# **Approval Package for:**

# APPLICATION NUMBER: ANDA 203286

Name: Mesalamine Delayed-Release Tablets USP, 800 mg

**Sponsor:** Zydus Pharmaceuticals, Inc.

Approval Date: July 21, 2017

# APPLICATION NUMBER: ANDA 203286

# **CONTENTS**

# **Reviews / Information Included in this Review**

| Approval Letter                                      | X |
|------------------------------------------------------|---|
| Other Action Letters                                 | X |
| Labeling                                             | X |
| Labeling Review(s)                                   | X |
| Medical Review(s)                                    |   |
| Chemistry Review(s)                                  | X |
| Statistical Review(s)                                |   |
| Microbiology Review(s)                               |   |
| Bioequivalence Review(s)                             | X |
| Other Review(s)                                      | X |
| <b>Administrative &amp; Correspondence Documents</b> | X |

# APPLICATION NUMBER: ANDA 203286

# **APPROVAL LETTER**



Food and Drug Administration Silver Spring, MD 20993

ANDA 203286

ANDA APPROVAL

Zydus Pharmaceuticals (USA) Inc.
73 Route 31 North
Pennington, NJ 08534
Attention: Srinivas Gurram
Vice President and Head of Regulatory Affairs

Dear Sir:

This letter is in reference to your abbreviated new drug application (ANDA) received for review on July 13, 2011, submitted pursuant to section 505(j) of the Federal Food, Drug, and Cosmetic Act (FD&C Act) for Mesalamine Delayed-Release Tablets USP, 800 mg.

Reference is also made to the complete response letter issued by this office on February 3, 2017, and to your amendments received on April 6, 2017.

We have completed the review of this ANDA and have concluded that adequate information has been presented to demonstrate that the drug is safe and effective for use as recommended in the submitted labeling. Accordingly, the ANDA is **approved**, effective on the date of this letter. The Office of Bioequivalence has determined your Mesalamine Delayed-Release Tablets USP, 800 mg, to be bioequivalent and, therefore, therapeutically equivalent to the reference listed drug (RLD), Asacol HD Delayed-Release Tablets, 800 mg, of Allergan Pharmaceuticals International Limited (Allergan). Your dissolution testing should be incorporated into the stability and quality control program using the USP dissolution method and specification for your application.

The RLD upon which you have based your ANDA, Allergan's Asacol HD Delayed-Release Tablets, 800 mg, is subject to periods of patent protection. The following patents and expiration dates are currently listed in the Agency's publication titled *Approved Drug Products with Therapeutic Equivalence Evaluations* (the "Orange Book"):

| <u>U.S. Patent Number</u>   | <b>Expiration Date</b> |  |
|-----------------------------|------------------------|--|
| 6,893,662 (the '662 patent) | November 15, 2021      |  |
| 8,580,302 (the '302 patent) | November 15, 2021      |  |
| 9,089,492 (the '492 patent) | November 15, 2021      |  |

Your ANDA contains paragraph IV certifications to the patents¹ under section 505(j)(2)(A)(vii)(IV) of the FD&C Act stating that the patents are invalid, unenforceable, or will not be infringed by your manufacture, use, or sale of Mesalamine Delayed-Release Tablets USP, 800 mg, under this ANDA. You have notified the Agency that Zydus Pharmaceuticals (USA) Inc. (Zydus) complied with the requirements of section 505(j)(2)(B) of the FD&C Act and that litigation was initiated within the statutory 45-day period against Zydus for infringement of the '662 patent in the United States District Court for the District of Delaware [Warner Chilcott Company, LLC v. Zydus Pharmaceuticals (USA) Inc., and Cadila Healthcare Limited, (d/b/a Zydus Cadila), Civil Action No. 1:11-cv-01105-UNA]. You have also notified the Agency that this case was dismissed.

With respect to 180-day generic drug exclusivity, we note that Zydus was the first ANDA applicant for Mesalamine Delayed-Release Tablets USP, 800 mg, to submit a substantially complete ANDA with a paragraph IV certification. Therefore, Zydus may have been eligible for 180 days of generic drug exclusivity for Mesalamine Delayed-Release Tablets USP, 800 mg. This exclusivity, which is provided for under 505(j)(5)(B)(iv) of the FD&C Act, would begin to run from the date of the commercial marketing identified in section 505(j)(5)(B)(iv). The Agency notes that Zydus failed to obtain tentative approval of this ANDA within 30 months after the date on which the ANDA was filed. See section 505(j)(5)(D)(i)(IV) of the FD&C Act (forfeiture of exclusivity for failure to obtain tentative approval). The Agency is not, however, making a formal determination of Zydus's eligibility for 180-day exclusivity. You have notified the Agency that Zydus commenced commercial marketing of an authorized generic of the RLD, Allergan's Asacol HD Delayed-Release Tablets, 800 mg, on August 1, 2016. Therefore, any 180-day exclusivity that Zydus may have been eligible for has been triggered and expired.

Under section 506A of FD&C Act, certain changes in the conditions described in this ANDA require an approved supplemental application before the change may be made.

Please note that if FDA requires a Risk Evaluation and Mitigation Strategy (REMS) for a listed drug, an ANDA citing that listed drug also will be required to have a REMS. See section 505-1(i) of the FD&C Act.

#### REPORTING REQUIREMENTS

Postmarketing reporting requirements for this ANDA are set forth in 21 CFR 314.80-81 and 314.98. The Office of Generic Drugs should be advised of any change in the marketing status of this drug.

<sup>&</sup>lt;sup>1</sup> The Agency notes that the '302 and '492 patents were submitted to the Agency after submission of your ANDA. Litigation, if any, with respect to these patents would not create a statutory stay of approval.

## **PROMOTIONAL MATERIALS**

You may request advisory comments on proposed introductory advertising and promotional labeling materials prior to publication or dissemination. Please note that these submissions are voluntary. To do so, submit, in triplicate, a cover letter requesting advisory comments, the proposed materials in draft or mock-up form with annotated references, and the package insert (PI), Medication Guide, and patient PI (as applicable) to:

OPDP Regulatory Project Manager Food and Drug Administration Center for Drug Evaluation and Research Office of Prescription Drug Promotion 5901-B Ammendale Road Beltsville, MD 20705

Alternatively, you may submit a request for advisory comments electronically in eCTD format. For more information about submitting promotional materials in eCTD format, see the draft Guidance for Industry (available at:

http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM443702.pdf).

You must also submit final promotional materials and package insert(s), accompanied by a Form FDA 2253, at the time of initial dissemination or publication [21 CFR 314.81(b)(3)(i)]. Form FDA 2253 is available at

http://www.fda.gov/downloads/AboutFDA/ReportsManualsForms/Forms/UCM083570.pdf. Information and Instructions for completing the form can be found at <a href="http://www.fda.gov/downloads/AboutFDA/ReportsManualsForms/Forms/UCM375154.pdf">http://www.fda.gov/downloads/AboutFDA/ReportsManualsForms/Forms/UCM375154.pdf</a>. For more information about submission of promotional materials to the Office of Prescription Drug Promotion (OPDP), see <a href="http://www.fda.gov/AboutFDA/CentersOffices/CDER/ucm090142.htm">http://www.fda.gov/AboutFDA/CentersOffices/CDER/ucm090142.htm</a>.

#### **ANNUAL FACILITY FEES**

The Generic Drug User Fee Amendments of 2012 (GDUFA) (Public Law 112-144, Title III) established certain provisions with respect to self-identification of facilities and payment of annual facility fees. Your ANDA identifies at least one facility that is subject to the self-identification requirement and payment of an annual facility fee. Self-identification must occur by June 1st of each year for the next fiscal year. Facility fees must be paid each year by the date specified in the *Federal Register* notice announcing facility fee amounts. All finished dosage forms (FDFs) or active pharmaceutical ingredients (APIs) manufactured in a facility that has not met its obligations to self-identify or to pay fees when they are due will be deemed misbranded. This means that it will be a violation of federal law to ship these products in interstate commerce or to import them into the United States. Such violations can result in prosecution of those responsible, injunctions, or seizures of misbranded products. Products misbranded because of failure to self-identify or pay facility fees are subject to being denied entry into the United States.

## **CONTENT OF LABELING**

As soon as possible, but no later than 14 days from the date of this letter, submit, using the FDA automated drug registration and listing system (eLIST), the content of labeling [21 CFR 314.50(l)] in structured product labeling (SPL) format, as described at <a href="http://www.fda.gov/ForIndustry/DataStandards/StructuredProductLabeling/default.htm">http://www.fda.gov/ForIndustry/DataStandards/StructuredProductLabeling/default.htm</a>, that is identical in content to the approved labeling (including the package insert, and any patient package insert and/or Medication Guide that may be required). Information on submitting SPL files using eLIST may be found in the guidance for industry titled "SPL Standard for Content of Labeling Technical Qs and As" at <a href="http://www.fda.gov/downloads/DrugsGuidanceComplianceRegulatoryInformation/Guidances/U">http://www.fda.gov/downloads/DrugsGuidanceComplianceRegulatoryInformation/Guidances/U</a>

The Electronic Common Technical Document (eCTD) is CDER's standard format for electronic regulatory submissions. Beginning May 5, 2017, ANDAs must be submitted in eCTD format and beginning May 5, 2018, drug master files must be submitted in eCTD format. Submissions that do not adhere to the requirements stated in the eCTD Guidance will be subject to rejection. For more information please visit: www.fda.gov/ectd.

CM072392.pdf. The SPL will be accessible via publicly available labeling repositories.

Sincerely yours,

{See appended electronic signature page}

For Priya Shah, PharmD
Acting Deputy Director
Office of Regulatory Operations
Office of Generic Drugs
Center for Drug Evaluation and Research



Digitally signed by Heidi Lee
Date: 7/21/2017 05:39:18PM
GUID: 52795fe90009070673e7de063d080d1f

# APPLICATION NUMBER: ANDA 203286

# **OTHER ACTION LETTERS**

Food and Drug Administration Silver Spring, MD 20993

ANDA 203286

#### **COMPLETE RESPONSE**

Zydus Pharmaceuticals (USA), Inc. 73 Route 31 North Pennington, NJ 08534 Attention: G. Srinivas Head – Regulatory Affairs

## Dear Sir:

This letter is in reference to your abbreviated new drug application (ANDA) submitted pursuant to section 505(j) of the Federal Food, Drug, and Cosmetic Act (FD&C Act), for Mesalamine Delayed-Release Tablets USP, 800 mg.

We acknowledge receipt of your amendments dated June 10, June 21, and August 9, 2016. The June 21, 2016, submission constituted a complete response to our April 29, 2016 action letter.

We have completed our review of this ANDA, as amended, and have determined that we cannot approve this ANDA in its present form. We have described our reasons for this action below and, where possible, our recommendations to address these issues.

#### **PRODUCT QUALITY**



5. (b) (4)

## **DISSOLUTION**

We acknowledge that you will conduct the dissolution testing of your test product using the current USP Dissolution Method for Mesalamine Delayed-Release Tablets.

## **LABELING**

1. CONTAINER LABEL – The following comments are based on the Asacol® HD container label, approved on May 5, 2016.

a. (b) (4)

b. Revise the administration direction to read as follows:

Swallow Mesalamine Delayed-Release Tablets whole. Do not cut, break, or chew the tablets.

- c. Include the text "Dispense in original container" as does the Asacol® HD tablets label.
- 2. CARTON 100 (10 x 10) Unit-dose Tablets

See comments under CONTAINER, whichever applicable.

3. PRESCRIBING INFORMATION

HOW SUPPLIED/STORAGE AND HANDLING

Revise the dispensing statement to read as follows:

Store and dispense in the original bottle, protect from moisture, and keep the bottle tightly closed. Do not remove desiccant pouch (silica gel) from bottle.

4. STRUCTURED PRODUCT LABELING (SPL)
See comments under CONTAINER and PRESCRIBING INFORMATION.

Submit your revised labeling electronically. The prescribing information and any patient labeling should reflect the full content of the labeling as well as the planned ordering of the content of the labeling. The container label and any outer packaging should reflect the content as well as an accurate representation of the layout, color, text size, and style.

To facilitate review of your next submission, please provide a side-by-side comparison of your proposed labeling with your last submitted labeling with all differences annotated and explained. We also advise that you only address the deficiencies noted in this communication.

However, prior to the submission of your amendment, please check labeling resources, including DRUGS@FDA, the electronic Orange Book and the NF-USP online, for recent updates and make any necessary revisions to your labels and labeling.

In order to keep ANDA labeling current, we suggest that you subscribe to the daily or weekly updates of new documents posted on the CDER web site at the following address – <a href="http://www.accessdata.fda.gov/scripts/cder/daf">http://www.accessdata.fda.gov/scripts/cder/daf</a>

# FACILITY INSPECTIONS/EVALUATIONS

During a recent inspection of the Cadila Healthcare Limited (FEI 3002984011) manufacturing facility for this ANDA, our field investigator observed objectionable conditions at the facility and conveyed that information to the representative of the facility at the close of the inspection. Satisfactory resolution of the observations is required before this ANDA may be approved. Please list communications submitted to, or held with, the agency to facilitate resolution of the observed objectionable conditions, or deficiencies, noted at the facility.

# **BIOEQUIVALENCE, DISSOLUTION,**

There are no further questions for the above listed disciplines at this time. The comments provided in this communication are comprehensive as of issuance. However, these comments are subject to revision if any scientific or regulatory division identifies additional concerns, as well as any concerns due to inspection results that may arise in the future. Additionally the compliance status of each facility named in the application may be re-evaluated upon resubmission.

#### **OTHER**

Your resubmission in response to this complete response letter will be considered a **MINOR** AMENDMENT, given that the deficiencies identified have been classified as **MINOR**.

Provided that the amendment contains no information that requires a substantial expenditure of resources to review, prominently identify the submission with the following wording in bold, capital letters at the top of the first page of the submission:

RESUBMISSION MINOR COMPLETE RESPONSE AMENDMENT PRODUCT QUALITY/LABELING

Upon review of your amendment, FDA may identify information in the amendment that requires a change in classification.

Within one year after the date of this letter, you are required to respond by taking one of the actions available under 21 CFR 314.110(b). If you do not take one of these actions, we may consider your lack of response a request to withdraw the ANDA under 21 CFR 314.110(c)(1). You may also request an extension of time in which to resubmit the application. A resubmission must fully address all the deficiencies listed. Additionally, a partial response to this letter will not be processed as a resubmission and will not start a new review cycle.

The drug product may not be legally marketed until you have been notified in writing that this ANDA is approved.

## ANNUAL FACILITY FEES

The Generic Drug User Fee Amendments of 2012 (GDUFA) (Public Law 112-144, Title III) established certain provisions with respect to self-identification of facilities and payment of annual facility fees. Your ANDA identifies at least one facility that is subject to the self-identification requirement and payment of an annual facility fee. Self-identification must occur by June 1 of each year for the next fiscal year. Facility fees must be paid each year by the date specified in the *Federal Register* notice announcing facility fee amounts. All finished dosage forms or active pharmaceutical ingredients manufactured in a facility that has not met its obligations to self-identify or to pay fees when they are due will be deemed misbranded. This means that it will be a violation of federal law to ship these products in interstate commerce or import them into the United States. Such violations can result in prosecution of those responsible, injunctions, or seizures of misbranded products. Products misbranded because of failure to self-identify or pay facility fees are subject to being denied entry into the United States.

In addition, we note that GDUFA requires that certain non-manufacturing sites and organizations listed in generic drug submissions comply with the self-identification requirement. The failure of any facility, site, or organization to comply with its obligation to self-identify and/or to pay fees when due may raise significant concerns about that site or organization and is a factor that may increase the likelihood of a site inspection prior to approval. FDA does not expect to give priority to completion of inspections that are required simply because facilities, sites, or organizations fail to comply with the law requiring self-identification or fee payment.

Additionally, we note that the failure of any facility referenced in the application to self-identify and pay applicable fees means that FDA will not consider the GDUFA application review goal dates to apply to that application.

The Electronic Common Technical Document (eCTD) is CDER's standard format for electronic regulatory submissions. Beginning May 5, 2017, ANDA and Master Files must be submitted in eCTD format. Submissions that do not adhere to the requirements stated in the eCTD Guidance will be subject to rejection. For more information please visit: www.fda.gov/ectd.

If you have any questions, call Edward Taylor, Regulatory Project Manager, Division of Project Management, at (240) 402-6094.

Sincerely yours,

{See appended electronic signature page}

For Denise P. Toyer McKan, PharmD Director, Division of Project Management Office of Regulatory Operations Office of Generic Drugs



Digitally signed by Aaron Sigler
Date: 2/03/2017 02:57:59PM
GUID: 508da6fa0002827f1a9f2526d1b2cc69

Food and Drug Administration Silver Spring, MD 20993

ANDA 203286

#### **COMPLETE RESPONSE**

Zydus Pharmaceuticals (USA), Inc. 73 Route 31 North Pennington, NJ 08534 Attention: G. Srinivas Head – Regulatory Affairs

Dear Sir:

This letter is in reference to your abbreviated new drug application (ANDA) submitted pursuant to section 505(j) of the Federal Food, Drug, and Cosmetic Act (FD&C Act), for Mesalamine Delayed-release Tablets USP, 800 mg.

We acknowledge receipt of your amendments dated October 19, 2015; and March 1, 2016. The October 19, 2015, submission constituted a complete response to our August 13, 2015, action letter.

We have completed our review of this ANDA, as amended, and have determined that we cannot approve this ANDA in its present form. We have described our reasons for this action below and, where possible, our recommendations to address these issues.

# **PRODUCT QUALITY**

| (b) (4) |
|---------|
|         |
|         |
|         |
|         |
|         |

## **DISSOLUTION**

We acknowledge that you will conduct the dissolution testing of your test product using current USP Dissolution Method for Mesalamine Delayed-release Tablets.

# FACILITY INSPECTIONS/EVALUATIONS

During a recent inspection of the Cadila Healthcare Limited (FEI 3002984011) manufacturing facility for this ANDA, our field investigator observed objectionable conditions at the facility and conveyed that information to the representative of the facility at the close of the inspection. Satisfactory resolution of the observations is required before this ANDA may be approved.

# BIOEQUIVALENCE, DISSOLUTION, LABELING

There are no further questions for the above listed disciplines at this time. The comments provided in this communication are comprehensive as of issuance. However, these comments are subject to revision if any scientific or regulatory division identifies additional concerns, as well as any concerns due to inspection results that may arise in the future. Additionally the compliance status of each facility named in the application may be re-evaluated upon resubmission.

Additionally, please continue to monitor available labeling resources such as DRUGS@FDA, the Electronic Orange Book, and the United States Pharmacopeia – National Formulary (USP-NF) online for recent updates, and make any necessary revisions to your labels and labeling.

In order to keep ANDA labeling current, we suggest that you subscribe to the daily or weekly updates of new documents posted on the CDER Web site at the following address: <a href="http://service.govdelivery.com/service/subscribe.html?code=USFDA">http://service.govdelivery.com/service/subscribe.html?code=USFDA</a> 17.

#### **OTHER**

Your resubmission in response to this complete response letter will be considered a **MINOR** AMENDMENT, given that the deficiencies identified have been classified as **MINOR**.

Provided that the amendment contains no information that requires a substantial expenditure of resources to review, prominently identify the submission with the following wording in bold, capital letters at the top of the first page of the submission:

RESUBMISSION MINOR COMPLETE RESPONSE AMENDMENT PRODUCT QUALITY

Upon review of your amendment, FDA may identify information in the amendment that requires a change in classification.

Within one year after the date of this letter, you are required to respond by taking one of the actions available under 21 CFR 314.110(b). If you do not take one of these actions, we may consider your lack of response a request to withdraw the ANDA under 21 CFR 314.110(c)(1). You may also request an extension of time in which to resubmit the application. A resubmission

must fully address all the deficiencies listed. Additionally, a partial response to this letter will not be processed as a resubmission and will not start a new review cycle.

The drug product may not be legally marketed until you have been notified in writing that this ANDA is approved.

## **ANNUAL FACILITY FEES**

The Generic Drug User Fee Amendments of 2012 (GDUFA) (Public Law 112-144, Title III) established certain provisions with respect to self-identification of facilities and payment of annual facility fees. Your ANDA identifies at least one facility that is subject to the self-identification requirement and payment of an annual facility fee. Self-identification must occur by June 1 of each year for the next fiscal year. Facility fees must be paid each year by the date specified in the *Federal Register* notice announcing facility fee amounts. All finished dosage forms or active pharmaceutical ingredients manufactured in a facility that has not met its obligations to self-identify or to pay fees when they are due will be deemed misbranded. This means that it will be a violation of federal law to ship these products in interstate commerce or import them into the United States. Such violations can result in prosecution of those responsible, injunctions, or seizures of misbranded products. Products misbranded because of failure to self-identify or pay facility fees are subject to being denied entry into the United States.

In addition, we note that GDUFA requires that certain non-manufacturing sites and organizations listed in generic drug submissions comply with the self-identification requirement. The failure of any facility, site, or organization to comply with its obligation to self-identify and/or to pay fees when due may raise significant concerns about that site or organization and is a factor that may increase the likelihood of a site inspection prior to approval. FDA does not expect to give priority to completion of inspections that are required simply because facilities, sites, or organizations fail to comply with the law requiring self-identification or fee payment.

Additionally, we note that the failure of any facility referenced in the application to self-identify and pay applicable fees means that FDA will not consider the GDUFA application review goal dates to apply to that application.

If you have any questions, call Edward Taylor, Regulatory Project Manager, Division of Project Management, at (240) 402-6094.

Sincerely yours,

Denise P.

Digitally signed by Denise P. Toyer-S
Dix-culS, a-bu S. Government,
oueHHS, ouePRO, ouePeople,
0.9.242.1900300.100.11=1300112
898, cm-Denice P. Toyer S
Date: 2016.04.29 15:15:09-04/00'

Denise P. Toyer McKan, PharmD Director, Division of Project Management Office of Regulatory Operations Office of Generic Drugs

Food and Drug Administration Silver Spring MD 20993

ANDA 203286

#### **COMPLETE RESPONSE**

Zydus Pharmaceuticals (USA), Inc. 73 Route 31 North Pennington, NJ 08534 Attention: G. Srinivas Head – Regulatory Affairs

Dear Sir:

Please refer to your Abbreviated New Drug Application (ANDA) dated July 12, 2011, received July 13, 2011, submitted under section 505(j) of the Federal Food, Drug, and Cosmetic Act for Mesalamine Delayed-release Tablets USP, 800 mg.

We acknowledge receipt of your amendments dated February 24 and June 23, 2015. The February 24, 2015, submission constituted a complete response to our February 24, 2014, action letter.

We have completed our review of this ANDA, as amended, and have determined that we cannot approve this ANDA in its present form. We have described our reasons for this action below and, where possible, our recommendations to address these issues.

# **PRODUCT QUALITY**

| 1. | (b) | (4) |
|----|-----|-----|
| 1. |     |     |
|    |     |     |
|    |     |     |
|    |     |     |
|    |     |     |
|    |     |     |
|    |     |     |
|    |     |     |
| 2. |     |     |
| ۷. |     |     |
|    |     |     |
|    |     |     |
|    |     |     |
|    |     |     |
|    |     |     |
|    |     |     |
|    |     |     |
|    |     |     |

# **BIOEQUIVALENCE**

At pH 6.8, there is a significant difference in the dissolution profile for the test product between the original (July 12, 2011) and amendment (February 24, 2015) submissions. Please provide an explanation for this difference. In addition, please submit 12 units dissolution data of the test and reference products in buffers with pH around 6.8 (e.g. pH (b) (4) (6.8, using the following dissolution method on your test product:

Apparatus: USP Apparatus II (paddle)

Pretreatment Stage: 2 hours in 0.1 N HCl at 100 rpm

**Evaluation Stage:** 

Each of:

(2) pH 6.8 Phosphate buffer at 50 rpm (b) (4)

Volume: 900 mL Temperature: 37°C

Sample times: 0, 10, 20, 30, 45, 60, 75, 90, 120, 150, 180, 240, 300, and 360 minutes or as

needed for profile comparison.

Please submit individual dissolution data as well as the mean, range, %coefficient of variation (CV) at each time point for the total numbers of tablets tested including dates of dissolution testing, manufacture date and expiration date as applicable. Besides the dissolution summary table in the eCTD format, please submit the individual unit dissolution data and mean values in excel or sas transport format.

#### **DISSOLUTION**

We acknowledge that you will conduct the dissolution testing of your test product using current USP Dissolution Method for Mesalamine Delayed-Release Tablets.

#### **LABELING**

The Division of Labeling Review has no further questions/comments at this time based on your labeling submission dated June 23, 2015.

Please continue to monitor available labeling resources such as DRUGS@FDA, the Electronic Orange Book and the NF-USP online for recent updates, and make any necessary revisions to your labels and labeling.

In order to keep ANDA labeling current, we suggest that you subscribe to the daily or weekly updates of new documents posted on the CDER web site at the following address - <a href="http://service.govdelivery.com/service/subscribe.html?code=USFDA">http://service.govdelivery.com/service/subscribe.html?code=USFDA</a> 17.

## **FACILITY INSPECTIONS**

During a recent inspection of the Cadila Healthcare Limited manufacturing facility for this ANDA, our field investigator conveyed deficiencies to the representative of the facility. Satisfactory resolution of these deficiencies is required before this ANDA may be approved.

## **OTHER**

A partial response to this letter will not be processed as a resubmission and will not start a new review cycle.

Prominently identify the submission with the following wording in bold capital letters at the top of the first page of the submission:

RESUBMISSION MINOR COMPLETE RESPONSE AMENDMENT CHEMISTRY/BIOEQUIVALENCE

Within one year after the date of this letter, you are required to resubmit or take other actions available under 21 CFR 314.110. If you do not take one of these actions, we may consider your lack of response a request to withdraw the ANDA under 21 CFR 314.65. You may also request an extension of time in which to resubmit the ANDA. A resubmission response must fully address all the deficiencies listed.

The drug product may not be legally marketed until you have been notified in writing that this ANDA is approved.

The Generic Drug User Fee Amendments of 2012 (GDUFA) (Public Law 112-144, Title III) established certain provisions with respect to self-identification of facilities and payment of annual facility fees. Your ANDA identifies at least one facility that is subject to the self-identification requirement and payment of an annual facility fee. Self-identification must occur by June 1 of each year for the next fiscal year. Facility fees must be paid each year by the date specified in the Federal Register notice announcing facility fee amounts. All finished dosage forms (FDFs) or active pharmaceutical ingredients (APIs) manufactured in a facility that has not met its obligations to self-identify or to pay fees when they are due will be deemed misbranded. This means that it will be a violation of federal law to ship these products in interstate commerce or to import them into the United States. Such violations can result in prosecution of those responsible, injunctions, or seizures of misbranded products. Products misbranded because of failure to self-identify or pay facility fees are subject to being denied entry into the United States.

In addition, we note that GDUFA requires that certain non-manufacturing sites and organizations listed in generic drug submissions comply with the self-identification requirement. The failure of any facility, site, or organization to comply with its obligation to self-identify and/or to pay fees when due may raise significant concerns about that site or organization and is a factor that may increase the likelihood of a site inspection prior to approval. FDA does not expect to give priority to completion of inspections that are required simply because facilities, sites, or organizations fail to comply with the law requiring self identification or fee payment.

Additionally, we note that the failure of any facility referenced in the application to self-identify and pay applicable fees means that FDA will not consider the GDUFA application review goal dates to apply to that application.

If you have any questions, call Edward Taylor, Regulatory Project Manager, at (240) 402-6094.

Sincerely yours,

Denise P. Digitally signed by Denise P. Toyer - A

No. c=U.S., o=U.S. Government,
ou=HHS, ou=FDA, ou=People,
09.2342,19200300.100.1.1=130011
2898, cn=Denise P. Toyer - A
Date: 2015.08.13 17:12:28-0400'

Denise P. Toyer McKan, Pharm.D. Director, Division of Project Management Office of Regulatory Operations Office of Generic Drugs

#### **COMPLETE RESPONSE**

ANDA 203286

OFFICE OF GENERIC DRUGS, CDER, FDA Document Control Room, Metro Park North VII 7620 Standish Place Rockville, Maryland 20855



TO: Zydus Pharmaceuticals (USA) Inc. TEL: 609-730-1900

ATTN: G. Srinivas FAX: 609-730-1999

FROM: Heidi Lee FDA CONTACT PHONE: 240-276-9717

Dear Sir:

This facsimile is in reference to your abbreviated new drug application, submitted pursuant to Section 505(j) of the Federal Food, Drug, and Cosmetic Act.

We have completed the review and have described below our reasons for this action and, where possible, our recommendations to address these issues in the following attachments (\_\_\_\_\_ pages). This facsimile is to be regarded as an official FDA communication and unless requested, a hard copy will not be mailed.

THIS DOCUMENT IS INTENDED ONLY FOR THE USE OF THE PARTY TO WHOM IT IS ADDRESSED AND MAY CONTAIN INFORMATION THAT IS PRIVILEGED, CONFIDENTIAL, OR PROTECTED FROM DISCLOSURE UNDER APPLICABLE LAW.

If received by someone other than the addressee or a person authorized to deliver this document to the addressee, you are hereby notified that any disclosure, dissemination, copying, or other action to the content of this communication is not authorized. If you have received this document in error, please immediately notify us by telephone and return it to us by mail at the above address.

Reference ID: 3458579

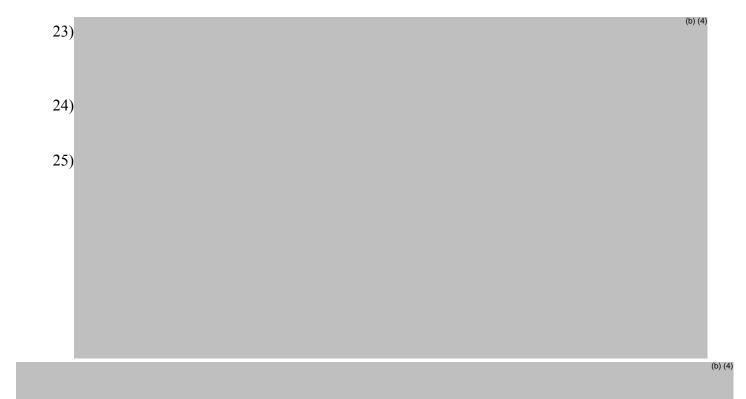
Food and Drug Administration Silver Spring MD 20993

ANDA 203286

#### **COMPLETE RESPONSE**

Zydus Pharmaceuticals (USA) Inc. Attention: G. Srinivas Sr. Director – Regulatory Affairs 73 Route 31 North Pennington, NJ 08534

Dear Sir:


Please refer to your Abbreviated New Drug Application (ANDA) dated July 12, 2011, received July 13, 2011, submitted under section 505(j) of the Federal Food, Drug, and Cosmetic Act for Mesalamine Delayed-release Tablets USP, 800 mg.

We acknowledge receipt of your amendment dated March 13, 2012.

We have completed our review of this ANDA, as amended, and have determined that we cannot approve this ANDA in its present form. We have described our reasons for this action below and, where possible, our recommendations to address these issues.

#### PRODUCT QUALITY

| 1)         | (b) (4) |
|------------|---------|
|            |         |
|            |         |
|            |         |
| 2)         |         |
|            |         |
| 3)         |         |
|            |         |
| 4)         |         |
| т <i>)</i> |         |
|            |         |
|            |         |



## **BIOEQUIVALENCE**

The bioequivalence comments provided in this communication are comprehensive as of issuance. However, these comments are subject to revision if additional concerns raised by chemistry, manufacturing and controls, microbiology, labeling, other scientific or regulatory issues or inspectional results arise in the future. Please be advised that these concerns may result in the need for additional bioequivalence information and/or studies, or may result in a conclusion that the proposed formulation is not approvable.

The Division of Bioequivalence II (DB II) has completed its review of your submission(s) acknowledged on the cover sheet. The following deficiencies have been identified:

- 1. We cannot locate the individual data for comparative dissolution testing in 0.1 N HCl followed by pH 4.5 Acetate buffer.
- 2. Due to the high variability of your submitted dissolution data conducted in multimedia, an f2 test using mean profiles of test vs. reference listed drug ("RLD") is not sufficient as per the CDER Guidance for Industry: Dissolution Testing of Immediate Release Solid Oral Dosage Forms ("Dissolution Guidance"). Therefore, we calculated the f2 metric (an f2 confidence interval) using a bootstrapping method for the dissolution profile comparison. For general information on this approach, please refer to Shah et al. In Vitro Dissolution Profile

7

Comparison-Statistics and Analysis of the Similarity Factor, f2. Pharmaceutical Research (1998) Vol. 15, No.6, page 889-896.

For the test products, the mean values (f2) in pH 6.8 and pH 7.5 phosphate buffer are lower than 50 and the lower bound of 90% confidence interval ("CI") for the f2 test comparing test vs. RLD in pH 6.8, pH 7.2, and pH 7.5 phosphate buffer is lower than those comparing the RLD against itself under the same conditions. These values suggest that the dissolution profiles of the test product are significantly different from those of the corresponding reference under these conditions. Your dissolution data in pH 6.8, 7.2 and 7.5 are not acceptable.

3. To address why the test product is different from the RLD product, please repeat comparative dissolution testing on your **fresh test product** using a **larger sample** of tablets to provide a better estimate of the mean difference, or take other appropriated steps as necessary to reduce the variability for the purpose of achieving accurate f2 calculation.

The dissolution testing should be conducted on at least 24 tablets (more if necessary) of the test product and at least two lots of unexpired RLD product (using 12 tablets per lot) using the following method as specified in the FDA Guidance on Mesalamine (800 mg):

Apparatus: USP Apparatus II (paddle)

Pretreatment Stage: 2 hours in 0.1 N HCl at 100 rpm

Evaluation Stage: Each of

(1) pH 4.5 Acetate buffer at 50 rpm

(2) pH 6.8 Phosphate buffer at 50 rpm

(3) pH 7.2 Phosphate buffer at 50 rpm

(4) pH 7.5 Phosphate buffer at 50 rpm

Volume: 900 mL Temperature: 37°C

Sample times: 0, 10, 20, 30, 45, 60, 75, 90, 120, 150, 180, 240, 300, and 360 minutes or

as needed for profile comparison

Please submit individual dissolution data as well as the mean, range, %coefficient of variation (CV) at each time point for the total numbers of tablets tested including dates of dissolution testing, manufacture date and expiration date as applicable.

The DB II will perform an f2 test on your submitted dissolution data. If the variability of the dissolution data is such that mean data cannot be used for the f2 test, as per the Dissolution Guidance, we will use the above-referenced bootstrapping approach.

For the bootstrapping method, sampling with replacement is used for creating 10,000 replicates of test and reference products. The means of the test and reference units at each time point for each replicate are obtained and used for f2 calculation. The 90% confidence intervals of the f2 values are calculated using the percentile approach as described in the Shah et al. reference. Similar procedure can be followed for comparing reference vs. reference products.

Please note only one measurement after 85% dissolution of both the products should be included in the f2 calculation.

# **LABELING**

Labeling Deficiencies determined on April 21, 2013 based on your submission dated July 12, 2011:

1. CONTAINER (b) (4) 180s, (b) (4)

a. (b) (4)

b.

## 2. BLISTER – 10s

If space permits, include the phrase "Made in India".

# 3. INSERT

#### a. GENERAL

- i. Please refer to 21 CFR 201.56(d) regarding PLR format for the final printed labeling. Please ensure that the highlight sections and the entire insert can easily be read and that the point type not be smaller than 6.
- ii. Please replace "Asacol-HD" with either "mesalamine delayed-release tablets" (4) "depending on the context throughout the text.

(b) (4)

## b. DESCRIPTION

(b) (4)

c. 8 USE IN SPECIFIC POPULATIONS – 8.1 Pregnancy:

Revise this subsection heading to read "Pregnancy:

We refer you to CFR 201.57(9)(A)(3).

Submit your revised labeling electronically in final print format.

To facilitate review of your next submission, please provide a side-by-side comparison of your proposed labeling with your last submitted labeling with all differences annotated and explained.

Prior to the submission of your amendment, please check labeling resources, including DRUGS@FDA, the Electronic Orange Book and the NF-USP online, for recent updates and make any necessary revisions to your labels and labeling.

In order to keep ANDA labeling current, we suggest that you subscribe to the daily or weekly updates of new documents posted on the CDER web site at the following address - <a href="http://service.govdelivery.com/service/subscribe.html?code=USFDA\_17">http://service.govdelivery.com/service/subscribe.html?code=USFDA\_17</a>

# **FACILITY INSPECTIONS**

We have not yet completed inspection(s)/compliance evaluation of your manufacturing facility(s) named or referenced in this ANDA. We must perform a complete evaluation of the information associated with the inspection before determining that the site(s) are satisfactory and this ANDA may be approved.

## **OTHER**

A partial response to this letter will not be processed as a resubmission and will not start a new review cycle.

Prominently identify the submission with the following wording in bold capital letters at the top of the first page of the submission:

RESUBMISSION
MAJOR
COMPLETE RESPONSE AMENDMENT
CHEMISTRY / BIOEQUIVALENCE / LABELING

Within one year after the date of this letter, you are required to resubmit or take other actions available under 21 CFR 314.110. If you do not take one of these actions, we may consider your lack of response a request to withdraw the ANDA under 21 CFR 314.65. You may also request an extension of time in which to resubmit the ANDA. A resubmission response must fully address all the deficiencies listed.

The drug product may not be legally marketed until you have been notified in writing that this ANDA is approved.

The Generic Drug User Fee Amendments of 2012 (GDUFA) (Public Law 112-144, Title III) established certain provisions with respect to self-identification of facilities and payment of annual facility fees. Your ANDA identifies at least one facility that is subject to the self-identification requirement and payment of an annual facility fee. Self-identification must occur by June 1 of each year for the next fiscal year. Facility fees must be paid each year by the date specified in the Federal Register notice announcing facility fee amounts. All finished dosage forms (FDFs) or active pharmaceutical ingredients (APIs) manufactured in a facility that has not met its obligations to self-identify or to pay fees when they are due will be deemed misbranded. This means that it will be a violation of federal law to ship these products in interstate commerce or to import them into the United States. Such violations can result in prosecution of those responsible, injunctions, or seizures of misbranded products. Products misbranded because of failure to self-identify or pay facility fees are subject to being denied entry into the United States.

In addition, we note that GDUFA requires that certain non-manufacturing sites and organizations listed in generic drug submissions comply with the self-identification requirement. The failure of any facility, site, or organization to comply with its obligation to self-identify and/or to pay fees when due may raise significant concerns about that site or organization and is a factor that may increase the likelihood of a site inspection prior to approval. FDA does not expect to give priority to completion of inspections that are required simply because facilities, sites, or organizations fail to comply with the law requiring self identification or fee payment.

Additionally, we note that the failure of any facility referenced in the application to self-identify and pay applicable fees means that FDA will not consider the GDUFA application review goal dates to apply to that application.

If you have any questions, contact Heidi Lee, Regulatory Project Manager, at <a href="heidi.lee@fda.hhs.gov">heidi.lee@fda.hhs.gov</a> or (240) 276-9717.

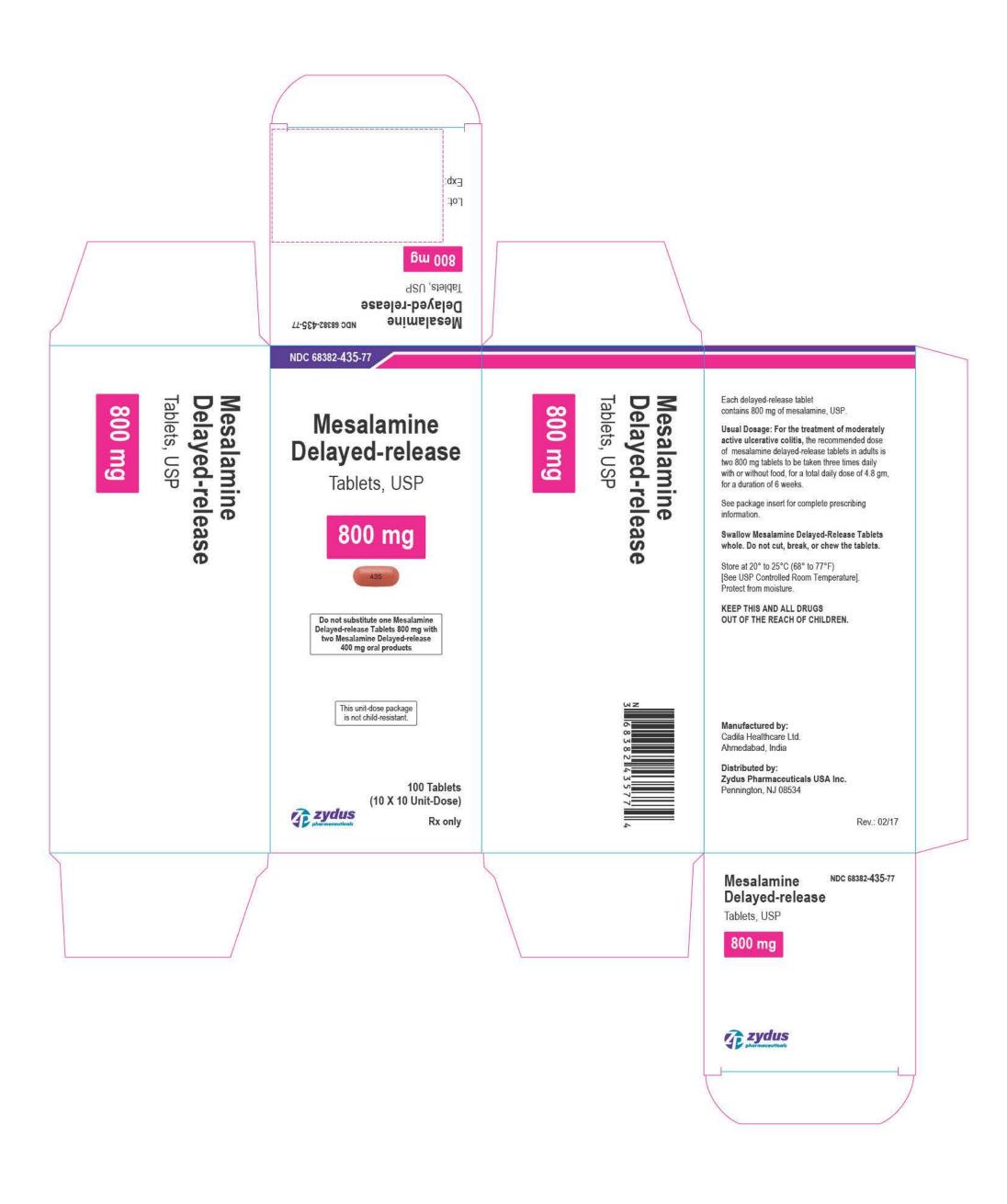
Sincerely yours,

{See appended electronic signature page}

Kathleen Uhl, M.D.
Acting Director
Office of Generic Drugs
Center for Drug Evaluation and Research

This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

/s/


ROBERT L WEST
02/24/2014

Deputy Director, Office of Generic Drugs, for Kathleen Uhl, M.D.

# APPLICATION NUMBER: ANDA 203286

# **LABELING**







**UPC-E Barcode:** 119711

# HIGHLIGHTS OF PRESCRIBING INFORMATION

These highlights do not include all the information needed to use MESALAMINE DELAYED-RELEASE TABLETS safely and effectively. See full prescribing information for MESALAMINE DELAYED-RELEASE TABLETS.

MESALAMINE delayed-release tablets, for oral use

Initial U.S. Approval: 1987

# -----INDICATIONS AND USAGE-----

Mesalamine delayed-release tablets are aminosalicylate indicated for the treatment of moderately active ulcerative colitis in adults. (1)

**Limitation of Use**: Safety and effectiveness of mesalamine delayed-release tablets beyond 6 weeks have not been established (1)

# ------DOSAGE AND ADMINISTRATION-----Important Administration Instructions (2.1):

- Do not substitute one mesalamine delayedrelease tablet, 800 mg for two mesalamine delayed-release 400 mg oral products. (2.1)
- Evaluate renal function prior to initiation of mesalamine delayed-release tablets, 800 mg. (2.1, 5.1)
- Take on an empty stomach, at least 1 hour before and 2 hours after a meal.
- Swallow whole; do not cut, break or chew the tablets.

Treatment of Moderately Active Ulcerative Colitis (2.2):

• Recommended dosage is 1600 mg (two 800 mg tablets) three times daily for 6 weeks.

## -----DOSAGE FORMS AND STRENGTHS----

• Delayed-release tablets: 800 mg (3)

## -----CONTRAINDICATIONS-----

• Known or suspected hypersensitivity to salicylates or aminosalicylates or to any of the ingredients of mesalamine delayed-release tablets (4, 5.3)

#### -----WARNINGS AND PRECAUTIONS-----

- **Renal Impairment**: Evaluate the risks and benefits in patients with known renal impairment or taking nephrotoxic drugs; monitor renal function (5.1, 7.1, 8.6, 13.2)
- Mesalamine-induced Acute Intolerance Syndrome: Symptoms may be difficult to distinguish from an ulcerative colitis exacerbation; monitor for worsening symptoms; discontinue if acute intolerance syndrome suspected (5.2)
- Hypersensitivity Reactions, including Myocarditis and Pericarditis: Evaluate patients immediately and discontinue if a hypersensitivity reaction is suspected (5.3)
- *Hepatic Failure*: Evaluate the risks and benefits in patients with known liver impairment (5.4)

#### -----ADVERSE REACTIONS-----

• The most common adverse reactions (≥ 2%) are headache, nausea, nasopharyngitis, abdominal pain, and worsening of ulcerative colitis (6.1)

To report SUSPECTED ADVERSE REACTIONS, contact Zydus Pharmaceuticals USA Inc. at 1-877-993-8779, or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

## ----- DRUG INTERACTIONS -----

- Nephrotoxic Agents including NSAIDs: Increased risk of nephrotoxicity; monitor for changes in renal function and mesalamine related adverse reactions. (7.1)
- Azathioprine or 6-Mercaptopurine: Increased risk of blood disorders; monitor complete blood cell counts and platelet counts (7.2)

-----USE IN SPECIFIC POPULATIONS----

Geriatric Patients: Increased risk of blood dyscrasias; monitor complete blood cell counts and platelet counts (8.5)

See 17 for PATIENT COUNSELING INFORMATION.

Revised: 02/2017

|   | FULL PRESCRIBING INFORMATION:<br>CONTENTS* |                                                 |    | 8.1  | USE IN SPECIFIC POPULATIONS 8.1 Pregnancy 8.2 Lactation      |  |  |
|---|--------------------------------------------|-------------------------------------------------|----|------|--------------------------------------------------------------|--|--|
| 1 | IND                                        | ICATIONS AND USAGE                              |    | 8.4  | Pediatric Use                                                |  |  |
| • | 11 (12)                                    |                                                 |    | 8.5  | Geriatric Use                                                |  |  |
| 2 | <b>DOS</b> 2.1                             | AGE AND ADMINISTRATION Important Administration |    | 8.6  | Renal Impairment                                             |  |  |
|   | 2.1                                        | Instructions                                    | 10 | OVE  | RDOSAGE                                                      |  |  |
|   | 2.2                                        | Dosage Information                              | 10 | 0,2  | 12 05.102                                                    |  |  |
|   |                                            | 8                                               | 11 | DES  | CRIPTION                                                     |  |  |
| 3 | DOS                                        | AGE FORMS AND STRENGTHS                         |    |      |                                                              |  |  |
|   |                                            |                                                 | 12 | CLIN | NICAL PHARMACOLOGY                                           |  |  |
| 4 | CON                                        | TRAINDICATIONS                                  |    | 12.1 | Mechanism of Action                                          |  |  |
|   |                                            |                                                 |    | 12.3 | Pharmacokinetics                                             |  |  |
| 5 | WAI                                        | RNINGS AND PRECAUTIONS                          |    |      |                                                              |  |  |
|   | 5.1                                        | Renal Impairment                                | 13 | NON  | CLINICAL TOXICOLOGY                                          |  |  |
|   | 5.2                                        | Mesalamine-Induced Acute                        |    | 13.1 | Carcinogenesis, Mutagenesis,                                 |  |  |
|   |                                            | Intolerance Syndrome                            |    |      | Impairment of Fertility                                      |  |  |
|   | 5.3                                        | Hypersensitivity Reactions                      |    | 13.2 | Animal Toxicology and/or                                     |  |  |
|   | 5.4                                        | Hepatic Failure                                 |    |      | Pharmacology                                                 |  |  |
| 6 | ADV                                        | ERSE REACTIONS                                  | 14 | CLIN | NICAL STUDIES                                                |  |  |
|   | 6.1                                        | Clinical Trials Experience                      |    | 14.1 | Moderately Active Ulcerative Colitis                         |  |  |
|   | 6.2                                        | Postmarketing Experience                        |    |      |                                                              |  |  |
|   |                                            |                                                 | 16 | HOV  | V SUPPLIED/STORAGE AND                                       |  |  |
| 7 | DRUG INTERACTIONS                          |                                                 |    | HAN  | DLING                                                        |  |  |
|   | 7.1                                        | Nephrotoxic Agents, Including Non-              |    |      |                                                              |  |  |
|   |                                            | Steroidal Anti-Inflammatory Drugs               | 17 | PAT: | IENT COUNSELING                                              |  |  |
|   | 7.2                                        | Azathioprine or 6-Mercaptopurine                |    | INFO | DRMATION                                                     |  |  |
|   |                                            |                                                 |    |      | subsections omitted from the full nformation are not listed. |  |  |

#### **FULL PRESCRIBING INFORMATION**

#### 1 INDICATIONS AND USAGE

Mesalamine delayed-release tablets are indicated for the treatment of moderately active ulcerative colitis in adults.

#### **Limitations of Use:**

Safety and effectiveness of mesalamine delayed-release tablets beyond 6 weeks have not been established.

#### 2 DOSAGE AND ADMINISTRATION

#### 2.1 Important Administration Instructions

- Do not substitute one mesalamine delayed-release tablet 800 mg for two mesalamine delayed-release 400 mg oral products [see Clinical Pharmacology (12.3)].
- Evaluate renal function prior to initiation of mesalamine delayed-release tablets.
- Take mesalamine delayed-release tablets on an empty stomach, at least 1 hour before and 2 hours after a meal [see Clinical Pharmacology (12.3)].
- Swallow mesalamine delayed-release tablets whole. Do not cut, break or chew the tablets.
- Intact, partially intact, and/or tablet shells have been reported in the stool; Instruct patients to contact their physician if this occurs repeatedly.
- Protect mesalamine delayed-release tablets from moisture. Close the container tightly and leave desiccant pouches in the bottle along with the tablets.

#### 2.2 Dosage Information

For the treatment of moderately active ulcerative colitis, the recommended dosage of mesalamine delayed-release tablets in adults is 1600 mg (two 800 mg tablets) three times daily (total daily dosage of 4.8 grams) for a duration of 6 weeks.

#### 3 DOSAGE FORMS AND STRENGTHS

Mesalamine delayed-release tablets are available as reddish-brown colored, capsule-shaped, biconvex, enteric coated tablets imprinted with "435" on one side and plain on other side.

#### 4 CONTRAINDICATIONS

Mesalamine delayed-release tablets are contraindicated in patients with known or suspected hypersensitivity to salicylates or aminosalicylates or to any of the ingredients of mesalamine delayed-release tablets [see Warnings and Precautions (5.3), Adverse Reactions (6.2), and Description (11)].

#### 5 WARNINGS AND PRECAUTIONS

#### 5.1 Renal Impairment

Renal impairment, including minimal change nephropathy, acute and chronic interstitial nephritis, and, rarely, renal failure, has been reported in patients taking products such as mesalamine delayed-release tablets that contain or are converted to mesalamine [see Adverse Reactions (6.2)].

Evaluate renal function prior to initiation of mesalamine delayed-release tablets and periodically while on therapy. Evaluate the risks and benefits of using mesalamine delayed-release tablets in patients with known renal impairment or history of renal disease or taking concomitant nephrotoxic drugs [see Drug Interactions (7.1), Use in Specific Populations (8.6) and Nonclinical Toxicology (13.2)].

#### **5.2** Mesalamine-Induced Acute Intolerance Syndrome

Mesalamine has been associated with an acute intolerance syndrome that may be difficult to distinguish from an exacerbation of ulcerative colitis. Exacerbation of the symptoms of colitis has been reported in 2.3% of mesalamine-treated patients in controlled clinical trials. This acute reaction, characterized by cramping, abdominal pain, bloody diarrhea, and occasionally by fever, headache, malaise, pruritus, rash, and conjunctivitis, has been reported after the initiation of mesalamine delayed-release tablets as well as other mesalamine products. Symptoms usually abate when mesalamine delayed-release tablets are discontinued.

#### **5.3** Hypersensitivity Reactions

Hypersensitivity reactions have been reported in patients taking sulfasalazine. Some patients may have a similar reaction to mesalamine delayed-release tablets or to other compounds that contain or are converted to mesalamine.

As with sulfasalazine, mesalamine-induced hypersensitivity reactions may present as internal organ involvement, including myocarditis, pericarditis, nephritis, hepatitis, pneumonitis, and hematologic abnormalities. Evaluate patients immediately if signs or symptoms of a hypersensitivity reaction are present. Discontinue mesalamine delayed-release tablets if an alternative etiology for the signs or symptoms cannot be established.

#### **5.4** Hepatic Failure

There have been reports of hepatic failure in patients with pre-existing liver disease who have been administered mesalamine. Caution should be exercised when administering mesalamine delayed-release tablets to patients with liver impairment.

#### 6 ADVERSE REACTIONS

The most serious adverse reactions seen in mesalamine delayed-release tablets clinical trials or with other products that contain mesalamine or are metabolized to mesalamine were:

- Renal Impairment [see Warnings and Precautions (5.1)]
- Mesalamine-Induced Acute Intolerance Syndrome [see Warnings and Precautions
- (5.2)1
- Hypersensitivity Reactions [see Warnings and Precautions (5.3)]
- Hepatic Failure [see Warnings and Precautions (5.4)]

#### **6.1** Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

Mesalamine has been evaluated in 896 patients with ulcerative colitis in controlled studies. Three six-week, active-controlled studies were conducted comparing mesalamine 4.8 grams per day with mesalamine-delayed release tablets 2.4 grams per day in patients with mildly to moderately active ulcerative colitis. In these studies, 727 patients were dosed with the mesalamine delayed-release tablet, 800 mg and 732 patients were dosed with mesalamine delayed-release tablets, 400 mg.

The most common reactions reported in the mesalamine group were headache (4.7%), nausea (2.8%), nasopharyngitis (2.5%), abdominal pain (2.3%), diarrhea (1.7%), and dyspepsia (1.7%); Table 1 enumerates adverse reactions that occurred in the three studies. The most common reactions in patients with moderately active ulcerative colitis (602 patients dosed with mesalamine delayed-release tablet, 800 mg and 618 patients dosed with the mesalamine delayed-release tablet, 400 mg) were the same as all treated patients.

Discontinuations due to adverse reactions occurred in 3.9% of patients in the mesalamine delayed-release tablet, 800 mg group and in 4.2% of patients in the mesalamine delayed-release tablet, 400 mg comparator group. The most common cause for discontinuation was gastrointestinal symptoms associated with ulcerative colitis.

Serious adverse reactions occurred in 0.8% of patients in the mesalamine delayed-release tablet, 800 mg group and in 1.8% of patients in the mesalamine delayed-release tablet, 400 mg comparator group. The majority involved the gastrointestinal system.

Table 1
Adverse Reactions Occurring in ≥ 1% of All Treated Patients
(Three studies combined)

| Adverse Reaction | Mesalamine delayed-release 2.4 grams per day (400 mg Tablet) (N = 732) | Mesalamine delayed-release 4.8 grams per day (800 mg Tablet) (N = 727) |  |
|------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|--|
| Headache         | 4.9 %                                                                  | 4.7 %                                                                  |  |
| Nausea           | 2.9 %                                                                  | 2.8 %                                                                  |  |
| Nasopharyngitis  | 1.4 %                                                                  | 2.5 %                                                                  |  |
| Abdominal pain   | 2.3 %                                                                  | 2.3 %                                                                  |  |
| Diarrhea         | 1.9 %                                                                  | 1.7 %                                                                  |  |
| Dyspepsia        | 0.8 %                                                                  | 1.7 %                                                                  |  |
| Vomiting         | 1.6 %                                                                  | 1.4 %                                                                  |  |
| Flatulence       | 0.7 %                                                                  | 1.2 %                                                                  |  |
| Influenza        | 1.2 %                                                                  | 1.0 %                                                                  |  |

| Adverse Reaction | Mesalamine delayed-release 2.4 grams per day (400 mg Tablet) (N = 732) | Mesalamine delayed-release 4.8 grams per day (800 mg Tablet) (N = 727) |
|------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|
| Pyrexia          | 1.2 %                                                                  | 0.7 %                                                                  |
| Cough            | 1.4 %                                                                  | 0.3 %                                                                  |

N = number of patients within specified treatment group

Percent = percentage of patients in category and treatment group

#### **6.2** Postmarketing Experience

In addition to the adverse reactions reported above in clinical trials involving the mesalamine delayed-release tablet 800 mg, the adverse events listed below have been reported in postmarketing experience with other mesalamine-containing products or products that are metabolized to mesalamine. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

#### Body as a Whole

Facial edema, edema, peripheral edema, asthenia, chills, infection, malaise, pain, neck pain, chest pain, back pain, abdominal enlargement, lupus-like syndrome, drug fever (rare).

#### Cardiovascular

Pericarditis (rare) and myocarditis (rare) [see Warnings and Precautions (5.3)], pericardial effusion, vasodilation, migraine.

#### **Gastrointestinal**

Dry mouth, stomatitis, oral ulcers, anorexia, increased appetite, eructation, pancreatitis, cholecystitis, gastroitis, gastrointestinal bleeding, perforated peptic ulcer (rare), constipation, hemorrhoids, rectal hemorrhage, bloody diarrhea, tenesmus, stool abnormality.

#### Hepatic

There have been rare reports of hepatotoxicity, including jaundice, cholestatic jaundice, hepatitis, and possible hepatocellular damage including liver necrosis and liver failure. Some of these cases were fatal. Asymptomatic elevations of liver enzymes which usually resolve during continued use or with discontinuation of the drug have also been reported. One case of Kawasaki-like syndrome, that included changes in liver enzymes, was also reported [see Warnings and Precautions (5.4)].

#### Hematologic

Agranulocytosis (rare), aplastic anemia (rare), anemia, thrombocytopenia, leukopenia, eosinophilia, lymphadenopathy.

#### Musculoskeletal

Gout, rheumatoid arthritis, arthritis, arthralgia, joint disorder, myalgia, hypertonia.

#### Neurological/Psychiatric

Anxiety, depression, somnolence, insomnia, nervousness, confusion, emotional lability, dizziness, vertigo, tremor, paresthesia, hyperesthesia, peripheral neuropathy (rare), Guillain-Barré syndrome (rare), and transverse myelitis (rare).

#### Respiratory/Pulmonary

Sinusitis, rhinitis, pharyngitis, asthma exacerbation, pleuritis, bronchitis, eosinophilic pneumonia, interstitial pneumonitis.

#### Skin

Alopecia, psoriasis (rare), pyoderma gangrenosum (rare), erythema nodosum, acne, dry skin, sweating, pruritus, urticaria, rash.

#### Special Senses

Ear pain, tinnitus, ear congestion, ear disorder, conjunctivitis, eye pain, blurred vision, vision abnormality, taste perversion.

#### Renal/Urogenital

Renal failure (rare), interstitial nephritis, minimal change nephropathy [see Warnings and Precautions (5.1)], dysuria, urinary frequency and urgency, hematuria, epididymitis, decreased libido, dysmenorrhea, menorrhagia.

#### Laboratory Abnormalities

Elevated AST (SGOT) or ALT (SGPT), elevated alkaline phosphatase, elevated GGT, elevated LDH, elevated bilirubin, elevated serum creatinine and BUN.

#### 7 DRUG INTERACTIONS

#### 7.1 Nephrotoxic Agents, Including Non-Steroidal Anti-Inflammatory Drugs

The concurrent use of mesalamine with known nephrotoxic agents, including nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk of nephrotoxicity. Monitor patients taking nephrotoxic drugs for changes in renal function and mesalamine-related adverse reactions [see Warnings and Precautions (5.1)].

#### 7.2 Azathioprine or 6-Mercaptopurine

The concurrent use of mesalamine with azathioprine or 6-mercaptopurine may increase the risk for blood disorders. If concomitant use of mesalamine delayed-release tablet 800 mg and azathioprine or 6- mercaptopurine cannot be avoided, monitor blood tests, including complete blood cell counts and platelet counts.

#### 8 USE IN SPECIFIC POPULATIONS

#### 8.1 Pregnancy

#### Risk Summary

Limited published data on mesalamine use in pregnant women are insufficient to inform a drug-associated risk. No fetal harm was observed in animal reproduction studies of mesalamine in rats and rabbits at oral doses approximately 0.97 times (rat) and 1.95 times (rabbit) the recommended human dose [see *Data*].

The estimated background risk of major birth defects and miscarriage for the indicated populations is unknown. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and 15 to 20%, respectively.

#### Data

#### Animal Data

Reproduction studies with mesalamine were performed during organogenesis in rats and rabbits at oral doses up to 480 mg/kg/day. There was no evidence of harm to the fetus. These mesalamine doses were about 0.97 times (rat) and 1.95 times (rabbit) the recommended human dose of 4.8 grams per day, based on body surface area.

#### 8.2 Lactation

#### Risk Summary

Mesalamine and its N-acetyl metabolite are present in human milk in undetectable to small amounts [see Data]. There are limited reports of diarrhea in breastfed infants. There is no information on the effects of the drug on milk production. The developmental and health benefits of breastfeeding should be considered along with the mother's clinical need for mesalamine and any potential adverse effects on the breastfed infant from the drug or from the underlying maternal condition.

#### Clinical Considerations

Monitor breastfed infants for diarrhea.

#### Data

#### Human Data

In published lactation studies, maternal mesalamine doses from various oral and rectal formulations and products ranged from 500 mg to 3 g daily. The concentration of mesalamine in milk ranged from non-detectable to 0.11 mg/L. The concentration of the Nacetyl-5-aminosalicylic acid metabolite ranged from 5 to 18.1 mg/L. Based on these concentrations, estimated infant daily dosages for an exclusively breastfed infant are 0 to 0.017 mg/kg/day of mesalamine and 0.75 to 2.72 mg/kg/day of N-acetyl-5-aminosalicylic acid.

#### 8.4 Pediatric Use

Safety and effectiveness of mesalamine in pediatric patients have not been established. See the prescribing information for other approved mesalamine products for the safety and effectiveness of these products in pediatric patients.

#### 8.5 Geriatric Use

Clinical studies of mesalamine delayed-release tablets did not include sufficient numbers of patients aged 65 and over to determine whether they respond differently than younger patients. Reports from uncontrolled clinical studies and postmarketing experience for another oral formulation of mesalamine suggest a higher incidence of blood dyscrasias (agranulocytosis, neutropenia, pancytopenia) in patients who were 65 years or older compared to younger patients. Monitor complete blood cell counts and platelet counts in elderly patients during therapy with mesalamine delayed-release tablets.

In general, the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy in elderly patients should be considered when prescribing mesalamine delayed-release tablets [see Use in Specific Populations (8.6)].

#### 8.6 Renal Impairment

Mesalamine is known to be substantially excreted by the kidney, and the risk of adverse reactions may be greater in patients with impaired renal function. Evaluate renal function in all patients prior to initiation and periodically while on mesalamine delayed-release tablets therapy. Monitor patients with known renal impairment or history of renal disease or taking nephrotoxic drugs for decreased renal function and mesalamine-related adverse reactions [see Warnings and Precautions (5.1), Drug Interactions (7.1) and Adverse Reactions (6.2)].

#### 10 OVERDOSAGE

There is no specific antidote for mesalamine overdose and treatment for suspected acute severe toxicity with mesalamine should be symptomatic and supportive. This may include prevention of further gastrointestinal tract absorption, correction of fluid electrolyte imbalance, and maintenance of adequate renal function. Mesalamine delayed-release tablet is a pH dependent delayed-release product and this factor should be considered when treating a suspected overdose.

Single oral doses of 5000 mg/kg mesalamine suspension in mice (approximately 4.2 times the recommended human dose of mesalamine based on body surface area), 4595 mg/kg in rats (approximately 7.8 times the recommended human dose of mesalamine based on body surface area) and 3000 mg/kg in cynomolgus monkeys (approximately 10 times the recommended human dose of mesalamine based on body surface area) were lethal.

#### 11 DESCRIPTION

Each mesalamine delayed-release tablet for oral administration contains 800 mg of mesalamine USP, an aminosalicylate. Mesalamine, USP is light tan to pink colored, needle-shaped crystals. Color may darken on exposure to air. It is odorless or may have a slight characteristic odor, slightly soluble in water; very slightly soluble in methanol, in dehydrated alcohol, and in acetone; practically insoluble in n-butyl alcohol, in chloroform, in ether, in ethyl acetate, in n-hexane, in methylene chloride, and in n-propyl alcohol and soluble in dilute hydrochloric acid and in dilute alkali hydroxides. Mesalamine delayed-release tablets 800 mg have single layered coating consisting of an

acrylic based resin Eudragit S (methacrylic acid copolymer B, NF), which dissolves at pH 7 or greater, releasing mesalamine for topical anti-inflammatory action in the colon. Mesalamine (also referred to as 5-aminosalicylic acid or 5-ASA) has the chemical name 5-amino-2-hydroxybenzoic acid and its structural formula is:

Molecular Weight: 153.1 Molecular Formula: C<sub>7</sub>H<sub>7</sub>NO<sub>3</sub>

Each mesalamine delayed-release tablet contains 800 mg of mesalamine. In addition, each tablet contains the following inactive ingredients: acetyltributyl citrate, colloidal silicone dioxide, ferric oxide red, magnesium stearate, methacrylic acid copolymer type B, microcrystalline cellulose, povidone, sodium starch glycolate, talc and titanium dioxide. The tablet is printed with opacode black S-1-17823 which contains following ingredients: ammonium hydroxide, butyl alcohol, ferrosoferric oxide, isopropyl alcohol, propylene glycol and shellac.

#### 12 CLINICAL PHARMACOLOGY

#### **12.1** Mechanism of Action

The mechanism of action of mesalamine is unknown, but appears to be topical rather than systemic. Mucosal production of arachidonic acid metabolites, both through the cyclooxygenase pathways, that is, prostanoids, and through the lipoxygenase pathways, that is, leukotrienes and hydroxyeicosatetraenoic acids, is increased in patients with chronic inflammatory bowel disease, and it is possible that mesalamine diminishes inflammation by blocking cyclooxygenase and inhibiting prostaglandin production in the colon.

#### 12.3 Pharmacokinetics

#### Absorption

Plasma concentrations of mesalamine (5-aminosalicylic acid; 5-ASA) and its metabolite, N-acetyl-5-aminosalicylic acid (N-Ac-5-ASA) are highly variable following administration of mesalamine delayed-release tablets. Following single dose oral administration of mesalamine delayed-release tablet 800 mg in healthy subjects (N = 139) under fasted conditions, the mean  $C_{max}$ ,  $AUC_{8-48h}$  and  $AUC_{0-tldc}$  values were 208 ng/mL, 2296 ng.h/mL, and 2533 ng.h/mL, respectively. The median [range]  $T_{max}$  for mesalamine following administration of mesalamine delayed-release tablet 800 mg was approximately 24 hours [4 to 72 hours], reflecting the delayed-release characteristics of the formulation.

Based on cumulative urinary recovery of mesalamine and N-Ac-5-ASA from single dose studies in healthy subjects, approximately 20% of the orally administered mesalamine in mesalamine delayed-release tablets is systemically absorbed.

Food Effect: A high calorie (800 to 1000 calories), high fat (approximately 50 % of total caloric content) meal increased mesalamine  $C_{max}$  by 2.4-fold and mesalamine systemic exposure (AUC<sub>8-48</sub> and AUC<sub>0-tldc</sub>) by 2.8-fold; the median lag-time increased by 8 hours and median  $t_{max}$  by 6 hours (from 24 to 30 hours) [see Dosage and Administration (2.1)].

Comparative exposure between one mesalamine delayed-release tablet 800 mg and two mesalamine delayed-release 400 mg oral products is unknown [see Dosage and Administration (2.1)].

#### Elimination

Metabolism

The absorbed mesalamine is acetylated in the gut mucosal wall and by the liver to N-Ac-5-ASA.

#### Excretion

Absorbed mesalamine is excreted mainly by the kidneys as N-acetyl-5-aminosalicylic acid. Unabsorbed mesalamine is excreted in feces.

#### 13 NONCLINICAL TOXICOLOGY

#### 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Dietary mesalamine was not carcinogenic in rats at doses as high as 480 mg/kg/day, or in mice at 2000 mg/kg/day. These doses are approximately 0.97 and 2.0 times the 4.8 grams per day mesalamine delayed-release tablets dose (based on body surface area). Mesalamine was not genotoxic in the Ames test, the Chinese hamster ovary cell chromosomal aberration assay, and the mouse micronucleus test. Mesalamine, at oral doses up to 480 mg/kg/day (about 0.97 times the recommended human treatment dose based on body surface area), was found to have no effect on fertility or reproductive performance of male and female rats.

#### 13.2 Animal Toxicology and/or Pharmacology

In animal studies (rats, mice, dogs), the kidney was the principal organ for toxicity. (In the following, comparisons of animal dosing to recommended human dosing are based on body surface area and a 4.8 grams per day dose for a 60 kg person).

Mesalamine causes renal papillary necrosis in rats at single doses of approximately 750 mg/kg to 1000 mg/kg (1.5 to 2.0 times the recommended human dose). Doses of 170 and 360 mg/kg/day (about 0.3 and 0.73 times the recommended human dose) given to rats for six months produced papillary necrosis, papillary edema, tubular degeneration, tubular mineralization, and urothelial hyperplasia.

In mice, oral doses of 4000 mg/kg/day (approximately 4.1 times the recommended human dose) for three months produced tubular nephrosis, multifocal/diffuse tubulo-interstitial inflammation, and multifocal/diffuse papillary necrosis.

In dogs, single doses of 6000 mg (approximately 6.25 times the recommended human dose) of delayed-release mesalamine tablets resulted in renal papillary necrosis but were not fatal. Renal changes have occurred in dogs given chronic administration of mesalamine at doses of 80 mg/kg/day (0.5 times the recommended human dose).

#### 14 CLINICAL STUDIES

#### 14.1 Moderately Active Ulcerative Colitis

The efficacy of mesalamine delayed-release tablets at 4.8 grams per day was studied in a six-week, randomized, double-blind, active-controlled study in 772 patients with moderately active ulcerative colitis (UC). Moderately active UC was defined as a Physician's Global Assessment (PGA) score of 2; the PGA is a four-point scale (0 to 3) that encompasses the clinical assessments of rectal bleeding, stool frequency, and sigmoidoscopy findings.

Patients were randomized 1:1 to the mesalamine delayed-release tablets 4.8 grams per day group (two mesalamine delayed-release tablets three times a day) or the mesalamine delayed-release 2.4 grams per day group (two mesalamine delayed-release 400 mg tablets three times a day).

Patients characteristically had a history of previous use of oral 5-ASAs (86%), steroids (41%), and rectal therapies (49%), and demonstrated clinical symptoms of three or more stools over normal per day (87%) and obvious blood in the stool most or all of the time (70%). The study population was primarily Caucasian (97%), had a mean age of 43 years (8% aged 65 years or older), and included slightly more males (56%) than females (44%).

The primary endpoint was treatment success defined as improvement from baseline to Week 6 based on the PGA. Treatment success rates were similar in the two groups: 70% in the mesalamine group and 66% in the mesalamine delayed-release 400 mg tablets group (difference: 5%; 95% CI: [-1.9%, 11.2%]).

A second controlled study supported the efficacy of mesalamine at 4.8 grams per day. Treatment success was 72% in patients with moderately active UC treated with mesalamine.

#### 16 HOW SUPPLIED/STORAGE AND HANDLING

Mesalamine Delayed-release Tablets, USP 800 mg are reddish-brown colored, capsule-shaped, biconvex, enteric coated tablets, imprinted with "435" on one side and plain on other side and are supplied as follows:

NDC 68382-435-28 in bottles of 180 tablets NDC 68382-435-77 in cartons of 100 tablets (10 x 10 unit-dose)

#### Storage

Store at 20° to 25°C (68° to 77°F) [See USP Controlled Room Temperature].

Store and dispense in the original bottle, protect from moisture, and keep the bottle tightly closed. Do not remove desiccant pouch (silica gel) from bottle.

#### 17 PATIENT COUNSELING INFORMATION

Administration [see Dosage and Administration (2.1)]

- Inform patients that if they are switching from a previous oral mesalamine therapy to mesalamine delayed-release tablets to discontinue their previous oral mesalamine therapy and follow the dosing instructions for mesalamine delayed-release tablets. One mesalamine delayed-release tablet 800 mg is not substitutable for two mesalamine delayed-release 400 mg oral products.
- Inform patients to take mesalamine delayed-release tablets on an empty stomach, at least 1 hour before and 2 hours after a meal.
- Instruct patients to swallow the mesalamine delayed-release tablets whole, taking care not to break, cut, or chew the tablets, because the coating is an important part of the delayed-release formulation.
- Inform patients that intact, partially intact, and/or tablet shells have been reported in the stool. Instruct patients to contact their physician if this occurs repeatedly.
- Instruct patients to protect mesalamine delayed-release tablets from moisture. Instruct patients to close the container tightly and to leave desiccant pouches in the bottle along with the tablets.

#### **Renal Impairment**

• Inform patients that mesalamine delayed-release tablets may decrease their renal function, especially if they have known renal impairment or are taking nephrotoxic drugs, and periodic monitoring of renal function will be performed while they are on therapy. Advise patients to complete all blood tests ordered by their physician [see Warnings and Precautions (5.1)].

#### **Mesalamine-Induced Acute Intolerance Syndrome**

• Instruct patients to report to their physician if they experience new or worsening symptoms of cramping, abdominal pain, bloody diarrhea, and sometimes fever, headache, and rash [see Warnings and Precautions (5.2)].

#### **Hypersensitivity Reactions**

• Inform patients of the signs and symptoms of hypersensitivity reactions, and advise them seek immediate medical care should signs and symptoms occur [see Warnings and Precautions (5.3)].

#### **Hepatic Failure**

• Inform patients with known liver disease of the signs and symptoms of worsening liver function and advise them to report to their physician if they experience such signs or symptoms [see Warnings and Precautions (5.4)].

#### **Blood Disorders**

• Inform elderly patients and those taking azathioprine or 6-mercaptopurine of the risk for blood disorders and the need for periodic monitoring of complete blood cell

counts and platelet counts while on therapy. Advise patients to complete all blood tests ordered by their physician [see Drug Interactions (7.2), Use in Specific Populations (8.5)].

Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088.

### Manufactured by:

Cadila Healthcare Ltd. Ahmedabad, India

# Distributed by: Zydus Pharmaceuticals USA Inc.

Pennington, NJ 08534

Rev.: 02/17

# CENTER FOR DRUG EVALUATION AND RESEARCH

# APPLICATION NUMBER: ANDA 203286

# **LABELING REVIEWS**

#### LABELING REVIEW

Division of Labeling Review
Office of Regulatory Operations
Office of Generic Drugs (OGD)
Center for Drug Evaluation and Research (CDER)

**Date of This Review** 05/15/2017 203286 ANDA Number(s) **Review Number** 5 **Applicant Name** Zydus Pharmaceuticals (USA) Inc. **Established Name & Strength(s)** Mesalamine Delayed-Release Tablets USP, 800 mg **Proposed Proprietary Name** None **Submission Received Date** 04/06/2017 **Labeling Reviewer** Esther Park **Labeling Team Leader** Ellen Hwang **Review Conclusion** ACCEPTABLE – No Comments. Minor Deficiency\* – Refer to Labeling Deficiencies and Comments for the Letter to Applicant. \*Please Note: The Regulatory Project Manager (RPM) may change the recommendation from Minor Deficiency to Easily Correctable Deficiency if all other OGD reviews are acceptable. Otherwise, the labeling minor deficiencies will be included in the Complete Response (CR) letter to the applicant. On Policy Alert List

#### 1. LABELING COMMENTS

#### 1.1 LABELING DEFICIENCIES AND COMMENTS FOR LETTER TO APPLICANT

None

Submit your revised labeling electronically. The prescribing information and any patient labeling should reflect the full content of the labeling as well as the planned ordering of the content of the labeling. The container label and any outer packaging should reflect the content as well as an accurate representation of the layout, color, text size, and style.

To facilitate review of your next submission, please provide a side-by-side comparison of your proposed labeling with your last submitted labeling with all differences annotated and explained. We also advise that you only address the deficiencies noted in this communication.

However, prior to the submission of your amendment, please check labeling resources, including DRUGS@FDA, the electronic Orange Book and the NF-USP online, for recent updates and make any necessary revisions to your labels and labeling.

In order to keep ANDA labeling current, we suggest that you subscribe to the daily or weekly updates of new documents posted on the CDER web site at the following address –

http://service.govdelivery.com/service/subscribe.html?code=USFDA 17

#### 1.2 POST APPROVAL REVISIONS

These comments will NOT be sent to the applicants at this time.

These comments will be addressed post approval (in the first labeling supplement review).

#### 1. GENERAL COMMENTS (For Container and Carton Label)

| a. |                                                                             | (b) (4  |
|----|-----------------------------------------------------------------------------|---------|
|    |                                                                             |         |
| b. | Please revise to read as below to be the same as the reference listed drug: |         |
|    |                                                                             | (b) (4) |
|    |                                                                             |         |
|    |                                                                             |         |

# 2. <u>PREVIOUS LABELING REVIEW, DEFICIENCIES, FIRM'S RESPONSE, AND REVIEWER'S ASSESSMENT</u>

In this section, we include any previous labeling review deficiencies, the firm's response and reviewer's assessment to firm's response as well as any new deficiencies found in this cycle. Include the previous review cycle and the review's submission date(s) [e.g. "The below comments are from the labeling review C3 based on the submission dated 7/4/15"].

#### **Reviewer Comments:**

# The below comments are from the labeling review C4 based on the submission (s) dated 10/19/2015, 6/10/2016 and Firm's Responses are from Cover Letter on 04/06/2017:

 CONTAINER LABEL – The following comments are based on the Asacol® HD container label, approved on May 5, 2016.

a.

(b) (4)

- Revise the administration direction to read as follows:
   Swallow Mesalamine Delayed-Release Tablets whole. Do not cut, break, or chew the tablets.
- c. Include the text "Dispense in original container" as does the Asacol® HD tablets label.

#### Firm's Response:

a.

(b) (4)

b.

As recommended by the Agency, we have revised our administration direction to read "Swallow Mesalamine Delayed-Release Tablets whole. Do not cut, break, or chew the tablets."

c.

We acknowledge the Agency's comment.

#### Reviewer's Assessment: All of the label deficiencies have been addressed by the applicant.

CARTON – 100 (10 x 10) Unit-dose Tablets

See comments under CONTAINER, whichever applicable.

#### Firm's Response:

We have revised our labels according the comments 1a and 1b for container.

#### Reviewer's Assessment: All of the label deficiencies have been addressed by the applicant.

PRESCRIBING INFORMATION

HOW SUPPLIED/STORAGE AND HANDLING

Revise the dispensing statement to read as follows:

Store and dispense in the original bottle, protect from moisture, and keep the bottle tightly closed. Do not remove desiccant pouch (silica gel) from bottle.

#### Firm's Response:

As recommended by the Agency, we have revised the dispensing statement to read "Store and dispense in the original bottle, protect from moisture, and keep the bottle tightly closed. Do not remove desiccant pouch (silica gel) from bottle."

