CENTER FOR DRUG EVALUATION AND RESEARCH

APPLICATION NUMBER:

022474Orig1s007

CLINICAL PHARMACOLOGY AND BIOPHARMACEUTICS REVIEW(S)
1. BACKGROUND
On September 09, 2014, the sponsor submitted a labeling supplement to NDA 022474 (ella®, ulipristal acetate - UPA 30mg; S-07) and proposed revising the multiple sections including, WARNINGS AND PRECAUTIONS (section 5), ADVERS REACTIONS (section 6), DRUG INTERACTIONS (section 7), USE IN SPECIFIC POPULATIONS (section 8), CLINICAL PHARMACOLOGY (section 12), and NONCLINICL TOXICOLOGY (section 13) of the physician labeling. The proposed major changes pertain to pharmacodynamics (PD) interactions between UPA and progestin-containing hormonal contraceptive (HC), in vitro drug interaction potential with drug transporters, post-marketing experience in adolescents, and carcinogenicity in animal models. To support these changes, the sponsor submitted the followings: 1) the clinical study reports of PD interactions with the HCs; 2) the study reports of in vitro experiments of drug transporters; 3) the study reports of carcinogenicity and assay method validation in animals; 4) the tracked change and clean version of physician labeling. Two Information Requests (IR) were sent to the sponsor to request the annotated labeling (October 16, 2014) and to clarify the source supporting the label update (January 14, 2015). Subsequently, the sponsor submitted the responses on October 22, 2014 and January 20, 2015.

2. SUMMARY of REVIEW and RECOMMENDSTION:
This clinical pharmacology review pertains to drug interaction potential and additional PD information for ella: (1) PD interaction potential between ella® and HCs (see 2.1), (2) PD effects when ella® is used during the late follicular phase (see 2.2), and (3) inhibitory effect of UPA on drug transporters (see 2.3).

2.1 PD interaction potential between ella® and progestin-containing HCs
Given that UPA’s efficacy may be compromised by subsequent intake of a HC, the sponsor proposed adding a statement about a five-day dosing interval before initiating a HC in order to preserve the ability of ella® to delay ovulation in a woman seeking emergency contraception. This reviewer agrees that a probable or possible interaction between ella® and a progestin-containing HC can occur. In particular, the inhibitory effect of ella® on ovulation may be undermined when a progestin-containing
HC is co-administered. In addition, the PD interaction observed between ella® and a HC containing only desogestrel (DSG) suggests that a prior administration of ella® may compromise the contraceptive effect of HCs containing a progestin component.

The proposed labeling about a five-day dosing interval between ella® and a progestin containing HC and additional precautionary statement to prevent pregnancy after ella® and a HC intake is acceptable. In particular, when considering UPA’s efficacy duration (for at least 5 days in postponing follicular rupture when taken before peak of lutenizing hormone) and UPA and its active metabolite’s half-life (around 30 hours: 4–5 days after intake of ella® will reach more than 90% elimination of both), the recommendation of a five-day dosing interval is reasonable. However, this reviewer recommends the following revisions: 1) specify a progestin component of HC in the descriptions in relation to this PD interaction potential, 2) include a summary of PD interaction study results and move the information from section 12.3 (Pharmacokinetics) to section 12.2 Pharmacodynamics, and 3) minor revisions (wordings, headings, and cross-reference section numbers).

2.2 The PD effect of ella® in the later follicular phase of menstrual cycle

Based on the published reports, the sponsor proposed adding the PD information regarding the effect of ella® in postponing follicular rupture when taken at the late follicular phase. In this regard, a cross-comparison of UPA, levonorgestrel (LNG)-containing emergency contraceptive and placebo is proposed in section 12.2 Pharmacodynamics.

The current proposal is not acceptable because this comparative result was not derived from a well-designed clinical study to assess a rigorous efficacy comparison of ella® with the comparators. However, the PD data from the UPA arm may add a value. Therefore, the reviewer recommends that only the PD results of UPA are included in the physician labeling. In addition, ella® intake did not postpone the follicular ruptures when it was administered on the day of lutenizing hormone (LH) peak. This observation should be included in the same section (12.2).

2.3 In vitro interaction potential with drug transporters

The sponsor submitted two in vitro study reports to assess the inhibitory potential of UPA on efflux and to update transporters including BSEP, BCRP, OATP1B1, OATP1B3, OCT1, OAT1, OAT3, and OCT2. The screening study showed that UPA did not have a significant inhibition potential on all transporters at the tested concentrations. Additional in vitro study to determine the inhibition potential of UPA on BCRP suggested that UPA may have a clinical relevant interaction potential in the intestinal level which is anticipated after taking a dose of UPA (30 mg) as ella®. However, a clinically relevant drug interaction occurs unlikely considering its single dose treatment regimen.

