 25, 50, or 100 mg/kg/day		
	(0, 150, 300, 600 mg/m²/day)		

Mortality/ Clinical Signs	 Two males at 25 mg/kg/day and one male at 50 mg/kg/day were found dead or euthanized in extremis during the study. One male at 25 mg/kg had significant loss of body weight (41 g) occurred during study days 28-31 and gasping was noted on the day of euthanasia; red material around the eyes and nose and malaligned upper incisors on study days 30-33. Male at 50 mg/kg had several incidences of red material and lacrimation around the eyes and broken and malaligned upper incisors during study days 30-91 at the daily examinations.
BW/FC	Unremarkable
Fertility -	Females
Study #	5004028
The	1101 on Fertility and Early Embryonic Development to Implantation in Female Rats.
Methods	Females were dosed daily for 14 days before cohabitation; treatment continued through gestation day 7.
Key Study Findings	 One female dosed at 100 mg/kg had a totally resorbed litter. An increase in post-implantation loss. and
	 early embryolethality at 100 mg/kg, resulting in a 20% decrease in the number of live embryos was observed. No test article-related effects on female
	reproductive function .
Species	Rat/ Sprague-Dawley (Crl)
Doses	0, 25, 50, or 100 mg/kg/day (0, 150, 300, 600 mg/m²/day)
Mortality/ Clinical Signs	None
BW/FC	FC.
Embryonic Feta	al Development
Title	An Oral (Gavage) Embryo/Fetal Development Study of GS-1101 in Rats
Methods	Females dosed daily from GD 6-17 and euthanized on GD 20
Key Study Findings	 There was one test-article related maternal death at the high dose of 150 mg/kg/day. Clinical signs of urogenital blood loss correlated with complete resorptions, increased post-implantation loss, and decreased mean litter size in the 150 mg/kg/day group. At doses ≥ 75 mg/kg/day, the net reduction in the maternal body weight gain was >

	 10% compared to controls, and the presence of external malformations and skeletal variations in fetuses were observed. AUC_{0-t} for GS-1101 increased greater than dose proportionally and there was accumulation with repeated dosing.
Species	Rat/ Sprague-Dawley (Crl)
Doses	0, 25, 75, and 150 mg/kg/day
	(0, 150, 450, 900 mg/m²/day)
Mortality/ Clinical Signs	One female in the 150 mg/kg/day group was found dead on GD 20. Clinical findings for this female consisted of red material on the urogenital area (beginning on gestation day 12), red vaginal discharge (on gestation day 15), and red material on the ventral abdominal/thoracic areas and cage papers, and body and limbs that were pale and cool on day prior to death.
BW/FC	Decreases in net body weight gain > 10% at doses ≥ 75 mg/kg/day

Table 92: Cross-Species Comparison of Metabolite Exposure and Routes ofElimination

Human Matabalitas	Matrices Where Detected			
Human Melaboliles	Human	Rat	Dog	
Study Number	GS-US-313-0111	AD-312-2004	AD-312-2002	
GS-563117	P 62%	P 1.4%	P 34%	
	F 44%	F 9.38%*	F 33.4%	
	U 49%	U 0.477%	U 0.332%	

P = Plasma; F = Feces ; U = Urine

* specified in study report as GS-563117/ structure not determined (M30B)

12 Appendix/Attachments

Studies that were not reviewed:

Primary Pharmacology

Study#	Title	Module
DR-4001	The Effect of IC489666 on Activities of Cells of Hematopoietic Origin	4.2.1.1
DR-4002	PI3K P110 δ Pathway is Critical for the Survival of Chronic Lymphocytic Leukemia B Cells	4.2.1.1
PC-312-2009	The Effect of GS-1101 on Anti-FccRI and fMLP-induced Basophil Activation in Human Whole Blood	4.2.1.1
PC-312-2012	Evaluation of GS-563117 for Inhibition of Class I PI3K Isoforms in a Biochemical Assay	4.2.1.1