#### Reviewer's Assessment: All of the label deficiencies have been addressed by the applicant.

STRUCTURED PRODUCT LABELING (SPL)

See comments under CONTAINER and PRESCRIBING INFORMATION.

#### Firm's Response:

As recommended by the Agency, we have revised the dispensing statement to read "Store and dispense in the original bottle, protect from moisture, and keep the bottle tightly closed. Do not remove desiccant pouch (silica gel) from bottle" and the revised container label has been incorporated.

Reviewer's Assessment: All of the label deficiencies have been addressed by the applicant.

#### 2.1 CONTAINER AND CARTON LABELS

Did the firm submit container and/or carton labels that were **NOT** requested in the previous labeling review? **NO** 

If yes, state the reason for the submission, and comment below whether the proposed revisions are acceptable or deficient.

#### **Reviewer Comments:**

None

#### 2.2 ADDITIONAL BACKGROUND INFORMATION PERTINENT TO THE REVIEW

In this section, include any correspondence or internal information pertinent to the review. Include the correspondence(s) and/or information date(s) [e.g. resolution of any pending chemistry review or issue].

#### **Reviewer Comments:**

NA

#### 3. <u>LABELING REVIEW INFORMATION AND REVIEWER ASSESSMENT</u>

#### 3.1 REGULATORY INFORMATION

Are there any pending issues in DLR's SharePoint Drug Facts? NO

If Yes, please explain in section 2.2 Additional Background Information Pertinent to the Review

Is the drug product listed in the Policy Alert Tracker on OGD's SharePoint? NO

If Yes, please explain.

### 3.2 MODEL PRESCRIBING INFORMATION

| Table 1: Review Model Labeling for Prescribing Information and Patient Labeling (Check the box used as the Model Labeling)  ☑MOST RECENTLY APPROVED NDA MODEL LABELING |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ⊠MOST RECENTLY APPROVED <u>NDA</u> MODEL LABELING                                                                                                                      |
|                                                                                                                                                                        |
| (If NDA is listed in the discontinued section of the Orange Book, also enter ANDA model labeling                                                                       |
| information.)                                                                                                                                                          |
| NDA# /Supplement# (S-000 if original): 021830/S-010                                                                                                                    |
| Supplement Approval Date: 05/05/2016                                                                                                                                   |
| Proprietary Name: Asacol®                                                                                                                                              |
| Established Name: Mesalamine Delayed-Release Tablets                                                                                                                   |
| Description of Supplement:                                                                                                                                             |
| This Prior Approval supplemental new drug application provides for the removal of the excipient                                                                        |
| dibutyl phthalate (DBT) and replacing it with the alternate dibutyl sebacate (DBS).                                                                                    |
| MOST RECENTLY APPROVED ANDA MODEL LABELING                                                                                                                             |
| ANDA#/Supplement# (S-000 if original):                                                                                                                                 |
| Supplement Approval Date:                                                                                                                                              |
| Proprietary Name:                                                                                                                                                      |
| Established Name:                                                                                                                                                      |
| Description of Supplement:                                                                                                                                             |
| ☐ TEMPLATE (e.g., BPCA, PREA, Carve-out): NA                                                                                                                           |
| OTHER (Describe): NA                                                                                                                                                   |
|                                                                                                                                                                        |
| Reviewer Assessment:                                                                                                                                                   |
| Is the Prescribing Information same as the model labeling, except for differences allowed under 21 CFR 314.94(a)(8)? <b>YES</b>                                        |
| Are the specific requirements for format met under 21 CFR 201.57(new) or 201.80(old)? <b>YES</b>                                                                       |
| Does the Model Labeling have combined insert labeling for multiple dosage forms? <b>NO</b>                                                                             |
| Reviewer Comments:                                                                                                                                                     |
| None                                                                                                                                                                   |
| TOTIC                                                                                                                                                                  |

## 3.3 MODEL CONTAINER LABELS

Model container/carton/blister labels Source:



#### 3.4 UNITED STATES PHARMACOPEIA (USP) & PHARMACOPEIA FORUM (PF)

We searched the USP and PF to determine if the drug product under review is the subject of a USP monograph or proposed USP monograph.

|           | Table 2: USP and PF Search Results |                             |                                                                                      |                                                                      |  |  |  |  |
|-----------|------------------------------------|-----------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|--|
|           | Date<br>Searched                   | Monograph<br>? YES or<br>NO | Monograph Title<br>(NA if no monograph)                                              | Packaging and Storage/Labeling<br>Statements<br>(NA if no monograph) |  |  |  |  |
| US<br>P   | 5/15/2017                          | YES                         | Mesalamine Delayed-Release<br>Tablets                                                | Packaging and Storage: Preserve in tight containers.                 |  |  |  |  |
| <u>PF</u> | 5/15/2017                          | YES                         | 31(2) Second Interim Revision<br>Announcement: Mesalamine<br>Delayed-Release Tablets | Packaging and storage— Preserve in tight containers.                 |  |  |  |  |

#### **Reviewer Comments:**

Biopharmaceutics review not available. We will ask biopharmaceutics which test method was used for this proposed drug product. Biopharmaceutics notified, 05/26/2017.

## **Response from Biopharmaceutics Reviewer, 06/21/2017:**

There is only one USP method listed for this drug product and the applicant's dissolution method and specs

match the USP method and specs. Therefore, no statement is needed in the description section.

#### Mesalamine Delayed-Release Tablets

#### DEFINITION

Mesalamine Delayed-Release Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of mesalamine (C<sub>7</sub>H<sub>7</sub>NO<sub>3</sub>).

#### **IDENTIFICATION**

#### A. Infrared Absorption (197K)

Sample solution: To about 50 mL of water add a quantity of finely powdered Tablets, nominally equivalent to about 800 mg of mesalamine. Boil the mixture for about 5 min, with constant stirring. Filter the hot solution, and allow the filtrate to cool. Collect the precipitated crystals, and dry at about 110°.

Acceptance criteria: Meet the requirements

#### Acceptance cirteria. Infect the

#### ASSAY

#### PROCEDURE

Mobile phase: Dissolve 4.3 g of sodium 1-octanesulfonate in 1 L of water. Adjust with phosphoric acid to a pH rs = peak response of mesalamine from the Standard solution

C<sub>S</sub> = concentration of USP Mesalamine RS in the Standard solution (mg/mL)

 C<sub>U</sub> = nominal concentration of mesalamine in the Sample solution (mg/mL)

Acceptance criteria: 90.0%-110.0%

#### PERFORMANCE TESTS

volume, and mix.

#### • Dissolution (711)

Solution A: Transfer about 43.35 g of monobasic potassium phosphate and 1.65 g of sodium hydroxide to a 2-L volumetric flask. Dissolve in and dilute with water to volume, and mix. Adjust with 1 N sodium hydroxide or phosphoric acid to a pH of 6.0, and mix. Solution B: Transfer 133.6 g of sodium hydroxide to a 2-L volumetric flask, dissolve in and dilute with water to

#### 3.5 PATENTS AND EXCLUSIVITIES

The Orange Book was searched on 5/15/2017.

Table 3 provides Orange Book patents for the Model Labeling (NDA 021830) and ANDA patent certifications. (For applications that have no patents, N/A is entered in the patent number column)

|                  | Table 3: Impact of Model Labeling Patents on ANDA Labeling |                    |                                 |                             |                                             |                                                               |  |
|------------------|------------------------------------------------------------|--------------------|---------------------------------|-----------------------------|---------------------------------------------|---------------------------------------------------------------|--|
| Patent<br>Number | Patent<br>Expiration                                       | Patent<br>Use Code | Patent Use Code Definition      | Patent<br>Certificatio<br>n | Date of<br>Patent<br>Cert<br>Submissio<br>n | Labeling<br>Impact<br>(enter<br>"Carve-<br>out" or<br>"None") |  |
| 6893662          | Nov 15,<br>2021                                            | U-141              | TREATMENT OF ULCERATIVE COLITIS | iv                          | 01/13/2016                                  | None                                                          |  |
| 8580302          | Nov 15,<br>2021                                            |                    |                                 | iv                          | 01/13/2016                                  | None                                                          |  |
| 9089492          | Nov 15,<br>2021                                            |                    |                                 | iv                          | 01/13/2016                                  | None                                                          |  |

#### Reviewer Assessment:

Is the applicant's "patent carve out" acceptable? NA

#### **Reviewer Comments:**

None

Table 4 provides Orange Book exclusivities for the Model Labeling and ANDA exclusivity statements.

| Table 4: Impact of Model Labeling Exclusivities on ANDA Labels and Labeling |                           |                             |                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|-----------------------------------------------------------------------------|---------------------------|-----------------------------|--------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Exclusivity<br>Code                                                         | Exclusivity<br>Expiration | Exclusivity Code Definition | Exclusivity<br>Statement | Date of<br>Exclusivity<br>Submissio<br>n | THE PARTY OF THE P |  |  |  |

|    | and Labeling |  |  |  |  |
|----|--------------|--|--|--|--|
| NA |              |  |  |  |  |

#### Reviewer Assessment:

Is the applicant's "exclusivity carve out" acceptable? NA

#### **Reviewer Comments:**

NA

#### 4. DESCRIPTION, HOW SUPPLIED AND MANUFACTURED BY STATEMENT

Tables 5, 6, and 7 describe any changes in the inactive ingredients, dosage form description, package sizes, and manufacturer/distributor/packer statements of the Prescribing Information or Drug Facts for OTC products when compared to the previous labeling review.

#### Reviewer Assessment:

Are there changes to the inactives in the DESCRIPTION section or Inactive Ingredients (OTC)? **NO**Are there changes to the dosage form description(s) or package size(s) in HOW SUPPLIED or package size(s) for OTC? **YES** 

Are there changes to the manufacturer/distributor/packer statements? NO

If yes, then comment below in Tables 5, 6, and 7.

| Previous Labeling Review                                                                                                                                                                                                                                                                                                                                                                                                 | Currently Proposed                                                                                                                                                                                                                                                                                                                                                                                                       | Assessment             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| acetyltributyl citrate, colloidal silicone dioxide, ferric oxide red, magnesium stearate, methacrylic acid copolymer type B, microcrystalline cellulose, povidone, sodium starch glycolate, talc and titanium dioxide. The tablet is printed with opacode black S-1-17823 which contains following ingredients: ammonium hydroxide, butyl alcohol, ferrosoferric oxide, isopropyl alcohol, propylene glycol and shellac. | acetyltributyl citrate, colloidal silicone dioxide, ferric oxide red, magnesium stearate, methacrylic acid copolymer type B, microcrystalline cellulose, povidone, sodium starch glycolate, talc and titanium dioxide. The tablet is printed with opacode black S-1-17823 which contains following ingredients: ammonium hydroxide, butyl alcohol, ferrosoferric oxide, isopropyl alcohol, propylene glycol and shellac. | No Change. Acceptable. |

#### Table 6: Comparison of HOW SUPPLIED Section or Packaging Sizes for OTC Products

#### **Previous Labeling Review**

Mesalamine Delayed-release Tablets, USP 800 mg are reddish-brown colored, capsuleshaped, biconvex, enteric coated tablets, imprinted with "435" on one side and plain on other side and are supplied as follows:

NDC 68382-435-28 in bottles of 180 tablets NDC 68382-435-77 in cartons of 100 tablets (10 x 10 unit-dose)

#### Storage

Store at 20° to 25°C (68° to 77°F) [See USP Controlled Room Temperature].

(b) (4

#### Table 6: Comparison of HOW SUPPLIED Section or Packaging Sizes for OTC Products

#### **Currently Proposed**

Mesalamine Delayed-release Tablets, USP 800 mg are reddish-brown colored, capsuleshaped, biconvex, enteric coated tablets, imprinted with "435" on one side and plain on other side and are supplied as follows:

NDC 68382-435-28 in bottles of 180 tablets NDC 68382-435-77 in cartons of 100 tablets (10 x 10 unit-dose)

#### Storage

Store at 20° to 25°C (68° to 77°F) [See USP Controlled Room Temperature].

Store and dispense in the original bottle, protect from moisture, and keep the bottle tightly closed. Do not remove desiccant pouch (silica gel) from bottle.

#### **Assessment**

Storage statement has been revised to read "Store and dispense in the original bottle, protect from moisture, and keep the bottle

tightly closed. Do not remove desiccant pouch (silica gel) from bottle." according to the agency's recommendations.

Acceptable.

| Table 7: Manufacturer/Distributor/Packer Statements                                                                           |                                                                                                                               |                        |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|--|--|
| <b>Previous Labeling Review</b>                                                                                               | Currently Proposed                                                                                                            | Assessment             |  |  |  |  |  |
| Manufactured by: Cadila Healthcare Ltd. Ahmedabad, India  Distributed by: Zydus Pharmaceuticals USA Inc. Pennington, NJ 08534 | Manufactured by: Cadila Healthcare Ltd. Ahmedabad, India  Distributed by: Zydus Pharmaceuticals USA Inc. Pennington, NJ 08534 | No Change. Acceptable. |  |  |  |  |  |

#### 5. COMMENTS FOR CHEMISTRY REVIEWER

Describe issue(s) sent to and/or received from the chemistry (also known as drug product quality) reviewer:

#### **Reviewer Comments:**

Biopharmaceutics review not available. We will ask biopharmaceutics which test method was used for this proposed drug product. Biopharmaceutics notified, 05/26/2017.

#### Response from Biopharmaceutics Reviewer, 06/21/2017:

There is only one USP method listed for this drug product and the applicant's dissolution method and specs match the USP method and specs. Therefore, no statement is needed in the description section.

#### Mesalamine Delayed-Release Tablets

Mesalamine Delayed-Release Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of mesalamine  $(C_7H_7NO_3).$ 

#### IDENTIFICATION

A. Infrared Absorption (197K)

Sample solution: To about 50 mL of water add a quantity of finely powdered Tablets, nominally equivalent to about 800 mg of mesalamine. Boll the mixture for about 5 min, with constant stirring. Filter the hot solu-tion, and allow the filtrate to cool. Collect the precipi-tated crystals, and dry at about 110°.

Acceptance criteria: Meet the requirements

#### ASSAY

PROCEDURE

Mobile phase: Dissolve 4.3 g of sodium 1-octanesulfon-ate in 1 L of water. Adjust with phosphoric acid to a pH

= peak response of mesalamine from the Standard solution

= concentration of USP Mesalamine RS in the Cs Standard solution (mg/mL)

Cu = nominal concentration of mesalamine in the Sample solution (mg/mL)

Acceptance criteria: 90.0%-110.0%

#### PERFORMANCE TESTS

Solution A: Transfer about 43.35 g of monobasic potas-sium phosphate and 1.65 g of sodium hydroxide to a 2-L volumetric flask. Dissolve in and dilute with water to volume, and mix. Adjust with 1 N sodium hydroxide or

phosphoric acid to a pH of 6.0, and mlx.

Solution B: Transfer 133.6 g of sodium hydroxide to a 2-L volumetric flask, dissolve in and dilute with water to

volume, and mix.

#### 6. COMMENTS FOR OTHER REVIEW DISCIPLINES

Describe questions/issue(s) sent to and/or received from other discipline reviewer(s):

#### **Reviewer Comments:**

NA

#### 7. OVERALL ASSESSMENT OF MATERIALS REVIEWED

Tables 8 and 9 provide a summary of recommendations for all labeling pieces for this application.

For each row, you MUST choose an item "Final, Draft, or "NA". If you enter "NA" under the second column, you do NOT need to enter "NA" for the remaining columns.

| Ta                         | able 8: Review Sumn  | nary of Container Label and                          | Carton Labeling             |                    |
|----------------------------|----------------------|------------------------------------------------------|-----------------------------|--------------------|
|                            | Final or Draft or NA | Packaging Sizes                                      | Submission<br>Received Date | Recommendati<br>on |
| Container                  | Final                | 800 mg<br>180 Tablets in 1 Bottle                    | 04/06/2017                  | Satisfactory       |
| Blister                    | Final                | 800 mg<br>10 Tablets                                 | 04/06/2017                  | Satisfactory       |
| Carton                     | Final                | <u>800 mg</u><br>100 Tablets (10 x 10 Unit-<br>Dose) | 04/06/2017                  | Satisfactory       |
| (Other - specify)          |                      | ·                                                    |                             |                    |
| Table                      | 9 Review Summary     | of Prescribing Information a                         | and Patient Labeli          | ng                 |
|                            | Final or Draft or NA | Revision Date and/or<br>Code                         | Submission<br>Received Date | Recommendati<br>on |
| Prescribing<br>Information | Draft                | 02/2017                                              | 04/06/2017                  | Satisfactory       |
| <b>Medication Guide</b>    | NA                   |                                                      |                             |                    |
| Patient Information        | NA                   |                                                      |                             |                    |
| SPL Data Elements          | NA                   | 02/2017                                              | 04/06/2017                  | Satisfactory       |





Digitally signed by Ellen Hwang
Date: 5/25/2017 02:06:24PM
GUID: 5256bdc00002af3bc3fa942a9512a891

Digitally signed by Esther Park
Date: 5/15/2017 09:01:51PM

GUID: 552d387d009750180ac89afefb9b8914

\*\*\* This document contains proprietary information that cannot be released to the public.\*\*\*

### **LABELING REVIEW**

Division of Labeling Review Office of Regulatory Operations Office of Generic Drugs (OGD) Center for Drug Evaluation and Research (CDER)

| Date of This Review                                                                                                                                                                                                                                                                                 | 12/6/2016                                      |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|--|--|
| ANDA Number(s)                                                                                                                                                                                                                                                                                      | 203286                                         |  |  |  |
| Review Number                                                                                                                                                                                                                                                                                       | 4                                              |  |  |  |
| Applicant Name                                                                                                                                                                                                                                                                                      | Zydus Pharmaceuticals (USA) Inc.               |  |  |  |
| Established Name & Strength(s)                                                                                                                                                                                                                                                                      | NA                                             |  |  |  |
| Proposed Proprietary Name                                                                                                                                                                                                                                                                           | Mesalamine Delayed-release Tablets USP, 800 mg |  |  |  |
| Submission Received Date                                                                                                                                                                                                                                                                            | 10/19/2015 and 6/10/2016                       |  |  |  |
| Labeling Reviewer                                                                                                                                                                                                                                                                                   | Chan Park                                      |  |  |  |
| Labeling Team Leader                                                                                                                                                                                                                                                                                | Lisa Kwok                                      |  |  |  |
| <u>'</u>                                                                                                                                                                                                                                                                                            |                                                |  |  |  |
| <b>Review Conclusion</b>                                                                                                                                                                                                                                                                            |                                                |  |  |  |
| ☐ ACCEPTABLE – No Comments.                                                                                                                                                                                                                                                                         |                                                |  |  |  |
| ☐ ACCEPTABLE – Include Post Approval Comments                                                                                                                                                                                                                                                       |                                                |  |  |  |
| Minor Deficiency* − Refer to Labeling Deficiencies and Comments for the Letter to Applicant.                                                                                                                                                                                                        |                                                |  |  |  |
| *Please Note: The Regulatory Project Manager (RPM) may change the recommendation from Minor Deficiency to Easily Correctable Deficiency if all other OGD reviews are acceptable. Otherwise, the labeling minor deficiencies will be included in the Complete Response (CR) letter to the applicant. |                                                |  |  |  |

#### 1. LABELING COMMENTS

#### 1.1 LABELING DEFICIENCIES AND COMMENTS FOR LETTER TO APPLICANT

Labeling Deficiencies determined on December 6, 2016 based on your submission dated October 19, 2015 and June 10, 2016.

1. CONTAINER LABEL – The following comments are based on the Asacol® HD container label, approved on May 5, 2016.

a.

(b) (4)

- b. Revise the administration direction to read as follows:

  Swallow Mesalamine Delayed-Release Tablets whole. Do not cut, break, or chew the tablets.
- c. Include the text "Dispense in original container" as does the Asacol® HD tablets label.
- 2.  $CARTON 100 (10 \times 10)$  Unit-dose Tablets

See comments under CONTAINER, whichever applicable.

3. PRESCRIBING INFORMATION

HOW SUPPLIED/STORAGE AND HANDLING

Revise the dispensing statement to read as follows:

Store and dispense in the original bottle, protect from moisture, and keep the bottle tightly closed. Do not remove desiccant pouch (silica gel) from bottle.

4. STRUCTURED PRODUCT LABELING (SPL)

See comments under CONTAINER and PRESCRIBING INFORMATION.

Submit your revised labeling electronically. The prescribing information and any patient labeling should reflect the full content of the labeling as well as the planned ordering of the content of the labeling. The container label and any outer packaging should reflect the content as well as an accurate representation of the layout, color, text size, and style.

To facilitate review of your next submission, please provide a side-by-side comparison of your proposed labeling with your last submitted labeling with all differences annotated and explained. We also advise that you only address the deficiencies noted in this communication.

However, prior to the submission of your amendment, please check labeling resources, including DRUGS@FDA, the electronic Orange Book and the NF-USP online, for recent updates and make any necessary revisions to your labels and labeling.

In order to keep ANDA labeling current, we suggest that you subscribe to the daily or weekly updates of new documents posted on the CDER web site at the following address –

http://www.accessdata.fda.gov/scripts/cder/daf

#### 1.2 **POST APPROVAL REVISIONS**

These comments will NOT be sent to the applicants at this time. These comments will be addressed post approval (in the first labeling supplement review). NA

# 2. <u>PREVIOUS LABELING REVIEW, DEFICIENCIES, FIRM'S RESPONSE, AND REVIEWER'S ASSESSMENT</u>

In this section, we include any previous labeling review deficiencies, the firm's response and reviewer's assessment to firm's response as well as any new deficiencies found in this cycle. Include the previous review cycle and the review's submission date(s).

Reviewer Comments: The below comments are from the labeling review C3 based on the submission dated 6/23/2015. There was no deficiency, except the post-approval revision request:

#### HIGHLIGHTS

It is preferable to delete the designation "USP" from the title.

#### 2.1 <u>CONTAINER AND CARTON LABELS</u>

Did the firm submit container and/or carton labels that were **NOT** requested in the previous labeling review? **NO** 

If yes, state the reason for the submission, and comment below whether the proposed revisions are acceptable or deficient

Reviewer Comments: The container was acceptable in the submission of 6/23/2015. However, it is necessary to make further revisions based on the current container label for Asacol® HD Tablets. (Approved 5/5/2016).

#### 2.2 <u>ADDITIONAL BACKGROUND INFORMATION PERTINENT TO THE REVIEW</u>

In this section, include any correspondence or internal information pertinent to the review. Include the correspondence(s) and/or information date(s).

**Reviewer Comments: None** 

#### 3. LABELING REVIEW INFORMATION AND REVIEWER ASSESSMENT

#### 3.1 REGULATORY INFORMATION

Are there any pending issues in DLR's SharePoint Repository files? NO

If Yes, please explain in section 2.2 Additional Background Information Pertinent to the Review

Is the drug product listed in the Policy Alert Tracker on OGD's SharePoint? NO

If Yes, please explain.

#### 3.2 MODEL PRESCRIBING INFORMATION

# Table 1: Review Model Labeling for Prescribing Information and Patient Labeling (Check the box used as the Model Labeling) MOST RECENTLY APPROVED NDA MODEL LABELING (If NDA is listed in the discontinued section of the Orange Book, also enter ANDA model labeling information.) NDA# /Supplement# (S-000 if original): 021830/S-010 Supplement Approval Date: 5/5/2016 Proprietary Name: Asacol® HD Delayed-release tablets Established Name: Mesalamine Delayed-release Tablets **Description of Supplement:** This supplement is for removal if the excipient dibytyl phthalate (DBT) and replacing it with alternate dibutyl sebacate.(DBS). NOTE: The above information is the only one appearing in the approval letter for the NDA021830/S-010. approved 5/5/2016. However, the approved label and labeling contains more revisions in addition to the change described above. MOST RECENTLY APPROVED ANDA MODEL LABELING ANDA#/Supplement# (S-000 if original): Click here to enter text. Supplement Approval Date: Click here to enter text. Proprietary Name: Click here to enter text. Established Name: Click here to enter text. Description of Supplement: Click here to enter text. TEMPLATE (e.g., BPCA, PREA, Carve-out): Click here to enter text. OTHER (Describe): Click here to enter text. Reviewer Assessment: Is the Prescribing Information same as the model labeling, except for differences allowed under 21 CFR 314.94(a)(8)? NO Are the specific requirements for format met under 21 CFR 201.57(new) or 201.80(old)? YES Does the Model Labeling have combined insert labeling for multiple dosage forms? NO **Reviewer Comments:** Labeling Deficiencies determined on December 6, 2016 based on your submission dated October 19, 2015 and June 10, 2016. 1. CONTAINER LABEL – The following comments are based on the Asacol® HD container label, approved on May 5, 2016. (b) (4) d. e. Revise the administration direction to read as follows: Swallow Mesalamine Delayed-Release Tablets whole. Do not cut, break, or chew the tablets. f. Include the text "Dispense in original container" as does the Asacol® HD tablets label.

#### 2. CARTON – 100 (10 x 10) Unit-dose Tablets

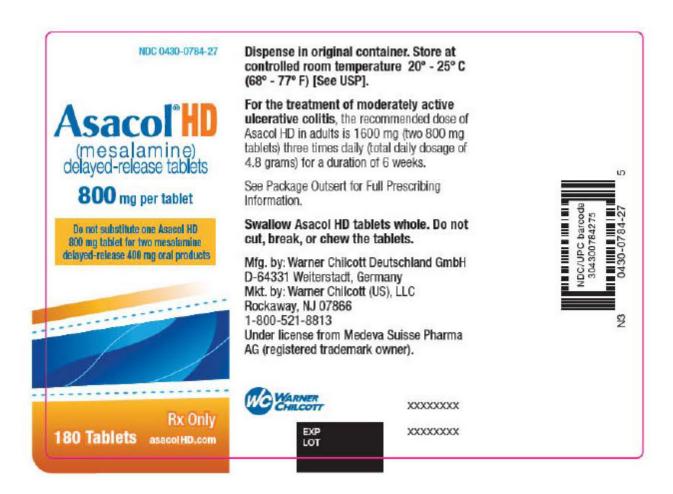
See comments under CONTAINER, whichever applicable.

#### 3. PRESCRIBING INFORMATION

#### HOW SUPPLIED/STORAGE AND HANDLING

Revise the dispensing statement to read as follows:

Store and dispense in the original bottle, protect from moisture, and keep the bottle tightly closed. Do not remove desiccant pouch (silica gel) from bottle.


#### 4. STRUCTURED PRODUCT LABELING (SPL)

See comments under CONTAINER and PRESCRIBING INFORMATION.

#### 3.3 MODEL CONTAINER LABELS

#### Model labels and carton labeling. [NDA 021830/S-010, approved May 5, 2016]

The revised container label appears to be a part of the labeling approved 5/5/2016 as it was attached at the end of the package insert labeling, which was posted on the Drugs@FDA.



#### 3.4 UNITED STATES PHARMACOPEIA (USP) & PHARMACOPEIA FORUM (PF)

We searched the USP and PF to determine if the drug product under review is the subject of a USP monograph or proposed USP monograph.

|         | Table 2: USP and PF Search Results                                                                                                                 |     |                                       |                                                      |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------|------------------------------------------------------|--|
|         | Date Searched Monograph 7 YES or NO Monograph Title Statements (NA if no monograph) Packaging and Storage/Labeling Statements (NA if no monograph) |     |                                       |                                                      |  |
| US<br>P | 12/6/2016                                                                                                                                          | YES | Mesalamine Delayed-release<br>Tablets | Packaging and storage – Preserve in tight containers |  |
| PF      | 12/6/2016                                                                                                                                          | NA  | Click here to enter text.             | Click here to enter text.                            |  |

#### **Reviewer Comments:**

Click here to enter text.

#### 3.5 PATENTS AND EXCLUSIVITIES

The Orange Book was searched on 12/6/2016.

Table 3 provides Orange Book patents for the Model Labeling and ANDA patent certifications.

(For applications that have no patents, N/A is entered in the patent number column)

|                  | Table 3: Impact of Model Labeling Patents on ANDA Labeling |                    |                            |                             |                                      |                    |
|------------------|------------------------------------------------------------|--------------------|----------------------------|-----------------------------|--------------------------------------|--------------------|
| Patent<br>Number | Patent Expiration                                          | Patent<br>Use Code | Patent Use Code Definition | Patent<br>Certificatio<br>n | Date of Patent<br>Cert<br>Submission | Labeling<br>Impact |

|         | Table 3: Impact of Model Labeling Patents on ANDA Labeling |       |                                 |    |           |      |
|---------|------------------------------------------------------------|-------|---------------------------------|----|-----------|------|
| 6893662 | 11/15/2021                                                 | U-141 | TREATMENT OF ULCERATIVE COLITIS | IV | 1/13/2016 | None |
| 8580302 | 11/15/2021                                                 |       |                                 | IV | 1/13/2016 | None |
| 9089492 | 11/15/2021                                                 |       |                                 | IV | 1/13/2016 |      |

#### Reviewer Assessment:

Is the applicant's "patent carve out" acceptable? NA

#### **Reviewer Comments:**

None

Table 4 provides Orange Book exclusivities for the Model Labeling and ANDA exclusivity statements.

|                     | Table 4: Impact of Model Labeling Exclusivities on ANDA Labels and Labeling |                             |   |                                          |   |  |
|---------------------|-----------------------------------------------------------------------------|-----------------------------|---|------------------------------------------|---|--|
| Exclusivity<br>Code | Exclusivity<br>Expiration                                                   | Exclusivity Code Definition | _ | Date of<br>Exclusivity<br>Submissio<br>n | • |  |
| NA                  |                                                                             |                             |   |                                          |   |  |

#### Reviewer Assessment:

Is the applicant's "exclusivity carve out" acceptable? NA

#### **Reviewer Comments:**

None

#### 4. <u>DESCRIPTION, HOW SUPPLIED AND MANUFACTURED BY STATEMENT</u>

Tables 5, 6, and 7 describe any changes in the DESCRIPTION section, HOW SUPPLIED section and manufacturing statements of the Prescribing Information when compared to the previous labeling review.

#### Reviewer Assessment:

Are there changes to the inactives in the DESCRIPTION section? NO

Are there changes to the dosage form description(s) or package size(s) in HOW SUPPLIED? YES

Are there changes to the manufacturing statements? **NO** 

If yes, then comment below in Tables 5, 6, and 7.

| Table 5: Comparison of DESCRIPTION Section |                    |            |
|--------------------------------------------|--------------------|------------|
| Previous Labeling Review                   | Currently Proposed | Assessment |

| Table 5: Comparison of DESCRIPTION Section                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                         |           |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|
| acid copolymer type B, microcrystalline cellulose, povidone, sodium starch glycolate, talc and titanium dioxide. The tablet is printed with opacode black S-1-17823 which | ingredients: acetyltributyl citrate, colloidal silicone dioxide, ferric oxide red, magnesium stearate, methacrylic acid copolymer type B, microcrystalline cellulose, povidone, sodium starch glycolate, talc and titanium dioxide. The tablet is printed with opacode black S-1-17823 which contains following ingredients: ammonium hydroxide, butyl alcohol, forresoferric oxide, isopropyl alcohol, | No change |  |  |

| Table 6: Comparison of HOW SUPPLIED Section                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                   |            |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|
| Previously Labeling Review                                                                                                                                                                                                                                                                                                            | Currently Proposed                                                                                                                                                                                                | Assessment |  |  |
| Mesalamine Delayed-release Tablets, USP 800 mg are reddish-brown colored, capsule-shaped, biconvex, enteric coated tablets, imprinted with "435" on one side and plain on other side and are supplied as follows:  NDC 68382-435-28 in bottles of 180 tablets  (b) (4)  NDC 68382-435-77 in cartons of 100 tablets (10 x 10 unit-dose | Mesalamine Delayed-release Tablets, USP 800 mg are reddish-brown colored, capsule-shaped, biconvex, enteric coated tablets, imprinted with "435" on one side and plain on other side and are supplied as follows: | (b) (4)    |  |  |

| Table 7: Manufactured by statement                                        |                                                                                          |            |  |  |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------|--|--|
| Previously Labeling Review                                                | Currently Proposed                                                                       | Assessment |  |  |
| Manufactured by:<br>Cadila Healthcare Ltd.<br>Ahmedabad, India            | Manufactured by:<br>Cadila Healthcare Ltd.<br>Ahmedabad, India                           |            |  |  |
| Distributed by:<br>Zydus Pharmaceuticals USA Inc.<br>Pennington, NJ 08534 | Distributed by:<br>Zydus Pharmaceuticals USA Inc.<br>Pennington, NJ 08534<br>Rev.: 05/16 | No change  |  |  |

# 5. COMMENTS FOR CHEMISTRY REVIEWER

Describe issue(s) sent to and/or received from the chemistry (also known as drug product quality) reviewer:

## **Reviewer Comments:**

None

# 6. COMMENTS FOR OTHER REVIEW DISCIPLINES

Describe questions/issue(s) sent to and/or received from other discipline reviewer(s):

#### **Reviewer Comments:**

None

# 7. OVERALL ASSESSMENT OF MATERIALS REVIEWED

Tables 8 and 9 provide a summary of recommendations for each material analyzed in this review.

If this review is acceptable, then all pertinent labeling pieces must be entered for both tables.

For each row, if you enter "NA" under the second column, you do NOT need to enter "NA" for the remaining columns.

| Table 8: Review Summary of Container Label and Carton Labeling |                      |                              |                           |                           |  |  |
|----------------------------------------------------------------|----------------------|------------------------------|---------------------------|---------------------------|--|--|
|                                                                | Final or Draft or NA | Packaging Sizes              | Submission<br>Date        | Recommendati on           |  |  |
| Container                                                      | Final                | Bottle of 180s               | (b) (4)                   | Revise                    |  |  |
| Blister                                                        | Final                | 10s                          | 2/24/2015                 | Satisfactory              |  |  |
| Carton                                                         | Final                | 100 (10 x 10s)               | 2/24/2015                 | Revise                    |  |  |
| (Other – specify)                                              | NA                   | Click here to enter text.    | Click here to enter text. | Click here to enter text. |  |  |
| Table 9                                                        | 9 Review Summary     | of Prescribing Information a | nd Patient Labeli         | ng                        |  |  |
|                                                                | Final or Draft or NA | Revision Date and/or<br>Code | Submission<br>Date        | Recommendati on           |  |  |
| Prescribing Information                                        | Final                | 5/2016                       | 6/10/2016                 | Revise                    |  |  |
| Medication Guide                                               | NA                   | Click here to enter text.    | Click here to enter text. | Click here to enter text. |  |  |
| Patient Information                                            | NA                   | Click here to enter text.    | Click here to enter text. | Click here to enter text. |  |  |
| SPL Data Elements                                              |                      | 5/2016                       | 6/10/2016                 | Satisfactory              |  |  |

<sup>\*</sup> Post-approval revision





Digitally signed by Chan Park Date: 12/06/2016 07:26:15PM

GUID: 508da70600028afeb3d3490c9451e8d2

Digitally signed by Lisa Kwok Date: 12/15/2016 09:41 24PM

GUID: 508da70800028c5cddf24c815a550d26

\*\*\* This document contains proprietary information that cannot be released to the public.\*\*\*

# **LABELING REVIEW**

Division of Labeling Review Office of Regulatory Operations Office of Generic Drugs (OGD)

Center for Drug Evaluation and Research (CDER)

| Date of This Review                                                                                                                                                                                                                                                                                 | 6/26/2015                                      |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|--|--|
| ANDA Number(s)                                                                                                                                                                                                                                                                                      | 203286                                         |  |  |  |
| Review Number                                                                                                                                                                                                                                                                                       | 3                                              |  |  |  |
| Applicant Name                                                                                                                                                                                                                                                                                      | Zydus Pharmaceuticals (USA) Inc.               |  |  |  |
| Established Name & Strength(s)                                                                                                                                                                                                                                                                      | NA                                             |  |  |  |
| <b>Proposed Proprietary Name</b>                                                                                                                                                                                                                                                                    | Mesalamine Delayed-release Tablets USP, 800 mg |  |  |  |
| Submission Received Date                                                                                                                                                                                                                                                                            | 6/23/2015                                      |  |  |  |
| Labeling Reviewer Chan Park                                                                                                                                                                                                                                                                         |                                                |  |  |  |
| Labeling Team Leader Lisa Kwok                                                                                                                                                                                                                                                                      |                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                     |                                                |  |  |  |
| <b>Review Conclusion</b>                                                                                                                                                                                                                                                                            |                                                |  |  |  |
| ☐ ACCEPTABLE – No Comme                                                                                                                                                                                                                                                                             | ents.                                          |  |  |  |
|                                                                                                                                                                                                                                                                                                     |                                                |  |  |  |
| ☐ Minor Deficiency* – Refer to Labeling Deficiencies and Comments for the Letter to Applicant.                                                                                                                                                                                                      |                                                |  |  |  |
| *Please Note: The Regulatory Project Manager (RPM) may change the recommendation from Minor Deficiency to Easily Correctable Deficiency if all other OGD reviews are acceptable. Otherwise, the labeling minor deficiencies will be included in the Complete Response (CR) letter to the applicant. |                                                |  |  |  |

#### 1. <u>LABELING COMMENTS</u>

# 1.1 <u>LABELING DEFICIENCIES AND COMMENTS FOR LETTER TO APPLICANT</u>

None

# 1.2 POST APPROVAL REVISIONS

These comments will NOT be sent to the applicants at this time.

These comments will be addressed post approval (in the first labeling supplement review).

#### **HIGHLIGHTS**

It is preferable to delete the designation "USP" from the title.

# 2. PREVIOUS LABELING REVIEW, DEFICIENCIES, FIRM'S RESPONSE, AND REVIEWER'S ASSESSMENT

In this section, we include any previous labeling review deficiencies, the firm's response and reviewer's assessment. Include the previous review(s) finalized date(s). 6/3/2015

| Review | ver Co   | mments: The sponsor addressed all comments adequately.                                                                                                                                                                                                                                                                                              |         |
|--------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1.     | CONT     | 'AINER- 180s (b) (4)                                                                                                                                                                                                                                                                                                                                | (b) (4) |
| 2.     | PRESO a. | CRIBING INFORMATION  - Revise this section to read as follows:  HIGHLIGHTS OF PRESCRIBING INFORMATION  These highlights do not include all the information needed to use MESALAMINE  DELAYED-RELEASE TABLETS safely and effectively. See Full Prescribing  Information for MESALAMINE DELAYED-RELEASE TABLETS.  MESALAMINE delayed-release Tablets, |         |
|        | ii.      | 11 DESCRIPTION: It appears that the imprinting ink is changed from black S-1-17823 in this current submission. Please justify this change with supporting documents, and/or comment.                                                                                                                                                                |         |
|        | iii.     | 12.3 Pharmacokinetics – (b) (4)                                                                                                                                                                                                                                                                                                                     |         |

#### 2.1 CONTAINER AND CARTON LABELS

Did the firm submit container and/or carton labels that were **NOT** requested in the previous labeling review? **NO** 

If yes, state the reason for the submission, and comment below whether the proposed revisions are acceptable or deficient.

#### **Reviewer Comments:**

#### 2.2 <u>ADDITIONAL BACKGROUND INFORMATION PERTINENT TO THE REVIEW</u>

In this section, include any correspondence or internal information pertinent to the review. Include the correspondence(s) and/or information date(s).

#### Reviewer Comments: See below regarding change of the imprinting ink.

From: Park, Chan H

Sent: Friday, June 26, 2015 12:00 PM

To: Majumder, Quamrul

Subject: ANDA 03286 (Mesalamine)

Importance: High

Hello Quamrul,

It is for your information, In response to the labeling comment regarding the change of the imprinting ink, the sponsor Responded as follows in the labeling amendment dated 6/23/2015. The sponsor will address this in the first annual report, which is believed to be acceptable per the Agency's guidance.

| ii. 11 DESCRIPTION:                                                                  | (b) (4)                                                                                                                                                                        |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| It appears that the imprint<br>"Opacode black S-1-17823<br>supporting documents, and | in this current submission. Please justify this change with                                                                                                                    |
| RESPONSE:                                                                            |                                                                                                                                                                                |
|                                                                                      | (b)                                                                                                                                                                            |
|                                                                                      |                                                                                                                                                                                |
|                                                                                      |                                                                                                                                                                                |
|                                                                                      | uantitative compositions of both inks are provided in the below                                                                                                                |
| table for the Agency's ready refere                                                  | ence.                                                                                                                                                                          |
|                                                                                      |                                                                                                                                                                                |
|                                                                                      | (b) (4) Opacode Black S-1-17823 (Currently in use)                                                                                                                             |
|                                                                                      | (b) (4) Opacode Black S-1-17823 (Currently in use) Ingredient name % w/w                                                                                                       |
|                                                                                      |                                                                                                                                                                                |
|                                                                                      | Ingredient name % w/w Shellac (b) (4) (b)                                                                                                                                      |
|                                                                                      | Ingredient name Shellac (b) (4) (b) (4)  Isopropyl alcohol (USP, (b) (4) (b) (4)                                                                                               |
|                                                                                      | Ingredient name Shellac (b) (4) (b) (4)  Isopropyl alcohol (USP, (b) (4) (b) (4) (b) (b) (4) (b) (b) (4) (b) (b) (b) (c)                                                       |
|                                                                                      | Ingredient name Shellac (b) (4) (b) (4)  Isopropyl alcohol (USP, (b) (4) (b) (4) (b) butyl alcohol NF Propylene glycol (b) (4)                                                 |
|                                                                                      | Ingredient name Shellac (b) (4) (b) (4)  Isopropyl alcohol (USP, (b) (4) (b) (4) (b) butyl alcohol NF Propylene glycol (b) (4)                                                 |
|                                                                                      | Ingredient name Shellac  (b) (4)  Isopropyl alcohol (USP, (b) (4)  (b) (4)  (b) (b) (4)  (b) butyl alcohol NF Propylene glycol  (b) (4)  Ammonium hydroxide (b) (4)NF, (b) (4) |

From: Majumder, Quamrul

Sent: Friday, June 26, 2015 12:02 PM

To: Park, Chan H

Subject: RE: ANDA 03286 (Mesalamine)

Hi Chan

Thank you for sharing the info.

We already have sent the question to the firm and awaits their response.

-Thanks,

Quamrul Majumder,

#### 3. LABELING REVIEW INFORMATION AND REVIEWER ASSESSMENT

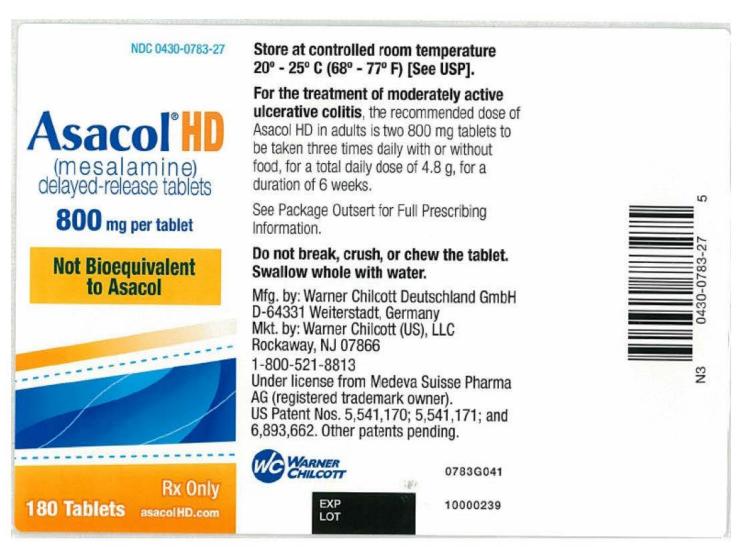
#### 3.1 <u>REGULATORY INFORMATION</u>

| Are there any pending issues in DLR's <u>SharePoint</u> Repository files? NO If Yes, please explain in section 2.2 Additional Background Information Pertinent to the Review |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Is the drug product listed in the Policy Alert Tracker on OGD's SharePoint? NO                                                                                               |  |  |  |
| If Yes, please explain.                                                                                                                                                      |  |  |  |

#### 3.2 MODEL PRESCRIBING INFORMATION

| . <del></del>                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 1: Review Model Labeling for Prescribing Information and Patient Labeling (Check the box used as the Model Labeling)                                |
| MOST RECENTLY APPROVED NDA MODEL LABELING                                                                                                                 |
| (If NDA is listed in the discontinued section of the Orange Book, also enter ANDA model labeling information.)                                            |
| NDA# /Supplement# (S-000 if original): 021830/S006                                                                                                        |
| Supplement Approval Date: 10/18/2013                                                                                                                      |
| Proprietary Name: Asacol HD Delayed-release tablets                                                                                                       |
| Established Name; Mesalamine Delayed-release Tablets Description of Supplement:                                                                           |
| This "Prior Approval" supplemental new drug application proposes the addition of information to the pediatric use section of the prescribing information. |
| MOST RECENTLY APPROVED ANDA MODEL LABELING                                                                                                                |
| ANDA#/Supplement# (S-000 if original):                                                                                                                    |
| Supplement Approval Date:                                                                                                                                 |
| Proprietary Name:                                                                                                                                         |
| Established Name:                                                                                                                                         |
| Description of Supplement:                                                                                                                                |
| TEMPLATE (e.g., BPCA, PREA, Carve-out):                                                                                                                   |
| OTHER (Describe):                                                                                                                                         |

#### Reviewer Assessment:


Is the Prescribing Information same as the model labeling, except for differences allowed under 21 CFR 314.94(a)(8)? **YES** 

Are the specific requirements for format met under <u>21 CFR 201.57(new)</u> or <u>201.80(old)</u>? **YES** Does the Model Labeling have combined insert labeling for multiple dosage forms? **NO** 

#### **Reviewer Comments:**

## 3.3 MODEL CONTAINER LABELS

Model labels and carton labeling. [DailyMeds, Rev. 4/2015]



# 3.4 UNITED STATES PHARMACOPEIA (USP) & PHARMACOPEIA FORUM (PF)

We searched the USP and PF to determine if the drug product under review is the subject of a USP monograph or proposed USP monograph.

|                                    | Table 2: USP and PF Search Results |         |                                         |                                                                   |  |
|------------------------------------|------------------------------------|---------|-----------------------------------------|-------------------------------------------------------------------|--|
| Date Monograph? Searched YES or NO |                                    | (200 B) | Monograph Title<br>(NA if no monograph) | Packaging and Storage/Labeling Statements<br>(NA if no monograph) |  |
| USP                                | 6/26/2015                          | YES     | Mesalamine Delayed-release Tablets      | Packaging and storage - Preserve in tight containers              |  |
| PF                                 | 6/26/2015                          | NA      | Click here to enter text.               | Click here to enter text.                                         |  |

#### **Reviewer Comments:**

#### 3.5 PATENTS AND EXCLUSIVITIES

The Orange Book was searched on 6/26/2015.

Table 3 provides Orange Book patents for the Model Labeling and ANDA patent certifications.

(For applications that have no patents, N/A is entered in the patent number column)

|                  |                      | Table 3: Impact of Model Labeling Patents on ANDA Labeling |                                 |                         |                                   |                 |
|------------------|----------------------|------------------------------------------------------------|---------------------------------|-------------------------|-----------------------------------|-----------------|
| Patent<br>Number | Patent<br>Expiration | Patent Use Code Definition                                 |                                 | Patent<br>Certification | Date of Patent Cert<br>Submission | Labeling Impact |
| 6893662          | 11/15/2021           | U-141                                                      | TREATMENT OF ULCERATIVE COLITIS | IV                      | 7/15/2014                         | None            |

| Table 3: Impact of Model Labeling Patents on ANDA Labeling |            |  |           |      |
|------------------------------------------------------------|------------|--|-----------|------|
| 6580302                                                    | 11/15/2021 |  | 7/15/2014 | None |

#### Reviewer Assessment:

Is the applicant's "patent carve out" acceptable? NA

#### **Reviewer Comments:**

Click here to enter text.

Table 4 provides Orange Book exclusivities for the Model Labeling and ANDA exclusivity statements.

|                     | Table                     | e 4: Impact of Model Labeling Exclusivities | on ANDA Labels and Labeling |                                      |                    |
|---------------------|---------------------------|---------------------------------------------|-----------------------------|--------------------------------------|--------------------|
| Exclusivity<br>Code | Exclusivity<br>Expiration | Exclusivity Code Definition                 | Exclusivity Statement       | Date of<br>Exclusivity<br>Submission | Labeling<br>Impact |
| NA                  |                           |                                             |                             |                                      |                    |

#### Reviewer Assessment:

Is the applicant's "exclusivity carve out" acceptable? NA

#### **Reviewer Comments:**

Click here to enter text.

## 4. <u>DESCRIPTION, HOW SUPPLIED AND MANUFACTURED BY STATEMENT</u>

Tables 5, 6, and 7 describe any changes in the DESCRIPTION section, HOW SUPPLIED section and manufacturing statements of the Prescribing Information when compared to the previous labeling review.

#### Reviewer Assessment:

Are there changes to the inactives in the DESCRIPTION section? **NO**Are there changes to the dosage form description(s) or package size(s) in HOW SUPPLIED? **NO**Are there changes to the manufacturing statements? **NO**If yes, then comment below in Tables 5, 6, and 7.

| Table 5: Comparison of DESCRIPTION Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|
| Previous Labeling Review                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Currently Proposed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Assessment |  |  |  |
| Each mesalamine delayed-release tablet contains 800 mg of mesalamine. In addition, each tablet contains the following inactive ingredients: acetyltributyl citrate, colloidal silicone dioxide, ferric oxide red, magnesium stearate, methacrylic acid copolymer type B, microcrystalline cellulose, povidone, sodium starch glycolate, talc and titanium dioxide. The tablet is printed with opacode black S-1-17823 which contains following ingredients: ammonium hydroxide, butyl alcohol, ferrosoferric oxide, isopropyl alcohol, propylene glycol and shellac. | Each mesalamine delayed-release tablet contains 800 mg of mesalamine. In addition, each tablet contains the following inactive ingredients: acetyltributyl citrate, colloidal silicone dioxide, ferric oxide red, magnesium stearate, methacrylic acid copolymer type B, microcrystalline cellulose, povidone, sodium starch glycolate, talc and titanium dioxide. The tablet is printed with opacode black S-1-17823 which contains following ingredients: ammonium hydroxide, butyl alcohol, ferrosoferric oxide, isopropyl alcohol, propylene glycol and shellac. | No change  |  |  |  |

| Table 6 | : Comparison | of HOW SUP | PLIED Section |
|---------|--------------|------------|---------------|
|---------|--------------|------------|---------------|

| )                                                                                                                                                                                                                                | Table 6: Comparison of HOW SUPPLIED Section                                                                                                                                                                                    |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Previously Labeling Review                                                                                                                                                                                                       | Currently Proposed                                                                                                                                                                                                             | Assessment |
| Mesalamine Delayed-release Tablets, USP<br>800 mg are reddish-brown colored,<br>capsule-shaped, biconvex, enteric coated<br>tablets, imprinted with "435" on one<br>side and plain on other side and are supplied<br>as follows: | Mesalamine Delayed-release Tablets, USP<br>800 mg are reddish-brown colored, capsule-<br>shaped, biconvex, enteric coated tablets,<br>imprinted with "435" on one side and plain on<br>other side and are supplied as follows: | (b) (4)    |
| IDC 68382-435-28 in bottles of 180 tablets (b) (4)                                                                                                                                                                               | NDC 68382-435-28 in bottles of 180 tablets (b) (4)  NDC 68382-435-77 in cartons of 100 tablets                                                                                                                                 |            |
| NDC 68382-435-77 in cartons of 100 tablets (10 x 10 unit-dose)                                                                                                                                                                   | (10 x 10 unit-dose                                                                                                                                                                                                             |            |

|                                | Table 7: Manufactured by statement |            |
|--------------------------------|------------------------------------|------------|
| Previously Labeling Review     | Currently Proposed                 | Assessment |
| Manufactured by:               | Manufactured by:                   |            |
| Cadila Healthcare Ltd.         | Cadila Healthcare Ltd.             |            |
| Ahmedabad, India               | Ahmedabad, India                   |            |
|                                |                                    | No change  |
| Distributed by:                | Distributed by:                    |            |
| Zydus Pharmaceuticals USA Inc. | Zydus Pharmaceuticals USA Inc.     |            |
| Pennington, NJ 08534           | Pennington, NJ 08534               |            |

## 5. COMMENTS FOR CHEMISTRY REVIEWER

Describe issue(s) sent to and/or received from the chemistry (also known as drug product quality) reviewer:

#### **Reviewer Comments:**

Click here to enter text.

## 6. COMMENTS FOR OTHER REVIEW DISCIPLINES

Describe questions/issue(s) sent to and/or received from other discipline reviewer(s):

#### **Reviewer Comments:**

# 7. OVERALL ASSESSMENT OF MATERIALS REVIEWED

Tables 8 and 9 provide a summary of recommendations for each material analyzed in this review.

If this review is acceptable, then all pertinent labeling pieces must be entered for both tables.

For each row, if you enter "NA" under the second column, you do NOT need to enter "NA" for the remaining columns.

|                   | Final or Draft or NA | Packaging Sizes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Submission Date | Recommendation |
|-------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|
| Container         | Final                | Bottle of 180s (b) (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (b) (4)         | AC             |
| Blister           | Final                | 10s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2/24/2015       | AC             |
| Carton            | Final                | 100 (10 x 10s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2/24/2015       | AC             |
| (Other - specify) |                      | 7 - <b>2</b> 0 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - | 40.64           |                |

|                         | Final or Draft or NA | Revision Date and/or Code | Submission Date | Recommendation |
|-------------------------|----------------------|---------------------------|-----------------|----------------|
| Prescribing Information | Final                | 6/2015                    | 6/23/2015       | AC*            |
| Medication Guide        |                      |                           |                 |                |
| Patient Information     |                      |                           |                 |                |
| SPL Data Elements       |                      | 6/2015                    | 6/23/2015       | AC             |

<sup>\*</sup> Post-approval revision

\*\*\* This document contains proprietary information that cannot be released to the public.\*\*\*

# **LABELING REVIEW**

Division of Labeling Review Office of Regulatory Operations Office of Generic Drugs (OGD)

Center for Drug Evaluation and Research (CDER)

| Date of This Review            | 6/1/2015                                                                                                                                                              |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ANDA Number(s)                 | 203286                                                                                                                                                                |
| Review Number                  | 2                                                                                                                                                                     |
| Applicant Name                 | Zydus Pharmaceuticals (USA) Inc.                                                                                                                                      |
| Established Name & Strength(s) | Mesalamine Delayed-release Tablets USP, 800 mg                                                                                                                        |
| Proposed Proprietary Name      | NA                                                                                                                                                                    |
| Submission Received Date       | 2/24/2015                                                                                                                                                             |
| Labeling Reviewer              | Chan Park                                                                                                                                                             |
| Labeling Team Leader           | Lisa Kwok                                                                                                                                                             |
| <b>Review Conclusion</b>       |                                                                                                                                                                       |
| ☐ ACCEPTABLE – No Comme        | nts.                                                                                                                                                                  |
| ☐ ACCEPTABLE – Include Pos     | et Approval Comments                                                                                                                                                  |
| Minor Deficiency* − Refer t    | o Labeling Deficiencies and Comments for the Letter to Applicant.                                                                                                     |
|                                | ager (RPM) may change the recommendation from Minor Deficiency to Easily views are acceptable. Otherwise, the labeling minor deficiencies will be included applicant. |

#### 1. LABELING COMMENTS

#### 1.1 LABELING DEFICIENCIES AND COMMENTS FOR LETTER TO APPLICANT

| DDE | SCRIBING INFORMATION                                                                     |
|-----|------------------------------------------------------------------------------------------|
|     | (b) (4) — Revise this section to read as follows:                                        |
| a.  | HIGHLIGHTS OF PRESCRIBING INFORMATION                                                    |
|     |                                                                                          |
|     | These highlights do not include all the information needed to use MESALAMINE             |
|     | DELAYED-RELEASE TABLETS safely and effectively. See Full Prescribing Inform              |
|     | for MESALAMINE DELAYED-RELEASE TABLETS.                                                  |
|     | MESALAMINE delayed-release Tablets,                                                      |
| ii. | 11 DESCRIPTION:                                                                          |
|     | It appears that the imprinting ink is changed from (b) (4) to "Opacod                    |
|     | black S-1-17823 in this current submission. Please justify this change with supporting   |
|     | officer of 17025 in this current submission. I leave justify this charge with supporting |

Submit your revised labeling electronically in final print format.

To facilitate review of your next submission, please provide a side-by-side comparison of your proposed labeling with your last submitted labeling with all differences annotated and explained.

Prior to the submission of your amendment, please check labeling resources, including DRUGS@FDA, the electronic Orange Book and the NF-USP online, for recent updates and make any necessary revisions to your labels and labeling.

In order to keep ANDA labeling current, we suggest that you subscribe to the daily or weekly updates of new documents posted on the CDER web site at the following address –

http://service.govdelivery.com/service/subscribe.html?code=USFDA 17

# 1.2 POST APPROVAL REVISIONS

These comments will NOT be sent to the applicants at this time.

These comments will be addressed post approval (in the first labeling supplement review).

#### NA

# 2. PREVIOUS LABELING REVIEW, DEFICIENCIES, FIRM'S RESPONSE, AND REVIEWER'S ASSESSMENT

In this section, we include any previous labeling review deficiencies, the firm's response and reviewer's assessment. Include the previous review(s) finalized date(s). 4/23/2013

| Revie | ewer Comment |                                                                                                                                                                                                                                                                                                                                                                            | (b) (4) |
|-------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|       |              |                                                                                                                                                                                                                                                                                                                                                                            |         |
| 1.    | CONTAINE     | $R - {}^{(b)(4)}180s,$ (b) (4)                                                                                                                                                                                                                                                                                                                                             |         |
|       | a.           |                                                                                                                                                                                                                                                                                                                                                                            | (b) (4) |
|       | b.           |                                                                                                                                                                                                                                                                                                                                                                            |         |
| 2.    | BLISTER – 1  | 0s                                                                                                                                                                                                                                                                                                                                                                         |         |
|       | If space     | ce permits, include the phrase "Made in India".                                                                                                                                                                                                                                                                                                                            |         |
| 3203  |              | to permits, merude the phase Triade in mata.                                                                                                                                                                                                                                                                                                                               |         |
| 3.    | INSERT       |                                                                                                                                                                                                                                                                                                                                                                            |         |
|       | a.           | GENERAL                                                                                                                                                                                                                                                                                                                                                                    |         |
|       |              | <ul> <li>i. Please refer to 21 CFR 201.56(d) regarding PLR format for the final printe labeling. Please ensure that the highlight sections and the entire insert can be read and that the point type not be smaller than 6.</li> <li>ii. Please replace "Asacol-HD" with either "mesalamine delayed-release table depending on the context throughout the text.</li> </ul> | easily  |
|       |              | iii.                                                                                                                                                                                                                                                                                                                                                                       | (b) (4) |
|       | b.           | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                |         |
|       |              | (b) (4)                                                                                                                                                                                                                                                                                                                                                                    |         |
|       | c.           | 8 USE IN SPECIFIC POPULATIONS – 8.1 Pregnancy: (b) (4)                                                                                                                                                                                                                                                                                                                     |         |
|       |              | Revise this subsection heading to read "Pregnancy:  . We refer you to CFR 201.57(9)(A)(3).                                                                                                                                                                                                                                                                                 | 1)      |
|       |              |                                                                                                                                                                                                                                                                                                                                                                            |         |

# 2.1 CONTAINER AND CARTON LABELS

Did the firm submit container and/or carton labels that were  $\mathbf{NOT}$  requested in the previous labeling review?  $\mathbf{NO}$ 

| If yes, state the reason for the submission, and comment below whether the proposed revisions are acceptable or deficient.                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reviewer Comments:                                                                                                                                                                                                                   |
| 2.2 <u>ADDITIONAL BACKGROUND INFORMATION PERTINENT TO THE REVIEW</u> In this section, include any correspondence or internal information pertinent to the review. Include the correspondence(s) and/or information date(s).          |
| Reviewer Comments: a. (b) (4)                                                                                                                                                                                                        |
| b. The RLD contains "Dibutyl Phthalate (DBP)", which can cause significant adverse events. The ANDA does not contain this as an inactive ingredient, so all information associated with DBP was carved-out from the insert labeling. |
| 3. <u>LABELING REVIEW INFORMATION AND REVIEWER ASSESSMENT</u>                                                                                                                                                                        |
| 3.1 <u>REGULATORY INFORMATION</u>                                                                                                                                                                                                    |
| Are there any pending issues in DLR's SharePoint Repository files? NO  If Yes, please explain in section 2.2 Additional Background Information Pertinent to the Review                                                               |
| Is the drug product listed in the Policy Alert Tracker on OGD's SharePoint? NO If Yes, please explain.                                                                                                                               |
| 3.2 MODEL PRESCRIBING INFORMATION                                                                                                                                                                                                    |
| Table 1: Review Model Labeling for Prescribing Information and Patient Labeling (Check the box used as the Model Labeling)                                                                                                           |
| MOST RECENTLY APPROVED NDA MODEL LABELING                                                                                                                                                                                            |
| (If NDA is listed in the discontinued section of the Orange Book, also enter ANDA model labeling information.)                                                                                                                       |
| NDA# /Supplement# (S-000 if original): 021830/S006                                                                                                                                                                                   |
| Supplement Approval Date: 10/18/2013                                                                                                                                                                                                 |
| Proprietary Name: Asacol HD Delayed-release tablets                                                                                                                                                                                  |
| Established Name; Mesalamine Delayed-release Tablets Description of Supplement:                                                                                                                                                      |
| This "Prior Approval" supplemental new drug application proposes the addition of information                                                                                                                                         |
| to the pediatric use section of the prescribing information.                                                                                                                                                                         |
| MOST RECENTLY APPROVED ANDA MODEL LABELING                                                                                                                                                                                           |
| ANDA#/Supplement# (S-000 if original):                                                                                                                                                                                               |
| Supplement Approval Date:                                                                                                                                                                                                            |

Proprietary Name: Established Name: Description of Supplement:

| Table 1: Review Model Labeling for Prescribing Information and Patient Labeling<br>(Check the box used as the Model Labeling) |  |
|-------------------------------------------------------------------------------------------------------------------------------|--|
| ☐ TEMPLATE (e.g., BPCA, PREA, Carve-out):                                                                                     |  |
| OTHER (Describe):                                                                                                             |  |

#### Reviewer Assessment:

Is the Prescribing Information same as the model labeling, except for differences allowed under 21 CFR 314.94(a)(8)? YES

Are the specific requirements for format met under 21 CFR 201.57(new) or 201.80(old)? YES Does the Model Labeling have combined insert labeling for multiple dosage forms? NO

#### **Reviewer Comments:**

#### 3.3 MODEL CONTAINER LABELS



#### 3.4 UNITED STATES PHARMACOPEIA (USP) & PHARMACOPEIA FORUM (PF)

We searched the USP and PF to determine if the drug product under review is the subject of a USP monograph or proposed USP monograph.

|     | Table 2: USP and PF Search Results |                         |                                         |                                                                   |  |  |  |
|-----|------------------------------------|-------------------------|-----------------------------------------|-------------------------------------------------------------------|--|--|--|
|     | Date<br>Searched                   | Monograph?<br>YES or NO | Monograph Title<br>(NA if no monograph) | Packaging and Storage/Labeling Statements<br>(NA if no monograph) |  |  |  |
| USP | 6/3/2015                           | YES                     | Mesalamine Delayed-release Tablets      | Packaging and storage – Preserve in tight containers              |  |  |  |
| PF  | 6/3/2015                           | NA                      | Click here to enter text.               | Click here to enter text.                                         |  |  |  |

#### **Reviewer Comments:**

#### 3.5 PATENTS AND EXCLUSIVITIES

The Orange Book was searched on 6/3/2015.

Table 3 provides Orange Book patents for the Model Labeling and ANDA patent certifications.

(For applications that have no patents, N/A is entered in the patent number column)

| Table 3: Impact of Model Labeling Patents on ANDA Labeling |                      |                    |                                 |                         |                                      |                    |  |
|------------------------------------------------------------|----------------------|--------------------|---------------------------------|-------------------------|--------------------------------------|--------------------|--|
| Patent<br>Number                                           | Patent<br>Expiration | Patent<br>Use Code | Patent Use Code Definition      | Patent<br>Certification | Date of<br>Patent Cert<br>Submission | Labeling<br>Impact |  |
| 6893662                                                    | 11/15/2021           | U-141              | TREATMENT OF ULCERATIVE COLITIS | IV                      | 7/15/2014                            | None               |  |
| 6580302                                                    | 11/15/2021           |                    |                                 |                         | 7/15/2014                            | None               |  |

#### Reviewer Assessment:

Is the applicant's "patent carve out" acceptable? NA

#### **Reviewer Comments:**

Click here to enter text.

Table 4 provides Orange Book exclusivities for the Model Labeling and ANDA exclusivity statements.

|                     | Table 4: Impact of Model Labeling Exclusivities on ANDA Labels and Labeling |                             |                       |                                      |                    |  |  |
|---------------------|-----------------------------------------------------------------------------|-----------------------------|-----------------------|--------------------------------------|--------------------|--|--|
| Exclusivity<br>Code | Exclusivity<br>Expiration                                                   | Exclusivity Code Definition | Exclusivity Statement | Date of<br>Exclusivity<br>Submission | Labeling<br>Impact |  |  |
| NA                  |                                                                             |                             |                       |                                      |                    |  |  |

#### Reviewer Assessment:

Is the applicant's "exclusivity carve out" acceptable? NA

#### **Reviewer Comments:**

Click here to enter text.

# 4. <u>DESCRIPTION, HOW SUPPLIED AND MANUFACTURED BY STATEMENT</u>

Tables 5, 6, and 7 describe any changes in the DESCRIPTION section, HOW SUPPLIED section and manufacturing statements of the Prescribing Information when compared to the previous labeling review.

#### Reviewer Assessment:

Are there changes to the inactives in the DESCRIPTION section? YES

Are there changes to the dosage form description(s) or package size(s) in HOW SUPPLIED? YES

| 1                        | Table 5: Comparison of DESCRIPTION Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                            |  |  |  |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Previous Labeling Review | Currently Proposed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Assessment                                                                                                 |  |  |  |  |
| (b) (4)                  | Each mesalamine delayed-release tablet contains 800 mg of mesalamine. In addition, each tablet contains the following inactive ingredients: acetyltributyl citrate, colloidal silicone dioxide, ferric oxide red, magnesium stearate, methacrylic acid copolymer type B, microcrystalline cellulose, povidone, sodium starch glycolate, talc and titanium dioxide. The tablet is printed with opacode black S-1-17823 which contains following ingredients: ammonium hydroxide, butyl alcohol, ferrosoferric oxide, isopropyl alcohol, propylene glycol and shellac. | The imprinting ink changed from to "opacode black S-1-17823. (Created an issue to the chemist in the GDRP) |  |  |  |  |

|                            | Table 6: Comparison of HOW SUPPLIED Section                                                                                                                                                                                                                                                                                   |            |  |  |  |  |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|
| Previously Labeling Review | Currently Proposed                                                                                                                                                                                                                                                                                                            | Assessment |  |  |  |  |
| (b)                        | Mesalamine Delayed-release Tablets, USP 800 mg are reddish-brown colored, capsule-shaped, biconvex, enteric coated tablets, imprinted with "435" on one side and plain on other side and are supplied as follows:  NDC 68382-435-28 in bottles of 180 tablets  NDC 68382-435-77 in cartons of 100 tablets (10 x 10 unit-dose) | (b) (4)    |  |  |  |  |

| Table 7: Ma | nufactured by | v statement |  |
|-------------|---------------|-------------|--|
|-------------|---------------|-------------|--|

|                                                                     | Table 7: Manufactured by statement                                        |            |  |
|---------------------------------------------------------------------|---------------------------------------------------------------------------|------------|--|
| Previously Labeling Review                                          | Currently Proposed                                                        | Assessment |  |
| Manufactured by:<br>Cadila Healthcare Ltd.<br>Ahmedabad, India      | Manufactured by:<br>Cadila Healthcare Ltd.<br>Ahmedabad, India            | No change  |  |
| Distributed by: Zydus Pharmaceuticals USA Inc. Pennington, NJ 08534 | Distributed by:<br>Zydus Pharmaceuticals USA Inc.<br>Pennington, NJ 08534 |            |  |

#### 5. COMMENTS FOR CHEMISTRY REVIEWER

| 1 1 1                   |                    | C 11               | (-11          | 1              |                    |
|-------------------------|--------------------|--------------------|---------------|----------------|--------------------|
| escribe issue(s) sent t | to and/or received | from the chemistry | also known as | arug product o | quality) reviewer: |

a. (b) (4)

The chemistry review does not make reference to these package configurations.

b. Created an issue in the GDRP for consult to the quality reviewer regarding the change of the imprinting ink described above. Here is the response from the Quality reviewer:

From: Majumder, Quamrul

Sent: Friday, June 05, 2015 11:10 AM

To: Park, Chan H

Subject: RE: ANDA 203286 (Mesalamine)

#### Chan

You have asked these questions in the GDRP ... How do I add response back?

So I'm responding in email.

Yes you are right the sponsor had changed the imprinting ink from (b) (4) to "opacode black S-1-17823

Packing configuration has been changed and it is acceptable but we still wanted them perform an in-use stability studies on tablets in highest count bottle to determine the effect of repeated opening and closing of pharmacy/patient bottles during routine use by customer and/or patient.

-Thanks,

Quamrul Majumder,

#### **Reviewer Comments:**

Click here to enter text.

#### 6. COMMENTS FOR OTHER REVIEW DISCIPLINES

Describe questions/issue(s) sent to and/or received from other discipline reviewer(s):

#### **Reviewer Comments:**

## 7. OVERALL ASSESSMENT OF MATERIALS REVIEWED

Tables 8 and 9 provide a summary of recommendations for each material analyzed in this review.

If this review is acceptable, then all pertinent labeling pieces must be entered for both tables.

For each row, if you enter "NA" under the second column, you do NOT need to enter "NA" for the remaining columns.

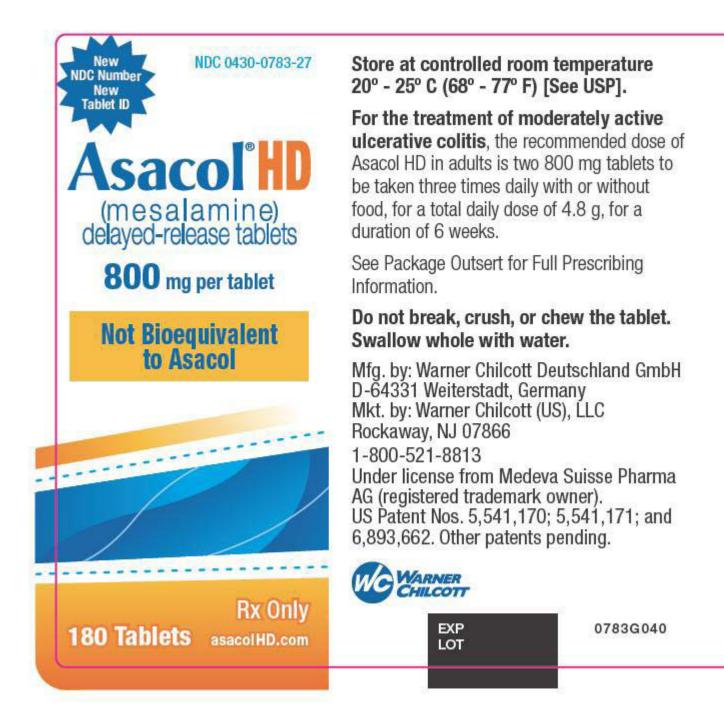
|                         | Table 8: Review Sur  | mmary of Container Label and Car  | ton Labeling     |                |
|-------------------------|----------------------|-----------------------------------|------------------|----------------|
|                         | Final or Draft or NA | Packaging Sizes                   | Submission Date  | Recommendation |
| Container               | Final                | 180s, (b) (4)                     | 2/24/2015        | NAC            |
| Blister                 | Final                | 10s                               | 2/24/2015        | AC             |
| Carton                  | Final                | 100 (10 x 10) Unit-dose Tablets   | 2/24/2015        | AC             |
| (Other - specify)       |                      |                                   |                  |                |
|                         | Table 9 Review Summa | ry of Prescribing Information and | Patient Labeling |                |
|                         | Final or Draft or NA | Revision Date and/or Code         | Submission Date  | Recommendation |
| Prescribing Information | Final                | 8/2014                            | 2/24/2015        | NAC            |
| Medication Guide        |                      |                                   |                  |                |
| Patient Information     |                      |                                   |                  |                |
| SPL Data Elements       |                      | 8/2014                            | 2/24/2015        | AC             |

<sup>\*</sup> Post-approval revision

# PROFESSIONAL LABELING REVIEW DIVISION OF LABELING AND PROGRAM SUPPORT LABELING REVIEW BRANCH

| ANDA Nu                                                          | ımber:                   | 203286                                                                                            |         |  |  |  |
|------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------|---------|--|--|--|
| Applicant                                                        | 's Name:                 | Zydus Pharmaceuticals (USA) Inc.                                                                  |         |  |  |  |
| Submissio                                                        | July 12, 2011 (Original) |                                                                                                   |         |  |  |  |
| Established Name: Mesalamine Delayed-release Tablets USP, 800 mg |                          |                                                                                                   |         |  |  |  |
| Labeling C                                                       | Comments be              | elow are considered:                                                                              |         |  |  |  |
| ☐ NOT e                                                          | asily correcta           | able (applicant cannot respond within 10 business days)                                           |         |  |  |  |
| <b>Easily</b>                                                    | correctable (            | respond within 10 business days)                                                                  |         |  |  |  |
| No Co                                                            | mments (Lab              | peling Approval Summary or Tentative Approval Summary)                                            |         |  |  |  |
| Labeling I                                                       | Deficiencies of          | determined on April 21, 2013 based on your submission dated July 12, 2011:  (b) (4) 180s, (b) (4) |         |  |  |  |
|                                                                  |                          |                                                                                                   | (b) (4) |  |  |  |
| 2. BLIS                                                          | STER – 10s               |                                                                                                   |         |  |  |  |
| If sp                                                            | ace permits,             | include the phrase "Made in India".                                                               |         |  |  |  |
| 3. INSI                                                          | ERT                      |                                                                                                   |         |  |  |  |
| a.                                                               | GENERAL                  |                                                                                                   |         |  |  |  |

Please refer to 21 CFR 201.56(d) regarding PLR format for the final printed labeling. Please ensure that the highlight sections and the entire insert can easily be read and that the point


Reference ID: 3297440

i.

type not be smaller than 6.

|            | ii.    | Please replace "Asacol-HD" with (b) (4) "mesalamine delayed-release tablets"                                                                                                              | (b) (4)       |
|------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|            | iii.   |                                                                                                                                                                                           | (b) (4)       |
| b.         | DES    | ESCRIPTION                                                                                                                                                                                |               |
|            |        |                                                                                                                                                                                           | (b) (4)       |
| c.         | 8 U    | USE IN SPECIFIC POPULATIONS – 8.1 Pregnancy: (b) (4)                                                                                                                                      | **            |
|            |        | evise this subsection heading to read "Pregnancy:<br>te refer you to CFR 201.57(9)(A)(3).                                                                                                 | (b) (4)       |
| Submit you | ır rev | evised labeling electronically in final print format.                                                                                                                                     |               |
|            |        | eview of your next submission, please provide a side-by-side comparison of your your last submitted labeling with all differences annotated and explained.                                | proposed      |
|            | Oran   | bmission of your amendment, please check labeling resources, including DRUGS inge Book and the NF-USP online, for recent updates and make any necessary realing.                          |               |
| documents  | poste  | ep ANDA labeling current, we suggest that you subscribe to the daily or weekly usted on the CDER web site at the following address - govdelivery.com/service/subscribe.html?code=USFDA 17 | pdates of new |
| Note RPM   | - Lat  | abeling comments end here                                                                                                                                                                 | <u>1925</u>   |
| NOTES/Q    | UEST   | STIONS TO THE CHEMIST: None                                                                                                                                                               |               |
| ;          |        |                                                                                                                                                                                           |               |
| FOR THE    | REC    | CORD:                                                                                                                                                                                     |               |

1. MODEL LABELING – Asacol HD Delayed-Release Tablets, 800 mg, (NDA 021830/S-005), approved May 24, 2010. It is still current as of the 4/22/2013.



- 2. This **is FIRST GENERIC for the 800 mg strength.** This drug product is also available in 400 mg and 1.2 gm strength.
- 3. USP 35 Drug Product Monograph yes (4/19/2013): Packaging and storage Preserve in tight containers PF 36: No new information for the drug product.

# 4. PATENTS AND EXCLUSIVITIES Patent Data (4/19/2013)

#### Patent Data

| Appl<br>No | Prod<br>No | Patent<br>No | Patent<br>Expiration | Patent<br>Certification | Patent Use<br>Code | Labeling Impact |
|------------|------------|--------------|----------------------|-------------------------|--------------------|-----------------|
| N021830    | 001        | 5541170      | Jul 30, 2013         | Ш                       | <u>U - 141</u>     | NONE            |
| N021830    | 001        | 5541171      | Jul 30, 2013         | III                     | <u>U - 141</u>     | NONE            |
| N021830    | 001        | 6893662      | Nov 15, 2021         | IV                      | <u>U - 141</u>     | NONE            |

**Exclusivity Data** 

There is no unexpired exclusivity for this product.

#### 4. INACTIVE INGREDIENTS:

The listing of inactive ingredients in the DESCRIPTION section of the package insert is consistent with the listing of inactive ingredients found in the statement of components and composition.

Insert - Each mesalamine delayed-release tablet contains 800 mg of mesalamine. In addition, each tablet contains the following inactive ingredients: acetyltributyl citrate, colloidal silicone dioxide, ferric oxide red, magnesium stearate, methacrylic acid copolymer type B, microcrystalline cellulose, povidone, sodium starch glycolate, talc and titanium dioxide. The tablet is printed with opacode black

## Quality 3.2.p.1

| Ingredient (Trade name, if any)                                |         | Pharmaceutical Function(s)       |
|----------------------------------------------------------------|---------|----------------------------------|
| Mesalamine, USP                                                |         | Active pharmaceutical ingredient |
| Sodium Starch Glycolate, NF                                    | (b) (4) | (b) (4)                          |
| Colloidal Silicon Dioxide, NF                                  |         | -                                |
| Magnesium Stearate, NF                                         |         | _                                |
| Microcrystalline Cellulose, NF                                 | (b) (4) | _                                |
| Povidone (b) (4) USP (b) (4)                                   |         |                                  |
| Talc, USP                                                      |         |                                  |
| Methacrylic Acid Copolymer, NF - Type B<br>(Eudragit S (6) (4) |         |                                  |
| Acetyltributyl Citrate, NF                                     |         |                                  |
| Titanium Dioxide, USP                                          | (b) (4) | _                                |
| Ferric Oxide Red, NF                                           |         | _                                |
| Isopropyl Alcohol, USP*                                        |         |                                  |
| (b) (4)                                                        |         |                                  |
| (b) (4)                                                        |         |                                  |
|                                                                |         | _                                |

(b) (4)

Maximum Daily Dose: 4.8 mg/day Strength: 800mg (b) (4) (b) (4) (b) (4) 5. MANUFACTURING FACILITY Cadila Healthcare Limited (b) (4) (b) (4) Ahemdabad (b) (4) (b) (4) India 6. PRODUCT DESCRIPTION: Consistent with Quality 3.2.p.1 section (b) (4) RLD: ANDA: Insert - Mesalamine delayed-release tablets are available as reddish-brown colored, capsule-shaped, biconvex, enteric coated tablets imprinted with "435" on one side and plain on other side. Quality 3.2.P.1.1 (Dosage form) Reddish brown colored capsule shaped, biconvex enteric coated tablets imprinted with "435" on one side and plain on other side.

