APPLICATION NUMBER:

205525Orig1s000

PHARMACOLOGY REVIEW(S)
FROM: David B. Joseph
Lead Pharmacologist

DATE: June 28, 2016

SUBJECT: NDA 205,525 (SD # 4 dated June 1, 2015)

Sponsor: Insys Therapeutics Inc.

Drug Product: SYNDROS (dronabinol oral solution)

Comments:

I concur with Dr. Cai’s recommendations related to approvability and labeling.

The Sponsor previously agreed to conduct the following juvenile animal studies to support the pediatric development program for SYNDROS, as stated in the Agency’s letter which confirmed agreement to the Sponsor’s iPSP (letter dated May 19, 2015 under IND 75,228):

1. 28-day, daily, repeat-dose, oral gavage dose-range finding study to determine doses in 3-month repeat dose juvenile toxicity study

2. Three-month repeat dose toxicity and toxicokinetic study in juvenile rats with a 28-day recovery period

These studies will be conducted in neonatal rats.

The expected time of initiation for both of these studies has been substantially delayed, relative to the timelines established in the iPSP. Therefore, these studies are recommended as PMRs (post-marketing requirements) to support approval of this NDA.

Since the approval of Marinol (dronabinol) Capsules in 1985, reports on the developmental effects of cannabinoids in humans and animals have appeared in literature. Several publications of studies in rats indicate a potential for neurocognitive impairment and alterations in behavior following prenatal or perinatal exposure to delta-9-THC (dronabinol) (Campolongo et al., Addict Biol 12: 485–495, 2007; Trezza et al., Psychopharmacology (Berl) 198: 529-537, 2008; Silva et al., Neurotoxicol and Teratol 34: 63-71, 2012). Although the label for the reference product (Marinol) does not indicate that postnatal developmental effects were observed in animal studies, it is likely that the pre-/postnatal developmental study that supported the approval of Marinol used
methods that were inadequate for assessing neurocognitive impairment or other subtle signs of developmental neurotoxicity. Given the published data which indicates a potential for developmental neurotoxicity, it is recommended that a pre-/postnatal developmental toxicology study in rats be conducted as a PMR. This study is needed to provide adequate information for the label about the risk of developmental neurotoxicity following prenatal exposure to dronabinol.

For labeling subsection 8.1 (Pregnancy), the Agency requested the Sponsor to include a summary of the published animal data related to neurodevelopmental effects following prenatal or perinatal exposure to dronabinol. The Sponsor provided this addition to the Pregnancy subsection in their amendment dated June 23, 2016. The Sponsor’s proposed addition appears to be adequately supported by the available publications, and is adequate for conveying the risk. Additional review of the supporting literature will be conducted in the future when the label is revised with the inclusion of the requested pre-/postnatal developmental study in rats.

Recommendations:

There are no nonclinical issues which preclude the approval of SYNDROS. However, the following studies should be conducted as PMRs.

1. 28-day, daily, repeat-dose, oral gavage dose-range finding study to determine doses in a 3-month repeat dose juvenile toxicity study

2. Three-month repeat dose toxicity and toxicokinetic study in juvenile rats with a 28-day recovery period

3. Pre-/postnatal developmental toxicology study in rats

David B. Joseph, Ph.D. Date
Lead Pharmacologist
Division of Gastroenterology and Inborn Errors Products
cc:
NDA 205,525
DGIEP
DGIEP/PM
DGIEP/D. Joseph
DGIEP/F. Cai
DGIEP/A. Mulberg
This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

/s/

DAVID B JOSEPH
06/28/2016
PHARMACOLOGY/TOXICOLOGY NDA REVIEW AND EVALUATION

Application number: 205,525
Supporting document/s: 4
Applicant's letter date: June 1, 2015
CDER stamp date: June 1, 2015
Product: SYNDROS (dronabinol oral solution)
Indication: Treatment of nausea and vomiting associated with cancer chemotherapy in patients who have failed to respond adequately to conventional antiemetic treatments, and treatment of anorexia associated with weight loss in patients with AIDS
Applicant: Insys Therapeutics Inc. Chandler, AZ
Review Division: Division of Gastroenterology and Inborn Errors Products
Reviewer: Fang Cai, PhD
Supervisor/Team Leader: David B. Joseph, PhD
Division Director: Donna Griebel, MD
Project Manager: Maureen Dewey