Because no clinical relevant interactions are anticipated, this reviewer recommends that interaction potential of UPA on cytochrome P450 enzymes and transporters should be described in section 12.3 (Pharmacokinetics) instead of what the sponsor has proposed in section 7.3 (Effects of ella on Co-Administered Drugs).

3. THE INDIVIDUAL STUDIES
3.1 The PD interaction studies of ella® with a progestin containing HCs

(1) HRA2914-550 study

- **Title:** A prospective, randomized, double-blind parallel-arm, placebo controlled study to assess the effects on ovarian activity of a combined oral contraceptive pill when preceded by the intake of ellaOne® (UPA 30 mg) or placebo.

- **Objectives:** The primary objective was to compare the effects of mid-cycle initiation (known as "quick starting") of a combined oral contraceptive pill (COCP) on follicular growth and hormonal parameters after UPA 30mg or placebo intake. The secondary objective was to compare the effects of quick starting a COCP on menstrual bleeding patterns and tolerability after UPA 30mg or placebo intake.

- **Study scheme:** a double blind, randomized, placebo-controlled trial in healthy female subjects.

![Study scheme diagram](image)

- **Treatments:** Either one tablet of UPA 30 mg or placebo was administered to women with water on day 1 and one tablet of Microgynon 30° (30μg ethinyl estradiol / 150μg LNG) was administered once daily from day 2 for 21 consecutive days.

- **Major criteria of subject selection:**
 - 18-35 years old and BMI < 30 Kg/m2
 - Not at risk of pregnancy
 - No use of hormonal contraception method
 - Regular menstrual cycles
- Dominant follicle size > 13mm observed at day 18 (± 1 day) during the pretreatment period

Evaluation:
- Pharmacodynamics: Follicular growth using transvaginal ultrasonography (TUV) and hormonal parameters (progesterone, estradiol and FSH)
- Achievement of ovarian quiescence: Hoogland score ≤ 3 (follicular diameter and concentrations of estradiol and progesterone)
- Safety: Laboratory parameters, vital signs, occurrence of adverse events, vaginal bleeding pattern and TUV.

Results:

![Subject disposition diagram]

Cumulative incidence function (Quiescence)

Cumulative incidence function (Quiescence) – Per protocol population
The time to reach quiescence was similar between the UPA (ellaOne®) and the placebo groups. The median time to quiescence was 5 days for the UPA group and 6 days for the placebo group. Seventeen (17) subjects (70.8%) in the UPA group and 14 subjects (60.9%) in the placebo group reached quiescence on Day 7 of the COCP. For both groups, all subjects reached quiescence by Day 14 of the COCP period.

Descriptive statistics (mean±SD) for follicle and endocrine end points - Quiescence

<table>
<thead>
<tr>
<th>Population</th>
<th>Treatment</th>
<th>N</th>
<th>Peak diameter (mm)</th>
<th>Peak Estradiol (nmol/L)</th>
<th>Peak Progesterone (nmol/L)</th>
<th>Peak FSH (U/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAS population</td>
<td>ELLAONE®</td>
<td>24</td>
<td>17.48 (5.53)</td>
<td>0.3949 (0.1665)</td>
<td>1.55 (0.89)</td>
<td>5.20 (1.52)</td>
</tr>
<tr>
<td></td>
<td>PLACEBO</td>
<td>23</td>
<td>20.58 (8.48)</td>
<td>0.5187 (0.3836)</td>
<td>1.49 (0.91)</td>
<td>4.13 (1.10)</td>
</tr>
<tr>
<td>PP population</td>
<td>ELLAONE®</td>
<td>22</td>
<td>17.73 (5.72)</td>
<td>0.4144 (0.1597)</td>
<td>1.55 (0.92)</td>
<td>5.03 (1.47)</td>
</tr>
<tr>
<td></td>
<td>PLACEBO</td>
<td>23</td>
<td>20.58 (8.48)</td>
<td>0.5187 (0.3836)</td>
<td>1.49 (0.91)</td>
<td>4.13 (1.10)</td>
</tr>
<tr>
<td>Specificity population</td>
<td>ELLAONE®</td>
<td>24</td>
<td>17.48 (5.53)</td>
<td>0.3949 (0.1665)</td>
<td>1.55 (0.89)</td>
<td>5.20 (1.52)</td>
</tr>
<tr>
<td></td>
<td>PLACEBO</td>
<td>23</td>
<td>20.58 (8.48)</td>
<td>0.5187 (0.3836)</td>
<td>1.49 (0.91)</td>
<td>4.13 (1.10)</td>
</tr>
</tbody>
</table>

Cumulative incidence function (Ovulation) - PP population

Descriptive statistics (mean±SD) for follicle and endocrine end points - ovulation