## 7. CONTAINER/CLOSURE SYSTEM:

Count (b) (4)
(b) (4)
(180 Tablets (b) (4)
(b) (4)

CRC: Child Resistant Closure; NCRC: Non Child Resistant Closure

Blister Pack (Push through) - 10's Counts

| 10 Tablets | (b) (4) |
|------------|---------|
|            |         |
|            |         |

(b) (4)

8. PRODUCT LINE:

RLD:

ANDA: Bottles of (b) (4) 180s,

and blister pack of 100s (10 x 10s)

9. STORAGE CONDITIONS:

RLD: "

(b) (4)

ANDA: "Store at 20° to 25°C (68° to 77°F) [See USP Controlled Room Temperature]."

#### Stability Test Protocol

| Study         | Storage Condition              | Test Interval                  |
|---------------|--------------------------------|--------------------------------|
| Long Term     | $25 \pm 2$ °C/ $60 \pm 5$ % RH | 0, 3, 6, 9, 12, 18, 24 months  |
| Intermediate* | $30 \pm 2$ °C/ $65 \pm 5$ % RH | 0, 1, 2, 3, 6, 9 and 12 months |
| Accelerated   | $40 \pm 2$ °C/ $75 \pm 5$ % RH | 0, 1, 2, 3 months              |

<sup>\*</sup>The samples at intermediate condition will be analyzed if significant change occurs at any time during 3 months testing at the accelerated storage condition.

10. DISPENSING RECOMMENDATIONS:

(b) (4)

- 11. MEDWATCH (checked 4/22/2013) No new alerts or labeling changes.
- 12. REMS (checked 4/22/2013) None
- 13. SPL DPDE:

Accurate as of the 7/12/2013 submission

14. Tablet Size:

RLD – (b) (4) ANDA – (b) (4)

Date of Review: April 22, 2013

Primary Reviewer: Chan Park

Team Leader: Koung Lee

| 's/                       |  |  |  |
|---------------------------|--|--|--|
| CHAN H PARK<br>04/23/2013 |  |  |  |
| KOUNG U LEE<br>04/23/2013 |  |  |  |

# CENTER FOR DRUG EVALUATION AND RESEARCH

# APPLICATION NUMBER: ANDA 203286

# **CHEMISTRY REVIEWS**

# CHECKLIST FOR THE CHEMISTRY REVIEW:

ANDA-203286-ORIG-1-AMEND-23; ZYDUS PHARMACEUTICALS USA INC., Mesalamine Tablet- DELAYED ACTION

| Hungtian                                                                   |              | Performed By (Initial and Date) | Check appropriate box                                              |
|----------------------------------------------------------------------------|--------------|---------------------------------|--------------------------------------------------------------------|
| Is this package for new strength PAS?                                      |              | MJN 6/30/2017                   | ☐ Yes<br>☑ No                                                      |
| DMF adequate?                                                              |              | MJN 6/30/2017                   | Yes No *(see comments)                                             |
| Any outstanding consults?                                                  |              | MJN 6/30/2017                   | Yes *(see comments) No                                             |
| Final recommended dissolution method/specification acknowled Firm?         | ged by       | DD, BC or designee              | <ul><li></li></ul>                                                 |
| Are all facility inspections acceptable?                                   |              | MJN 6/30/2017                   | ∑ Yes<br>  ☐ No                                                    |
| Is microbiology recommendation adequate for sterile products?              |              | MJN 6/30/2017                   | ☐ Yes<br>☐ No<br>☑ N/A                                             |
| Are there comparability protocols provided? If yes, how many?              |              | DD, BC, or designee             | ☐ Yes<br>How many:<br>⊠ No                                         |
| If USP monograph exists, do the specifications conform to the current USP? |              | DD, BC or designee              | <ul><li>✓ Yes</li><li>✓ No *(see comments)</li><li>✓ N/A</li></ul> |
| Is the final review uploaded into the current IT platform?                 |              | MJN 6/30/2017                   | ∑ Yes<br>□ No                                                      |
|                                                                            |              |                                 |                                                                    |
|                                                                            | I .          |                                 |                                                                    |
| Division                                                                   | Signature    |                                 | Date                                                               |
| OPF                                                                        | OPF Naiqi Ya |                                 | 7/11/2017                                                          |

| Submission Overall Manufact       | uring Facility Statu | IS                |                             |
|-----------------------------------|----------------------|-------------------|-----------------------------|
| Overall Inspection Recommendation | Completion Date      | Submission Status | Project Name                |
| Approve                           | 6/16/2017            | Pending           | ANDA-203286-ORIG-1-AMEND-23 |
| Withhold                          | 9/8/2016             | Complete Response | ANDA-203286-ORIG-1-AMEND-20 |
| Withhold                          | 1/29/2016            | Complete Response | ANDA-203286-ORIG-1-AMEND-15 |
| Withhold                          | 6/26/2015            | Complete Response | ANDA-203286-ORIG-1-AMEND-9  |



Digitally signed by Naiqi Ya
Date: 7/11/2017 03:57:48PM
GUID: 508da70200028815b8e6bac755028bd4





| Kecommen       | dation: CNIC adequate pending facilitie |
|----------------|-----------------------------------------|
| ANDA:          |                                         |
| <b>Approva</b> | I                                       |
| Informa        | tion Request – Minor                    |
|                | days for applicant to response)         |
| Complet        | e Response - Minor                      |
| Complet        | e Response – Major                      |

# ANDA 203286

# **Amendment Review**

| Drug Name/Dosage Form Mesalamine Delayed Release Tablets, USP |                                  |
|---------------------------------------------------------------|----------------------------------|
| Strength                                                      | 800 mg                           |
| Reviewer(s)                                                   | Kamal Tiwari                     |
| Applicant                                                     | Zydus Pharmaceuticals (USA) Inc. |

| SUBMISSION(S) REVIEWED | DOCUMENT DATE |
|------------------------|---------------|
| Amendment              | 4/6/2017      |





#### **DMFs**:

| DMF#  | ТҮРЕ    | HOLDER                          | ITEM<br>REFERENCED | STATUS <sup>1</sup> | DATE<br>REVIEW<br>COMPLETED | COMMENTS |
|-------|---------|---------------------------------|--------------------|---------------------|-----------------------------|----------|
| 22999 | Type II | Cadila<br>Healthcare<br>Limited | Mesalamine USP     | Adequate            | 03/24/2017                  | Z. Wang  |

<sup>&</sup>lt;sup>1</sup> Adequate, Adequate with Information Request, Deficient, or N/A (There is enough data in the application, therefore the DMF did not need to be reviewed)

#### CONSULTS:

| DISCIPLINE                                                           | STATUS     | RECOMMENDATION | DATE     | REVIEWER |
|----------------------------------------------------------------------|------------|----------------|----------|----------|
| Biostatistics                                                        | N/A        |                |          |          |
| Pharmacology/Toxicology                                              | N/A        |                |          |          |
| CDRH                                                                 | N/A        |                |          |          |
| Clinical                                                             | N/A        |                |          |          |
| CMC (samples requested<br>for appearance and<br>dissolution testing) | Completed. | (b) (4)        | 5/5/2015 |          |

# FACILITIES: Withhold dated 9/8/2016. Currently OMIR is pending (New)

|          | Drug Substance                                        |            |                                |
|----------|-------------------------------------------------------|------------|--------------------------------|
| Function | Site Information                                      | FEI#       | Status                         |
| (b)      | ) (4)                                                 | (b) (4)    | Approve 1/29/2016              |
| Function | Drug Product Site Information                         | FEI#       | Status                         |
|          | Cadila Healthcare Limited (b) (4)                     | 3002984011 | Withhold -<br>OAI<br>1/29/2016 |
|          | <sup>(b) (4)</sup> Ahemdabad <sup>(b) (4)</sup> India |            |                                |





P.7

P.8

# Labeling & Package CMC Related Concerns: N/A

# Overall Reviewer's Assessment and Signature:

CMC of this ANDA is adequate.

Kamal Tiwari; 05/26/2017

# **Secondary Review Comments and Concurrence:**

Naiqi Ya

List of Deficiencies To Be Communicated by Information Request or Complete Response: N/A



Digitally signed by Naiqi Ya
Date: 5/31/2017 09:29:09AM
GUID: 508da70200028815b8e6bac755028bd4





| Rec      | ommendation:                        |
|----------|-------------------------------------|
| ANI      | DA:                                 |
| A        | pproval                             |
|          | nformation Request – Minor          |
|          | (30 days for applicant to response) |
| $\times$ | Complete Response - Minor           |
|          | Complete Response – Major           |

# ANDA 203286

# **Amendment Review**

| Drug Name/Dosage Form | Mesalamine Delayed Release Tablets, USP |  |
|-----------------------|-----------------------------------------|--|
| Strength              | 800 mg                                  |  |
| Reviewer(s)           | Huiquan Wu                              |  |
| Applicant             | Zydus Pharmaceuticals (USA) Inc.        |  |

| SUBMISSION(S) REVIEWED | DOCUMENT DATE |  |
|------------------------|---------------|--|
| Amendment              | 10/19/2015    |  |
| IR Response            | 3/1/2016      |  |
| IR Response            | 6/20/2016     |  |
| Amendment              | 8/9/2016      |  |



## Q1 ANDA Amendment QUALITY ASSESSMENT



#### DMFs:

| DMFs  | •    |                                 | ITEM           | 200.6                                                                                             | DATE                |          |
|-------|------|---------------------------------|----------------|---------------------------------------------------------------------------------------------------|---------------------|----------|
| DMF#  | TYPE | HOLDER                          | REFERENCED     | STATUS <sup>1</sup>                                                                               | REVIEW<br>COMPLETED | COMMENTS |
| 22999 | П    | Cadila<br>Healthcare<br>Limited | Mesalamine USP | Adequate with IR (as of 07/15/2016) A new submission on 08/02/2016 may need to be reviewed by DMF | 01/06/2016          | Z. Wang  |
|       |      |                                 | (b) (4         | division*                                                                                         | 7                   | e:       |
|       |      |                                 |                | ť                                                                                                 |                     |          |
|       |      |                                 |                | 4                                                                                                 |                     |          |
|       |      |                                 |                | 4.                                                                                                |                     |          |
|       |      |                                 |                | 4                                                                                                 |                     |          |
|       |      |                                 |                | 4                                                                                                 |                     |          |
|       |      |                                 |                | 4                                                                                                 |                     |          |
|       |      |                                 |                | 4                                                                                                 |                     |          |
|       |      |                                 |                | 4                                                                                                 |                     |          |
|       |      |                                 |                | 4                                                                                                 |                     |          |
|       |      |                                 |                | 4                                                                                                 |                     |          |



#### Q1 ANDA Amendment QUALITY ASSESSMENT



| (b) (4)                                          |                  |                 | E           |
|--------------------------------------------------|------------------|-----------------|-------------|
|                                                  | 4                |                 |             |
|                                                  | 4                |                 | 5.          |
|                                                  | 4                |                 |             |
|                                                  | 4                |                 |             |
|                                                  | 4                |                 |             |
|                                                  | 4                |                 |             |
|                                                  | 4                |                 |             |
| 1 Adequate Adequate with Information Request Def | iniant an NI/A ( | There is enough | data in the |

<sup>&</sup>lt;sup>1</sup> Adequate, Adequate with Information Request, Deficient, or N/A (There is enough data in the application, therefore the DMF did not need to be reviewed)

1 - DMF Reviewed.

Other codes indicate why the DMF was not reviewed, as follows:

- 2 Type 1 DMF
- 3 Reviewed previously and no revision since last review
- 4 Sufficient information in application
- 5 Authority to reference not granted
- 6 DMF not available
- 7 Other (explain under "Comments")

\*The review team alerted the potential need for review of the DMF 22999 submission dated 8/2/2016 to Maya Johnson-Nimo (the RBPM for this application) on Thursday 01/05/2017. As per Maya's response at the same day, that "Please note, DMF 22999 has been reviewed and is adequate. Annual reports do not generally contain technical information, so they are no longer reviewed as stand-alone reviews unless a quality or facility amendment is forwarded. This summary is also captured in panorama if needed. The review is due Jan 31st

Please let me know if you have any questions." Based on the above recommendation, we will only request the ANDA applicant to update their drug substance specifications in ANDA.

<sup>&</sup>lt;sup>1</sup> Action codes for DMF Table:



#### Q1 ANDA Amendment QUALITY ASSESSMENT



#### CONSULTS:

| STATUS     | RECOMMENDATION           | DATE                     | REVIEWER        |
|------------|--------------------------|--------------------------|-----------------|
| N/A        |                          |                          |                 |
| N/A        |                          |                          |                 |
| N/A        |                          |                          | 3.              |
| N/A        |                          |                          |                 |
| Completed. | (b) (4)                  | 5/5/2015                 |                 |
|            | N/A<br>N/A<br>N/A<br>N/A | N/A<br>N/A<br>N/A<br>N/A | N/A N/A N/A N/A |

#### **FACILITIES: Withhold**

|          | Drug Substance                                                |            |                                |
|----------|---------------------------------------------------------------|------------|--------------------------------|
| Function | Site Information                                              | FEI#       | Status                         |
| (b) (4)  |                                                               | (b) (4)    | Approve 1/29/2016              |
| T        | Drug Product                                                  | TOTAL #    | S4-4                           |
| Function | Site Information                                              | FEI#       | Status                         |
| (b) (4)  | Cadila Healthcare Limited (b) (4)  (b) (4)  Ahemdabad (b) (4) | 3002984011 | Withhold -<br>OAI<br>1/29/2016 |
|          | Anemdabad India                                               |            |                                |



Review #1 (Not Approvable – MAJOR)

# ANDA 203286

Mesalamine Delayed Release Tablets USP, 800 mg

Zydus Pharmaceuticals (USA) Inc.

Quamrul Majumder, Ph.D. Chemistry Division II





#### **Table of Contents**

| Table of Contentsi                                                           |   |
|------------------------------------------------------------------------------|---|
| Chemistry Review Data Sheet                                                  |   |
| 1. ANDA 293286:1                                                             |   |
| 2. REVIEW #: 1                                                               |   |
| 3. REVIEW DATE: 11/9/2013                                                    |   |
| 4. REVIEWER: Quamrul Majumder                                                |   |
| 5. PREVIOUS DOCUMENTS:                                                       |   |
| 6. SUBMISSION(S) BEING REVIEWED:                                             |   |
| 7. NAME & ADDRESS OF APPLICANT:                                              |   |
| 8. DRUG PRODUCT NAME/CODE/TYPE: 1                                            |   |
| 9. LEGAL BASIS FOR SUBMISSION: 2                                             |   |
| 10. PHARMACOL. CATEGORY: Indicated for mild to moderate ulcerative colitis.  |   |
| 11. DOSAGE FORM: Delayed Release Tablet                                      |   |
| 12. STRENGTH/POTENCY: 800 mg                                                 |   |
| 13. ROUTE OF ADMINISTRATION: Oral                                            |   |
| 14. Rx/OTC DISPENSED: _X Rx OTC                                              |   |
| 15a. SPOTS (SPECIAL PRODUCTS ON-LINE TRACKING SYSTEM):                       |   |
| 15b. NANOTECHNOLOGY PRODUCT TRACKING:                                        |   |
| 16. CHEMICAL NAME, STRUCTURAL FORMULA, MOLECULAR FORMULA, MOLECULAR WEIGHT:2 |   |
| 17. RELATED/SUPPORTING DOCUMENTS:                                            |   |
| 18. STATUS                                                                   |   |
| 19. ORDER OF REVIEW                                                          |   |
| 20. EES INFORMATION                                                          |   |
| I. Review of Common Technical Document-Quality (Ctd-Q) Module 3              |   |
| 2.3 Introduction to the Quality Overall Summary                              |   |
| 2.3.S DRUG SUBSTANCE                                                         |   |
| 2.3.S.1 General Information                                                  | ĺ |
| 2.3.S.2 Manufacture 9                                                        |   |
| 2.3.S.3 Characterization                                                     |   |
| 2.3.S.4 Condot of Drug Substance                                             |   |





|      | 2.3.S.        | 6 Container Closure System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19       |
|------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|      | 2.3.S.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      | 2.3.P         | DRUG PRODUCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20       |
|      | 2.3.P.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      | 2.3.P.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      | 2.3.P.        | AND ADDRESS OF THE PARTY OF THE |          |
|      | 2.3.P.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      | 2.3.P.        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|      | 2.3.P.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      | 2.3.P.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      | 2.3.P.        | The state of the s |          |
|      | A AI          | PPENDICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 78       |
|      | A.1           | Facilities and Equipment (biotech only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
|      | A.2           | Adventitious Agents Safety Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|      | A.3           | Novel Excipients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|      | A.4           | Nanotechnology Product Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
|      | R RI          | EGIONAL INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 78       |
|      | R.1           | Executed Batch Records                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|      | R.2           | Comparability Protocols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
|      | None          | [[[[]]] [[[]] [[[]] [[]] [[] [[]] [[] [[]] [[] [[]] [[] [[]] [[] [[]] [[]] [[] [[]] [[]] [[]] [[]] [[] [[]] [[]] [[]] [[]] [[]] [[]] [[] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]] [[]]      |          |
|      | R.3           | Methods Validation Package                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 78       |
| II.  | Review of Co  | ommon Technical Document-Quality (Ctd-Q) Module 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 79       |
| III. | List of Defic | riencies To Be Communicated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80       |
|      | B In ad       | dition to responding to the deficiencies presented above, please                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | note and |
|      |               | dge the following comments in your response:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |





Chemistry Review Data Sheet

# **Chemistry Review Data Sheet**

- 1. ANDA 293286:
- 2. REVIEW #: 1
- 3. REVIEW DATE: 11/9/2013
- 4. REVIEWER: Quamrul Majumder

#### 5. PREVIOUS DOCUMENTS:

| Previous Document(s) | Document Date |  |
|----------------------|---------------|--|
| Acknowledgment       | 09/09/2011    |  |

#### 6. SUBMISSION(S) BEING REVIEWED:

| Submission(s) Reviewed | Document Date |
|------------------------|---------------|
| Original               | 07/12/2011    |

#### 7. NAME & ADDRESS OF APPLICANT:

| Name:                                                                                                                              | Zydus Pharmaceuticals (USA) Inc.                  |         |  |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------|--|
|                                                                                                                                    | Cadila Healthcare Limited                         | (b) (4) |  |
| Address:                                                                                                                           | Ahemdabad (b) (4) India<br>FEI Number: 3002984011 |         |  |
| Representative:  Mr. G. Srinivas  Zydus Healthcare LLC 73 Route 31 North, Pennington, NJ 08534-3601  Email: gsrinivas@zydususa.com |                                                   |         |  |
| Telephone:                                                                                                                         | Tel: 609-730-1900 Fax: 609-730-1999               |         |  |

#### 8. DRUG PRODUCT NAME/CODE/TYPE:





#### Chemistry Review Data Sheet

Proprietary Name: Non-Proprietary Name (USAN):

#### 9. LEGAL BASIS FOR SUBMISSION:

This Abbreviated New Drug Application (ANDA) is based upon the reference listed drug (RLD) Asacol HD®, NDA No. 21830, manufactured by Warner Chilcott (US) LLC, NJ. The firm has filed Paragraph IV certification for U.S. Patent Nos. 6893662 (exp. Nov. 15, 2021). They have also indicated that according to the Orange Book, there is no unexpired exclusivity for the product.

| 10. PHARMACOL. CATEGORY: Indicated for mild to moderate ulcerative colitis                                      |
|-----------------------------------------------------------------------------------------------------------------|
| 11. DOSAGE FORM: Delayed Release Tablet                                                                         |
| 12. STRENGTH/POTENCY: 800 mg                                                                                    |
| 13. ROUTE OF ADMINISTRATION: Oral                                                                               |
| 14. Rx/OTC DISPENSED: _X Rx OTC                                                                                 |
| 15a. SPOTS (SPECIAL PRODUCTS ON-LINE TRACKING SYSTEM):  SPOTS product – Form Completed                          |
| Not a SPOTS product                                                                                             |
| 15b. NANOTECHNOLOGY PRODUCT TRACKING:  ☐ NANO product – Form Completed (See Appendix A.4)  ☐ Not a NANO product |
| K-A                                                                                                             |

# 16. CHEMICAL NAME, STRUCTURAL FORMULA, MOLECULAR FORMULA, MOLECULAR WEIGHT:

Please see drug substance section.



Chemistry Review Data Sheet

#### 17. RELATED/SUPPORTING DOCUMENTS:

#### A. DMFs:

| DMF#   | ТҮРЕ | HOLDER                          | ITEM<br>REFERENCED | CODE <sup>1</sup> | STATUS <sup>2</sup> | DATE REVIEW<br>COMPLETED | COMMENTS |
|--------|------|---------------------------------|--------------------|-------------------|---------------------|--------------------------|----------|
| 22999  | II   | Cadila<br>Healthcare<br>Limited | Mesalamine USP     |                   | Inadequate          | 02/20/2014               | Z. Wang  |
| (b) (4 | III  |                                 | (b) (4)            |                   | 4                   |                          |          |
|        | Ш    |                                 |                    |                   | 4                   |                          |          |

<sup>&</sup>lt;sup>1</sup> Action codes for DMF Table:

1 – DMF Reviewed.

Other codes indicate why the DMF was not reviewed, as follows:

- 2 Type 1 DMF
- 3 Reviewed previously and no revision since last review
- 4 Sufficient information in application
- 5 Authority to reference not granted
- 6 DMF not available
- 7 Other (explain under "Comments")

#### **B. Other Documents:**

| DOCUMENT | APPLICATION NUMBER | DESCRIPTION |  |
|----------|--------------------|-------------|--|
| 1        | N021830            | Asacol® HD  |  |
|          |                    |             |  |

<sup>&</sup>lt;sup>2</sup> Adequate, Inadequate, or N/A (There is enough data in the application, therefore the DMF did not need to be reviewed)





# Chemistry Review Data Sheet

#### 18. STATUS

| CONSULTS/ CMC<br>RELATED REVIEWS | RECOMMENDATION                                                               | MENDATION DATE |              |  |
|----------------------------------|------------------------------------------------------------------------------|----------------|--------------|--|
| Microbiology                     | N/A                                                                          |                |              |  |
| Methods Validation               | N/A                                                                          |                |              |  |
| Labeling                         | Inadequate                                                                   | 04/23/2013     | PARK, CHAN H |  |
| Bioequivalence                   | Dissolution –Adequate Bio- Adequate In vitro BE Dissolution study-Inadequate | 11/15/2013     | REN, PING    |  |
| Toxicology/Clinical              | N/A                                                                          |                |              |  |
| EA                               | CE provided                                                                  |                |              |  |
| Radiopharmaceutical              | N/A                                                                          | ĺ              |              |  |
| Samples Requested                | Yes- for visual evaluation                                                   | 11/19/2013     | Q. Majumder  |  |

#### 19. ORDER OF REVIEW

| The application sub | nission(s) | covered by this review  | was taken in the date order |
|---------------------|------------|-------------------------|-----------------------------|
| of receipt. X Yes   | No         | If no, explain reason(s | below:                      |

#### 20. EES INFORMATION

| Drug                                    | Substance                                            |                                        |        |
|-----------------------------------------|------------------------------------------------------|----------------------------------------|--------|
| Function                                | Site Information                                     | FEI/CF<br>N#                           | Status |
| [i.e. manufacturer, contract lab, etc.] | [Location, address, etc.]                            |                                        |        |
|                                         |                                                      |                                        |        |
|                                         |                                                      |                                        |        |
| Drug                                    | Product                                              |                                        |        |
| Function                                | Site Information                                     | FEI/CF<br>N#                           | Status |
| Function                                |                                                      |                                        | Status |
| Function                                | Site Information  Cadila Healthcare Limited          | N#<br>FEI<br>Number:                   | Status |
| Function                                | Site Information  Cadila Healthcare                  | N#<br>FEI<br>Number:<br>3002984        | Status |
| Function                                | Site Information  Cadila Healthcare Limited  (b) (4) | N#<br>FEI<br>Number:                   | Status |
| Function                                | Site Information  Cadila Healthcare Limited          | N#<br>FEI<br>Number:<br>3002984<br>011 | Status |





(b) (4)

# Executive Summary Section Chemistry Review for ANDA 293286

#### **Executive Summary**

#### I. Recommendations

**A.** Recommendation and Conclusion on Approvability Not Approvable for CMC deficiency.

A. Description of the Drug Product(s) and Drug Substance(s)

B. Recommendation on Phase 4 (Post-Marketing) Commitments, Agreements, and/or Risk Management Steps, if Approvable
NA

#### II. Summary of Chemistry Assessments

| В. | Description of How the Drug Product is Intended to be Used | (b) (4) |
|----|------------------------------------------------------------|---------|
|    |                                                            |         |





**Executive Summary Section** 

|    | <u>IT</u> | QT    |
|----|-----------|-------|
| DS | 0.05%     | 0.05% |
| DP | 0.10%     | 0.15% |

#### C. Basis for Approvability or Not-Approval Recommendation

The application is not recommended for approval. Major CMC deficiency is recommended as Division of Bioequivalence is asking for dissolution data from a fresh (new) batch due to high dissolution variability.

1





#### **ADMINISTRATIVE**

#### A. Reviewer's Signature Quamrul Majumder

#### B. Endorsement Block

Chemist Name/Date: Q Majumder/ 11/27/2013,12/30/2013 Chemistry Team Leader Name/Date: R. Rajagopalan/ 12/22/2013;12/31/2013;1/2/1014

Project Manager Name/Date: F Nice/2/20/14

Division/P. Capella for S. Rosencrance/07-Jan-2014; 20-Feb-2014 (after

DMF review completed)

TYPE OF LETTER: MAJOR Deficiency, Not Approvable

This is a representation of an electronic record that was signed

This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

\_\_\_\_\_\_

/s/

-----

QUAMRUL MAJUMDER 02/20/2014

FRANK J NICE 02/21/2014

RADHIKA RAJAGOPALAN 02/21/2014

PETER CAPELLA on behalf of SUSAN M ROSENCRANCE 02/21/2014

# CENTER FOR DRUG EVALUATION AND RESEARCH

# APPLICATION NUMBER: ANDA 203286

# **BIOEQUIVALENCE REVIEWS**

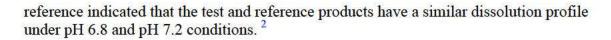
# DIVISION OF BIOEQUIVALENCE AMENDMENT REVIEW

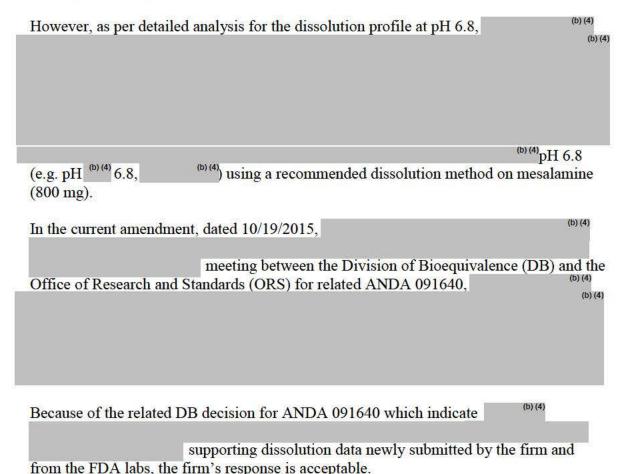
| ANDA No.                                           | 203286                                                                                                                           |                                  |        |                   |  |  |  |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------|-------------------|--|--|--|
| Drug Product Name                                  | Mesalamine Delayed Release Tablets USP                                                                                           |                                  |        |                   |  |  |  |
| Strength(s)                                        | 800 mg                                                                                                                           |                                  |        |                   |  |  |  |
| Applicant Name                                     | Zydus Pharmaceuticals (U                                                                                                         | Zydus Pharmaceuticals (USA) Inc. |        |                   |  |  |  |
| Applicant Address                                  | 73, Route 31 North,<br>Pennington, NJ 08534                                                                                      |                                  |        |                   |  |  |  |
| US Agent Name and the mailing address              | G. Srinivas Zydus Pharmaceuticals USA Inc., 73, Route 31 North, Pennington, NJ 08534                                             |                                  |        |                   |  |  |  |
| US agent's Telephone Number                        | 609-730-1900                                                                                                                     |                                  |        |                   |  |  |  |
| US Agent's Fax Number                              | 609-730-1999                                                                                                                     |                                  |        |                   |  |  |  |
| US Agent's Email Address                           | gsrinivas@zydususa.com                                                                                                           | Q.                               |        |                   |  |  |  |
| Original Submission Date(s)                        | 07/12/2011                                                                                                                       |                                  |        |                   |  |  |  |
| Submission Date(s) of<br>Amendment(s) Under Review | 02/24/2015 and 10/19/2015, amendments for in vitro dissolution testing                                                           |                                  |        |                   |  |  |  |
| First Generic                                      | Yes                                                                                                                              |                                  |        |                   |  |  |  |
| Reviewer                                           | Diana Vivian, Ph.D.                                                                                                              |                                  |        |                   |  |  |  |
|                                                    |                                                                                                                                  |                                  |        |                   |  |  |  |
| Study Number (s)                                   | # MSN-P0-732                                                                                                                     | # MSN-                           | P0-733 |                   |  |  |  |
| Study Type (s)                                     | Fasting                                                                                                                          | Fed                              |        | In vitro BE study |  |  |  |
| Strength (s)                                       | 800 mg                                                                                                                           | 800 mg                           |        | 800 mg            |  |  |  |
| Clinical Site                                      | Algorithme Pharma Inc.                                                                                                           |                                  |        |                   |  |  |  |
| Clinical Site Address                              | 1200 Beaumont Ave.<br>Mount-Royal, Quebec, C<br>H3P 3P1                                                                          | anada                            |        |                   |  |  |  |
| Analytical Site                                    |                                                                                                                                  |                                  |        | (b) (4            |  |  |  |
| Analytical Site Address                            |                                                                                                                                  |                                  |        |                   |  |  |  |
|                                                    |                                                                                                                                  |                                  | 7      |                   |  |  |  |
| OSIS Status                                        | Backlog, Year 1 and Year 2  ANDAs  □ Pending □ Complete   Year 3 ANDAs □ To Be Determined by OSIS □ Pending For Cause Inspection |                                  |        | etermined by OSIS |  |  |  |
| OVERALL REVIEW RESULT                              | ADEQUATE                                                                                                                         |                                  |        |                   |  |  |  |
| REVISED/NEW DRAFT                                  | NO                                                                                                                               |                                  |        |                   |  |  |  |

| GUIDANCE INCLUDED                                         |                                   |          |                  |
|-----------------------------------------------------------|-----------------------------------|----------|------------------|
| COMMUNICATION                                             | ☐ ECD<br>☐ IR<br>☑ NOT APPLICABLE |          |                  |
| BIOEQUIVALENCE STUDY<br>TRACKING/SUPPORTING<br>DOCUMENT # | STUDY/TEST TYPE                   | STRENGTH | REVIEW<br>RESULT |
| 1                                                         | Fasting Study                     | 800 mg   | Adequate         |
| 1                                                         | Fed Study                         | 800 mg   | Adequate         |
| 1, 9, 15                                                  | In vitro BE Dissolution study     | 800 mg   | Adequate         |

#### 1 EXECUTIVE SUMMARY

This is a review of a study amendment.


The original application (07/12/2011) contained the results of fasting and fed bioequivalence (BE) studies comparing a test product Mesalamine Delayed Release Tablets, 800 mg, to the corresponding reference product Asacol® HD (Mesalamine Delayed Release) tablets, 800 mg. The results of the 95% upper confidence bound for AUC<sub>0-t</sub>, AUC<sub>8-48</sub>, and Cmax in the fasting and fed BE studies were negative. The point estimate (test/reference geometric mean ratio) for AUC<sub>0-t</sub>, AUC<sub>8-48</sub>, and Cmax were within the range of 0.80 to 1.25. Hence, the fasting and fed studies met the BE acceptance criteria of reference scaled analysis for log-transformed AUC<sub>0-t</sub>, AUC<sub>8-48</sub>, and Cmax of Mesalamine Delayed Release Tablets, 800 mg. The fasting and fed studies were acceptable <sup>1</sup>.


In addition to in vivo fasting and fed BE studies, the guidance also recommends comparative in vitro BE dissolution studies (using USP Apparatus II at 50 rpm) to be conducted in pH 4.5, 6.0, 6.5, 6.8, 7.2 and 7.5 phosphate buffer representative of the GI tract pH variations. Yet, in the original application, the firm did not submit any dissolution data for pH 4.5 acetate buffer. Also, the mean values (f2) in pH 6.8 and pH 7.5 phosphate buffer were less than 50 and the lower bound of 90% confidence interval ("CI") for the f2 test comparing test vs. RLD in pH 6.8, pH 7.2, and pH 7.5 phosphate buffer was lower than those comparing the RLD against itself under the same conditions. These values indicated that the dissolution profiles of the test product were significantly different from those of the corresponding reference product under these conditions. Therefore, the in vitro BE (comparative dissolution) studies under pH 6.8, 7.2 and 7.5 buffer were not acceptable. Due to the high variability of the firm-submitted dissolution data conducted in multiple pH media, the firm was requested to repeat comparative dissolution testing on its fresh test product using a larger sample size (e.g. 24 units of test product and two lots of unexpired RLD product) to provide a better estimate of the mean difference, or take other appropriated steps as necessary to reduce the variability for the purpose of achieving accurate f2 calculations.

In the amendment dated 02/24/2015, the firm conducted additional dissolution testing in the medium of pH 4.5 acetate buffer and repeated dissolution testing in the media of pH 6.8,7.2, and 7.5 with a larger sample size (n=24) to reduce variability for the purpose of achieving accurate f2 calculations. The firm's data showed the percent drug released from both the test and reference products is less than 5% in the medium of pH 4.5 during a period of 960 min (16 hrs) dissolution testing. The incomplete drug release at this pH is due to the delayed release nature of this product. Therefore, the in vitro dissolution data in the medium of pH 4.5 were accepted. Additionally, the results of the mean f2 values and the lower bound of 90% confidence intervals for f2 values comparing the test vs.

-

<sup>&</sup>lt;sup>1</sup> DARRTS: REV-BIOEQ21 (Primary Review) ANDA203286, Final date: 11/15/2013.





The application is adequate with no deficiencies.

<sup>&</sup>lt;sup>2</sup> GDRP; ANDA-203286-ORIG-1-AMEND-9, Bioequivalence Primary Review, <u>A203286NA022415.doc</u>, dated 5/19/2015.

<sup>&</sup>lt;sup>3</sup> DARRTS; ANDA 091640, 03/01/2014, REV-BIOEQ-21(Primary Review). Page 89 of 223.

#### 2 TABLE OF CONTENTS

| 1 | Executive Summary                                                                 | 3  |
|---|-----------------------------------------------------------------------------------|----|
|   | Table of Contents                                                                 |    |
| 3 | Submission Summary                                                                | 6  |
|   | 3.1 Review of Submission                                                          |    |
|   | 3.1.1 DBII Deficiency Comment:                                                    | 6  |
|   | 3.2 Deficiency Comments                                                           | 39 |
|   | Appendix                                                                          |    |
|   | 4.1 Formulation Details                                                           | 40 |
|   | 4.2 FDA Labs Dissolution Testing Report                                           | 42 |
|   | 4.3 Previous Bioequivalence Reviewer's FDA Lab Report Analysis Error! Bookmark no |    |
|   | Outcome Page                                                                      |    |

#### 3 SUBMISSION SUMMARY

#### 3.1 Review of Submission

#### 3.1.1 DBII Deficiency Comment:

At pH 6.8, there is a significant difference in the dissolution profile for the test product between the original (07/12/2011) and amendment (02/24/2015) submissions. Please provide an explanation for this difference. In addition, please submit 12 units dissolution data of the test and reference products in buffers with pH around 6.8 (e.g. (b) (4) 6.8, using the following dissolution method on your test product:

Apparatus: USP Apparatus II (paddle)

Pretreatment Stage: 2 hours in 0.1 N HCl at 100 rpm

**Evaluation Stage:** 

Each of

(1) (2) pH 6.8 Phosphate buffer at 50 rpm (3) (b) (4)

Volume: 900 mL Temperature: 37°C

Sample times: 0, 10, 20, 30, 45, 60, 75, 90, 120, 150, 180, 240, 300, and 360 minutes

or as needed for profile comparison.

Please submit individual dissolution data as well as the mean, range, %coefficient of variation (CV) at each time point for the total numbers of tablets tested including dates of dissolution testing, manufacture date and expiration date as applicable. Besides the dissolution summary table in the eCTD format, please submit the individual unit dissolution data and mean values in excel or sas transport format.

#### **Zydus' Response to Deficiency Comment:**

Zydus received a similar comment about the dissolution data at pH 6.8 in connection with its pending application for another Mesalamine Delayed-release product, Mesalamine Delayed-release Tablets, 1.2 g (ANDA No. 091640). Apparently, Mesalamine Delayed-release products exhibit extremely high day-to-day variability in dissolution data at around pH 6.8 evaluation stage, which were observed for both the test and reference products. The Agency ultimately accepted Zydus's dissolution data at pH 6.8 for Mesalamine Delayed-release Tablets, 1.2 g as described below.

On May 29, 2015, the Agency sent Zydus a complete response letter for ANDA No. 091640. In that letter, FDA noted:

"Although your test product at 31 month (expired) met the shelf life specification, we noticed that the dissolution data of the fresh test product (1 month) in your submission dated October 23, 2013, is significantly different from that of 31 month old product (submitted in amendment December 6, 2014) under pH 6.8. Using bootstrapping method, the F2 value between the data of your 1 month and 31 month test product at pH 6.8 is only 25.66, Therefore, your dissolution testing data at pH 6.8, (b) (4) in the current amendment (December 6, 2014) is not acceptable. Please provide your explanation for the observed faster release of the aged product when compared to the fresh product."

A copy of the Agency's May 29, 2015 complete response letter (Mesalamine Delayed-release Tablets, 1.2 g) is included for the Agency's reference in Module 1.2. In that same letter, the Agency asked Zydus to conduct additional dissolution testing using 24 units, rather than 12 units, of newly prepared (unexpired) test product and 24 units of reference product at pH 6.8,

On June 5, 2015, Zydus requested a **Post Complete Response Teleconference Meeting** to discuss deficiencies noted in the May 29, 2015 complete response letter for ANDA No. 091640. In that submission, Zydus explained the observed variability in dissolution at pH 6.8 as follows:

"Cadila healthcare Limited conducted method validation for dissolution method with pH 6.8 phosphate buffer based on the deficiency cited in complete response letter dated March 26, 2014 to address day to day variability. Based on the intermediate precision and trend of dissolution data on robustness experiments it was concluded that day to day variability of both test and reference product at pH 6.8 is due to

It was also

supported with the consistent in-vitro dissolution data on higher pH (i.e. pH 7.2- OGD method).

In the subsequent complete response letter issued by the agency dated September 09, 2014, based on the submitted data the agency acknowledged the firm's investigations on day to day variability at pH 6.8 and suggested to re-perform in-vitro dissolution comparison on test product and reference product on **same day**. Based on agency's recommendation we have generated data on the same day for 24 units of test product of age 31 month complying to our shelf-life specification and two different lots of reference product with 12 units each at pH 6.8,

[b) (4) Based on this reanalysis F2 was calculated by bootstrapping method as per the guidance.

In all three pH buffers, satisfactory F2 above 50 was established based on same day analysis. On the basis of firm's investigations and re-analysis data on same day we are concluding that F2 value calculated by agency comparing the dissolution data of 1 month sample and 31 month sample of test product as cited in the recent complete response letter dated May 29, 2015 may not be appropriate since these two dissolution data were

generated on **two different days**. We believe that lower F2 value between 1 month and 31 month analysis is the result of inherent analytical variability due to day to day variability in pH 6.8. It is also evident from the fact that the drug release data in official OGD method (Firm's Quality control method) on aged sample (31 month) did not show any significant change and the data is well within the shelf-life specification."

A copy of the Post Complete Response Teleconference Meeting Request Packet (Mesalamine Delayed–release Tablets, 1.2 g) is included for the Agency's reference in Module 1.2.

On June 12, 2015, the Office of Generic Drugs issued a Meeting Request Granted-Written Responses Only. On August 21, 2015, the Office of Generic Drugs issued the following written response:

"The Division of Bioequivalence II (DBII) has re-evaluated the data for the in vitro BE dissolution studies, as well as your rationale for the high variability of dissolution data at pH 6.8. The DBII concludes that the in vitro BE dissolution testing at pH 6.8 is now acceptable. Therefore, DB II agrees with your request to waive the additional data requested in the complete response letter dated May 28, 2015."

A copy of the Agency's Meeting Request Granted- Written Responses Only (Mesalamine Delayed- release Tablets, 1.2g) is included for the Agency's reference in Module 1.2.

As with ANDA No. 091640, Zydus reports that the observed difference in the dissolution data at pH 6.8 for Zydus's Mesalamine Delayed-release Tablets USP 800 mg between the original submission (July 12, 2011) and the February 24, 2015 Amendment is the result of the inherent day to day variability in dissolution at pH 6.8. This day to day variability is observed in both the test and reference products at pH 6.8, and is due to which

is soluble at pH  $\geq$  7.0. Hence, it is not appropriate to compare dissolution data at pH 6.8 for dissolution profiles generated on different days.

# Dissolution data of the test and reference products in buffers with pH around 6.8 (e.g. pH (b) (4) 6.8,

Further to the above explanation, and as requested by the Agency, Zydus conducted new dissolution testing on the Test and Reference products of Mesalamine Delayed-release Tablets, 800 mg in buffers with pH around 6.8 (e.g. 6.8, We performed the additional dissolution testing using 24 units of the Test product and 24 units of the Reference product from two batches (12 units per batch), to be consistent with the Agency's request in ANDA No. 091640 (Mesalamine Delayed-release Tablets, 1.2 g) on May 29, 2015 for comparative in vitro dissolution testing. We believe that due to the variability in the dissolution data for Mesalamine Delayed-release tablets around pH 6.8 (as explained above), it is justifiable to use more than 12 units of the tablets to achieve a meaningful comparison of dissolution profiles between the Test and Reference products around this pH range. Therefore, we conducted comparative dissolution testing on 24 units of the Test product (Batch No. EMP 203) and 12 units from each of the two unexpired Reference lots on the same day.

The individual unit dissolution data and mean values along with sas transport format (pH pH 6.8, pH 6.8, solution summary table in eCTD format. The summary dissolution testing results is presented below in Tables 1-4 for the Agency reference.

Table 2: Summary of Dissolution Data for Test and Reference Products Using Methods Defined by the FDA: Pretreatment Stage and Evaluation Stage pH 6.8

| Product      | TEST PRODUCT           |               |                  | REFERENCE PRODUCT |                                                         |                    |         |       |
|--------------|------------------------|---------------|------------------|-------------------|---------------------------------------------------------|--------------------|---------|-------|
|              | Mesalamine             | Delayed-relea | ase Tablets, 800 | mg                | Asacol HD® (Mesalamine) Delayed-release Tablets, 800 mg |                    |         | 00 mg |
| Batch No.    |                        |               |                  | 457836 S2 (12 uni | 57836 S2 (12 units), 457840 S1 (12 units)               |                    |         |       |
|              | Mfg. Date: April, 2014 |               |                  | Expiry Date: 4578 | 836 S2 -May, 201                                        | 7; 457840 S1 -May, | , 2017  |       |
| Manufacturer | Cadila Healt           | hcare Limite  | d, India         |                   | Warner Chilcott                                         | (US), LLC.         |         |       |
|              | 0                      |               | Tes              | t Date: Sep       | tember 04, 2015                                         |                    |         |       |
|              |                        |               | Pretreat         | ment Stage:       | 2 Hours in 0.1N HO                                      | Cl                 |         |       |
|              |                        |               |                  | % Di              | ssolved                                                 |                    | 12      |       |
| Time (Hr)    | Mean                   | Min           | Max              | %CV               | Mean                                                    | Min                | Max     | %CV   |
| 2 hr         | 0.0                    |               | (b) (4)          | 0.0               | 0.0                                                     |                    | (b) (4) | 0.0   |
|              |                        |               | Evaluatio        |                   | 6.8 Phosphate Buff                                      | er)                |         |       |
|              | 7%                     | 20.           | V8               | % Di              | ssolved                                                 | 30                 | 48      |       |
| Time (min)   | Mean                   | Min           | Max              | %CV               | Mean                                                    | Min                | Max     | %CV   |
| 10           | 1.4                    |               | (b) (4)          | 107.9             | 0.3                                                     |                    | (b) (4) | 186.7 |
| 20           | 2.3                    |               |                  | 88.2              | 1.0                                                     |                    |         | 181.0 |
| 30           | 5.6                    | <u> </u>      |                  | 121.3             | 5.8                                                     |                    |         | 143.1 |
| 45           | 11.6                   |               |                  | 116.2             | 15.0                                                    |                    |         | 138.7 |
| 60           | 17.6                   | nie           |                  | 110.5             | 25.1                                                    |                    |         | 116.9 |
| 75           | 27.2                   |               |                  | 78.8              | 33.1                                                    |                    |         | 103.4 |
| 90           | 35.8                   |               |                  | 73.1              | 38.8                                                    |                    |         | 95.0  |
| 120          | 48.7                   |               |                  | 73.1              | 47.9                                                    |                    |         | 80.2  |
| 150          | 55.0                   |               |                  | 67.0              | 57.3                                                    |                    |         | 65.8  |
| 180          | 70.9                   |               |                  | 45.4              | 66.9                                                    |                    |         | 54.3  |
| 240          | 97.1                   |               |                  | 3.5               | 87.5                                                    |                    |         | 16.4  |
| 300          | 99.5                   |               |                  | 3.4               | 94.4                                                    |                    |         | 8.6   |
| 360          | 100.9                  |               |                  | 3.1               | 97.7                                                    |                    |         | 5.7   |

The above dissolution data demonstrate that the mean dissolution profiles (% dissolved vs. time) of the Test product batch at (b) (4) pH 6.8, evaluation stages are almost identical to the mean profiles of the two Reference product batches.

Due to the high variability in dissolution data of the Test and Reference products, we calculated the f2 (similarity factor) values using a bootstrapping method to compare the dissolution profiles between the Test and Reference products as follows.

Using the bootstrapping method, by creating 10,000 replicates of the Test and Reference product units, the mean percent dissolved at each time point was obtained for each replicate to calculate f2 values. Subsequently, the mean and 90% confidence intervals of the f2 values between Test and Reference products were calculated for each pH at the evaluation stage.

The complete statistical analysis summary report is provided in Module 5.3.1.3 of this Amendment. A summary of the results is presented in the Table below.

Summary of f2 (Similarity Factor) Values Determined by <u>Percentile Bootstrapping Method</u> at each pH Evaluation Stage in the Dissolution of the Mesalamine Delayed-release Tablets, 800 mg

| 61 48.19 63.91 |
|----------------|
| 41 32.96 47.88 |
| (b) (4         |
| +              |

Test: Test Batch EMP 203 (24 units), R1: Reference Batch 457836 S2 (12 units), R2: Reference Batch 457840 S1 (12 units)

The above f2 data demonstrate that the dissolution profiles are similar between the Test and Reference products at (b) (4) and (b) (4) because the mean and lower bound of the 90% confidence interval of the f2 values for Test vs. Reference are all greater than 50. The mean f2 value at pH 6.8 or (b) (4) for Test vs. Reference is also greater than 50; however, the lower bound of the confidence interval of the f2 value at pH 6.8 or (4) for Test vs. Reference is less than 50. Nevertheless, the lower bound of the 90% confidence interval of the f2 value at pH 6.8 (b) (4) for Test vs. Reference is greater than that for Reference Batch 1 vs. Reference Batch 2, i.e., 48.19 vs. 32.96

The f2 values calculated for Reference Batch 1 vs. Reference Batch 2 showed that the dissolution profiles are not even similar between the two Reference batches at pH 6.8 and in addition to in the evaluation stage. This clearly demonstrates the large batch-to-batch variability in the Reference product.

In the Summary Basis of Approval (SBA) of NDA # 204412, Delzicol® (Mesalamine Delayed-release Capsules, 400 mg), the 90% confidence intervals for the f2 values were calculated using percentile and bias-corrected and accelerated (BCA) approaches. Based on this approach, we have calculated the 90% confidence intervals for f2 values using the BCA bootstrap method (Test product vs. RLD Asacol® HD) which is considered to be more reliable (Reference: Summary Basis of Approval, Clinical Pharmacology and Biopharmaceutics Review, Application No. 204412Orig1s000, ONDQA Biopharmaceutics Review, Page 11).

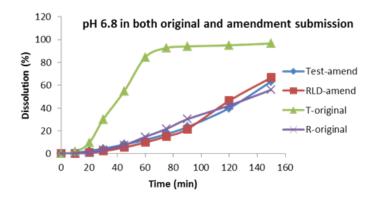
A summary of the analysis results the dissolution data obtained for Test and Reference products of Mesalamine Delayed-release Tables, 800 mg is presented in the table below.

Test: Test Batch EMP 203 (24 units), R1: Reference Batch 457836 S2 (12 units), R2: Reference Batch 457840 S1 (12 units)

The above f2 data demonstrate that the dissolution profiles are similar between the Test and Reference products (Asacol® HD) at all pHs in the evaluation stage, ie., pH 6.8, because the mean and lower bound of the 90% confidence interval of the f2 values at all pHs are greater than 50. The complete statistical analysis summary report is provided in Module 5.3.1.3 of this Amendment.

Due to the variability and bias in the Reference product, the BCA (bias corrected accelerated) bootstrapping method is considered to be more reasonable and reliable in calculating the 90% confidence interval for the similarity factor and has been applied in other approved drug products (e.g., Delzicol®).

The 90% lower limits of BCA bootstrapped f2 values for the Test (Mesalamine Delayed-release Tablets USP, 800 mg by Cadila Healthcare Limited) vs. Reference products (Asacol® HD) are greater than 50 in all the dissolution media (at all pHs) tested. Therefore, similarity between the Test and Reference products has been demonstrated. The calculations of f2 values presented above using the bootstrapping method and the BCA bootstrapping method along with individual unit dissolution data and mean values in sas transport format are included in Module 5.3.1.3 of this Amendment.


#### OVERALL CONCLUSION OF DISSOLUTION PROFILES:

Based on the Agency's recommendation, Cadila Healthcare Limited, India has conducted dissolution studies to demonstrate that the dissolution profiles of the Test product,

Mesalamine Delayed-release Tablets USP 800 mg, are similar to those of the Reference product (RLD), Asacol® HD (Mesalamine) delayed-release Tablets 800 mg, at pH 6.8, of the Evaluation Stage on the same day and at the same location. Therefore, the in vitro BE dissolution testing requirements have been satisfied for the Test product Mesalamine Delayed-release Tablets USP 800 mg, manufactured by Cadila Healthcare Limited, India.

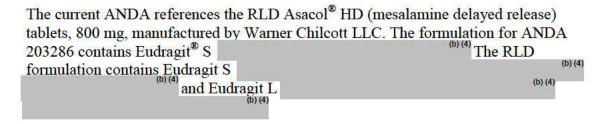
#### **Reviewer Comments:**

In the first amendment review of ANDA 203286, a large difference was observed in the test product between the original and amendment submission for the dissolution profile at pH 6.8, as shown in the below plot. The firm was asked to explain the large difference in the pH 6.8 test product dissolution between the original submission and the amendment submitted on 02/24/2015.



In its current response to the deficiencies, the firm references the Agency's review of ANDA 091640, Mesalamine Delayed-release Tablets, 1200 mg (also manufactured by Zydus Pharmaceuticals USA Inc.). The RLD for ANDA 091640 is Shire's Lialda (mesalamine) delayed-release tablets, 1200 mg (NDA 022000).

The formulation of ANDA 091640 contains both (b) (4)
(b) (4)


(b) (4) According to the proposed labeling for ANDA 091640 and the approved labeling for NDA 022000, this test product "the tablet is coated with a pH dependent polymer

<sup>&</sup>lt;sup>4</sup> GDRP; ANDA-203286-ORIG-1-AMEND-9, Bioequivalence Primary Review, <u>A203286NA022415.doc</u>, dated 5/19/2015.

<sup>&</sup>lt;sup>5</sup> V:\DIVISION\BIO\BIO2\BIO Management Meeting Minutes\2015 Meeting Minutes\Non-BMM Internal Meeting Minutes\5 12 2015 ANDA 208236 Mesalamine DR Tab Final docx

(b) (4)

film, which breaks down at or above pH 6.8, normally in the terminal ileum where mesalamine then begins to be released from the tablet core."8,9



According to the RLD label, "Asacol HD delayed-release tablets have an outer protective coat consisting of a combination of acrylic based resins, Eudragit S (methacrylic acid copolymer (4) NF) and Eudragit L (methacrylic acid copolymer (4) NF). The inner coat consists of an acrylic based resin, Eudragit S, which dissolves at pH 7 or greater, releasing mesalamine in the terminal ileum and beyond for topical antiinflammatory action in the colon." Formulation details for ANDA 091640, ANDA 203286, and NDA 021830 are presented in Appendix 4.1 of this review.

#### ANDA 091640 In Vitro Dissolution Review History

For ANDA 091640, the test product showed high day-to-day dissolution variability at pH 6.8. The DBII consulted the ORS on the issue of high dissolution variability under these conditions. Per ORS' response, it may be "okay not to have f2>50 criterion for the pH 6.5 and pH 6.8 condition because the RLD, Lialda,

However, since some patients have low pH in the distal small bowel, similar release at pH 6.8 may be desirable. Therefore, considering the variability of the RLD, an alternative to the f2 "would be if the mean of the RLD is within the range of the RLD data at pH 6.8 over the 2-8 hour range." <sup>14</sup> The DB held an internal meeting following this consult to further discuss the issue. <sup>15</sup> Because the test product dissolution for ANDA 091640 was more variability than that seen in other in-house ANDAs, the firm was asked to conduct additional method robustness validation and to repeat dissolution testing at pH 6.8 and

http://www.accessdata.fda.gov/drugsatfda.docs/label/2014/022000s013lbl.pdf

(b) (4)

(b) (4)

<sup>8</sup> EDR; ANDA 091640, Module 1.14.2.2. Final Package Insert

<sup>&</sup>lt;sup>9</sup> Drugs@FDA. Search: Lialda. Last accessed: 11/30/2015.

<sup>&</sup>lt;sup>13</sup> Drugs @ FDA. Search: mesalamine. Last accessed 11/17/2015. http://www.accessdata.fda.gov/drugsatfda\_docs/label/2013/021830s006lbl.pdf

14 DARRTS; ANDA 091640, 03/01/2014, REV-BIOEQ-21(Primary Review). Page 84 of 223.

<sup>&</sup>lt;sup>15</sup> DARRTS; ANDA 091640, 03/01/2014, REV-BIOEQ-21(Primary Review). Page 89 of 223.

In the amendment dated 5/13/2014, the firm observed that dissolution testing is sensitive to minor changes in pH from

Since the firm used only 6 units for each test during pH robustness testing, the firm was requested to provide additional dissolution testing data for the test and reference product (two lots) at pH 6.8, using 24 units each. (b) (4)

In the amendment dated 12/8/2014, the firm provided additional dissolution testing at pH 6.8, However, the firm used test product that was 31 months old. This aged test product showed significantly faster release than the previously submitted testing data from 1 month old product. The firm was asked to re-conduct dissolution under these conditions using fresh product and to explain the observed faster release from aged product. <sup>17</sup>

On June 05, 2015, Zydus requested a Post Complete Response Teleconference Meeting to discuss deficiencies noted in the Complete Response (CR) Letter dated May 29, 2015. In its post CR response, the firm requested to waive the additional in vitro comparative dissolution data at pH 6.8, The DB held an internal meeting to discuss the issue, and decided that the firm's dissolution testing was acceptable because of the following: 18,19

- 1. Acceptable in vivo BE studies with clinical and PK end points.
- 2. In vitro BE dissolution testing was acceptable for pH 6.5, 7.2 and 7.5. For pH 6.8, the dissolution is comparable to that of the RLD at 1, 2, 6 and 8 hours except at 4 hours (please note f2 criteria is not necessary to apply to this pH per previous consult to science team).
- 3. The RLD showed high variability from lot to lot in the current ANDA as well as across ANDAs. The dissolution profiles of the test product (1 month) were similar to at least one batch of the RLD at pH 6.8, i.e. F2>50 (data from more than one lot of the RLD was submitted) and were within the lot-to-lot variability of the RLD not only in the current ANDA but also across ANDAs.
- 4. The firm demonstrated that high within-batch variability of the test product at pH 6.8 was due to the inherent pH dependent solubility nature of the Eudragit® polymers. This notion is supported by 1) the change of 0.1 in pH above or below pH 6.8 causes dramatic change in the release of the test product and 2) the dissolution profile of test product between 1 month and 31 month (expired) test product is very different under pH 6.8 but NOT under pH 7.2, which suggests the difference of dissolution for 1 month and 31 month is due to variability at transition point, pH 6.8, but not age.

 $^{17}$  GDRP; ANDA-091640-ORIG-1-AMEND-29, Bioequivalence Primary Review,  $\underline{091640A12082014.doc}$  , 5/3/2015 .

<sup>&</sup>lt;sup>16</sup> DARRTS; ANDA 091640, 09/16/2014, REV-BIOEQ-21(Primary Review).

<sup>&</sup>lt;sup>18</sup> GDRP; ANDA-091640-ORIG-1-AMEND-31, Bioequivalence Primary Review, <u>A91640NA090115.doc</u>, dated 10/26/2015.

V:\DIVISION\BIO\BIO2\BIO Management Meeting Minutes\2015 Meeting Minutes\Non-BMM Internal Meeting Minutes: 7.16.15ANDA91640Post CR MR final date: 07/29/2015.

Both the test product in ANDA 091640 and ANDA 203286 are mesalamine delayed-release tablets with differing strengths and corresponding RLDs. ANDA 091640 is designed to release at pH 6.8, while ANDA 203286 is designed to release at pH 7.0. Similar to ANDA 091640, the following are true of the current application:

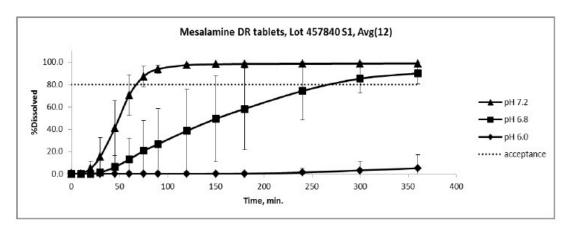
- 1. Acceptable in vivo BE studies with clinical and PK end points.
- 2. In vitro BE dissolution testing was acceptable for pH 4.5, 6.0, 6.5, 7.2, and 7.5. For pH 6.8, the firm's data submitted on 02/24/15 shows that the test product is comparable to that of the RLD.<sup>20</sup>
- 3. The RLD showed high variability from lot to lot.
- 4. The test product is formulated with an outer-layer pH enteric coating which begins to release at pH 7.0 or greater and targets mesalamine delivery to the lower GI tract. The coating composition in the test product contains Eudragit S, which degrades at pH ≥ 7.0. As a result, pH 6.8 can be considered as a transitional pH in drug release. The dissolution profile at this pH is very sensitive to small variation in the medium pH. A small variation in the medium pH in the dissolution testing results in dissolution profiles with wide variability. Thus, the inherent pH dependent solubility nature of the Eudragit polymer S may be a main reason for this batch-batch difference in dissolution profile.

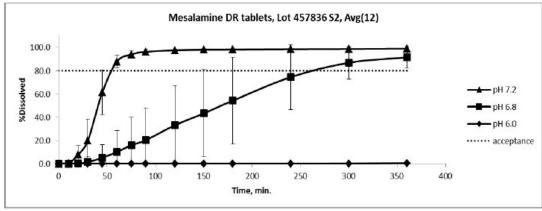
#### FDA Lab Dissolution Testing of Test and Reference Products

The Office of Pharmaceutical Quality (OPQ) sent test and reference product samples to the FDA lab (Division of Pharmaceutical Analysis) in St. Louis, MO for in-house dissolution testing. The FDA lab sent its report of dissolution testing results on 9/9/2015 (see appended report in Section 4.2 of this review).

The FDA lab conducted dissolution testing using a modified USP monograph with pH 6.0, 6.8, and 7.2 phosphate buffers to evaluate the dissolution variability. Two lots of RLD product (Asacol® HD Lot 457840 S1 and Lot 457836 S2) and one generic product (Mesalamine DR Lot EMP 203) were tested. The FDA lab experiments showed the following results (notably, the lab did not use the bootstrapping procedure for highly variable dissolution f2 analysis):

%Dissolved from Mesalamine DR 800 mg tablets in pH 6.0, 6.8 and 7.2 phosphate buffer in 90 minutes.


|        | Asacol® HD      | Asacol® HD      | Mesalamine DR   |                          |
|--------|-----------------|-----------------|-----------------|--------------------------|
|        | Lot 457840 S1   | Lot 457836 S2   | Lot EMP 203     |                          |
|        | Mean ± SD       | $Mean \pm SD$   | $Mean \pm SD$   | Specification            |
| pH 6.0 | 0.0             | 0.0             | 0.0             | Mann > 900/ :-           |
| pH 6.8 | $23.6 \pm 31.9$ | $20.4 \pm 27.6$ | $24.3 \pm 24.8$ | Mean ≥ 80% in 90 minutes |
| pH 7.2 | $93.8 \pm 3.7$  | $96.3 \pm 1.9$  | $93.6 \pm 2.6$  | 50 minutes               |


 $<sup>^{20}</sup>$  GDRP; ANDA-203286-ORIG-1-AMEND-9, Bioequivalence Primary Review,  $\underline{A203286NA022415.doc}$  , dated 5/19/2015.

#### Similarity factors (f2) of dissolution profiles for Mesalamine DR 800 mg tablets.

|        | Asacol® HD<br>Lot 457840 S1 | Asacol® HD<br>Lot 457836 S2 | Mesalamine DR<br>Lot EMP 203 |  |  |
|--------|-----------------------------|-----------------------------|------------------------------|--|--|
| pH 6.8 | reference                   | 77                          | 87                           |  |  |
| pH 7.2 | reference                   | 56                          | 60                           |  |  |

Similarity factor (f2) greater than 50 indicates similarity of dissolution profiles.





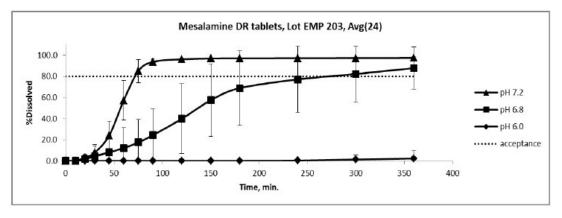
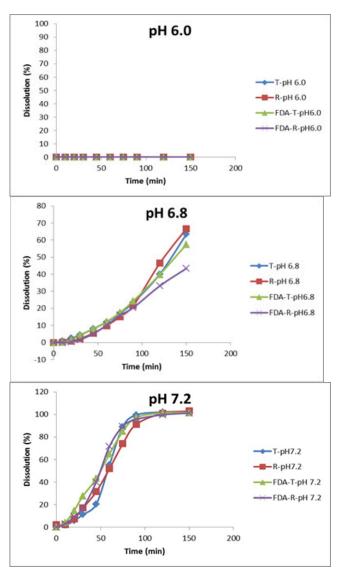



Figure 1. Comparison of dissolution profiles from Mesalamine DR tablets (Paddle; 50 rpm; Mean ± SD).


#### The FDA lab concluded the following:

- Based on the tests conducted, the highest variability in dissolution was observed in pH 6.8 phosphate buffer (%RSDs of 102 to 135%) while the lowest variability was observed in pH 7.2 phosphate buffers (%RSDs of 2 to 4%).
- Mesalamine tablets met USP specifications of NLT (b) (4) for each of 6 tablets and Avg(12) and Avg(24)  $\geq$  80% for tablets in 90 minutes in pH 7.2 phosphate buffer.
- Asacol® HD tablets and generic mesalamine tablets had similar dissolution profiles in pH 6.8 and 7.2 phosphate buffers.
- Both RLD and generic products did not dissolve in pH 6.0 buffer.

The previous BE reviewer of this ANDA analyzed the data provided by the FDA lab and compared it against the dissolution data previously submitted by the firm (see appended presentation in Section 4.3 of this review). The f2 values/confidence intervals (CIs) in the tables below and the following plots show the reviewer's comparison of the data obtained by the firm and the FDA.

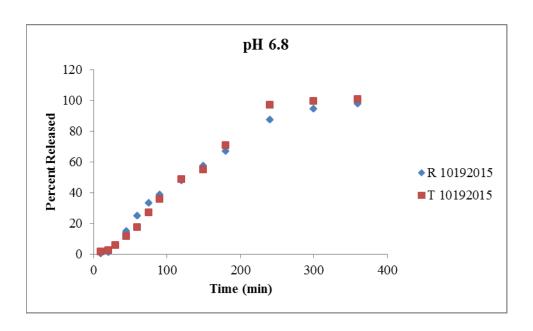
| F2 Metric for FDA lab and Firm |                 |                |                     |                     |  |  |  |  |  |  |
|--------------------------------|-----------------|----------------|---------------------|---------------------|--|--|--|--|--|--|
| Medium                         | Firm<br>T vs. R | FDA<br>T vs. R | FDA-Firm<br>T vs. T | FDA-Firm<br>R vs. R |  |  |  |  |  |  |
| pH 6.8 phosphate buffer        | 71.61           | 60.24          | 60.6                | 48.04               |  |  |  |  |  |  |
| pH 7.2 phosphate buffer        | 55.87           | 42.79          | 75.36               | 42.32               |  |  |  |  |  |  |

|                   |     |                  |          |                | F2                |                          | in the second            |  |
|-------------------|-----|------------------|----------|----------------|-------------------|--------------------------|--------------------------|--|
| Study pH          |     | Strength<br>(mg) | Frequent | Original<br>f2 | bootstrap<br>mean | Lower CI<br>(Percentile) | Upper CI<br>(Percentile) |  |
| T vs. R           | 6.8 | 800              | 10000    | 83.52          | 75.43             | 55.62                    | 94.38                    |  |
| (R1+R2)<br>(N=24) | 7.2 | 800              | 10000    | 42.79          | 43.1              | 36.1                     | 51.79                    |  |
| T24 vs. R1        | 6.8 | 800              | 10000    | 66.24          | 67.6              | 51.0                     | 86.36                    |  |
| (S2)              | 7.2 | 800              | 10000    | 34.52          | 34.59             | 30.58                    | 39.16                    |  |
| T24 vs. R2        | 6.8 | 800              | 10000    | 85.1           | 73.58             | 54.17                    | 91.17                    |  |
| (S1)              | 7.2 | 800              | 10000    | 52.93          | 53.84             | 42.99                    | 68.55                    |  |
| R1 vs. R2         | 6.8 | 800              | 10000    | 61.25          | 62.17             | 47.47                    | 79.39                    |  |
| (N=12)            | 7.2 | 800              | 10000    | 47.58          | 47.92             | 39.41                    | 58.49                    |  |
| R vs. R*          | 6.8 | 800              | 10000    | 87.1           | 75.63             | 58.13                    | 91.24                    |  |
| (N=12)            | 7.2 | 800              | 10000    | 61.83          | 61.78             | 46.99                    | 80.45                    |  |



The FDA lab's dissolution profiles at pH 6.0, 6.8, and 7.2 are very similar to those provided by the firm (>50 f2 firm test product vs. FDA lab test product), showing reproducibility for dissolution testing of the test product. The f2 values and the 90% confidence intervals generated using the bootstrapping with the FDA lab's dissolution data indicate the dissolution data at pH 6.8 are acceptable.

#### **Newly-Submitted Dissolution Data**


In the current amendment dated 10/19/2015 the firm submitted test and reference product dissolution data in pH (b) (4) 6.8, as requested by the FDA. The firm provided the dissolution summary tables in their response to the deficiency, above. Below, the review compiled plots of test and reference product dissolution at each pH tested and the individual unit data. The firm tested 24 units of test product from batch EMP203 (manufactured 4/2014) and 24 units of reference product from two batches (12 units from batch 457836 S2 and 12 units from batch 457840 S1, expiration date 5/2017 for both batches). All units were pre-treated with 0.1N HCl for 2 hours.

# Evaluation Stage: pH 6.8 Phosphate Buffer at 50 rpm, Volume: 900 mL Apparatus II (Paddle)-TEST PRODUCT

| Product Name        | TEST P                          | RODUC    | T: Mesala   | mine Del | ayed-rele  | ase Table | ts USP, 8  | 00 mg | 0.0  |      | -    |      |                |
|---------------------|---------------------------------|----------|-------------|----------|------------|-----------|------------|-------|------|------|------|------|----------------|
| B. No./Manufacturer | EMP 20                          | 3 Mfg Da | ate: April, | 2014- Ca | idila Heal | thcare L  | imited, In | idia  |      |      |      |      |                |
| Time point          | % Dissolved (Minutes)           |          |             |          |            |           |            |       |      |      |      |      | 54-5           |
|                     | 10                              | 20       | 30          | 45       | 60         | 75        | 90         | 120   | 150  | 180  | 240  | 300  | 360<br>(b) (4  |
| Unit-1              |                                 |          |             |          |            |           |            |       |      |      |      |      | (b) (4         |
| Unit-2              |                                 |          |             |          |            |           |            |       |      |      |      |      |                |
| Unit-3              |                                 |          |             |          |            |           |            |       |      |      |      |      |                |
| Unit-4              |                                 |          |             |          |            |           |            |       |      |      |      |      |                |
| Unit-5              |                                 |          |             |          |            |           |            |       |      |      |      |      |                |
| Unit-6              |                                 |          |             |          |            |           |            |       |      |      |      |      |                |
| Unit-7              |                                 |          |             |          |            |           |            |       |      |      |      |      |                |
| Unit-8              |                                 |          |             |          |            |           |            |       |      |      |      |      |                |
| Unit-9              |                                 |          |             |          |            |           |            |       |      |      |      |      |                |
| Unit-10             |                                 |          |             |          |            |           |            |       |      |      |      |      |                |
| Unit-11             |                                 |          |             |          |            |           |            |       |      |      |      |      |                |
| Unit-12             |                                 |          |             |          |            |           |            |       |      |      |      |      |                |
| Unit-13             |                                 |          |             |          |            |           |            |       |      |      |      |      |                |
| Unit-14             |                                 |          |             |          |            |           |            |       |      |      |      |      |                |
| Unit-15             |                                 |          |             |          |            |           |            |       |      |      |      |      |                |
| Unit-16             |                                 |          |             |          |            |           |            |       |      |      |      |      |                |
| Unit-17             |                                 |          |             |          |            |           |            |       |      |      |      |      |                |
| Unit-18             |                                 |          |             |          |            |           |            |       |      |      |      |      |                |
| Unit-19             |                                 |          |             |          |            |           |            |       |      |      |      |      |                |
| Unit-20             |                                 |          |             |          |            |           |            |       |      |      |      |      |                |
| Unit-21             |                                 |          |             |          |            |           |            |       |      |      |      |      |                |
| Unit-22             |                                 |          |             |          |            |           |            |       |      |      |      |      |                |
| Unit-23             |                                 |          |             |          |            |           |            |       |      |      |      |      |                |
| Unit-24             |                                 |          |             |          |            |           |            |       |      |      |      |      |                |
| Mean                | 1.4                             | 2.3      | 5.6         | 11.6     | 17.6       | 27.2      | 35.8       | 48.7  | 55.0 | 70.9 | 97.1 | 99.5 | 100.9<br>(b) ( |
| Min                 |                                 |          |             |          |            |           |            |       |      |      |      |      | (b) (          |
| Max                 |                                 |          |             |          |            |           |            |       |      |      |      |      |                |
| % RSD               | 107.9                           | 88.2     | 121.3       | 116.2    | 110.5      | 78.8      | 73.1       | 73.1  | 67.0 | 45.4 | 3.5  | 3.4  | 3.1            |
| Date of analysis:   | 4 <sup>th</sup> September, 2015 |          |             |          |            |           |            |       |      |      |      |      |                |

## Evaluation Stage: pH 6.8 Phosphate Buffer at 50 rpm, Volume: 900 mL Apparatus II (Paddle)-REFERENCE

| Product Name        |                                 |            | RODUCT     |            |            |           |           |           |           |      | rner Chil | cott |               |
|---------------------|---------------------------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|------|-----------|------|---------------|
| B. No./Manufacturer | 4578368                         | 62 (1-12 u | nit) Expir | y date: 0: | 5/2017, 45 | 57840S1 ( | 13-24 uni | t) Expiry | date: 05/ | 2017 |           |      |               |
| Time point          | 37                              | 70.0       |            | No.        |            | % Diss    | solved (M | inutes)   |           |      |           |      |               |
| 3.00                | 10                              | 20         | 30         | 45         | 60         | 75        | 90        | 120       | 150       | 180  | 240       | 300  | 360<br>(b) (4 |
| Unit-1              |                                 |            |            |            |            |           |           |           |           |      |           |      | (D) (4        |
| Unit-2              |                                 |            |            |            |            |           |           |           |           |      |           |      |               |
| Unit-3              |                                 |            |            |            |            |           |           |           |           |      |           |      |               |
| Unit-4              |                                 |            |            |            |            |           |           |           |           |      |           |      |               |
| Unit-5              |                                 |            |            |            |            |           |           |           |           |      |           |      |               |
| Unit-6              |                                 |            |            |            |            |           |           |           |           |      |           |      |               |
| Unit-7              |                                 |            |            |            |            |           |           |           |           |      |           |      |               |
| Unit-8              |                                 |            |            |            |            |           |           |           |           |      |           |      |               |
| Unit-9              |                                 |            |            |            |            |           |           |           |           |      |           |      |               |
| Unit-10             |                                 |            |            |            |            |           |           |           |           |      |           |      |               |
| Unit-11             |                                 |            |            |            |            |           |           |           |           |      |           |      |               |
| Unit-12             |                                 |            |            |            |            |           |           |           |           |      |           |      |               |
| Unit-13             |                                 |            |            |            |            |           |           |           |           |      |           |      |               |
| Unit-14             |                                 |            |            |            |            |           |           |           |           |      |           |      |               |
| Unit-15             |                                 |            |            |            |            |           |           |           |           |      |           |      |               |
| Unit-16             |                                 |            |            |            |            |           |           |           |           |      |           |      |               |
| Unit-17             |                                 |            |            |            |            |           |           |           |           |      |           |      |               |
| Unit-18             |                                 |            |            |            |            |           |           |           |           |      |           |      |               |
| Unit-19             |                                 |            |            |            |            |           |           |           |           |      |           |      |               |
| Unit-20             |                                 |            |            |            |            |           |           |           |           |      |           |      |               |
| Unit-21             |                                 |            |            |            |            |           |           |           |           |      |           |      |               |
| Unit-22             |                                 |            |            |            |            |           |           |           |           |      |           |      |               |
| Unit-23             |                                 |            |            |            |            |           |           |           |           |      |           |      |               |
| Unit-24             |                                 |            |            |            |            |           |           |           |           |      |           |      |               |
| Mean                | 0.3                             | 1.0        | 5.8        | 15.0       | 25.1       | 33.1      | 38.8      | 47.9      | 57.3      | 66.9 | 87.5      | 94.4 | 97.7          |
| Min                 |                                 |            |            |            |            |           |           |           |           |      |           |      | (b) (         |
| Max                 |                                 |            |            |            |            |           |           |           |           |      |           |      |               |
| % RSD               | 186.7                           | 181.0      | 143.1      | 138.7      | 116.9      | 103.4     | 95.0      | 80.2      | 65.8      | 54.3 | 16.4      | 8.6  | 5.7           |
| Date of analysis:   | 4 <sup>th</sup> September, 2015 |            |            |            |            |           |           |           |           |      |           |      |               |





The reviewer calculated the below f2 values comparing the test and reference products. F2 values cannot be calculated using mean values if 1) % CV >20% at 20 min and 2) %CV >10% after 20 min (20 min is considered as cutoff point for "early sampling points") and 3) there are less than 3 sampling points for f2 calculation before both test and reference products reach (4)% dissolved. Because of the high dissolution variability, the reviewer calculated the f2 values using a bootstrapping procedure. 21

F2 values and 90% confidence intervals using a bootstrapping method<sup>22</sup>

|                  |           | 0 1                                  |                         |                          |                          |
|------------------|-----------|--------------------------------------|-------------------------|--------------------------|--------------------------|
| Strength<br>(mg) | Frequency | Original f2<br>(from mean<br>values) | f2<br>bootstrap<br>mean | Lower CI<br>(Percentile) | Upper CI<br>(Percentile) |
| 800              | 10000     | 68.92                                | 64.10                   | 44.23                    | 83.73                    |
|                  |           |                                      |                         |                          |                          |

All bootstrapping mean f2 values are above 50. The reviewer also calculated the T vs. R f2 confidence intervals for pH 6.8 (b) (4) considering each reference batch separately, as shown below, since the lower bounds of the confidence intervals at these pH conditions were below 46.

| Bootstrapping method |    |          |           |             |    |          |          |  |
|----------------------|----|----------|-----------|-------------|----|----------|----------|--|
| Study                | pН | Strength | Frequency | Original f2 | f2 | Lower CI | Upper CI |  |

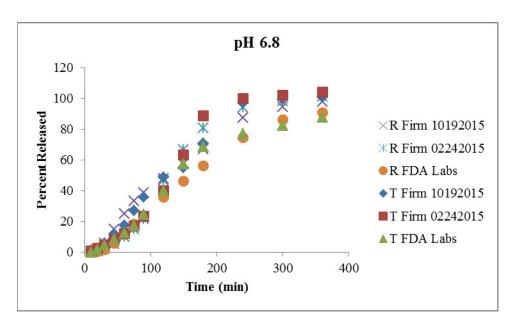
<sup>21</sup> Shah et al. In Vitro Dissolution Profile Comparison-Statistics and Analysis of the Similarity Factor, f2. *Pharmaceutical Research (1998) Vol. 15, No.6, page 889-896* 

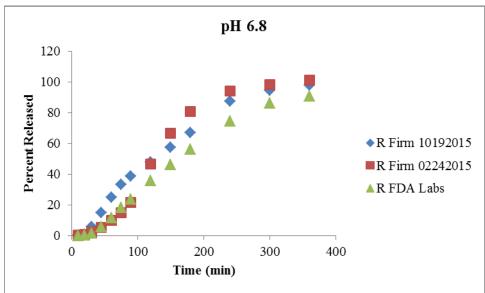
<sup>&</sup>lt;sup>22</sup> Please see statistical consult review for ANDA 065490 (DARRTS, ANDA-065490, REV-BIOMETRICS-01(General Review), Duan Joan Z, 12/04/2009) and ANDA 065510 (DARRTS, ANDA-065510, REV-BIOMETRICS-01(General Review), Duan Joan Z, 12/04/2009) for a detailed description of the bootstrap method.