Disclaimer

Except as specifically identified, all data and information discussed below and necessary for approval of NDA 205,525 are owned by Insys Therapeutics Inc. or are data for which Insys Therapeutics Inc. has obtained a written right of reference. Any information or data necessary for approval of NDA 205,525 that Insys Therapeutics Inc. does not own or have a written right to reference constitutes one of the following: (1) published literature, or (2) a prior FDA finding of safety or effectiveness for a listed drug, as reflected in the drug’s approved labeling. Any data or information described or referenced below from reviews or publicly available summaries of a previously approved
application is for descriptive purposes only and is not relied upon for approval of NDA 205,525.
TABLE OF CONTENTS

1 EXECUTIVE SUMMARY..5
 1.1 INTRODUCTION ..5
 1.2 BRIEF DISCUSSION OF NONCLINICAL FINDINGS ...5
 1.3 RECOMMENDATIONS ..5

2 DRUG INFORMATION ...10
 2.1 DRUG ...10
 2.2 RELEVANT INDs, NDAs, BLAs AND DMFs ...11
 2.3 DRUG FORMULATION ...11
 2.4 COMMENTS ON NOVEL EXCIPIENTS ..12
 2.5 COMMENTS ON IMPURITIES/DEGRADANTS OF CONCERN14
 2.6 PROPOSED CLINICAL POPULATION AND DOSING REGIMEN17
 2.7 REGULATORY BACKGROUND ..18

3 STUDIES SUBMITTED ...18
 3.1 STUDIES REVIEWED ..18
 3.2 STUDIES NOT REVIEWED ...18
 3.3 PREVIOUS REVIEWS REFERENCED ...18

4 PHARMACOLOGY ...18

5 PHARMACOKINETICS/ADME/TOXICOKINETICS ...18

6 GENERAL TOXICOLOGY ..18
 6.1 SINGLE-DOSE TOXICITY ..18
 6.2 REPEAT-DOSE TOXICITY ...18

7 GENETIC TOXICOLOGY...18

8 CARCINOGENICITY ...19

9 REPRODUCTIVE AND DEVELOPMENTAL TOXICOLOGY ...19

10 SPECIAL TOXICOLOGY STUDIES ..19

11 INTEGRATED SUMMARY AND SAFETY EVALUATION ..19

12 APPENDIX/ATTACHMENTS ..21
Table of Tables

Table 1: Composition of SYNDROS ...12
Table 2: Estimated Maximum Daily Intake of Excipients in SYNDROS13
Table 3: Dronabinol Impurity Specifications for Drug Substance15
Table 4: Proposed Acceptance Criteria of Impurities in Drug Product16
1 Executive Summary

1.1 Introduction

SYNDROS is a new liquid formulation of dronabinol intended for oral delivery. It contains synthetic delta-9-tetrahydrocannabinol (Δ9-THC), the same active ingredient as in Marinol® Capsules. The proposed indications are treatment of anorexia associated with weight loss in patients with AIDS, and treatment of nausea and vomiting associated with cancer chemotherapy in patients who have failed to respond adequately to conventional antiemetic treatments (adults only for both indications).

1.2 Brief Discussion of Nonclinical Findings

SYNDROS was submitted under a 505(b)(2) New Drug Application, with Marinol® Capsules as the reference drug. The Sponsor did not conduct nonclinical studies to support clinical testing or submission of a marketing application, nor did the Agency request such studies. However, the Sponsor has conducted comparative PK studies in humans with SYNDROS and Marinol® Capsules, thereby establishing a scientific bridge to the reference drug. Thus, the nonclinical safety assessment was limited to the excipients and impurities in the drug substance and drug product. The submitted information was sufficient to provide a reasonable assurance of safety for the excipients and impurities.

1.3 Recommendations

1.3.1 Approvability

From a nonclinical viewpoint, there are no approvability issues.

1.3.2 Additional Nonclinical Recommendations

The labeling should be revised as recommended below.

1.3.3 Labeling

Established Pharmacologic Class (HIGHLIGHTS)

The Sponsor’s proposed EPC (established pharmacologic class) text phrase in the Highlights of Prescribing Information is “cannabinoid”, which is the EPC (FDA) text phrase listed in the official EPC list (eList). Therefore, the proposed EPC text phrase is acceptable.

Sponsor’s Proposed Version:
8.1 Pregnancy

Risk Summary

Major birth defects and miscarriage during clinically recognized pregnancies.

Clinical Considerations

suggest that dronabinol during pregnancy, whether for recreational or medicinal purposes, should be avoided.