<table>
<thead>
<tr>
<th>Population</th>
<th>Treatment</th>
<th>N</th>
<th>Peak diameter (mm)</th>
<th>Peak Estradiol (nmol/L)</th>
<th>Peak Progesterone (nmol/L)</th>
<th>Peak FSH (U/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAS population</td>
<td>ELLAONE®</td>
<td>13</td>
<td>18.75 (2.35)</td>
<td>0.7448 (0.2444)</td>
<td>11.40 (11.28)</td>
<td>3.85 (0.96)</td>
</tr>
<tr>
<td></td>
<td>PLACEBO</td>
<td>12</td>
<td>16.98 (1.70)</td>
<td>0.8016 (0.2422)</td>
<td>12.13 (6.62)</td>
<td>6.28 (2.64)</td>
</tr>
<tr>
<td>PP population</td>
<td>ELLAONE®</td>
<td>10</td>
<td>18.24 (1.35)</td>
<td>0.7433 (0.2573)</td>
<td>8.23 (9.22)</td>
<td>3.97 (1.02)</td>
</tr>
<tr>
<td></td>
<td>PLACEBO</td>
<td>12</td>
<td>16.98 (1.70)</td>
<td>0.8016 (0.2422)</td>
<td>12.13 (6.62)</td>
<td>6.28 (2.64)</td>
</tr>
<tr>
<td>Specificity population</td>
<td>ELLAONE®</td>
<td>12</td>
<td>18.78 (2.45)</td>
<td>0.7198 (0.2372)</td>
<td>12.17 (11.42)</td>
<td>3.92 (0.97)</td>
</tr>
<tr>
<td></td>
<td>PLACEBO</td>
<td>11</td>
<td>16.85 (1.71)</td>
<td>0.7556 (0.1915)</td>
<td>10.80 (5.03)</td>
<td>6.29 (2.77)</td>
</tr>
</tbody>
</table>

The rate of ovulation in both groups was comparable to the results of previous report (Westhoff et al. 2010). All subjects in the placebo group reached ovulation by COCP day 7, while UPA group did not reached ovulation until day 11. Although the majority of subjects in the UPA group (~90%) ovulated within the first week, most ovulations occurred after day 4 of COCP.
• Sponsor’s conclusion: These data indicate that there were no differences between UPA or placebo for the effect of quick-starting a COCP on follicular development. The intake of UPA 30mg has no clinically significant impact on reaching quiescence within 7-10 days after starting COCP.

Reviewer comments
 o ellaOne® (approved and marketed in EU) used in this study is same product as ella® available in the US.
 o The UPA group did not have any difference in the effect of LNG-containing COC on ovarian activity when compared with the placebo group.
 o The ovulation in the UPA group tended to be delayed when compared to that in the placebo group. However, the UPA group (33.3%) showed the ovulation rate similar to that observed in the placebo group (32.4%) and the majority of these subjects had reached ovulation within the first week after intake of UPA 30mg. It may imply that the inhibitory effect of ella® on ovulation can be reduced when COC is given after ella® intake.

(2) HRA2914-5008 study
 • Title: Prospective, randomized, cross-over, single-blind, placebo controlled study to assess the PD effects, pharmacokinetics (PK), safety and tolerability of one dose of 30mg UPA followed by the administration of 20 days of 75μg DSG.

 • Objectives: To compare the contraceptive effects (based on the occurrence of ovulation and cervical mucus characteristics) of the three following treatment regimens within the 21-day treatment period- UPA 30mg single dose followed by 75μg DSG per day for 20 days vs UPA 30mg single dose followed by one tablet of placebo per day for 20 days vs one tablet of placebo followed by 75μg DSG per day for 20 days

 • Study design and scheme: a randomized, cross-over, single-blind, placebo controlled study in healthy female subjects.
Subjects were randomized to receive either UPA (ellaOne®) or placebo 1, once the dominant follicle size was above or equal to 14 mm and below 16 mm. DSG (75μg) or placebo 2 was started the day after and taken once daily for 20 days.

- **Major criteria of subject selection:**
 - Healthy women: 18-35 years old and BMI < 30 kg/m²
 - Not at risk of pregnancy
 - No use of hormonal contraception method
 - Regular menstrual cycles

- **Evaluation:**
 - Assessment of the contraceptive effect using the status of follicular rupture on transvaginal ultrasonography, hormonal classification (progesterone), and cervical mucus classification.
 - Contraceptive effect was evaluated as a binary variable (success or failure) based on the occurrence of ovulation and cervical mucus characteristics over the 21-day period of DSG treatment.
 - PK: The PK parameters of ulipristal and active metabolite, 11-demethylated ulipristal, were compared between UPA+Placebo (PLB) and UPA+DSG groups. The plasma concentrations of etonogestrel, active metabolite of DSG, were compared before and 2 hours after intake of DSG PLB+DSG and UPA+DSG groups during the first five days of DSG administration.
 - Safety: laboratory parameters, vital signs, adverse events, and vaginal bleeding episodes.