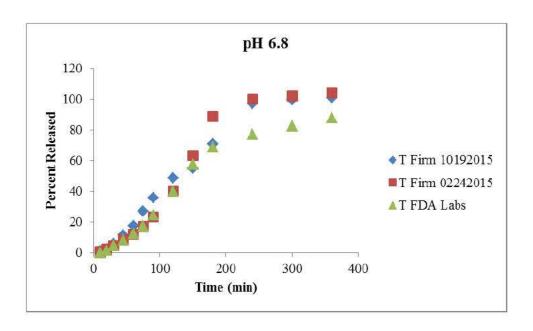
|                                     |     | (mg) |       | (from mean<br>values) | bootstrap<br>mean | (Percentile) | (Percentile)     |
|-------------------------------------|-----|------|-------|-----------------------|-------------------|--------------|------------------|
| T vs. R1<br>(batch<br>457836<br>S2) | 6.8 | 800  | 10000 | 48.62                 | 51.07             | 35.67        | 75.56 (b) (4)    |
| T vs. R2<br>(batch<br>457840<br>S1) | 6.8 | 800  | 10000 | 70.26                 | 64.61             | 45.89        | 82.38<br>(b) (4) |

For pH 6.8 conditions, the lower bound of the confidence interval is below 46. Per the internal meeting of the OGD vancomycin review team on 3/31/2010<sup>23</sup>, the dissolution profiles of the test and reference products are considered similar and acceptable when the f2 for the mean test and reference profiles are >50 and the lower bound of the 90% confidence interval (CI) for the f2 test is >46. In addition, if the lower bound of 90% confidence interval for f2 test is <46, then the dissolution profile differences between the test and reference products may be acceptable if the reference vs. reference difference is larger. Thus, the variability of test versus reference dissolution profiles should not exceed the variability of the reference versus reference dissolution profiles.

The reviewer calculated the reference product variability under these two pH conditions. The reviewer calculated the reference product variability by randomly dividing the 24 units into two groups, and also by considering the f2 of reference product batch #457836 S2 vs. batch #457840 S1.


| Bootstrapping method                      |     |               |           |                                      |                         |                          |                          |  |  |
|-------------------------------------------|-----|---------------|-----------|--------------------------------------|-------------------------|--------------------------|--------------------------|--|--|
| Study                                     | рН  | Strength (mg) | Frequency | Original f2<br>(from mean<br>values) | f2<br>bootstrap<br>mean | Lower CI<br>(Percentile) | Upper CI<br>(Percentile) |  |  |
| R vs. R<br>randomly<br>assigned<br>groups | 6.8 | 800           | 10000     | 49.71                                | 51.47                   | 34.55                    | 74.60                    |  |  |
| R1 vs.<br>R2 by<br>batch                  | 6.8 | 800           | 10000     | 43.09                                | 45.30                   | 31.07                    | 68.88<br>(b              |  |  |


This f2 analysis shows that there is high between-batch dissolution variability for the reference product at pH 6.8 Bootstrapping f2 values for each condition were below 50. The lower bound CI for T vs. R was higher than the R vs. R lower bound no matter how the R groups were divided at pH 6.8 (44.23 vs. 34.55 and 31.07). At


<sup>&</sup>lt;sup>23</sup> DARRTS, ANDA-065478, FRM-MINUTES-01 (Internal Meeting Minutes), 4/28/2010

# Comparison of New Dissolution Data (10/19/2015) to Data Submitted on 2/24/2015 and FDA Lab Data, pH 6.8

On 2/24/2015, the firm submitted dissolution data at pH 6.8 using 24 units of test product from batch EMP203 (manufactured 4/2014) and 24 units of reference product from two batches (12 units from batch 450645 S2 and 12 units from batch 451550 S3, expiration date 06/2015 and 08/2015, respectively). The FDA lab performed dissolution testing on 24 units of test product from batch EMP203 (manufactured 4/2014) and 24 units of reference product from two batches (12 units from batch 457836 S2 and 12 units from batch 457840 S1, expiration date 5/2017 for both batches), the same batches and number of units as in the current amendment. For all dissolution tests, units were pre-treated with 0.1N HCl for 2 hours before exposure to pH 6.8 buffer.







F2 values comparing to FDA data and firm data submitted on 2/24/2015

|                                    | Bootstrapping method |               |           |                                      |                         |                          |                          |  |  |  |
|------------------------------------|----------------------|---------------|-----------|--------------------------------------|-------------------------|--------------------------|--------------------------|--|--|--|
| Study*                             | pН                   | Strength (mg) | Frequency | Original f2<br>(from mean<br>values) | f2<br>bootstrap<br>mean | Lower CI<br>(Percentile) | Upper CI<br>(Percentile) |  |  |  |
| New<br>Firm T<br>vs. FDA<br>T      | 6.8                  | 800           | 10000     | 60.17                                | 60.97                   | 44.04                    | 84.21                    |  |  |  |
| New<br>Firm R<br>vs. FDA<br>R      | 6.8                  | 800           | 10000     | 49.41                                | 52.27                   | 35.66                    | 78.87                    |  |  |  |
| New<br>Firm T<br>vs. Old<br>Firm T | 6.8                  | 800           | 10000     | 59.08                                | 60.98                   | 44.92                    | 85.19                    |  |  |  |
| New<br>Firm R<br>vs. Old<br>Firm R | 6.8                  | 800           | 10000     | 46.55                                | 49.00                   | 34.34                    | 73.09                    |  |  |  |

<sup>\*</sup>In the above table, "New Firm" R and T refer to the data the firm submitted on 10/19/2015. "Old Firm" R and T refer to the data the firm submitted on 2/24/2015. FDA R and T refer to the data obtained by the FDA labs.

As shown in the above table, the test product data submitted by the firm on 10/19/2015 shows an f2 bootstrapping mean of approximately 61 and a lower bound CI of approximately 44 when compared against both the data the firm submitted on 2/24/2015 and the independent data generated by the FDA labs. The T vs. T comparisons are more

similar than the R vs. R comparisons, consistent with the trend seen looking solely at the firm's newly submitted data for R vs. R at pH 6.8, shown again below for comparison.

| Bootstrapping method- Firm's Newly Submitted Data |     |               |           |                                      |                         |                          |                          |  |
|---------------------------------------------------|-----|---------------|-----------|--------------------------------------|-------------------------|--------------------------|--------------------------|--|
| Study                                             | pН  | Strength (mg) | Frequency | Original f2<br>(from mean<br>values) | f2<br>bootstrap<br>mean | Lower CI<br>(Percentile) | Upper CI<br>(Percentile) |  |
| R vs. R<br>randomly<br>assigned<br>groups         | 6.8 | 800           | 10000     | 49.71                                | 51.47                   | 34.55                    | 74.60                    |  |
| R1 vs.<br>R2 by<br>batch                          | 6.8 | 800           | 10000     | 43.09                                | 45.30                   | 31.07                    | 68.88                    |  |

## **Overall Conclusions**

Because of the related DB decision for ANDA 091640 which indicated that high dissolution variability may be expected in transitional pH media for products, along with the supporting dissolution data newly submitted by the firm and from the FDA labs, the firm's response is acceptable.

# 3.2 Deficiency Comments

None.

## 4 APPENDIX

## 4.1 Formulation Details

The reference product formulation, Asacol® HD (Mesalamine Delayed Release) tablets, by Warner Chilcott Pharmaceuticals Inc (NDA 021830), is as follows: <sup>24</sup>

| Ingredient                  | Grade | Function | Unit Quantity<br>(mg/tablet) | %<br>w/w <sup>a</sup><br>(b) (4) |
|-----------------------------|-------|----------|------------------------------|----------------------------------|
| Mesalamine                  | USP   | Active   | 800.00                       | (b) (4)                          |
| Lactose monohydrate         | NF    |          | A continues 0                | (b) (4                           |
| Sodium starch glycolate     | NF    |          |                              |                                  |
| Tale                        | USP   |          |                              |                                  |
| Povidone                    | USP   |          |                              |                                  |
| Magnesium stearate          | NF    |          |                              |                                  |
| Colloidal silicon dioxide   | NF    |          |                              | (b) (4)                          |
| Subtotal                    | Ţ     |          | (b) (4)                      | 45.14                            |
|                             |       |          |                              | (b) (4                           |
| Eudragit S (b) (4)          | NF    |          |                              | (b) (4)                          |
| Talc                        | USP   | 4        |                              |                                  |
| Dibutyl Sebacate            | NF    |          |                              |                                  |
| Ferric oxide, red           | NF    | 2        |                              |                                  |
| Eudragit L (b) (4)          | NF    |          |                              |                                  |
| Ferric oxide, yellow        | NF    |          |                              | (b) (4                           |
| Subtotal                    | Ĭ     |          | (b) (4)                      |                                  |
|                             |       |          |                              | (b) (4)                          |
| Polyethylene glycol (b) (4) | NF    |          |                              | (b) (4)<br>(b) (4)               |
| Subtotal                    | T     | 1        | (b) (4)                      |                                  |
| Subtotal                    |       |          |                              | (b) (4)                          |
| Black Ink.                  |       |          |                              | (b) (4)<br>(b) (4                |
|                             |       |          | 1099 mg                      |                                  |

\_

<sup>&</sup>lt;sup>24</sup> EDR; NDA 021830, Module 3.2.P.1. Description and Composition of the Drug Product.

The formulation of the 800 mg tablets in the current ANDA is as follows:

| Name of Ingredient                              |                                         | Quantity/<br>Tablet (mg) | Quantity<br>(% w/w)/Tablet <sup>\$</sup> |
|-------------------------------------------------|-----------------------------------------|--------------------------|------------------------------------------|
|                                                 | (b) (4)                                 |                          |                                          |
| Mesalamine, USP                                 | CO DOMAN                                | 800.000                  | (b) (4                                   |
| Sodium Starch Glycolate, NF                     | b) (4)                                  | (b)                      | (4)                                      |
| Colloidal Silicon Dioxide, NF (b) (4)           |                                         |                          |                                          |
| Magnesium Stearate, NF                          | (b) (4)                                 |                          |                                          |
| Microcrystalline Cellulose, NF (b) (4)          | -                                       |                          |                                          |
| Povidone (b) (4) USP (b) (4)                    |                                         |                          |                                          |
|                                                 | (b) (4)                                 |                          |                                          |
|                                                 | (b) (4)                                 |                          |                                          |
| Sodium Starch GlycolateNF, (t                   | ) (4)                                   |                          |                                          |
| Tale, USP (b) (4)                               | 8                                       |                          |                                          |
| Colloidal Silicon Dioxide, NF (b) (4)           |                                         |                          |                                          |
| Magnesium Stearate, NF                          |                                         |                          |                                          |
|                                                 | (b) (4)                                 |                          |                                          |
| Methacrylic Acid Copolymer, NF - Type B (Eudrag | rit S (b)                               |                          |                                          |
| Talc, USP                                       | 100000000000000000000000000000000000000 |                          |                                          |
| Acetyltributyl Citrate, NF                      |                                         |                          |                                          |
| Thaintin Dioxide, USP                           | 1(4)                                    |                          |                                          |
| Ferric Oxide Red, NF                            | -0.1 (d)                                |                          |                                          |
| Isopropyl Alcohol, USP* (b) (4)                 |                                         |                          |                                          |
| 197177                                          | (b) (d)                                 |                          |                                          |
|                                                 | (b) (4)                                 |                          |                                          |
| Opacode Black                                   | (b) (4)                                 |                          |                                          |
| Isopropyl Alcohol, USP*                         | 15                                      |                          | ±,                                       |
|                                                 | Total                                   | 1102.400                 | 100.000                                  |
|                                                 | (b) (4)                                 |                          | W                                        |

The formulation of the 1200 mg tablets in ANDA 091640 is as follows: 25

|                               | 7                  |            | Mesalamine Delayed-release Tablets 1.2 g  |             |  |  |
|-------------------------------|--------------------|------------|-------------------------------------------|-------------|--|--|
| Ingre                         | edient (s)         |            | Unit Comp<br>(mg/tal                      | blet) % W/W |  |  |
|                               |                    |            |                                           | (b) (4)     |  |  |
| Mesalamine (b)                | <sup>(4)</sup> USP |            | 1200.0                                    | 000 (b) (4) |  |  |
| Colloidal Silicon Dioxide     | (b) (4) NF         |            |                                           | (b) (4)     |  |  |
| Magnesium Stearate            | (b) (4)NF          |            | NO. 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 |             |  |  |
|                               |                    |            | (b) (4)                                   |             |  |  |
| Carboxy methyl cellulose Sodi | um                 | (b) (4) T  | JSP                                       |             |  |  |
| Sodium Starch Glycolate       |                    | (b) (4) NF |                                           |             |  |  |
| Hypromellose                  | (b) (4) USP        | 1          |                                           |             |  |  |

<sup>&</sup>lt;sup>25</sup> DARRTS; ANDA 091640, 02/23/2012, REV-BIOEQ-01(General Review).

| (b) (4)                                                                             |                                        |                  | q.s      | 1             |
|-------------------------------------------------------------------------------------|----------------------------------------|------------------|----------|---------------|
| T                                                                                   |                                        |                  | •        | (b) (4)       |
| Microcrystalline Cellulose<br>Colloidal Silicon Dioxide<br>Magnesium Stearate       | (b) (4) NF<br>(b) (4) NF<br>(b) (4) NF |                  |          | (b) (4)       |
| Wagnesium Stearate                                                                  | 141                                    |                  |          | (b) (4)       |
| Methacrylic Acid Copolymer Methacrylic Acid Copolymer Triethyl Citrate  (b) (4) USP |                                        | (b) (4) NF<br>NF |          | (b) (4)       |
| Talc (USP                                                                           |                                        |                  | R.       | (b) (4)       |
|                                                                                     |                                        |                  |          | (b) (4)       |
|                                                                                     |                                        |                  |          | (b) (4)       |
| Total (Coated Tablets)                                                              |                                        |                  | 1465.000 | 100.00 b) (4) |

# 4.2 FDA Labs Dissolution Testing Report and Previous Bioequivalence Reviewer's FDA Lab Report Analysis

These two documents are in V:\DIVISION\BIO\BIO2\BIO Management Meeting Minutes\Email Communications\Mesalamine ANDA 203286

<sup>&</sup>lt;sup>26</sup> In response to the CMC deficiency letter dated December 3, 2010 the firm changed the

## BIOEQUIVALENCE COMMENTS TO BE PROVIDED TO THE APPLICANT

ANDA: 203286

APPLICANT: Zydus Pharmaceuticals (USA) Inc.

DRUG PRODUCT: Mesalamine Delayed Release Tablets USP, 800 mg

The Division of Bioequivalence II (DBII) has completed its review and has no further questions at this time.

The bioequivalence comments provided in this communication are comprehensive as of issuance. However, these comments are subject to revision if additional concerns raised by chemistry, manufacturing and controls, microbiology, labeling, other scientific or regulatory issues or inspectional results arise in the future. Please be advised that these concerns may result in the need for additional bioequivalence information and/or studies, or may result in a conclusion that the proposed formulation is not approvable.

Sincerely yours,

{See appended electronic signature page}

Ethan M. Stier, Ph.D., R. Ph. Director, Division of Bioequivalence II Office of Bioequivalence Office of Generic Drugs Center for Drug Evaluation and Research

#### 5 **OUTCOME PAGE**

ANDA: 203286

Completed Assignment for 203286 ID: 26993

**Date** Vivian, Diana **Reviewer:** 

**Completed:** 

Verifier: **Date Verified:** 

Division of Bioequivalence **Division:** 

# Productivity:

| ID    | Letter Date | Productivity Category | Sub Category    | Productivity | Subtotal |
|-------|-------------|-----------------------|-----------------|--------------|----------|
| 26993 | 10/19/2015  | Other (REGULAR)       | Study Amendment | 1            | 1        |
|       |             |                       |                 | Total:       | 1        |

# DIVISION OF BIOEQUIVALENCE REVIEW

| ANDA No.                                           | 203286                                                                               |                       |                   |  |  |  |
|----------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------|-------------------|--|--|--|
| Drug Product Name                                  | Mesalamine Delayed Rel                                                               | ease Tablets USP      |                   |  |  |  |
| Strength(s)                                        | 800 mg                                                                               |                       |                   |  |  |  |
| Applicant Name                                     | Zydus Pharmaceuticals (USA) Inc.                                                     |                       |                   |  |  |  |
| Address                                            | 73, Route 31 North,<br>Pennington, NJ 08534                                          |                       |                   |  |  |  |
| Applicant's Point of Contact                       | G. Srinivas Zydus Pharmaceuticals USA Inc., 73, Route 31 North, Pennington, NJ 08534 |                       |                   |  |  |  |
| Contact's Telephone Number                         | 609-730-1900                                                                         |                       |                   |  |  |  |
| Contact's Fax Number                               | 609-730-1999                                                                         |                       |                   |  |  |  |
| Original Submission Date(s)                        | 07/12/2011                                                                           |                       |                   |  |  |  |
| First Generic                                      | Yes                                                                                  |                       |                   |  |  |  |
| Submission Date(s) of<br>Amendment(s) Under Review | 02/24/2015 amendment for in vitro dissolution testing                                |                       |                   |  |  |  |
| Reviewer                                           | Ping Ren, Ph.D.                                                                      |                       |                   |  |  |  |
|                                                    |                                                                                      |                       |                   |  |  |  |
| Study Number (s)                                   | # MSN-P0-732                                                                         | # MSN-P0-733          |                   |  |  |  |
| Study Type (s)                                     | Fasting                                                                              | Fed                   | In vitro BE study |  |  |  |
| Strength (s)                                       | 800 mg                                                                               | 800 mg                | 800 mg            |  |  |  |
| Clinical Site                                      | Algorithme Pharma Inc.                                                               | 1 50                  | 1 32              |  |  |  |
| Clinical Site Address                              | Algorithme Pharma Inc.<br>1200 Beaumont Ave.<br>Mount-Royal, Quebec, C<br>H3P 3P1    | 'anada                |                   |  |  |  |
| Analytical Site                                    |                                                                                      |                       | (b)               |  |  |  |
| Analytical Site Address                            |                                                                                      |                       |                   |  |  |  |
|                                                    |                                                                                      |                       |                   |  |  |  |
| OSIS Status                                        | Backlog  ☐ Pending  ☑ Complete                                                       | , Year 1 and Year 2 A | NDAs              |  |  |  |
| OVERALL REVIEW RESULT                              | Inadequate                                                                           |                       |                   |  |  |  |
| COMMUNICATION                                      | □ECD<br>⊠IR                                                                          |                       |                   |  |  |  |

|                                                           | □NOT APPLICABLE                                                                                                                             |          |                  |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|
| DISSOLUTION (QC method)                                   | The dissolution was reviewed separately. Please see details in DARRTS: REV-BIOEQ-02 (Dissolution Review) ANDA203286, Final date: 02/16/2012 |          |                  |
| REVISED/NEW DRAFT<br>GUIDANCE INCLUDED                    | NO                                                                                                                                          |          |                  |
| BIOEQUIVALENCE STUDY<br>TRACKING/SUPPORTING<br>DOCUMENT # | STUDY/TEST TYPE                                                                                                                             | STRENGTH | REVIEW<br>RESULT |
| 1                                                         | Fasting Study                                                                                                                               | 800 mg   | Adequate         |
| 1                                                         | Fed Study                                                                                                                                   | 800 mg   | Adequate         |
| 6                                                         | In vitro BE Dissolution study                                                                                                               | 800 mg   | Inadequate       |

#### 1 EXECUTIVE SUMMARY

The original application (07/12/2011) contained the results of fasting and fed bioequivalence (BE) studies comparing a test product Mesalamine Delayed Release Tablets, 800 mg, to the corresponding reference product Asacol® HD (Mesalamine Delayed Release) tablets, 800 mg. The results of the 95% upper confidence bound for AUC<sub>0-t</sub>, AUC<sub>8-48</sub>, and Cmax in the fasting and fed BE studies were negative. The point estimate (test/reference geometric mean ratio) for AUC<sub>0-t</sub>, AUC<sub>8-48</sub>, and Cmax were within the range of 0.80 to 1.25. Hence, the fasting and fed studies met the BE acceptance criteria of reference scaled analysis for log-transformed AUC<sub>0-t</sub>, AUC<sub>8-48</sub>, and Cmax of Mesalamine Delayed Release Tablets, 800 mg. The fasting and fed studies were acceptable<sup>1</sup>.

In addition to in vivo fasting and fed BE studies, the guidance also recommends comparative in vitro **BE** dissolution studies (using USP Apparatus II at 50 rpm) to be conducted in pH 4.5, 6.0, 6.5, 6.8, 7.2 and 7.5 phosphate buffer representative of the GI tract pH variations. Yet, in the original application, the firm did not submit any dissolution data for pH 4.5 Acetate buffer in the current application. Also, the mean values (f2) in pH 6.8 and pH 7.5 phosphate buffer were less than 50 and the lower bound of 90% confidence interval ("CI") for the f2 test comparing test vs. RLD in pH 6.8, pH 7.2, and pH 7.5 phosphate buffer was lower than those comparing the RLD against itself under the same conditions. These values indicated that the dissolution profiles of the test product were significantly different from those of the corresponding reference under these conditions. Therefore, the in vitro BE (comparative dissolution) studies under pH 6.8, 7.2 and 7.5 buffer were not acceptable. Due to the high variability of firm submitted dissolution data conducted in multimedia, the firm was requested to repeat comparative dissolution testing on its fresh test product using a larger sample size of tablets (e.g. 24 unites for test and two lots of unexpired RLD product) to provide a better estimate of the mean difference, or take other appropriated steps as necessary to reduce the variability for the purpose of achieving accurate f2 calculation.

\_

<sup>&</sup>lt;sup>1</sup> DARRTS: REV-BIOEQ21 (Primary Review) ANDA203286, Final date: 11/15/2013.

In the current amendment dated 02/24/2015, the firm conducted additional dissolution testing in the medium of pH 4.5 Acetate buffer and repeated dissolution testing in the media of pH 6.8,7.2, and 7.5 with a larger sample size (n=24) to reduce the variability for the purpose of achieving accurate f2 calculation. The result from the current amendment showed the percent drug release from both test and reference products is less than 5% in the medium of pH 4.5 during the period of 960 min (16 hrs) dissolution testing. The incomplete drug release of in vitro dissolution testing is due todelayed release nature of this product. Therefore, the in vitro dissolution data in the medium of pH 4.5 are acceptable. The results of the mean f2 values and the lower bound of 90% confidence intervals for f2 values comparing the test vs. reference indicated that the test and reference products have a similar dissolution profile under pH 6.8 and pH 7.2 conditions.

However, as per detailed analysis for the dissolution profile at pH 6.8, a large difference was observed in the test product between the original and amendment submissions.

Moreover

Moreover. (b) (4) (b) (4) (b) (4) (b) (4)

will be asked to provide 12 units dissolution data for the test and reference products in buffers with around pH 6.8 (e.g. pH (b), 6.8, (b), 6.8, (d), and (d) using the following dissolution method on Mesalamine (800 mg):

Apparatus: USP Apparatus II (paddle)

Pretreatment Stage: 2 hours in 0.1 N HCl at 100 rpm

Evaluation Stage:

Each of

(b) (4)
(2) pH 6.8 Phosphate buffer at 50 rpm
(b) (4)
(b) (4)

Volume: 900 mL Temperature: 37°C

Sample times: 0, 10, 20, 30, 45, 60, 75, 90, 120, 150, 180, 240, 300, and 360 minutes or

as needed for profile comparison.

Therefore, in vitro comparative dissolution testing at pH 6.8 is inadequate.

In the medium of pH 7.5, the f2 mean value is less than 50 (46.35) and its lower bound of 90% confidence intervals for f2 values is less than 46 (40.72). Moreover, the lower bound of 90% CIs of f2 comparing test vs. RLD for pH 7.5 is lower than those comparing the RLD against itself under the same conditions (42.43 and 54.47). Based on the analysis of

dissolution profile and variability for two different RLD lots (R1 and R2), the failed result for in vitro dissolution study in pH 7.5 with T24 vs. R24 is due to the variability between different reference lots. When T24 was compared with R2, the f2 mean value is more than 50 (57.97) and, its lower bound of 90% confidence intervals for f2 values are more than 46 (51.26). The acceptable result is demonstrated in one of reference lots (R2). Based on the internal meeting minutes (with other offices (Chemistry and Science Team), V:\DIVISION\BIO\BIO\BIO\BIO Management Meeting Minutes\2015 Meeting Minutes\Non-BMM Internal Meeting Minutes) dated 05/12/2015, the in vitro comparative dissolution data in pH 7.5 medium are acceptable.

The firm conducted quality control dissolution testing using the USP method [500 mL of 0.1N HCl (Acid Stage A) for 2 hrs, followed by 900 mL of Phosphate buffer, pH 6.0 (Buffer Stage B) for 1 hr and 900 mL of Phosphate buffer, pH 7.2 (Buffer Stage C) using apparatus 2 (Paddle) at 100 rpm for stage A and B and at 50 rpm for stage C]<sup>2</sup>. The firm's proposed specifications are the same as the USP specifications (Acid Stage: NMT 1% in 2 hours; Buffer Stage I: NMT 1% in 1 hour; Buffer Stage II: NLT 80% (Q) in 90 minutes). The quality control dissolution testing with the USP method is acceptable. The DB II acknowledges that the firm will follow the USP method and specifications.

A routine inspection of the clinical site, Algorithme Pharma Inc. 1200 Beaumont Ave. Mount-Royal Quebec, was requested for ANDA202172 on 10/18/2010 and was completed 2/7/2011 with an outcome of NAI.

A routine inspection of the analytical site,

(b) (4)

was requested for this parent ANDA 203286 on 3/8/2012 and was completed on 05/19-23/2014 with an outcome of NAI<sup>3</sup>.

The application is incomplete due to deficiency for in vitro comparative BE dissolution testing at pH 6.8.

<sup>2</sup> DARRTS: REV-BIOEQ-02 (Dissolution Review) ANDA203286, Final date: 02/16/2012.

<sup>&</sup>lt;sup>3</sup> DARRTS: CONSUT REV-DSI-05 (Bioequivalence Establishment Inspection Report Review) ANDA203286, Final date: 07/30/2014.

# 2 TABLE OF CONTENTS

| 1 | Exe  | cutive Summary                              | 2   |
|---|------|---------------------------------------------|-----|
| 2 |      | le of Contents                              |     |
| 3 | Sub  | mission Summary                             | 6   |
|   | 3.1  | Drug Product Information                    |     |
|   | 3.2  | OGD Recommendations for Drug Product        | 6   |
|   | 3.3  | Contents of Submission                      | 7   |
|   | 3.4  | Formulation                                 | 8   |
|   | 3.5  | In Vitro Dissolution (quality controls)     | 8   |
|   | 3.6  | Review of Submission                        | 9   |
|   | 3.7  | Waiver Request(s)                           | .19 |
|   | 3.8  | Deficiency                                  | 19  |
|   | 3.9  | Recommendations                             | .20 |
|   | 3.10 | Comments for Other OGD Disciplines          | 20  |
| 4 |      | pendix                                      |     |
|   | 4.1  | Dissolution Data                            | .21 |
|   | 4.1. | 1 In vitro BE Studies in Multiple Media     | .21 |
|   | 4.2  | Detailed Regulatory History (If Applicable) | .29 |
|   | 4.3  | Consult Reviews                             | .29 |
|   | 4.4  | SAS Output                                  | 29  |
|   | 4.4. | 1 In vitro dissolution (bootstrap) Codes    | 29  |
|   | 4.5  | Additional Attachments                      | .37 |
|   | Nor  | ne                                          | .37 |
|   | 4.6  | Outcome Page                                | .40 |

## 3 SUBMISSION SUMMARY

# 3.1 Drug Product Information

| Test Product                                                                           | Mesalamine Delayed Release Tablets USP, 800 mg  |  |
|----------------------------------------------------------------------------------------|-------------------------------------------------|--|
| Reference Product                                                                      | Asacol® HD (Mesalamine Delayed Release) tablets |  |
| RLD Manufacturer                                                                       | WARNER CHILCOTT LLC                             |  |
| NDA No.                                                                                | N021830                                         |  |
| RLD Approval Date                                                                      | May 29, 2008                                    |  |
| Indication Asacol® HD is indicated for the treatment of moderately ulcerative colitis. |                                                 |  |

<sup>\*</sup>Asacol\* HD was manufactured and marketed by Procter and Gamble (P&G) before February 12, 2010. On February 12, 2010, the firm notified the FDA that the corporate name and/or address had been changed from Procter and Gamble Pharmaceuticals, Inc. to Warner Chilcott Pharmaceuticals Inc.<sup>4</sup>.

# 3.2 OGD Recommendations for Drug Product

| Number of studies recommended: 3, fasting, fed, and in vitro comparative dissolution st |
|-----------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------|

| 1. | Type of study:       | Fasting                                                                                                                                                               |
|----|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Design:              | Single-dose, partially or fully replicated crossover design, in-vivo                                                                                                  |
|    | Strength:            | 800 mg                                                                                                                                                                |
|    | Subjects:            | Normal healthy males and females, general population. Females should not be pregnant, and if applicable, should practice abstention or contraception during the study |
|    | Additional Comments: | Other study designs are acceptable if appropriate. Specific recommendations are provided below.                                                                       |

| 2. Type of study: |                      | Fed                                                                                                                                                                   |
|-------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | Design:              | Single-dose, partially or fully replicated crossover design, in-vivo                                                                                                  |
|                   | Strength:            | 800 mg                                                                                                                                                                |
|                   | Subjects:            | Normal healthy males and females, general population. Females should not be pregnant, and if applicable, should practice abstention or contraception during the study |
|                   | Additional Comments: | Other study designs are acceptable if appropriate. Specific recommendations are provided below.                                                                       |

| 3. | 3. Type of study: In vitro comparative dissolution study |                                 |    |
|----|----------------------------------------------------------|---------------------------------|----|
|    | Strength                                                 | 800 mg                          |    |
|    | Apparatus:                                               | USP Apparatus 2 (paddle)        | 50 |
| *  | Pretreatment Stage:                                      | 2 hours in 0.1 N HCl at 100 rpm |    |

 $<sup>^4</sup>$  DARRTS: COR-NDAACK-06 (Change of Applicant Name/Address) NDA021830, Final date 02/26/2010.

Page 6 of 40

| Evaluation Stage:    | Each of (1) pH 4.5 Acetate buffer at 50 rpm (2) pH 6.0 Phosphate buffer at 50 rpm (3) pH 6.5 Phosphate buffer at 50 rpm (4) pH 6.8 Phosphate buffer at 50 rpm (5) pH 7.2 Phosphate buffer at 50 rpm (6) pH 7.5 Phosphate buffer at 50 rpm |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Volume:              | 900 mL                                                                                                                                                                                                                                    |
| Temperature:         | 37°C                                                                                                                                                                                                                                      |
| Sample times:        | 0, 10, 20, 30, 45, 60, 75, 90, 120, 150, 180, 240, 300, and 360 minutes or as needed for profile comparison                                                                                                                               |
| Additional Comments: | The applicant should use at least 12 tablets per test. The f2 metric will be used to compare dissolution profiles.                                                                                                                        |

| Analytes to measure (in plasma):       | Mesalamine in plasma                                                                                                                                                                                                                                                                |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bioequivalence based on:               | 90% CI of Mesalamine and acceptable in vitro comparative dissolution study                                                                                                                                                                                                          |
| Waiver request of in-vivo testing:     | Not applicable                                                                                                                                                                                                                                                                      |
| Source of most recent recommendations: | http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM320003.pdf  The above Guidance is based on FDA's response to  (b) (4) Control# 12-0615 on September 20, 2010 reviewed by the scientific team. \\cdsnas\OGDS6\CONTROLS\2012-docs\12-0615.pdf |

# 3.3 Contents of Submission

| Study Types                         | Yes/No? | How many?                                                |
|-------------------------------------|---------|----------------------------------------------------------|
| Single-dose fasting                 | Yes     | 1                                                        |
| Single-dose fed                     | Yes     | 1                                                        |
| In vitro comparative<br>dissolution | Yes     | 6                                                        |
| QC dissolution                      | Yes     | 1                                                        |
| Waiver requests                     | No      | N/A                                                      |
| BCS Waivers                         | No      | N/A                                                      |
| Clinical Endpoints                  | No      | N/A                                                      |
| Failed Studies                      | No      | N/A                                                      |
| Amendments                          | Yes     | 02/24/2015 amendment for in<br>vitro dissolution testing |

#### 3.4 Formulation

| Location in appendix                             | DARRTS: REV-BIOEQ21 (Primary Review)<br>ANDA203286, Final date: 11/15/2013. |
|--------------------------------------------------|-----------------------------------------------------------------------------|
| If a tablet, is the RLD scored?                  | No                                                                          |
| If a tablet, is the test product biobatch scored | No                                                                          |
| Is the formulation acceptable?                   | FORMULATION ACCEPTABLE                                                      |
| If not acceptable, why?                          |                                                                             |

## 3.5 In Vitro Dissolution (quality controls)

| Location of DBE Dissolution Review                           | DARRTS: REV-BIOEQ-02 (Dissolution<br>Review) ANDA203286, Final date:<br>02/16/2012                                 |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Source of Method (USP, FDA or Firm)                          | USP                                                                                                                |
| Medium                                                       | Acid Stage: 0.1N HCl<br>Buffer Stage I: pH 6.0 Phosphate Buffer<br>Buffer Stage II: pH 7.2 Phosphate Buffer        |
| Volume (mL)                                                  | Acid Stage: 500 mL<br>Buffer Stage: 900 mL                                                                         |
| USP Apparatus type                                           | USP 2 (Paddle)                                                                                                     |
| Rotation (rpm)                                               | Acid Stage: 100 RPM 2 hours<br>Buffer Stage I: 100 RPM 1 hour<br>Buffer Stage II: 50 RPM 90 minutes                |
| DBE-recommended specifications                               | Acid Stage: NMT 1% in 2 hours<br>Buffer Stage I: NMT 1% in 1 hour<br>Buffer Stage II: NLT 80% (Q) in 90<br>minutes |
| If a modified-release tablet, was testing done on ½ tablets? | No                                                                                                                 |
| F2 metric calculated?                                        | No                                                                                                                 |
| If no, reason why F2 not calculated                          | Due to high variability (%CV) for sampling points                                                                  |
| Is method acceptable?                                        | METHOD ACCEPTABLE                                                                                                  |
| If not then why?                                             |                                                                                                                    |

There is a USP method for this product. The firm conducted dissolution testing using the USP method [500 mL of 0.1N HCl (Acid Stage A) for 2 hrs, followed by 900 mL of Phosphate buffer, pH 6.0 (Buffer Stage B) for 1 hr and 900 mL of Phosphate buffer, pH 7.2 (Buffer Stage C) using apparatus 2 (Paddle) at 100 rpm for stage A and B and at 50 rpm for stage C]. The firm's dissolution testing data with the USP method are acceptable. The firm's proposed specifications are the same as the USP specifications. The quality control dissolution testing is acceptable. The DB II acknowledges that the firm will follow the USP method and specifications.

### 3.6 Review of Submission

## *DB Deficiency I (02/24/2014):*

We cannot locate the individual data for comparative dissolution testing in 0.1 N HCl followed by pH 4.5 Acetate buffer.

### The Firm's Response:

The firm has manufactured a fresh (new) exhibit batch (Batch No. EMP 203) and performed dissolution studies on this batch in 0.1N HCl followed by pH 4.5 acetate buffer.

(b) (4)

The firm has conducted comparative dissolution testing on 24 units of the Test product (Batch No. EMP 203) and two lots of the Reference product (12 units from each Reference lot) on same day and at the same location under same dissolution testing conditions.

#### **Reviewer Comments:**

The firm conducted additional dissolution testing in 0.1 N HCl followed by pH 4.5 Acetate buffer. The firm's response is adequate (for submitted data, see Section 4.1).

# DB Deficiency II (02/24/2014):

Due to the high variability of your submitted dissolution data conducted in multimedia, an f2 test using mean profiles of test vs. reference listed drug ("RLD") is not sufficient as per the CDER Guidance for Industry: Dissolution Testing of Immediate Release Solid Oral Dosage Forms ("Dissolution Guidance"). Therefore, we calculated the f2 metric (an f2 confidence interval) using a bootstrapping method for the dissolution profile comparison. For general information on this approach, please refer to Shah et al. In Vitro Dissolution Profile Comparison-Statistics and Analysis of the Similarity Factor, f2. Pharmaceutical Research (1998) Vol. 15, No.6, page 889-896.

For the test products, the mean values (f2) in pH 6.8 and pH 7.5 phosphate buffer are lower than 50 and the lower bound of 90% confidence interval ("CI") for the f2 test comparing test vs. RLD in pH 6.8, pH 7.2, and pH 7.5 phosphate buffer is lower than those comparing the RLD against itself under the same conditions. These values suggest that the dissolution profiles of the test product are significantly different from those of the corresponding reference under these conditions. Your dissolution data in pH 6.8, 7.2 and 7.5 are not acceptable.

#### The Firm's Response:

As recommended by the Division of Bioequivalence II (DB II), in Deficiency No. 3 below, the firm has conducted comparative dissolution testing on 24 units of the Test product (Batch

No. EMP 203) and two lots of the Reference product (12 units from each Reference lot) under pH 4.5, 6.8, 7.2, and 7.5 conditions on same day and at the same location.

#### **Reviewer Comments:**

The firm repeated in vitro dissolution testing in the media of pH 6.8,7.2, and 7.5 with a larger sample size (n=24) of test product and two lots of RLD product (each lot N=12). The firm's response is adequate (for resubmitted data, see Section 4.1).

## DB Deficiency III (02/24/2014):

To address why the test product is different from the RLD product, please repeat comparative dissolution testing on your **fresh test product** using a **larger sample** of tablets to provide a better estimate of the mean difference, or take other appropriated steps as necessary to reduce the variability for the purpose of achieving accurate f2 calculation.

The dissolution testing should be conducted on at least 24 tablets (more if necessary) of the test product and at least two lots of unexpired RLD product (using 12 tablets per lot) using the following method as specified in the FDA Guidance on Mesalamine (800 mg):

Apparatus: USP Apparatus II (paddle)

Pretreatment Stage: 2 hours in 0.1 N HCl at 100 rpm

Evaluation Stage:

Each of

(1) pH 4.5 Acetate buffer at 50 rpm

(2) pH 6.8 Phosphate buffer at 50 rpm

(3) pH 7.2 Phosphate buffer at 50 rpm

(4) pH 7.5 Phosphate buffer at 50 rpm

Volume: 900 mL Temperature: 37°C

Sample times: 0, 10, 20, 30, 45, 60, 75, 90, 120, 150, 180, 240, 300, and

360 minutes or as needed for profile comparison

Please submit individual dissolution data as well as the mean, range, %coefficient of variation (CV) at each time point for the total numbers of tablets tested including dates of dissolution testing, manufacture date and expiration date as applicable.

The DB II will perform an f2 test on your submitted dissolution data. If the variability of the dissolution data is such that mean data cannot be used for the f2 test, as per the Dissolution Guidance, we will use the above-referenced bootstrapping approach.

For the bootstrapping method, sampling with replacement is used for creating 10,000 replicates of test and reference products. The means of the test and reference units at each time point for each replicate are obtained and used for f2 calculation. The 90%

confidence intervals of the f2 values are calculated using the percentile approach as described in the Shah et al. reference. Similar procedure can be followed for comparing reference vs. reference products.

Please note only one measurement after 85% dissolution of both the products should be included in the f2 calculation.

## The Firm's Response:

As recommended by the Division of Bioequivalence II (DB II), the firm has conducted comparative dissolution testing on 24 units of the Test product (Batch No. EMP 203) and two lots of the Reference product (12 units from each Reference lot) under pH 4.5, 6.8, 7.2, and 7.5 conditions on same day and at the same location.

Using the bootstrapping method described above in the Agency's comment letter, by creating 10,000 replicates of the Test and Reference product units, the mean percent dissolved at each time point was obtained for each replicate to calculate f2 (similarity factor). Subsequently, the mean and 90% confidence intervals of the f2 (similarity factor) values between Test and Reference products were calculated for each pH at the evaluation stage. The complete details of the bootstrapping analyses and the bias corrected accelerated (BCA) bootstrapping method to calculate the mean, median and 90% confidence intervals for the f2 values in the dissolution profiles are presented as follows:

| Summary of f2 (Similarity Factor)  | Values Determined by | y Percentile | Bootstrapping | Method |
|------------------------------------|----------------------|--------------|---------------|--------|
| Described in the FDA Complete Resp | onse Letter          |              |               |        |

| Evaluation<br>Stage pH | Parameters    | Observed f2 | Average of f2 | Median of f2 | 90% lower<br>CI of f2 | 90% upper<br>CI of f2 |
|------------------------|---------------|-------------|---------------|--------------|-----------------------|-----------------------|
| 4.5                    | Test vs R1+R2 | 96.28       | 95.96         | 96.10        | 94.03                 | 97.44                 |
|                        | R1 vs R2      | 99.88       | 99.87         | 99.87        | 99.83                 | 99.91                 |
| 6.8                    | Test vs R1+R2 | 69.81       | 61.91         | 61.76        | 53.98                 | 70.34                 |
| 9.5.200                | R1 vs R2      | 58.94       | 52.88         | 52.75        | 44.85                 | 61.82                 |
| 7.2                    | Test vs R1+R2 | 56.8        | 54.52         | 54.20        | 47.00                 | 63.44                 |
|                        | R1 vs R2      | 65.1        | 54.28         | 53.71        | 43.15                 | 67.32                 |
| 7.5                    | Test vs R1+R2 | 54.93       | 54.87         | 54.71        | 50.05                 | 60.17                 |
|                        | R1 vs R2      | 56.55       | 56.32         | 55.91        | 49.6                  | 64.26                 |

**Note:** The firm calculated f2 distribution and the 90% confidence intervals using the bias corrected accelerated (BCA) bootstrapping method instead of the FDA recommended percentile approach.

#### **Reviewer Comments:**

In original application dated 07/12/201, the firm's in vitro comparative dissolution data showed that the test and reference products had a similar dissolution profile under pH 6.0 and pH 6.5 conditions. However, the dissolution profiles of the test product were

significantly different from that of reference product in the medium of pH 6.8, 7.2, and 7.5. Thus, in vitro comparative dissolution testing in pH 6.8, pH 7.2, and pH 7.5 Phosphate buffer was unacceptable. In addition, we could not locate the individual data for comparative dissolution testing in 0.1 N HCl followed by pH 4.5 Acetate buffer. Thus, in vitro comparative dissolution testing was incomplete.

In the current amendment dated 02/24/2015, the firm conducted additional dissolution testing in the medium of pH 4.5 Acetate buffer and repeated dissolution testing in the media of pH 6.8,7.2, and 7.5 with a larger sample size (n=24) to reduce the variability for the purpose of achieving accurate f2 calculation.

Table A. Product information in vitro comparative dissolution testing

| Dosage<br>Strength<br>& Form | Test                                                                                          | Reference                                                                                                                                |
|------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 800 mg                       | Mesalamine Delayed Release Tablets<br>USP, 800 mg<br>Lot No.: EMP203<br>Mfg Date: April, 2014 | ASACOL® HD (Mesalamine) Delayed<br>Release Tablets USP, 800 mg<br>Lot No: R1: 450645 S2 and R2: 451550 S3<br>Expiry: 06/2015 and 08/2015 |
| Sample size                  | N=24                                                                                          | R1=12, R2=12; R1+R2=24                                                                                                                   |

# Test dates for in vitro comparative dissolution testing on both test and reference products:

|                  | Test date for the test and reference products in multimedia |                           |               |                        |               |                           |               |                           |
|------------------|-------------------------------------------------------------|---------------------------|---------------|------------------------|---------------|---------------------------|---------------|---------------------------|
|                  | pН                                                          | 4.5                       | pН            | 6.8                    | pН            | 7.2                       | pН            | 7.5                       |
| Strength 800 mg  | Test                                                        | Reference                 | Test          | Reference              | Test          | Reference                 | Test          | Reference                 |
| Test date        | 12/02/2014                                                  | 12/02/2014                | 10/18/2014    | 10/18/2014             | 12/12/2014    | 12/12/2014                | 10/17/2014    | 10/17/2014                |
| Exp date         | Mach,<br>2016                                               | 06/2015<br>and<br>08/2015 | Mach,<br>2016 | 06/2015 and<br>08/2015 | Mach,<br>2016 | 06/2015<br>and<br>08/2015 | Mach,<br>2016 | 06/2015<br>and<br>08/2015 |
| Manufacture date | April,<br>2014                                              |                           | April, 2014   |                        | April, 2014   | \$                        | April, 2014   |                           |

# The review of In Vitro Comparative Dissolution Testing:

# a) The calculation of F2 values using means

The means of F2 values (T24 vs. R24)

| F2 values between the test and the reference product |               |               |               |              |  |  |  |  |  |
|------------------------------------------------------|---------------|---------------|---------------|--------------|--|--|--|--|--|
| Strength                                             | pH 4.5 buffer | pH 6.8 buffer | pH 7.2 buffer | pH7.5 buffer |  |  |  |  |  |
| 800 mg                                               | 96.33*        | 70.64*        | 54.23*        | 46.28*       |  |  |  |  |  |

<sup>\*</sup>The percent coefficient of variation (%CV) was more than 20% at the 20 min, or/and more than 10% after 20 min.

#### REVIEWER'S NOTES:

- The F2 values cannot be calculated using mean values if 1) % CV >20% at 20 min and 2) %CV >10% after 20 min (20 min is considered as cutoff point for "early sampling points") and 3) there are less than 3 sampling points for F2 calculation before both test and reference products reach 85% dissolving<sup>5</sup>. Yet, to confirm the data from bootstrapping approach, reviewer calculates mean f2 values disregarding variability as illustrated in the above table.
- Even though using a larger sample of tablets, dissolution data still show high variability (high %CV) in the media of pH 6.8, 7.2, and 7.5. Due to the high variability (high %CV), a comparison of mean profiles with the f2 test is not sufficient per the CDER Guidance for Industry: Dissolution Testing of Immediate Release Solid Oral Dosage Forms). Therefore, a bootstrapping procedure 6 is used to calculate mean values of F2 and an F2 confidence interval (a statistical evaluation of f2, see below).

b) The calculation of F2 values and 90% confidence interval using bootstrapping method  $^{2}$ 

|                      |     |                      | Во       | otstrapping me | thod                    |                          |                          |
|----------------------|-----|----------------------|----------|----------------|-------------------------|--------------------------|--------------------------|
| Study                | рН  | Stren<br>gth<br>(mg) | Frequent | Original f2    | F2<br>bootstrap<br>mean | Lower CI<br>(Percentile) | Upper CI<br>(Percentile) |
| ,                    | 4.5 | (2)                  |          | N/A            | N/A                     | N/A                      | N/A                      |
| T vs. R              | 6.8 | 800                  | 10000    | 82.8           | 68.9                    | 49.32                    | 88.27                    |
| (R1+R2)<br>(N=24)    | 7.2 | 800                  | 10000    | 54.23          | 51.83                   | 43.64                    | 60.76                    |
| (2, 2,)              | 7.5 | 800                  | 10000    | 46.35          | 46.51                   | 40.72                    | 53.12                    |
|                      | 4.5 |                      |          | N/A            | N/A                     | N/A                      | N/A                      |
| T24 vs. R1           | 6.8 | 800                  | 10000    | 87.13          | 70.23                   | 49.73                    | 89.8                     |
| (N=12)<br>lot#:      | 7.2 | 800                  | 10000    | 55.7           | 51.22                   | 38.61                    | 65.67                    |
| 4560645              | 7.5 | 800                  | 10000    | 38.45          | 38.64                   | 33.28                    | 44.91                    |
|                      | 4.5 |                      |          | N/A            | N/A                     | N/A                      | N/A                      |
| T24 vs. R2<br>(N=12) | 6.8 | 800                  | 10000    | 78.62          | 67.86                   | 48.34                    | 87.25                    |
| lot#:                | 7.2 | 800                  | 10000    | 50.89          | 49.15                   | 42.04                    | 56.6                     |

<sup>&</sup>lt;sup>5</sup> Based on 1) the CDER Guidance for Industry: Dissolution Testing of Immediate Release Solid Oral Dosage Forms, 2) high variability of vancomycin dissolution data, and discussion with bio-management, the reviewer considered the following for the f2 calculation:

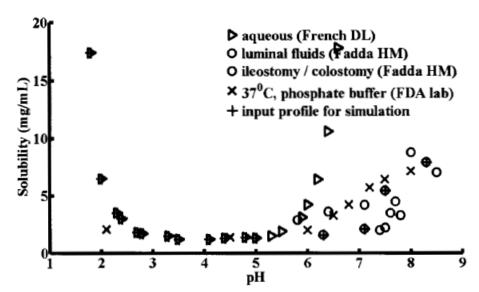
Only one measurement is considered after 85% dissolution of both the products and at least three dissolution time points
are available.

 <sup>20</sup> min tentatively appears reasonable to be set as the cutoff of the earlier time point for Vancomycin HCl capsule in vitro BE studies. For the F2 calculation, the percent coefficient of variation before or at the earlier time point (i.e. 20 min) should not be more than 20% and at other time points (i.e. time points after 20 min) should not be more than 10%.

<sup>&</sup>lt;sup>6</sup> Shah et al. In Vitro Dissolution Profile Comparison-Statistics and Analysis of the Similarity Factor, f2. *Pharmaceutical Research (1998) Vol. 15, No.6, page 889-896* 

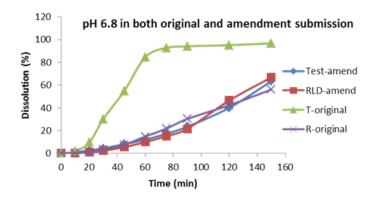
Please see statistical consult review for ANDA 065490 (DARRTS, ANDA-065490, REV-BIOMETRICS-01(General Review), Duan Joan Z, 12/04/2009) and ANDA 065510 (DARRTS, ANDA-065510, REV-BIOMETRICS-01(General Review), Duan Joan Z, 12/04/2009) for detail description of the bootstrap method.

| 541550                                  | 7.5 | 800 | 10000 | <mark>57.97</mark> | 58.28 | 51.26 | 66.4  |
|-----------------------------------------|-----|-----|-------|--------------------|-------|-------|-------|
|                                         | 4.5 |     |       | N/A                | N/A   | N/A   | N/A   |
| D1 D2                                   | 6.8 | 800 | 1000  | 90.61              | 68.99 | 46.75 | 92.57 |
| R1 vs. R2<br>(N=12)                     | 7.2 | 800 | 1000  | 62.66              | 57.85 | 42.43 | 72.92 |
| (=: ==)                                 | 7.5 | 800 | 1000  | 48.35              | 48.49 | 42.46 | 55.87 |
|                                         | 4.5 |     |       | N/A                | N/A   | N/A   | N/A   |
| D D*                                    | 6.8 | 800 | 1000  | 54.48              | 57.67 | 37.8  | 86.78 |
| R vs. R*<br>(N=12)                      | 7.2 | 800 | 1000  | 43.83              | 44.06 | 28.9  | 62.31 |
| ( , , , , , , , , , , , , , , , , , , , | 7.5 | 800 | 1000  | 78.21              | 68.97 | 54.47 | 85.17 |


\*For R vs. R comparison, the dissolution data was first randomly divided into two groups (12 units vs. 12 units) and with each of the groups obtained from randomization, the bootstrapping procedure was then performed to calculate the f2 confidence intervals for R vs. R comparison in the comparative dissolution testing.

#### **Comments:**

- 1. Per the internal meeting of OGD vancomycin review team on 3-31-2010<sup>8</sup>, the dissolution profiles of the test and reference products are considered similar and acceptable when the f2 for the mean test and reference profiles are >50 and the lower bound of 90% confidence interval (CI) for f2 test is >46. In addition, if the lower bound of 90% confidence interval for F2 test is <46, then the difference of dissolution profile differences between test and reference may be acceptable if the reference vs. reference difference is larger. Thus, the variability of test versus reference dissolution profiles should not exceed the variability of the reference versus reference dissolution profiles.
- 2. As per Control document 12-0615<sup>9</sup>, Mesalamine has three ionizable groups. Its aqueous versus pH solubility profiles are a U shape profile with lowest solubility between pH 2.0 to 5.5 illustrated as the following figure:


<sup>&</sup>lt;sup>8</sup> DARRTS, ANDA-065478, FRM-MINUTES-01 (Internal Meeting Minutes), 4/28/2010

<sup>9</sup> Ctr:12-0615: \\cdsnas\OGDS6\CONTROLS\2012-docs\12-0615.pdf.



The pH of the medium in the dissolution testing affects solubility of Mesalamine. Mesalamine is soluble under either acidic environment (pH<2) or pH above 6 condition. Based on above study, Mesalamine has low drug release in the medium of pH 4.5 due to the enteric coating feature. As a result, the complete dissolution is not expected at the pH 4.5 and the percent drug release from both test and reference products should be very low. The result from the current amendment showed the percent drug release from both test and reference products is less than 5% in the medium of pH 4.5 during the period of 960 min (16 hrs) dissolution testing. Thus, a meaningful comparison of the dissolution data is impossible in pH conditions of 4.5 because of incomplete and variable (high % RSD) dissolution for the test and reference products. The incomplete drug release of in vitro dissolution testing is due to very low solubility of Mesalamine in the medium of pH 4.5. Therefore, the in vitro dissolution data in the medium of pH 4.5 are acceptable.

- 3. For T24 vs. R24 comparison, the mean f2 values comparing the test vs. reference are greater than 50 in the media of pH 6.8 and 7.2 (82.8 and 54.23, respectively). The lower bound of 90% confidence intervals for f2 values is more than 46 (49.32) in the medium of pH 6.8, while the lower bound of 90% confidence interval for F2 test in the medium of pH 7.2 less than 46 (43.64). However, this value is higher than that comparing the RLD against itself under the same conditions (R1 vs. R2:42.43; R vs R: 28.9). The firm's dissolution data show that the test and reference products have a similar dissolution profile under pH 6.8 and pH 7.2 conditions.
- 4. However, as per detailed analysis for the dissolution profile at pH 6.8, a large difference was observed in the test product between the original and amendment submission illustrated as below:



The test product is formulated with an outer-layer pH sensitive enteric coating to begin to release at pH 7.0 or greater and to target mesalamine delivery to the lower GI tract. (b) (4) in the test product contains Eudragit S, which degrades at pH  $\geq$  7.0. As a result, pH 6.8 can be considered as a transitional pH in drug release. The dissolution profile at this pH is very sensitive to small variation in the medium pH. A small variation in the medium pH in the dissolution testing would result in wide variability dissolution profiles. Thus, the inherent pH dependent solubility nature of the Eudragit (b) (4) S may be a main reason for this batch-batch difference in dissolution profile.

the firm will be asked to provide12 units dissolution data for the test and reference products in buffers around pH 6.8 (e.g. pH (b) (4) 6.8, (b) (4) using the following dissolution method on Mesalamine (800 mg):

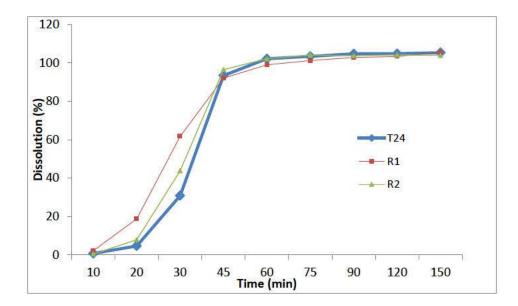
Apparatus: USP Apparatus II (paddle)

Pretreatment Stage: 2 hours in 0.1 N HCl at 100 rpm

Evaluation Stage:

Each of

(2) pH 6.8 Phosphate buffer at 50 rpm
(b) (4)


Volume: 900 mL Temperature: 37°C

Sample times: 0, 10, 20, 30, 45, 60, 75, 90, 120, 150, 180, 240, 300, and 360

minutes or as needed for profile comparison.

- 5. In the medium of pH 7.5, the f2 mean value is less than 50 (46.35) and its lower bound of 90% confidence intervals for f2 values is less than 46 (40.72). Moreover, the lower bound of 90% CIs of f2 comparing test vs. RLD for pH 7.5 is lower than those comparing the RLD against itself under the same conditions (42.43 and 54.47). However, reviewer considers in vitro comparative dissolution testing in the medium of pH 7.5 is acceptable based on the following reasons:
  - a) In the current amendment, the firm conducted the dissolution testing on 24 tablets of the test product and two lots of unexpired RLD product (using 12 tablets per lot). Compared T24 vs. R2 (the 2<sup>nd</sup> RLD batch: lot#541550), the f2 mean value is more than 50 (57.97) and also, its lower bound of 90% confidence intervals for f2 values are more than 46 (51.26). The result demonstrated that the dissolution profile of test product is similar to one of reference lots at pH 7.5.
  - b) The reviewer noticed that two lots of reference product have different dissolution profiles and variability. As shown below, the lot R1 (lot# 4560645) releases faster than the lot R2 (lot#541550) and the test product. The lot R2 dissolution profile is more similar to that of test product (f2: 57.97) compared to R1 (38.45). Also, the percent coefficient of variation for R1 is relative higher than that of R2 during the early sampling time (10-60 min), which resulted in lower bound of 90% confidence intervals for f2 value less than 46 for the test product under pH 7.5 condition. Thus, the failed result for in vitro dissolution study in pH 7.5 with T24 vs. R24 was due to the variability in different RLD lot.

| Time (min) | 10     | 20       | 30     | 45      | 60       | f2        |
|------------|--------|----------|--------|---------|----------|-----------|
| T24        | 0.7625 | 4.708333 | 30.875 | 93.4375 | 102.1292 | T24 vs.R1 |
| R1-Mean    | 2.19   | 18.84    | 61.72  | 92.04   | 99       | 38.45     |
| %CV        | 115.27 | 60.07    | 24.60  | 10.32   | 2.15     |           |
| R2-Mean    | 0.48   | 7.93     | 43.84  | 96.50   | 102.13   | T24 vs.R2 |
| %CV        | 100.01 | 48.95    | 27.54  | 5.30    | 1.01     | 57.97     |



c) As per detailed analysis for the dissolution profile, the test product displayed slower rate of drug release during the early phase only (10 min to 30 min) than the reference product showed in the table below. Orally administered delayed-release mesalamine tablets act locally within the lumen of the large bowel. Both the test and the reference products should have already dissolved before transiting to jejunum or ileum at pH 7.5. 10 Thus, the dissolution rate difference during the early phase at pH7.5 will not have clinically relevant effect on the drug release locally in the colon.

Early phase dissolution data at pH 7.5

| pH 7.5 |      | Acid  | Buffer stage |           |           |        |  |  |  |  |  |  |
|--------|------|-------|--------------|-----------|-----------|--------|--|--|--|--|--|--|
|        |      | 2 hrs | 10<br>min    | 20<br>min | 30<br>min | 45 min |  |  |  |  |  |  |
| Test   | Mean | 0     | 0.76         | 4.71      | 30.8      | 93.4   |  |  |  |  |  |  |
|        | %CV  | 489.9 | 84.8         | 84.9      | 26.9      | 6.62   |  |  |  |  |  |  |
| RLD    | Mean | 0     | 1.33         | 13.38     | 52.78     | 94.27  |  |  |  |  |  |  |
|        | %CV  | 489.9 | 148          | 74.5      | 30.7      | 8.27   |  |  |  |  |  |  |

d) In addition, in the fasting and fed BE studies, the mesalamine component of PK parameters of the test and reference were comparable, which further supports that the test product seems not dissolve earlier than the reference product and will reach the colon adequately. (b) (4)

e) The dissolution profiles at pH 7.5

 $^{10}$  Xiaojian Jiang, et al. FDA Bioequivalence Standards, Chapter 12, Bioequivalence for Drug Products Acting Locally within Gastrointestinal, AAPS Advances in the Pharmaceutical Sciences Series, September 6, 2014.

f) The transit time in terminal ileum and colon is 8-48 hours. The slower release in dissolution (0-30 minutes) has no influence on local release in the colon.

Based on the internal meeting minutes (with other offices (Chemistry and Science Team), V:\DIVISION\BIO\BIO2\BIO Management Meeting Minutes\2015 Meeting Minutes\Non-BMM Internal Meeting Minutes) dated 05/12/2015, the in vitro comparative dissolution data in pH 7.5 medium are acceptable.

The in vitro comparative dissolution for Mesalamine Delayed release Tablets is incomplete due to a large difference in the dissolution profile of test product at pH 6.8 between the original and amendment submissions.

## 3.7 Waiver Request(s)

| Strengths for which waivers are requested       | None |
|-------------------------------------------------|------|
| Proportional to strength tested in vivo?        | N/A  |
| Is in vitro comparative dissolution acceptable? | Yes  |
| Waivers granted?                                | N/A  |
| If not then why?                                |      |

## 3.8 Deficiency

As per detailed analysis for the dissolution profile at pH 6.8, a large difference was observed in the test product between the original and amendment submission. The firm is requested to provide an explanation for this large difference in the dissolution profiles of the test product at pH 6.8 between the original and amendment submission. In addition, the firm will be asked to provide the 12 units dissolution data for the test and reference products in pH buffer at pH 6.8 range (e.g. pH (b)(4) 6.8, (b)(4)) using the following dissolution method on Mesalamine (800 mg):

Apparatus: USP Apparatus II (paddle)

Pretreatment Stage: 2 hours in 0.1 N HCl at 100 rpm

Evaluation Stage:

Each of

(2) pH 6.8 Phosphate buffer at 50 rpm (b) (4)

Volume: 900 mL Temperature: 37°C

Sample times: 0, 10, 20, 30, 45, 60, 75, 90, 120, 150, 180, 240, 300, and 360 minutes or

as needed for profile comparison.

#### 3.9 Recommendations

- The Division of Bioequivalence accepts the fasting BE study (MSN-P0-732) conducted by Zydus on its Mesalamine Delayed Release Tablets USP, 800 mg (lot #: EMK150) comparing it to Procter & Gamble, ASACOL® HD (Mesalamine) Delayed Release Tablets, 800 mg (lot #: 442661S3).
- 2. The Division of Bioequivalence accepts the fed BE study (MSN-P0-733) conducted by Zydus on its Mesalamine Delayed Release Tablets USP, 800 mg (lot #: EMK150) comparing it to Procter & Gamble, ASACOL® HD (Mesalamine) Delayed Release Tablets, 800 mg (lot #: 442661S3).
- The in vitro comparative dissolution testing using the FDA recommended method as specified in the FDA Guidance on Mesalamine (800 mg) is incomplete due to the above deficiency.
- The firm's quality controls dissolution testing is acceptable. The dissolution testing should be conducted according to the current USP monograph for Mesalamine Delayed Release Tablets USP, 800 mg.

## 3.10 Comments for Other OGD Disciplines

| Discipline | Comment |
|------------|---------|
| N/A        | None    |

# 4 APPENDIX

# 4.1 Dissolution Data

# 4.1.1 In vitro BE Studies in Multiple Media

pH 4.5

| Dissoluti                                                        | ion Conditions                                                | Apparatus:          |            | USP-II (Pa                                               | addle)   |            |            |            |            |           |            |            |            |                                                    |                        |  |  |  |
|------------------------------------------------------------------|---------------------------------------------------------------|---------------------|------------|----------------------------------------------------------|----------|------------|------------|------------|------------|-----------|------------|------------|------------|----------------------------------------------------|------------------------|--|--|--|
|                                                                  |                                                               | Speed of Rot        | ation:     | 100 rpm fo                                               |          |            |            |            |            |           |            |            |            |                                                    |                        |  |  |  |
|                                                                  |                                                               | Medium:             |            | 0.1N HCl (for 2 hours) followed by pH 4.5 Acetate buffer |          |            |            |            |            |           |            |            |            |                                                    |                        |  |  |  |
|                                                                  |                                                               | Volume:             |            | 900 mL                                                   |          |            |            |            |            |           |            |            |            |                                                    |                        |  |  |  |
|                                                                  |                                                               | Temperature         | :          | $37^{\circ}C \pm 0.5$                                    | 5°C      |            |            |            |            |           |            |            |            |                                                    |                        |  |  |  |
| Firm's P                                                         | Proposed Specifications                                       |                     |            |                                                          |          |            |            |            |            |           |            |            |            |                                                    |                        |  |  |  |
|                                                                  | ion Testing Site<br>Address)                                  | Cadila Health       | care Ltd., | Sarkhej-Ba                                               | avla, N. | H. No.     | 8A, M      | oraiya, '  | Γal.: Sa   | nand, Dis | st, Ahme   | edabad –   | 382 210    | Stud<br>Repo<br>Loca<br>on<br>0.22 0.31<br>(b) (4) |                        |  |  |  |
| Testing                                                          | Product ID \ Batch No.                                        | Dosage              | No. of     |                                                          | Colle    | ction T    | mes        |            |            |           |            |            |            |                                                    | Study                  |  |  |  |
| Date                                                             | (Test - Manufacture Date)<br>(Reference – Expiration<br>Date) | & Form Dosage Units |            |                                                          | 2<br>hrs | 10<br>min  | 20<br>min  | 30<br>min  | 45<br>min  | 60<br>min | 75<br>min  | 90<br>min  | 120<br>min | min Loca                                           | Report<br>Locati<br>on |  |  |  |
| 12/02/2                                                          | Mesalamine Delayed Release                                    | e 800 mg            | 24         | Mean                                                     | 0        | 0.30       | 0.28       | 0.23       | 0.21       | 0.37      | 0.18       | 0.17       | 0.22       | 200 200 200 200                                    |                        |  |  |  |
| 014                                                              | Tablets USP, 800 mg<br>Lot No.: EMP203                        | Tablet              |            | Range                                                    |          |            |            |            |            |           |            |            |            | (b) (4                                             |                        |  |  |  |
|                                                                  | Mfg Date: April, 2014                                         |                     |            | %CV                                                      | 489      | 106.<br>65 | 125.<br>17 | 86.3       | 82.4       | 57.81     | 102.8<br>4 | 110.0<br>2 | 112.7<br>8 | Docati on O.31 (b) (4)                             |                        |  |  |  |
| 12/02/2                                                          | ASACOL® HD                                                    | 800 mg              | 24         | Mean                                                     | 0        | 0.06       | 0.05       | 0.05       | 0.04       | 0.09      | 0.01       | 0.00       | 0.03       | 0.03                                               |                        |  |  |  |
| 014                                                              | (Mesalamine) Delayed<br>Release Tablets USP, 800 m            | Tablet              |            | Range                                                    |          |            |            |            |            |           |            |            |            | (b) (4)                                            |                        |  |  |  |
| Lot No: 450645 S2 and<br>451550 S3<br>Expiry: 06/2015 and 08/201 |                                                               |                     |            | %CV                                                      | 489      | 159.<br>19 | 176.<br>93 | 176.<br>93 | 199.<br>13 | 111.0     | 489.9<br>0 | N/P        | 228.4      | 489.9<br>0                                         |                        |  |  |  |
| Testing                                                          | Product ID \ Batch No.                                        | Dosage              | No. of     |                                                          | Colle    | ction T    | mes        | -          |            |           |            |            |            | -                                                  | Study                  |  |  |  |

| Date    | (Test - Manufacture Date)<br>(Reference – Expiration<br>Date)                                                            | Strength<br>& Form | Dosage<br>Units |               | 180<br>min | 240<br>min | 300<br>min | 360<br>min | 480mi<br>n | 600<br>min | 720mi<br>n | 840<br>min | 960<br>min | Report<br>Locati<br>on |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------------------|--|--|
| 12/02/2 | Mesalamine Delayed Release                                                                                               | 800 mg             | 24              | Mean          | 0.25       | 0.49       | 0.49       | 0.62       | 0.68       | 0.96       | 1.29       | 1.37       | 1.64       |                        |  |  |
| 014     | Tablets USP, 800 mg<br>Lot No.: EMP203<br>Mfg Date: April, 2014                                                          | Tablet             |                 | Range (b) (4) |            |            |            |            |            |            |            |            |            |                        |  |  |
|         |                                                                                                                          |                    |                 | %CV           | 114.9      | 81.0       | 132.0      | 126.9      | 177.0      | 152.2      | 156.2      | 166.96     | 168.55     |                        |  |  |
| 12/02/2 | ASACOL® HD                                                                                                               | 800 mg             | 24              | Mean          | 0.10       | 0.05       | 0.02       | 0.08       | 0.04       | 0.10       | 0.08       | 0.23       | 0.25       |                        |  |  |
| 014     | (Mesalamine) Delayed<br>Release Tablets USP, 800 mg<br>Lot No: 450645 S2 and<br>451550 S3<br>Expiry: 06/2015 and 08/2015 | Tablet             |                 | Range (b) (4) |            |            |            |            |            |            |            |            |            |                        |  |  |
|         |                                                                                                                          |                    |                 | %CV           | 124.9      | 176        | 489        | 172.5      | 244.3      | 178.0      | 186.1      | 122.4      | 104.17     |                        |  |  |

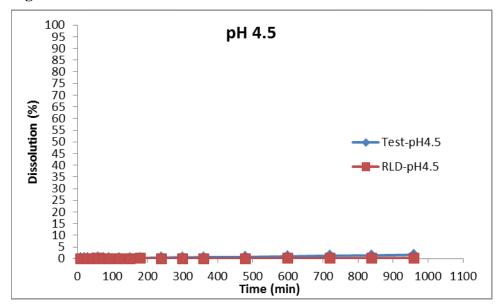
pH 6.8

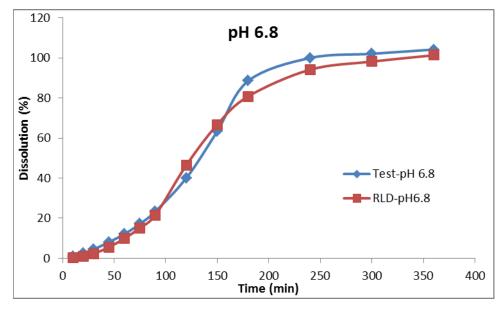
| Dissolut | ion Conditions                                                | Apparatus:         |                                                           | USP-II (Paddle)                                            |                        |           |           |            |           |           |           |           |            |                        |  |
|----------|---------------------------------------------------------------|--------------------|-----------------------------------------------------------|------------------------------------------------------------|------------------------|-----------|-----------|------------|-----------|-----------|-----------|-----------|------------|------------------------|--|
|          |                                                               | Speed of Rota      | ation:                                                    | 100 rpm for acid stage and 50 rpm for buffer stage         |                        |           |           |            |           |           |           |           |            |                        |  |
|          |                                                               | Medium:            |                                                           | 0.1N HCl (for 2 hours) followed by pH 6.8 Phosphate buffer |                        |           |           |            |           |           |           |           |            |                        |  |
|          |                                                               | Volume:            |                                                           | 900 mL                                                     |                        |           |           |            |           |           |           |           |            |                        |  |
|          |                                                               | Temperature        | Temperature: $37^{\circ}\text{C} \pm 0.5^{\circ}\text{C}$ |                                                            |                        |           |           |            |           |           |           |           |            |                        |  |
| Firm's I | Proposed Specifications                                       |                    |                                                           |                                                            |                        |           |           |            |           |           |           |           |            |                        |  |
|          | ion Testing Site<br>Address)                                  | Cadila Health      | care Ltd.,                                                | Sarkhej-Ba                                                 | avla, N. H             | . No. 8A, | Moraiya   | , Tal.: Sa | nand, Dis | t, Ahme   | edabad –  | 382 210   | )          |                        |  |
| Testing  | Product ID \ Batch No.                                        | Dosage No. of      |                                                           | N.                                                         | Collection Times Study |           |           |            |           |           |           |           |            |                        |  |
| Date     | (Test - Manufacture Date)<br>(Reference – Expiration<br>Date) | Strength<br>& Form | Dosage<br>Units                                           |                                                            | 2 hrs                  | 10<br>min | 20<br>min | 30<br>min  | 45<br>min | 60<br>min | 75<br>min | 90<br>min | 120<br>min | Report<br>Locati<br>on |  |
| 10/18/2  | Mesalamine Delayed Release                                    | e 800 mg           | 24                                                        | Mean                                                       | 0                      | 0.87      | 2.57      | 4.44       | 8.08      | 12.06     | 17.15     | 23.43     | 40.03      |                        |  |
| 014      | Tablets USP, 800 mg                                           | Tablet             |                                                           | Range                                                      | <b>.</b>               |           | •         |            |           |           |           |           | (b) (4     | )                      |  |

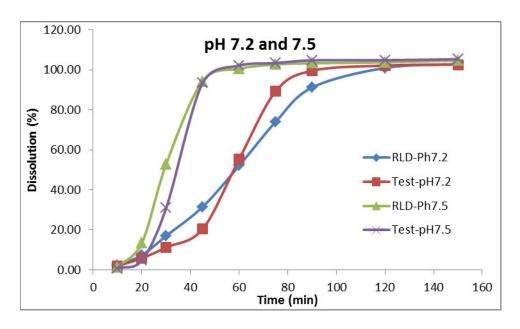
|         | Lot No.: EMP203                                                                         |                    |                 |               |                    |         |     |         |            |          | Ho.   |       | (b) (4  | )                      |  |  |  |
|---------|-----------------------------------------------------------------------------------------|--------------------|-----------------|---------------|--------------------|---------|-----|---------|------------|----------|-------|-------|---------|------------------------|--|--|--|
|         | Mfg Date: April, 2014                                                                   |                    |                 | %CV           |                    | 59.97   | 70. | 21 80.  | 69 88.6    | 66 90.72 | 88.85 | 85.69 | 75.35   |                        |  |  |  |
| 10/18/2 | ASACOL® HD                                                                              | 800 mg             | 24              | Mean          | 0                  | 0.24    | 0.3 | 86 2.   | 28 5.5     | 9.91     | 15.07 | 21.54 |         |                        |  |  |  |
| 014     | (Mesalamine) Delayed<br>Release Tablets USP, 800 mg<br>Lot No: 450645 S2 and            | Tablet             |                 | Range (b) (4) |                    |         |     |         |            |          |       |       |         |                        |  |  |  |
|         | Lot No: 450645 82 and<br>451550 S3<br>Expiry: 06/2015 and 08/2015                       |                    |                 | %CV           | 0038-00<br>0038-00 | 104.4   | 106 | 5.3 133 | 3.3 148    | .4 157.7 | 144.6 | 124.3 | 64.64   |                        |  |  |  |
| Testing | Product ID \ Batch No.<br>(Test - Manufacture Date)<br>(Reference – Expiration<br>Date) | Dosage             | No. of          | 0.            | Collection Times 5 |         |     |         |            |          |       |       |         |                        |  |  |  |
| Date    |                                                                                         | Strength<br>& Form | Dosage<br>Units |               | 150<br>min         | 180 min | 1 2 | 40 min  | 300<br>min | 360 min  |       |       |         | Report<br>Locati<br>on |  |  |  |
| 10/18/2 | Mesalamine Delayed Release<br>Tablets USP, 800 mg<br>Lot No.: EMP203                    | 800 mg             | 24              | Mean          | 63.38              | 88      | 53  | 99.98   | 102.09     | 104.     | 18    |       |         |                        |  |  |  |
| 014     |                                                                                         | Tablet             |                 | Range         |                    |         |     |         |            |          |       |       | (b) (4) |                        |  |  |  |
|         | Mfg Date: April, 2014                                                                   |                    |                 | %CV           | 51.75              | 23.     | 22  | 6.06    | 4.43       | 3.       | 36    |       |         | e i                    |  |  |  |
| 10/18/2 | ASACOL® HD                                                                              | 800 mg             | 24              | Mean          | 66.72              | 80.     | 81  | 94.13   | 98.21      | 101.     | 34    |       | (5) (4  |                        |  |  |  |
| 014     | (Mesalamine) Delayed<br>Release Tablets USP, 800 mg<br>Lot No: 450645 S2 and            | Tablet             |                 | Range         |                    |         |     |         |            |          |       |       | (b) (4  |                        |  |  |  |
|         | 451550 S3<br>Expiry: 06/2015 and 08/2015                                                |                    |                 | %CV           | 39.76              | 21.     | 72  | 8.61    | 5.14       | 2.       | 91    |       |         |                        |  |  |  |

pH 7.2

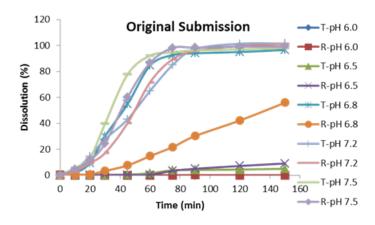
| <b>Dissolution Conditions</b> | Apparatus:         | USP-II (Paddle)                                            |  |  |  |  |  |  |  |  |
|-------------------------------|--------------------|------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                               | Speed of Rotation: | 100 rpm for acid stage and 50 rpm for buffer stage         |  |  |  |  |  |  |  |  |
|                               | Medium:            | 0.1N HCl (for 2 hours) followed by pH 7.2 Phosphate buffer |  |  |  |  |  |  |  |  |
|                               | Volume:            | 900 mL                                                     |  |  |  |  |  |  |  |  |
|                               | Temperature:       | $37^{\circ}\text{C} \pm 0.5^{\circ}\text{C}$               |  |  |  |  |  |  |  |  |

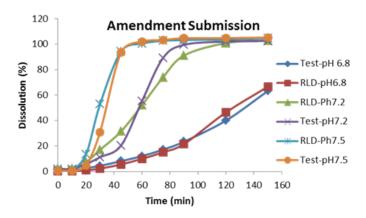

| Firm's I                                    | Proposed Specifications                                                                                                  |                                                                                                       |                 |       |       |           |           |           |           |           |           |           |            |            |                                 |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------|-------|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|---------------------------------|
| Dissolution Testing Site<br>(Name, Address) |                                                                                                                          | Cadila Healthcare Ltd., Sarkhej-Bavla, N. H. No. 8A, Moraiya, Tal.: Sanand, Dist, Ahmedabad – 382 210 |                 |       |       |           |           |           |           |           |           |           |            |            |                                 |
| Testing<br>Date                             | Product ID \ Batch No.                                                                                                   | Dosage                                                                                                | No. of          |       | Acid  | Buffe     | r stage   |           |           |           |           |           |            |            | Study<br>Report<br>Locati<br>on |
|                                             | (Test - Manufacture Date)<br>(Reference – Expiration<br>Date)                                                            | & Form                                                                                                | Dosage<br>Units |       | 2 hrs | 10<br>min | 20<br>min | 30<br>min | 45<br>min | 60<br>min | 75<br>min | 90<br>min | 120<br>min | 150<br>min |                                 |
| 12/12/2                                     | Mesalamine Delayed Release<br>Tablets USP, 800 mg<br>Lot No.: EMP203<br>Mfg Date: April, 2014                            | e 800 mg<br>Tablet                                                                                    | 24              | Mean  | 0     | 1.94      | 5.80      | 11.2      | 20.3      | 55.35     | 89.17     | 99.55     | 102.1      | 102.6      |                                 |
| 014                                         |                                                                                                                          |                                                                                                       |                 | Range |       |           |           |           |           |           |           |           |            | (b) (4     | )                               |
|                                             |                                                                                                                          |                                                                                                       |                 | %CV   |       | 92.8      | 99.2      | 88.9      | 70.6      | 35.59     | 14.77     | 2.96      | 1.76       | 1.68       |                                 |
| 12/12/2                                     | ASACOL® HD                                                                                                               | 800 mg                                                                                                | 24              | Mean  | 0     | 2.28      | 7.33      | 16.9      | 31.4      | 52.03     | 73.98     | 91.18     | 100.9      | 102.9      |                                 |
| 014                                         | (Mesalamine) Delayed<br>Release Tablets USP, 800 mg<br>Lot No: 450645 S2 and<br>451550 S3<br>Expiry: 06/2015 and 08/2015 | Tablet                                                                                                |                 | Range |       | ***       | ***       |           |           |           |           |           |            | (b) (4     |                                 |
|                                             |                                                                                                                          | i                                                                                                     |                 | %CV   |       | 152       | 131       | 109       | 96.4      | 62.58     | 38.36     | 11.08     | 3.63       | 2.40       |                                 |