Animal Data

Reproduction studies with dronabinol have been performed in mice at 15 to 450 mg/m², equivalent to 0.2 to 5 times maximum recommended human dose (MRHD) of 90 mg/m²/day in cancer patients or 1 to 30 times MRHD of 15 mg/m²/day in AIDS patients, and in rats at 74 to 295 mg/m² (equivalent to 0.8 to 3 times MRHD of 90 mg/m² in cancer patients or 5 to 20 times MRHD of 15 mg/m²/day in AIDS patients). These studies have revealed no evidence of teratogenicity due to dronabinol. At these dosages in mice and rats, dronabinol decreased maternal weight gain and number of viable pups and increased fetal mortality and early resorptions. Such effects were dose dependent and less apparent at lower doses which produced less maternal toxicity.

Evaluation:

The proposed Pregnancy subsection includes the same animal data that appears in the label for Marinol® Capsules (Pregnancy subsection), but was written to comply with the PLLR format (21 CFR 201.57 and the FDA guidance for industry, “Pregnancy, Lactation, and Reproductive Potential: Labeling for Human Prescription Drug and Biological Products-Content and Format” (June 2015)).
However, in the proposed labeling, the animal to human dose ratios were calculated using the MRHD for Marinol in cancer patients (90 mg/m²/day) and AIDS patients (estimated as 15 mg/m²/day based on 20 mg administered to a 50-kg patient), instead of using the respective MRHDs for SYNDROS in cancer patients (76.5 mg/m²/day) and AIDS patients (17 mg/day).

Thus, we recommend the addition of an explanatory paragraph at the beginning of the Animal Data, to indicate the bioavailability difference between SYNDROS and the reference product, Marinol (see Clinical Pharmacology review by Dr. Sandhya Apparaju), and the rationale for using the Marinol MRHDs for calculation of animal to human dose multiples.

The recommended revisions to this subsection were developed in collaboration with the Maternal Health team (Carol Kasten and Tamara Johnson).

Recommended Version:

8.1 Pregnancy

Risk Summary

Major birth defects and miscarriage clinically recognized pregnancies.

Clinical Considerations

suggest that during pregnancy, whether for recreational or medicinal purposes, should be avoided.

Animal Data

The recommended dose ranges for SYNDROS in cancer and AIDS patients are designed to achieve the same systemic exposure ranges as with the recommended dose ranges for dronabinol capsules. Therefore, the animal to human dose multiples,
as shown below, are based on the MRHDs (maximum recommended human doses) for dronabinol capsules, instead of the MRHDs for SYNDROS which are 15% lower. This approach for dose comparison between animals and humans is supported by the demonstrated difference in dronabinol bioavailability between SYNDROS and dronabinol capsules.

Reproduction studies with dronabinol have been performed in mice at 15 to 450 mg/m², equivalent to 0.2 to 5 times the MRHD of 90 mg/m²/day (dronabinol capsules) in cancer patients or 1 to 30 times the MRHD of 15 mg/m²/day (dronabinol capsules) in AIDS patients, and in rats at 74 to 295 mg/m² (equivalent to 0.8 to 3 times the MRHD of 90 mg/m² in cancer patients or 5 to 20 times the MRHD of 15 mg/m²/day in AIDS patients). These studies have revealed no evidence of teratogenicity due to dronabinol. At these dosages in mice and rats, dronabinol decreased maternal weight gain and number of viable pups and increased fetal mortality and early resorptions. Such effects were dose dependent and less apparent at lower doses which produced less maternal toxicity.

Sponsor’s Proposed Version:

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

In 2-year carcinogenicity evidence of carcinogenicity at doses up to 50 mg/kg/day, 20 times the maximum recommended human dose on a body surface area basis.

Dronabinol was not genotoxic in the Ames tests, the in vitro chromosomal aberration test in Chinese hamster ovary cells, and the in vivo mouse micronucleus test. However, produced a weak positive response in a sister chromatid exchange test in Chinese hamster ovary cells.

In a long-term study (77 days) in rats, oral administration of dronabinol at doses of 30 to 150 mg/m², equivalent to 0.3 to 1.5 times maximum recommended human dose (MRHD) of 90 mg/m²/day in cancer patients or 2 to 10 times MRHD of 15 mg/m²/day in AIDS patients, reduced ventral prostate, seminal vesicle and epididymal weights and
caused a decrease in seminal fluid volume. Decreases in spermatogenesis, number of developing germ cells, and number of Leydig cells in the testis were also observed. However, sperm count, mating success and testosterone levels were not affected. The significance of these animal findings in humans is not known.