Study scheme

- **Results:**
No contraceptive effect and logistic regression estimates (post-hoc population, all treatment cycles included)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>n</th>
<th>Rate</th>
<th>Lower</th>
<th>Upper</th>
<th>Predicted rate</th>
<th>Standard Error (SE)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPA+DSG</td>
<td>14</td>
<td>0.483</td>
<td>0.294</td>
<td>0.675</td>
<td>0.4814</td>
<td>0.1205</td>
<td>0.2622, 0.7080</td>
</tr>
<tr>
<td>UPA+PLB</td>
<td>20</td>
<td>0.690</td>
<td>0.492</td>
<td>0.847</td>
<td>0.7405</td>
<td>0.0998</td>
<td>0.5039, 0.8891</td>
</tr>
<tr>
<td>PLB+DSG</td>
<td>12</td>
<td>0.414</td>
<td>0.235</td>
<td>0.611</td>
<td>0.4444</td>
<td>0.1174</td>
<td>0.2370, 0.6732</td>
</tr>
</tbody>
</table>

* Covariates in the model: center, treatment; p = 0.1220

Cumulative percentage of events of ovulation in all treatment cycles

Cumulative percentage of events, mucus blockage
Estimated time to mucus blockage event.

With respect to PK parameters (C_{max} and AUC) of UPA and its metabolite (11-mono-demethylated UPA), there were no significant differences between the UPA+PLB and UPA+DSG treatments. In addition, etonogestrel concentrations measured during the first five days of DSG administration were not different between the UPA+DSG and PLB+DSG treatments.

- **Sponsor’s conclusion:** Intake of daily DSG immediately following UPA emergency contraception could compromise the contraceptive action of each individual component, likely due to competition at the site of the progesterone receptor. Such regimen is therefore not suitable for contraception, and precaution should be exercised when both drugs are used by a given woman. In order to preserve the ability of UPA to delay ovulation by at least five days in a woman seeking emergency contraception, a five-day dosing interval before initiating or resuming DSG contraception is recommended.

Reviewer’s comments:

- In the US, the DSG only oral contraceptive is not available, but LNG product (Micronor, norethindrone 0.35mg) as a progestosterone only oral contraceptive is still in the market.
- Administration of DSG only HC a day after UPA 30 intake appeared to compromise the contraceptive action of both components: The inhibitory effect of UPA on ovulation was reduced when UPA was taken with DSG only HC product compared to when UPA was given alone. The combination treatment (UPA+DSG) group showed a tendency to have a higher incidence of ovulation rate and a lower incidence and slower onset of mucus blockage compared to the DSG only treatment group (estimated median date to mucus blockage: 3-4 days vs 2 days).
- These results suggest that a DSG-only oral contraceptive following ella® can undermine its emergency contraceptive effect and co-medication of ella® may compromise the initial contraceptive effect of progestin only products.

(3) HRA2914-5009 report

- **Title:** Effect of initiation of oral contraceptive pills (combined or progestin only) on ovulation delay induced by UPA for emergency contraception

- **Objectives:** To assess the effect of initiation of daily DSG 75μg or daily ethinyl estradiol 30μg + LNG 150μg (combined oral contraceptive, COC) following mid-cycle UPA 30 mg on the incidence and timing of ovulation through the six days following UPA intake.
• **Method:**
 - The data utilized for this post-hoc analysis originated from two separate PD studies (HRA2914-550 and HRA2914-5008).
 - The primary aim was to estimate the proportion of cycles which resulted in ovulation in all groups within six days of treatment, evaluated by logistic regression in which the proportion of women that ovulated in each of the treatment groups (UPA+COC and UPA+DSG) was compared statistically to the proportion of ovulation in the UPA+placebo control group.
 - For the comparability of the data from the other studies, the dataset was restricted to subjects who received the COC treatment when the lead follicle was no greater than 16 mm.

• **Results:**

<table>
<thead>
<tr>
<th>Treatment</th>
<th>n/N</th>
<th>Measured Rate</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Predicted Rate</th>
<th>SE</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPA+COC</td>
<td>8/31</td>
<td>0.258</td>
<td>0.119</td>
<td>0.446</td>
<td>0.249</td>
<td>0.813</td>
<td>0.123</td>
<td>0.441</td>
</tr>
<tr>
<td>UPA+DSG</td>
<td>15/29</td>
<td>0.517</td>
<td>0.325</td>
<td>0.706</td>
<td>0.514</td>
<td>0.100</td>
<td>0.3235</td>
<td>0.7008</td>
</tr>
<tr>
<td>UPA+Placebo</td>
<td>3/29</td>
<td>0.103</td>
<td>0.022</td>
<td>0.274</td>
<td>0.101</td>
<td>0.056</td>
<td>0.0311</td>
<td>0.2804</td>
</tr>
</tbody>
</table>