Secondary Pharmacology

Γ	Study#	Title	Module
	1042207	Lead Profiling Screen of IDELA	4.2.1.2

Calistoga101	Evaluation of CAL-101 in Rat Derived Bone Marrow Cultures	4.2.1.2
DR-4024	Evaluation of CAL-101 in Human Hematopoietic Progenitor Cell Assays	4.2.1.2
IC0004-IC0005	Kinase Interaction Profile of IDELA	4.2.1.2

Pharmacodynamic Drug Interactions

Study #	Title	Module
	No Studies Submitted	4.2.1.4

Pharmacokinetics

Study #	Title	Module
	Analytical methods and validation reports	
BA-312-2003	Abbreviated Validation of a Method for the Determination of GS-1101 and GS-563117 in Rat Plasma by HPLC with MS/MS Detection	4.2.2.1
BA-312-2004	Abbreviated Validation of a Method for the Determination of GS-1101 and GS-563117 in Dog Plasma by HPLC with MS/MS Detection	4.2.2.1
BA-312-2005	Abbreviated Validation of a Method for the Determination of GS-1101 and GS-563117 in Rabbit Plasma by HPLC with MS/MS Detection	4.2.2.1
BHR00016LX	Validation of a High Performance Liquid Chromatographic–Mass Spectrometric Method for the Analysis of CAL-101 in K2 EDTA Rat Plasma	4.2.2.1
BHR00019LX	Validation of a High Performance Liquid Chromatographic–Mass Spectrometric Method for the Analysis of CAL-101 in K2 EDTA Dog Plasma	4.2.2.1
	Absorption	
400571	Determination of the Apparent Permeability Coefficients for CAL-101 and its Interaction with P-Glycoprotein in Caco-2 Monolayers	4.2.2.2
794315	In Vivo Rat PK - Pharmacokinetics of CAL-101 in Rats with High PO Dose (150, 500, and 2000 mg/kg)	4.2.2.2
AD-312-2007	Pharmacokinetics of GS-1101 and GS-563117 in Cynomolgus Monkeys	4.2.2.2
AD-312-2013	Pharmacokinetics of Idelalisib in Male Beagle Dogs	4.2.2.2
	Distribution	
1503-059	Pharmacokinetics and Tissue Distribution of Radioactivity in Male and Female Naïve Dogs Following a Multiple Oral Dose of 14C-CAL-101	4.2.2.3
AD-312-2014	In Vitro Assessment of Blood Distribution of Idelalisib and GS-563117	4.2.2.3
	Metabolism	
AD-312-2015	<i>In Vitro</i> Metabolism of Idelalisib in Hepatic Microsomal Fractions and Hepatocytes from Rat, Dog, and Human	4.2.2.4
AD-312-2023	Hepatic Metabolism of Idelalisib In Vitro	4.2.2.4
XT070003	Metabolite Characterization of 14C-CAL-101 in Human Hepatocytes	4.2.2.4
XT070008	Metabolite Characterization of 14C-CAL-101 in Dog Hepatocytes	4.2.2.4
	Excretion	
AD-312-2001	Pharmacokinetics, Absorption, and Excretion of 14C-GS-	4.2.2.5