Evaluation:

The proposed subsection 13.1 includes the animal to human dose ratios for the carcinogenicity studies were calculated using the MRHD for Marinol in AIDS patients (estimated as 15 mg/m²/day based on 20 mg administered to a 50-kg patient), instead of using the MRHD for SYNDROS in AIDS patients (17 mg/day). Similarly, the animal to human dose ratios for the rat fertility study were calculated using the MRHDs for Marinol in cancer and AIDS patients. At the beginning of this proposed subsection, the Sponsor included the following statements:

Thus, we recommend to replace these statements with a paragraph to indicate the bioavailability difference between SYNDROS and the reference product, Marinol (see Clinical Pharmacology review by Dr. Sandhya Apparaju), and the rationale for using the Marinol MRHD in AIDS patients for calculation of animal to human dose multiples.

Based on the Agency's indication that no drug-related tumors were observed in this study. Dr. Abby Jacobs, Associate ODE Director for Pharmacology/Toxicology, concurs with this revision.

Recommended Version:

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

The recommended dose ranges for SYNDROS in cancer and AIDS patients are designed to achieve the same systemic exposure ranges as with the recommended dose ranges for dronabinol capsules. Therefore, the animal to human dose multiples for carcinogenicity studies, as shown below, are based on the MRHD (maximum recommended human dose) for dronabinol capsules in AIDS patients, instead of the MRHD for SYNDROS which is 15% lower. This approach for dose comparison
between animals and humans is supported by the demonstrated difference in dronabinol bioavailability between SYNDROS and dronabinol capsules. The animal to human dose multiples for the fertility study in rats, as shown below, are based on the MRHDs for dronabinol capsules in cancer or AIDS patients.

In 2-year carcinogenicity studies, there was no evidence of carcinogenicity in rats at doses up to 50 mg/kg/day dronabinol (approximately 20 times the MRHD for dronabinol capsules in AIDS patients on a body surface area basis) or in mice at doses up to 500 mg/kg/day (approximately 100 times the MRHD for dronabinol capsules in AIDS patients on a body surface area basis).

Dronabinol was not genotoxic in the Ames tests, the in vitro chromosomal aberration test in Chinese hamster ovary cells, and the in vivo mouse micronucleus test. However, dronabinol produced a weak positive response in a sister chromatid exchange test in Chinese hamster ovary cells.

In a long-term study (77 days) in rats, oral administration of dronabinol at doses of 30 to 150 mg/m², equivalent to 0.3 to 1.5 times the MRHD of 90 mg/m²/day (dronabinol capsules) in cancer patients or 2 to 10 times the MRHD of 15 mg/m²/day (dronabinol capsules) in AIDS patients, reduced ventral prostate, seminal vesicle and epididymal weights and caused a decrease in seminal fluid volume. Decreases in spermatogenesis, number of developing germ cells, and number of Leydig cells in the testis were also observed. However, sperm count, mating success and testosterone levels were not affected. The significance of these animal findings in humans is not known.

2 Drug Information

2.1 Drug

CAS Registry Number (Optional): 6465-30-1

Generic Name: Dronabinol

Code Name: N/A

Chemical Name: (6aR,10aR)-6a,7,8,10a-Tetrahydro-6,6,9-trimethyl-3-penty1-6H-dibenzo[b,d]-pyran-1-ol

Molecular Formula/Molecular Weight: C_{21}H_{30}O_{2} / 314.46 g/mole

Structure:
Pharmacologic Class: cannabinoid

2.2 Relevant INDs, NDAs, BLAs and DMFs

IND 75,228
NDA 18,651 (Marinol® (dronabinol) Capsules)
ANDA 78,501 (Dronabinol Capsules)
DMF (b) (4)

2.3 Drug Formulation

SYNDROS is a clear pale yellow to brown solution containing dronabinol at a concentration of 5 mg/mL (4.25 mg/0.85 ml). The inactive ingredients include butylated hydroxyanisole, sucralose, methyl paraben, propyl paraben, dehydrated alcohol (50% w/w), polyethylene glycol 400, propylene glycol, and water. The quantitative and qualitative composition of the drug product is presented in the Sponsor's table below.
Table 1: Composition of SYNDROS