Logistic regression of occurrence of ovulation (until Day 6)

<table>
<thead>
<tr>
<th>Contrast name</th>
<th>Estimate</th>
<th>SE</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>t_value</th>
<th>p_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPA+DSG vs UPA+Placebo</td>
<td>2.2476</td>
<td>0.7932</td>
<td>0.7900</td>
<td>3.7053</td>
<td>3.07</td>
<td>0.0029</td>
</tr>
<tr>
<td>UPA+COC vs UPA+Placebo</td>
<td>1.0802</td>
<td>0.7578</td>
<td>-0.4182</td>
<td>2.5666</td>
<td>1.44</td>
<td>0.1966</td>
</tr>
</tbody>
</table>

• **Sponsor’s conclusion:** UPA’s normal ability to delay ovulation for 6-8 days following intake is compromised by subsequent intake of a hormonal contraceptive, whether it is a combined oral COC or a pill containing only a progestin (DSG), presumably due to competition at the site of the progestin receptor.

Reviewer’s comments:
- The UPA+COC group showed a higher proportion of ovulation within the six days after intake of UPA than the UPA+Placebo group, but this difference was not statistically different. However, the effect of UPA to postpone ovulation is compromised significantly by intake of DSG only oral contraceptive (UPA+Placebo vs. UPA+DSG).
- This assessment demonstrates that the prevention effect of ella® on follicular rupture as a major mechanism of action for emergency contraception can be undermined by a subsequent administration of regular oral contraceptives. However, this result came from a cross-comparison of two separate clinical trials and the comparison between UPA+COC and UPA+Placebo did not reach a statistical significance (p=0.1546).

3.2 The effect of ella® in the late follicular phase
HRA2914-576: analysis report of pooled data of emergency contraception regimens
(Brache V1, Cochon L, Deniaud M, Croxatto HB Contraception 2013;88:611-8.)

- **Title:** Ulipristal acetate prevents ovulation more effectively than LNG- Analysis of pooled data from three randomized trials of emergency contraception regimens (Brache et al. 2013)

- **Data analysis method:** Raw data from three PD studies with similar methodology were pooled to allow direct comparison of UPA, LNG and LNG+meloxicam's ability to prevent ovulation when administered orally in the advanced follicular phase, with a leading follicle of ≥18 mm.

- **References:**
 - Croxatto et al. Pituitary-ovarian function following the standard LNG emergency contraceptive dose or a single 0.75-mg dose given on the days preceding ovulation. Contraception 2004;70:442–50.

- **Results:**

 | Proportion of unruptured dominant follicles 5 days after treatment intake according to LH status. |
 |---|----------------|------------------|-----------------|------------------|
 | Tx before LH surge (n=50) | Placebo n=48 | LNG n=48 | LNG + Meloxicam n=31 | Ulipristal acetate n=34 |
 | Tx after LH surge but before LH peak (n=10) | 16 | 12 | 9 | 8 |
 | Tx at LH peak (n=24) | 4.2% | 9.1% | 22.2% | 8.5% |

 Sponsor conclusion: Ovulation can still be interrupted by emergency contraceptives even when it is imminent. UPA is the most effective option at that time of the cycle because it is able to delay ovulation for at least five days in a higher proportion of women than LNG.

Reviewer’s comments:
- This assessment analyzed the results pooled from three separate exploratory studies. The studies had a limited number of subjects.
- The analysis showed that administration of UPA 30mg appears to be relatively more effective to prevent ovulation for at least 5 days following treatment in the late follicular stages (before LH surge and when it started to rise).
- However, UPA was not effective in postponing ruptures when administered on the day of LH peak.

(2) **PD study report of UPA**
This is a summary about the study of ella® used for above analysis report.
Immediate pre-ovulatory administration of 30 mg ulipristal acetate significantly delays follicular rupture

Study design
- A double-blind, crossover, randomized study
- 35 women
- UPA (30 mg) vs placebo cycle
- Serial blood sampling for LH, E2, and PG
- Follicular monitoring by ultrasound (before and for 5 days following treatment)
- Subgroups in relation to LH levels

Study results

3.3 Assessment of inhibitory potential of ella® on efflux and uptake transporters

(1) HRA2914-489: in vitro screening of efflux and uptake and efflux transporters

- **Study title**: Assessment of potential substrate and inhibitor of PGL4001 (UPA) of efflux (BCRP and BSEP) and uptake (OCT1, OCT2, OAT1, OAT3, OATP1B1 and OATP1B3) transporter

- **Method and results**: The uptake transporter substrate and inhibitory potential of ulipristal was evaluated in a cellular uptake assay using a transporter-specific probe substrate. The experimental conditions and results are summarized in the following table.
Assessment of potential substrate and inhibitor of ulipristal on efflux and uptake transporters