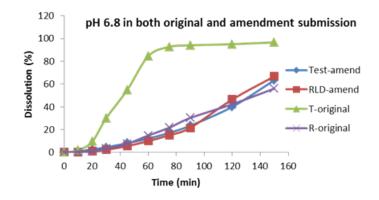

pH 7.5

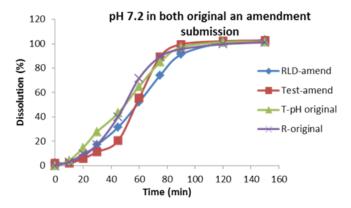

| Dissolution Conditions                      |                                                     | Apparatus:    |                                                            | USP-II (Paddle)  100 rpm for acid stage and 50 rpm for buffer stage |         |                   |       |          |         |          |          |         |          |     |        |
|---------------------------------------------|-----------------------------------------------------|---------------|------------------------------------------------------------|---------------------------------------------------------------------|---------|-------------------|-------|----------|---------|----------|----------|---------|----------|-----|--------|
|                                             |                                                     | Speed of Rota | ntion:                                                     |                                                                     |         |                   |       |          |         |          |          |         |          |     |        |
|                                             |                                                     | Medium:       | 0.1N HCl (for 2 hours) followed by pH 7.5 Phosphate buffer |                                                                     |         |                   |       |          |         |          |          |         |          |     |        |
|                                             |                                                     | Volume:       | 900 mL                                                     |                                                                     |         |                   |       |          |         |          |          |         |          |     |        |
|                                             |                                                     | Temperature:  |                                                            | 37°C ± 0.5°C                                                        |         |                   |       |          |         |          |          |         |          |     |        |
| Firm's I                                    | Proposed Specifications                             |               |                                                            |                                                                     |         |                   |       |          |         |          |          |         |          |     |        |
| Dissolution Testing Site<br>(Name, Address) |                                                     | Cadila Health | care Ltd.,                                                 | Sarkhej-Ba                                                          | vla, N. | H. No.            | 8A, N | Ioraiya, | Tal.: S | anand, D | ist, Ahn | nedabad | - 382 21 | 0   |        |
| Testing<br>Date                             | Product ID \ Batch No.<br>(Test - Manufacture Date) | Dosage        | No. of<br>Dosage                                           |                                                                     | Acid    | Buffer stage Stud |       |          |         |          |          |         |          |     |        |
|                                             |                                                     | Strength      |                                                            |                                                                     | 2 hrs   | 10                | 20    | 30       | 45      | 60       | 75       | 90      | 120      | 150 | Report |

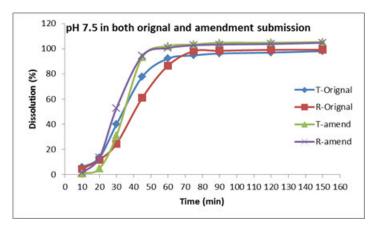
|                | (Reference – Expiration<br>Date)                                  | & Form                                | Units |       |       | min  | min  | min       | min  | min        | min        | min   | min        | min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Locati<br>on |
|----------------|-------------------------------------------------------------------|---------------------------------------|-------|-------|-------|------|------|-----------|------|------------|------------|-------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 10/17/2        | Mesalamine Delayed Release                                        | 800 mg                                | 12    | Mean  | 0     | 0.76 | 4.71 | 30.8      | 93.4 | 102.1      | 103.4      | 104.7 | 104.8      | The second of th |              |
| 014            | Tablets USP, 800 mg<br>Lot No.: EMP203<br>Mfg Date: April, 2014   | Tablet                                |       | Range | -10   |      |      |           | 88   | **         |            |       |            | (b) (4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
|                |                                                                   |                                       |       | %CV   | 489.9 | 84.8 | 84.9 | 26.9      | 6.62 | 2.10       | 1.34       | 0.99  | 1.18       | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
| 10/17/2<br>014 | ASACOL® HD<br>(Mesalamine) Delayed                                | 800 mg<br>Tablet                      | 12    | Mean  | 0     | 1.33 | 13.3 | 52.7<br>8 | 94.2 | 100.5<br>7 | 102.6<br>6 | 103.2 | 103.7<br>7 | 104.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
|                | Release Tablets USP, 800 mg<br>Lot No: 450645 S2 and<br>451550 S3 | arterial resonance of the State State |       | Range | ·     |      |      | •         | Ų    |            |            |       |            | (b) (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |
|                | Expiry: 06/2015 and 08/2015                                       |                                       |       | %CV   | 489.9 | 148  | 74.5 | 30.7      | 8.27 | 2.28       | 2.01       | 1.06  | 1.00       | 1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |


Figure 1. Dissolution Profiles





# Dissolution profile comparison between the original and amendment submission:











#### 4.2 Detailed Regulatory History (If Applicable)

None

#### 4.3 Consult Reviews

None

### 4.4 SAS Output

#### 4.4.1 In vitro dissolution (bootstrap) Codes

#### pH 6.8

```
/*-----
/ Program : f2_analysis.SAS
/ SubMacros :
/ Updated : 14 Jan 2010
/ Purpose : Dissolution F2 bootstrapping confidence interval calculations -
Percentile and BCA method
/ Notes
/ PARAMETERS: THE FOLLOWING COLUMNS SHOULD BE IN THE INPUT DATASET (EXCEL
/-----name----- -----description------
NAME OF VARIABLE
                (T, R): TEST OR REFERENCE (CHARACTER)
   TR
                LOT (CHARACTER OR NUMERIC)
    LOT
                PH (NUMERIC)
    STRENGTH STRENGTHS OF THE PRODUCTS (NUMERIC)
UNIT UNIT NUMBER (NUMERIC): 12 UNITS PER EACH LOT/PH
                DISSOLUTION RATE PERCENT (NUMERIC) E.G. AT 5 MINUTES
    X5
    X10
                DISSOLUTION RATE PERCENT (NUMERIC) E.G. AT 10 MINUTES
                DISSOLUTION RATE PERCENT (NUMERIC) E.G. AT 60 MINUTES
    X60
/-----
/ AMENDMENT HISTORY:
/ Init --Date-- -------Description------
====*/
PROC DATASETS
 LIBRARY=WORK;
 DELETE _ALL_;
RUN;
```

```
*** STEP 1: LOCATION OF DATASETS AND LOCATION FOR SAVING OUTPUT REPORTS ***;
%let STUDYDIR= C:\Users\RENP\Desktop\Documents\Completed-ANDA\GI-
COMPLE\203286Mesalamine;
LIBNAME IN "&STUDYDIR";
*** STEP 2: IF DATA ON EXCEL WORKSHEET, PROVIDE THE EXCEL WORKSHEET NAME AND
RANGE ***;
*** THIS STEP USES DDE - REQUIRES EXCEL DATASET TO BE OPEN ***;
FILENAME RAWDATA DDE 'EXCEL | pH68!R2C1:R49C18';
**** STEP 2: ENTER THE NAME OF THE DATASET FILE (EXCEL FILE) ****;
*%LET EXCELNAME = 90905DISSOLUTIONDATA.XLS;
***%LET EXCELFILE = &STUDYDIR.\&EXCELNAME;
***** STEP 5: ENTER THE NAME OF THE EXCEL WORKSHEET NAME CONTAINING STUDY
DATA ****;
/*%let sheetname = Sheet1;
proc import datafile="&excelfile"
          out=revise
          dbms=excel replace;
                sheet="&sheetname";
                getnames=yes;
                mixed=yes;
run; */
*** IF USING EXCEL DDE OPTION, ENABLE THE FOLLOWING DATA STEP ***;
data revise;
 INFILE RAWDATA;
 INPUT TR $ LOT $ PH STRENGTH UNIT X5 X10 X15 X20 X25 X30 X40 X45 X60 X80
X100 X120 X140;
run;
********************
****** PERCENTILE METHOD
****************
************************
******;
proc sort data=revise;by TR ph strength;run;
proc means data=revise noprint;
var X5 X10 X15 X20 X25 X30 X40 X45 X60 X80 X100 X120 X140;
by TR ph strength;
output out=revisesum mean=X5 X10 X15 X20 X25 X30 X40 X45 X60 X80 X100 X120
X140;
run;
```

```
data test0;set revisesum;if TR='T';
tx5=x5;tx10=x10;tx15=x15;tx20=x20;tx25=x25;tx30=x30;tx40=x40;tx45=x45;tx60=x6
0;tx80=x80;tx100=x100;tx120=x120;tx140=x140;
drop TR type X5 X10 X15 X20 X25 X30 X40 X45 X60 X80 X100 X120 X140;run;
rx5=x5;rx10=x10;rx15=x15;rx20=x20;rx25=x25;rx30=x30;rx40=x40;rx45=x45;rx60=x6
0;rx80=x80;rx100=x100;rx120=x120;rx140=x140;
drop TR _type_ X5 X10 X15 X20 X25 X30 X40 X45 X60 X80 X100 X120 X140;run;
data original; merge test0 ref0; by ph strength;
run;
data original;set original;
if (rx5>85 \text{ or } tx5>85) then do;
sum=(tx5-rx5)**2 ;f2=50*log10(100/sqrt((1+sum/1)));end;
else if (rx10>85 \text{ or } tx10>85)then do;
sum = (tx5-rx5)**2+(tx10-rx10)**2;f2=50*log10(100/sqrt((1+sum/2)));end;
else if (rx15>85 \text{ or } tx15>85) then do;
sum=(tx5-rx5)**2+(tx10-rx10)**2+(tx15-rx10)**2+(tx15-rx10)**2+(tx15-rx10)**2+(tx15-rx10)**2+(tx15-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(t
rx15)**2;f2=50*log10(100/sqrt((1+sum/3)));end;
else if (rx20>85 \text{ or } tx20>85) then do;
sum = (tx5-rx5)**2+(tx10-rx10)**2+(tx15-rx15)**2+(tx20-rx20)**2;
f2=50*log10(100/sqrt((1+sum/4)));end;
else if (rx25>85 or tx25>85) then do;
sum = (tx5 - rx5) **2 + (tx10 - rx10) **2 + (tx15 - rx15) **2 + (tx20 - rx20) **2 + (tx25 - rx25) **2;
f2=50*log10(100/sqrt((1+sum/5)));end;
else if (rx30>85 \text{ or } tx30>85) then do;
sum = (tx5-rx5)**2+(tx10-rx10)**2+(tx15-rx15)**2+(tx20-rx20)**2+(tx25-rx25)**2
+(tx30-rx30)**2;
f2=50*log10(100/sqrt((1+sum/6)));end;
else if (rx40>85 or tx40) then do;
sum = (tx5-rx5)**2+(tx10-rx10)**2+(tx15-rx15)**2+(tx20-rx20)**2+(tx25-rx25)**2
+(tx30-rx30)**2+(tx40-rx40)**2;
f2=50*log10(100/sqrt((1+sum/7)));end;
else if (rx45>85 \text{ or } tx45>85) then do;
sum = (tx5 - rx5) **2 + (tx10 - rx10) **2 + (tx15 - rx15) **2 + (tx20 - rx20) **2 + (tx25 - rx25) **2 + 
+(tx30-rx30)**2+(tx40-rx40)**2+(tx45-rx45)**2;
f2=50*log10(100/sgrt((1+sum/8)));end;
else if (rx60>85 \text{ or } tx60>85) then do;
sum = (tx5 - rx5) **2 + (tx10 - rx10) **2 + (tx15 - rx15) **2 + (tx20 - rx20) **2 + (tx25 - rx25) **2 + 
+(tx30-rx30)**2+(tx40-rx40)**2+(tx45-rx45)**2+(tx60-rx60)**2;
f2=50*log10(100/sgrt((1+sum/9)));end;
else if (rx80>85 \text{ or } tx80>85) then do;
sum = (tx5-rx5)**2+(tx10-rx10)**2+(tx15-rx15)**2+(tx20-rx20)**2+(tx25-rx25)**2
 +(tx30-rx30)**2+(tx40-rx40)**2+(tx45-rx45)**2+(tx60-rx60)**2+(tx80-rx80)**2;
f2=50*log10(100/sqrt((1+sum/10)));end;
else if (rx100>85 or tx100>85) then do;
sum = (tx5-rx5)**2+(tx10-rx10)**2+(tx15-rx15)**2+(tx20-rx20)**2+(tx25-rx25)**2
+(tx30-rx30)**2+(tx40-rx40)**2+(tx45-rx45)**2+(tx60-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx
rx80)**2+(tx100-rx100)**2;
f2=50*log10(100/sqrt((1+sum/11)));end;
else if (rx120>85 or tx120>85) then do;
sum = (tx5 - rx5) **2 + (tx10 - rx10) **2 + (tx15 - rx15) **2 + (tx20 - rx20) **2 + (tx25 - rx25) **2 + 
+(tx30-rx30)**2+(tx40-rx40)**2+(tx45-rx45)**2+(tx60-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx
rx80)**2+(tx100-rx100)**2+(tx120-rx120)**2;
f2=50*log10(100/sgrt((1+sum/12)));end;
else do;sum=(tx5-rx5)**2+(tx10-rx10)**2+(tx15-rx15)**2+(tx20-rx20)**2+(tx25-
rx25)**2
```

```
+(tx30-rx30)**2+(tx40-rx40)**2+(tx45-rx45)**2+(tx60-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx
rx80)**2+(tx100-rx100)**2+(tx120-rx120)**2+(tx140-rx140)**2;
f2=50*log10(100/sqrt((1+sum/13)));end;
f2bar=f2;
keep PH strength f2bar sum ;
run;
quit;
proc sort data=revise;by TR ph strength;run;
proc surveyselect data=revise outhits method=urs n=12 reps=10000 seed=00998
out=reviseboot;
strata TR ph strength;
run;
proc sort data=reviseboot;by TR ph strength replicate;run;
var X5 X10 X15 X20 X25 X30 X40 X45 X60 X80 X100 X120 X140;
by TR ph strength replicate;
output out=revisebootsum mean=X5 X10 X15 X20 X25 X30 X40 X45 X60 X80 X100
X120 X140;
run;
data test;set revisebootsum;if TR='T';
tx5=x5;tx10=x10;tx15=x15;tx20=x20;tx25=x25;tx30=x30;tx40=x40;tx45=x45;tx60=x6
0;tx80=x80;tx100=x100;tx120=x120;tx140=x140;
drop TR _type_ X5 X10 X15 X20 X25 X30 X40 X45 X60 X80 X100 X120 X140;run;
run;
data ref;set revisebootsum;if TR='R';
rx5=x5;rx10=x10;rx15=x15;rx20=x20;rx25=x25;rx30=x30;rx40=x40;rx45=x45;rx60=x6
0;rx80=x80;rx100=x100;rx120=x120;rx140=x140;
drop TR _type_ X5 X10 X15 X20 X25 X30 X40 X45 X60 X80 X100 X120 X140;run;
data boot;merge test ref;by ph strength replicate;
run;
data boot; set boot;
if (rx5>85 \text{ or } tx5>85) \text{ then } do;
sum=(tx5-rx5)**2; f2=50*log10(100/sqrt((1+sum/1))); end;
else if (rx10>85 or tx10>85)then do;
sum = (tx5-rx5)**2+(tx10-rx10)**2;f2=50*log10(100/sqrt((1+sum/2)));end;
else if (rx15>85 or tx15>85) then do;
sum = (tx5 - rx5) **2 + (tx10 - rx10) **2 + (tx15 - rx5) **2 + (tx15
rx15)**2;f2=50*log10(100/sqrt((1+sum/3)));end;
else if (rx20>85 \text{ or } tx20>85) then do;
sum = (tx5-rx5)**2+(tx10-rx10)**2+(tx15-rx15)**2+(tx20-rx20)**2;
f2=50*log10(100/sqrt((1+sum/4)));end;
else if (rx25>85 \text{ or } tx25>85) then do;
sum = (tx5-rx5)**2+(tx10-rx10)**2+(tx15-rx15)**2+(tx20-rx20)**2+(tx25-rx25)**2;
f2=50*log10(100/sqrt((1+sum/5)));end;
else if (rx30>85 \text{ or } tx30>85) then do;
sum = (tx5-rx5)**2+(tx10-rx10)**2+(tx15-rx15)**2+(tx20-rx20)**2+(tx25-rx25)**2
+(tx30-rx30)**2;
f2=50*log10(100/sqrt((1+sum/6)));end;
else if (rx40>85 \text{ or } tx40) then do;
```

```
sum = (tx5-rx5)**2+(tx10-rx10)**2+(tx15-rx15)**2+(tx20-rx20)**2+(tx25-rx25)**2
+(tx30-rx30)**2+(tx40-rx40)**2;
f2=50*log10(100/sqrt((1+sum/7)));end;
else if (rx45>85 \text{ or } tx45>85) then do;
sum = (tx5-rx5)**2+(tx10-rx10)**2+(tx15-rx15)**2+(tx20-rx20)**2+(tx25-rx25)**2
+(tx30-rx30)**2+(tx40-rx40)**2+(tx45-rx45)**2;
f2=50*log10(100/sgrt((1+sum/8)));end;
else if (rx80>85 or tx80>85) then do;
sum = (tx5 - rx5)**2 + (tx10 - rx10)**2 + (tx15 - rx15)**2 + (tx20 - rx20)**2 + (tx25 - rx25)**2
+(tx30-rx30)**2+(tx40-rx40)**2+(tx45-rx45)**2+(tx60-rx60)**2+(tx80-rx80)**2;
f2=50*log10(100/sqrt((1+sum/10)));end;
else if (rx100>85 or tx100>85) then do;
sum = (tx5-rx5)**2+(tx10-rx10)**2+(tx15-rx15)**2+(tx20-rx20)**2+(tx25-rx25)**2
+(tx30-rx30)**2+(tx40-rx40)**2+(tx45-rx45)**2+(tx60-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx
rx80)**2+(tx100-rx100)**2;
f2=50*log10(100/sqrt((1+sum/11)));end;
else if (rx120>85 or tx120>85) then do;
sum = (tx5 - rx5) **2 + (tx10 - rx10) **2 + (tx15 - rx15) **2 + (tx20 - rx20) **2 + (tx25 - rx25) **2 + 
+(tx30-rx30)**2+(tx40-rx40)**2+(tx45-rx45)**2+(tx60-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx
rx80)**2+(tx100-rx100)**2+(tx120-rx120)**2;
f2=50*log10(100/sqrt((1+sum/12)));end;
else do;sum=(tx5-rx5)**2+(tx10-rx10)**2+(tx15-rx15)**2+(tx20-rx20)**2+(tx25-
rx25)**2
+(tx30-rx30)**2+(tx40-rx40)**2+(tx45-rx45)**2+(tx60-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx80-rx60)**2+(tx
rx80)**2+(tx100-rx100)**2+(tx120-rx120)**2+(tx140-rx140)**2;
f2=50*log10(100/sqrt((1+sum/13)));end;
keep PH strength f2 replicate sum;
run;
quit;
proc sort data=boot;by ph strength;run;
proc summary data=boot;
var f2;
output out=bootout mean=f2 boot mean p5=f2 5th p95=f2 95th;
by ph strength;
data bootciv; merge bootout original; by ph strength; run;
proc sort data=bootciv;by strength ph;run;
proc EXPORT DATA= WORK.bootciv
                                                              OUTFILE= "&STUDYDIR.\DA15pH68BOOTF2-PERCENTILE.xlsx"
                                                              DBMS=XLSX REPLACE;
                          SHEET= "PERCENTILE";
RUN;
pH 7.2 and 7.5:
 =====
 / Program : f2_analysis.SAS
```

```
/ SubMacros :
/ Updated : 14 Jan 2010
/ Purpose : Dissolution F2 bootstrapping confidence interval calculations -
Percentile and BCA method
/ Notes
/ PARAMETERS: THE FOLLOWING COLUMNS SHOULD BE IN THE INPUT DATASET (EXCEL
FILE).
/-----name----- ------description------
NAME OF VARIABLE
    TЪ
                   (T, R): TEST OR REFERENCE (CHARACTER)
                   LOT (CHARACTER OR NUMERIC)
    LOT
    PH
                   PH (NUMERIC)
    STRENGTH STRENGTHS OF THE PRODUCTS (NUMERIC)
             UNIT NUMBER (NUMERIC) : 12 UNITS PER EACH LOT/PH
                   DISSOLUTION RATE PERCENT (NUMERIC) E.G. AT 5 MINUTES
    X10
                   DISSOLUTION RATE PERCENT (NUMERIC) E.G. AT 10 MINUTES
                   . .
                   DISSOLUTION RATE PERCENT (NUMERIC) E.G. AT 60 MINUTES
    X60
/ AMENDMENT HISTORY:
/ Init --Date-- -------Description------
====*/
PROC DATASETS
 LIBRARY=WORK;
 DELETE _ALL_;
RUN;
*** STEP 1: LOCATION OF DATASETS AND LOCATION FOR SAVING OUTPUT REPORTS ***;
%let STUDYDIR= C:\Users\RENP\Desktop\Documents\Completed-ANDA\GI-
COMPLE\203286Mesalamine;
LIBNAME IN "&STUDYDIR";
*** STEP 2: IF DATA ON EXCEL WORKSHEET, PROVIDE THE EXCEL WORKSHEET NAME AND
*** THIS STEP USES DDE - REQUIRES EXCEL DATASET TO BE OPEN ***;
FILENAME RAWDATA DDE 'EXCEL | Sheet1!R2C1:R73C14';
**** STEP 2: ENTER THE NAME OF THE DATASET FILE (EXCEL FILE) ****;
*%LET EXCELNAME = 90905DISSOLUTIONDATA.XLS;
***%LET EXCELFILE = &STUDYDIR.\&EXCELNAME;
```

```
**** STEP 5: ENTER THE NAME OF THE EXCEL WORKSHEET NAME CONTAINING STUDY
DATA ****;
/*%let sheetname = Sheet1;
proc import datafile="&excelfile"
                          out=revise
                          dbms=excel replace;
                                        sheet="&sheetname";
                                        getnames=yes;
                                        mixed=yes;
run; */
*** IF USING EXCEL DDE OPTION, ENABLE THE FOLLOWING DATA STEP ***;
data revise;
    INFILE RAWDATA;
    INPUT TR $ LOT $ PH STRENGTH UNIT X5 X10 X15 X20 X25 X30 X40 X45 X60;
run;
******;
***** PERCENTILE METHOD
********************
******;
proc sort data=revise;by TR ph strength;run;
proc means data=revise noprint;
var x5 x10 x15 x20 x25 x30 x40 x45 x60;
by TR ph strength;
output out=revisesum mean=x5 x10 x15 x20 x25 x30 x40 x45 x60;
run;
data test0;set revisesum;if TR='T';
tx5=x5;tx10=x10;tx15=x15;tx20=x20;tx25=x25;tx30=x30;tx40=x40;tx45=x45;tx60=x6
0;
drop TR _type_ x5 x10 x15 x20 x25 x30 x40 x45 x60;run;
rx5=x5;rx10=x10;rx15=x15;rx20=x20;rx25=x25;rx30=x30;rx40=x40;rx45=x45;rx60=x6
0;
drop TR type x5 x10 x15 x20 x25 x30 x40 x45 x60;run;
data original;merge test0 ref0;by ph strength;
run;
data original;set original;
if (rx5>85 or tx5>85) then do;
sum=(tx5-rx5)**2 ;f2=50*log10(100/sqrt((1+sum/1)));end;
else if (rx10>85 or tx10>85)then do;
sum = (tx5-rx5)**2+(tx10-rx10)**2; f2=50*log10(100/sqrt((1+sum/2))); end;
else if (rx15>85 \text{ or } tx15>85) then do;
sum = (tx5 - rx5) **2 + (tx10 - rx10) **2 + (tx15 - rx5) **2 + (tx15
rx15)**2;f2=50*log10(100/sgrt((1+sum/3)));end;
else if (rx20>85 \text{ or } tx20>85) then do;
sum = (tx5-rx5)**2+(tx10-rx10)**2+(tx15-rx15)**2+(tx20-rx20)**2;
```

```
f2=50*log10(100/sqrt((1+sum/4)));end;
else if (rx25>85 \text{ or } tx25>85) then do;
sum = (tx5-rx5)**2+(tx10-rx10)**2+(tx15-rx15)**2+(tx20-rx20)**2+(tx25-rx25)**2;
f2=50*log10(100/sqrt((1+sum/5)));end;
else if (rx30>85 \text{ or } tx30>85) then do;
sum = (tx5 - rx5)**2 + (tx10 - rx10)**2 + (tx15 - rx15)**2 + (tx20 - rx20)**2 + (tx25 - rx25)**2
+(tx30-rx30)**2;
f2=50*log10(100/sqrt((1+sum/6)));end;
else if (rx40>85 or tx40) then do;
\mathtt{sum} = (\texttt{tx5-rx5}) **2 + (\texttt{tx10-rx10}) **2 + (\texttt{tx15-rx15}) **2 + (\texttt{tx20-rx20}) **2 + (\texttt{tx25-rx25}) **2 + 
+(tx30-rx30)**2+(tx40-rx40)**2;
f2=50*log10(100/sqrt((1+sum/7)));end;
else if (rx45>85 \text{ or } tx45>85) then do;
sum = (tx5-rx5)**2+(tx10-rx10)**2+(tx15-rx15)**2+(tx20-rx20)**2+(tx25-rx25)**2
+(tx30-rx30)**2+(tx40-rx40)**2+(tx45-rx45)**2;
f2=50*log10(100/sqrt((1+sum/8)));end;
else do;sum=(tx5-rx5)**2+(tx10-rx10)**2+(tx15-rx15)**2+(tx20-rx20)**2+(tx25-
rx25)**2
+(tx30-rx30)**2+(tx40-rx40)**2+(tx45-rx45)**2+(tx60-rx60)**2;
f2=50*log10(100/sqrt((1+sum/9)));end;
f2bar=f2;
keep PH strength f2bar sum ;
run;
quit;
proc sort data=revise;by TR ph strength;run;
proc surveyselect data=revise outhits method=urs n=24 reps=10000 seed=00998
out=reviseboot;
strata TR ph strength;
run;
proc sort data=reviseboot;by TR ph strength replicate;run;
proc means data=reviseboot noprint;
var x5 x10 x15 x20 x25 x30 x40 x45 x60;
by TR ph strength replicate;
output out=revisebootsum mean=x5 x10 x15 x20 x25 x30 x40 x45 x60;
data test;set revisebootsum;if TR='T';
tx5=x5;tx10=x10;tx15=x15;tx20=x20;tx25=x25;tx30=x30;tx40=x40;tx45=x45;tx60=x6
0;
drop TR type x5 x10 x15 x20 x25 x30 x40 x45 x60;run;
run;
data ref;set revisebootsum;if TR='R';
rx5=x5;rx10=x10;rx15=x15;rx20=x20;rx25=x25;rx30=x30;rx40=x40;rx45=x45;rx60=x6
drop TR _type_ x5 x10 x15 x20 x25 x30 x40 x45 x60;run;
data boot;merge test ref;by ph strength replicate;
run;
data boot;set boot;
if (rx5>85 or tx5>85) then do;
sum = (tx5 - rx5)**2 ; f2 = 50*log10(100/sqrt((1+sum/1))); end;
```

```
else if (rx10>85 \text{ or } tx10>85)then do;
sum = (tx5-rx5)**2+(tx10-rx10)**2; f2=50*log10(100/sqrt((1+sum/2))); end;
else if (rx15>85 \text{ or } tx15>85) then do;
sum = (tx5-rx5)**2+(tx10-rx10)**2+(tx15-rx10)**2+(tx15-rx10)**2+(tx15-rx10)**2+(tx15-rx10)**2+(tx15-rx10)**2+(tx15-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+(tx10-rx10)**2+
rx15)**2;f2=50*log10(100/sqrt((1+sum/3)));end;
else if (rx20>85 \text{ or } tx20>85) then do;
sum = (tx5-rx5)**2+(tx10-rx10)**2+(tx15-rx15)**2+(tx20-rx20)**2;
f2=50*log10(100/sqrt((1+sum/4)));end;
else if (rx25>85 \text{ or } tx25>85) then do;
sum = (tx5-rx5)**2+(tx10-rx10)**2+(tx15-rx15)**2+(tx20-rx20)**2+(tx25-rx25)**2;
f2=50*log10(100/sgrt((1+sum/5)));end;
else if (rx30>85 \text{ or } tx30>85) then do;
sum = (tx5-rx5)**2+(tx10-rx10)**2+(tx15-rx15)**2+(tx20-rx20)**2+(tx25-rx25)**2
+(tx30-rx30)**2;
f2=50*log10(100/sqrt((1+sum/6)));end;
else if (rx40>85 \text{ or } tx40) then do;
sum = (tx5-rx5)**2+(tx10-rx10)**2+(tx15-rx15)**2+(tx20-rx20)**2+(tx25-rx25)**2
+(tx30-rx30)**2+(tx40-rx40)**2;
f2=50*log10(100/sqrt((1+sum/7)));end;
else if (rx45>85 \text{ or } tx45>85) then do;
sum = (tx5-rx5)**2+(tx10-rx10)**2+(tx15-rx15)**2+(tx20-rx20)**2+(tx25-rx25)**2
+(tx30-rx30)**2+(tx40-rx40)**2+(tx45-rx45)**2;
f2=50*log10(100/sqrt((1+sum/8)));end;
else do;sum=(tx5-rx5)**2+(tx10-rx10)**2+(tx15-rx15)**2+(tx20-rx20)**2+(tx25-
rx25)**2
+(tx30-rx30)**2+(tx40-rx40)**2+(tx45-rx45)**2+(tx60-rx60)**2;
f2=50*log10(100/sgrt((1+sum/9)));end;
keep PH strength f2 replicate sum;
run;
quit;
proc sort data=boot;by ph strength;run;
proc summary data=boot;
var f2;
output out=bootout mean=f2 boot mean p5=f2 5th p95=f2 95th;
by ph strength;
data bootciv; merge bootout original; by ph strength; run;
proc sort data=bootciv;by strength ph;run;
proc EXPORT DATA= WORK.bootciv
                           OUTFILE= "&STUDYDIR.\DA15pH7BOOTF2-PERCENTILE.xlsx"
                           DBMS=XLSX REPLACE;
           SHEET= "PERCENTILE";
RUN;
```

#### 4.5 Additional Attachments

None

#### BIOEQUIVALENCE DEFICIENCY TO BE PROVIDED TO THE APPLICANT

ANDA: 203286

APPLICANT: Zydus Pharmaceuticals (USA) Inc.

DRUG PRODUCT: Mesalamine Delayed Release Tablets USP, 800 mg

The Division of Bioequivalence II (DB II) has completed its review of your submission(s) acknowledged on the cover sheet. The following deficiency has been identified:

At pH 6.8, there is a significant difference in the dissolution profile for the test product between the original (07/12/2011) and amendment (02/24/2015) submissions. Please provide an explanation for this difference. In addition, please submit 12 units dissolution data of the test and reference products in buffers with pH around 6.8 (e.g. pH (b) (4) using the following dissolution method on your test product:

Apparatus: USP Apparatus II (paddle)

Pretreatment Stage: 2 hours in 0.1 N HCl at 100 rpm

**Evaluation Stage:** 

Each of

(2) pH 6.8 Phosphate buffer at 50 rpm (b) (4)

Volume: 900 mL Temperature: 37°C

Sample times: 0, 10, 20, 30, 45, 60, 75, 90, 120, 150, 180, 240, 300, and 360 minutes

or as needed for profile comparison.

Please submit individual dissolution data as well as the mean, range, %coefficient of variation (CV) at each time point for the total numbers of tablets tested including dates of dissolution testing, manufacture date and expiration date as applicable. Besides the dissolution summary table in the eCTD format, please submit the individual unit dissolution data and mean values in excel or sas transport format.

# Sincerely yours,

{See appended electronic signature page}

Ethan M. Stier, Ph.D., R.Ph Acting Director Division of Bioequivalence II Office of Generic Drugs Center for Drug Evaluation and Research

# 4.6 Outcome Page

ANDA: 203286

Completed Assignment for 203286 ID: 25577

Reviewer:Ren, PingDate Completed:Verifier:,Date Verified:

**Division:** Division of Bioequivalence

Description: Mesalamine Delayed Release Tablets USP, 800 mg

# Productivity:

| ID    | Letter<br>Date | Productivity<br>Category             | Sub Category                                                           | Productivity | Subtota<br>l |             |               |
|-------|----------------|--------------------------------------|------------------------------------------------------------------------|--------------|--------------|-------------|---------------|
| 25577 | 2/24/2014      | Bioequivalence<br>Study<br>(REGULAR) | In Vitro Study<br>(nasal or other<br>dosage forms,<br>each study type) | 1            | 1            | Edit        | <u>Delete</u> |
| 25577 | 2/24/2014      | Bioequivalence<br>Study<br>(REGULAR) | In Vitro Study<br>(nasal or other<br>dosage forms,<br>each study type) | 1            | 1            | Edit        | <u>Delete</u> |
| 25577 | 2/24/2014      | Bioequivalence<br>Study<br>(REGULAR) | In Vitro Study<br>(nasal or other<br>dosage forms,<br>each study type) | 1            | 1            | Edit        | <u>Delete</u> |
| 25577 | 2/24/2014      | Bioequivalence<br>Study<br>(REGULAR) | In Vitro Study<br>(nasal or other<br>dosage forms,<br>each study type) | 1            | 1            | <u>Edit</u> | <u>Delete</u> |
|       |                |                                      |                                                                        | Total:       | 4            |             |               |

# DIVISION OF BIOEQUIVALENCE REVIEW

| ANDA No.                                           | 203286                                                                               |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |  |  |  |  |
|----------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|--|--|
| Drug Product Name                                  | Mesalamine Delayed Rel                                                               | ease Tabl                       | ets USP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |  |  |  |  |  |
| Strength(s)                                        | 800 mg                                                                               |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |  |  |  |  |
| Applicant Name                                     | Zydus Pharmaceuticals (USA) Inc.                                                     |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |  |  |  |  |
| Address                                            | 73, Route 31 North,<br>Pennington, NJ 08534                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |  |  |  |  |
| Applicant's Point of Contact                       | G. Srinivas Zydus Pharmaceuticals USA Inc., 73, Route 31 North, Pennington, NJ 08534 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |  |  |  |  |
| Contact's Telephone Number                         | 609-730-1900                                                                         |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |  |  |  |  |
| Contact's Fax Number                               | 609-730-1999                                                                         |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |  |  |  |  |
| Original Submission Date(s)                        | 07/12/2011                                                                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |  |  |  |  |
| First Generic                                      | Yes                                                                                  |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |  |  |  |  |
| Submission Date(s) of<br>Amendment(s) Under Review | 03/13/2012 amendment f                                                               | or LTSS                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |  |  |  |  |
| Reviewer                                           | Ping Ren, Ph.D.                                                                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |  |  |  |  |
|                                                    |                                                                                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |  |  |  |  |
| Study Number (s)                                   | # MSN-P0-732                                                                         | # MSN-                          | P0-733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |  |  |  |  |  |
| Study Type (s)                                     | Fasting                                                                              | Fed                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | In vitro BE study |  |  |  |  |  |
| Strength (s)                                       | 800 mg                                                                               | 800 mg                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 800 mg            |  |  |  |  |  |
| Clinical Site                                      | Algorithme Pharma Inc.                                                               | 530                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2005              |  |  |  |  |  |
| Clinical Site Address                              | Algorithme Pharma Inc.<br>1200 Beaumont Ave.<br>Mount-Royal, Quebec, C<br>H3P 3P1    | anada                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |  |  |  |  |
| Analytical Site                                    |                                                                                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (b) (4            |  |  |  |  |  |
| Analytical Site Address                            |                                                                                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |  |  |  |  |
| OSI Status                                         | Inadequate pending ana                                                               | lytical si                      | te inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |  |  |  |  |  |
| OVERALL REVIEW RESULT                              | Inadequate pending and study                                                         | - Independent of the constraint | AND SELECTION OF THE SE | d in vitro BE     |  |  |  |  |  |
| REVISED/NEW DRAFT<br>GUIDANCE INCLUDED             | NO                                                                                   |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |  |  |  |  |
| BIOEQUIVALENCE STUDY<br>TRACKING/SUPPORTING        | STUDY/TEST TYPE                                                                      |                                 | STRENGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | REVIEW<br>RESULT  |  |  |  |  |  |

| DOCUMENT# |                               |        |            |
|-----------|-------------------------------|--------|------------|
| 1         | Dissolution                   | 800 mg | Adequate   |
| 1         | Fasting Study                 | 800 mg | Adequate   |
| 1         | Fed Study                     | 800 mg | Adequate   |
| 4         | In vitro BE Dissolution study | 800 mg | Inadequate |

1

#### 1 EXECUTIVE SUMMARY

This application contains the results of fasting and fed bioequivalence (BE) studies comparing a test product Mesalamine Delayed Release Tablets, 800 mg, to the corresponding reference product Asacol® HD (Mesalamine Delayed Release) tablets, 800 mg. Each of the BE studies was designed as a single-dose, three-way, partial replicated crossover study in healthy male and female subjects. The applicant provided evidence that, under fasting and fed conditions, the reference product met FDA's criteria to be classified as a highly variable drug with respect to AUCt, AUC<sub>8-48</sub> and Cmax. The reference-scaled average bioequivalence approach was used to calculate bioequivalence statistics for AUCt, AUC<sub>8-48</sub> and Cmax in the fasting and fed BE studies. The results are summarized in the tables below.

| Mesalamine Delayed Release Tablets USP Dose 1 X 800 mg Fasting Bioequivalence Study No. MSN-P0-732, N= 83 (Male=51 and Female=32) |              |           |           |                   |             |         |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|-----------|-------------------|-------------|---------|--|--|--|--|--|--|
| Parameter                                                                                                                         | T/R<br>Ratio | s2wr      | sWR       | Criteria<br>Bound | Method Used | OUTCOME |  |  |  |  |  |  |
| LAUCT<br>(0-120)                                                                                                                  | 1.18         | 0.6606511 | 0.8128045 | -0.362881         | Scaled/PE   | PASS    |  |  |  |  |  |  |
| LAUC8-48                                                                                                                          | 1.21         | 0.6612052 | 0.8131452 | -0.347193         | Scaled/PE   | PASS    |  |  |  |  |  |  |
| LCMAX                                                                                                                             | 1.23         | 0.7662244 | 0.8753424 | -0.402449         | Scaled/PE   | PASS    |  |  |  |  |  |  |

| Mesalamine Delayed Release Tablets USP<br>Dose 1 X 800 mg<br>Fed Bioequivalence Study No. MSN-P0-733, N= 70 (Male=48 and Female=22) |              |           |           |                   |             |         |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|-----------|-------------------|-------------|---------|--|--|--|--|--|--|
| Parameter                                                                                                                           | T/R<br>Ratio | s2wr      | sWR       | Criteria<br>Bound | Method Used | OUTCOME |  |  |  |  |  |  |
| LAUCT<br>(0-120)                                                                                                                    | 0.98         | 0.7193513 | 0.8481458 | -0.422984         | Scaled/PE   | PASS    |  |  |  |  |  |  |
| LAUC8-48                                                                                                                            | 0.96         | 0.8018692 | 0.8954715 | -0.467636         | Scaled/PE   | PASS    |  |  |  |  |  |  |
| LCMAX                                                                                                                               | 1.01         | 1.3412103 | 1.1581063 | -0.818653         | Scaled/PE   | PASS    |  |  |  |  |  |  |

Per guidance, AUC<sub>0+</sub> is recommended in place of AUC<sub>inf</sub> because the Kel could not be accurately measured for mesalamine DR product. In the table above, the 95% upper confidence bound for AUC<sub>0+</sub>, AUC<sub>8-48</sub>, and Cmax in the fasting and fed BE studies are negative. The point estimate (test/reference geometric mean ratio) for AUC<sub>0+</sub>, AUC<sub>8-48</sub>.

and Cmax are within the range of 0.80 to 1.25. Hence, the fasting and fed studies meet the BE acceptance criteria of reference scaled analysis for log-transformed AUC<sub>0-t</sub>, AUC<sub>8-48</sub>, and Cmax of Mesalamine Delayed Release Tablets, 800 mg. The fasting and fed studies are acceptable.

In addition to in vivo fasting and fed BE studies, the guidance also recommends comparative in vitro BE dissolution studies (using USP Apparatus II at 50 rpm) to be conducted in pH 4.5, 6.0, 6.5, 6.8, 7.2 and 7.5 phosphate buffer representative of the GI tract pH variations. Yet, the firm did not submit any dissolution data for pH 4.5 Acetate buffer in the current application. Also, the mean values (f2) in pH 6.8 and pH 7.5 phosphate buffer are less than 50 and the lower bound of 90% confidence interval ("CI") for the f2 test comparing test vs. RLD in pH 6.8, pH 7.2, and pH 7.5 phosphate buffer is lower than those comparing the RLD against itself under the same conditions. These values suggest that the dissolution profiles of the test product are significantly different from those of the corresponding reference under these conditions. Therefore, the in vitro BE (comparative dissolution) studies under pH 6.8, 7.2 and 7.5 buffer are not acceptable. Due to the high variability of firm submitted dissolution data conducted in multimedia, the firm is requested to repeat comparative dissolution testing on its fresh test product using a larger sample size of tablets (e.g. 24 unites for test and two lots of unexpired RLD product) to provide a better estimate of the mean difference, or take other appropriated steps as necessary to reduce the variability for the purpose of achieving accurate f2 calculation.

The firm conducted quality control dissolution testing using the USP method [500 mL of 0.1N HCl (Acid Stage A) for 2 hrs, followed by 900 mL of Phosphate buffer, pH 6.0 (Buffer Stage B) for 1 hr and 900 mL of Phosphate buffer, pH 7.2 (Buffer Stage C) using apparatus 2 (Paddle) at 100 rpm for stage A and B and at 50 rpm for stage C]<sup>1</sup>. The firm's proposed specifications are the same as the USP specifications (Acid Stage: NMT 1% in 2 hours; Buffer Stage I: NMT 1% in 1 hour; Buffer Stage II: NLT 80% (Q) in 90 minutes). The quality control dissolution testing with the USP method is acceptable. The DB II acknowledges that the firm will follow the USP method and specifications.

A routine inspection of the clinical site, Algorithme Pharma Inc. 1200 Beaumont Ave. Mount-Royal Quebec, was requested for ANDA202172 on 10/18/2010 and was completed 2/7/2011 with an outcome of NAI.

A routine inspection of the analytical site,

(b) (4)

was requested for this parent ANDA 203286 on 3/8/2012 and is pending.

The application is incomplete pending the results of in vitro comparative dissolution testing and OSI analytical site inspection.

<sup>&</sup>lt;sup>1</sup> DARRTS: REV-BIOEQ-02 (Dissolution Review) ANDA203286, Final date: 02/16/2012.

# 2 TABLE OF CONTENTS

| I | Exe  | ecutive Summary                             | 2   |
|---|------|---------------------------------------------|-----|
| 2 | Tab  | ole of Contents                             | 4   |
| 3 | Sub  | omission Summary                            | 5   |
|   | 3.1  | Drug Product Information                    | 5   |
|   | 3.2  | PK/PD Information                           | 5   |
|   | 3.4  | OGD Recommendations for Drug Product        | 9   |
|   | 3.5  | Contents of Submission.                     |     |
|   | 3.6  | Pre-Study Bioanalytical Method Validation   | 12  |
|   | 3.7  | In Vivo Studies                             | 14  |
|   | 3.8  | Formulation                                 | 19  |
|   | 3.9  | In Vitro Dissolution (quality controls)     | 19  |
|   | 3.10 | In vitro BE studies                         | 20  |
|   | 3.11 | Waiver Request(s)                           | 24  |
|   | 3.12 | Deficiency Comments                         | 24  |
|   |      |                                             |     |
|   | 3.14 | Comments for Other OGD Disciplines          | 26  |
| 4 | App  | pendix                                      |     |
|   | 4.1  | Individual Study Reviews                    |     |
|   | 4.1. | .1 Single-dose Fasting Bioequivalence Study | 27  |
|   | 4.   | .1.1.1 Study Design                         | 27  |
|   | 4.   | .1.1.2 Clinical Results                     | 30  |
|   | 4.   | .1.1.3 Bioanalytical Results                | 35  |
|   |      | .1.1.4 Pharmacokinetic Results              |     |
|   | 4.1. | .2 Single-dose Fed Bioequivalence Study     | 44  |
|   | 4.   | .1.2.1 Study Design                         | 44  |
|   | 4.   | .1.2.2 Clinical Results                     | 47  |
|   | 4.   | .1.2.3 Bioanalytical Results                |     |
|   | 4.   | .1.2.4 Pharmacokinetic Results              |     |
|   | 4.2  | Formulation Data                            |     |
|   | 4.3  | Dissolution Data                            |     |
|   | 4.3. |                                             |     |
|   | 4.3. |                                             |     |
|   | 4.4  | Detailed Regulatory History (If Applicable) |     |
|   | 4.5  | Consult Reviews                             |     |
|   | 4.6  | SAS Output                                  |     |
|   | 4.6. | 6 J                                         |     |
|   | 4.6. |                                             |     |
|   | 4.6. |                                             |     |
|   | 4.6. | J - 1                                       |     |
|   |      | Additional Attachments                      |     |
|   | 4.7. |                                             |     |
|   | 4.7. |                                             |     |
|   | 4.7. |                                             |     |
|   | 4.8  | Outcome Page                                | 167 |

Template Version: 20-NOV-07

#### 3 SUBMISSION SUMMARY

# 3.1 Drug Product Information

| Test Product Mesalamine Delayed Release Tablets USP, 800 mg       |                                                                                    |  |  |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|
| Reference Product Asacol® HD (Mesalamine Delayed Release) tablets |                                                                                    |  |  |
| RLD Manufacturer WARNER CHILCOTT LLC                              |                                                                                    |  |  |
| NDA No.                                                           | N021830                                                                            |  |  |
| RLD Approval Date                                                 | May 29, 2008                                                                       |  |  |
| Indication                                                        | Asacol® HD is indicated for the treatment of moderately active ulcerative colitis. |  |  |

<sup>\*</sup>Asacol® HD was manufactured and marketed by Procter and Gamble (P&G) before February 12, 2010. On February 12, 2010, the firm notified the FDA that the corporate name and/or address had been changed from Procter and Gamble Pharmaceuticals, Inc. to Warner Chilcott Pharmaceuticals Inc<sup>2</sup>.

# 3.2 PK/PD Information<sup>3</sup>

| Mechanism       | The mechanism of action of mesalamine is unknown, but appears to be topical rather than systemic. Mucosal production of arachidonic acid (AA) metabolites, both through the cyclooxygenase pathways, i.e., prostanoids, and through the lipoxygenase pathways, i.e., leukotrienes (LTs) and hydroxyeicosatetraenoic acids (HETEs), is increased in patients with chronic inflammatory bowel disease, and it is possible that mesalamine diminishes inflammation by blocking cyclooxygenase and inhibiting prostaglandin (PG) production in the colon. |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bioavailability | The action of mesalamine appears to be topical rather than systemic.  Based on cumulative urinary recovery of mesalamine and N-Ac-5-ASA from single dose studies in healthy volunteers, approximately 20% of the orally administered mesalamine in Asacol HD tablets is systemically absorbed, leaving the remainder available for topical action and excretion in the feces.                                                                                                                                                                         |
| Food Effect     | A high fat meal does not affect the extent of systemic exposure to mesalamine after single-dose administration of Asacol HD, but mesalamine Cmax decreases by 47% and Tmax is delayed by 14 hours under fed conditions.                                                                                                                                                                                                                                                                                                                               |
| Tmax            | 10 to 16 hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Metabolism      | Plasma concentrations of mesalamine (5-aminosalicylic acid; 5-ASA) and its metabolite, N-acetyl-5-aminosalicylic acid (N-Ac-5-ASA) are highly variable following administration of Asacol HD tablets.  The absorbed mesalamine is rapidly acetylated in the gut mucosal wall and by the liver to N-Ac-5-ASA which is excreted mainly by the kidney.                                                                                                                                                                                                   |
| Excretion       | The absorbed mesalamine is rapidly acetylated in the gut mucosal wall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

<sup>&</sup>lt;sup>2</sup> DARRTS: COR-NDAACK-06 (Change of Applicant Name/Address) NDA021830, Final date 02/26/2010.

<sup>&</sup>lt;sup>3</sup> Labeling repository: http://dailymed.nlm.nih.gov/dailymed/lookup.cfm?setid=03a3bff5-e652-4771-9bf7-3b6850423cc5#nlm34090-1

Template Version: 20-NOV-07

|                               | and by the liver to N-Ac-5-ASA which is excreted mainly by the kidney.  Approximately 20% of the orally administered mesalamine in Asacol HD tablets is systemically absorbed, leaving the remainder available for topical action and excretion in the feces.                                                                                                                                                                                                                                                                                         |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Half-life                     | 12.6 hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Drug Specific Issues (if any) | One Asacol HD 800 mg tablet has not been shown to be bioequivalent to two Asacol 400 mg tablets. Therefore, one Asacol 800 tablet has not been shown to be interchangeable with two 400 mg Asacol tablets.  Instruct patients to swallow the Asacol HD tablets whole, taking care not to break, cut, or chew the tablets, because the coating is an important part of the delayed-release formulation.  The most serious adverse reactions: Renal impairment, including renal failure (rare) Acute exacerbation of colitis Hypersensitivity reactions |

# 3.3 OGD Recommendations History

1. The OB lists the following mesalamine modified release products as currently marketed products:

| Application<br>No | RLD | Active<br>Ingredient | Dosage<br>Form;<br>Route               | Strength                  | Proprietary<br>Name | Applicant                 | Approval date                    |
|-------------------|-----|----------------------|----------------------------------------|---------------------------|---------------------|---------------------------|----------------------------------|
| N022000           | Yes | Mesalamine           | Tablet,<br>Delayed<br>Release;<br>Oral | 1.2 g                     | Lialda®             | Shire                     | Jan 16,<br>2007                  |
| N019651           | Yes | Mesalamine           | Tablet,<br>Delayed<br>Release;<br>Oral | 400 mg                    | Asacol®             | Warner<br>Chilcott<br>Llc | Jan 31,<br>1992                  |
| N021830           | Yes | Mesalamine           | Tablet,<br>Delayed<br>Release;<br>Oral | 800 mg                    | Asacol<br>HD®       | Warner<br>Chilcott<br>Llc | May 29,<br>2008                  |
| N204412           | Yes | Mesalamine           | Capsule,<br>Delayed<br>release; Oral   | 400 mg                    | DELZICOL            | Warner<br>Chilcott<br>Llc | Feb 1,<br>2013                   |
| N 020049          | Yes | Mesalamine           | Capsule,<br>extended<br>release; Oral  | 500mg<br>(also 250<br>mg) | Pentasa             | Shire                     | Jul 8, 2004<br>(May 10,<br>1993) |
| N022301           | Yes | Mesalamine           | Capsule,<br>extended<br>release; Oral  | 375 mg                    | APRISO              | SALIX<br>PHARMS           | Oct 31,<br>2008                  |

Asacol (delayed-release tablet) was the first mesalamine oral product approved on June 31, 1992 for the treatment of mildly to moderately active ulcerative colitis (UC) and for the maintenance of remission of UC. Soon after that, Pentasa (extended-

release capsule, 250 mg) was approved on May 10, 1993 for the induction of remission and for the treatment of patients with mildly to moderately active UC. Pentasa 500 mg strength was approved on July 8, 2004 (NDA 20-049/SCS-015) based on formulation proportionality and an in vivo-in vitro correlation, which has been established for the 250 mg strength (NDA 20-049/SCS-013)<sup>4</sup>. Four newer RLDs were approved recently, namely Lialda (January 16, 2007), Asacol HD (May 29, 2008), Apriso (October 31, 2008) and Delzicol (Feb. 2013), all based on clinical trials.



2. Shire Pharmaceuticals (the Pentasa sponsor) filed a Citizen Petition (CP, No. FDA-2008-P-0507) on September 10, 2008, and Warner Chilcott Company (the Asacol and Asacol HD sponsor) filed a CP Docket No. FDA-2010-P-0111) on February 22, 2010. The FDA issued the response to both citizen petitions on August 20, 2010. In the CP response, FDA concluded that 'bioequivalence of mesalamine delayed release tablets (RLD: Asacol and Asacol HD) is recommended to be demonstrated by equivalence of pharmacokinetic profiles and equivalent in vitro drug release (dissolution) under multiple conditions representative of the conditions in the GI tract.' FDA also concluded that 'the decision about generic products referencing Asacol should also apply to generic products referencing Pentasa and other mesalamine modified release products (Apriso and Lialda)<sup>6</sup>.

The Agency response to the Asacol and Pentasa petitions did not describe the appropriate PK metrics and the comparative dissolution test conditions. The OGD later summarized the appropriate PK metrics and the comparative BE dissolution test conditions recommended for five mesalamine oral products as follows:

## In Vitro BE studies

Table 1: Recommendations for comparative dissolution testing (Note PB is Phosphate Buffer)

| Product | Strength | Apparatus   | Speed (rpm)         | Pretreatment   | Evaluation Stage          | Volume | Sampling     |
|---------|----------|-------------|---------------------|----------------|---------------------------|--------|--------------|
|         | (mg)     |             |                     | Stage          |                           | (mL)   |              |
| Asacol  | 400      | II (paddle) | 100 rpm for         | 2 hours in 0.1 | Each of                   | 900    | 0, 10, 20,   |
|         |          |             | pretreatment stage; | N HCl (500     | (1) pH 4.5 Acetate buffer |        | 30, 45, 60,  |
| Asacol  | 800      |             | 50 rpm for          | mL)            | (2) pH 6.0 PB             |        | 75, 90, 120, |
| HD      |          |             | evaluation stage.   |                | (3) pH 6.5 PB             |        | 150 min      |
|         |          |             |                     |                | (4) pH 6.8 PB             |        | or as        |

<sup>4 \\</sup>cdsnas\OGDS6\CONTROLS\2004-docs\04-293.pdf.

<sup>&</sup>lt;sup>5</sup> Asacol and Pentasa Citizen Petition Response \\cdsnas\OGDS6\CONTROLS\2008-docs\08-1019.pdf; \\cdsnas\OGDS6\CONTROLS\2010-docs\10-0151.pdf.

 $<sup>$$ \</sup>frac{GDS6\CONTROLS\2008-docs\08-1019.pdf}{0151.pdf}; \cdsnas\CONTROLS\2010-docs\10-0151.pdf}$ 

|         |           |             |         |      | (5) pH 7.2 PB<br>(6) pH 7.5 PB                                                    |     | needed for<br>profile<br>comparison<br>(b) (4) |
|---------|-----------|-------------|---------|------|-----------------------------------------------------------------------------------|-----|------------------------------------------------|
| Lialda  | 1200      | II (paddle) |         |      |                                                                                   |     | (0) (4                                         |
| Pentasa | 250 / 500 | II (paddle) | 100 rpm | None | Each of (1) 0.1 N HCl (2) pH 4.5 Acetate buffer                                   | 900 | 1, 2, 4, 6, 8,<br>and 12<br>hours or as        |
|         |           |             |         |      | (3) pH 6.0 PB<br>(4) pH 6.5 PB<br>(5) pH 6.8 PB<br>(6) pH 7.2 PB<br>(7) pH 7.5 PB |     | needed for<br>profile<br>comparison            |
| Apriso  | 375       |             |         |      |                                                                                   |     | (b) (4                                         |
|         |           |             |         |      |                                                                                   |     |                                                |

Please note that Delzicol was approved after the CP and guidance were issued. The BE recommendation for this RLD is under review.

Selection of partial AUC matrix, AUC8-48 for mesalamine DR tablet (please note this matrix does not apply to Apriso and Pentosa as they are ER capsules)<sup>7</sup>

The original OGD recommendation for partial AUC is AUC0-Tmax and AUCtmax-24 based on simulation data. The recommendation was changed to AUC 8-48 due to the following:

| The NDA sponsor                           | (b) (4) Asacol 4         | 00 mg tablets due to the in the Asacol |
|-------------------------------------------|--------------------------|----------------------------------------|
| existence of dibutyl phthalate (Di        | BP). DBP serves as a     | in the Asacol                          |
| formulation and is believed to ha         | ve adverse reproducti    | elopmental effects                     |
| based on recently publication in a        | animal studies. Warner ( | Chilcott submitted an IND              |
| 026093 on 12/29/2010 which inc            | luded study protocol, PF |                                        |
| response, AUC <sub>8-48</sub> was recomme | nded                     | (b) (4)                                |
|                                           |                          |                                        |
|                                           |                          | ) t                                    |
|                                           |                          |                                        |
|                                           |                          |                                        |

On October 28, 2011, a meeting was held among OGD, OCP, ONDQA, and ORP to discuss the differences in Asacol BE recommendation. OGD agreed with OND on

<sup>&</sup>lt;sup>7</sup> The draft pAUC matric for Apriso and Pentosa are AUC0-3 and AUC3-t. They are under review pending CP#FDA-2013-P-0470

the partial AUC<sub>8-48</sub> based on the following reasons: (1) AUC<sub>8-48</sub> reflects the absorption in the colon, which is the site of action; (2) the variability of AUC<sub>Tmax</sub> is too high and it might be over-discriminative (AUC<sub>8-48</sub> is highly correlated with AUC<sub>t).</sub> However, since Asacol and other mesalamine oral products are locally acting, it is important to have profile similarity between the reference product and the generic product to ensure they have similar delivery in the gastrointestinal tract. Thus OGD may evaluate other pAUCs during the review process as supportive information. To aid this evaluation and to ensure the best possible characterization of drug absorption by AUC8-48, OGD recommends dense sampling in the time between Tmax and 24 hours.

3. Warner Chilcott Company filed another Citizen Petition (Docket No. FDA-2012-P-1087) on October 14, 2012 requesting changes to the pAUC time interval from AUC8-48 to AUC0-12 and AUC12-48 existing guidance. In the FDA's response issued Mar., 2013, the FDA stated that it "denies your specific requests that we change our bioequivalence recommendations, though we grant your request that FDA clarify its position on the within-subject variability of Asacol and Asacol HD and the relevance of that variability to use of the reference-scaled approach for demonstrating bioequivalence in highly-variable drug products". Therefore, the FDA continues to recommend AUC8-48.

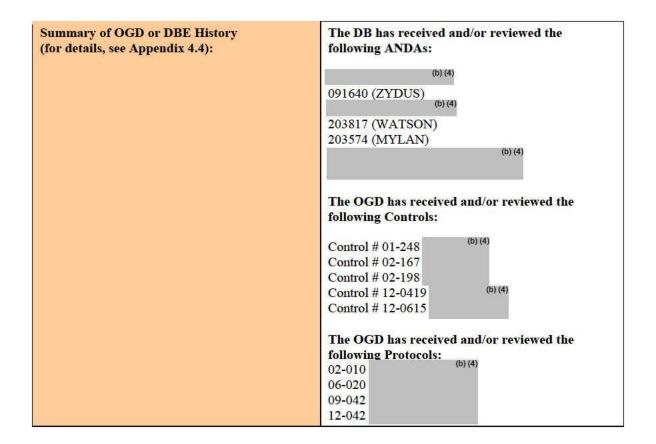
## 3.4 OGD Recommendations for Drug Product

| 1. | Type of study:       | Fasting                                                                                                                                                               |  |  |  |  |
|----|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|    | Design:              | Single-dose, partially or fully replicated crossover design, in-vivo                                                                                                  |  |  |  |  |
|    | Strength:            | 800 mg                                                                                                                                                                |  |  |  |  |
|    | Subjects:            | Normal healthy males and females, general population. Females should not be pregnant, and if applicable, should practice abstention or contraception during the study |  |  |  |  |
|    | Additional Comments: | Other study designs are acceptable if appropriate. Specific recommendations are provided below.                                                                       |  |  |  |  |

| 2. | Type of study:       | Fed                                                                                                                                                                   |  |  |  |  |
|----|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|    | Design:              | Single-dose, partially or fully replicated crossover design, in-vivo                                                                                                  |  |  |  |  |
|    | Strength:            | 800 mg                                                                                                                                                                |  |  |  |  |
|    | Subjects:            | Normal healthy males and females, general population. Females should not be pregnant, and if applicable, should practice abstention or contraception during the study |  |  |  |  |
|    | Additional Comments: | Other study designs are acceptable if appropriate. Specific recommendations are provided below.                                                                       |  |  |  |  |

<sup>&</sup>lt;sup>8</sup> Dockets Search at regulations.gov (<a href="http://www.regulations.gov/#!home">http://www.regulations.gov/#!home</a>); Search: FDA-2012-P-1087; see FDA/CDER to Warner Chilcott, LLC – Petition Partial Approval and Denial and Acknowledgement Letter to Alvin Howard (Warner Chilcott Company, LLC); Last Accessed Date: 04/03/2013

Template Version: 20-NOV-07


| 3. | Type of study:       | In vitro comparative dissolution study 800 mg                                                                                                                                                                                             |  |  |  |  |
|----|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|    | Strength             |                                                                                                                                                                                                                                           |  |  |  |  |
|    | Apparatus:           | USP Apparatus 2 (paddle)                                                                                                                                                                                                                  |  |  |  |  |
|    | Pretreatment Stage:  | 2 hours in 0.1 N HCl at 100 rpm                                                                                                                                                                                                           |  |  |  |  |
|    | Evaluation Stage:    | Each of (1) pH 4.5 Acetate buffer at 50 rpm (2) pH 6.0 Phosphate buffer at 50 rpm (3) pH 6.5 Phosphate buffer at 50 rpm (4) pH 6.8 Phosphate buffer at 50 rpm (5) pH 7.2 Phosphate buffer at 50 rpm (6) pH 7.5 Phosphate buffer at 50 rpm |  |  |  |  |
|    | Volume:              | 900 mL                                                                                                                                                                                                                                    |  |  |  |  |
|    | Temperature:         | 37°C                                                                                                                                                                                                                                      |  |  |  |  |
|    | Sample times:        | 0, 10, 20, 30, 45, 60, 75, 90, 120, 150, 180, 240, 300, and 360 minutes or as needed for profile comparison                                                                                                                               |  |  |  |  |
|    | Additional Comments: | The applicant should use at least 12 tablets per test. The f2 metric will be used to compare dissolution profiles.                                                                                                                        |  |  |  |  |

| Analytes to measure (in plasma):       | Mesalamine in plasma 90% CI of Mesalamine and acceptable in vitro comparative dissolution study                                                                                                                                                                                     |  |  |  |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Bioequivalence based on:               |                                                                                                                                                                                                                                                                                     |  |  |  |
| Waiver request of in-vivo testing:     | Not applicable                                                                                                                                                                                                                                                                      |  |  |  |
| Source of most recent recommendations: | http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM320003.pdf  The above Guidance is based on FDA's response to  (b) (4) Control# 12-0615 on September 20, 2010 reviewed by the scientific team. \\cdsnas\OGDS6\CONTROLS\2012-docs\12-0615.pdf |  |  |  |

#### Additional comments:

# Additional comments regarding the BE study with PK endpoints:

- (1). Applicants may consider using a reference-scaled average bioequivalence approach for mesalamine. If using this approach, the applicant should provide evidence of high variability in the bioequivalence parameters (i.e., within-subject variability > 30%) for the reference product. For general information on this approach refer to the Progesterone Capsule Guidance for additional information regarding highly variable drugs.
- (2). For both fasting and fed studies, the following PK parameters are recommended to be evaluated: Log-transformed AUC8-48, AUC0-t, and C max, where AUC8-48 is the area under the plasma concentration vs. time curve from 8 to 48 hours, AUC0-t is the area under the curve from 0 hours to the last measurable time point, and C max is the maximum plasma concentration. Applicants should have extensive sampling points around T max to have accurate estimation of C max and T max, and at least four non-zero measurements of concentration are recommended before T max and between T max and 24 hours if possible. Other partial AUCs may be evaluated as supporting material to evaluate similarity of drug release throughout the gastrointestinal tract.
- (3). As AUC 0-t is recommended in place of AUC 0-∞, the last sampling time point should be at least at 72 hours.



## 3.5 Contents of Submission

| Study Types          | Yes/No? | How many?                                   |
|----------------------|---------|---------------------------------------------|
| Single-dose fasting  | Yes     | 1                                           |
| Single-dose fed      | Yes     | 1                                           |
| Steady-state         | No      | N/A                                         |
| In vitro dissolution | Yes     | Î                                           |
| Waiver requests      | No      | N/A                                         |
| BCS Waivers          | No      | N/A                                         |
| Clinical Endpoints   | No      | N/A                                         |
| Failed Studies       | No      | N/A                                         |
| Amendments           | Yes     | 03/13/2012 amendment for LTSS<br>03/13/2012 |

## 3.6 Pre-Study Bioanalytical Method Validation

| Information Requested                           | Analyte 1                 |  |
|-------------------------------------------------|---------------------------|--|
| Bioanalytical method validation report location | Appendix 16.6             |  |
| Study Report Number                             | SAP1186007 and SAP1186008 |  |

| Analyte                                           | Mesalamine                                                                                                                                                                                                |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Internal standard (IS)                            | (b) (4                                                                                                                                                                                                    |
| Method description                                | Liquid-Liquid extraction with LC/MS/MS method                                                                                                                                                             |
| Limit of quantitation                             | 1.000 ng/mL                                                                                                                                                                                               |
| % recovery (and %CV) at each concentration tested | HQC (900.0 ng/mL): 92.18%, %CV: 8.13<br>MQC-1 (450.0 ng/mL): 88.63%, %CV: 7.76<br>MQC-2 (50 ng/mL): 87.58%, %CV: 3.57<br>LQC (3.0 ng/mL): 85.83%, %CV: 9.5                                                |
| Average recovery of IS (%)                        | 97.8 %                                                                                                                                                                                                    |
| Standard curve concentrations (ng/mL)             | 1.000, 2.000, 5.000, 20.00, 40.00, 100.0, 250.0, 600.0, 1000, 1200                                                                                                                                        |
| QC concentrations (ng/mL)                         | 1.000, 3.000, 50.00, 450.0, 900.0, 1200.0                                                                                                                                                                 |
| QC Intraday precision range (%)                   | ULOQ (1200.0 ng/mL): 1.3 to 1.6%<br>HQC (900.0 ng/mL): 1.1 to 1.5%<br>MQC-1 (450.0 ng/mL): 1.1 to 1.7%<br>MQC-2 (50 ng/mL): 0.8 to 1.2%<br>LQC (3.0 ng/mL): 2.0 to 3.6%<br>LLOQ (1.0 ng/mL): 4.0 to 9.4%  |
| QC Intraday accuracy range (%)                    | ULOQ (1200.0 ng/mL): 94.2 to 103%<br>HQC (900.0 ng/mL): 97 to 101%<br>MQC-1 (450.0 ng/mL): 101 to 106%<br>MQC-2 (50 ng/mL): 105 to 106%<br>LQC (3.0 ng/mL): 100 to 104%<br>LLOQ (1.0 ng/mL): 99.5 to 107% |
| QC Interday precision range (%)                   | 1.2 % to 7.0 %                                                                                                                                                                                            |
| QC Interday accuracy range (%)                    | 98.1 % to 106 %                                                                                                                                                                                           |
| Bench-top stability (hrs)                         | 25 hours @ room temperature                                                                                                                                                                               |
| Stock stability (days)                            | 49 days for drug and 15 days for internal standard @ 4°±6 °C                                                                                                                                              |
| Processed stability (hrs)                         | 70 hours @ room temperature and 92 hours @ 4°± 6°C                                                                                                                                                        |
| Freeze-thaw stability (cycles)                    | 6 freeze thaw cycles                                                                                                                                                                                      |
| Long-term storage stability (days)                | 131 days @ -70°C±20°C*                                                                                                                                                                                    |
| Dilution integrity                                | DHQC 900.0 ng/mL diluted 10 times: 107.12%, %CV: 0.9<br>DIQC 6000 ng/mL diluted 10 times: 110.97%, %CV: 1.3                                                                                               |
| Selectivity                                       | No significant interfering peaks noted in blank plasma samples                                                                                                                                            |

<sup>\*</sup> In the amendment dated 03/13/2012, the firm resubmitted the acceptable validation report for the LTSS of 131 days at -70°C±20°C that is sufficient to cover the storage period for fasting (86 days) and fed (116 days) studies.

| SOPs submitted                     | Yes, SOP<br>(Chromatograph | (b) (4) Assay validation in biological fluids ic) |
|------------------------------------|----------------------------|---------------------------------------------------|
| Bioanalytical method is acceptable | Acceptable                 |                                                   |

# Comments on the Pre-Study Method Validation:

Acceptable.

# 3.7 In Vivo Studies

Table 1. Summary of all in vivo Bioequivalence Studies

| Study<br>Ref.<br>No.    | Study<br>Objective                                                                                                                                                                                  | Study Docton                                                                                                                                                                                                                          | Treatment (Dose,  Dosage Form, Route) [Product ID]                                               | Subjects<br>(No.             | Mean Parameters (%CV)        |                              |                        |                        |                    |                                      | A10 NO                      |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------|------------------------|--------------------|--------------------------------------|-----------------------------|
|                         |                                                                                                                                                                                                     |                                                                                                                                                                                                                                       |                                                                                                  | (M/F) Type Age: mean (range) | Cmax<br>(ng/mL)              | Tmax<br>(hr)                 | AUCt<br>(ng*hr/<br>mL) | AUCi<br>(ng*hr/<br>mL) | tHalf<br>(hr)      | Kel<br>(1/hr)                        | Study<br>Report<br>Location |
| Study                   | To evaluate and compare the relative bioavailability and therefore the bioequivalence of two different formulations of mesalamine after a single oral dose administration under fasting conditions. | Single<br>Center,<br>randomized,<br>laboratory-<br>blinded,<br>three-period,<br>two-                                                                                                                                                  | delayed-release tablet<br>1× 800 mg,<br>Oral,<br>[Batch No: EMK150]                              | CO.34 25                     | 285.995<br>(124.105)         | 16.000<br>(4.000-<br>48.000) | 2859.065<br>(62.550)   | 3507.830<br>(73.766)   | 12.584<br>(89.461) | 0.137<br>(131.150)                   | Please                      |
| #<br>MSN-<br>P0-<br>732 |                                                                                                                                                                                                     | two three- fferent sequence, partial replicate single-dose, al dose ministration der fasting design  treatment, three- fferent sequence, partial delayed-release tablet 1× 800 mg, Oral, [Batch No: 442661 S3]  [Batch No: 442661 S3] | males, 34<br>females)<br>Age: 40<br>(18-66)<br>years<br>Healthy<br>male &<br>Female<br>subjects. | 282.187<br>(187.053)         | 17.000<br>(2.000-<br>95.000) | 2583.358<br>(78.284)         | 3067.042<br>(72.274)   | 13.496<br>(128.171)    | 0.117<br>(88.069)  | Please<br>refer<br>Module<br>5.3.1.2 |                             |

|             |                    |              |                                                         | Subjects<br>(No.             |                 |              | Mean Parai             | meters (%C             | <b>v</b> )    |               |                             |
|-------------|--------------------|--------------|---------------------------------------------------------|------------------------------|-----------------|--------------|------------------------|------------------------|---------------|---------------|-----------------------------|
| Ref.<br>No. | Study<br>Objective | Study Design | Treatment (Dose,<br>Dosage Form, Route)<br>[Product ID] | (M/F) Type Age: mean (range) | Cmax<br>(ng/mL) | Tmax<br>(hr) | AUCt<br>(ng*hr/<br>mL) | AUCi<br>(ng*hr/<br>mL) | tHalf<br>(hr) | Kel<br>(1/hr) | Study<br>Report<br>Location |

| Study                   | To evaluate and compare the relative bioavailability and therefore the                                                                              | Single Center, randomized, laboratory- blinded, three-period, two-                                              | Mesalamine 800 mg<br>delayed-release tablet<br>1× 800 mg,<br>Oral,<br>[Batch No: EMK150]    | 90<br>Enrolled,<br>90 dosed,<br>83<br>completed<br>study (57                                     | 657.624<br>(139.335) | 24.000<br>(7.000-<br>48.170) | 3625.090<br>(80.889) | 4256.461<br>(74.878) | 11.550<br>(88.145)  | 0.126<br>(91.693) | Please                     |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------|------------------------------|----------------------|----------------------|---------------------|-------------------|----------------------------|
| #<br>MSN-<br>P0-<br>733 | bioequivalence<br>of two<br>different<br>formulations<br>of mesalamine<br>after a single<br>oral dose<br>administration<br>under fed<br>conditions. | treatment,<br>three-<br>sequence,<br>partial<br>replicate<br>single-dose,<br>crossover,<br>fed, study<br>design | Asacol® HD 800 mg<br>delayed-release tablet<br>1× 800 mg,<br>Oral,<br>[Batch No: 442661 S3] | males, 26<br>females)<br>Age: 38<br>(20-66)<br>years<br>Healthy<br>male &<br>Female<br>subjects. | 643.839<br>(141.041) | 24.000<br>(7.000-<br>48.000) | 3556.863<br>(86.705) | 4219.213<br>(81.900) | 11.624<br>(103.846) | 0.119<br>(84.006) | refer<br>Module<br>5.3.1.2 |

Table 2. Statistical Summary of the Comparative Bioavailability Data Calculated by the Reviewer

Mesalamine Delayed Release Tablets USP
Dose 1 X 800 mg
Summary Of Statistical Analysis - SCALED DATA
Least Squares Geometric Means, Ratio of Means, and 90% Confidence Intervals

Fasting Bioequivalence Study (Study No. MSN-P0-732)

| Parameter            | T/R Ratio | Lower<br>90% CI | Upper<br>90% CI | s2wr      | sWR       | Criteria Bound | Method Used | OUTCOME |
|----------------------|-----------|-----------------|-----------------|-----------|-----------|----------------|-------------|---------|
| AUC <sub>0-120</sub> | 1.18      | N/A             | N/A             | 0.6606511 | 0.8128045 | -0.362881      | Scaled/PE   | PASS    |
| LAUC8-48             | 1.21      | N/A             | N/A             | 0.6612052 | 0.8131452 | -0.347193      | Scaled/PE   | PASS    |
| LCMAX                | 1.23      | N/A             | N/A             | 0.7662244 | 0.8753424 | -0.402449      | Scaled/PE   | PASS    |

## Mesalamine Delayed Release Tablets USP Dose 1 X 800 mg Summary Of Statistical Analysis - UNSCALED DATA

Least Squares Geometric Means, Ratio of Means, and 90% Confidence Intervals

Fasting Bioequivalence Study (Study No. MSN-P0-732)

| 4                                |         | [         | Thomas Distribution (College Trot March 1997) |          |        |  |  |  |  |  |  |  |  |
|----------------------------------|---------|-----------|-----------------------------------------------|----------|--------|--|--|--|--|--|--|--|--|
| Parameter                        | Test    | Reference | Ratio                                         | 90% C.I. |        |  |  |  |  |  |  |  |  |
| AUC <sub>0-120</sub> (hr *ng/ml) | 2201.32 | 1871.79   | 1.18                                          | 100.02   | 138.29 |  |  |  |  |  |  |  |  |
| AUC8-48 (hr *ng/ml)              | 1829.86 | 1514.30   | 1.21                                          | 102.06   | 143.08 |  |  |  |  |  |  |  |  |
| Cmax (ng/ml)                     | 182.43  | 149.86    | 1.22                                          | 101.82   | 145.53 |  |  |  |  |  |  |  |  |

Mesalamine Delayed Release Tablets USP

Dose 1 X 800 mg

Summary Of Statistical Analysis - SCALED DATA

Least Squares Geometric Means, Ratio of Means, and 90% Confidence Intervals

Fed Bioequivalence Study (Study No. MSN-P0-733)

| Parameter            | T/R Ratio | Lower<br>90% CI | Upper<br>90% CI | s2wr      | sWR       | Criteria Bound | Method Used | OUTCOME |
|----------------------|-----------|-----------------|-----------------|-----------|-----------|----------------|-------------|---------|
| AUC <sub>0-120</sub> | 0.98      | N/A             | N/A             | 0.7193513 | 0.8481458 | -0.422984      | Scaled/PE   | PASS    |
| LAUC8-48             | 0.96      | N/A             | N/A             | 0.8018692 | 0.8954715 | -0.467636      | Scaled/PE   | PASS    |
| LCMAX                | 1.01      | N/A             | N/A             | 1.3412103 | 1.1581063 | -0.818653      | Scaled/PE   | PASS    |

|                                  | Summary Of<br>Least Squares Geometric | Dose 1 X 800 mg Statistical Analysis - UNSCAL Means, Ratio of Means, and 90 | ED DATA<br>% Confidence Intervals |       |        |
|----------------------------------|---------------------------------------|-----------------------------------------------------------------------------|-----------------------------------|-------|--------|
| Parameter                        | Fed Bioequ<br>Test                    | ivalence Study (Study No. MSN<br>Reference                                  | Ratio                             | 90%   | 6 C.I. |
| AUC <sub>0-120</sub> (hr *ng/ml) | 2301.26                               | 2313.92                                                                     | 0.99                              | 74.85 | 132.15 |
| AUC8-48 (hr *ng/ml)              | 2003.37                               | 2054.86                                                                     | 0.97                              | 73.04 | 130.14 |
| Cmax (ng/ml)                     | 274.69                                | 268.54                                                                      | 1.02                              | 74.13 | 141.15 |

Table 3. Reanalysis of Study Samples

|                                        | Additional Num | The second secon | nples rean:       |      |               | recalculated | values used in    | reanalysis |
|----------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|---------------|--------------|-------------------|------------|
| Reason why assay was repeated          |                | number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | % of total assays |      | Actual number |              | % of total assays |            |
|                                        | T              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T                 | R    | Т             | R            | T                 | R          |
| Pharmacokinetic                        | 0              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00              | 0.00 | 0             | 0            | 0.00              | 0.00       |
| Low internal standard                  | 4              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.18              | 0.04 | 4             | 2            | 0.18              | 0.04       |
| Above limit of quantitation            | 2              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.09              | 0.24 | 2             | 11           | 0.09              | 0.24       |
| Auto injector sample vial broken       | 1              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04              | 0.00 | 1             | 0            | 0.04              | 0.00       |
| Incongruous data                       | 0              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00              | 0.02 | 0             | 1            | 0.00              | 0.02       |
| Poor chromatography                    | 1              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04              | 0.04 | 1             | 2            | 0.04              | 0.04       |
| Peak in pre-dose sample                | 0              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00              | 0.04 | 0             | 2            | 0.00              | 0.04       |
| Repeat as per SOP for incongruous data | 0              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00              | 0.04 | 0             | 0            | 0.00              | 0.00       |
| Sample tube broke during extraction    | 0              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00              | 0.09 | 0             | 4            | 0.00              | 0.09       |

|       | A 2 | 2,7230 | 223 (25) (21) A | 71 27 - F M D C | 5 |    | 250000000000000000000000000000000000000 |      |
|-------|-----|--------|-----------------|-----------------|---|----|-----------------------------------------|------|
| Total | 8   | 24     | 0.35            | 0.51            | 8 | 22 | 0.35                                    | 0.47 |

| Fed Study, Study No. MSN-PO-733 Additional information in Appendix No. 16.5 |    |             |           |                                                                                  |    |    |      |                |  |
|-----------------------------------------------------------------------------|----|-------------|-----------|----------------------------------------------------------------------------------|----|----|------|----------------|--|
| Reason why assay was repeated                                               |    | nples rean  | . 13      | Number of recalculated values used in reanalysis Actual number % of total assays |    |    |      |                |  |
| Reason why assay was repeated                                               | T  | number<br>R | 76 01 tot | al assays<br>R                                                                   | Т  | R  | T    | ai assays<br>R |  |
| Pharmacokinetic                                                             | 0  | 0           | 0.00      | 0.00                                                                             | 0  | 0  | 0.00 | 0.00           |  |
| Above limit of quantitation                                                 | 16 | 40          | 0.74      | 0.93                                                                             | 16 | 40 | 0.74 | 0.93           |  |
| Sample not injected                                                         | 5  | 10          | 0.23      | 0.23                                                                             | 5  | 10 | 0.23 | 0.23           |  |
| Low internal standard                                                       | 2  | 3           | 0.09      | 0.07                                                                             | 2  | 3  | 0.09 | 0.07           |  |
| High internal standard                                                      | 3  | 4           | 0.14      | 0.09                                                                             | 3  | 4  | 0.14 | 0.09           |  |
| Auto injector sample vial broken                                            | 0  | 1           | 0.00      | 0.02                                                                             | 0  | 1  | 0.00 | 0.02           |  |
| Auto injector sample vial insert leaked                                     | 2  | 0           | 0.09      | 0.00                                                                             | 2  | 0  | 0.09 | 0.00           |  |
| Poor chromatography                                                         | 0  | 1           | 0.00      | 0.02                                                                             | 0  | 1  | 0.00 | 0.02           |  |
| Data acquisition malfunction                                                | 0  | 1           | 0.00      | 0.02                                                                             | 0  | 1  | 0.00 | 0.02           |  |
| Sample tube broke during extraction                                         | 1  | 0           | 0.05      | 0.00                                                                             | 1  | 0  | 0.05 | 0.00           |  |
| Total                                                                       | 29 | 60          | 1.34      | 1.38                                                                             | 29 | 60 | 1.34 | 1.38           |  |

Did use of recalculated plasma concentration data change study outcome? No

#### Comments from the Reviewer:

There were thirty two (0.49%) and eighty nine (2.72%) repeat samples found in the fasting and fed BE studies, respectively. Of them, eight samples were due to Incongruous data, Poor chromatography, Peak in pre-dose sample, and Repeat as per SOP for incongruous data in the fasting study and two samples were due to Poor chromatography and Data acquisition malfunction in the fed study. They were potential PK repeats. The reviewer used a calke and three ways with group SAS program to perform repeat PK statistical analysis using the original values from the samples with potential PK repeats. The study outcomes remained to meet the evaluation criteria of reference-scaled analysis for AUCt, AUC8-48, and Cmax. Therefore, the bioanalytical reanalysis for the fasting and fed BE studies are acceptable.