<table>
<thead>
<tr>
<th>Component</th>
<th>Quality Standard</th>
<th>Function</th>
<th>Composition</th>
<th>mg/mL³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dronabinol</td>
<td>USP</td>
<td>Active Ingredient</td>
<td>0.541%</td>
<td>5.00</td>
</tr>
<tr>
<td>Butylated hydroxyanisole (BHA)</td>
<td>NF</td>
<td></td>
<td>0.010%</td>
<td>0.09</td>
</tr>
<tr>
<td>Sucralose</td>
<td>NF</td>
<td>Sweetener</td>
<td>0.050%</td>
<td>0.46</td>
</tr>
<tr>
<td>Methyl paraben</td>
<td>NF</td>
<td>Preservative</td>
<td>0.020%</td>
<td>0.18</td>
</tr>
<tr>
<td>Propyl paraben</td>
<td>NF</td>
<td>Preservative</td>
<td>0.020%</td>
<td>0.18</td>
</tr>
<tr>
<td>PEG 400</td>
<td>NFᵇ</td>
<td>Co-solvent</td>
<td>12.00%</td>
<td>110.91</td>
</tr>
<tr>
<td>Propylene glycol</td>
<td>USP</td>
<td>Co-solvent</td>
<td>5.500%</td>
<td>50.83</td>
</tr>
<tr>
<td>Water</td>
<td>USP</td>
<td>Solvent/Diluent</td>
<td>31.859%</td>
<td>294.45</td>
</tr>
<tr>
<td>Dehydrated alcohol</td>
<td>USP</td>
<td>Co-solvent</td>
<td>QS to 100.000%</td>
<td>QS to 1.00 mL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(corresponds to about 50.000%)</td>
<td>(corresponds to about 462.11 mg)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>100.000%</td>
<td>1.00 mL</td>
</tr>
</tbody>
</table>

2.4 Comments on Novel Excipients

The excipients present in the Sponsor's formulation are all present in oral drug formulations previously approved by the FDA. The table below provides an estimate of the maximum daily intake of each excipient, based on maximum daily ingestion of 124 mg/day (24.8 mL/day) SYNDROS (the estimated maximum daily dose in cancer patients with an assumed body surface area of 1.62 m² and an assumed bodyweight of 60 kg). The table also shows the maximum daily doses from approved oral drug products for some of the excipients, as determined from information in the internal FDA Inactive Ingredient Database.
Table 2: Estimated Maximum Daily Intake of Excipients in SYNDROS

<table>
<thead>
<tr>
<th>Inactive Ingredients</th>
<th>Concentration (mg/mL)</th>
<th>Maximum Daily Dose from SYNDROS (mg) *</th>
<th>Maximum Daily Dose in approved products for oral administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butylated hydroxyanisole (BHA)</td>
<td>0.09</td>
<td>2.2</td>
<td>1.5 mg</td>
</tr>
<tr>
<td>Sucralose</td>
<td>0.46</td>
<td>11.4</td>
<td>undetermined</td>
</tr>
<tr>
<td>Methyl paraben</td>
<td>0.18</td>
<td>4.5</td>
<td>undetermined</td>
</tr>
<tr>
<td>Propyl paraben</td>
<td>0.18</td>
<td>4.5</td>
<td>7.2 mg</td>
</tr>
<tr>
<td>PEG 400</td>
<td>110.91</td>
<td>2750.6</td>
<td>11818.8 mg</td>
</tr>
<tr>
<td>Propylene glycol</td>
<td>50.83</td>
<td>1260.6</td>
<td>undetermined</td>
</tr>
<tr>
<td>Dehydrated alcohol</td>
<td>462.11</td>
<td>11,460.3 (equivalent to 14.5 mL)</td>
<td>11 ml</td>
</tr>
</tbody>
</table>

*Estimated maximum daily intake of the excipients was calculated based on a maximum daily dose of 24.8 mL of SYNDROS.

The estimated maximum daily intakes for propyl paraben and PEG 400 from SYNDROS are lower than the maximum daily doses from approved oral drug products. In addition, the estimated maximum daily dose of methyl paraben (4.5 mg) is markedly lower than the maximum potency (50 mg) in oral drug products listed in the FDA Inactive Ingredient Database. Therefore, there is no safety concern for these excipients. However, the estimated maximum daily intakes for BHA (2.2 mg) and dehydrated alcohol (14.5 mL) from SYNDROS are slightly higher than the maximum daily doses from approved oral drug products. In addition, the estimated maximum daily doses of sucralose (11.4 mg) and propylene glycol (1260.6 mg) exceed the maximum potencies in the FDA Inactive Ingredient Database (5.9 and 148.31 mg, respectively). Therefore, safety assessment of the estimated maximum daily doses of BHA, sucralose, propylene glycol, and dehydrated alcohol is provided below.