	1101 Following Oral Administration to Intact and Bile				
Pharmacokinetic Drug Interactions					
13558	ADME-Tox: CYP Inhibition Study of CAL-101	4.2.2.6			
13567	ADME-Tox: Time-Dependent CYP3A Inhibition Study of CAL-101	4.2.2.6			
400571	Determination of the Apparent Permeability Coefficients for CAL-101 and its Interaction with P-Glycoprotein in Caco-2 Monolayers	4.2.2.6			
794306	DME-Tox: CYP Phenotyping Study of CAL-101	4.2.2.6			
AD-312-2005	In Vitro Assessment of GS-563117 Inhibition of Human OATP1B1, OATP1B3, Pgp and BCRP	4.2.2.6			
AD-312-2006	Bi-Directional Permeability of GS-563117 Through Monolayers of P-Glycoprotein and Breast Cancer Resistance Protein Over-Expressing Cells	4.2.2.6			
AD-312-2008	Evaluation of Induction Potential of GS-1101 and GS- 563117 in Cultured Human Hepatocytes	4.2.2.6			
AD-312-2010	In Vitro Assessment of GS-563117 as a Substrate for Human OATP1B1 and OATP1B3	4.2.2.6			
AD-312-2011	<i>In Vitro</i> Assessment of GS-1101 Inhibition of Human OATP1B1, OATP1B3, and BCRP	4.2.2.6			
AD-312-2012	<i>In Vitro</i> Inhibition Studies of GS-563117 with Renal Transporters OAT1, OAT3 and OCT2	4.2.2.6			
AD-312-2016	Assessment of Human CYP3A Mechanism-Based Inhibition Potential of GS-563117 In Vitro	4.2.2.6			
AD-312-2017	In Vitro Assessment of Human UGT1A1 Inhibition Potential of Idelalisib and GS-563117	4.2.2.6			
AD-312-2018	In Vitro Assessment of Human CYP2B6 Inhibition Potential of Idelalisib	4.2.2.6			
AD-312-2019	In Vitro Assessment of Human Liver Cytochrome P450 Inhibition Potential of GS-563117	4.2.2.6			
AD-312-2022	UDP-Glucuronosyl Transferase Phenotyping of GS-1101	4.2.2.6			
AD-312-2023	Hepatic Metabolism of Idelalisib In Vitro	4.2.2.6			
AD-312-2024	In Vitro Assessment of Human CYP3A Mechanism- Based Inhibition Potential of Idelalisib with Midazolam 1'- Hydroxylase as the Probe Activity	4.2.2.6			
CAS-2010-001	CAL-101 Studies on UDP-Glucuronosyltransferase (UGT) Reaction Phenotyping Based on Recombinant UGT1A4 and Extrahepatic UGT Pathway Investigation Using Human Kidney Microsomes	4.2.2.6			
OPT-2010-087	Assessment of CAL-101 as an Inhibitor of Human BCRP, OAT1, OAT3, OCT2, OATP1B1, or OATP1B3 Mediated Transport	4.2.2.6			
OPT-2010-124	Assessment of CAL-101 as a Substrate of Human P-gp, BCRP, OAT1, OAT3, OCT2, OATP1B1, and OATP1B3- Mediated Transport	4.2.2.6			

Single-Dose Toxicology

Study#	Study# Title	
04-3166-N1	A Pilot Dose-Range Finding Toxicity Study of IC489666 Administered Orally to the Beagle Dog	4.2.3.1
03-0004-42	Acute Toxicity Study of P110 Delta Inhibitors IC489666 and IC490098 Administered by Oral Gavage in Sprague Dawley Rats	4.2.3.1

Repeat-Dose Toxicology

Study#	Title	Module
TX-312-2002	GS-1101: A 13-Week Oral (Capsule) Toxicity Study in Dogs with a 4-Week Recovery Period	4.2.3.2
04-3166-N2	04-3166-N2 A Fourteen-Day Repeat Dose Toxicity Study of IC489666 Administered Orally to the Beagle Dog	
TX-312-2009	An Oral Gavage 7-Day Tolerability Study of GS-1101 in Non-Pregnant New Zealand White Rabbits	4.2.3.2
04-R007-33	14-Day Repeat Dose Oral Toxicity Study of IC489666 in the Rat	4.2.3.2

Local Tolerance

Study#	Title	Module
0152 100254	In Vitro Assessment of Phototoxicity of CAL-101 and	4006
9152-100254	CAL-244 Using BALB/c 3T3 Cell Line	4.2.3.0