#### 3.8 Formulation

| Location in appendix                             | Section 4.2, Page 61   |
|--------------------------------------------------|------------------------|
| If a tablet, is the RLD scored?                  | No                     |
| If a tablet, is the test product biobatch scored | No                     |
| Is the formulation acceptable?                   | FORMULATION ACCEPTABLE |
| If not acceptable, why?                          |                        |

## 3.9 In Vitro Dissolution (quality controls)

| Location of DBE Dissolution Review                           | DARRTS: REV-BIOEQ-02 (Dissolution<br>Review) ANDA203286, Final date:<br>02/16/2012                                 |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Source of Method (USP, FDA or Firm)                          | USP                                                                                                                |
| Medium                                                       | Acid Stage: 0.1N HCl<br>Buffer Stage I: pH 6.0 Phosphate Buffer<br>Buffer Stage II: pH 7.2 Phosphate Buffer        |
| Volume (mL)                                                  | Acid Stage: 500 mL<br>Buffer Stage: 900 mL                                                                         |
| USP Apparatus type                                           | USP 2 (Paddle)                                                                                                     |
| Rotation (rpm)                                               | Acid Stage: 100 RPM 2 hours<br>Buffer Stage I: 100 RPM 1 hour<br>Buffer Stage II: 50 RPM 90 minutes                |
| DBE-recommended specifications                               | Acid Stage: NMT 1% in 2 hours<br>Buffer Stage I: NMT 1% in 1 hour<br>Buffer Stage II: NLT 80% (Q) in 90<br>minutes |
| If a modified-release tablet, was testing done on ½ tablets? | No                                                                                                                 |
| F2 metric calculated?                                        | No                                                                                                                 |
| If no, reason why F2 not calculated                          | Due to high variability (%CV) for sampling points                                                                  |
| Is method acceptable?                                        | METHOD ACCEPTABLE                                                                                                  |
| If not then why?                                             |                                                                                                                    |

There is a USP method for this product. The firm conducted dissolution testing using the USP method [500 mL of 0.1N HCl (Acid Stage A) for 2 hrs, followed by 900 mL of Phosphate buffer, pH 6.0 (Buffer Stage B) for 1 hr and 900 mL of Phosphate buffer, pH 7.2 (Buffer Stage C) using apparatus 2 (Paddle) at 100 rpm for stage A and B and at 50 rpm for stage C]. The firm's dissolution testing data with the USP method are acceptable. The firm's proposed specifications are the same as the USP specifications. The quality control dissolution testing is acceptable. The DB II acknowledges that the firm will follow the USP method and specifications.

#### 3.10 In vitro BE studies

(comparative dissolution testing in pH 4.5, 6.0, 6.5, 6.8, 7.2, and 7.5 media)

Since Mesalamine is a locally-acting drug in the colon, in vitro comparative dissolution testing can be used to ensure that a test and reference product provide equivalent delivery to the site of action. Because of the complexity of GI tract, some differences between the test and reference products could be masked by relying on a PK study alone. In vitro comparative dissolution testing in multi-media are recommended to cover the physiological pH range in the entire GI tract (pH (b)(4) 4.5, 6.0, 6.5, 6.8, 7.2, and 7.5) according to the FDA guidance on Mesalamine (800 mg).

Table A. Product information in vitro comparative dissolution testing

| Dosage<br>Strength<br>& Form | Test                                                                                                               | Reference                                                                                                   |  |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|
| 800 mg                       | Mesalamine Delayed Release Tablets,<br>800 mg<br>B. No. EMK150<br>Mfg. Date: March, 2010<br>Exp. Date: March, 2012 | ASACOL® HD (Mesalamine) Delayed<br>Release Tablets USP, 800 mg<br>B. No. 442661S3<br>Exp. Date: March, 2013 |  |  |

Test dates for in vitro comparative dissolution testing on both test and reference products:

| Test date for the test and reference products in multimedia |        |           |           |           |           |           |           |           |
|-------------------------------------------------------------|--------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Strength 800 mg                                             | pH 4.5 |           | рН 6.0    |           | pH 6.5    |           | pH 6.8    |           |
|                                                             | Test   | Reference | Test      | Reference | Test      | Reference | Test      | Reference |
| Test date                                                   | N/A    | N/A       | 6/27/2011 | 6/27/2011 | 6/27/2011 | 6/27/2011 | 6/27/2011 | 6/27/2011 |
| Exp date                                                    |        |           | 03/2012   | 03/2013   | 03/2012   | 03/2013   | 03/2012   | 03/2013   |
| Manufacture date                                            |        |           | 03/2010   |           | 03/2010   |           | 03/2010   |           |

|                  | pН        | 17.2      | pH 7.5    |           |  |
|------------------|-----------|-----------|-----------|-----------|--|
| Strength 800 mg  | Test      | Reference | Test      | Reference |  |
| Test date        | 6/27/2011 | 6/27/2011 | 6/27/2011 | 6/27/2011 |  |
| Exp date         | 03/2012   | 03/2013   | 03/2012   | 03/2013   |  |
| Manufacture date | 03/2010   |           | 03/2010   |           |  |

Note: We can not locate the raw data for in vitro comparative dissolution testing for 2 hours in 0.1 N HCl followed by pH 4.5 Acetate buffer. The firm is requested to provide the data of in vitro comparative dissolution testing in pH 4.5 Acetate buffer.

The review of In Vitro Comparative Dissolution Testing:

#### a) The calculation of F2 values using means

The means of F2 values (T12 vs. R12)

| F2 values between the test and the reference product |               |               |               |               |               |              |  |
|------------------------------------------------------|---------------|---------------|---------------|---------------|---------------|--------------|--|
| Strength                                             | pH 4.5 buffer | pH 6.0 buffer | pH 6.5 buffer | pH 6.8 buffer | pH 7.2 buffer | pH7.5 buffer |  |
| 800 mg                                               | N/A           | 99.97*        | 83.97*        | 14.7*         | 58.86*        | 45.9*        |  |

<sup>\*</sup>The percent coefficient of variation (%CV) was more than 20% at the 20 min, or/and more than 10% after 20 min.

#### REVIEWER'S NOTES:

- The F2 values can not be calculated using mean values if 1) % CV >20% at 20 min and 2) %CV >10% after 20 min (20 min is considered as cutoff point for "early sampling points") and 3) there are less than 3 sampling points for F2 calculation before both test and reference products reach 85% dissolving. Yet, to confirm the data from bootstrapping approach, reviewer calculates mean f2 values disregarding variability as illustrated in the above table.
- Due to the high variability (high %CV) of dissolution data for all the media (pH 6.0 to 7.5), a comparison of mean profiles with the f2 test is not sufficient per the CDER Guidance for Industry: Dissolution Testing of Immediate Release Solid Oral Dosage Forms). Therefore, a bootstrapping procedure 10 is used to calculate mean values of F2 and an F2 confidence interval (a statistical evaluation of f2, see below).

# b) The calculation of F2 values and 90% confidence interval using bootstrapping method<sup>11</sup>

| Bootstrapping method |     |                      |          |             |                         |                          |                          |
|----------------------|-----|----------------------|----------|-------------|-------------------------|--------------------------|--------------------------|
| Study                | pН  | Stren<br>gth<br>(mg) | Frequent | Original f2 | F2<br>bootstrap<br>mean | Lower CI<br>(Percentile) | Upper CI<br>(Percentile) |
|                      | 6.0 | 800                  | 10000    | 99.99       | 99.99                   | 99.97                    | 100.00                   |
| T vs. R              | 6.5 | 800                  | 10000    | 96.93       | 83.96                   | 65.53                    | 97.48                    |

<sup>&</sup>lt;sup>9</sup> Based on 1) the CDER Guidance for Industry: Dissolution Testing of Immediate Release Solid Oral Dosage Forms, 2) high variability of vancomycin dissolution data, and discussion with bio-management, the reviewer considered the following for the f2 calculation:

Only one measurement is considered after 85% dissolution of both the products and at least three dissolution time points
are available.

 <sup>20</sup> min tentatively appears reasonable to be set as the cutoff of the earlier time point for Vancomycin HCl capsule in vitro BE studies. For the F2 calculation, the percent coefficient of variation before or at the earlier time point (i.e. 20 min) should not be more than 20% and at other time points (i.e. time points after 20 min) should not be more than 10%.

<sup>&</sup>lt;sup>10</sup> Shah et al. In Vitro Dissolution Profile Comparison-Statistics and Analysis of the Similarity Factor, f2. *Pharmaceutical Research (1998) Vol. 15, No.6, page 889-896* 

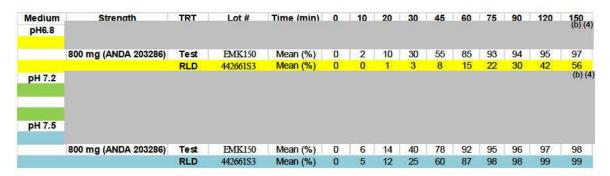
Please see statistical consult review for ANDA 065490 (DARRTS, ANDA-065490, REV-BIOMETRICS-01(General Review), Duan Joan Z, 12/04/2009) and ANDA 065510 (DARRTS, ANDA-065510, REV-BIOMETRICS-01(General Review), Duan Joan Z, 12/04/2009) for detail description of the bootstrap method.

|                   | 6.8 | 800 | 10000 | 16.67  | 17.83 | 15.12            | 20.61  |
|-------------------|-----|-----|-------|--------|-------|------------------|--------|
| (N=12)            | 7.2 | 800 | 10000 | 60.69  | 54.07 | 41.73            | 65.57  |
|                   | 7.5 | 800 | 10000 | 48.79  | 49.46 | 37.52            | 65.58  |
|                   | 6.0 | 800 | 1000  | 100.00 | 99.99 | 99.98            | 100.00 |
|                   | 6.5 | 800 | 1000  | 80.31  | 77.45 | 57.98            | 99.70  |
| R vs. R*<br>(N=6) | 6.8 | 800 | 1000  | 63.58  | 57.32 | 37.73            | 81.66  |
| (14-0)            | 7.2 | 800 | 1000  | 68.55  | 63.12 | <del>47.65</del> | 79.97  |
|                   | 7.5 | 800 | 1000  | 61.28  | 54.55 | 38.91            | 74.14  |

\*For R vs. R comparison, the dissolution data was first randomly divided into two groups (6 units vs. 6 units) and with each of the groups obtained from randomization, the bootstrapping procedure was then performed to calculate the f2 confidence intervals for R vs. R comparison in the comparative dissolution testing.

#### **Comments:**

- 1. Per the internal meeting of OGD vancomycin review team (see the attachment III), the dissolution profiles of the test and reference products are considered similar and acceptable when the f2 for the mean test and reference profiles are >50 and the lower bound of 90% confidence interval (CI) for f2 test is >46. In addition, if the lower bound of 90% confidence interval for F2 test is <46, then the difference of dissolution profile differences between test and reference may be acceptable if the reference vs. reference difference is larger. Thus, the variability of test versus reference dissolution profiles should not exceed the variability of the reference versus reference dissolution profiles.
- 2. For T vs. R comparison, the mean f2 values comparing the test vs. reference are greater than 50 in the media of pH 6.0 and 6.5 (99.99 and 96.93, respectively) and their lower bound of 90% confidence intervals for f2 values are more than 46 (99.97 and 65.53, respectively). The firm's dissolution data showed that the test and reference products have a similar dissolution profile under pH 6.0 and pH 6.5 conditions. Thus, the dissolution data in pH 6.0 and pH 6.5 media are acceptable.
- 3. In the medium of pH 7.2, the f2 mean value is greater than 50 (60.69), while its lower bound of 90% confidence intervals for f2 values are less than 46 (41.73). The f2 mean values of test and reference (f2) in all other two media (pH 6.8 and pH 7.5) are less than 50 [(pH 6.8 (16.67) and pH 7.5 (48.79)] and their lower bound of 90% confidence intervals for f2 values are less than 46 (15.12 for pH 6.8 and 37.52 for pH 7.5). Moreover, the lower bound of 90% CIs of f2 comparing test vs. RLD for pH 6.8, pH 7.2, pH 7.5 are lower than those comparing the RLD against itself under the same conditions. These results suggest that the dissolution profiles of the test product are significantly different from that of reference product under these pH conditions. Therefore, in vitro comparative dissolution testing in pH 6.8, pH 7.2, and pH 7.5 Phosphate buffer is unacceptable.
- 4. As per the RLD labeling, one Asacol HD 800 mg tablet has not been shown to be bioequivalent to two Asacol 400 mg tablets. Based on OCBP review for NDA


21830<sup>12</sup>, Asacol HD (800 mg) has a similar dissolution profile as that of Asacol 400. However, the PK study showed that the administration 800 mg strength caused 36% and 25% decrease in AUC and Cmax, respectively when comparing to the administration of 2 x 400 mg strength, (PK not proportional). Since the Asacol 400 mg and 800 mg have a similar dissolution profile and no other ANDA for 800 mg strength are available in house<sup>13</sup>, the reviewer compared the multimedia dissolution data of the RLD this application (RLD Asacol 800 mg) to that of Asacol 400 mg from

(b) (4)

(b) (4)

It is possible

that the dissolution data for the RLD (Asacol 800 mg) under pH 7.5 condition in the current application may be slightly slower than it should be due to the experiment condition. Giving the fact that f2 value between the test (800 mg strength) and the reference (Asacol HD) in the current application (ANDA 203286) is only slightly below 50 (49.46), repeating the dissolution testing at pH 7.5 with larger sample size may likely to generate a more similar dissolution profile and thus, a greater F2 value (> 50). On the other hand, the repeating dissolution testing at pH 6.8 with large sample size may or may not help to improve F2 values since pH 6.8 is the critical point and the variability around this pH is very high.



5. Because the reason discussed above and also the fact that both test and reference dissolution profiles at various pH media displayed a great deal of variability (high %CV), the firm should use a larger sample size for each dissolution testing and/or take other appropriated steps as necessary to reduce the variability for the purpose of achieving accurate f2 calculation. The firm is requested to repeat in vitro comparative dissolution testing in multiple media (pH 6.8, pH 7.2, and pH

<sup>13</sup> This is the first generic product for 800 mg strength.

(b) (4

<sup>&</sup>lt;sup>12</sup> DRRATS: REV-CLINPHARM-21 (Primary Review) NDA21830, Final date 08/12/2005.

7.5) on the **fresh test product** using at least 24 units and at least two lots of the unexpired reference product (12 units from each lot) to provide a better estimate of the mean difference.

#### 3.11 Waiver Request(s)

| Strengths for which waivers are requested       | None                                                     |
|-------------------------------------------------|----------------------------------------------------------|
| Proportional to strength tested in vivo?        | N/A                                                      |
| Is in vitro comparative dissolution acceptable? | Unacceptable for the media of pH 6.8, pH 7.2, and pH 7.5 |
| Waivers granted?                                | N/A                                                      |
| If not then why?                                |                                                          |

#### 3.12 Deficiency Comments

- 1. We can not locate the comparative dissolution testing data in pH 4.5 Acetate buffer (pretreated with 0.1 N HCl for 2 hours). The firm is requested to provide comparative dissolution testing data in pH 4.5 Acetate buffer using at least 24 units of fresh test product and at least two lots of the unexpired reference product (12 units from each lot) Please submit individual dissolution data as well as the mean, range, %coefficient of variation (CV) at each time point for the total numbers of tablets tested including dates of dissolution testing, manufacture date and expiration date as applicable.
- 2. Due to the high variability of firm submitted dissolution data conducted in multimedia, an f2 test using mean profiles of test vs. reference listed drug ("RLD") is not sufficient as per the CDER Guidance for Industry: Dissolution Testing of Immediate Release Solid Oral Dosage Forms ("Dissolution Guidance"). Therefore, we calculated the f2 metric (an f2 confidence interval) using a bootstrapping method for the dissolution profile comparison. For general information on this approach, please refer to Shah et al. In Vitro Dissolution Profile Comparison-Statistics and Analysis of the Similarity Factor, f2. Pharmaceutical Research (1998) Vol. 15, No.6, page 889-896.

The mean values (f2) in pH 6.8 and pH 7.5 phosphate buffer are lower than 50 and the lower bound of 90% confidence interval ("CI") for the f2 test comparing test vs. RLD in pH 6.8, pH 7.2, and pH 7.5 phosphate buffer is lower than those comparing the RLD against itself under the same conditions. These values suggest that the dissolution profiles of the test product are significantly different from those of the corresponding reference under these conditions. Your dissolution data in pH 6.8, 7.2 and 7.5 do not support the bioequivalence of the test product to the RLD and are not acceptable.

3. To address why the test product is different from the RLD product, the firm is recommended to repeat comparative dissolution testing on its **fresh test product** 

using a larger sample of tablets to provide a better estimate of the mean difference, or take other appropriated steps as necessary to reduce the variability for the purpose of achieving accurate f2 calculation.

The dissolution testing should be conducted on at least 24 tables (more if necessary) from the test product and at least two lots of unexpired RLD product (using 12 tablets per lot) using the following method as specified in the FDA Guidance on Mesalamine (800 mg):

Apparatus: USP Apparatus II (paddle)

Pretreatment Stage: 2 hours in 0.1 N HCl at 100 rpm

**Evaluation Stage:** 

Each of

(1) pH 4.5 Acetate buffer at 50 rpm

(2) pH 6.8 Phosphate buffer at 50 rpm

(3) pH 7.2 Phosphate buffer at 50 rpm

(4) pH 7.5 Phosphate buffer at 50 rpm

Volume: 900 mL Temperature: 37°C

Sample times: 0, 10, 20, 30, 45, 60, 75, 90, 120, 150, 180, 240, 300, and

360 minutes or as needed for profile comparison

The firm should submit individual dissolution data as well as the mean, range, %coefficient of variation (CV) at each time point for the total numbers of tablets tested including dates of dissolution testing, manufacture date and expiration date as applicable.

The DB will perform an f2 test on firm's submitted dissolution data. If the variability of the dissolution data is such that mean data cannot be used for the f2 test, as per the Dissolution Guidance, we will use the above-referenced bootstrapping approach.

For the bootstrapping method, sampling with replacement is used for creating 10,000 replicates of test and reference products. The means of the test and reference units at each time point for each replicate are obtained and used for f2 calculation. The 90% confidence intervals of the f2 values are calculated using the percentile approach as described in the Shah et al. reference. Similar procedure can be followed for comparing reference vs. reference products.

Please note only one measurement after 85% dissolution of both the products should be included in the f2 calculation.

#### 3.13 Recommendations

1. The Division of Bioequivalence accepts the fasting BE study (MSN-P0-732) conducted by Zydus on its Mesalamine Delayed Release Tablets USP, 800 mg (lot #:

EMK150) comparing it to Procter & Gamble, ASACOL® HD (Mesalamine) Delayed Release Tablets, 800 mg (lot #: 442661S3).

- The Division of Bioequivalence accepts the fed BE study (MSN-P0-733) conducted by Zydus on its Mesalamine Delayed Release Tablets USP, 800 mg (lot #: EMK150) comparing it to Procter & Gamble, ASACOL® HD (Mesalamine) Delayed Release Tablets, 800 mg (lot #: 442661S3).
- 3. The Division of Bioequivalence finds in vitro comparative dissolution testing (study number) unacceptable due to the deficiencies mentioned above. The dissolution testing should be conducted on at least 24 tables (more if necessary) from the fresh test product and at least two lots of unexpired RLD product (using 12 tablets per lot) using the following method as specified in the FDA Guidance on Mesalamine (800 mg):

Apparatus: USP Apparatus II (paddle)

Pretreatment Stage: 2 hours in 0.1 N HCl at 100 rpm

Evaluation Stage:

Each of

(1) pH 4.5 Acetate buffer at 50 rpm

(2) pH 6.8 Phosphate buffer at 50 rpm

(3) pH 7.2 Phosphate buffer at 50 rpm

(4) pH 7.5 Phosphate buffer at 50 rpm

Volume: 900 mL Temperature: 37°C

Sample times: 0, 10, 20, 30, 45, 60, 75, 90, 120, 150, 180, 240, 300, and

360 minutes or as needed for profile comparison

 The firm's quality controls dissolution testing is acceptable. The dissolution testing should be conducted according to the current USP monograph for Mesalamine Delayed Release Tablets USP, 800 mg.

#### 3.14 Comments for Other OGD Disciplines

| Discipline | Comment |
|------------|---------|
|            | None    |

#### 4 APPENDIX

# 4.1 Individual Study Reviews

# 4.1.1 Single-dose Fasting Bioequivalence Study

# 4.1.1.1 Study Design

**Table 4 Study Information** 

| Study Number                                                                                                                         | MSN-P0-732                                                                                                                                                                                 |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Study Title                                                                                                                          | Single Dose, Partial Replicate, Crossover Comparative<br>Bioavailability Study of Mesalamine 800 mg Delayed-Release<br>Tablets in Healthy Male and Female Volunteers / Fasting State       |  |  |
| Clinical Site<br>(Name & Address)                                                                                                    | Algorithme Pharma Inc. 1200 Beaumont Ave. Mount-Royal, Quebec, Canada H3P 3P1                                                                                                              |  |  |
| Principal Investigator                                                                                                               | Eric Sicard, M.D.<br>Algorithme Pharma Inc.                                                                                                                                                |  |  |
| Dosing Dates                                                                                                                         | Group A (Subjects # 001-045): Period 1: 2011/02/25 Period 2: 2011/03/04 Period 3: 2011/03/11  Group B (Subjects # 046-090): Period 1: 2011/02/28 Period 2: 2011/03/07 Period 3: 2011/03/14 |  |  |
| Analytical Site<br>(Name & Address)                                                                                                  | (b) (4                                                                                                                                                                                     |  |  |
| Analysis Dates                                                                                                                       | 21 Apr 11 to 22 May 11 (b) (4                                                                                                                                                              |  |  |
| Analytical Director                                                                                                                  |                                                                                                                                                                                            |  |  |
| Storage Period of Biostudy Samples<br>(no. of days from the first day of<br>sample collection to the last day of<br>sample analysis) | 86 Days (25 Feb 11 to 22 May 11) (Group A)<br>83 Days (28 Feb 11 to 22 May 11) (Group B)                                                                                                   |  |  |

Table 5. Product information

| Product      | Test                       | Reference               |  |
|--------------|----------------------------|-------------------------|--|
| Treatment ID | T                          | R                       |  |
| Product Name | Mesalamine Delayed Release | ASACOL® HD (Mesalamine) |  |

|                                | Tablets USP                              | Delayed Release Tablets                    |
|--------------------------------|------------------------------------------|--------------------------------------------|
| Manufacturer                   | Cadila Healthcare Limited,<br>India      | Procter & Gamble<br>Pharmaceuticals, Inc.* |
| Batch/Lot No.                  | EMK150                                   | 442661S3                                   |
| Manufacture Date               | March, 2010                              | N/A                                        |
| Expiration Date                | August, 2011(Retest date)                | March, 2013                                |
| Strength                       | 800 mg                                   | 800 mg                                     |
| Dosage Form                    | Delayed Release Tablets                  | Delayed Release Tablets                    |
| Bio-Batch Size                 | (b) (4                                   | N/A                                        |
| Production Batch Size          |                                          | N/A                                        |
| Potency (Assay)                | 101.0 %                                  | 98.5 %                                     |
| Content Uniformity (mean, %CV) | Acceptance value as per USP <905> is 3.2 | N/A                                        |
| Dose Administered              | 800 mg                                   | 800 mg                                     |
| Route of Administration        | Oral                                     | Oral                                       |

<sup>\*</sup>Asacol® HD was manufactured and marketed by Procter and Gamble (P&G) until Warner Chilcott acquired P&G's portfolio of branded pharmaceutical products, including Asacol® HD on Aug 24, 2009. So in certificate of analysis of reference listed drug and Bioequivalence study reports, Procter and Gamble Pharmaceuticals is indicated as name of manufacturer. However, as per current "Approved Drug Products with Therapeutic Equivalence Evaluation" (Electronic Orange Book), Warner Chilcott is identified as NDA holder for reference listed drug product, ASACOL® HD (Mesalamine) Delayed Release Tablets, 800 mg.

Table 6. Study Design, Single-Dose Fasting Bioequivalence Study

| Number of Subjects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Enrolled: 90 Dosed: 90 Completed: 88 Samples Analyzed: 88 Data Analyzed: 83*                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. of Sequences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                              |
| No. of Periods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                              |
| No. of Treatments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                              |
| No. of Groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2; 90 subjects were selected for inclusion in the study at the same clinical center. The subjects were divided into two groups, A (Subject 1to 45) and B (Subject 46 to 90) for the test and reference treatments under fasting condition.                                                                                                                                                     |
| Washout Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 days                                                                                                                                                                                                                                                                                                                                                                                         |
| Randomization Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TR1R2: 2, 4, 9, 12, 15, 17, 19, 21, 24, 26, 29, 32, 36, 39, 42, 45, 48, 51, 52, 56, 60, 62, 65, 68, 71, 75, 77, 80, 83, 86, and 90. R1TR2: 3, 5, 8, 11, 14, 16, 22, 25, 30, 31, 35, 38, 41, 43, 46, 49, 50, 54, 55, 59, 63, 66, 69, 72, 73, 78, 79, 84, 85, and 89 R1R2T: 1, 6, 7, 10, 13, 18, 20, 23, 27, 28, 33, 34, 37, 40, 44, 47, 53, 57, 58, 61, 64, 67, 70, 74, 76, 81, 82, 87, and 88. |
| Pre-dose (0.0) and 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 12, 20, 22, 24, 28, 32, 36, 48, 72, 96 and 120 hours post-or 12 and 12 and 12 and 12 and 13 and 14 and 15 |                                                                                                                                                                                                                                                                                                                                                                                                |

| Blood Volume Collected/Sample   | 7 mL/sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Blood Sample Processing/Storage | Blood samples were collected in pre-cooled K <sub>3</sub> EDTA Vacutainers. Within 30 minutes of blood collection, samples were centrifuged at a temperature of 4°C nominal and at approximately 1500g for 10 minutes. The plasma obtained was separated into duplicate polypropylene culture tubes labeled as Split #1 and Split #2 (in approximately equal volume) within 90 minutes of blood collection, when feasible. The samples were frozen in an upright position and retained in the clinic's freezers at a temperature of 50°C nominal or colder until transferred to the laboratory where they were stored frozen at a temperature of -70°C ± 20°C until assayed. |  |
| IRB Approval                    | Yes, approved on 01/31/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Informed Consent                | Yes, approved on 01/31/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Length of Fasting               | 12 hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Length of Confinement           | 48 hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Safety Monitoring               | Medical history, physical examinations, vital sign assessments, 12-lead electrocardiograms (ECG), clinical laboratory assessments, adverse event evaluation, and by general observations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |

<sup>\*</sup> As per protocol (MSN-P0-732), Subject# (b) (6) are excluded from the pharmacokinetic & statistical analysis, since these subjects do not have three consecutive samples with levels above LLOQ<sup>15</sup>.

#### Comments on Study Design:

The primary targeted site of action of mesalamine is the colon. However mesalamine can be absorbed throughout the whole GI tract. Previous PK study and continuous systemic exposure of mesalamine after mesalamine oral administration suggested that mesalamine is continuous absorption of mesalamine throughout the GI tract. Thus PK profile similarity will provide information of mesalamine local availability.

The study design is acceptable.

The study outcomes remain to meet the evaluation criteria of reference-scaled analysis for AUCt, AUC8-48, and Cmax (Please see the review comments in section 4.1.1.4).

According to guidance, applicants should have extensive sampling points around T max to have accurate estimation of C max and T max, and at least four non-zero measurements of concentration are recommended before T max and between T max and 24 hours if possible. Thus, it is reasonable to exclude above subjects without three consecutive samples by the firm per guidance and per firm's protocol. However, to confirm this result, the reviewer also conducted SAS analysis including all these subjects.

# 4.1.1.2 Clinical Results

Table 7. Demographics Profile of Subjects Completing the Bioequivalence Study

| Fasting Bioequivalence Study No. MSN-P0-732 |                              |                        |                             |  |  |
|---------------------------------------------|------------------------------|------------------------|-----------------------------|--|--|
|                                             |                              | Treatm                 | nent Groups                 |  |  |
|                                             |                              | Test Product<br>N = 88 | Reference Product<br>N = 88 |  |  |
| Age                                         | Mean ± SD                    | $40 \pm 13$            | 40 ± 13                     |  |  |
| (years)                                     | Range                        | 18 - 66                | 18 - 66                     |  |  |
|                                             | < 18                         | 0                      | 0                           |  |  |
| 4                                           | 18 – 40                      | 47 (53.4%)             | 47 (53.4%)                  |  |  |
| Age<br>Groups                               | 41 – 64                      | 40 (45.45%)            | 40 (45.45%)                 |  |  |
|                                             | 65 – 75                      | 1 (1.1%)               | 1 (1.1%)                    |  |  |
|                                             | > 75                         | 0                      | 0                           |  |  |
| Sex                                         | Male                         | 53 (60.2%)             | 53 (60.2%)                  |  |  |
| Sex                                         | Female                       | 35 (39.8%)             | 35 (39.8%)                  |  |  |
|                                             | Asian                        | 0                      | 0                           |  |  |
|                                             | Black                        | 11 (12.5%)             | 11 (12.5%)                  |  |  |
|                                             | Caucasian                    | 76 (86.4%)             | 76 (86.4%)                  |  |  |
| Race                                        | Hispanic                     | 0                      | 0                           |  |  |
|                                             | Other<br>(America<br>native) | 1 (1.1%)               | 1 (1.1%)                    |  |  |
| вмі                                         | Mean + SD                    | $25.09 \pm 2.59$       | 25.09 ± 2.59                |  |  |
| DAII                                        | Range                        | 19.91 - 29.82          | 19.91 - 29.82               |  |  |
| Other Fac                                   | tors                         | No                     | No                          |  |  |

Table 8. Dropout Information, Fasting Bioequivalence Study

| Subject No. | Reason                                                                     | Period | Replaced? |
|-------------|----------------------------------------------------------------------------|--------|-----------|
| (b) (6)     | Withdrawn from study for safety reasons (toothache of moderate intensity). | 1      | No        |
|             | Withdrawn from study for safety reasons (toothache of mild intensity).     | 2      | No        |

Table 9. Study Adverse Events, Fasting Bioequivalence Study

| Study No. MSN-P0-732                                        |                |                      |
|-------------------------------------------------------------|----------------|----------------------|
| System Organ Class MedDRA Term                              | Test<br>(N=88) | Reference<br>(N=179) |
| INJURY, POISONING AND PROCEDURAL COMPLICATIONS              | 7 ( 8.0)       | 14 ( 7.8)            |
| [n(%)]                                                      | . ( 2,2)       |                      |
| Vessel Puncture Site Reaction [n(%)]                        | 4 ( 4.5)       | 3 (1.7)              |
| Vessel Puncture Site Haematoma [n(%)]                       | 2 ( 2.3)       | 3 ( 1.7)             |
| Vessel Puncture Site Pain [n(%)]                            | 0              | 5 ( 2.8)             |
| Procedural Dizziness [n(%)]                                 | 0              | 2 ( 1.1)             |
| Arthropod Bite [n(%)]                                       | 0              | 1 ( 0.6)             |
| Injury [n(%)]                                               | 1 ( 1.1)       | 0                    |
| Procedural Complication [n(%)]                              | 0              | 1 ( 0.6)             |
| Procedural Nausea [n(%)]                                    | 0              | 1 ( 0.6)             |
| NERVOUS SYSTEM DISORDERS [n(%)]                             | 4 ( 4.5)       | 15 ( 8.4)            |
| Headache [n(%)]                                             | 2 ( 2.3)       | 10 ( 5.6)            |
| Somnolence [n(%)]                                           | 2 ( 2.3)       | 4 ( 2.2)             |
| Dizziness [n(%)]                                            | 0              | 2 ( 1.1)             |
| Dysgeusia [n(%)]                                            | 0              | 2 ( 1.1)             |
| Hypoaesthesia [n(%)]                                        | 0              | 1 ( 0.6)             |
| GASTROINTESTINAL DISORDERS [n(%)]                           | 3 ( 3.4)       | 10 ( 5.6)            |
| Abdominal Pain [n(%)]                                       | 0              | 3 ( 1.7)             |
| Nausea [n(%)]                                               | 0              | 3 ( 1.7)             |
| Abdominal Pain Upper [n(%)]                                 | 1 ( 1.1)       | 1 ( 0.6)             |
| Constipation [n(%)]                                         | 1 ( 1.1)       | 1 ( 0.6)             |
| Diarrhoea [n(%)]                                            | 0              | 2 ( 1.1)             |
| Toothache [n(%)]                                            | 0              | 2 ( 1.1)             |
| Vomiting [n(%)]                                             | 1 ( 1.1)       | 1 ( 0.6)             |
| Dry Mouth [n(%)]                                            | 1 ( 1.1)       | 0                    |
| Dyspepsia [n(%)]                                            | 0              | 1 ( 0.6)             |
| RESPIRATORY, THORACIC AND MEDIASTINAL DISORDERS [n(%)]      | 3 ( 3.4)       | 9 ( 5.0)             |
| Rhinorrhoea [n(%)]                                          | 1 ( 1.1)       | 4 ( 2.2)             |
| Upper Respiratory Tract Infection [n(%)]                    | 0              | 4 ( 2.2)             |
| Cough [n(%)]                                                | 1 ( 1.1)       | 2 ( 1.1)             |
| Oropharyngeal Pain [n(%)]                                   | 1 ( 1.1)       | 0                    |
| GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS [n(%)] | 0              | 7 ( 3.9)             |
| Fatigue [n(%)]                                              | 0              | 5 ( 2.8)             |
| Cold Sweat [n(%)]                                           | 0              | 1 ( 0.6)             |
| Influenza Like Illness [n(%)]                               | 0              | 1 ( 0.6)             |
| SKIN AND SUBCUTANEOUS TISSUE DISORDERS [n(%)]               | 1 ( 1.1)       | 2 ( 1.1)             |
| Ecchymosis [n(%)]                                           | 0              | 1 ( 0.6)             |
| Hangnail [n(%)]                                             | 0              | 1 ( 0.6)             |
| Rash [n(%)]                                                 | 1 ( 1.1)       | 0                    |

| Study No. MSN-P0-732                                   |                |                      |  |  |  |  |
|--------------------------------------------------------|----------------|----------------------|--|--|--|--|
| System Organ Class  MedDRA Term                        | Test<br>(N=88) | Reference<br>(N=179) |  |  |  |  |
| INVESTIGATIONS [n(%)]                                  | 1 ( 1.1)       | 1 ( 0.6)             |  |  |  |  |
| Neutrophil Count Decreased [n(%)]                      | 1 ( 1.1)       | 1 ( 0.6)             |  |  |  |  |
| MUSCULOSKELETAL AND CONNECTIVE TISSUE DISORDERS [n(%)] | 1 ( 1.1)       | 1 ( 0.6)             |  |  |  |  |
| Arthralgia [n(%)]                                      | 0              | 1 ( 0.6)             |  |  |  |  |
| Neck Pain [n(%)]                                       | 1 ( 1.1)       | 0                    |  |  |  |  |
| EYE DISORDERS [n(%)]                                   | 1 ( 1.1)       | 0                    |  |  |  |  |
| Eye Pruritus [n(%)]                                    | 1 ( 1.1)       | 0                    |  |  |  |  |
| METABOLISM AND NUTRITION DISORDERS [n(%)]              | 1 ( 1.1)       | 0                    |  |  |  |  |
| Decreased Appetite [n(%)]                              | 1 ( 1.1)       | 0                    |  |  |  |  |
| Subjects with at least one AE [n(%)]                   | 17 (19.3)      | 46 (25.7)            |  |  |  |  |

Table 10. Protocol Deviations, Fasting Bioequivalence Study

| Туре                                                                       | Subject #s (Test) | Subject #s (Ref.) | (h.) (O) |
|----------------------------------------------------------------------------|-------------------|-------------------|----------|
| Blood sampling deviations                                                  | (b)               | (6)               | (b) (6)  |
| Blood sampling collection time unknown                                     | <u></u>           |                   |          |
| Blood sampling collection not done                                         |                   |                   |          |
| Blood sampling collection inconclusive                                     | _                 |                   |          |
| Concomitant medication consumption                                         | P-                |                   |          |
| Xanthines deviation                                                        |                   |                   |          |
| Early study departure                                                      |                   |                   |          |
| Omission of documentation of health status at 120-hour post-dose departure |                   |                   |          |

The sample of time deviation in the fasting BE study

| Subject No. | Period | TRT | Elapsed Time (Hr) | Deviation (min) | Different (%) | Reason |
|-------------|--------|-----|-------------------|-----------------|---------------|--------|
| (b) (6)     | 1      | R1  | 6                 | 50              | 13.89         | Α      |
|             | 1      | R1  | 2                 | 16              | 13.33         | Α      |
|             | 1      | R1  | 4                 | 30              | 12.50         | Α      |
|             | 3      | R2  | 72                | 451             | 10.44         | D      |
|             | 1      | T   | 2                 | 11              | 9.17          | Α      |
|             | 1      | R1  | 2                 | 8               | 6.67          | Α      |
|             | 2      | R2  | 4                 | 15              | 6.25          | Α      |
|             | 2      | R1  | 2                 | 7               | 5.83          | Α      |
|             | 3      | R2  | 36                | -114            | 5.28          | Н      |
|             | 1      | R1  | 2                 | 6               | 5.00          | Α      |
|             | 2      | R2  | 48                | 132             | 4.58          | D      |
|             | 3      | R2  | 48                | -115            | 3.99          | Н      |
| 300         | 1      | Т   | 2                 | 4               | 3.33          | Α      |
|             | 2      | R2  | 4                 | 8               | 3.33          | Α      |
|             | 3      | R2  | 48                | 89              | 3.09          | D      |
|             | 3      | R2  | 4                 | 7               | 2.92          | Α      |
|             | 1      | R1  | 7                 | 12              | 2.86          | Α      |

A: difficulty with vein/catheter; D: late/absent; H: Personal reason.

**Note:** There are 654 time deviations in collection of ambulatory blood samples during the fasting BE study. Only 10 (1.53%) time deviations have the difference of sampling time more than 5% from scheduled time. Since all these time deviations are 0 concentration at the corresponding sampling time (except Subject [6] 30.28 ng/mL at 36 hrs), the reviewer still uses scheduled time for PK analysis.

#### Comments on Dropouts/Adverse Events/Protocol Deviations:

Forty-one (41) (45.6%) of the ninety (90) subjects enrolled in this study experienced a total of ninety-six (96) adverse events. Of them, twenty-three (23) adverse events were reported after the administration of the test product and 73 adverse events were reported after the administration of the reference product. The intensity of adverse events ranged from mild to severe. Six (6) severe adverse events were observed. All adverse events were followed until resolution except two severe adverse events (dry month and increased neutrophil).

Two subjects experienced emesis during the course of a BE study. Subject (6) who received the RLD experienced vomiting at 15:00 hrs and Subject (6) who received the test product experienced vomiting at 1:00 since last dose. The onset time of vomiting was within two time median of Tmax (Test: 2 X16 hrs; RLD: 2 X 17 hrs). The firm did not delete these subjects in statistical analysis. Yet, the study outcomes remained to meet the acceptance criteria of reference-scaled analysis for AUCt, AUC8-48, and Cmax after excluded these subjects.

Three (3) subjects experienced an adverse event that required the use of concomitant medications during the course of this study. Subject (b) (6) who took acetaminophen, proamoxi and ibuprofen for tooth pain in period 1 was withdrawn. Subject (b) (6) who took acetaminophen only were included in PK statistical analysis. There were no

interaction found in the literature research between the mesalamine and acetaminophen. The use of this medication should not affect the bioequivalence assessment.

Ninety (90) normal male and female adults were enrolled in this fasting BE study. Two subjects were withdrawn. The sample time deviation was minor, therefore, scheduled times were used in reviewer's analysis. The overall protocol deviation did not compromise the integrity of the study.

# 4.1.1.3 Bioanalytical Results

Table 11. Assay Validation - Within the Fasting Bioequivalence Study

|                              |        |          | Analyte | e 1   |         |         |       |     |      |      |
|------------------------------|--------|----------|---------|-------|---------|---------|-------|-----|------|------|
| Parameter                    |        |          |         | Stand | lard Cu | irve Sa | mples |     |      |      |
| Concentration (ng, mcg/mL)   | 1.00   | 2.00     | 5.00    | 20.0  | 40.0    | 100     | 250   | 600 | 1000 | 1200 |
| Inter day Precision (%CV)    | 2.6    | 5.0      | 4.6     | 3.5   | 3.4     | 3.4     | 2.8   | 3.0 | 3.9  | 4.2  |
| Inter day Accuracy (%Actual) | 100    | 99.2     | 99.4    | 101   | 100     | 101     | 101   | 100 | 99.4 | 98.1 |
| Linearity                    | 0.9963 | 310- 0.9 | 999703  |       |         | 2       |       | *   |      | -2   |
| Linearity Range (ng, mcg/mL) | 1.000  | - 1200   |         |       |         |         |       |     |      |      |
| Sensitivity/LOQ (ng, mcg/mL) | 1.000  |          |         |       |         |         |       |     |      |      |

| Parameter                    | Quality Control Samples |                      |                      |                  |  |  |  |  |
|------------------------------|-------------------------|----------------------|----------------------|------------------|--|--|--|--|
| Concentration (ng, mcg/mL)   | QC LOW<br>3.000         | QC MEDIUM-2<br>50.00 | QC MEDIUM-1<br>450.0 | QC HIGH<br>900.0 |  |  |  |  |
| Inter day Precision (%CV)    | 6.5                     | 5.1                  | 5.4                  | 5.3              |  |  |  |  |
| Inter day Accuracy (%Actual) | 99.4                    | 98.7                 | 99.7                 | 99.6             |  |  |  |  |

# Comments on Study Assay Validation:

Acceptable.

| Any interfering peaks in chromatograms?           | No                                                              |
|---------------------------------------------------|-----------------------------------------------------------------|
| Were 20% of chromatograms included?               | Yes, 20.48% of chromatograms were included from Subject (b) (6) |
| Were chromatograms serially or randomly selected? | Serially                                                        |

#### Comments on Chromatograms:

Acceptable.

### Table 12. SOP's Dealing with Bioanalytical Repeats of Study Samples

| SOP No. | Effective Date of SOP | SOP Title                                |
|---------|-----------------------|------------------------------------------|
|         | (b) (4                | Sample Reanalysis and reporting criteria |

# Table 13. Additional Comments on Repeat Assays

| Were all SOPs followed?                                        | Yes |
|----------------------------------------------------------------|-----|
| Did recalculation of PK parameters change the study outcome?   | No  |
| Does the reviewer agree with the outcome of the repeat assays? | Yes |
| If no, reason for disagreement                                 |     |

Summary/Conclusions, Study Assays: Acceptable.

#### 4.1.1.4 Pharmacokinetic Results

#### Table 14. Arithmetic Mean Pharmacokinetic Parameters

#### I. Combination of group I and II:

Mean plasma concentrations are presented in Table 18 and Figure 1

|                  |          | Tes      |        | Referen  | Reference 1 |          | Reference 2 |        | RatioT/R2 | RatioR1/R2 |
|------------------|----------|----------|--------|----------|-------------|----------|-------------|--------|-----------|------------|
| Parameter        | Unit     | Mean     | CV%    | Mean     | CV%         | Mean     | CV%         | (T/R1) | (T/R2)    | (R1/R2)    |
| AUCT (0-<br>120) | ng hr/mL | 2859.065 | 62.55  | 2536.179 | 63.13       | 2630.538 | 90.46       | 1.13   | 1.09      | 0.96       |
| AUC8-48          | ng hr/mL | 2401.930 | 66.65  | 2094.071 | 59.20       | 1966.759 | 66.92       | 1.15   | 1.22      | 1.06       |
| CMAX             | ng/mL    | 285.995  | 124.10 | 264.996  | 146.61      | 299.379  | 213.64      | 1.08   | 0.96      | 0.89       |
| TMAX             | hr       | 16.000   | æ      | 17.000   |             | 16.000   | *           | 0.94   | 1.00      | 1.06       |

#### Composite

|                               | Fasting | Bioequiv | alence S | tudy, Stu | dy No. MSI | N-P0-732 |      |        |      |
|-------------------------------|---------|----------|----------|-----------|------------|----------|------|--------|------|
| Parameter                     |         | Tes      |          |           | Reference  |          |      |        |      |
| (units)                       | Mean    | %CV      | Min      | Max       | Mean       | %<br>CV  | Min  | Max    | T/R  |
| AUC0-t (0-120) (hr<br>*ng/ml) | 2859.1  | 62.55    | 54.04    | 7644      | 2583.36    | 78.72    | 6.27 | 17015  | 1.11 |
| AUC8-48 (hr<br>*ng/ml)**      | 2401.9  | 66.65    | 54.04    | 6394      | 2030.42    | 63.29    | 13.3 | 5875.9 | 1.18 |
| Cmax (ng/ml)                  | 285.99  | 124.10   | 9.75     | 2374      | 282.19     | 187.8    | 1.58 | 3959   | 1.01 |
| Tmax* (hr)                    | 16.000  | 100      | 4        | 48        | 17         |          | 2    | 95     | 0.94 |

<sup>\*</sup> Tmax values are presented as median, range

Table 15. Geometric Means and 90% Confidence Intervals - Firm Calculated

| 5                           | s Geometric Me           | 5 (S 400 W 500 100 to              | nd 90% Confidence Intervals                |
|-----------------------------|--------------------------|------------------------------------|--------------------------------------------|
| Parameter (units)           | Fasting Bioequi<br>Ratio | valence Study, Study I<br>90% C.I. | No. MSN-P0-732  BE Limit Expansion (90%CI) |
| AUC0-t(0-120)(hr<br>*ng/ml) | 1.18                     | 100.66-139.12                      | 48.43-206.48                               |
| AUC∞ (hr *ng/ml)            | 1.17                     | 98.63-137.81                       | 55.79-179.25                               |
| Cmax (ng/ml)                | 1.22                     | 102.61-147.3                       | 45.8-218.32                                |

<sup>\*\*</sup>Since firm did not calculate AUC8-48 according to new guidance, the reviewer did it.

|                                          | Mesalamine 800 mg dela<br>1× 800 n<br>Scaled Average Bio | ng                 |  |  |  |  |  |  |
|------------------------------------------|----------------------------------------------------------|--------------------|--|--|--|--|--|--|
| Fasted Bioequivalence Study (MSN-P0-732) |                                                          |                    |  |  |  |  |  |  |
| Parameter                                | Ratio                                                    | 95% Upper bound CI |  |  |  |  |  |  |
| AUCt                                     | 118.34%                                                  | -0.3629            |  |  |  |  |  |  |
| AUCi                                     | 116.59%                                                  | -0.2075            |  |  |  |  |  |  |
| Cmax                                     | 122.94%                                                  | -0.4024            |  |  |  |  |  |  |

Table 16. Geometric Means and 90% Confidence Intervals - Reviewer Calculated

| Mesalamine Delayed Release Tablets USP Dose 1 X 800 mg Summary Of Statistical Analysis - Unscaled Data Least Squares Geometric Means, Ratio of Means, and 90% Confidence Intervals Fasting Bioequivalence Study, Study No. MSN-P0-732 |         |           |          |        |        |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|----------|--------|--------|--|--|--|--|--|
| Parameter (units)                                                                                                                                                                                                                     | Test    | Reference | 90% C.I. |        |        |  |  |  |  |  |
| AUC0-t(0-120) (hr<br>*ng/ml)                                                                                                                                                                                                          | 2201.32 | 1871.79   | 1.18     | 100.02 | 138.29 |  |  |  |  |  |
| AUC8-48 (hr *ng/ml)                                                                                                                                                                                                                   | 1829.86 | 1514.30   | 1.21     | 102.06 | 143.08 |  |  |  |  |  |
| Cmax (ng/ml)                                                                                                                                                                                                                          | 182.43  | 149.86    | 1.22     | 101.82 | 145.53 |  |  |  |  |  |

Reference-scaled analysis

| Parameter        | T/R<br>Ratio | Lower<br>90%<br>CI | Upper<br>90%<br>CI | s2wr      | sWR       | Criteria<br>Bound | Method<br>Used | OUTCOME |
|------------------|--------------|--------------------|--------------------|-----------|-----------|-------------------|----------------|---------|
| LAUCT(0-<br>120) | 1.18         | N/A                | N/A                | 0.6606511 | 0.8128045 | -0.362881         | Scaled/PE      | PASS    |
| LAUC8-48         | 1.21         | N/A                | N/A                | 0.6612052 | 0.8131452 | -0.347193         | Scaled/PE      | PASS    |
| LCMAX            | 1.23         | N/A                | N/A                | 0.7662244 | 0.8753424 | -0.402449         | Scaled/PE      | PASS    |

Table 17. Additional Study Information, Fasting Study No. MSN-P0-732

| Root mean square error, AUC0-t                      | 0.6649 |             |             |  |  |
|-----------------------------------------------------|--------|-------------|-------------|--|--|
| Root mean square error, AUC8-48                     | 0.6782 |             |             |  |  |
| Root mean square error, Cmax                        | 0.7883 |             |             |  |  |
|                                                     | Test   | Reference 1 | Reference 2 |  |  |
| Indicate the number of subjects with the following: |        |             |             |  |  |
| measurable drug concentrations at 0 hr              | 0      | 2*          | 0           |  |  |
| first measurable drug concentration as Cmax         | 0      | 0           | 1**         |  |  |
| Were the subjects dosed as more than one group?     | 2      | 2           | 2           |  |  |

<sup>\*</sup>Subject (b) (6) had pre-dose concentration 1.276 ng/mL (period II) and 2.852 ng/mL (period II), respectively. Their pre-dose concentration were much less than 5% of corresponding Cmax (Subject 187.5 ng/mL X 5% = 9.375 ng/mL; Subject (6) 101.5 ng/mL X 5% = 5.075 ng/mL). Thus, these two subjects are included in data analysis.

\*\* Only one sample in Subject (6) was measured with Cmax at the first time point (2 hr post-dose) of a concentration-time curve following the reference 2 treatment. The first time point is far away from Tmax in this fasting BE study, which is 16 hrs in the test and reference 2 products. There is no question about whether it is insufficient early sampling time to measure a true Cmax. Moreover, study outcome meets the evaluation criteria of reference-scaled analysis for AUCt and Cmax for the fasting BE study when excluded Subject (6) The data sets are considered adequate.

# II. Analyzing the data for each group separately (Information only)

The firm selected 90 subjects for this fasting BE study. The subjects were divided into two groups, A and B, for this clinical study. Based on the statistical analysis for the group \* treatment, all PK parameters showed that the treatment\*group interaction term was not significant (p > 0.1). As per the DB practice (see Attachment II), the statistical analysis should be performed on groups 1 and 2 data combined. However, reviewer still analyzed the data for each group separately for information propose only.

Group I (Subject 1 to 45):

Mesalamine Delayed Release Tablets USP

Dose 1 X 800 mg

Summary Of Statistical Analysis - Unscaled Data

Least Squares Geometric Means, Ratio of Means, and 90% Confidence Intervals

| F                             | asting Bioequiv | alence Study, Stud | y No. MSN-P0 | -732     |        |  |
|-------------------------------|-----------------|--------------------|--------------|----------|--------|--|
| Parameter (units)             | Test            | Reference          | Ratio        | 90% C.I. |        |  |
| AUC0-t (0-120) (hr<br>*ng/ml) | 2244.21         | 1968.37            | 1.14         | 93.76    | 138.65 |  |
| AUC∞ (hr *ng/ml)              | 2698.10         | 2522.86            | 1.07         | 87.57    | 130.61 |  |
| AUC8-48 (hr *ng/ml)           | 1842.78         | 1573.65            | 1.17         | 95.04    | 144.28 |  |
| Cmax (ng/ml)                  | 172.99          | 146.77             | 1.18         | 94.91    | 146.37 |  |

| Parameter | T/R<br>Ratio | Lower<br>90%<br>CI | Upper<br>90%<br>CI | s2wr      | sWR       | Criteria<br>Bound | Method<br>Used | OUTCOME |
|-----------|--------------|--------------------|--------------------|-----------|-----------|-------------------|----------------|---------|
| LAUCT     | 1.16         | N/A                | N/A                | 0.4282745 | 0.6544268 | -0.188609         | Scaled/PE      | PASS    |
| LAUCI     | 1.07         | N/A                | N/A                | 0.1489786 | 0.3859774 | -0.035977         | Scaled/PE      | PASS    |
| LAUC8-48  | 1.18         | N/A                | N/A                | 0.4612445 | 0.6791499 | -0.187287         | Scaled/PE      | PASS    |
| LCMAX     | 1.19         | N/A                | N/A                | 0.6378867 | 0.7986781 | -0.292949         | Scaled/PE      | PASS    |

#### Group II (Subject 46 to 90):

Mesalamine Delayed Release Tablets USP
Dose 1 X 800 mg
Summary Of Statistical Analysis - Unscaled Data
Least Squares Geometric Means, Ratio of Means, and 90% Confidence Intervals

Fasting Bioggniyalance Study, Study No. MSN-P0-732

|                    | Fasting Dioequivalence Study, Study No. 191514-F0-752 |           |       |          |        |  |  |  |  |  |  |  |
|--------------------|-------------------------------------------------------|-----------|-------|----------|--------|--|--|--|--|--|--|--|
| Parameter (units)  | Test                                                  | Reference | Ratio | 90% C.I. |        |  |  |  |  |  |  |  |
| AUC0-t (hr *ng/ml) | 2155.80                                               | 1777.55   | 1.21  | 93.35    | 157.56 |  |  |  |  |  |  |  |
| AUC∞ (hr *ng/ml)   | 2781.95                                               | 2246.79   | 1.24  | 97.21    | 157.72 |  |  |  |  |  |  |  |

| AUC8-48 (hr *ng/ml) | 1817.23 | 1457.79 | 1.25 | 95.22 | 163.20 |
|---------------------|---------|---------|------|-------|--------|
| Cmax (ng/ml)        | 192.41  | 152.90  | 1.26 | 94.41 | 167.73 |

#### Reference scaled analysis

| Parameter | T/R<br>Ratio | Lower<br>90%<br>CI | Upper<br>90%<br>CI | s2wr      | sWR       | Criteria<br>Bound | Method<br>Used | OUTCOME |
|-----------|--------------|--------------------|--------------------|-----------|-----------|-------------------|----------------|---------|
| LAUCT     | 1.21         | N/A                | N/A                | 0.9022135 | 0.9498492 | -0.420495         | Scaled/PE      | PASS    |
| LAUCI     | 1.28         | N/A                | N/A                | 0.6671145 | 0.8167708 | -0.217885         | Scaled/PE      | FAIL    |
| LAUC8-48  | 1.25         | N/A                | N/A                | 0.8759331 | 0.935913  | -0.377326         | Scaled/PE      | PASS    |
| LCMAX     | 1.26         | N/A                | N/A                | 0.9079809 | 0.9528803 | -0.378886         | Scaled/PE      | FAIL    |

Note: The results showed that the group I passed BE requirement, while group II failed in Cmax. The bioequivalence was demonstrated in one of the groups. The results for each group separately are adequate per DB recommendation that equivalence can be demonstrated in one of the groups, provided that the group meets minimum requirements for a complete bioequivalence study (see attachment II).

#### Comments on Pharmacokinetic and Statistical Analysis:

- 1. Only 2 (0.8%) samples at 0 hr sampling point had pre-dose concentrations in two out of 83 subjects. However, these two pre-dose concentrations are less than 5% of the corresponding Cmax. As per General BA/BE guidance, the firm included these subjects in the statistical analysis.
- Currently DB does not have a procedure for analyzing the reference-scaled data with groups in the study design. A statistical consult has been requested for the ANDA 091073 regarding analyzing group effect in a reference-scaled average bioequivalence study design.
- 3. The reviewer first analyzed the group\*treatment interaction term using the procedure implemented for the traditional average bioequivalence studies. The statistical analyses showed that the treatment\*group interaction term was not significant for Cmax (p = 0.7582), AUCt (p=0.7529), and AUC<sub>8-48</sub> (p= 0.7602). Therefore, per the DB practice (see Attachment II), the reviewer performed statistical analysis on groups 1 and 2 data combined since they meet the following criteria:
  - the clinical study takes place at one site;
  - all study subjects have been recruited from the same enrollment pool;
  - all of the subjects have similar demographics;
  - all enrolled subjects are randomly assigned to treatment groups at study outset.

4. The current DB's approach calls for using scaled average BE with a point estimate constraint (4.7 Section, Attachment I), in order to be considered bioequivalent to the RLD, the test drug must pass the following two conditions:

i. A 95% upper confidence bounds for  $(\overline{Y}_T - \overline{Y}_R)^2 - \theta_{SWR}^2$  must be less than or equal to 0.

ii. The point estimate (test/reference geometric mean ratio) must fall within [0.80, 1.25].

If sWR (the estimated within-subject standard deviation on the log scale for the RLD) is greater than or equal to 0.294 (meaning that sWR squared is greater than or equal to 0.086436), the reference-scaled approach could be used for establishing bioequivalence. In this case, the firm proposed to use the scaled ABE approach in the study protocol if the  $CV_{WR}$  of the reference drug was higher than 30% for the PK parameters, AUCT,  $AUC_{\infty}$ , and Cmax. Since sWRs are greater than 0.294 for AUCt (0.6649),  $AUC_{8-48}$  (0.6782)<sup>16</sup>, and Cmax (0.7883), the firm used reference scaled approach for all PK parameters (Table 15). The 95% Upper confidence bounds for AUCt,  $AUC_{8-48}$ , and Cmax for Mesalamine in the fasting BE study are all negative (AUCt: -0.362881,  $AUC_{8-48}$ : -0.347193, and Cmax: -0.402449). The results of scaled ABE approach calculated by the firm meet the first condition under fasting condition. The point estimates for Mesalamine fall within 0.8-1.25, (AUCt: 1.18,  $AUC_{8-48}$ : 1.21, and Cmax: 1.23) when scaled data are used in SAS scaled ABE approach. Thus, they meet the second condition.

- 5. As per FDA guidance, log-transformed AUC<sub>8-48</sub> the PK parameter is recommended to be evaluated for both fasting and fed studies. Moreover, the partial AUC is more discriminative and sensitive to formulation changes than Cmax or total AUC. The reviewer, thus, conducted SAS analysis for AUC<sub>8-48</sub> for fasting study in addition to standard calculation of AUC0-t and Cmax. The result indicates that AUC<sub>8-48</sub> for the combined group (I and II) or group I all meet BE acceptance criteria using reference-scaled analysis in this fasting BE study.
- 6. As per protocol (MSN-P0-732), Subject# are excluded from the pharmacokinetic & statistical analysis, since these subjects do not have three consecutive samples with levels above LLOQ. According to guidance, applicants should have extensive sampling points around T max to have accurate estimation of C max and T max, and at least four non-zero measurements of concentration are recommended before T max and between T max and 24 hours if possible. Thus, it is reasonable to exclude above subjects without three consecutive samples by the firm. Moreover, the study outcomes remain to meet the evaluation criteria of reference-scaled analysis for AUCt, AUC8-48, and Cmax when including above subjects as follows:

SUMMARY OF STATISTICAL ANALYSIS - SCALED DATA (N=88)

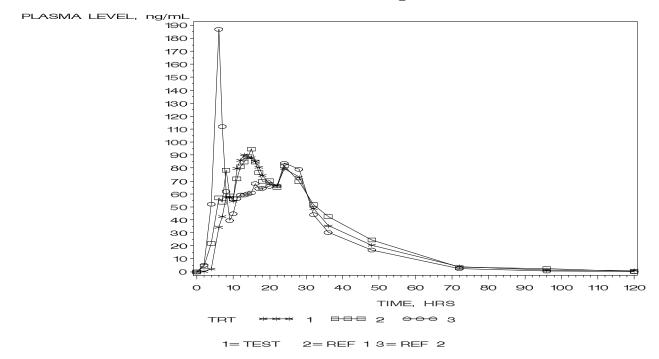
 $<sup>^{16}</sup>$  Reviewer adds  $AUC_{8\text{--}48}$  in statistical analysis according to Guidance.

| Parameter | T/R<br>Ratio | Lower<br>90%<br>CI | Upper<br>90%<br>CI | s2wr      | sWR       | Criteria<br>Bound | Method<br>Used | OUTCOME |
|-----------|--------------|--------------------|--------------------|-----------|-----------|-------------------|----------------|---------|
| LAUCT     | 1.18         | 96.45              | 140.32             | 0.9644225 | 0.9820501 | -0.55688          | Scaled/PE      | PASS    |
| LAUC8-48  | 1.18         | 97.37              | 142.81             | 1.031554  | 1.0156545 | -0.598868         | Scaled/PE      | PASS    |
| LCMAX     | 1.21         | 98.58              | 143.50             | 0.9359739 | 0.9674575 | -0.522459         | Scaled/PE      | PASS    |

The fasting study met the BE acceptance criteria of reference scaled analysis for log-transformed Cmax, AUC0-t, and AUC<sub>8-48</sub> of Mesalamine Delayed Release Tablets. The fasting BE study is acceptable.

Summary and Conclusions, Single-Dose Fasting Bioequivalence Study: Acceptable

Table 18. Mean Plasma Concentrations, Single-Dose Fasting Bioequivalence Study


|              | Test (          | Test (n=83) |                 | nce 1<br>83) | Refere          | The state of the s | RatioTR1 | RatioTR2 | RatioR1R2 |
|--------------|-----------------|-------------|-----------------|--------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-----------|
| Time<br>(hr) | Mean<br>(ng/mL) | CV%         | Mean<br>(ng/mL) | CV%          | Mean<br>(ng/mL) | CV%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (T/R1)   | (T/R2)   | (R1/R2)   |
| 0.00         | 0.05            | 686.42      | 0.00            | 9            | 0.00            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (4)      | 9        |           |
| 2.00         | 0.18            | 590.69      | 4.17            | 911.04       | 5.12            | 911.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.04     | 0.04     | 0.82      |
| 4.00         | 2.16            | 363.64      | 21.79           | 613.16       | 51.51           | 843.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.10     | 0.04     | 0.42      |
| 6.00         | 34.34           | 279.46      | 56.43           | 629.99       | 184.89          | 348.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.61     | 0.19     | 0.31      |
| 7.00         | 42.64           | 275.55      | 53.26           | 347.59       | 110.72          | 307.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.80     | 0.39     | 0.48      |
| 8.00         | 57.59           | 269.41      | 77.45           | 334.67       | 61.52           | 282.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.74     | 0.94     | 1.26      |
| 9.00         | 57.58           | 365.40      | 57.92           | 239.19       | 39.41           | 215.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.99     | 1.46     | 1.47      |
| 10.00        | 54.58           | 189.86      | 55.67           | 189.29       | 44.58           | 160.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.98     | 1.22     | 1.25      |
| 11.00        | 79.69           | 162.41      | 71.63           | 156.74       | 56.29           | 150.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.11     | 1.42     | 1.27      |
| 12.00        | 85.93           | 142.35      | 82.27           | 127.53       | 59.21           | 141.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.04     | 1.45     | 1.39      |
| 13.00        | 90.25           | 130.01      | 87.76           | 117.76       | 59.32           | 136.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.03     | 1.52     | 1.48      |
| 14.00        | 88.45           | 121.98      | 92.39           | 113.76       | 60.06           | 123.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.96     | 1.47     | 1.63      |
| 15.00        | 87.77           | 112.53      | 99.51           | 125.91       | 60.93           | 109.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.88     | 1.44     | 1.63      |
| 16.00        | 85.09           | 108.07      | 89.86           | 113.54       | 67.94           | 123.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.01     | 1.25     | 1.26      |
| 17.00        | 80.74           | 103.61      | 80.71           | 103.83       | 64.24           | 90.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.06     | 1.26     | 1.19      |
| 18.00        | 74.38           | 110.93      | 72.71           | 98.48        | 64.86           | 92.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.06     | 1.16     | 1.09      |
| 20.00        | 67.67           | 108.37      | 71.37           | 103.05       | 66.62           | 99.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.96     | 1.03     | 1.07      |
| 22.00        | 66.48           | 107.37      | 66.32           | 102.30       | 66.61           | 101.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00     | 1.00     | 1.00      |
| 24.00        | 79.50           | 105.75      | 81.92           | 100.60       | 84.31           | 106.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.97     | 0.94     | 0.97      |
| 28.00        | 73.01           | 97.18       | 69.70           | 72.56        | 79.15           | 101.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.02     | 0.92     | 0.88      |
| 32.00        | 48.86           | 90.72       | 51.66           | 96.92        | 44.65           | 117.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.95     | 1.09     | 1.16      |
| 36.00        | 35.44           | 111.86      | 42.28           | 111.78       | 30.01           | 129.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.84     | 1.18     | 1.41      |
| 48.00        | 20.43           | 144.30      | 24.59           | 152.71       | 16.63           | 187.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.83     | 1.23     | 1.48      |
| 72.00        | 3.92            | 287.82      | 3.34            | 323.16       | 2.46            | 349.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.17     | 1.59     | 1.36      |

ANDA 203286 Single-Dose Fasting Bioequivalence Study Review

|              | Test (n=83)     |        | Reference 1<br>(n=83) |        | Reference 2<br>(n=83) |        | RatioTR1 | RatioTR2 | RatioR1R2 |
|--------------|-----------------|--------|-----------------------|--------|-----------------------|--------|----------|----------|-----------|
| Time<br>(hr) | Mean<br>(ng/mL) | CV%    | Mean<br>(ng/mL)       | CV%    | Mean<br>(ng/mL)       | CV%    | (T/R1)   | (T/R2)   | (R1/R2)   |
| 96.00        | 1.19            | 258.38 | 2.52                  | 547.06 | 0.52                  | 275.01 | 0.47     | 2.29     | 4.85      |
| 120.00       | 1.07            | 540.67 | 0.18                  | 574.03 | 0.15                  | 490.67 | 5.94     | 7.13     | 1.20      |

Figure 1. Mean Plasma Concentrations, Single-Dose Fasting Bioequivalence Study

# PLASMA Mesalamine LEVELS Mesalamine Delayed Release Tablets USP, ANDA 203286 UNDER FastingRegu CONDITIONS DOSE= 1 x 800 mg



# 4.1.2 Single-dose Fed Bioequivalence Study

# 4.1.2.1 Study Design

Table 19. Study Information

| Study Number                                                                                                                         | MSN-P0-733                                                                                                                                                                                                             |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Study Title                                                                                                                          | Single Dose, Partial Replicate, Crossover Comparative<br>Bioavailability Study of Mesalamine 800 mg Delayed-Release<br>Tablets in Healthy Male and Female Volunteers / Fed State                                       |  |  |
| Clinical Site<br>(Name & Address)                                                                                                    | Algorithme Pharma Inc. 1200 Beaumont Ave. Mount-Royal, Quebec, Canada H3P 3P1                                                                                                                                          |  |  |
| Principal Investigator                                                                                                               | Eric Sicard, M.D.<br>Algorithme Pharma Inc.                                                                                                                                                                            |  |  |
| Dosing Dates                                                                                                                         | Group A (Subjects # 001-003, 005-038, 040-042): Period 1: 2011/03/01 Period 2: 2011/03/08 Period 3: 2011/03/15  Group B (Subjects # 004, 039, 043-090): Period 1: 2011/03/16 Period 2: 2011/03/23 Period 3: 2011/03/30 |  |  |
| Analytical Site<br>(Name & Address)                                                                                                  |                                                                                                                                                                                                                        |  |  |
| Analysis Dates                                                                                                                       | 25 May 11 to 25 Jun 11                                                                                                                                                                                                 |  |  |
| Analytical Director                                                                                                                  | (b) (4)                                                                                                                                                                                                                |  |  |
| Storage Period of Biostudy Samples<br>(no. of days from the first day of<br>sample collection to the last day of<br>sample analysis) | 116 Days (01 Mar 11 to 25 Jun 11) (Group A)<br>101 Days (16 Mar 11 to 25 Jun 11) (Group B)                                                                                                                             |  |  |

Table 20. Product Information

| Product      | Test                                      | Reference                                          |  |
|--------------|-------------------------------------------|----------------------------------------------------|--|
| Treatment ID | T                                         | R                                                  |  |
| Product Name | Mesalamine Delayed Release<br>Tablets USP | ASACOL® HD (Mesalamine)<br>Delayed Release Tablets |  |
| Manufacturer | Cadila Healthcare Limited,<br>India       | Procter & Gamble<br>Pharmaceuticals, Inc.          |  |

| Batch/Lot No.                  | EMK150                                   | 442661S3                |
|--------------------------------|------------------------------------------|-------------------------|
| Manufacture Date               | March, 2010                              | N/A                     |
| Expiration Date                | August, 2011(Retest date)                | March, 2013             |
| Strength                       | 800 mg                                   | 800 mg                  |
| Dosage Form                    | Delayed Release Tablets                  | Delayed Release Tablets |
| Bio-Batch Size                 | (b) (4                                   | N/A                     |
| Production Batch Size          |                                          | N/A                     |
| Potency (Assay)                | 101.0 %                                  | 98.5 %                  |
| Content Uniformity (mean, %CV) | Acceptance value as per USP <905> is 3.2 | N/A                     |
| Dose Administered              | 800 mg                                   | 800 mg                  |
| Route of Administration        | Oral                                     | Oral                    |

Table 21. Study Design, Single-Dose Fed Bioequivalence Study

| No. of Subjects               | Enrolled: 90 Dosed: 90 Completed: 83 (7 subject dropped out or withdrawn) Samples Analyzed: 83 Data Analyzed: 70*                                                                                                                                                                                                                                                                               |  |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| No. of Sequences              | 3                                                                                                                                                                                                                                                                                                                                                                                               |  |
| No. of Periods                | 3.                                                                                                                                                                                                                                                                                                                                                                                              |  |
| No. of Treatments             | 2                                                                                                                                                                                                                                                                                                                                                                                               |  |
| No. of Groups                 | 2, 90 subjects were selected for inclusion in the study at the same clinical center. The subjects were divided into two groups, A (Subject 001-003, 005-038, and 040-042) and B (Subject 004, 039, 043-090) for the test and reference treatments under fed condition.                                                                                                                          |  |
| Washout Period                | 7 days                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Randomization Scheme          | TR1R2: 3, 5, 7, 11, 15, 18, 20, 24, 25, 30, 32, 34, 39, 41, 44, 48, 49, 54, 56, 59, 63, 64, 67, 70, 74, 77, 81, 82, 86, and 90. R1TR2: 2, 6, 9, 12, 14, 16, 21, 22, 27, 28, 33, 35, 38, 42, 45, 47, 51, 52, 57, 58, 62, 66, 68, 71, 73, 79, 84, 87, and 89. R1R2T: 1, 4, 8, 10, 13, 17, 19, 23, 26, 29, 31, 36, 37, 40, 43, 46, 50, 53, 55, 60, 61, 65, 69, 72, 75, 76, 78, 80, 83, 85, and 88. |  |
| Blood Sampling Times          | Pre-dose (0.0) and 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 28, 32, 36, 48, 72, 96 and 120 hours post-dose                                                                                                                                                                                                                                                             |  |
| Blood Volume Collected/Sample | 7 mL/sample                                                                                                                                                                                                                                                                                                                                                                                     |  |

| Blood Sample Processing/Storage | Blood samples were collected in pre-cooled K <sub>3</sub> EDTA Vacutainers. Within 30 minutes of blood collection, samples were centrifuged at a temperature of 4°C nominal and at approximately 1500g for 10 minutes. The plasma obtained was separated into duplicate polypropylene culture tubes labeled as Split #1 and Split #2 (in approximately equal volume) within 90 minutes of blood collection, when feasible. The samples were frozen in an upright position and retained in the clinic's freezers at a temperature of 50°C nominal or colder until transferred to the laboratory where they were stored frozen at a temperature of -70°C ± 20°C until assayed. |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| IRB Approval                    | Yes, approved on 01/31/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Informed Consent                | Yes, approved on 01/31/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Length of Fasting Before Meal   | 10 hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Length of Confinement           | 48 hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Safety Monitoring               | Medical history, physical examinations, vital sign assessments, 12-lead electrocardiograms (ECG), clinical laboratory assessments, adverse event evaluation, and by general observations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |

<sup>\*</sup> As per protocol (MSN-P0-733), subject#

from the pharmacokinetic & statistical analysis, since these subjects do not have three consecutive samples with levels above LLOO<sup>17</sup>.

| Standard FDA Meal Used? | Yes    |
|-------------------------|--------|
|                         | 1.0.0X |

#### Comments on Study Design:

The study design is acceptable.

According to guidance, applicants should have extensive sampling points around T max to have accurate estimation of C max and T max, and at least four non-zero measurements of concentration are recommended before T max and between T max and 24 hours if possible. Thus, it is reasonable to exclude above subjects without three consecutive samples by the firm per guidance and per firm's protocol. However, to confirm this result, the reviewer also conducted SAS analysis including all these subjects. The study outcomes remain to meet the evaluation criteria of reference-scaled analysis for AUCt, AUC8-48, and Cmax (Please see the review comments in section 4.1.2.4).