Butylated hydroxyanisole (BHA) is classified as GRAS (Generally Recognized As Safe) for use as a direct food additive (preservative) in food for human consumption (21 CFR 172.110) and for use as a chemical preservative in food for human consumption (21 CFR 182.3169). The Joint FAO/WHO Expert Committee on Food Additives designated the ADI (acceptable daily intake) for BHA as 0-0.5 mg/kg bodyweight in 1999 (http://www.inchem.org/documents/jecfa/jecmono/v042je23.htm). The maximum daily dose of BHA in patients treated with SYNDROS is estimated to be 2.2 mg, equivalent to 0.037 mg/kg/day in a 60-kg patient. This estimated maximum daily dose falls within the ADI range. Therefore, the estimated maximum daily dose of BHA resulting from SYNDROS administration is not considered to be a safety concern.
The maximum daily dose of sucralose in patients treated with SYNDROS is estimated to be 11.4 mg, equivalent to 0.19 mg/kg/day in a 60-kg patient. Sucralose is a disaccharide made from sucrose, and is a high-intensity sweetener. The FDA approved sucralose for use as a general purpose sweetener in foods, with an ADI of 5 mg/kg/day (Federal Register, Vol. 63, No. 64, April 3, 1998). The estimated maximum daily dose (0.19 mg/kg/day) from SYNDROS does not exceed the ADI. Therefore, the estimated maximum daily dose of sucralose resulting from SYNDROS administration is not considered to be a safety concern.

Propylene glycol is a synthetic liquid substance and is used by the chemical, food, and pharmaceutical industries as an antifreeze agent. It is classified as GRAS for use as a direct food substance (anticaking agent) in food for human consumption (21 CFR 184.1666). The Joint FAO/WHO Expert Committee on Food Additives designated the ADI for propylene glycol as 0-25 mg/kg bodyweight in 1973 (WHO Food Additives Series 5, http://www.inchem.org/documents/jecfa/jecmono/v05je90.htm). The maximum daily dose of propylene glycol in patients treated with SYNDROS is estimated to be 1260.6 mg, equivalent to 21 mg/kg/day in a 60-kg patient. The estimated maximum daily dose in SYNDROS falls within the ADI range (0-25 mg/kg). Therefore, the estimated maximum daily dose of propylene glycol resulting from SYNDROS administration is not considered to be a safety concern.

The maximum daily dose of dehydrated alcohol in patients treated with SYNDROS is estimated to be 14.5 mL in a 60-kg patient, which slightly exceeds the maximum daily dose of 11 mL from approved oral drug products. However, based on Dietary Guidelines for Americans, the recommendation for alcohol consumption in moderation is up to one drink per day for adult women and two drinks per day for adult men (2010, http://www.health.gov/dietaryguidelines/2010.asp). In the United States, a standard drink is defined as 0.6 fluid ounces of pure alcohol, equivalent to 17.7 mL of pure alcohol (http://www.cdc.gov/alcohol/faqs.htm). Therefore, the estimated maximum daily intake of alcohol (14.5 mL/day) from SYNDROS falls within the recommended limit for moderate alcohol consumption in either men or women. Thus, the estimated maximum daily intake of alcohol resulting from SYNDROS administration is not considered to be a safety concern.

2.5 Comments on Impurities/Degradants of Concern

The first FDA-approved drug product containing dronabinol was approved before publication of ICH guidances. Thus, impurity safety assessment and qualification for products containing dronabinol is generally exempt from ICH recommendations (i.e. M7, Q3A(R2), and Q3B(R2)), with the possible exception of impurities that are present only in newly developed formulations containing dronabinol. However, no such impurities have been identified in the drug product (see CMC review by Dr. Hitesh Shroff). It should also be noted that voluntary compliance with ICH qualification thresholds is an acceptable approach for justifying proposed impurity limits in the drug substance and drug product.
Qualification of Impurities in Drug Substance

Impurities in the drug substance and their specification limits are listed in the Sponsor’s table below.

Table 3: Dronabinol Impurity Specifications for Drug Substance

<table>
<thead>
<tr>
<th>Individual Impurity</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ⁸-THC</td>
<td>NMT</td>
</tr>
<tr>
<td>Cannabinol</td>
<td>NMT</td>
</tr>
<tr>
<td>Exo-tetrahydrocannabinol</td>
<td>NMT</td>
</tr>
<tr>
<td>Any unspecified impurity</td>
<td>NMT</td>
</tr>
<tr>
<td>Total impurities</td>
<td>NMT</td>
</tr>
</tbody>
</table>

It is important to note that the drug substance in SYNDROS and the drug substance in an approved generic drug product (Dronabinol Capsules, ANDA 78,501) are [redacted]. Thus, the potential for toxicity due to impurities (either process impurities or degradants of the drug substance) is assumed to be very similar in SYNDROS and the currently marketed generic product (Dronabinol Capsules). The supporting rationale for this assumption is described below.