<table>
<thead>
<tr>
<th>Transporter</th>
<th>Tested UPA concentration</th>
<th>Cell system</th>
<th>Substrate and concentration</th>
<th>Results</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OATP1B1</td>
<td>0.5, 2, 10 μM</td>
<td>Transfected HEK293 cells</td>
<td>Atorvastatin 0.15 μM</td>
<td>Uptake ratio < 2.0</td>
<td>No substrate potential</td>
</tr>
<tr>
<td>OATP1B3</td>
<td>0.5, 2, 10 μM</td>
<td>Transfected HEK293 cells</td>
<td>Atorvastatin 0.15 μM</td>
<td>Uptake ratio < 2.0</td>
<td>No substrate potential</td>
</tr>
<tr>
<td>Inhibitor assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSEP</td>
<td>0.288–70 nM</td>
<td>BSEP vesicles</td>
<td>³H-taurocholic acid 1 μM</td>
<td>All tested inhibition < 50%</td>
<td>No significant inhibition</td>
</tr>
<tr>
<td>BCRP</td>
<td>4 μM</td>
<td>CPT-P1 cells</td>
<td>Cladribine 10 μM</td>
<td>% inhibition = 25.3%</td>
<td>No significant inhibition</td>
</tr>
<tr>
<td>OATP1B1</td>
<td>1 μM</td>
<td>Transfected HEK293 cells</td>
<td>Atorvastatin 0.15 μM</td>
<td>% inhibition = 14.1%</td>
<td>No significant inhibition</td>
</tr>
<tr>
<td>OATP1B3</td>
<td>1 μM</td>
<td>Transfected HEK293 cells</td>
<td>Atorvastatin 0.15 μM</td>
<td>% inhibition = 3.85%</td>
<td>No significant inhibition</td>
</tr>
<tr>
<td>OCT1</td>
<td>1 μM</td>
<td>Transfected HEK293 cells</td>
<td>1-Methyl-4-phenylpyridinium iodide (MMP⁺) 5μM</td>
<td>% inhibition = 1.27%</td>
<td>No significant inhibition</td>
</tr>
<tr>
<td>OCT2</td>
<td>0.07 μM</td>
<td>Transfected HEK293 cells</td>
<td>MMP⁺ 5μM</td>
<td>% inhibition = 6.88%</td>
<td>No significant inhibition</td>
</tr>
<tr>
<td>OAT1</td>
<td>0.07 μM</td>
<td>Transfected HEK293 cells</td>
<td>Para-aminohippurate (PAH) 10μM</td>
<td>No inhibition</td>
<td>No significant inhibition</td>
</tr>
<tr>
<td>OAT3</td>
<td>0.07 μM</td>
<td>Transfected HEK293 cells</td>
<td>Furosemide 5μM</td>
<td>No inhibition</td>
<td>No significant inhibition</td>
</tr>
</tbody>
</table>

Reviewer’s comments:
- The in vitro experimental system to assess the transporter substrate and inhibitory potential is acceptable.
- The control probe inhibitors showed a high inhibition potential on the transport of probe substrates.
- The tested concentrations of UPA were selected based on the guidences of two regulatory agencies (FDA and EMA) for in vitro transporter study. The tested UPA concentration (4μM, approximately one tenth of [I]₂) for the BCRP inhibitor assessment was determined based on the [I]₂ value (42.1μM) obtained after a studied dose for uterine fibroids (5mg per day). When considering dose of ella® (UPA 30mg) tablet for emergency contraception, the corresponding [I]₂ is about 250 μM according to the information provided by the sponsor. It indicates that higher ulipristal concentrations should be tested to assess an inhibitory potential of BCRP in the intestine level.
- The results showed that ulipristal does not have a significant inhibition potential on BSEP, BCRP, OATP1B1, OATP1B3, OCT1, OAT1, OAT3, or OCT2 at the tested UPA concentrations.
(2) HRA2914-490: assessment of inhibitory potential of ella[®] on BCRP transporter

- **Study title**: Determining the inhibition potential of UPA for BCRP transporter

- **Synopsis of study**:

<table>
<thead>
<tr>
<th>Study objective</th>
<th>To assess if ulipristal is a possible BCRP inhibitor using an IC<sub>50</sub> approach.</th>
</tr>
</thead>
</table>
| Experimental conditions | · Cell system: CPT-P1 cells (Puromycin was added to keep the selection pressure for P-glycoprotein knockdown).
· Substrate: cladribine 5 μM
· Control compound: Ko143
· Tested ulipristal concentration: 0.04 0.12, 0.4, 1.2, 4, 12, 25, and 40 μM
· A unidirectional manner (basolateral-to-apical) |
| Results | Effect of UPA on BCRP |
| Sponsor conclusion | UPA showed inhibitory effect on BCRP under current test conditions with an IC₅₀ value of 8.92 μM. When used for emergency contraception as ella[®] tablet containing UPA 30mg, the corresponding [I]₂ is about 250 μM. Because the IC₅₀ of UPA is 8.92 μM, the calculated [I]₂/IC₅₀ (250 μM / 8.92 μM) is about 28. The clinical relevance of this observation needs to be evaluated in the context of a single dose intake. |