# 4.1.2.2 Clinical Results

Table 22. Demographics Profile of Subjects Completing the Bioequivalence Study

| Fed Bioequivalence Study No. MSN-P0-733 |           |                        |                             |
|-----------------------------------------|-----------|------------------------|-----------------------------|
|                                         |           | Treatment Groups       |                             |
|                                         |           | Test Product<br>N = 83 | Reference Product<br>N = 83 |
| Age                                     | Mean ± SD | $38 \pm 12$            | 38 ± 12                     |
| (years)                                 | Range     | 20 - 66                | 20 - 66                     |
|                                         | < 18      | 0                      | 0                           |
|                                         | 18 – 40   | 43 (51.81%)            | 43 (51.81%)                 |
| Age<br>Groups                           | 41 – 64   | 39 (46.99%)            | 39 (46.99%)                 |
| Croups                                  | 65 – 75   | 1 (1.2%)               | 1 (1.2%)                    |
|                                         | > 75      | 0                      | 0                           |
| S                                       | Male      | 57 (68.7%)             | 57 (68.7%)                  |
| Sex                                     | Female    | 26 (31.3%)             | 26 (31.3%)                  |
|                                         | Asian     | 0                      | 0                           |
|                                         | Black     | 7 (8.4%)               | 7 (8.4%)                    |
| Race                                    | Caucasian | 73 (88.0%)             | 73 (88.0%)                  |
|                                         | Hispanic  | 0                      | 0                           |
|                                         | Other     | 2 (2.4%)               | 2 (2.4%)                    |
| вмі                                     | Mean + SD | $24.51 \pm 3.08$       | 24.51 ± 3.08                |
| DIVII                                   | Range     | 18.62 - 29.98          | 18.62 - 29.98               |
| Other Fac                               | tors      | No                     | No                          |

Table 23. Dropout Information, Fed Bioequivalence Study

| Subject No. | Reason                                                                             | Period | Replaced? |
|-------------|------------------------------------------------------------------------------------|--------|-----------|
| (b)         | Withdrawn from study for safety reasons (haemoglobin decreased of mild intensity). | 2      | No        |
|             | Withdrew consent from study for reasons not related to clinical event.             | 2      | No        |
|             | Withdrew consent from study for reasons not related to clinical event.             | 2      | No        |
|             | Withdrew consent from study for reasons not related to clinical event.             | 1      | No        |
|             | Withdrawn from study for safety reasons (haemoglobin decreased of mild intensity). | 2      | No        |
|             | Withdrawn from study for reasons other                                             | 2      | No        |

| (1) (0) | than safety (positive ethanol test).                                    |   |    |
|---------|-------------------------------------------------------------------------|---|----|
| (b) (6) | Withdrawn from study for safety reasons (injury of moderate intensity). | 2 | No |

Table 24. Study Adverse Events, Fed Bioequivalence Study

| Study No. MSN-P0-733                                                        |                     |                      |  |
|-----------------------------------------------------------------------------|---------------------|----------------------|--|
| System Organ Class MedDRA Term                                              | Test<br>(N=88)      | Reference<br>(N=174) |  |
| NERVOUS SYSTEM DISORDERS [n(%)]                                             | 12 (13.6)           | 16 ( 9.2)            |  |
| Headache [n(%)]                                                             | 6 ( 6.8)            | 9 ( 5.2)             |  |
| Somnolence [n(%)]                                                           | 5 ( 5.7)            | 5 ( 2.9)             |  |
| Dizziness [n(%)]                                                            | 1 ( 1.1)            | 1 ( 0.6)             |  |
| Paraesthesia [n(%)]                                                         | 0                   | 1 ( 0.6)             |  |
| Vision Blurred [n(%)]                                                       | 0                   | 1 ( 0.6)             |  |
| INJURY, POISONING AND PROCEDURAL COMPLICATIONS [n(%)]                       | 6 ( 6.8)            | 18 (10.3)            |  |
| Vessel Puncture Site Reaction [n(%)]                                        | 2 ( 2.3)            | 8 ( 4.6)             |  |
| Vessel Puncture Site Haematoma [n(%)]                                       | 3 ( 3.4)            | 3 ( 1.7)             |  |
| Vessel Puncture Site Pain [n(%)]                                            | 1 ( 1.1)            | 3 ( 1.7)             |  |
| Injury [n(%)]                                                               | 0                   | 2 ( 1.1)             |  |
| Procedural Complication [n(%)]                                              | 0                   | 1 ( 0.6)             |  |
| Procedural Dizziness [n(%)]                                                 | 0                   | 1 ( 0.6)             |  |
| GASTROINTESTINAL DISORDERS [n(%)]                                           | 10 (11.4)           | 12 ( 6.9)            |  |
| Abdominal Distension [n(%)]                                                 | 3 ( 3.4)            | 2 ( 1.1)             |  |
| Abdominal Pain [n(%)]                                                       | 2 ( 2.3)            | 3 ( 1.7)             |  |
| Diarrhoea [n(%)]                                                            | 1 ( 1.1)            | 4 ( 2.3)             |  |
| Abdominal Discomfort [n(%)]                                                 | 2 ( 2.3)            | 2 ( 1.1)             |  |
| Nausea [n(%)]                                                               | 2 ( 2.3)            | 2 ( 1.1)             |  |
| Constipation [n(%)]                                                         | 0                   | 3 ( 1.7)             |  |
| Vomiting [n(%)]                                                             | 1 ( 1.1)            | 1 ( 0.6)             |  |
| Dyspepsia [n(%)]                                                            | 1 ( 1.1)            | 0                    |  |
| Gastrooesophageal Reflux Disease [n(%)]                                     |                     | 0                    |  |
|                                                                             | 0 1 ( 1.1)          | 76                   |  |
| Lip Dry [n(%)]  GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS [n(%)] | Let make the second | 1 ( 0.6)             |  |
| 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                     | 2 ( 2.3)            | 5 ( 2.9)             |  |
| Fatigue [n(%)]                                                              | 2 ( 2.3)            | 2 ( 1.1)             |  |
| Asthenia [n(%)]                                                             | 19.1                | 1 ( 0.6)             |  |
| Feeling Cold [n(%)]                                                         | 0                   | 1 ( 0.6)             |  |
| Feeling Hot [n(%)]                                                          | 0                   | 1 ( 0.6)             |  |
| Non-Cardiac Chest Pain [n(%)]                                               | 0                   | 1 ( 0.6)             |  |
| MUSCULOSKELETAL AND CONNECTIVE TISSUE DISORDERS [n(%)]                      | 3 ( 3.4)            | 3 ( 1.7)             |  |
| Back Pain [n(%)]                                                            | 2 ( 2.3)            | 1 ( 0.6)             |  |
| Myalgia [n(%)]                                                              | 1 ( 1.1)            | 1 ( 0.6)             |  |
| Musculoskeletal Stiffness [n(%)]                                            | 0                   | 1 ( 0.6)             |  |
| RESPIRATORY, THORACIC AND MEDIASTINAL DISORDERS [n(%)]                      | 2 ( 2.3)            | 4 ( 2.3)             |  |
| Upper Respiratory Tract Infection [n(%)]                                    | 1 ( 1.1)            | 2 ( 1.1)             |  |
| Oropharyngeal Pain [n(%)]                                                   | 0                   | 2 ( 1.1)             |  |
| Nasal Congestion [n(%)]                                                     | 1 ( 1.1)            | 0                    |  |
| SKIN AND SUBCUTANEOUS TISSUE DISORDERS [n(%)]                               | 2 ( 2.3)            | 4 ( 2.3)             |  |
| Erythema [n(%)]                                                             | 1 ( 1.1)            | 2 ( 1.1)             |  |

| Study No. MSN-P0-733                 |                |                      |
|--------------------------------------|----------------|----------------------|
| System Organ Class<br>MedDRA Term    | Test<br>(N=88) | Reference<br>(N=174) |
| Alopecia [n(%)]                      | 0              | 1 ( 0.6)             |
| Ecchymosis [n(%)]                    | 1 ( 1.1)       | 0                    |
| Rash [n(%)]                          | 0              | 1 ( 0.6)             |
| INVESTIGATIONS [n(%)]                | 0              | 5 ( 2.9)             |
| Haemoglobin Decreased [n(%)]         | 0              | 3 ( 1.7)             |
| Blood Potassium Increased [n(%)]     | 0              | 1 ( 0.6)             |
| Neutrophil Count Increased [n(%)]    | 0              | 1 ( 0.6)             |
| Subjects with at least one AE [n(%)] | 24 ( 27.3)     | 51 (29.3)            |

Table 25. Protocol Deviations, Fed Bioequivalence Study

| Туре                                                                                                      | Subject #s (Test) | Subject #s (Ref.) |
|-----------------------------------------------------------------------------------------------------------|-------------------|-------------------|
| Blood sampling time deviations                                                                            | (b) (6)           |                   |
| Blood sampling not done                                                                                   | <u>-</u>          |                   |
| Blood collection time not known                                                                           | <u>*</u>          | •                 |
| Concomitant medication consumption                                                                        | Ī                 |                   |
| Subject used a moisturizer 3 days prior to dosing                                                         | i                 |                   |
| Subjects were given an optional snack too late and therefore did not fast overnight for at least 10 hours |                   |                   |
| Subject received his critical meal 1 minute late.                                                         | _                 |                   |
| The regular breakfast was not standardized compared to other subjects and periods.                        |                   |                   |
| Health status of subject was not questioned before departure from the 48-hour return visit.               |                   |                   |
| Post-study tests were performed late                                                                      |                   |                   |

The sample of time deviation in the fed BE study

| Subject No. | Period | TRT | Elapsed time (hr) | Deviation (min) | Different (%) | Reason |
|-------------|--------|-----|-------------------|-----------------|---------------|--------|
| (b) (6      | 2      | T   | 2                 | 9               | 7.50          | Α      |
|             | 1      | T   | 2                 | 5               | 4.17          | Α      |
|             | 1      | R1  | 2                 | 5               | 4.17          | Α      |
|             | 3      | R2  | 6                 | 15              | 4.17          | В      |
|             | 2      | R1  | 12                | 25              | 3.47          | Α      |
|             | 2      | Т   | 2                 | 4               | 3.33          | Α      |
|             | 3      | R2  | 2                 | 4               | 3.33          | A      |

A: difficulty with vein/catheter; B: Technical Oversight;

Note: There are 483 time deviations in collection of ambulatory blood samples during the fed BE study. Only 1 (0.21%) time deviation has the difference of sampling time more than 5% from scheduled time. Since this time deviation is 0 concentration at 2 hrs, the reviewer still uses scheduled time for PK analysis.

#### Comments on Adverse Events/Protocol Deviations:

Forty-nine (49) (54.4%) of the ninety (90) subjects enrolled in this study experienced a total of one hundred and twenty-seven (127) adverse events. Forty-two (42) adverse events were reported after the administration of the Test product and 85 adverse events were reported after the administration of the Reference product. The majority of adverse events were mild in intensity. Six (6) severe adverse events (Test: abdominal pain, headache; Reference: headache, nausea, procedural complication) were observed during the study. All severe adverse events were possibly related to the administration of the tested products except procedural complication in Subject

Two subjects experienced emesis during the course of a BE study. Subject <sup>(6)</sup> who received the RLD experienced vomiting at 19:45 hrs and was withdrawn due to the safety reason. Subject <sup>(6)</sup> who received the test product experienced vomiting at 23:00 hrs since last dose. The o set time of vomiting was within two time median of Tmax (Test: 2 X 24 hrs). The firm did not delete this subject in statistical analysis. Yet, the study outcomes remained to meet the evaluation criteria of reference-scaled analysis for AUCt, AUC<sub>8-48</sub>, and Cmax after excluded Subject <sup>(6)</sup> (6)

Five (5) subjects experienced adverse events that required the use of concomitant medications during the course of this study. Subject who took acetaminophen only were included in PK statistical analysis. There were no interaction found in the literature research between the mesalamine and acetaminophen. The use of this medication should not affect the bioequivalence assessment. In addition, Subject applied betaderm topical cream for prevention prior to dosing of period 1. Topical betamethasone (corticosteroids) is known to be absorbed into the bloodstream, especially if used for prolonged periods of time on large areas of the body. Yet, this medication was only applied for prevention in limited area at a short time. It was unlikely to have any significant concentration of corticosteroids would be present in the body at the time of clinical study.

Ninety (90) normal male and female adults were enrolled in this fasting BE study. Seven subjects were dropped out or withdrawn. The sample time deviation was minor,

therefore, scheduled times were used in reviewer's analysis. The overall protocol deviation did not compromise the integrity of the study.

#### 4.1.2.3 Bioanalytical Results

Table 26. Assay Validation - Within the Fed Bioequivalence Study

| Analyte 1                    |                        |           |         |      |      |     |     |     |      |      |
|------------------------------|------------------------|-----------|---------|------|------|-----|-----|-----|------|------|
| Parameter                    | Standard Curve Samples |           |         |      |      |     |     |     |      |      |
| Concentration (ng, mcg/mL)   | 1.00                   | 2.00      | 5.00    | 20.0 | 40.0 | 100 | 250 | 600 | 1000 | 1200 |
| Inter day Precision (%CV)    | 3.0                    | 5.7       | 6.2     | 3.9  | 3.8  | 4.0 | 3.2 | 3.7 | 3.4  | 3.8  |
| Inter day Accuracy (%Actual) | 100                    | 99.9      | 97.8    | 100  | 101  | 102 | 101 | 100 | 98.6 | 98.8 |
| Linearity                    | 0.9927                 | 7569 - 0. | 9999053 |      |      | 2   |     | *   |      | -2   |
| Linearity Range (ng, mcg/mL) | 1.000                  | - 1200    |         |      |      |     |     |     |      |      |
| Sensitivity/LOQ (ng, mcg/mL) | 1.000                  |           |         |      |      |     |     |     |      |      |

| Parameter                    | Quality Control Samples |                      |                      |                  |  |  |  |  |
|------------------------------|-------------------------|----------------------|----------------------|------------------|--|--|--|--|
| Concentration (ng, mcg/mL)   | QC LOW<br>3.000         | QC MEDIUM-2<br>50.00 | QC MEDIUM-1<br>450.0 | QC HIGH<br>900.0 |  |  |  |  |
| Inter day Precision (%CV)    | 8.8                     | 5.8                  | 5.7                  | 5.7              |  |  |  |  |
| Inter day Accuracy (%Actual) | 98.3                    | 99.6                 | 102                  | 101              |  |  |  |  |

# Comments on Study Assay Validation:

Acceptable.

| Any interfering peaks in chromatograms?           | No                                                             |
|---------------------------------------------------|----------------------------------------------------------------|
| Were 20% of chromatograms included?               | Yes, 25.71% of chromatogram were included from Subject (b) (6) |
| Were chromatograms serially or randomly selected? | Serially                                                       |

# Comments on Chromatograms:

Acceptable.

Table 27. SOP's Dealing with Bioanalytical Repeats of Study Samples

| 100 | SOP No. | Effective Date of SOP | SOP Title                                |  |
|-----|---------|-----------------------|------------------------------------------|--|
| 1   |         | (b) (4)               | Sample Reanalysis and reporting criteria |  |

# Table 28. Additional Comments on Repeat Assays

| Were all SOPs followed?                                        | Yes |
|----------------------------------------------------------------|-----|
| Did recalculation of PK parameters change the study outcome?   | No  |
| Does the reviewer agree with the outcome of the repeat assays? | Yes |
| If no, reason for disagreement                                 |     |

Summary/Conclusions, Study Assays: Acceptable.

#### 4.1.2.4 Pharmacokinetic Results

#### Table 29. Arithmetic Mean Pharmacokinetic Parameters

#### Combination of Group I and II:

Mean plasma concentrations are presented in Table 33 and Figure 2

|               |          | Test     |        | Reference 1 |        | Reference 2 |        | RatioT/R1 | RatioT/R2 | RatioR1/R2 |
|---------------|----------|----------|--------|-------------|--------|-------------|--------|-----------|-----------|------------|
| Parameter     | Unit     | Mean     | CV%    | Mean        | CV%    | Mean        | CV%    | (T/R1)    | (T/R2)    | (R1/R2)    |
| AUCT0-<br>120 | ng hr/mL | 3625.090 | 80.89  | 3391.919    | 88.35  | 3721.807    | 85.49  | 1.07      | 0.97      | 0.91       |
| AUC8-48       | ng hr/mL | 3214.314 | 88.14  | 3070.955    | 94.29  | 3408.424    | 90.92  | 1.05      | 0.94      | 0.90       |
| CMAX          | ng/mL    | 657.624  | 139.33 | 586.954     | 133.29 | 700.724     | 145.71 | 1.12      | 0.94      | 0.84       |
| TMAX          | hr       | 24.000   | 84     | 24.000      |        | 24.000      | *      | 1.00      | 1.00      | 1.00       |

| Parameter                     | Test    |        |      | Reference |        |                 |       | T/R   |      |
|-------------------------------|---------|--------|------|-----------|--------|-----------------|-------|-------|------|
| (units)                       | Mean    | %CV    | Min  | Max       | Mean   | % CV            | Min   | Max   | 1/K  |
| AUC0-t (0-120) (hr<br>*ng/ml) | 3625.09 | 80.89  | 8.99 | 16047     | 3556.9 | 86.75           | 48.62 | 16333 | 1.02 |
| AUC8-48 (hr<br>*ng/ml)**      | 3214.31 | 88.14  | 8.99 | 16047     | 3239.7 | 92.37           | 39.08 | 16271 | 0.99 |
| Cmax (ng/ml)                  | 657.624 | 139.33 | 1.5  | 4692      | 643.84 | 141.2           | 5.89  | 4115  | 1.02 |
| Tmax* (hr)                    | 24.0    |        | 7    | 48        | 24.0   | 23 <b>4</b> 1 1 | 7     | 48    | 1    |

<sup>\*</sup> Tmax values are presented as median, range

Table 30. Geometric Means and 90% Confidence Intervals - Firm Calculated

| Least Squares                                  |       | e Delayed Release Tal<br>Dose 1 X 800 mg<br>ns, Ratio of Means, an | olets USP<br>ad 90% Confidence Intervals |  |  |  |  |  |  |
|------------------------------------------------|-------|--------------------------------------------------------------------|------------------------------------------|--|--|--|--|--|--|
| Fed Bioequivalence Study, Study No. MSN-P0-733 |       |                                                                    |                                          |  |  |  |  |  |  |
| Parameter (units)                              | Ratio | 90% C.I.                                                           | BE Limit Expansion (90%CI)               |  |  |  |  |  |  |
| AUC0-t (0-120) (hr<br>*ng/ml)                  | 0.98  | 73.93-129.66                                                       | 46.93-213.09                             |  |  |  |  |  |  |
| AUC∞ (hr *ng/ml)                               | 0.95  | 75.61-120.43                                                       | 49.76-200.98                             |  |  |  |  |  |  |
| Cmax (ng/ml)                                   | 1.01  | 73.38-139.16                                                       | 35.59-280.96                             |  |  |  |  |  |  |

| Fed Bioequivalence Study (MSN-P0-733) |       |                    |  |  |  |
|---------------------------------------|-------|--------------------|--|--|--|
| Parameter                             | Ratio | 95% Upper bound CI |  |  |  |

<sup>\*\*</sup>Since firm did not calculate AUC8-48 according to new guidance, the reviewer did it.

| AUCt (0-120) | 97.91%  | -0.4230 |
|--------------|---------|---------|
| AUCi         | 95.42%  | -0.3489 |
| Cmax         | 101.05% | -0.8187 |

Table 31. Geometric Means and 90% Confidence Intervals - Reviewer Calculated

| Least Squares                 | Summary Of St<br>Geometric Mean | Delayed Release Topose 1 X 800 mg atistical Analysis - Is, Ratio of Means, a | Unscaled Data<br>and 90% Conf                  | idence Interv | als    |
|-------------------------------|---------------------------------|------------------------------------------------------------------------------|------------------------------------------------|---------------|--------|
| Parameter (units)             | Test                            | Reference                                                                    | e Study, Study No. MSN-P0-733  Reference Ratio |               | 6 C.I. |
| AUC0-t (0-120) (hr<br>*ng/ml) | 2301.26                         | 2313.92                                                                      | 0.99                                           | 74.85         | 132.15 |
| AUC8-48 (hr *ng/ml)           | 2003.37                         | 2054.86                                                                      | 0.97                                           | 73.04         | 130.14 |
| Cmax (ng/ml)                  | 274.69                          | 268.54                                                                       | 1.02                                           | 74.13         | 141.15 |

#### SUMMARY OF STATISTICAL ANALYSIS - SCALED DATA

| Parameter         | T/R<br>Ratio | Lower<br>90%<br>CI | Upper<br>90%<br>CI | s2wr      | sWR       | Criteria<br>Bound | Method<br>Used | OUTCOME |
|-------------------|--------------|--------------------|--------------------|-----------|-----------|-------------------|----------------|---------|
| LAUCT (0-<br>120) | 0.98         | N/A                | N/A                | 0.7193513 | 0.8481458 | -0.422984         | Scaled/PE      | PASS    |
| LAUC8-48          | 0.96         | N/A                | N/A                | 0.8018692 | 0.8954715 | -0.467636         | Scaled/PE      | PASS    |
| LCMAX             | 1.01         | N/A                | N/A                | 1.3412103 | 1.1581063 | -0.818653         | Scaled/PE      | PASS    |

Table 32. Additional Study Information

| Root mean square error, AUC0-t                      | 1.0044 |             |             |  |  |
|-----------------------------------------------------|--------|-------------|-------------|--|--|
| Root mean square error, AUC8-48                     | 1.0392 |             |             |  |  |
| Root mean square error, Cmax                        |        | 1.2279      |             |  |  |
|                                                     | Test   | Reference 1 | Reference 2 |  |  |
| Indicate the number of subjects with the following: |        |             |             |  |  |
| measurable drug concentrations at 0 hr              | 0      | 0           | 0           |  |  |
| first measurable drug concentration as Cmax         | 0      | 0           | 0           |  |  |
| Were the subjects dosed as more than one group?     | Yes    | Yes         | Yes         |  |  |

#### Analyzing the data for each group separately (Information only)

The firm selected 90 subjects for this fed BE study. The subjects were divided into two groups, A and B, for this clinical study. Based on the statistical analysis for the group \* treatment, all PK parameters showed that the treatment\*group interaction term was not significant (p > 0.1). As per the DB practice (see Attachment II), the statistical analysis could be preformed on groups 1 and 2 data combined if the follows meet:

• the clinical study takes place at one site;

- all study subjects have been recruited from the same enrollment pool;
- · all of the subjects have similar demographics;
- all enrolled subjects are randomly assigned to treatment groups at study outset.

However, reviewer still analyzed the data for each group separately for information propose only.

# Group I

| Group 1             |                 |                                                                                       |               |          |        |
|---------------------|-----------------|---------------------------------------------------------------------------------------|---------------|----------|--------|
| Least Squares       | Summary Of St   | Delayed Release Ta<br>Dose 1 X 800 mg<br>atistical Analysis -<br>s, Ratio of Means, a | Unscaled Data |          | als    |
| 4                   | Fed Bioequivale | nce Study, Study N                                                                    | o. MSN-P0-73  | 3        |        |
| Parameter (units)   | Test            | Reference                                                                             | Ratio         | 90% C.I. |        |
| AUC0-t (hr *ng/ml)  | 2228.89         | 2155.69                                                                               | 1.03          | 67.28    | 158.90 |
| AUC∞ (hr *ng/ml)    | 3316.92         | 3279.09                                                                               | 1.01          | 73.89    | 138.48 |
| AUC8-48 (hr *ng/ml) | 1922.41         | 1933.50                                                                               | 0.99          | 63.84    | 154.85 |
| Cmax (ng/ml)        | 245.49          | 232.14                                                                                | 1.06          | 66.17    | 169.00 |

#### SUMMARY OF STATISTICAL ANALYSIS - SCALED DATA

| Parameter | T/R<br>Ratio | Lower<br>90%<br>CI | Upper<br>90%<br>CI | s2wr      | sWR       | Criteria<br>Bound | Method<br>Used | OUTCOME |
|-----------|--------------|--------------------|--------------------|-----------|-----------|-------------------|----------------|---------|
| LAUCT     | 1.01         | 67.28              | 158.90             | 0.4987066 | 0.7061916 | -0.172687         | Scaled/PE      | PASS    |
| LAUCI     | 0.96         | 73.89              | 138.48             | 0.200811  | 0.4481194 | -0.072209         | Scaled/PE      | PASS    |
| LAUC8-48  | 0.97         | 63.84              | 154.85             | 0.5527487 | 0.7434707 | -0.183996         | Scaled/PE      | PASS    |
| LCMAX     | 1.06         | 66.17              | 169.00             | 0.8522732 | 0.9231864 | -0.332368         | Scaled/PE      | PASS    |

#### Group II

| Least Squares       | Summary Of St<br>Geometric Mean | Delayed Release To<br>Dose 1 X 800 mg<br>tatistical Analysis -<br>is, Ratio of Means, a<br>nce Study, Study No | Unscaled Data<br>and 90% Conf | fidence Interv | als    |
|---------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------|----------------|--------|
| Parameter (units)   | Test                            | Reference                                                                                                      | Ratio                         | 90% C.I.       |        |
| AUC0-t (hr *ng/ml)  | 2377.48                         | 2479.76                                                                                                        | 0.96                          | 65.22          | 140.93 |
| AUC∞ (hr *ng/ml)    | 2757.39                         | 2705.82                                                                                                        | 1.02                          | 72.16          | 143.91 |
| AUC8-48 (hr *ng/ml) | 2089.52                         | 2181.08                                                                                                        | 0.96                          | 64.84          | 141.54 |
| Cmax (ng/ml)        | 307.19                          | 310.72                                                                                                         | 0.99                          | 62.65          | 156.00 |

#### SUMMARY OF STATISTICAL ANALYSIS - SCALED DATA

#### ANDA203286 Single-Dose Fed Bioequivalence Study Review

| Parameter | T/R<br>Ratio | Lower<br>90%<br>CI | Upper<br>90%<br>CI | s2wr      | Criteria Method<br>S2wr sWR Bound Used |           | OUTCOME   |      |
|-----------|--------------|--------------------|--------------------|-----------|----------------------------------------|-----------|-----------|------|
| LAUCT     | 0.96         | 65.22              | 140.93             | 0.9369318 | 0.9679524                              | -0.469613 | Scaled/PE | PASS |
| LAUCI     | 0.92         | 72.16              | 143.91             | 0.8967651 | 0.9469768                              | -0.432247 | Scaled/PE | PASS |
| LAUC8-48  | 0.96         | 64.84              | 141.54             | 1.061619  | 1.030349                               | -0.547592 | Scaled/PE | PASS |
| LCMAX     | 0.98         | 62.65              | 156.00             | 1.8337085 | 1.3541449                              | -1.00806  | Scaled/PE | PASS |

## Comments on Pharmacokinetic and Statistical Analysis:

- 1. The reviewer first analyzed the group\*treatment interaction term using the procedure implemented for the traditional average bioequivalence studies. The statistical analyses performed by the reviewer on the data pooled from the two study groups after including the group\*treatment in the statistical analysis showed that the treatment\*group interaction term was not significant for Cmax (p = 0.8631), AUCt (p=0.8299), AUC<sub>8-48</sub> (p= 0.9156), and AUCinf (p = 0.9968). Therefore, per the DB practice (see Attachment II), the reviewer performed statistical analysis on groups 1 and 2 data combined since they meet the following criteria:
  - the clinical study takes place at one site;
  - all study subjects have been recruited from the same enrollment pool;
  - all of the subjects have similar demographics;
  - all enrolled subjects are randomly assigned to treatment groups at study outset.
- 2. The current DB's approach calls for using scaled average BE with a point estimate constraint (4.7 Section, Attachment I), in order to be considered bioequivalent to the RLD, the test drug must pass the following two conditions:

i. A 95% upper confidence bounds for  $(\overline{Y}_T - \overline{Y}_R)^2 - \theta_{SWR}^2$  must be less than or equal to 0.

ii. The point estimate (test/reference geometric mean ratio) must fall within [0.80, 1.25].

If sWR (the estimated within-subject standard deviation on the log scale for the RLD) is greater than or equal to 0.294 (meaning that sWR squared is greater than or equal to 0.086436), the reference-scaled approach could be used for establishing bioequivalence. In this case, the firm proposed to use the scaled ABE approach in the study protocol if the CV<sub>WR</sub> of the reference drug was higher than 30% for the PK parameters, AUCT, AUC∞, and Cmax. Since sWRs are greater than 0.294 for AUCt (1.0044), AUC<sub>8-48</sub> (1.0392.), AUC∞ (0.8323), and Cmax (1.2279), the firm used reference scaled approach including all the subjects (Table 30). The 95% Upper confidence bounds for AUCt, AUC<sub>8-48</sub>, AUC∞, and Cmax for Mesalamine in the fed BE study are all negative (AUCt: -0.422984, AUC<sub>8-48</sub>: -0.467636., AUC∞: -0.348853, and Cmax: -0.818653). The results of scaled ABE

#### ANDA203286 Single-Dose Fed Bioequivalence Study Review

approach calculated by the firm meet the first condition under fed condition. The point estimates for Mesalamine fall within 0.8-.125, (AUCt: 0.98, AUC<sub>8-48</sub>:0.96, AUC∞: 0.95, and Cmax: 1.01) when scaled data are used in SAS scaled ABE approach, since they are within the limitation of 0.80-1.25, they meet the second condition.

- 3. As per FDA guidance, log-transformed AUC8-48 the PK parameter is recommended to be evaluated for both fasting and fed studies. Moreover, the partial AUC is more discriminative and sensitive to formulation changes than Cmax or total AUC. The reviewer, thus, conducted SAS analysis for AUC<sub>8-48</sub> for the fed study. The result indicates that the AUC<sub>8-48</sub> for combined group I and II, group I, or group II all meet BE acceptance criteria using reference-scaled analysis in this fed BE study.
- 4. As per protocol (MSN-P0-733), subject#

  are excluded from the pharmacokinetic & statistical analysis, since these subjects do not have three consecutive samples with levels above LLOQ. According to guidance, it is reasonable to exclude above subjects by the firm. Moreover, the study outcomes remain to meet the evaluation criteria of reference-scaled analysis for AUCt, AUC<sub>8-48</sub>, and Cmax when including above subjects as follows:

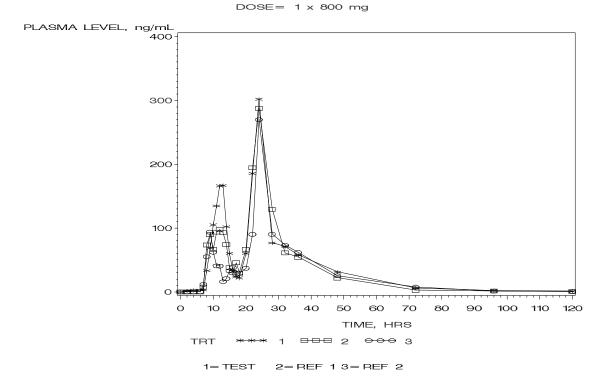
## SUMMARY OF STATISTICAL ANALYSIS - SCALED DATA (N= 83)

| Parameter | T/R<br>Ratio | Lower<br>90%<br>CI | Upper<br>90%<br>CI | s2wr      | sWR       | Criteria<br>sWR Bound |           | OUTCOME |
|-----------|--------------|--------------------|--------------------|-----------|-----------|-----------------------|-----------|---------|
| LAUCT     | 0.93         | 66.00              | 131.97             | 1.6232786 | 1.2740795 | -0.97212              | Scaled/PE | PASS    |
| LAUC8-48  | 0.93         | 66.98              | 133.90             | 1.5943101 | 1.2626599 | -0.951851             | Scaled/PE | PASS    |
| LCMAX     | 0.93         | 69.27              | 134.68             | 1.6217231 | 1.2734689 | -0.980643             | Scaled/PE | PASS    |

The fed study met the BE acceptance criteria of reference scaled analysis for log-transformed Cmax, AUC0-t, and AUC<sub>8-48</sub> of Mesalamine Delayed Release Tablets. The fed BE study is acceptable.

Summary/Conclusions, Single-Dose Fed Bioequivalence Study: Acceptable

Table 33. Mean Plasma Concentrations, Single-Dose Fed Bioequivalence Study


|              | Test (n=70)     |        | Reference 1<br>(n=70) |        | Refere          |        | RatioTR1 | RatioTR2 | RatioR1R2 |  |
|--------------|-----------------|--------|-----------------------|--------|-----------------|--------|----------|----------|-----------|--|
| Time<br>(hr) | Mean<br>(ng/mL) | CV%    | Mean<br>(ng/mL)       | CV%    | Mean<br>(ng/mL) | CV%    | (T/R1)   | (T/R2)   | (R1/R2)   |  |
| 0.00         | 0.00            | 8      | 0.00                  | 8      | 0.00            | 5      | 25       | 13       |           |  |
| 2.00         | 1.29            | 753.23 | 0.12                  | 593.17 | 0.12            | 589.37 | 10.93    | 10.42    | 0.95      |  |
| 4.00         | 2.52            | 787.62 | 0.13                  | 590.64 | 0.14            | 535.84 | 19.25    | 18.24    | 0.95      |  |

## ANDA203286 Single-Dose Fed Bioequivalence Study Review

|              | Test (ı         | n=70)  | Refere          | 75 T T 1 T 1 | Refere          |        | RatioTR1 | RatioTR2 | RatioR1R2 |
|--------------|-----------------|--------|-----------------|--------------|-----------------|--------|----------|----------|-----------|
| Time<br>(hr) | Mean<br>(ng/mL) | CV%    | Mean<br>(ng/mL) | CV%          | Mean<br>(ng/mL) | CV%    | (T/R1)   | (T/R2)   | (R1/R2)   |
| 6.00         | 3.14            | 671.29 | 0.13            | 594.52       | 0.14            | 518.12 | 24.69    | 22.32    | 0.90      |
| 7.00         | 2.89            | 491.40 | 7.42            | 552.91       | 11.58           | 486.62 | 0.39     | 0.25     | 0.64      |
| 8.00         | 33.28           | 414.73 | 73.36           | 508.61       | 55.17           | 441.52 | 0.45     | 0.60     | 1.33      |
| 9.00         | 68.57           | 305.72 | 90.13           | 452.48       | 93.64           | 396.63 | 0.76     | 0.73     | 0.96      |
| 10.00        | 104.99          | 304.07 | 66.63           | 433.11       | 62.24           | 414.59 | 1.58     | 1.69     | 1.07      |
| 11.00        | 135.09          | 326.25 | 93.79           | 457.90       | 40.72           | 454.97 | 1.44     | 3.32     | 2.30      |
| 12.00        | 166.20          | 289.87 | 97.78           | 458.92       | 40.51           | 418.30 | 1.70     | 4.10     | 2.41      |
| 13.00        | 166.48          | 293.52 | 92.74           | 490.30       | 15.91           | 234.79 | 1.80     | 10.47    | 5.83      |
| 14.00        | 102.49          | 360.38 | 73.98           | 396.61       | 20.68           | 294.25 | 1.39     | 4.96     | 3.58      |
| 15.00        | 60.52           | 383.56 | 38.06           | 399.29       | 32.92           | 356.75 | 1.59     | 1.84     | 1.16      |
| 16.00        | 31.95           | 249.46 | 30.76           | 334.58       | 37.88           | 373.01 | 1.04     | 0.84     | 0.81      |
| 17.00        | 23.18           | 194.87 | 45.47           | 413.51       | 27.76           | 222.54 | 0.51     | 0.84     | 1.64      |
| 18.00        | 21.94           | 198.03 | 29.60           | 219.33       | 29.23           | 196.86 | 0.74     | 0.75     | 1.01      |
| 20.00        | 60.19           | 270.73 | 66.92           | 308.11       | 36.87           | 165.68 | 0.90     | 1.63     | 1.82      |
| 22.00        | 185.65          | 266.76 | 194.75          | 262.45       | 90.14           | 172.30 | 0.95     | 2.06     | 2.16      |
| 24.00        | 301.89          | 252.71 | 287.77          | 196.92       | 270.00          | 253.43 | 1.05     | 1.12     | 1.07      |
| 28.00        | 76.86           | 105.16 | 129.16          | 311.02       | 90.18           | 96.60  | 0.60     | 0.85     | 1.43      |
| 32.00        | 71.00           | 105.59 | 61.20           | 110.99       | 73.04           | 103.77 | 1.16     | 0.97     | 0.84      |
| 36.00        | 57.52           | 96.31  | 54.42           | 147.41       | 61.77           | 97.71  | 1.06     | 0.93     | 0.88      |
| 48.00        | 31.13           | 127.52 | 21.89           | 156.40       | 25.16           | 147.75 | 1.42     | 1.24     | 0.87      |
| 72.00        | 6.17            | 352.29 | 2.52            | 270.26       | 7.39            | 217.14 | 2.45     | 0.83     | 0.34      |
| 96.00        | 1.72            | 429.70 | 1.03            | 290.77       | 1.17            | 266.48 | 1.66     | 1.46     | 0.88      |
| 120.00       | 0.83            | 552.77 | 0.37            | 358.72       | 0.27            | 389.77 | 2.22     | 3.10     | 1.39      |

Figure 2. Mean Plasma Concentrations, Single-Dose Fed Bioequivalence Study

# PLASMA Mesalamine LEVELS Mesalamine Delayed Release Tablets USP, ANDA 203286 UNDER FEDALI CONDITIONS



## 4.2 Formulation Data

| Name of Ingredient                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quantity/<br>Tablet (mg) | Quantity (       | %       |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|---------|
|                                                     | (b) (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                  |         |
| Mesalamine, USP                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 800.000                  | Section Williams | (b) (4) |
| Sodium Starch Glycolate, NF (b) (4)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (b                       | ) (4]            |         |
| Colloidal Silicon Dioxide, NF (b) (4)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |         |
| Magnesium Stearate, NF (b) (4)                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                  |         |
|                                                     | (b) (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                  |         |
| Microcrystalline Cellulose, NF                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |         |
| Povidone, USP (b) (4)                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |         |
| (b) (4)                                             | (b) (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                  |         |
| N222                                                | ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                  |         |
| Sodium Starch Glycolate, NF,  Tale USD (b) (4)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |         |
| Tale, OSF                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |         |
| Colloidal Silicon Dioxide, NF                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |         |
| Magnesium Stearate, NF                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |         |
|                                                     | Total (b) (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                  |         |
| Methacrylic Acid Copolymer, NF - Type B (Eudragit S |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |         |
| Talc, USP (b) (4)                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |         |
| Acetyltributyl Citrate, NF                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |         |
| Titanium Dioxide, USP (b) (4)                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                  |         |
| Ferric Oxide, NF (RED) (b) (4)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |         |
| Isopropyl Alcohol, USP*                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |         |
| (6) (4)                                             | (b) (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                  |         |
| (6) (4)                                             | (0)(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                  |         |
| Opacode Black (b) (4)                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |         |
| Isopropyl Alcohol, USP*                             | Two controls of the control of the c |                          |                  |         |



| Inactive<br>ingredient(s)                                      | Listing In the Inactive Ingredients Database | Mesalamine<br>Delayed Release<br>Tablets USP,<br>800 mg | Levels recommended in Inactive Ingredients Database(mg) (Oral route) |
|----------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------|
| Sodium Starch Glycolate, NF                                    | Yes                                          |                                                         | (b) (4                                                               |
| Colloidal Silicon Dioxide, NF                                  | Yes                                          |                                                         |                                                                      |
| Magnesium Stearate, NF                                         | Yes                                          |                                                         |                                                                      |
| Microcrystalline Cellulose, NF                                 | Yes                                          |                                                         |                                                                      |
| Povidone (b) (4) USP                                           | Yes                                          |                                                         |                                                                      |
| Tale, USP                                                      | Yes                                          |                                                         |                                                                      |
| Methacrylic Acid Copolymer,<br>NF - Type B (Eudragit S (b) (4) | Yes                                          |                                                         |                                                                      |
| Acetyltributyl Citrate, NF                                     | Yes                                          |                                                         |                                                                      |
| Titanium Dioxide, USP                                          | Yes                                          |                                                         |                                                                      |
| Ferric Oxide Red, NF                                           | Yes                                          |                                                         | (b) (4                                                               |

Note: ANDA079148<sup>18</sup> contains of Povidone in its 1000 mg Metformin Hydrochloride Tablets USP. Per the RLD labeling, dosages up to 2550mg daily have been administered. The daily amount of Povidone Thus, the daily amount of Povidone of ANDA021428.

<sup>&</sup>lt;sup>18</sup> DARRTS: REV-BIOEQ-01 (General Review) ANDA079148, Final date: 03/26/2008.

| concerns for the sponsor's proposed amount of Eudragit S (b) (4) in Mesalamine proposed amount of Eudragit S is accompanied amount of Eudragit S (b) (4) is accompanied amount of Eudragit S (b) (4) is accompanied amount of Eudragit S (b) (4) in Mesalamine proposed amount of Eudragit S is accompanied amount of Eudragit S (b) (4) in Mesalamine proposed amount of Eudragit S (b) (4) in Mesalamine proposed amount of Eudragit S (b) (4) in Mesalamine proposed amount of Eudragit S (b) (4) in Mesalamine proposed amount of Eudragit S (b) (4) in Mesalamine proposed amount of Eudragit S (c) (d) in Mesalamine proposed amount of Eudragit S (d) (d) in Mesalamine proposed amount of Eudragit S (d) is accompanied amount of Eudragit S (d) (d) (d) is accompanied amount of Eudragit S (d) | The proposed amount of Eudragit S  to conclusion of the consult is that "there are no safety Delayed Release Tablets (800 mg), and the ceptable."  ssium Chloride Extended-release Tablets. Per the RLI otassium depletion. The daily amount of Acetytributyl unt of Acetytributyl citrate in the test formulation (480 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Is there an overage of the active pharmaceutical ingredient (API)?  If the answer is yes, has the appropriate chemistry division been notified?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NO N/A                                                                                                                                                                                                                                                                                                                  |
| If it is necessary to reformulate to reduce the overage, will bioequivalence be impacted? $ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                     |

<sup>19</sup> Control 01-151: \\cdsnas\OGDS6\CONTROLS\2001-docs\01-151.pdf

| Comments on the drug product formulation: | Acceptable |        |
|-------------------------------------------|------------|--------|
| Comment:                                  |            | (b) (4 |
|                                           |            | XXXX   |
|                                           |            |        |

## 4.3 Dissolution Data

# 4.3.1 In vitro Quality Control Dissolution Data

| Dissolution Review Path | DARRTS: REV-BIOEQ-02 (Dissolution Review) ANDA203286, Final date: 02/16/2012 |
|-------------------------|------------------------------------------------------------------------------|
|-------------------------|------------------------------------------------------------------------------|

Table 34. Dissolution Data

| Dissolution              | n Conditions                                                        |                                                                       | Apparatus:    |                    | USP-II (P       | addle)       |                            |                |              |                 |               |                 |                 |                    |  |  |  |
|--------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|---------------|--------------------|-----------------|--------------|----------------------------|----------------|--------------|-----------------|---------------|-----------------|-----------------|--------------------|--|--|--|
|                          |                                                                     |                                                                       | Speed of Rot  | ation:             | 50 RPM          |              |                            |                |              |                 |               |                 |                 |                    |  |  |  |
|                          |                                                                     |                                                                       | Medium:       |                    | 0.1N HC1        | (b) (4) (for | 2 hours) fo                | llowed by pH   | 6.0 Phosphat | e buffer (for 1 | hours) follov | ved by pH 7.2 I | hosphate buffer | å.                 |  |  |  |
|                          |                                                                     |                                                                       | Volume:       |                    | 900 mL          |              |                            |                |              |                 |               |                 |                 |                    |  |  |  |
|                          |                                                                     |                                                                       | Temperature   |                    | 37 C ± 0.:      | 37 C±0.5 C   |                            |                |              |                 |               |                 |                 |                    |  |  |  |
|                          |                                                                     |                                                                       |               |                    | at 1% dissolve  |              |                            |                |              |                 |               |                 |                 |                    |  |  |  |
| Dissolution<br>(Name, Ac | n Testing Site<br>Idress)                                           |                                                                       | Cadila Healtl | ncare Ltd., Sarl   | dhej-Bavla, N   | . H. No. 8A, | Moraiya, T                 | al.: Sanand, □ | ist, Ahmedal | oad – 382 210   |               |                 |                 |                    |  |  |  |
| Study                    | Testing Product ID \ Batcl Date (Test-Manufacture (Reference-Expire |                                                                       | h No.         | No. Dosage         |                 |              | Collection Times (Minutes) |                |              |                 |               |                 |                 | Study              |  |  |  |
| Ref No.                  |                                                                     |                                                                       |               | Strength<br>& Form | Dosage<br>Units |              | 2 hour                     | 1 hour         | 15           | 30              | 45            | 60              | 90              | Report<br>Location |  |  |  |
| Study<br>Report          | June 27,<br>2011                                                    | Mesalamine Dela<br>Tablets USP, 800                                   |               |                    | 00 mg 12        | Mean         | 0.0                        | 0.1            | 18.4         | 46.4            | 73.5          | 85.9            | 100.6           |                    |  |  |  |
| #:                       |                                                                     | Lot No.: EMK150                                                       |               |                    |                 | Range        |                            |                |              |                 |               |                 | (b              | D 6                |  |  |  |
| é                        |                                                                     | 40.56                                                                 |               |                    |                 | %CV          | 233.5                      | 159.5          | 82.1         | 60.0            | 41.9          | 31.7            | 6.2             | Refer<br>Module    |  |  |  |
| Study<br>Report          | June 27,<br>2011                                                    | ASACOL® HD ( Delayed Release                                          |               | 800 mg<br>Tablet   | 12              | Mean         | 0.0                        | 0.1            | 14.1         | 30.7            | 60.8          | 82.0            | 99.6            | 5313               |  |  |  |
| #:                       | 100 m                                                               | 800 mg<br>Lot No: 442661S<br>Expiry: 03/2013                          | 100           |                    |                 | Range        |                            |                |              |                 |               |                 | (b)             | (4)                |  |  |  |
|                          |                                                                     | # 1000 <b>-</b> 1000 <b>- 1</b> 000 100 100 100 100 100 100 100 100 1 |               |                    |                 | %CV          | 233.5                      | 184.6          | 142.8        | 104.0           | 45.2          | 18.4            | 1.2             |                    |  |  |  |

# 4.3.2 In vitro BE Studies in Multiple Media

pH 6.0

| Dissolut    | ion Conditions                                                                             | Apparatus:    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | USP-II (P                                                                                                               | addle)            |           |           |           |           |           |           |           |            |            |                        |
|-------------|--------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------------------|
|             | 5                                                                                          | Speed of Rot  | ation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 rpm for acid stage and 50 rpm for buffer stage  0.1N HCl  (b) (4) (for 2 hours) followed by pH 6.0 Phosphate buffer |                   |           |           |           |           |           |           |           |            |            |                        |
|             | 1                                                                                          | Medium:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         |                   |           |           |           |           |           |           |           |            |            |                        |
|             | 7                                                                                          | Volume:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 900 mL                                                                                                                  |                   |           |           |           |           |           |           |           |            |            |                        |
|             |                                                                                            | Temperature   | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37°C ± 0.5                                                                                                              | 5°C               |           |           |           |           |           |           |           |            |            |                        |
| Firm's I    | Proposed Specifications                                                                    |               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                         |                   |           |           |           |           |           |           |           |            |            |                        |
|             | ion Testing Site Address)                                                                  | Cadila Health | care Ltd.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sarkhej-B                                                                                                               | avla, N.          | H. No     | 8A, M     | oraiya,   | Tal.: Sa  | anand, Di | st, Ahme  | edabad –  | 382 210    | 0          |                        |
| Testing     | Product ID \ Batch No.                                                                     | Dosage No. of |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         | Acid Buffer stage |           |           |           |           |           |           |           | Study      |            |                        |
| Date        | (Test - Manufacture Date)<br>(Reference – Expiration<br>Date)                              | 75.0          | Dosage<br>Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                     | 2<br>hrs          | 10<br>min | 20<br>min | 30<br>min | 45<br>min | 60<br>min | 75<br>min | 90<br>min | 120<br>min | 150<br>min | Report<br>Locati<br>on |
| June        | Mesalamine Delayed Release                                                                 | 800 mg        | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mean                                                                                                                    | 0.03              | 0.1       | 0         | 0         | 0         | 0         | 0         | 0         | 0          | 0          |                        |
| 27,         | Tablets USP, 800 mg                                                                        | Tablet        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Range                                                                                                                   |                   |           |           |           | x. x.     |           |           |           |            | (b) (4     |                        |
| 2011        | Lot No.: EMK150<br>Mfg Date: March, 2010                                                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %CV                                                                                                                     | 180               | 233       |           |           | 147       |           |           | 346.4     |            | 346.4      |                        |
| June        | ASACOL® HD                                                                                 | 800 mg        | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mean                                                                                                                    | 0.1               | 0         | 0         | 0         | 0         | 0         | 0         | 0.1       | 0          | 0          |                        |
| 27,<br>2011 | (Mesalamine) Delayed<br>Release Tablets USP, 800 mg<br>Lot No: 442661S3<br>Expiry: 03/2013 | Tablet        | CONNECT CONTRACT CONT | Range                                                                                                                   | a)                |           | W.        |           |           | *         | *         |           | N          | (b) (4     | )                      |
|             |                                                                                            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %CV                                                                                                                     | 88.3              |           | 346       | 233       | 233       | 346.4     | 233.5     | 104.4     | 346.4      | 346.4      |                        |

pH 6.5

| Dissolution Conditions Apparatu | USP-II (Paddle) |  |
|---------------------------------|-----------------|--|
|---------------------------------|-----------------|--|

|             |                                                                         | Speed of Rota | ation:          | 100 rpm fo            |          |           | nd 50 rp  | m for b                | uffer st  | age       |           |           |            |            |                        |
|-------------|-------------------------------------------------------------------------|---------------|-----------------|-----------------------|----------|-----------|-----------|------------------------|-----------|-----------|-----------|-----------|------------|------------|------------------------|
|             |                                                                         | Medium:       |                 | 0.1N HCl              | (b) (4   | (for 2    | hours) f  | ollowed                | l by pH   | 6.5 Phos  | phate bu  | ıffer     |            |            |                        |
|             |                                                                         | Volume:       |                 | 900 mL                |          |           |           |                        |           |           |           |           |            |            |                        |
|             |                                                                         | Temperature   | :               | $37^{\circ}C \pm 0.5$ | 5°C      |           |           |                        |           |           |           |           |            |            |                        |
| Firm's I    | Proposed Specifications                                                 |               | •               |                       |          |           |           |                        |           |           |           |           |            |            |                        |
|             | ion Testing Site<br>Address)                                            | Cadila Health | care Ltd.,      | Sarkhej-Ba            | avla, N  | . H. No.  | 8A, M     | ora <mark>i</mark> ya, | Tal.: Sa  | nand, Di  | st, Ahme  | edabad –  | - 382 210  | )          |                        |
| Testing     | Product ID \ Batch No.                                                  | Dosage        | No. of          |                       | Colle    | ction T   | imes      |                        |           |           |           |           |            | *          | Study                  |
| Date        | (Test - Manufacture Date)<br>(Reference – Expiration<br>Date)           | & Form        | Dosage<br>Units |                       | 2<br>hrs | 10<br>min | 20<br>min | 30<br>min              | 45<br>min | 60<br>min | 75<br>min | 90<br>min | 120<br>min | 150<br>min | Report<br>Locati<br>on |
| June        | Mesalamine Delayed Release                                              | 800 mg        | 12              | Mean                  | 0        | 0.4       | 0.3       | 0.2                    | 0.5       | 1.5       | 3.9       | 4.1       | 4.4        | 5          |                        |
| 27,<br>2011 | Tablets USP, 800 mg<br>Lot No.: EMK150<br>Mfg Date: March, 2010         | Tablet        |                 | Range                 |          |           |           |                        |           |           |           |           |            | (b) (4     |                        |
|             | Wing Date. Watch, 2010                                                  |               |                 | %CV                   | .555     | 123       | 157       | 197                    | 230       | 303.8     | 326       | 318       | 331.4      | 327.6      |                        |
| June        | ASACOL® HD                                                              | 800 mg        | 12              | Mean                  | 0        | 0.2       | 0.2       | 0.3                    | 0.3       | 0.4       | 3.4       | 5         | 7.2        | 9.1        |                        |
| 27,<br>2011 | (Mesalamine) Delayed<br>Release Tablets USP, 800 mg<br>Lot No: 442661S3 | Tablet        |                 | Range                 |          |           |           |                        |           | **        |           |           |            | (b) (4     | ,                      |
|             | Expiry: 03/2013                                                         |               |                 | %CV                   | ]        | 68.4      | 83.1      | 64.1                   | 60.3      | 59.7      | 203.9     | 231       | 235.1      | 222.3      |                        |

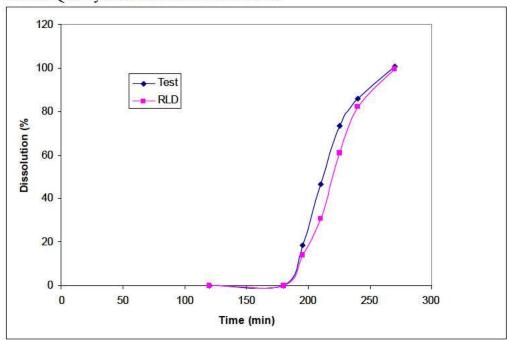
pH 6.8

| <b>Dissolution Conditions</b>  | Apparatus:            | USP-II (Paddle)                                                                   |
|--------------------------------|-----------------------|-----------------------------------------------------------------------------------|
|                                | Speed of Rotation:    | 100 rpm for acid stage and 50 rpm for buffer stage                                |
|                                | Medium:               | 0.1N HCl (for 2 hours) followed by pH 6.8 Phosphate buffer                        |
|                                | Volume:               | 900 mL                                                                            |
|                                | Temperature:          | 37°C ± 0.5°C                                                                      |
| Firm's Proposed Specifications |                       |                                                                                   |
| Dissolution Testing Site       | Cadila Healthcare Ltd | l., Sarkhej-Bavla, N. H. No. 8A, Moraiya, Tal.: Sanand, Dist, Ahmedabad – 382 210 |

| (Name,      | Address)                                                      |        |                 |       |          |           |           |           |           |           |           |           |            |            |                        |
|-------------|---------------------------------------------------------------|--------|-----------------|-------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------------------|
| Testing     | Product ID \ Batch No.                                        | Dosage | No. of          | 3     | Colle    | ction T   | imes      |           |           |           |           |           |            |            | Study                  |
| Date        | (Test - Manufacture Date)<br>(Reference – Expiration<br>Date) | & Form | Dosage<br>Units |       | 2<br>hrs | 10<br>min | 20<br>min | 30<br>min | 45<br>min | 60<br>min | 75<br>min | 90<br>min | 120<br>min | 150<br>min | Report<br>Locati<br>on |
| June        | Mesalamine Delayed Release                                    | 800 mg | 12              | Mean  | 0        | 1.9       | 9.5       | 30.1      | 54.8      | 84.5      | 92.6      | 94        | 95         | 96.6       |                        |
| 27,<br>2011 | Tablets USP, 800 mg Lot No.: EMK150                           | Tablet |                 | Range |          | - 1       | **        |           | 200       |           |           |           |            | (b) (4     | a)                     |
|             | Mfg Date: March, 2010                                         |        |                 | %CV   | 180      | 87.5      | 34.5      | 14.1      | 15.9      | 5.9       | 2.6       | 1.4       | 1.1        | 1.5        | Î                      |
| June        | ASACOL® HD                                                    | 800 mg | 12              | Mean  | 0        | 0.3       | 0.7       | 3.3       | 7.6       | 14.8      | 21.7      | 30.2      | 42.3       | 56         |                        |
| 27,<br>2011 | (Mesalamine) Delayed<br>Release Tablets USP, 800 mg           | Tablet |                 | Range |          |           |           |           |           |           |           |           |            | (b) (      | 4)                     |
|             | Lot No: 442661S3<br>Expiry: 03/2013                           |        |                 | %CV   | 222      | 75.4      | 82.2      | 98        | 100       | 85.4      | 90.9      | 82.6      | 74.2       | 60.5       |                        |

pH 7.2

| Dissolut          | tion Conditions                                                                     | Apparatus:                   |               | USP-II (P         | addle)    |          |          |         |          |         |          |           |            |            |                                 |
|-------------------|-------------------------------------------------------------------------------------|------------------------------|---------------|-------------------|-----------|----------|----------|---------|----------|---------|----------|-----------|------------|------------|---------------------------------|
|                   |                                                                                     | Speed of Rota                | ation:        | 100 rpm f         | or acid s | tage an  | d 50 rp  | m for b | uffer st | age     |          |           |            |            |                                 |
|                   |                                                                                     | Medium:                      |               | 0.1N HCl          | (b) (4)   | (for 2 l | nours) f | ollowed | l by pH  | 7.2 Pho | sphate b | uffer     |            |            |                                 |
|                   |                                                                                     | Volume:                      |               | 900 mL            |           |          |          |         |          |         |          |           |            |            |                                 |
|                   |                                                                                     | Temperature                  | :             | 37°C ± 0.:        | 5°C       |          |          |         |          |         |          |           |            |            |                                 |
| Firm's l          | Proposed Specifications                                                             |                              |               |                   |           |          |          |         |          |         |          |           |            |            |                                 |
|                   |                                                                                     | 300 891                      | 9.83          | 200000 100        |           |          |          | 40      | 222      | 166     | (A) (C)  | # 8 18    |            |            |                                 |
|                   | tion Testing Site Address)                                                          | Cadila Health                | care Ltd.,    | Sarkhej-B         | avla, N.  | H. No.   | 8A, M    | oraiya, | Tal.: Sa | mand, D | ist, Ahm | edabad -  | - 382 210  | )          |                                 |
|                   | Address)                                                                            | Dosage                       | No. of        | Sarkhej-B         | Acid      |          | 8A, M    | 35      | Tal.: Sa | nand, D | ist, Ahm | edabad -  | - 382 210  | )          | Study                           |
| (Name,            | Address)                                                                            |                              |               | Sarkhej-B         |           |          |          | 35      | Tal.: Sa | 60 min  | 75 min   | 90<br>min | 120 min    | 150<br>min | Study<br>Report<br>Locati<br>on |
| (Name,<br>Testing | Address)  Product ID \ Batch No.  (Test - Manufacture Date) (Reference - Expiration | Dosage<br>Strength<br>& Form | No. of Dosage | Sarkhej-B<br>Mean | Acid      | Buffe    | er stage | 30      | 45       | 60      | 75       | 90        | 120<br>min | 150        | Report<br>Locati                |


| 2011        | Lot No.: EMK150                                                         |        |       |       | ).  |      |      |      |      |      |      |      |      |       | (b) (4) |
|-------------|-------------------------------------------------------------------------|--------|-------|-------|-----|------|------|------|------|------|------|------|------|-------|---------|
|             | Mfg Date: March, 2010                                                   |        | 70.02 | %CV   |     | 144. | 98.6 | 85.9 | 81.7 | 48   | 18.2 | 3    | 1.7  | 0.7   |         |
| June        | ASACOL® HD                                                              | 800 mg | 12    | Mean  | 0   | 3    | 9.4  | 17.2 | 40.1 | 71.7 | 89.4 | 95.6 | 99.7 | 101.2 |         |
| 27,<br>2011 | (Mesalamine) Delayed<br>Release Tablets USP, 800 mg<br>Lot No: 442661S3 | Tablet |       | Range |     |      |      |      |      |      |      |      |      |       | (b) (4) |
|             | Expiry: 03/2013                                                         |        |       | %CV   | 346 | 111  | 67.1 | 59.6 | 36.4 | 11.9 | 4.9  | 3.6  | 1.7  | 1     |         |

pH 7.5

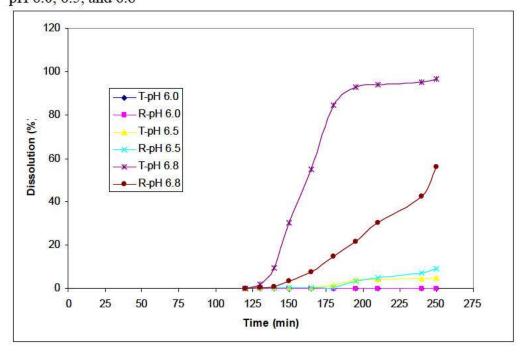
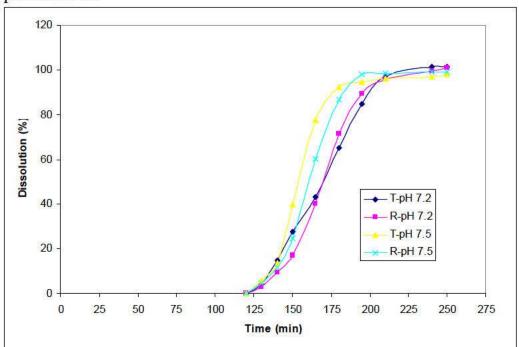

| Dissolut    | tion Conditions                                                 | Apparatus:         |                 | USP-II (P  | addle)    |           |           |           |           |           |           |           |            |            |                        |
|-------------|-----------------------------------------------------------------|--------------------|-----------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------------------|
|             |                                                                 | Speed of Rota      | ation:          | 100 rpm f  | or acid s | tage an   | d 50 rp   | m for b   | uffer st  | age       |           |           |            |            |                        |
|             |                                                                 | Medium:            |                 | 0.1N HCl   | pH 1.2    | (for 21   | nours) f  | ollowed   | by pH     | 7.5 Pho   | sphate b  | uffer     |            |            |                        |
|             |                                                                 | Volume:            |                 | 900 mL     |           |           |           |           |           |           | 55.51     |           |            |            |                        |
|             |                                                                 | Temperature        | :               | 37°C ± 0.5 | 5°C       |           |           |           |           |           |           |           |            |            |                        |
| Firm's l    | Proposed Specifications                                         |                    | •               |            |           |           |           |           |           |           |           |           |            |            |                        |
|             | tion Testing Site<br>Address)                                   | Cadila Health      | care Ltd.,      | Sarkhej-B  | avla, N.  | H. No.    | 8A, M     | oraiya,   | Tal.: Sa  | nand, D   | ist, Ahm  | edabad -  | - 382 21   | .0         |                        |
| Testing     | Product ID \ Batch No.                                          | Dosage             | No. of          |            | Acid      | Buffe     | er stage  |           |           |           |           |           |            |            | Study                  |
| Date        | (Test - Manufacture Date)<br>(Reference – Expiration<br>Date)   | Strength<br>& Form | Dosage<br>Units |            | 2 hrs     | 10<br>min | 20<br>min | 30<br>min | 45<br>min | 60<br>min | 75<br>min | 90<br>min | 120<br>min | 150<br>min | Report<br>Locati<br>on |
| June        | Mesalamine Delayed Release                                      | 800 mg             | 12              | Mean       | 0         | 5.8       | 13.5      | 39.8      | 77.7      | 92.2      | 94.7      | 96.2      | 97         | 98.1       | 1000000                |
| 27,<br>2011 | Tablets USP, 800 mg<br>Lot No.: EMK150<br>Mfg Date: March, 2010 | Tablet             |                 | Range      |           |           |           |           |           |           |           |           |            |            | (b) (4                 |
|             | Wilg Date. Walch, 2010                                          |                    |                 | %CV        |           | 101       | 48.1      | 47.5      | 19.2      | 2.5       | 2.5       | 1.6       | 0.9        | 0.9        |                        |
| June        | ASACOL® HD                                                      | 800 mg             | 12              | Mean       | 0         | 4.7       | 11.7      | 24.5      | 60.1      | 86.6      | 98.1      | 98.4      | 99.1       | 99.3       |                        |
| 27,<br>2011 | (Mesalamine) Delayed<br>Release Tablets USP, 800 mg             | Tablet             |                 | Range      |           |           |           |           |           |           |           |           |            |            | (b) (a                 |
|             | Lot No: 442661S3<br>Expiry: 03/2013                             |                    |                 | %CV        | 147       | 98.7      | 109       | 70.9      | 32.4      | 7.5       | 3.6       | 2.5       | 1.7        | 1.1        | T                      |

Figure 3. Dissolution Profiles


In vitro Quality Control Dissolution Profile:



In vitro BE Studies Profiles: pH 6.0, 6.5, and 6.8



pH 7.2 and 7.5



## 4.4 Detailed Regulatory History (If Applicable)

None

#### 4.5 Consult Reviews

None

## 4.6 SAS Output

### 4.6.1 Fasting Study Codes

```
/*-----
/ Program : HVScale3Period.SAS
/ SubMacros :
/ Updated : 15 Aug 2009
/ Purpose : To analyze three period reference-scaled bioequivalence
studies.
/ Notes : EXCEL DATA FILE MUST BE OPEN WHEN RUNNING THIS PROGRAM.
              : OUTPUT FILE (WORD DOCUMENT) CONTAINING SUMMARY TABLES IS
CREATED.
/ PARAMETERS: THE FOLLOWING COLUMNS SHOULD BE IN THE INPUT DATASET (EXCEL
/-----name----- -----description------
NAME OF VARIABLE
    SUBJ SUBJECT NUMBER
              TREATMENT - CHARACTER (EITHER A OR B) A=TEST; B=REF
    TRT
                  SEQUENCE NUMBER - NUMERIC (EITHER 1, 2, OR 3)
    SEO
    PER
                  PERIOD NUMBER - NUMERIC (EITHER 1, 2, 3, OR 4)
           AREA UNDER CURVE 0-T
    AUCT
AUCI
CMAX
TMAX
             AREA UNDER CURVE 0-INF
             CMAX
             TMAX
    KEL
                  ELIMINATION RATE CONSTANT
    THALF HALF LIFE
    sequence 1
                 T R R
    sequence 2
                  R
    sequence 3
                 R
                      R
GROUP EFFECT:
Line 176: If trt*grp interaction is not significant,
remove TRT*GROUP term from line 176.
```

```
/-----
/ AMENDMENT HISTORY:
options nofmterr nocenter nodate symbolgen mlogic macrogen mprint ps=65
ls=80;
****STEP 1: ENTER ANDA INFORMATION ****;
%let drug= Mesalamine Delayed Release Tablets USP;
%let anda=203286;
%let studytype=Fasting;
****STEP 2: ENTER UNITS FOR PK PARAMETERS *****;
%let aucunit = ng hr/mL;
%let cmaxunit = ng/mL;
%let timeunit = hr;
**** STEP 3: ENTER LOCATION OF DATASETS AND LOCATION FOR SAVING OUTPUT
REPORTS ****;
%let studydir=C:\Documents and Settings\renp\My Documents\203286Mesalamine;
**** STEP 4: ENTER THE NAME OF THE DATASET FILE (EXCEL FILE) *****;
%let excelfile = &studydir\203286SAS.xls;
**** STEP 5: ENTER THE NAME OF THE EXCEL WORKSHEET NAME CONTAINING STUDY
DATA ****;
%let sheetname = FasK;
proc import datafile="&excelfile"
          out=base
          dbms=excel replace;
               sheet="&sheetname";
               getnames=yes;
              mixed=yes;
run;
libname studylib "&studydir";
**** STEP 5: PROVIDE NAMES OF THE VARIABLES TO READ IN FROM EXCEL FILE
***** PROVIDE STANDARD VARIABLE NAMES FROM THE PARAMETER LIST ABOVE ****;
**** VARIABLE NAMES: SUBJ TRT(A,B) SEQ(1,2) PER(1,2,3) AUCT AUCINF CMAX TMAX
KEL THALF ****;
data base;
 set base;
                  T R R R R R
 /*sequence 1
    sequence 2
    sequence 3 R
                       R
                            T
 * /
```

```
IF SEQU="TR1R2" THEN SEQ=1;
 ELSE IF SEQU="R1TR2" THEN SEQ=2;
 ELSE IF SEQU="R1R2T" THEN SEQ=3;
 IF TREAT="T" THEN TRT="A";
 ELSE IF TREAT IN("R1", "R2") THEN TRT="B";
run;
proc print data=base;
run;
********************
        **** DO NOT CHANGE ANYTHING BELOW THIS LINE ****;
**********************
data pk;
 set base;
 LAUCT=log(auct);
 LAUCINF=log(auci);
 LCMAX=log(cmax);
run;
data pkn;
 set pk;
run;
data full;
 set pkn;
run;
proc sort
 data=pkn;
 by seq subj per;
data test; set pkn; if trt='A'; latt=LAUCT; lait=LAUCINF; lct=LCMAX;
run;
data ref; set pkn; if trt='B';
run;
 /*sequence 1 T R R
```

```
R T
      sequence 2
      sequence 3
                       R
                              R
  * /
/*** ORIGINAL DON'S CODE ***
data ref1; set ref; if (seq=1 and per=1) or (seq=2 and per=2) or (seq=3 and
per=1); lat1r=LAUCT; lai1r=LAUCINF; lc1r=LCMAX;
run;
***/
data ref1; set ref; if (seq=1 and per=2) or (seq=2 and per=1) or (seq=3 and
per=1); lat1r=LAUCT; lai1r=LAUCINF; lc1r=LCMAX;
run;
data ref2; set ref; if (seq=1 and per=3) or (seq=2 and per=3) or (seq=3 and
per=2); lat2r=LAUCT; lai2r=LAUCINF; lc2r=LCMAX;
run;
title "ref1";
proc print data=ref1;
run;
title "ref2";
proc print data=ref2;
run;
title;
data scavbe; merge test ref1 ref2; by seq subj;
ilat=latt-(0.5*(lat1r+lat2r)); *auct;
ilai=lait-(0.5*(lai1r+lai2r)); *auci;
ilc=lct-(0.5*(lc1r+lc2r));
                               *cmax;
dlat=lat1r-lat2r; *auct;
dlai=lai1r-lai2r; *auci;
dlc=lc1r-lc2r;
                  *cmax;
keep seq subj per trt ilat dlat ilai dlai ilc dlc;
run;
proc print data=scavbe;
title1 'dataset for scaled average BE';
run;
%macro calc(param,no);
      PROC MIXED data=pkn;
      CLASSES GROUP SEQ SUBJ PER TRT;
     MODEL &param = GROUP SEQ GROUP*SEQ PER(GROUP) TRT TRT*GROUP /
DDFM=SATTERTH;
      RANDOM TRT/TYPE=FA0(2) SUB=SUBJ G;
     REPEATED/GRP=TRT SUB=SUBJ;
      lsmeans trt; /* DEV */
      ods output lsmeans=lsm&param(keep=trt estimate); /* DEV */
      ods output Estimates=unsc&no;
      title1 'unscaled BE 90% CI - quidance version';
     run;
      DATA UPARAM&NO(KEEP=PARAMETER LCI UCI);
```

```
SET UNSC&NO;
        ESTIMATE = 100 * EXP(ESTIMATE);
        PARAMETER = "&PARAM";
        LCI = 100 * EXP(LOWER);
        UCI = 100 * EXP(UPPER);
      RUN;
   *** for scaled dataset***;
      DATA UNSC&PARAM;
        SET UNSC&NO;
      RUN;
%mend calc;
%calc(LCMAX,1);
%calc(LAUCT, 2);
**** ESTIMATES ****;
DATA LSMLAUCT;
 SET LSMLAUCT;
 PARAMETER = "LAUCT";
RUN;
DATA LSMLAUCINF;
 SET LSMLAUCINF;
 PARAMETER = "LAUCI";
RUN;
DATA LSMLCMAX;
 SET LSMLCMAX;
  PARAMETER = "LCMAX";
RUN;
DATA UESTIMATE;
 SET LSMLAUCT LSMLAUCINF LSMLCMAX;
RUN;
DATA UESTIMATE;
 SET UESTIMATE;
 GEOMEAN = EXP(ESTIMATE);
RUN;
PROC SORT
 DATA=UESTIMATE;
 BY PARAMETER;
RUN;
PROC TRANSPOSE
 DATA=UESTIMATE
 OUT=TRANSUEST(DROP=_NAME_);
 VAR GEOMEAN;
 BY PARAMETER;
 ID TRT;
RUN;
```

```
DATA UEST;
  SET TRANSUEST;
 RATIO = ROUND((A/B), .01);
RUN;
DATA UALL;
 SET UPARAM1 UPARAM2 UPARAM3;
PROC SORT
 DATA=UALL;
 BY PARAMETER;
RUN;
PROC SORT
 DATA=UEST;
 BY PARAMETER;
RUN;
DATA UPARAMS;
 MERGE UEST
          UALL;
 BY PARAMETER;
RUN;
*** PROPER ORDER AUCT, AUCI, CMAX ***;
DATA UPARAMS;
  SET UPARAMS;
 IF PARAMETER = "LAUCT" THEN ORDER=1;
 ELSE IF PARAMETER = "LAUCI" THEN ORDER=2;
 ELSE IF PARAMETER = "LCMAX" THEN ORDER=3;
RUN;
PROC SORT
 DATA=UPARAMS;
 BY ORDER;
RUN;
proc template;
 define style mystyle1;
 parent = styles.rtf;
   REPLACE fonts /
       'docFont' = ("Arial", 8pt)
     'TitleFont2' = ("Arial", 8pt, Bold)
       'TitleFont' = ("Arial", 8pt, Bold)
       'StrongFont' = ("Arial", 8pt, Bold)
       'EmphasisFont' = ("Arial",8pt)
       'FixedEmphasisFont' = ("Arial", 8pt)
       'FixedStrongFont' = ("Arial", 8pt, Bold)
       'FixedHeadingFont' = ("Arial", 8pt, Bold)
```

```
'BatchFixedFont' = ("Arial",8pt)
       'FixedFont' = ("Arial",8pt)
       'headingEmphasisFont' = ("Arial", 8pt, Bold);
    style SysTitleAndFooterContainer from Container /
      cellpadding = 2
      cellspacing = 2
      borderwidth = 0;
      REPLACE Body from Document /
        bottommargin = 1.0in
        topmargin = 1.0in
        rightmargin = 1in
        leftmargin = 1in;
  END;
run;
data unsc1; set unsc1; unscabe_lower=exp(lower); unscabe_upper=exp(upper);
keep unscabe_lower unscabe_upper; run;
***** SCALED ANALYSIS *****;
%MACRO SCALE(parameter, ipar, dpar);
      proc glm data=scavbe;
      class seq;
      model &ipar =seq/clparm alpha=0.1;
      estimate 'average' intercept 1 seq 0.333333333 0.3333333333
0.333333333;
      ods output overallanova=iqlm&ipar.1;
      ods output Estimates=iglm&ipar.2;
      ods output NObs=iglm&ipar.3;
      title1 'scaled average BE';
      title2 'intermediate analysis - &ipar glm';
      run;
title "dev iglm&ipar.1";
proc print data=iglm&ipar.1;
run;
      proc glm data=scavbe;
      class seq;
      model &dpar =seq;
      ods output overallanova=dglm&dpar.1;
      ods output NObs=dglm&dpar.3;
      title1 'scaled average BE';
      title2 'intermediate analysis - &dpar glm';
      run;
```

```
data unsc&PARAMETER; set unsc&PARAMETER; unscabe_lower=exp(lower);
unscabe_upper=exp(upper);
     keep unscabe_lower unscabe_upper;
     run;
      data iglm&ipar.1; set iglm&ipar.1; if _n_=2; dfi=df; s2i=ms; keep dfi
s2i param;
     param = "&parameter";
    run;
      data iglm&ipar.2; set iglm&ipar.2; pointest=exp(estimate);
x=(estimate**2)-(stderr**2);
      boundx=(max((abs(LowerCL)),(abs(UpperCL))))**2;
     keep pointest x boundx stderr param;
     param = "&parameter";
   run;
      data iglm&ipar.3; set iglm&ipar.3; if _n_ = 2; ni=NobsUsed; keep ni
param;
     param = "&parameter";
  run;
      data dglm&dpar.1; set dglm&dpar.1; if _n_=2; dfd=df; s2wr=ms/2; keep
dfd s2wr param;
     param = "&parameter";
   run;
      data dglm&dpar.3; set dglm&dpar.3; if _n_ = 2; nd=NobsUsed; keep nd
param;
     param = "&parameter";
   run;
      data idallglm&parameter;
        length method_used $15;
     merge unsc&parameter iglm&ipar.1 iglm&ipar.2 iglm&ipar.3 dglm&dpar.1
dqlm&dpar.3;
boundy=y*dfd/cinv(0.95,dfd); sWR=sqrt(s2wr);
      critbound=(x+y)+sqrt(((boundx-x)**2)+((boundy-y)**2));
      outcome='FAIL';
      if (s2wr < 0.086436) then method used='Unscaled'; else
method used='Scaled/PE';
      if ((s2wr < 0.086436) and (unscabe_lower ge 0.8) and (unscabe_upper le
1.25)) then outcome='PASS';
      if ((s2wr ge 0.086436) and (pointest ge 0.8) and (pointest le 1.25) and
(critbound le 0)) then outcome='PASS';
     else outcome='FAIL';
 run;
      proc print data=idallglm&parameter;
      title1 'output needed for mixed scaled av. BE - using glm';
     run;
     data finalglm; set idallglm&parameter;
     keep param s2wr sWR unscabe_lower unscabe_upper pointest critbound
outcome method_used;
```

```
run;
     proc print data=finalglm;
      title1 'final output - &parameter - using glm';
     run;
%mend scale;
%scale(LAUCT, ilat, dlat);
%scale(LAUCINF, ilai, dlai);
data all;
  set idallglmLAUCT
      idallglmLAUCINF
        idallglmLCMAX;
      unscabe_lower = round((unscabe_lower*100),.01);
      unscabe_upper = round((unscabe_upper*100),.01);
run;
ods rtf file="&studydir\&ANDA.-ANALYSIS.doc" style=mystyle1 bodytitle;
**** ARITHMETIC MEANS ****;
footnote "* Tmax values are presented as median, range.";
TITLE "ARITHMETIC MEANS AND RATIOS - REPLICATE 1 (PERIODS 1 AND 2)";
proc report data=pkratio1 nowd split='\' box
  style(header)={background=lightorange
                 foreground=black}
  style(column)={background=white
                 foreground=black};
  column nname units ("Test" mean1 cv1 min1 max1)
         ("Reference" mean2 cv2 min2 max2)
             ("Ratio" rmean12);
  define nname /format=$12. spacing=2 "Parameter";
  define units /format=$12. spacing=2 "Unit";
  define mean1 /format=8.3 spacing=2 "Mean";
  define cv1 /format=8.2 spacing=2 "CV%";
  define min1 /format=8.2 spacing=2 "Min";
 define max1 /format=8.2 spacing=2 "Max";
  define mean2 /format=8.3 spacing=2 "Mean";
  define cv2 /format=8.2 spacing=2 "CV%";
 define min2 /format=8.2 spacing=2 "Min";
 define max2 /format=8.2 spacing=2 "Max";
 define rmean12 /format=8.2 spacing=2 "(T/R)";
run;
footnote;
footnote "* Tmax values are presented as median, range.";
TITLE "ARITHMETIC MEANS AND RATIOS - REPLICATE 2 (PERIODS 3 AND 4)";
proc report data=pkratio2 nowd split='\' box
  style(header)={background=lightorange
                 foreground=black}
```

```
style(column)={background=white
                 foreground=black};
  column nname units ("Test" mean1 cv1 min1 max1)
         ("Reference" mean2 cv2 min2 max2)
            ("Ratio" rmean12);
 define nname /format=$12. spacing=2 "Parameter";
 define units /format=$12. spacing=2 "Unit";
  define mean1 /format=8.3 spacing=2 "Mean";
  define cv1 /format=8.2 spacing=2 "CV%";
  define min1 /format=8.2 spacing=2 "Min";
  define max1 /format=8.2 spacing=2 "Max";
  define mean2 /format=8.3 spacing=2 "Mean";
 define cv2 /format=8.2 spacing=2 "CV%";
 define min2 /format=8.2 spacing=2 "Min";
 define max2 /format=8.2 spacing=2 "Max";
 define rmean12 /format=8.2 spacing=2 "(T/R)";
run;
footnote;
footnote "* Tmax values are presented as median, range.";
TITLE "ARITHMETIC MEANS AND RATIOS - ALL PERIODS (PERIODS 1, 2, 3, AND 4)";
proc report data=pkratio3 nowd split='\' box
  style(header)={background=lightorange
                 foreground=black}
  style(column)={background=white
                 foreground=black};
  column nname units ("Test" mean1 cv1 min1 max1)
         ("Reference" mean2 cv2 min2 max2)
            ("Ratio" rmean12);
  define nname /format=$12. spacing=2 "Parameter";
 define units /format=$12. spacing=2 "Unit";
 define mean1 /format=8.3 spacing=2 "Mean";
 define cv1 /format=8.2 spacing=2 "CV%";
 define min1 /format=8.2 spacing=2 "Min";
  define max1 /format=8.2 spacing=2 "Max";
  define mean2 /format=8.3 spacing=2 "Mean";
 define cv2 /format=8.2 spacing=2 "CV%";
 define min2 /format=8.2 spacing=2 "Min";
 define max2 /format=8.2 spacing=2 "Max";
 define rmean12 /format=8.2 spacing=2 "(T/R)";
run;
footnote;
* /
*** UNSCALED ANALYSIS REPORT ****;
                              STUDY TYPE: &STUDYTYPE";
title1 "ANDA: &anda &drug
title2 "SUMMARY OF STATISTICAL ANALYSIS - UNSCALED DATA";
      proc report
       data=uparams
       headline
       headskip
```

```
nowd
        split="|" box
  style(header)={background=lightorange
                 foreground=black}
  style(column)={background=white
                 foreground=black};
        column parameter ("Geometric Means|" a b) ratio ("90% CI|" lci uci);
       define parameter /display "Parameter" width=20 center;
       define a
                              /display "Test"
                                                   width=15 center
format=8.2;
       define b
                             /display "Reference" width=15 center
format=8.2;
       define ratio
                             /display "T/R Ratio" width=15 center
format=8.2;
       define lci
                             /display "Lower CI" width=20 center format=8.2;
       define uci
                             /display "Upper CI" width=20 center format=8.2;
     run;
***** SCALED ANALYSIS REPORT ****;
title1 "SUMMARY OF STATISTICAL ANALYSIS - SCALED DATA";
     proc report
       data=all
       headline
       headskip
       nowd
        split='|' box
  style(header)={background=lightorange
                 foreground=black}
  style(column) = {background=white
                 foreground=black};
       column param pointest unscabe_lower unscabe_upper s2wr swr critbound
method used outcome;
       define param /display "Parameter" width=20 center;
       define pointest    /display "T/R Ratio" width=15 center format=8.2;
       define unscabe_lower /display "Lower | 90% CI" width=20 center
format=8.2;
       define unscabe_upper /display "Upper | 90% CI" width=20 center
format=8.2;
       define s2wr /display "s2wr" width=15 center;
       define swr /display "sWR" width=15 center;
       define critbound /display "Criteria Bound" width=15 center;
       define method_used /display "Method Used" width=25 center;
       define outcome /display "OUTCOME" width=15 center;
     run;
ods rtf close;
```