The MRHD for SYNDROS is 15% lower than that of the reference drug, Marinol® (dronabinol) Capsules. The Sponsor proposed a lower range of dose levels for SYNDROS based on its greater bioavailability observed in comparative PK studies with Marinol® Capsules, to assure that SYNDROS will deliver the same systemic exposure as the reference drug (see Clinical Pharmacology review by Dr. Sandhya Apparaju). Since the drug substance in SYNDROS is identical to that in Dronabinol Capsules (ANDA 78,501), it is reasonable to assume that the systemic exposure to impurities in SYNDROS will be similar to that achieved with Dronabinol Capsules. These considerations provide a reasonable assurance of safety for the drug substance impurities at the proposed limits. The origins of the specified impurities are described below.

Δ⁸-THC (Δ8-tetrahydrocannabinol: (-)-1-hydroxy-3-n-amy1-6,6,9-trimethy1-6a,10a-trans-6a,7,10,10a-tetrahydrodibenzo {b,d}–pyran)
Cannabinol (6,6,9-trimethy1-3-penty1-6H-dibenzo[b,d]pyran-1-ol)

Exo-tetrahydrocannabinol ((6aR,10aR)-6,6-dimethy1-9-methylene-3-penty1-6a,7,8,9,10,10a-hexahydro-6H-benzo[c]chromen-1-ol))

The impurities with \[(b) (4)\] are identified as \[(b) (4)\].

The impurity with \[(b) (4)\] is identified as \[(b) (4)\], which is a process impurity created during the \[(b) (4)\].

Qualification of Impurities in Drug Product

The impurities in drug product and their specification limits are listed in the Sponsor’s table below.

Table 4: Proposed Acceptance Criteria of Impurities in Drug Product

<table>
<thead>
<tr>
<th>Individual Impurity</th>
<th>Specification</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ⁸-THC</td>
<td>NMT %</td>
<td></td>
</tr>
<tr>
<td>Cannabinol</td>
<td>NMT %</td>
<td></td>
</tr>
<tr>
<td>Other individual specified impurities</td>
<td>NMT %</td>
<td></td>
</tr>
<tr>
<td>Each Unspecified Impurity</td>
<td>NMT %</td>
<td></td>
</tr>
<tr>
<td>Total Impurities (Known & Unknown)</td>
<td>NMT %</td>
<td></td>
</tr>
</tbody>
</table>

Reference ID: 3890644
There are five impurities (highlighted in the table above) with proposed acceptance criteria that exceed the ICH qualification threshold of 0.2% (ICH guidance Q3B(R2)). However, based on the FDA guidance for industry, “ANDAs: Impurities in Drug Products” (November 2010), an impurity is considered as qualified if 1) the proposed specification limit does not exceed the USP limit (assuming there is a USP limit for the impurity), or 2) the proposed specification limit is similar to the impurity level observed in the reference listed drug based on measurements using a validated analytical procedure. As shown in the Sponsor’s table above, the proposed specification limits for the highlighted impurities in drug product do not exceed the observed levels in the reference drug, Marinol® (confirmation of this was provided by the CMC reviewer, Dr. Hitesh Shroff). Therefore, these impurities are considered as qualified at the proposed specification limits.

2.6 Proposed Clinical Population and Dosing Regimen

SYNDROS is indicated for treatment of anorexia associated with weight loss in patients with AIDS, and treatment of nausea and vomiting associated with cancer chemotherapy in patients who have failed to respond adequately to conventional antiemetic treatments. The starting dose regimen for AIDS patients is (2.125 mg) orally twice daily, one hour before lunch and supper. The maximum recommended dose in AIDS patients is 17 mg/day.
The starting dose regimen for nausea and vomiting associated with chemotherapy in adult patients is \((4.25 \text{ mg/m}^2)\), administered 1 to 3 hours prior to chemotherapy, then every 2 to 4 hours after chemotherapy for a total of 4 to 6 doses per day. The maximum recommended dose in cancer patients is 76.5 mg/m\(^2\)/day.

2.7 Regulatory Background

SYNDROS was developed under IND 75,228, submitted on June 14, 2006. The active ingredient, dronabinol (delta-9-THC), is contained in the approved drug products, Marinol® Capsules and Dronabinol Capsules.