Reviewer comments:
- The control inhibitor, Ko143, showed an potent inhibition on the transport of probe substrate, cladribine.
- The various concentrations of UPA were tested. The concentration anticipated in the intestine after taking Ella[®] was considered. The in vitro experimental system to assess an inhibitory potential of ulipristal on BCRP are acceptable.
- Ulipristal acetate showed a concentration-dependent inhibitory potency on the BCRP transport activity of cladribine with an IC₅₀ value of 8.92 μM.

Reference ID: 3702704
Given that the $[I]_2$ is about 250μM after taking ella® tablet, the calculated value of $[I]_2/IC_{50}$ appeared to be higher than 10, which indicates the clinical relevant interaction potential (FDA DDI guidance). However, clinically relevant drug interaction is unlikely anticipated when considering the relative inhibitory potency of ulipristal on BCRP and its single dose treatment regimen.
Based on above findings, the proposed label updates can be reconstructed as follows:

<table>
<thead>
<tr>
<th>Proposal from the sponsor</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGHLIGHTS OF PRESCRIBING INFORMATION</td>
<td></td>
</tr>
<tr>
<td>WARNINGS AND PRECAUTIONS</td>
<td></td>
</tr>
<tr>
<td>• ella is not indicated for termination of an existing pregnancy. Exclude pregnancy before administering. (5.1)</td>
<td></td>
</tr>
<tr>
<td>• Subsequent acts of intercourse should be protected by a reliable barrier method until next menstrual period. If a woman wishes to use hormonal contraception, she can do so no sooner than 5 days after intake of ella. (5.5)</td>
<td></td>
</tr>
<tr>
<td>• Ectopic pregnancy:</td>
<td></td>
</tr>
</tbody>
</table>

FULL PRESCRIBING INFORMATION

5.5 Fertility Following Use

A rapid return of fertility is likely following treatment with *ella* for emergency contraception;... *(b) (4)*

After use of *ella*, a reliable barrier method of contraception should be used with subsequent acts of intercourse that occur in that same menstrual cycle. Because *ella* and the progestin component of hormonal contraception both bind to the progesterone receptor, using them together could reduce their contraceptive effect. After using *ella*, if a woman wishes to use hormonal contraception, she should do so no sooner than 5 days after the intake of *ella*, and she should use a reliable barrier method until the next menstrual period. *see Drug Interactions (7.1 and 7.3) and Pharmacodynamics (12.2)* *(b) (4)*
7.1 Changes in Emergency Contraceptive Effectiveness Associated with Co-Administration of Other Products

Drugs or herbal products that……..

Hormonal contraceptives: progestin-containing contraceptives may impair the ability of ella to delay ovulation [see Warnings and Precautions (5.5)]

Avoid co-administration of ella and hormonal contraceptives. If a woman wishes to use hormonal contraception after the intake of ella, she should do so no sooner than 5 days afterwards, and she should use a reliable barrier method until the next menstrual period.

7.3 Effects of ella on Co-Administered Drugs

In vitro studies demonstrated that ella does not induce or inhibit the activity of cytochrome P450 enzymes.

P-glycoprotein (P-gp) transporters: *In vitro* data indicate that ulipristal may be an inhibitor of P-gp at clinically relevant concentrations. Thus, co-administration of ulipristal acetate and P-gp substrates (e.g., dabigatran etexilate, digoxin) may increase the concentration of P-gp substrates. *In vivo* data suggest that ulipristal acetate 10 mg does not affect P-gp transporters. However, there was no in vivo drug interaction study between ulipristal acetate 30 mg and P-gp transporters [see Pharmacokinetics (12.3)].

Hormonal contraceptives: ella may impact the effect of hormonal contraceptives.

Therefore, if a woman wishes to use hormonal contraception after using ella, subsequent acts of intercourse should be protected by a reliable barrier method until the next menstrual period [see Warnings and Precautions (5.5) and Pharmacodynamics (12.2)]

BCRP (Breast Cancer Resistance Protein) transporters: *In vitro* data indicate that ulipristal acetate may be an inhibitor of BCRP at the intestinal level. The effects of ella on BCRP transporters have not been studied.