Special Toxicology

Study#	Title	Module
590089	An Assessment of the Ability of IC489666 to Interfere with the Progression of a Staphylococcus Aureus Infection in a Rat Groin Abscess Model	4.2.3.7.2
IDELA-KLH-DNP	The Effect of p110-delta Specific Inhibitor IC489666 on the Antibody Response Against Dinitrophenyl (DNP) in Rats	4.2.3.7.2
IDELA-SRBC	The Effect of p110-delta Specific Inhibitors IC489666 and IC486924 on the Antibody Response Against Sheep Red Blood Cells (SRBC) in Rats	4.2.3.7.2
TX-312-2012	A 28-Day Oral Gavage Impurity Qualification Study of GS-1101 in the Sprague Dawley Rat	4.2.3.7.6
TX-312-2013	GS-567201, GS-606710, and GS-606709 Salmonella- E.Coli/Mammalian Microsome Reverse Mutation Assay	4.2.3.7.6
09N-U12-RR	Evaluation of Bone Marrow Recovery After Cyclophosphamide Administration and Impact of Oral Administration of CAL-101 in Male Sprague Dawley Rats	4.2.3.7.7
PC-312-2001	CAL-101: A Mechanistic Evaluation in Female Beagle Dogs on Inflammatory Effect in the Liver	4.2.3.7.7
PC-312-2005	GS-1101: A Mechanistic Evaluation in Female Beagle Dogs on Transaminase Elevation in the Intestine, Lymphoid Tissues, and Liver	4.2.3.7.7

This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

/s/

NATALIE E SIMPSON 04/03/2014

RAMADEVI GUDI 04/03/2014

HALEH SABER 04/03/2014

PHARMACOLOGY/TOXICOLOGY FILING CHECKLIST FOR NDA

NDA Number: 205858 Applicant: Gilead Sciences Inc. Stamp Date: Sept. 11, 2013

NDA Type: 505(b)(1); new molecular entity

Drug Name: Idelalisib (GS-1101)

On **<u>initial</u>** overview of the NDA application for filing:

	Content Parameter	Yes	No	Comment
1	Is the pharmacology/toxicology section organized in accord with current regulations and guidelines for format and content in a manner to allow substantive review to begin?	~		NDA is submitted in the eCTD format.
2	Is the pharmacology/toxicology section indexed and paginated in a manner allowing substantive review to begin?	~		Electronic submission
3	Is the pharmacology/toxicology section legible so that substantive review can begin?	~		
4	Are all required (*) and requested IND studies (in accord with 505 b1 and b2 including referenced literature) completed and submitted (carcinogenicity, mutagenicity, teratogenicity, effects on fertility, juvenile studies, acute and repeat dose adult animal studies, animal ADME studies, safety pharmacology, etc)?	~		All studies needed for this indication have been conducted. In addition, other studies (for example: fertility studies) have been conducted.
5	If the formulation to be marketed is different from the formulation used in the toxicology studies, have studies by the appropriate route been conducted with appropriate formulations? (For other than the oral route, some studies may be by routes different from the clinical route intentionally and by desire of the FDA).	~		Oral formulations were used in clinical and nonclinical studies.
6	Does the route of administration used in the animal studies appear to be the same as the intended human exposure route? If not, has the applicant <u>submitted</u> a rationale to justify the alternative route?	~		
7	Has the applicant <u>submitted</u> a statement(s) that all of the pivotal pharm/tox studies have been performed in accordance with the GLP regulations (21 CFR 58) <u>or</u> an explanation for any significant deviations?	~		
8	Has the applicant submitted all special studies/data requested by the Division during pre-submission discussions?	~		

PHARMACOLOGY/TOXICOLOGY FILING CHECKLIST FOR NDA

	Content Parameter	Yes	No	Comment
9	Are the proposed labeling sections relative to pharmacology/toxicology appropriate (including human dose multiples expressed in either mg/m2 or comparative serum/plasma levels) and in accordance with 201.57?	~		
10	Have any impurity – etc. issues been addressed? (New toxicity studies may not be needed.)	~		The Applicant has provided a justification (e.g. based on nonclinical studies) for the proposed specifications and the acceptability of the levels will be a review issue.
11	Has the applicant addressed any abuse potential issues in the submission?			Not Applicable
12	If this NDA is to support a Rx to OTC switch, have all relevant studies been submitted?			Not Applicable

IS THE PHARMACOLOGY/TOXICOLOGY SECTION OF THE APPLICATION FILEABLE? _____Yes____

If the NDA is not fileable from the pharmacology/toxicology perspective, state the reasons and provide comments to be sent to the Applicant.

Please identify and list any potential review issues to be forwarded to the Applicant for the 74day letter.

Reviewing Pharmacologist

Team Leader/Supervisor

Date

Date

This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

/s/

NATALIE E SIMPSON 09/27/2013

HALEH SABER 09/27/2013