3 Studies Submitted

3.1 Studies Reviewed
None.

3.2 Studies Not Reviewed
None.

3.3 Previous Reviews Referenced
None.

4 Pharmacology
Not applicable.

5 Pharmacokinetics/ADME/Toxicokinetics
Not applicable.

6 General Toxicology

6.1 Single-Dose Toxicity
Not applicable.

6.2 Repeat-Dose Toxicity
Not applicable.

7 Genetic Toxicology
Not applicable.
8 Carcinogenicity
Not applicable.

9 Reproductive and Developmental Toxicology
Not applicable.

10 Special Toxicology Studies
Not applicable.

11 Integrated Summary and Safety Evaluation

SYNDROS is a new formulation of dronabinol (synthetic delta-9-tetrahydrocannabinol) intended for oral administration. SYNDROS has the same active ingredient, dronabinol, as in Marinol® Capsules. SYNDROS is indicated for treatment of anorexia associated with weight loss in patients with AIDS, and treatment of nausea and vomiting associated with cancer chemotherapy in patients who have failed to respond adequately to conventional antiemetic treatments.

This NDA was submitted under section 505(b)(2) of the Federal Food, Drug, and Cosmetic Act. The reference drug is Marinol® (dronabinol) Capsules (NDA 18,651). The Sponsor did not conduct nonclinical studies to support clinical testing or submission of a marketing application, nor did the Agency request such studies. However, the Sponsor has conducted comparative PK studies with SYNDROS and Marinol® Capsules in humans, thereby establishing a scientific bridge to the reference drug.

Due to the difference in the bioavailability of SYNDROS and Marinol® Capsules, one 0.425 mL (2.125 mg) dose of SYNDROS provides equivalent dronabinol exposure to one 2.5 mg Marinol® Capsule. Thus, the proposed maximum dose of 76.5 mg/m²/day for SYNDROS in cancer patients (124 mg/day or 24.8 mL/day in a patient with 1.62 m² BSA) is equivalent to the maximum recommended dose of 90 mg/m²/day (145 mg/day in a patient with 1.62 m² BSA) for Marinol® Capsules for treatment of chemotherapy-induced nausea and vomiting.

All of the excipients in SYNDROS are listed in the FDA Inactive Ingredient Database, and there is sufficient information to provide a reasonable assurance of safety for the maximum potential daily intake of each of these excipients (see section 2.4 above for details).
Sponsor provided adequate justification for all other impurity specification limits in the drug substance and drug product.

SYNDROS is packaged in a multi-dose container closure system. The primary container is a 30 mL clear amber color Type III glass bottle. The bottle closure is a 20 mm child-resistant cap with a Teflon coated liner. The clear amber Type III glass is compliant with USP <660> and <671> requirements. The Teflon liner component of the cap is therefore, there is no safety concern for exposure to potential leachables from the primary container.

Safety assessment of potential leachables from the dosing device (press-in bottle adaptor and oral syringe) was conducted by CDRH (see Consult Memo by Sarah Mollo, DAGRID/GHDB). The reviewer provided the following comment to summarize the safety assessment: “The risk assessment provided in the submission is sufficient and the results of the risk assessment suggest that there is little likelihood of adverse systemic, genotoxic, or carcinogenic effects following patient exposure to compounds extracted from the device.”

To respond to the Agency’s clinical information request regarding syncope and the potential for QT prolongation with dronabinol (November 17, 2015), the Sponsor conducted a thorough literature search on nonclinical studies that evaluated the effects of dronabinol on ventricular repolarization. The summary information was submitted in an amendment on November 30, 2015. The Sponsor concluded that there is a paucity of data on the effect of dronabinol on ventricular repolarization, and that the cardiac effects of Δ9-THC in vitro and in animals are limited and have often been inconsistent among the reported studies. Thus, the limited and inconsistent nonclinical data do not provide useful information for evaluating the potential of Δ9-THC to affect ventricular repolarization.

In conclusion, the information available from health authorities and U.S. regulations (21 CFR) provide a reasonable assurance of safety for the estimated maximum daily intake of the excipients in SYNDROS. There is also a reasonable assurance of safety for the proposed impurity limits in the drug substance and drug product. Therefore, from a
nonclinical standpoint, there are no approvability issues for this NDA. The labeling should be revised as recommended above.

Orig NDA 205,525
DGIEP
DGIEP/PM
DGIEP/D. Joseph
DGIEP/F. Cai
DGIEP/J. Meyer
DGIEP/S. Omokaro

R/D Init.: D. Joseph 1/23/16

12 Appendix/Attachments

None
I concur. The revised text prepared by the Maternal Health team for the "Risk Summary" and "Clinical Considerations" subheadings in the Pregnancy subsection of the label (8.1) was unintentionally omitted from this review. However, we concur with these revisions.