Reference ID: 3702704
Proposal

<table>
<thead>
<tr>
<th>12 CLINICAL PHARMACOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2 Pharmacodynamics</td>
</tr>
</tbody>
</table>

Ulipristal acetate ……

The pharmacodynamics of ulipristal acetate depends on the timing of administration in the menstrual cycle. Administration in the mid-follicular phase causes inhibition of folliculogenesis and reduction of estradiol concentration.

Recommendation

<table>
<thead>
<tr>
<th><Acceptable></th>
</tr>
</thead>
</table>

Pharmacodynamic data show that administration of ella in the late follicular phase, before the luteinizing hormone surge, postponed follicular rupture for at least 5 days in all (100%) of 8 subjects who took ella before the luteinizing hormone (LH) surge and 11 (79%) of 14 subjects who took ella immediately before ovulation (when LH has already started to rise). However, treatment was not effective in postponing follicular rupture when administered on the day of LH peak.

<Deletion of the comparative description, and rephrased with only the result of ella>

Pharmacodynamic data show that administration of ella to 34 women in the late follicular phase, postponed follicular rupture for at least 5 days in all (100%) of 8 subjects who took ella before the luteinizing hormone (LH) surge and 11 (79%) of 14 subjects who took ella immediately before ovulation (when LH has already started to rise). However, treatment was not effective in postponing follicular rupture when administered on the day of LH peak.

<Moved from the section 12.3 and rephrased with concrete data from the supporting study report>

Effects of Hormonal Contraceptives after ella intake:

When a combined oral contraceptive pill (COC) containing ethinyl estradiol 30 µg + levonorgestrel 150µg was started the day after ella intake during the follicular phase, ella did not interfere with the COC’s ability to induce ovarian quiescence, and the incidence of ovulation was similar between the group who received ella plus the COC and the group who received a placebo plus the COC. [see Warnings and Precautions (5.5) and Drug Interactions (7.3)].

The initiation of a desogestrel 75 µg “progestin-only pill” the day after ella intake during the follicular phase was associated with a higher incidence of ovulation in the six days following ella intake compared to an ella-only treatment group, and a relatively slower onset (3 to 4 days) of thickened cervical mucus compared to a group given desogestrel without prior ella intake (2 days), suggesting an effect of prior use of ella on the ability of desogestrel to inhibit mucus permeability. [See Warnings and Precautions (5.5) and Drug Interactions (7.1; 7.3)].
Proposal

12 CLINICAL PHARMACOLOGY

12.3 Pharmacokinetics

Drug interactions

………………

P-glycoprotein (P-gp) transporters: When a single 60 mg dose of fexofenadine, a substrate of P-gp glycoprotein, was administered 1.5 hours after the administration of a single 10 mg dose of ulipristal acetate, there was no increase in C_{max} or AUC of fexofenadine.

Hormonal contraception: When a combined oral contraceptive pill (COCP) containing ethinyl estradiol 30 µg + levonorgestrel 150 µg was started the day after *ella* intake during the follicular phase, *ella* did not interfere with the COCP’s ability to induce ovarian quiescence, but ovulation occurred later in the cycle in some women. [see Warnings and Precautions (5.5) and Drug Interactions (7.3)].

The initiation of a desogestrel 75µg-only pill the day after *ella* intake during the follicular phase was associated with a higher incidence of ovulation in the five days following *ella* intake and a slower onset of mucus blockage compared to desogestrel without prior *ella* intake, suggesting an effect of prior use of *ella* on the ability of desogestrel to inhibit mucus permeability. [see Warnings and Precautions (5.5) and Drug Interactions (7.1; 7.3)].

Recommendation

* <Moved from the section 7.3. >
* In vitro studies demonstrated that *ella* does not induce or inhibit the activity of cytochrome P450 enzymes.

* <Reconstructed with the parts in the section 7.3 and addition of no clinical relevance>

P-glycoprotein (P-gp) transporter: *In vitro* data indicate that ulipristal may be an inhibitor of P-gp at clinically relevant concentrations. When a single 60 mg dose of fexofenadine, a substrate of P-gp glycoprotein, was administered 1.5 hours after the administration of a single 10 mg dose of ulipristal acetate, there was no increase in C_{max} or AUC of fexofenadine.

Breast Cancer Resistance Protein (BCRP) transporter: *In vitro* data indicate that ulipristal acetate may be an inhibitor of BCRP at the intestinal level. The effects of *ella* on P-gp and BCRP transporters are unlikely to have any clinical consequences when considering *ella*’s single dose treatment regimen, although there was no *in vivo* drug interaction study between ulipristal acetate 30 mg and substrates of P-gp and BCRP transporters.

* <Moved to the section 12.2>
5. **REFERENCE**

- Croxatto et al. Pituitary-ovarian function following the standard LNG emergency contraceptive dose or a single 0.75-mg dose given on the days preceding ovulation. Contraception 2004;70:442–50.
This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

/s/

JIHONG SHON
02/13/2015

MYONG JIN KIM
02/13/2015