# **4.6.2** Fasting Study Output

SUMMARY OF STATISTICAL ANALYSIS - SCALED DATA

| G | T |  | T |
|---|---|--|---|

9

|    |     | G |       |   | Т  |         |         |         |       |        | Т      |   |   |
|----|-----|---|-------|---|----|---------|---------|---------|-------|--------|--------|---|---|
|    | s   | r | S     |   | R  | Α       | Α       | С       | Т     |        | Н      |   |   |
| 0  | U   | О | E     | Р | Ε  | U       | U       | m       | M     |        | Α      | s | Т |
| b  | В   | u | Q     | Ε | Α  | С       | С       | а       | Α     | K      | L      | Ε | R |
| s  | J   | р | U     | R | Т  | Т       | I       | Х       | Χ     | Е      | F      | Q | Т |
|    |     |   |       |   |    |         |         |         |       |        |        |   |   |
| 1  | (b) | 1 | R1R2T | 1 | R1 | 2815.67 | 2861.36 | 614.80  | 8.00  | 0.1568 | 4.42   | 3 | В |
| 2  | ,   |   | R1R2T |   |    |         | 986.30  |         |       | 0.0854 |        | 3 | В |
| 3  |     | 1 | R1R2T | 3 | Т  | 1971.25 | 1979.92 | 235.80  | 7.00  | 0.1791 | 3.87   | 3 | Α |
| 4  |     | 1 | TR1R2 | 1 | Т  | 3410.82 | 3412.28 | 417.30  | 24.00 | 0.6969 | 0.99   | 1 | Α |
| 5  |     | 1 | TR1R2 | 2 | R1 | 2380.68 | 2407.94 | 209.30  | 16.00 | 0.1583 | 4.38   | 1 | В |
| 6  |     | 1 | TR1R2 | 3 | R2 | 4715.11 | 4779.93 |         |       |        |        |   |   |
| 7  |     | 1 | R1TR2 | 1 | R1 | 2092.75 | 2133.80 | 164.40  | 14.00 | 0.0429 | 16.14  | 2 | В |
| 8  |     | 1 | R1TR2 | 2 | Т  | 2868.69 | 2940.27 | 865.30  | 7.00  | 0.0376 | 18.45  | 2 | Α |
| 9  |     | 1 | R1TR2 | 3 | R2 | 3168.43 | 3194.35 | 480.40  | 9.00  | 0.1936 | 3.58   |   |   |
| 10 |     | 1 | TR1R2 | 1 | Т  | 2960.03 | 3086.94 | 261.80  | 10.00 | 0.0266 | 26.02  | 1 | Α |
| 11 |     | 1 | TR1R2 | 2 | R1 | 2045.07 |         | 60.40   | 48.00 |        |        | 1 | В |
| 12 |     | 1 | TR1R2 | 3 | R2 | 1678.64 |         | 120.10  |       |        |        | 1 | В |
| 13 |     | 1 | R1TR2 | 1 | R1 | 3303.21 |         | 244.00  | 32.00 |        |        | 2 |   |
| 14 |     | 1 | R1TR2 | 2 | Т  | 3005.79 |         | 139.20  | 36.00 |        |        | 2 | Α |
| 15 |     | 1 | R1TR2 | 3 | R2 | 785.37  | 870.26  | 88.29   | 11.00 | 0.1164 | 5.96   | 2 | В |
| 16 |     | 1 | R1R2T | 1 | R1 | 510.93  | 517.33  | 38.59   | 28.00 | 0.3544 | 1.96   | 3 | В |
| 17 |     | 1 | R1R2T | 2 | R2 | 335.53  |         | 36.03   | 28.00 |        |        | 3 | В |
| 18 |     | 1 | R1R2T | 3 | Т  | 3723.75 | 3961.72 | 288.40  | 11.00 | 0.0687 | 10.09  | 3 | Α |
| 19 |     | 1 | R1R2T | 1 | R1 | 1389.28 | 8575.76 | 67.93   | 17.00 | 0.0050 | 137.99 | 3 | В |
| 20 |     | 1 | R1R2T | 2 | R2 | 2220.44 |         | 97.94   | 36.00 |        |        | 3 | В |
| 21 |     | 1 | R1R2T | 3 | Т  | 2035.23 | 2111.07 | 150.20  | 11.00 | 0.1194 | 5.80   | 3 | Α |
| 22 |     | 1 | R1TR2 | 1 | R1 | 5412.22 | 5489.36 | 433.30  | 14.00 | 0.0698 | 9.93   | 2 | В |
| 23 |     | 1 | R1TR2 | 2 | Т  | 6548.05 | 6565.13 | 292.70  | 16.00 | 0.1108 | 6.26   | 2 | Α |
| 24 |     | 1 | R1TR2 | 3 | R2 | 3517.84 | 3589.57 | 160.80  | 13.00 | 0.0601 | 11.54  | 2 | В |
| 25 |     | 1 | TR1R2 | 1 | Т  | 1666.63 | 1699.00 | 75.81   | 28.00 | 0.0556 | 12.47  | 1 | Α |
| 26 |     | 1 | TR1R2 | 2 | R1 | 1089.72 | 1265.63 | 56.84   | 15.00 | 0.0345 | 20.11  | 1 | В |
| 27 |     | 1 | TR1R2 | 3 | R2 | 1499.22 | 1549.37 | 76.84   | 15.00 | 0.0283 | 24.50  | 1 | В |
| 28 |     | 1 | R1R2T | 1 | R1 | 1871.41 | 1893.12 | 83.77   | 28.00 | 0.0619 | 11.19  | 3 | В |
| 29 |     | 1 | R1R2T | 2 | R2 | 1627.93 | 1677.32 |         |       |        | 5.91   |   |   |
| 30 |     | 1 | R1R2T | 3 | Т  | 1297.10 | 1304.40 | 221.30  | 24.00 | 0.2075 | 3.34   | 3 | Α |
| 31 |     | 1 | TR1R2 | 1 | T  | 1572.23 | 1634.53 | 53.60   | 16.00 | 0.0310 | 22.35  | 1 | Α |
| 32 |     | 1 | TR1R2 | 2 | R1 | 1935.83 | 1950.47 |         |       |        |        | 1 | В |
| 33 |     | 1 | TR1R2 | 3 | R2 | 1123.15 |         |         |       |        | 57.99  | 1 | В |
| 34 |     | 1 | R1R2T | 1 | R1 | 2229.07 | 2252.66 | 95.42   | 20.00 | 0.0841 | 8.25   | 3 | В |
| 35 |     |   |       |   |    |         | 3543.32 |         |       |        |        |   |   |
| 36 |     |   |       |   |    | 2652.43 |         |         |       |        |        |   |   |
| 37 |     |   |       |   |    | 1455.66 | 1491.35 |         |       |        |        |   |   |
| 38 |     |   | R1TR2 |   |    |         | 2398.22 |         |       |        | 5.07   |   |   |
| 39 |     |   |       |   |    | 92.94   |         | 18.23   |       |        | •      |   |   |
| 40 |     |   | TR1R2 |   |    |         | 3271.61 |         |       |        |        |   |   |
| 41 |     |   |       |   |    | 1631.86 | 1671.37 |         |       |        |        |   |   |
| 42 |     |   |       |   |    | 3304.26 | 3322.99 |         |       |        |        |   |   |
| 43 |     |   |       |   |    | 1876.01 |         |         |       |        |        |   |   |
| 44 |     |   |       |   |    | 1386.19 |         | 55.07   |       |        |        |   |   |
| 45 |     |   |       |   |    | 2225.56 |         | 134.60  |       |        |        |   | В |
| 46 |     |   |       |   |    | 4086.43 |         |         |       |        |        |   |   |
| 47 |     | 1 | 1K1K2 | 2 | H1 | 5377.23 | 6006.25 | 1790.00 | 9.05  | 0.0309 | 22.46  | 1 | R |

```
48
        1 TR1R2 3 R2 4683.08
                                4789.66
                                          695.10 15.00 0.0509
 49
        1 R1R2T 1 R1 2181.31
                                2209.60
                                          213.60 14.00 0.3127
                                                                   2.22 3 B
 50
        1 R1R2T 2 R2 1045.77
                                1049.38
                                            92.16 24.00 0.4654
                                                                   1.49 3 B
 51
        1 R1R2T 3 T
                       954.68
                                 970.82
                                            93.07 24.00 0.3502
                                                                   1.98 3 A
                                8166.14
 52
        1 TR1R2 1 T
                      7644.54
                                          741.60 11.00 0.0449
                                                                  15.44 1 A
 53
        1 TR1R2 2 R1 6289.06
                                6452.15
                                          281.40 6.00 0.0393
                                                                  17.64 1 B
 54
        1 TR1R2 3 R2 9774.04 10035.90 3168.00 6.00 0.0398
                                                                  17.42 1 B
 55
        1 R1R2T 1 R1 1801.92
                                1811.72
                                            57.18 11.00 0.1075
                                                                   6.45 3 B
 56
        1 R1R2T 2 R2 3196.58
                                           190.20 36.00
                                                                         3 B
       1 R1R2T 3 T 1780.94
                                1800.69
                                          395.60 7.00 0.0718
 57
                                                                   9.65 3 A
SUMMARY OF STATISTICAL ANALYSIS - SCALED DATA
                                                                                        10
          G
                        Т
                                                                               Т
      S
          r
                        R
                                                    С
                                                                               Н
             S
                                Α
                                          Α
                                                              Т
 0
      U
             Ε
                     Ρ
                        Ε
                                U
                                          U
                                                                                    S
                                                                                       Т
 b
      В
          u
             Q
                     Ε
                        Α
                                С
                                          С
                                                     а
                                                              Α
                                                                       K
                                                                               L
                                                                                    Ε
                                                                                       R
                     R
                                                                       Ε
 s
         р
             U
                                Т
                                                                                    O
                                                                                       Т
 58
             R1TR2
                     1
                        R1
                             4229.94
                                       4528.39
                                                 197.200
                                                           22.00
                                                                   0.0879
                                                                              7.88
                                                                                    2
                                                                                        В
 59
          1
             R1TR2
                     2
                        Т
                             3029.99
                                       3122.49
                                                 288.900
                                                           10.00
                                                                   0.0999
                                                                              6.94
                                                                                    2
 60
             R1TR2
                     3
                        R2
                             2695.02
                                       2745.60
                                                 195,100
                                                           11.00
                                                                   0.0352
                                                                            19.66
                                                                                    2
                                                                                        В
          1
 61
                             2940.03
                                       2962.21
                                                 297.900
                                                                   0.0500
                                                                            13.85
             R1R2T
                     1
                        R1
                                                           10.00
                                                                                    3
                                                                   0.0361
 62
             R1R2T
                     2
                        R2
                             1864.63
                                       1932.95
                                                  93.780
                                                           14.00
                                                                            19.20
                             5300.30
                                       5323.54
                                                 148.100
                                                                   0.0512
 63
             R1R2T
                        Т
                                                           20.00
                                                                            13.53
             TR1R2
                             2815.59
                                       2853.96
                                                 299,400
                                                                   0.1015
 64
                     1
                        Т
                                                           11.00
                                                                              6.83
                                                                                    1
                             5632.49
                                                 447.500
 65
             TR1R2
                     2
                                       5681.43
                                                           20.00
                                                                   0.1458
                                                                              4.75
                                                                                        В
          1
                        R1
                                                                                    1
 66
             TR1R2
                     3
                        R2
                             5197.32
                                       5252.26
                                                 468.100
                                                           16.00
                                                                   0.1430
                                                                              4.85
                                                                                    1
                                                                                        В
                        R1
                             3027.03
                                       3037.92
                                                 113.200
                                                           28.00
                                                                   0.1017
                                                                              6.81
 67
          1
             R1TR2
                     1
                                                                                    2
 68
             R1TR2
                     2
                        Т
                             3125.27
                                                 155.900
                                                           28.03
                                                                                    2
                                                                                        Α
          1
 69
                     3
                        R2
                             1756.51
                                                 143.800
                                                           28.00
                                                                                    2
                                                                                        В
             R1TR2
                                       4812.39
                                                                   0.0354
                                                                            19.56
          1
                             2603.65
                                                                            14.55
 70
             TR1R2
                     1
                        Т
                                       2733.29
                                                 170.000
                                                           13.00
                                                                   0.0476
 71
                     2
                             1667.07
                                       1682.43
                                                  52.850
                                                                   0.0787
             TR1R2
                        R1
                                                           48.00
                                                                              8.81
 72
                     3
                             1917.66
                                       2462.76
                                                  80.840
                                                                   0.0242
                                                                            28.60
             TR1R2
                        R2
                                                             8.00
                                                                                    1
                                                                                        В
          1
 73
                             1408.15
                                                                   0.4285
             R1R2T
                     1
                        R1
                                       1427.59
                                                 256.800
                                                           28.00
                                                                              1.62
                                                                                    3
                                                                                        В
          1
 74
             R1R2T
                     2
                        R2
                              663.67
                                        874.12
                                                  64.950
                                                           11.00
                                                                   0.0441
                                                                            15.71
                                                                                    3
                                                                                        В
 75
             R1R2T
                     3
                        Τ
                              475.84
                                                  80.700
                                                           28.00
                                                                                    3
 76
             R1R2T
                     1
                        R1
                               13.28
                                                   2.299
                                                           20.00
                                                                                    3
          1
                              279.45
                                                           32.00
 77
             R1R2T
                     2
                        R2
                                                  45.770
                                                                                    3
                               54.04
                                                           22.00
 78
             R1R2T
                     3
                        Т
                                                   9.753
                                                                                    3
 79
             TR1R2
                             6419.48
                                       6421.39
                                                 532,500
                                                           12.00
                                                                   0.6519
 80
             TR1R2
                     2
                             1462.59
                                       1490.52
                                                 310,400
                                                             6.00
                                                                   0.2561
                                                                              2.71
                        R1
                             6151.55
                                       6750.33
                                                 725,400
                                                                   0.1010
 81
             TR1R2
                     3
                        R2
                                                            6.00
                                                                              6.86
                                                                                    1
 82
             R1TR2
                     1
                        R1
                              786.19
                                       1014.76
                                                  19.860
                                                           24.00
                                                                   0.0155
                                                                            44.68
                                                                                    2
                                                                                        В
 83
             R1TR2
                     2
                        Τ
                             6214.11
                                       7170.88
                                                 121.500
                                                           48.00
                                                                   0.0297
                                                                            23.35
                                                                                    2
 84
             R1TR2
                     3
                        R2
                             1920.96
                                       1943.73
                                                  36.610
                                                           71.00
                                                                   0.0664
                                                                            10.44
                                                                                    2
                                                                                        В
          1
 85
             R1TR2
                        R1
                             4191.43
                                       4248.62
                                                 105.500
                                                           28.00
                                                                   0.0457
                                                                            15.18
                                                                                    2
                                                                                        R
                     1
          1
                     2
                             3935.20
                                       4022.54
                                                 112.200
                                                                   0.0695
                                                                              9.98
                                                                                    2
 86
          1
             R1TR2
                        Т
                                                           32.00
 87
             R1TR2
                     3
                        R2
                             1928.83
                                       2209.98
                                                 184.800
                                                            14.00
                                                                   0.0698
                                                                              9.93
                                                                                    2
                                                                                        В
 88
             TR1R2
                     1
                        Т
                             1096.39
                                                  77.690
                                                           48.00
          1
                                                                                    1
                                                                                        Α
                             3165.66
                                                 171.200
 89
             TR1R2
                     2
                        R1
                                       3179.06
                                                           24.00
                                                                   0.1059
                                                                              6.54
                                                                                        В
          1
                                                                                    1
 90
             TR1R2
                     3
                        R2
                             2573.61
                                       2640.01
                                                 177.900
                                                           17.00
                                                                   0.0320
                                                                            21.64
                                                                                    1
                                                                                        В
 91
                     1
                        R1
                             2387.58
                                       2455.95
                                                 431.000
                                                                   0.0524
                                                                            13.22
             R1R2T
                                                           11.00
                                                                                    3
 92
             R1R2T
                     2
                        R2
                              897.49
                                        923.40
                                                 105.000
                                                            12.00
                                                                   0.0763
                                                                              9.09
                                                                                    3
                                                                                        В
          1
 93
             R1R2T
                     3
                        Т
                             1775.48
                                       1794.71
                                                 216.800
                                                            7.00
                                                                   0.1103
                                                                              6.28
                                                                                    3
                                                                                        Α
          1
                                                                   0.1282
 94
             R1R2T
                     1
                        R1
                             2212.96
                                       2220.91
                                                 154.200
                                                           12.00
                                                                              5.40
                                                                                    3
 95
             R1R2T
                        R2
                             1427.53
                                       1439.31
                                                 117.400
                                                           18.00
                                                                   0.1516
                                                                              4.57
                                                                                    3
```

```
96
                           2306.49
                                    2346.94
                                              261.500
            R1R2T
                                                        28.00
                                                               0.3608
                                                                         1.92
97
                           1960.24
                                     2055.62
                                               80.580
                                                               0.0303
                                                                        22.85
            R1TR2
                       R1
                                                        17.00
                                                                               2
                    1
98
                       Т
                           4478.87
                                     4650.21
                                              122.200
                                                        15.00
                                                               0.0638
                                                                        10.86
                                                                               2
            R1TR2
                    2
                                                                                  Α
99
            R1TR2
                    3
                       R2
                           4334.44
                                     4717.32
                                               94.820
                                                        47.00
                                                               0.0387
                                                                        17.92
                                                                                  В
100
            TR1R2
                    1
                       Т
                            242.61
                                      259.30
                                               27.470
                                                        18.03
                                                               0.1533
                                                                         4.52
                                                                               1
            TR1R2
                   2
                           2517.01
                                     2672.83
                                              282,700
                                                        13.00
                                                               0.1065
101
                       R1
                                                                         6.51
                                                                               1
                                    2878.92
                                                               0.1528
102
            TR1R2
                   3
                       R2
                           2628.00
                                              236.000
                                                        22.00
                                                                         4.54
103
            R1R2T
                       R1
                            310.29
                                               49.350
                                                        28.00
104
            R1R2T
                    2
                       R2
                           1301.61
                                     1322.13
                                              107.100
                                                        12.05
                                                               0.1309
                                                                         5.30
                                              433.500
105
                                    2121.61
                           2083.67
                                                         6.00
                                                               0.0282
                                                                        24.58
            R1R2T
                    3
                       Т
106
                           2275.21
                                    2281.92
                                              146.000
                                                        18.00
                                                               0.2215
                                                                         3.13
         1
            R1TR2
                    1
                       R1
                                                                               2
107
            R1TR2
                    2
                       Τ
                           2071.14
                                    3160.82
                                              239.200
                                                        24.00
                                                               0.0847
                                                                         8.18
                                                                               2
                           3138.48
                                              456.500
108
            R1TR2
                    3
                       R2
                                     3146.33
                                                         8.00
                                                               0.1916
                                                                         3.62
         1
109
                           1669.45
                                     1785.54
                                               65.680
                                                        17.00
                                                               0.0216
            TR1R2
                    1
                       Т
                                                                        32.10
                                                                               1
         1
                   2
                           3827.58
                                     3966.16
                                              635.000
                                                         6.00
                                                               0.0205
                                                                        33.83
110
            TR1R2
                      R1
111
            TR1R2
                    3
                       R2
                           1353.96
                                     1506.02
                                              124.300
                                                        24.00
                                                               0.0394
                                                                        17.61
112
            TR1R2
                    1
                       Τ
                           6048.84
                                     6266.22
                                              452.000
                                                        13.00
                                                               0.0315
                                                                        21.99
                                                                               1
                           5466.07
113
            TR1R2
                   2
                      R1
                                     5475.45
                                              422.400
                                                        24.10
                                                               0.2370
                                                                         2.93
                                                                               1
                                                                                  R
114
            TR1R2
                   3
                       R2
                           4901.88
                                    4967.56
                                              248.200
                                                        32.00
                                                               0.2063
                                                                         3.36
                                                                               1
SUMMARY OF STATISTICAL ANALYSIS - SCALED DATA
                                                                                  11
       G
                                                                Т
                  Т
     SrS
                        Α
                                          С
                                                 Т
 0
     U o E
                        U
                                          m
                                                                Α
                                                                    ST
     B u Q
                        С
                                 С
                                                                    E R
 h
               E A
                                                 Α
                                                         Κ
                                          а
                                                                L
               R T
                                                                    Q T
     J p U
                        Т
                                 Ι
                                                 Χ
                                                         F
                                                                F
                                          Х
115
     (b) 1 R1TR2 1 R1 2274.72
                              2276.75
                                        241.60 22.00 0.5250
                                                               1.32 2 B
116
       1 R1TR2 2 T
                    4121.76
                              4253.94
                                        290.70 11.00 0.1121
                                                               6.18 2 A
                                                              14.59 2 B
       1 R1TR2 3 R2 3152.28
                              4999.50
                                        277.90 11.00 0.0475
117
118
       1 R1R2T 1 R1 4270.66
                              4279.98
                                        225.10 16.00 0.1822
                                                               3.80 3 B
       1 R1R2T 2 R2 2418.26
                              2479.70
                                        150.40 13.00 0.0264
                                                              26.26 3 B
119
                     2007.02
120
                              2052.92
                                        100.40 18.00 0.0585
                                                              11.84 3 A
       1 R1R2T 3 T
                              2572.98
                                         71.75 18.00 0.0472
121
       1 TR1R2 1 T
                     2510.31
                                                              14.70 1 A
122
       1 TR1R2 2 R1 4055.61
                              4085.54
                                        192.10 28.00 0.0915
                                                               7.58 1 B
123
       1 TR1R2 3 R2 4214.56
                              4228.34
                                        278.50 14.00 0.0743
                                                               9.33 1 B
124
       2 R1TR2 1 R1 6395.73
                              6504.98 1914.00 6.00 0.0458
                                                              15.14 2 B
125
                              2813.86
       2 R1TR2 2 T 2747.12
                                        348.90 15.00 0.0748
                                                               9.27 2 A
126
       2 R1TR2 3 R2 747.52
                                         59.88 48.00
                                                                    2 B
127
       2 R1R2T 1 R1 818.81
                              1077.28
                                         98.49 6.00 0.0737
                                                               9.41 3 B
128
       2 R1R2T 2 R2
                     498.41
                                         31.15 32.00
                                                                    3 B
                                                                .
                                   .
129
       2 R1R2T 3 T
                      515.92
                                         55.50 28.05
                                                                    3 A
130
       2 TR1R2 1 T
                     4008.77
                              4247.92
                                        300.20 15.00 0.0718
                                                               9.65 1 A
131
       2 TR1R2 2 R1 1340.57
                              1344.11
                                        157.40 24.00 0.5491
                                                               1.26 1 B
132
       2 TR1R2 3 R2 2314.30
                              2460.88
                                        177.80 28.00 0.0974
                                                               7.11 1 B
133
       2 R1R2T 1 R1 3987.42
                              4003.17
                                        220.20 11.00 0.0983
                                                               7.05 3 B
       2 R1R2T 2 R2 4462.43
                              4922.46 1151.00 4.00 0.0249
                                                              27.80 3 B
134
135
       2 R1R2T 3 T 3568.69
                              3798.06
                                        293.10 24.00 0.0710
                                                               9.77 3 A
136
       2 R1TR2 1 R1 1239.50
                              1314.73
                                        137.60 28.00 0.2482
                                                               2.79 2 B
137
       2 R1TR2 2 T
                     2561.25
                              2626.51
                                        168.10 28.00 0.1151
                                                               6.02 2 A
138
       2 R1TR2 3 R2 1350.40
                              1361.56
                                        110.40 24.07 0.1622
                                                               4.27 2 B
139
       2 TR1R2 1 T 1519.98
                              1685.44
                                        109.60 16.00 0.1272
                                                               5.45 1 A
140
       2 TR1R2 2 R1 3347.00
                              3355.84
                                        260.70 22.00 0.4067
                                                               1.70 1 B
141
       2 TR1R2 3 R2 1563.92
                              1574.35
                                        280.40 11.00 0.2197
                                                               3.16 1 B
142
       2 TR1R2 1 T 4660.13
                              4970.93
                                        403.00 4.00 0.0217
                                                              31.92 1 A
```

103.20 24.00 0.2251

3.08 1 B

143

2 TR1R2 2 R1 2369.94

2381.78

```
(b)
(6) 2 TR1R2 3 R2 1304.85
                              1323.89
                                         86.66 20.00 0.1552
                                                                4.47 1 B
145
       2 R1R2T 1 R1 1437.59
                               1512.59
                                        155.90 24.00 0.0943
                                                                7.35 3 B
146
       2 R1R2T 2 R2 1234.76
                               1250.80
                                         74.45 10.00 0.1495
                                                                4.64 3 B
147
       2 R1R2T 3 T 1260.73
                               1290.16
                                         86.56 15.00 0.1389
                                                                4.99 3 A
       2 R1TR2 1 R1 3017.37
148
                               3074.87
                                        147.40 24.00 0.0463
                                                               14.98 2 B
                               2913.79
                                        157.20 28.00 0.0996
149
       2 R1TR2 2 T
                     2885.07
                                                                6.96 2 A
       2 R1TR2 3 R2 4749.15
150
                               4783.85
                                        221.70 36.00 0.1162
                                                                5.96 2 B
151
       2 R1TR2 1 R1 1697.94
                               2673.34
                                        153.40 12.00 0.0451
                                                               15.36 2 B
152
       2 R1TR2 2 T
                     2096.69
                               2135.98
                                        146.70 15.00 0.2470
                                                                2.81 2 A
                                        127.50 13.00 0.1288
                                                                5.38 2 B
153
       2 R1TR2 3 R2 2475.29
                               2815.48
154
                     5393.53 12150.50
                                        340.70 28.00 0.0134
       2 TR1R2 1 T
                                                               51.65 1 A
155
       2 TR1R2 2 R1 1582.05
                               2854.62
                                         85.57 17.00 0.0262
                                                               26.50 1 B
                               9891.59
                                        281.30 11.00 0.0158
156
       2 TR1R2 3 R2 5042.66
                                                               43.92 1 B
       2 R1R2T 1 R1 3277.56
                               3302.01
                                        261.90 12.00 0.1546
                                                                4.48 3 B
157
                                825.06
158
       2 R1R2T 2 R2 806.22
                                        143.20 22.00 0.2441
                                                                2.84 3 B
159
       2 R1R2T 3 T 4336.14
                               4370.71
                                        614.20 24.00 0.1538
                                                                4.51 3 A
160
       2 R1R2T 1 R1 2638.51
                               5890.60
                                        284.00 12.00 0.0067 103.93 3 B
161
       2 R1R2T 2 R2 2062.17
                               2073.01
                                        115.70 22.00 0.1956
                                                                3.54 3 B
162
       2 R1R2T 3 T
                      827.73
                                         73.54 24.00
                                                                     3 A
                                   .
                                                      .
                                                                 .
163
       2 R1TR2 1 R1 8666.61
                               8693.32 2459.00 6.00 0.0888
                                                                7.81 2 B
164
       2 R1TR2 2 T
                     3948.03
                               3963.90
                                        301.90 11.00 0.1689
                                                                4.10 2 A
165
       2 R1TR2 3 R2 4681.43
                               4694.62
                                        598.20 11.00 0.1805
                                                                3.84 2 B
166
       2 TR1R2 1 T 2005.15
                               2039.96
                                                               18.38 1 A
                                         62.36 32.00 0.0377
167
       2 TR1R2 2 R1 2701.58
                               2758.29
                                        136.40 14.00 0.0635
                                                               10.91 1 B
                                        101.70 6.00 0.0567
168
       2 TR1R2 3 R2 2310.62
                               2350.66
169
                               1376.16
                                        123.10 14.00 0.0228
       2 R1R2T 1 R1 1283.27
                                                               30.46 3 B
       2 R1R2T 2 R2 3304.76
170
                               3337.52
                                        155.70 20.00 0.1913
                                                                3.62 3 B
171
       2 R1R2T 3 T 1906.07
                               2195.65
                                         76.04 24.00 0.0408
                                                               16.98 3 A
SUMMARY OF STATISTICAL ANALYSIS - SCALED DATA
                                                                                   12
                                                                            Т
         G
                       Т
      S
                                                                            Н
         r
            S
                               Α
                                         Α
 0
      U
            Ε
                    Ρ
                       Ε
                                         U
                                                                                 S
                                                                                    Т
         0
                               U
                                                            M
                                                                            Α
                                                      m
 b
      В
            Q
                    Ε
                               С
                                         С
                                                            Α
                                                                                 Ε
                                                                                    R
         u
                       Α
                                                      а
                                                                    K
                                                                            L
                                                                    Ε
 s
      J
         р
            U
                    R
                       Т
                               Τ
                                         Ι
                                                            Χ
                                                                            F
                                                                                 Q
                                                                                    Τ
172
            R1TR2
                       R1
                           2663.22
                                                 204.90
                                                         48.00
                                                                                 2
                                                                                    В
                    1
173
                    2
                                                 300.70
            R1TR2
                       Т
                           5941.49
                                     10649.00
                                                         24.00
                                                                0.0309
                                                                                 2
                                                                          22.43
                                      6431.64
                           6406.82
                                                         22.00
174
            R1TR2
                    3
                       R2
                                                 180.10
                                                                 0.1152
                                                                           6.01
175
            R1R2T
                           2901.91
                                      3255.25
                                                 212.50
                                                         13.00
                                                                 0.0680
                                                                          10.19
176
            R1R2T
                    2
                       R2
                           3564.68
                                      3635.11
                                                 217.40
                                                         28.00
                                                                 0.1486
                                                                           4.66
                           3057.92
                                                 197.00
                                                         28.00
                                                                 0.0689
177
         2
            R1R2T
                    3
                       Т
                                      3660.02
                                                                          10.06
178
         2
            TR1R2
                    1
                       Т
                            347.60
                                       397.37
                                                  44.82
                                                         28.00
                                                                 0.0756
                                                                           9.17
179
         2
            TR1R2
                    2
                       R1
                           2774.05
                                      2781.49
                                                 180.00
                                                         16.00
                                                                 0.3298
                                                                           2.10
                                                                                 1
180
         2
            TR1R2
                    3
                       R2
                            548.24
                                                  97.67
                                                         28.00
                                                                                 1
                                                                                    В
                                          .
181
         2
            R1TR2
                    1
                       R1
                           2403.99
                                      2408.77
                                                 347.20
                                                         20.00
                                                                 0.2197
                                                                                 2
                                                                                    В
                                                                           3.16
                    2
                           3939.21
                                      3947.62
                                                 426.30
                                                         24.00
                                                                 0.5625
                                                                           1.23
                                                                                 2
182
         2
            R1TR2
                       Т
                    3
                       R2
                            695.39
                                      3718.25
                                                  64.43
                                                         17.00
                                                                 0.0160
                                                                          43.40
                                                                                 2
183
            R1TR2
184
         2
            R1R2T
                    1
                       R1
                            910.10
                                                 160.30
                                                         28.00
                                                                                 3
                                                                                    В
185
         2
                    2
                            980.45
                                       995.08
                                                  88.71
                                                         14.00
                                                                                 3
            R1R2T
                       R2
                                                                 0.1431
                                                                           4.84
                                                                                    В
                            1285.98
186
         2
            R1R2T
                    3
                       Τ
                                      1631.22
                                                 140.70
                                                         13.00
                                                                 0.0689
                                                                          10.06
                                                                                 3
                                                                                    Α
187
         2
            TR1R2
                    1
                       Τ
                            4050.04
                                     14503.90
                                                 243.60
                                                         28.00
                                                                 0.0138
                                                                          50.25
188
         2
            TR1R2
                    2
                       R1
                           1817.45
                                      1823.34
                                                 152.10
                                                         28.00
                                                                 0.2305
                                                                           3.01
                                                                                    В
                                                                                 1
189
         2
            TR1R2
                    3
                       R2
                           3222.73
                                      3853.42
                                                 177.00
                                                         28.00
                                                                 0.0687
                                                                          10.09
                                                                                    В
                                                                                 1
190
            R1TR2
                    1
                       R1
                            1984.03
                                      1996.95
                                                 112.10
                                                         20.00
                                                                 0.0932
                                                                           7.43
                                                                                 2
191
            R1TR2
                    2
                      Т
                            169.35
                                                  27.95
                                                         32.00
                                                                                 2
```

```
192
             R1TR2
                            1057.95
                                       1065.32
                                                    73.16
                                                           28.00
                                                                  0.1949
                    3
                        R2
                                                                             3.56
193
             R1R2T
                             1866.30
                                       3366.85
                                                    56.69
                                                           16.03
                                                                   0.0130
                                                                            53.48
                     1
                        R1
                    2
                        R2
                            1802.09
                                       1823.66
                                                    59.29
                                                           36.00
                                                                   0.0684
                                                                            10.13
194
             R1R2T
                                                                                       В
195
         2
             R1R2T
                     3
                        Т
                             1862.32
                                       2618.37
                                                    44.39
                                                           36.00
                                                                   0.0176
                                                                            39.37
                                                                                    3
196
         2
             TR1R2
                     1
                        Т
                             1227.69
                                       1275.35
                                                    69.76
                                                           20.00
                                                                   0.0520
                                                                            13.34
                                                                                    1
                                                                                       Α
                             895.10
             TR1R2
                    2
                        R1
                                       1181.60
                                                    61.68
                                                           15.00
                                                                   0.0361
197
         2
                                                                            19.21
                                                                                       В
                                                                                    1
                                                           36.00
198
             TR1R2
                    3
                        R2
                            1059.11
                                                    80.38
                                                                                       В
         2
199
             R1TR2
                     1
                        R1
                             154.24
                                        207.03
                                                     7.81
                                                           36.00
                                                                   0.0260
                                                                            26.65
                                                                                    2
200
         2
             R1TR2
                    2
                        Т
                             1372.40
                                       1374.03
                                                  205.40
                                                           24.00
                                                                   0.6569
                                                                             1.06
                                                                                    2
                                                                                       Α
201
         2
             R1TR2
                            1894.66
                                       1899.92
                                                   150.30
                                                           15.00
                                                                   0.3470
                                                                             2.00
                                                                                    2
                    3
                        R2
                                                                                       В
202
             R1TR2
                             314.52
                                        324.20
                                                    76.45
                                                           11.00
                                                                   0.1751
                                                                             3.96
                                                                                    2
         2
                     1
                        R1
                                                                                       В
203
         2
             R1TR2
                    2
                        Τ
                             1132.28
                                       1135.15
                                                   204.00
                                                           18.00
                                                                   1.0093
                                                                             0.69
                                                                                    2
                    3
                                                     1.59
204
         2
             R1TR2
                        R2
                              10.51
                                                           28.00
                                                                                    2
                                                                                       В
                                            .
205
                            1247.66
                                       1327.66
                                                  229.40
                                                            6.00
                                                                                    3
         2
             R1R2T
                     1
                        R1
                                                                   0.1126
                                                                             6.16
                                                                                       В
                                                            6.00
206
         2
             R1R2T
                    2
                        R2
                            6596.70
                                       6636.48
                                                 3183.00
                                                                   0.0619
                                                                            11.20
                                                                                    3
                                                                                       В
207
         2
             R1R2T
                     3
                        Τ
                             1346.46
                                       1349.58
                                                   191.90
                                                            7.00
                                                                   0.3274
                                                                             2.12
                                                                                    3
                             1497.79
208
         2
             TR1R2
                     1
                        Т
                                       1550.32
                                                    51.06
                                                            6.00
                                                                   0.0521
                                                                            13.29
                                                                                       Α
                            2162.48
                                       4595.36
                                                           32.00
                                                                   0.0312
209
         2
             TR1R2
                    2
                        R1
                                                   135.60
                                                                            22.23
                                                                                    1
                                                                                       R
210
         2
             TR1R2
                    3
                        R2
                            1336.31
                                       2009.04
                                                    92.91
                                                           17.00
                                                                   0.0401
                                                                            17.26
                                                                                    1
                                                                                       В
211
         2
             R1R2T
                     1
                        R1
                            4006.31
                                       4015.52
                                                   167.40
                                                           28.00
                                                                   0.1360
                                                                             5.10
                                                                                    3
                                                                                       В
212
             R1R2T
                    2
                        R2
                            2885.88
                                       2915.76
                                                   153.80
                                                           28.00
                                                                   0.1926
                                                                             3.60
                                                                                    3
                                                                                       В
213
         2
             R1R2T
                    3
                        Т
                            5668.30
                                       5701.12
                                                   460.30
                                                           15.00
                                                                   0.1534
                                                                             4.52
                                                                                    3
                                                                                       Α
             TR1R2
                            2402.59
                                       2449.80
                                                  253.20
                                                           14.00
                                                                   0.0223
214
         2
                    1
                                                                            31.11
                        т
215
         2
             TR1R2
                    2
                        R1
                            2845.04
                                       3570.51
                                                   166.00
                                                           11.05
                                                                   0.0148
                                                                            46.91
                                                           11.00
                                                                   0.0108
216
             TR1R2
                     3
                        R2
                            2175.18
                                       2328.41
                                                  282.20
                                                                            64.33
217
             R1TR2
                             809.11
                                                           28.00
                                                                   0.2336
                                                                             2.97
         2
                     1
                        R1
                                        814.73
                                                    67.13
                                                                                    2
                                                                                       В
218
         2
             R1TR2
                    2
                             1449.12
                                       1457.69
                                                   103.20
                                                           11.00
                                                                   0.1323
                                                                             5.24
                                                                                    2
                        Т
                                                                                       Α
219
         2
             R1TR2
                     3
                        R2
                             978.96
                                       1268.10
                                                    57.01
                                                           17.03
                                                                   0.0897
                                                                             7.72
                                                                                    2
220
                            4428.01
                                       4451.41
                                                  329.90
                                                            6.00
                                                                   0.0610
         2
             R1TR2
                     1
                        R1
                                                                            11.35
221
         2
             R1TR2
                    2
                        Т
                             6296.12
                                       6406.75
                                                 2374.00
                                                            6.00
                                                                   0.0340
                                                                            20.41
                                                                                    2
222
         2
                    3
                        R2
                            5075.59
                                       5899.77
                                                  346.50
                                                            2.00
                                                                   0.0634
                                                                            10.93
                                                                                    2
             R1TR2
                                                                                       В
                             2567.99
                                                   439.90
                                                                   0.0649
223
         2
             TR1R2
                     1
                        Т
                                       2853.91
                                                            8.00
                                                                            10.68
                    2
                             1751.26
                                       1820.46
                                                   172.00
                                                           13.00
                                                                   0.0910
224
         2
             TR1R2
                        R1
                                                                             7.61
225
         2
                    3
                             1287.36
                                       1468.26
                                                   108.50
                                                           16.00
                                                                   0.0496
                                                                            13.97
             TR1R2
                        R2
                                                                                       В
226
                                       3128.62
                                                           14.05
                                                                   0.0626
         2
             R1R2T
                     1
                        R1
                            3105.81
                                                   286.10
                                                                            11.07
                                                                                    3
                                                                                       В
227
         2
             R1R2T
                    2
                        R2
                            4739.94
                                       4752.99
                                                   229.20
                                                           12.00
                                                                   0.0772
                                                                             8.98
                                                                                    3
                                                                                       В
228
         2
             R1R2T
                    3
                        Τ
                            3062.59
                                       3121.43
                                                  232.20
                                                           14.05
                                                                   0.0659
                                                                            10.51
                                                                                    3
SUMMARY OF STATISTICAL ANALYSIS - SCALED DATA
                                                                                      13
       G
                  Т
                                                                   Т
     SrS
                  R
                                                С
                                                     Т
                                                                   Н
                             Α
                                    Α
     U o E
 0
                PΕ
                             U
                                    U
                                                                       ST
                                                m
                                                                   Α
 h
     B u Q
                E A
                             С
                                    С
                                                а
                                                     Α
                                                            Κ
                                                                   L
                                                                       E R
 s
       рU
                R T
                             Т
                                    Ι
                                                х
                                                     Χ
                                                            Ε
                                                                   F
                                                                       Q T
                                           153.40 15.00 0.0149 46.56 1 A
229
      (6) 2 TR1R2 1 T
                       2424.63
                                 2756.77
230
       2 TR1R2 2 R1
                       2603.56
                                 2702.97
                                           101.50 14.00 0.0329 21.06 1 B
231
       2 TR1R2 3 R2
                       2067.68
                                 2478.57
                                           111.40 16.00 0.0181 38.21 1 B
232
       2 R1TR2 1 R1
                       2121.21
                                 2350.93
                                           192.00 20.00 0.0653 10.62 2 B
233
       2 R1TR2 2 T
                       5859.94
                                 6629.37
                                           473.60 24.00 0.0840
                                                                  8.25 2 A
                                           173.10 15.00 0.0415 16.69 2 B
234
       2 R1TR2 3 R2
                       1798.41
                                 2029.79
235
       2 R1TR2 1 R1
                       1178.06
                                 1333.30
                                           204.30
                                                   8.00 0.0202 34.27 2 B
236
       2 R1TR2 2 T
                       2598.10
                                 2675.89 1047.00
                                                   7.00 0.0639 10.85 2 A
237
       2 R1TR2 3 R2
                        998.44
                                 1022.96
                                            85.89 11.05 0.0906
                                                                  7.65 2 B
238
       2 TR1R2 1 T
                        255.13
                                  263.71
                                            40.99 22.00 0.3984
                                                                  1.74 1 A
239
       2 TR1R2 2 R1
                       1316.74
                                 1400.10
                                           279.10 24.00 0.3011
                                                                  2.30 1 B
```

```
2 TR1R2 3 R2
                      2873.18
                               2880.44 207.40 16.00 0.2068 3.35 1 B
241
                      6723.98 7841.87 1169.00 8.00 0.0563 12.31 3 B
       2 R1R2T 1 R1
       2 R1R2T 2 R2 17015.10 17033.30 3959.00
                                                  4.00 0.0665 10.43 3 B
242
243
       2 R1R2T 3 T
                      7420.71
                                8826.22 1954.00
                                                  8.00 0.0356 19.47 3 A
                      1648.38
                                1922.66
                                          202.50 24.00 0.0598 11.60 2 B
244
       2 R1TR2 1 R1
       2 R1TR2 2 T
                      2902.94
                                2921.99
                                          167.90 24.00 0.2294
                                                                3.02 2 A
245
                                2669.05
                                          236.80 7.00 0.1945
                                                                3.56 2 B
246
       2 R1TR2 3 R2
                      2656.81
247
       2 TR1R2 1 T
                       4595.59
                                4748.11
                                          518.00 16.00 0.1143
                                                                6.06 1 A
248
       2 TR1R2 2 R1
                      2298.21
                                2314.29
                                          136.60 24.00 0.2610
                                                                2.66 1 B
       2 TR1R2 3 R2
                                  14.00
                                            1.90 13.00 0.1739
249
                          6.27
                                                                3.99 1 B
ref1
                                                                                    14
     SUBJ
                   SEQU
                           PER
                                TREAT
                                          AUCT
                                                   AUCI
                                                                      TMAX
                                                                               ΚE
0bs
           Group
                                                              Cmax
      (b) (6)
  1
              1
                   TR1R2
                            2
                                 R1
                                        2380.68
                                                 2407.94
                                                            209.30
                                                                     16.00
                                                                            0.1583
  2
              1
                   TR1R2
                            2
                                 R1
                                        2045.07
                                                             60.40
                                                                     48.00
  3
                   TR1R2
                                        1089.72
                                                             56.84
                                                                     15.00
                            2
                                 R1
                                                 1265.63
                                                                            0.0345
  4
                   TR1R2
                            2
                                 R1
                                        1935.83
                                                 1950.47
                                                            185.70
                                                                     36.00
                                                                            0.1203
  5
                   TR1R2
                            2
                                 R1
                                        1631.86
                                                 1671.37
                                                             74.86
                                                                     36.00
                                                                            0.0861
  6
                   TR1R2
                            2
                                 R1
                                        5377.23
                                                 6006.25
                                                           1790.00
                                                                      9.05
                                                                            0.0309
  7
                   TR1R2
                            2
                                 R1
                                        6289.06
                                                 6452.15
                                                            281.40
                                                                      6.00
                                                                            0.0393
                                                                     20.00
  8
                   TR1R2
                            2
                                        5632.49
                                                 5681.43
                                                            447.50
                                 R1
                                                                            0.1458
                   TR1R2
                                        1667.07
                                                                     48.00
  9
                            2
                                 R1
                                                 1682.43
                                                             52.85
                                                                            0.0787
                   TR1R2
                                        1462.59
                                                 1490.52
                                                            310.40
                                                                      6.00
 10
                            2
                                 R1
                                                                            0.2561
                   TR1R2
                                        3165.66
                                                 3179.06
                                                            171.20
                                                                     24.00
                                                                            0.1059
 11
                            2
                                 R1
                   TR1R2
                                        2517.01
                                                 2672.83
                                                            282.70
                                                                     13.00
 12
                            2
                                 R1
                                                                            0.1065
 13
                   TR1R2
                            2
                                 R1
                                        3827.58
                                                 3966.16
                                                            635.00
                                                                      6.00
                                                                            0.0205
                   TR1R2
                            2
                                        5466.07
                                                 5475.45
                                                            422.40
                                                                     24.10
 14
                                 R1
                                                                            0.2370
 15
                   TR1R2
                            2
                                 R1
                                        4055.61
                                                 4085.54
                                                            192.10
                                                                     28.00
                                                                            0.0915
              1
                                                            157.40
                                                                     24.00
              2
                   TR1R2
                            2
                                        1340.57
                                                 1344.11
                                                                            0.5491
 16
                                 R1
              2
                                        3347.00
                                                 3355.84
                                                            260.70
                                                                     22.00
                                                                            0.4067
 17
                   TR1R2
                            2
                                 R1
              2
                   TR1R2
                            2
                                        2369.94
                                                 2381.78
                                                            103.20
                                                                     24.00
                                                                            0.2251
 18
                                 R1
 19
              2
                   TR1R2
                                        1582.05
                                                 2854.62
                                                             85.57
                                                                     17.00
                                                                            0.0262
                            2
                                 R1
              2
                                        2701.58
                                                 2758.29
                                                            136.40
                                                                     14.00
                                                                            0.0635
 20
                   TR1R2
                            2
                                 R1
                                                 2781.49
 21
              2
                   TR1R2
                            2
                                 R1
                                        2774.05
                                                            180.00
                                                                     16.00
                                                                            0.3298
 22
              2
                   TR1R2
                            2
                                        1817.45
                                                 1823.34
                                                            152.10
                                                                     28.00
                                                                            0.2305
                                 R1
 23
              2
                   TR1R2
                            2
                                 R1
                                         895.10
                                                 1181.60
                                                             61.68
                                                                     15.00
                                                                            0.0361
                   TR1R2
                                        2162.48
                                                 4595.36
                                                            135.60
                                                                     32.00
 24
              2
                            2
                                 R1
                                                                            0.0312
 25
              2
                   TR1R2
                            2
                                 R1
                                        2845.04
                                                 3570.51
                                                            166.00
                                                                    11.05 0.0148
 26
              2
                   TR1R2
                            2
                                 R1
                                        1751.26
                                                 1820.46
                                                            172.00
                                                                     13.00
                                                                            0.0910
 27
              2
                   TR1R2
                            2
                                 R1
                                        2603.56
                                                 2702.97
                                                            101.50
                                                                     14.00
                                                                            0.0329
 28
              2
                   TR1R2
                                                 1400.10
                                                            279.10
                                                                    24.00
                            2
                                 R1
                                        1316.74
                                                                            0.3011
                                                 2314.29
 29
              2
                   TR1R2
                            2
                                 R1
                                        2298.21
                                                            136.60
                                                                    24.00
                                                                            0.2610
0bs
      THALF
              SEQ
                   TRT
                         LAUCT
                                  LAUCINF
                                             LCMAX
                                                       lat1r
                                                                lai1r
                                                                           1c1r
       4.38
                        7.77514
                                  7.78653
                                           5.34377
                                                      7.77514
                                                              7.78653
                                                                         5.34377
  1
               1
                    В
  2
                        7.62319
                                            4.10099
                                                      7.62319
                                                                         4.10099
               1
  3
      20.11
                    В
                         6.99368
                                  7.14333
                                            4.04024
                                                      6.99368
                                                               7.14333
                                                                         4.04024
               1
  4
       5.76
                         7.56829
                                  7.57583
                                            5.22413
                                                      7.56829
                                                               7.57583
                                                                         5.22413
                    В
               1
  5
       8.05
               1
                    В
                        7.39748
                                  7.42140
                                            4.31562
                                                      7.39748
                                                               7.42140
                                                                         4.31562
  6
      22.46
                    В
                        8.58993
                                  8.70056
                                            7.48997
                                                      8.58993
                                                               8.70056
                                                                         7.48997
               1
  7
      17.64
                    В
                        8.74657
                                  8.77217
                                            5.63978
                                                      8.74657
                                                               8.77217
                                                                         5.63978
               1
  8
       4.75
                    В
                        8.63631
                                  8.64496
                                            6.10368
                                                      8.63631
                                                               8.64496
                                                                         6.10368
               1
  9
       8.81
                    В
                        7.41882
               1
                                  7.42799
                                            3.96746
                                                      7.41882
                                                               7.42799
                                                                         3.96746
 10
       2.71
                         7.28796
                                  7.30688
                                           5.73786
                                                      7.28796
                                                               7.30688
                                                                         5.73786
```

```
6.54
                         8.06012
                                  8.06434
                                             5.14283
                                                       8.06012 8.06434
 11
 12
       6.51
                                   7.89089
                                             5.64439
                                                       7.83083
                                                                 7.89089
                     В
                         7.83083
                                                                           5.64439
               1
 13
      33.83
                         8.24999
                                   8.28555
                                             6.45362
                                                       8.24999
                                                                 8.28555
                                                                           6.45362
               1
                     В
 14
       2.93
                     В
                         8.60632
                                   8.60803
                                             6.04595
                                                       8.60632
                                                                 8.60803
                                                                           6.04595
 15
       7.58
                     В
                         8.30786
                                   8.31521
                                             5.25802
                                                       8.30786
                                                                 8.31521
                                                                           5.25802
               1
                                             5.05879
 16
       1.26
                     В
                         7.20085
                                   7.20349
                                                       7.20085
                                                                 7.20349
                                                                           5.05879
               1
       1.70
                     В
                         8.11582
                                   8.11846
                                             5.56337
                                                       8.11582
                                                                 8.11846
 17
                                                                           5.56337
 18
       3.08
                         7.77062
                                   7.77560
                                             4.63667
                                                       7.77062
                                                                 7.77560
                                                                           4.63667
 19
      26.50
                     В
                         7.36648
                                   7.95669
                                             4.44933
                                                       7.36648
                                                                 7.95669
                                                                           4.44933
 20
      10.91
                         7.90159
                                   7.92237
                                             4.91559
                                                       7.90159
                                                                 7.92237
                                                                           4.91559
                     В
       2.10
 21
                         7.92806
                                   7.93074
                                             5.19296
                                                       7.92806
                                                                 7.93074
                                                                           5.19296
               1
                     В
 22
       3.01
                     В
                         7.50519
                                   7.50843
                                             5.02454
                                                       7.50519
                                                                 7.50843
                                                                           5.02454
 23
                         6.79693
                                                       6.79693
      19.21
                     В
                                   7.07462
                                             4.12196
                                                                 7.07462
                                                                           4.12196
               1
                         7.67901
                                   8.43280
                                             4.90971
                                                       7.67901
 24
      22.23
                     В
                                                                 8.43280
                                                                           4.90971
               1
                                             5.11199
 25
      46.91
                     В
                         7.95333
                                   8.18046
                                                       7.95333
                                                                 8.18046
                                                                           5.11199
               1
 26
       7.61
                         7.46809
                                   7.50684
                                             5.14749
                                                       7.46809
                                                                 7.50684
                                                                           5.14749
 27
      21.06
               1
                     В
                         7.86464
                                   7.90211
                                             4.62006
                                                       7.86464
                                                                 7.90211
                                                                           4.62006
 28
       2.30
               1
                     В
                         7.18291
                                   7.24430
                                             5.63157
                                                       7.18291
                                                                 7.24430
                                                                           5.63157
 29
       2.66
               1
                     В
                         7.73989
                                   7.74686
                                             4.91706
                                                       7.73989
                                                                 7.74686
                                                                           4.91706
ref1
     SUBJ
                   SEQU
                                 TREAT
                                           AUCT
                                                     AUCI
                                                                                 ΚE
Obs
            Group
                            PER
                                                                        TMAX
                                                                Cmax
      (b) (6)
 30
                    R1TR2
                                         2092.75
                                                   2133.80
                                                                               0.0429
              1
                             1
                                  R1
                                                              164.40
                                                                       14.00
 31
                    R1TR2
                                         3303.21
                                                              244.00
                                                                       32.00
                                  R1
              1
                             1
 32
                    R1TR2
                                         5412.22
                                                              433.30
                                                                       14.00
                                                                               0.0698
                                  R1
                                                   5489.36
                             1
 33
                    R1TR2
                                  R1
                                         1455.66
                                                   1491.35
                                                              317.00
                                                                       13.00
                                                                               0.0805
                             1
 34
                    R1TR2
                                         1876.01
                                                               62.92
                                                                       48.00
                             1
                                  R1
 35
                    R1TR2
                                  R1
                                         4229.94
                                                   4528.39
                                                              197.20
                                                                       22.00
                                                                               0.0879
                             1
 36
                                         3027.03
                                                   3037.92
                                                              113.20
                                                                       28.00
                                                                               0.1017
                    R1TR2
                             1
                                  R1
 37
                    R1TR2
                             1
                                  R1
                                          786.19
                                                   1014.76
                                                               19.86
                                                                       24.00
                                                                               0.0155
 38
                    R1TR2
                                         4191.43
                                                   4248.62
                                                              105.50
                                                                       28.00
                             1
                                  R1
 39
                    R1TR2
                                         1960.24
                                                   2055.62
                                                               80.58
                                                                       17.00
                                                                               0.0303
                             1
                                  R1
                                         2275.21
 40
                    R1TR2
                                                   2281.92
                                                              146.00
                                                                       18.00
                                                                               0.2215
                             1
                                  R1
 41
                    R1TR2
                             1
                                  R1
                                         2274.72
                                                   2276.75
                                                              241.60
                                                                       22.00
                                                                               0.5250
```

15

42 2 R1TR2 6395.73 6504.98 1914.00 6.00 0.0458 1 R1 R1TR2 43 2 R1 1239.50 1314.73 137.60 28.00 0.2482 1 R1TR2 44 2 R1 3017.37 3074.87 147.40 24.00 0.0463 1 1697.94 2 R1TR2 12.00 45 1 R1 2673.34 153.40 0.0451 46 2 R1TR2 8666.61 8693.32 2459.00 6.00 0.0888 47 2 R1TR2 R1 2663,22 204.90 48.00 1 R1TR2 2403.99 347.20 20.00 48 2 1 **R1** 2408.77 0.2197 49 2 R1TR2 1 R1 1984.03 1996.95 112.10 20.00 0.0932 50 2 R1TR2 1 R1 154.24 207.03 7.81 36.00 0.0260 51 2 R1TR2 1 R1 314.52 324.20 76.45 11.00 0.1751 52 2 R1TR2 809.11 814.73 67.13 28.00 0.2336 1 R1 2 329.90 6.00 0.0610 53 R1TR2 1 R1 4428.01 4451.41 54 2 R1TR2 2121.21 2350.93 192.00 20.00 0.0653 1 55 2 R1TR2 1 R1 1178.06 1333.30 204.30 8.00 0.0202 56 2 R1TR2 1648.38 1922.66 202.50 24.00 0.0598 1 R1 57 1 R1R2T 1 R1 2815.67 2861.36 614.80 8.00 0.1568 58 R1R2T 1 R1 510.93 517.33 38.59 28.00 0.3544 LAUCT THALF SEQ TRT LAUCINF LCMAX lat1r lai1r lc1r

0bs 30 16.14 2 В 7.64623 7.66566 5.10230 7.64623 7.66566 5.10230

| 31                                                              |                 | 2                                                                                                | В 8                                                                                                                                                                                                                                                      | 8.10265                                                                                     |                                                                                 |                                                                                                                                                                  | 5.4971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 8.                                                                                                                                                       | 10265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                           | 5                                                                                                                 | .49717                                                                                                                                                                 |    |
|-----------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 32                                                              | 9.9             |                                                                                                  |                                                                                                                                                                                                                                                          | 8.59641                                                                                     | 8.6                                                                             | 1057                                                                                                                                                             | 6.0714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                            | 59641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.610                                                                                                                                                                                                                                                     |                                                                                                                   | .07143                                                                                                                                                                 |    |
| 33                                                              | 8.6             |                                                                                                  |                                                                                                                                                                                                                                                          | 7.28321                                                                                     |                                                                                 | 0744                                                                                                                                                             | 5.7589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                            | 28321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.30                                                                                                                                                                                                                                                      |                                                                                                                   | .75890                                                                                                                                                                 |    |
| 34                                                              | •               |                                                                                                  |                                                                                                                                                                                                                                                          | 7.53690                                                                                     |                                                                                 |                                                                                                                                                                  | 4.1418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                            | 53690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                         |                                                                                                                   | .14186                                                                                                                                                                 |    |
| 35                                                              | 7.8             | 38 2                                                                                             | В 8                                                                                                                                                                                                                                                      | 8.34994                                                                                     | 8.4                                                                             | 1812                                                                                                                                                             | 5.2842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                            | 34994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.418                                                                                                                                                                                                                                                     |                                                                                                                   | .28422                                                                                                                                                                 |    |
| 36                                                              | 6.8             | 31 2                                                                                             | В 8                                                                                                                                                                                                                                                      | 8.01534                                                                                     | 8.0                                                                             | 1893                                                                                                                                                             | 4.7291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 8.0                                                                                                                                                      | 01534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.018                                                                                                                                                                                                                                                     | 393 4                                                                                                             | .72916                                                                                                                                                                 |    |
| 37                                                              | 44.6            | 8 2                                                                                              | В б                                                                                                                                                                                                                                                      | 6.66719                                                                                     | 6.92                                                                            | 2241                                                                                                                                                             | 2.9887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 6.0                                                                                                                                                      | 66719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.922                                                                                                                                                                                                                                                     | 241 2                                                                                                             | .98871                                                                                                                                                                 |    |
| 38                                                              | 15.1            | 18 2                                                                                             | В 8                                                                                                                                                                                                                                                      | 8.34080                                                                                     | 8.35                                                                            | 5435                                                                                                                                                             | 4.6587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 8.3                                                                                                                                                      | 34080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.354                                                                                                                                                                                                                                                     | 435 4                                                                                                             | .65871                                                                                                                                                                 |    |
| 39                                                              | 22.8            | 35 2                                                                                             | В 7                                                                                                                                                                                                                                                      | 7.58082                                                                                     | 7.62                                                                            | 2833                                                                                                                                                             | 4.3892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25 7.                                                                                                                                                      | 58082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.628                                                                                                                                                                                                                                                     | 333 4                                                                                                             | .38925                                                                                                                                                                 |    |
| 40                                                              | 3.1             | 13 2                                                                                             | В 7                                                                                                                                                                                                                                                      | 7.72983                                                                                     | 7.73                                                                            | 3277                                                                                                                                                             | 4.9836                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 7.                                                                                                                                                       | 72983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.732                                                                                                                                                                                                                                                     | 277 4                                                                                                             | .98361                                                                                                                                                                 |    |
| 41                                                              | 1.3             | 32 2                                                                                             | В 7                                                                                                                                                                                                                                                      | 7.72961                                                                                     | 7.73                                                                            | 3050                                                                                                                                                             | 5.4872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8 7.                                                                                                                                                       | 72961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.730                                                                                                                                                                                                                                                     | 050 5                                                                                                             | .48728                                                                                                                                                                 |    |
| 42                                                              | 15.1            | 14 2                                                                                             | В 8                                                                                                                                                                                                                                                      | 8.76339                                                                                     | 8.78                                                                            | 3032                                                                                                                                                             | 7.5569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 8.                                                                                                                                                       | 76339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.780                                                                                                                                                                                                                                                     | 032 7                                                                                                             | .55695                                                                                                                                                                 |    |
| 43                                                              | 2.7             | 79 2                                                                                             | В 7                                                                                                                                                                                                                                                      | 7.12246                                                                                     | 7.18                                                                            | 3139                                                                                                                                                             | 4.9243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 7.                                                                                                                                                       | 12246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.18                                                                                                                                                                                                                                                      | 139 4                                                                                                             | .92435                                                                                                                                                                 |    |
| 44                                                              | 14.9            | 98 2                                                                                             | В 8                                                                                                                                                                                                                                                      | 8.01214                                                                                     | 8.03                                                                            | 3102                                                                                                                                                             | 4.9931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 8.0                                                                                                                                                      | 01214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.03                                                                                                                                                                                                                                                      | 102 4                                                                                                             | .99315                                                                                                                                                                 |    |
| 45                                                              | 15.3            | 36 2                                                                                             | В                                                                                                                                                                                                                                                        | 7.43717                                                                                     | 7.89                                                                            | 9108                                                                                                                                                             | 5.0330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 7.                                                                                                                                                       | 43717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.89                                                                                                                                                                                                                                                      | 108 5                                                                                                             | .03305                                                                                                                                                                 |    |
| 46                                                              | 7.8             | 31 2                                                                                             | В 9                                                                                                                                                                                                                                                      | 9.06723                                                                                     | 9.07                                                                            | 7031                                                                                                                                                             | 7.8075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 9.0                                                                                                                                                      | 06723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.070                                                                                                                                                                                                                                                     | 031 7                                                                                                             | .80751                                                                                                                                                                 |    |
| 47                                                              |                 | 2                                                                                                | В                                                                                                                                                                                                                                                        | 7.88729                                                                                     |                                                                                 |                                                                                                                                                                  | 5.3225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                            | 88729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                           | 5                                                                                                                 | .32252                                                                                                                                                                 |    |
| 48                                                              | 3.1             | 16 2                                                                                             | В 7                                                                                                                                                                                                                                                      | 7.78489                                                                                     | 7.78                                                                            | 3687                                                                                                                                                             | 5.8499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 7.                                                                                                                                                       | 78489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.786                                                                                                                                                                                                                                                     | 587 5                                                                                                             | .84990                                                                                                                                                                 |    |
| 49                                                              | 7.4             | 13 2                                                                                             | В                                                                                                                                                                                                                                                        | 7.59289                                                                                     | 7.59                                                                            | 9938                                                                                                                                                             | 4.7193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9 7.                                                                                                                                                       | 59289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.599                                                                                                                                                                                                                                                     | 938 4                                                                                                             | .71939                                                                                                                                                                 |    |
| 50                                                              | 26.6            | 55 2                                                                                             | В 5                                                                                                                                                                                                                                                      | 5.03852                                                                                     | 5.33                                                                            | 3287                                                                                                                                                             | 2.0556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 5.0                                                                                                                                                      | 03852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.332                                                                                                                                                                                                                                                     | 287 2                                                                                                             | .05566                                                                                                                                                                 |    |
| 51                                                              | 3.9             | 96 2                                                                                             | В 5                                                                                                                                                                                                                                                      | 5.75106                                                                                     | 5.78                                                                            | 3136                                                                                                                                                             | 4.3366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54 5.                                                                                                                                                      | 75106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.78                                                                                                                                                                                                                                                      | 136 4                                                                                                             | .33664                                                                                                                                                                 |    |
| 52                                                              | 2.9             | 97 2                                                                                             | В 6                                                                                                                                                                                                                                                      | 6.69593                                                                                     | 6.70                                                                            | 0286                                                                                                                                                             | 4.2066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.0                                                                                                                                                        | 69593                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.702                                                                                                                                                                                                                                                     | 286 4                                                                                                             | .20663                                                                                                                                                                 |    |
| 53                                                              | 11.3            | 35 2                                                                                             | В 8                                                                                                                                                                                                                                                      | 8.39571                                                                                     | 8.40                                                                            | 0098                                                                                                                                                             | 5.7987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9 8.                                                                                                                                                       | 39571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.400                                                                                                                                                                                                                                                     | 098 5                                                                                                             | .79879                                                                                                                                                                 |    |
| 54                                                              | 10.6            | 62 2                                                                                             | В 7                                                                                                                                                                                                                                                      | 7.65974                                                                                     | 7.76                                                                            | 3257                                                                                                                                                             | 5.2575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 7.0                                                                                                                                                      | 65974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.762                                                                                                                                                                                                                                                     | 257 5                                                                                                             | .25750                                                                                                                                                                 |    |
| 55                                                              | 34.2            | 27 2                                                                                             | В 7                                                                                                                                                                                                                                                      | 7.07162                                                                                     | 7.19                                                                            | 9541                                                                                                                                                             | 5.3195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9 7.0                                                                                                                                                      | 07162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.19                                                                                                                                                                                                                                                      | 541 5                                                                                                             | .31959                                                                                                                                                                 |    |
| 56                                                              | 11.6            | 60 2                                                                                             | В 7                                                                                                                                                                                                                                                      | 7.40755                                                                                     | 7.56                                                                            | 3146                                                                                                                                                             | 5.3107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 7.4                                                                                                                                                      | 40755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.56                                                                                                                                                                                                                                                      | 146 5                                                                                                             | .31074                                                                                                                                                                 |    |
| 57                                                              | 4.4             | 12 3                                                                                             | В 7                                                                                                                                                                                                                                                      | 7.94296                                                                                     | 7.95                                                                            | 5905                                                                                                                                                             | 6.4213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 7.9                                                                                                                                                      | 94296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.959                                                                                                                                                                                                                                                     | 905 6                                                                                                             | .42130                                                                                                                                                                 |    |
| 58                                                              | 1.9             | 96 3                                                                                             | В 6                                                                                                                                                                                                                                                      | 6.23624                                                                                     | 6.24                                                                            | 4868                                                                                                                                                             | 3.6529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9 6.2                                                                                                                                                      | 23624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.248                                                                                                                                                                                                                                                     | 368 3                                                                                                             | .65299                                                                                                                                                                 |    |
|                                                                 |                 |                                                                                                  |                                                                                                                                                                                                                                                          |                                                                                             |                                                                                 |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                           |                                                                                                                   |                                                                                                                                                                        |    |
|                                                                 |                 |                                                                                                  |                                                                                                                                                                                                                                                          |                                                                                             |                                                                                 |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                           |                                                                                                                   |                                                                                                                                                                        |    |
| ref1                                                            |                 |                                                                                                  |                                                                                                                                                                                                                                                          |                                                                                             |                                                                                 |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                           |                                                                                                                   |                                                                                                                                                                        | 16 |
|                                                                 | SHR.I           | Group                                                                                            | SEOU                                                                                                                                                                                                                                                     | PER                                                                                         | TRFAT                                                                           | ΔΙ                                                                                                                                                               | ICT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ALICT                                                                                                                                                      | ſ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | `mav                                                                                                                                                                                                                                                      | ΤΜΔΥ                                                                                                              | KE                                                                                                                                                                     | 16 |
| ref1<br>Obs                                                     | SUBJ            | Group                                                                                            | SEQU                                                                                                                                                                                                                                                     | PER                                                                                         | TREAT                                                                           | Al                                                                                                                                                               | JCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AUCI                                                                                                                                                       | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cmax                                                                                                                                                                                                                                                      | TMAX                                                                                                              | KE                                                                                                                                                                     | 16 |
| 0bs                                                             | SUBJ<br>(b) (6) | •                                                                                                |                                                                                                                                                                                                                                                          |                                                                                             |                                                                                 |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                           |                                                                                                                   |                                                                                                                                                                        |    |
| 0bs<br>59                                                       |                 | 1                                                                                                | R1R2T                                                                                                                                                                                                                                                    | 1                                                                                           | R1                                                                              | 1389                                                                                                                                                             | 9.28 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3575.70                                                                                                                                                    | 6 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.93                                                                                                                                                                                                                                                      | 17.00                                                                                                             | 0.0050                                                                                                                                                                 |    |
| 0bs<br>59<br>60                                                 |                 | 1                                                                                                | R1R2T<br>R1R2T                                                                                                                                                                                                                                           | 1                                                                                           | R1<br>R1                                                                        | 1389<br>1871                                                                                                                                                     | 9.28 8<br>1.41 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8575.70<br>893.1                                                                                                                                           | 6 67<br>2 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.93<br>3.77                                                                                                                                                                                                                                              | 17.00<br>28.00                                                                                                    | 0.0050<br>0.0619                                                                                                                                                       |    |
| 0bs<br>59<br>60<br>61                                           |                 | 1<br>1<br>1                                                                                      | R1R2T<br>R1R2T<br>R1R2T                                                                                                                                                                                                                                  | 1<br>1<br>1                                                                                 | R1<br>R1<br>R1                                                                  | 1389<br>1871<br>2229                                                                                                                                             | 9.28 8<br>1.41 1<br>9.07 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8575.70<br>893.12<br>252.60                                                                                                                                | 6 67<br>2 83<br>6 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.93<br>3.77<br>5.42                                                                                                                                                                                                                                      | 17.00<br>28.00<br>20.00                                                                                           | 0.0050<br>0.0619<br>0.0841                                                                                                                                             |    |
| 0bs<br>59<br>60<br>61<br>62                                     |                 | 1<br>1<br>1<br>1                                                                                 | R1R2T<br>R1R2T<br>R1R2T<br>R1R2T                                                                                                                                                                                                                         | 1<br>1<br>1                                                                                 | R1<br>R1<br>R1<br>R1                                                            | 1389<br>1871<br>2229<br>2181                                                                                                                                     | 9.28 8<br>1.41 1<br>9.07 2<br>1.31 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8575.70<br>893.12<br>252.60                                                                                                                                | 6 67<br>2 83<br>6 95<br>0 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.93<br>3.77<br>5.42<br>3.60                                                                                                                                                                                                                              | 17.00<br>28.00<br>20.00<br>14.00                                                                                  | 0.0050<br>0.0619<br>0.0841<br>0.3127                                                                                                                                   |    |
| 0bs<br>59<br>60<br>61<br>62<br>63                               |                 | 1<br>1<br>1<br>1                                                                                 | R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T                                                                                                                                                                                                                | 1<br>1<br>1<br>1                                                                            | R1<br>R1<br>R1<br>R1<br>R1                                                      | 1389<br>1871<br>2229<br>2181<br>1801                                                                                                                             | 9.28 8<br>1.41 1<br>9.07 2<br>1.31 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8575.70<br>893.1;<br>252.60<br>209.60<br>811.7;                                                                                                            | 6 67<br>2 83<br>6 95<br>0 213<br>2 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.93<br>3.77<br>5.42<br>3.60<br>7.18                                                                                                                                                                                                                      | 17.00<br>28.00<br>20.00<br>14.00<br>11.00                                                                         | 0.0050<br>0.0619<br>0.0841<br>0.3127<br>0.1075                                                                                                                         |    |
| 0bs 59 60 61 62 63 64                                           |                 | 1<br>1<br>1<br>1                                                                                 | R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T                                                                                                                                                                                                       | 1<br>1<br>1<br>1<br>1                                                                       | R1<br>R1<br>R1<br>R1<br>R1                                                      | 1389<br>1871<br>2229<br>2181<br>1801<br>2940                                                                                                                     | 9.28 8<br>1.41 1<br>9.07 2<br>1.31 2<br>1.92 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8575.70<br>893.12<br>252.60<br>2209.60<br>811.72                                                                                                           | 6 67<br>2 83<br>6 95<br>0 213<br>2 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.93<br>3.77<br>5.42<br>3.60<br>7.18                                                                                                                                                                                                                      | 17.00<br>28.00<br>20.00<br>14.00<br>11.00                                                                         | 0.0050<br>0.0619<br>0.0841<br>0.3127<br>0.1075<br>0.0500                                                                                                               |    |
| 0bs 59 60 61 62 63 64 65                                        |                 | 1<br>1<br>1<br>1<br>1<br>1                                                                       | R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T                                                                                                                                                                                              | 1<br>1<br>1<br>1<br>1<br>1                                                                  | R1<br>R1<br>R1<br>R1<br>R1<br>R1                                                | 1389<br>1871<br>2229<br>2181<br>1801<br>2940                                                                                                                     | 9.28 8<br>1.41 1<br>9.07 2<br>1.31 2<br>1.92 1<br>9.03 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3575.70<br>893.13<br>252.60<br>209.60<br>811.73<br>2962.2<br>427.59                                                                                        | 6 67 2 83 6 95 0 213 2 57 1 297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.93<br>3.77<br>5.42<br>3.60<br>7.18<br>7.90<br>5.80                                                                                                                                                                                                      | 17.00<br>28.00<br>20.00<br>14.00<br>11.00<br>10.00<br>28.00                                                       | 0.0050<br>0.0619<br>0.0841<br>0.3127<br>0.1075<br>0.0500                                                                                                               |    |
| 0bs 59 60 61 62 63 64 65 66                                     |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1                                                                  | R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T                                                                                                                                                                                     | 1<br>1<br>1<br>1<br>1<br>1<br>1                                                             | R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1                                          | 1389<br>1871<br>2229<br>2181<br>1801<br>2940<br>1408                                                                                                             | 9.28 8<br>1.41 1<br>9.07 2<br>1.31 2<br>1.92 1<br>9.03 2<br>3.15 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8575.70<br>893.12<br>252.60<br>2209.60<br>811.72<br>962.2<br>427.59                                                                                        | 6 67<br>2 83<br>6 95<br>0 213<br>2 57<br>1 297<br>9 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.93<br>3.77<br>5.42<br>3.60<br>7.18<br>7.90<br>6.80<br>2.30                                                                                                                                                                                              | 17.00<br>28.00<br>20.00<br>14.00<br>11.00<br>10.00<br>28.00<br>20.00                                              | 0.0050<br>0.0619<br>0.0841<br>0.3127<br>0.1075<br>0.0500<br>0.4285                                                                                                     |    |
| 0bs 59 60 61 62 63 64 65 66 67                                  |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                             | R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T                                                                                                                                                                   | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                        | R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1                                    | 1388<br>1871<br>2229<br>2181<br>1801<br>2940<br>1408<br>13                                                                                                       | 9.28 8<br>1.41 1<br>9.07 2<br>1.31 2<br>1.92 1<br>9.03 2<br>3.15 1<br>3.28<br>7.58 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8575.70<br>893.12<br>252.60<br>2209.60<br>811.72<br>962.2<br>427.59                                                                                        | 6 67 2 83 6 95 0 213 2 57 1 297 9 256 2 431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.93<br>3.77<br>5.42<br>3.60<br>7.18<br>7.90<br>6.80<br>2.30                                                                                                                                                                                              | 17.00<br>28.00<br>20.00<br>14.00<br>10.00<br>28.00<br>20.00                                                       | 0.0050<br>0.0619<br>0.0841<br>0.3127<br>0.1075<br>0.0500<br>0.4285                                                                                                     |    |
| 0bs 59 60 61 62 63 64 65 66 67 68                               |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                        | R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T                                                                                                                                                          | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                              | R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1                              | 1389<br>1871<br>2229<br>2181<br>1801<br>2940<br>1408<br>13<br>2387<br>2212                                                                                       | 9.28 8<br>1.41 1<br>9.07 2<br>1.31 2<br>1.92 1<br>2.003 2<br>3.15 1<br>3.28<br>7.58 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8575.70<br>893.11<br>2252.60<br>2209.60<br>811.72<br>962.2<br>427.55                                                                                       | 66 677<br>22 833<br>66 950<br>00 213<br>22 577<br>11 297<br>99 256<br>2<br>2<br>431<br>11 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.93<br>3.77<br>5.42<br>3.60<br>7.18<br>7.90<br>6.80<br>2.30<br>1.00                                                                                                                                                                                      | 17.00<br>28.00<br>20.00<br>14.00<br>11.00<br>28.00<br>20.00<br>11.00                                              | 0.0050<br>0.0619<br>0.0841<br>0.3127<br>0.1075<br>0.0500<br>0.4285<br>0.0524<br>0.1282                                                                                 |    |
| 0bs 59 60 61 62 63 64 65 66 67 68 69                            |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                   | R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T                                                                                                                                                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                         | R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1                        | 1389<br>1871<br>2229<br>2181<br>1801<br>2940<br>1408<br>2387<br>2212<br>310                                                                                      | 9.28 8<br>1.41 1<br>9.07 2<br>1.31 2<br>1.92 1<br>0.03 2<br>3.15 1<br>3.28 2<br>7.58 2<br>2.96 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8575.70<br>893.11<br>2252.66<br>2209.66<br>811.72<br>2962.2<br>427.59<br>2455.99                                                                           | 66 67<br>22 83<br>66 95<br>00 213<br>22 57<br>11 297<br>9 256<br>431<br>11 154<br>49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.93<br>3.77<br>5.42<br>3.60<br>7.18<br>7.90<br>6.80<br>2.30<br>1.00<br>4.20<br>9.35                                                                                                                                                                      | 17.00<br>28.00<br>20.00<br>14.00<br>11.00<br>28.00<br>20.00<br>11.00<br>28.00<br>22.00                            | 0.0050<br>0.0619<br>0.0841<br>0.3127<br>0.1075<br>0.0500<br>0.4285<br>0.0524<br>0.1282                                                                                 |    |
| 0bs 59 60 61 62 63 64 65 66 67 68 69 70                         |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                              | R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T                                                                                                                                        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                    | R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1                  | 1389<br>1871<br>2229<br>2181<br>1801<br>2940<br>1408<br>2387<br>2212<br>310<br>4270                                                                              | 9.28 8<br>1.41 1<br>9.07 2<br>1.31 2<br>1.92 1<br>1.92 3<br>1.92 3<br>1.92 3<br>1.92 4<br>2.96 2<br>2.96 2<br>2.96 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8575.76<br>893.11<br>2252.66<br>2209.66<br>811.77<br>2962.2<br>427.59<br>4455.99<br>2220.9                                                                 | 66 67<br>22 83<br>66 95<br>00 213<br>22 57<br>11 297<br>99 256<br>2<br>55 431<br>11 154<br>49<br>88 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.93<br>3.77<br>5.42<br>3.60<br>7.18<br>7.90<br>6.80<br>2.30<br>1.00<br>4.20<br>9.35<br>5.10                                                                                                                                                              | 17.00<br>28.00<br>20.00<br>14.00<br>11.00<br>28.00<br>20.00<br>11.00<br>28.00<br>12.00<br>28.00<br>16.00          | 0.0050<br>0.0619<br>0.0841<br>0.3127<br>0.1075<br>0.0500<br>0.4285<br>0.0524<br>0.1282                                                                                 |    |
| 0bs 59 60 61 62 63 64 65 66 67 68 69 70 71                      |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                     | R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T                                                                                                                      | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                | R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1            | 1389<br>1871<br>2229<br>2181<br>1801<br>2940<br>1408<br>13<br>2387<br>2212<br>310<br>4270<br>818                                                                 | 9.28 8<br>1.41 1<br>9.07 2<br>1.31 2<br>1.92 1<br>1.92 1<br>3.15 1<br>3.28 2<br>7.58 2<br>2.96 2<br>0.29 2<br>0.66 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8575.76<br>893.12<br>252.66<br>209.66<br>811.72<br>2962.2<br>427.59<br><br>4455.99<br>2220.9                                                               | 66 67<br>22 83<br>66 95<br>00 213<br>22 57<br>11 297<br>99 256<br>66 431<br>11 154<br>48 225<br>88 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.93<br>3.77<br>5.42<br>3.60<br>7.18<br>7.90<br>6.80<br>2.30<br>1.00<br>1.20<br>9.35<br>5.10<br>3.49                                                                                                                                                      | 17.00<br>28.00<br>20.00<br>14.00<br>11.00<br>28.00<br>20.00<br>11.00<br>28.00<br>28.00<br>16.00<br>6.00           | 0.0050<br>0.0619<br>0.0841<br>0.3127<br>0.1075<br>0.0500<br>0.4285<br>0.0524<br>0.1282                                                                                 |    |
| 0bs 59 60 61 62 63 64 65 66 67 68 69 70 71 72                   |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2                     | R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T                                                                                                             | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1      | 1389<br>1871<br>2229<br>2181<br>1801<br>2940<br>1408<br>2387<br>2212<br>310<br>4270<br>818<br>3987                                                               | 9.28 8 1.41 1 9.07 2 1.31 2 1.92 1 0.03 2 3.15 1 3.28 7.58 2 2.96 2 0.29 0.66 4 7.42 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8575.70<br>893.11<br>2252.66<br>2209.66<br>811.77<br>2962.2<br>427.59<br>2455.99<br>2220.9<br>077.21                                                       | 66 67<br>22 83<br>66 95<br>00 213<br>22 57<br>11 297<br>99 256<br>6 431<br>1 154<br>49<br>8 225<br>8 98<br>7 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.93<br>3.77<br>5.42<br>3.60<br>7.18<br>7.90<br>6.80<br>2.30<br>1.00<br>4.20<br>9.35<br>5.10<br>3.49<br>0.20                                                                                                                                              | 17.00<br>28.00<br>20.00<br>14.00<br>11.00<br>28.00<br>20.00<br>11.00<br>28.00<br>6.00<br>11.00                    | 0.0050<br>0.0619<br>0.0841<br>0.3127<br>0.1075<br>0.0500<br>0.4285<br>0.0524<br>0.1282<br>0.1822<br>0.0737<br>0.0983                                                   |    |
| 0bs 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73                |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2                     | R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T                                                                                                    | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R | 1389<br>1871<br>2229<br>2181<br>1801<br>2940<br>1408<br>13<br>2387<br>2212<br>310<br>4270<br>818<br>3987<br>1437                                                 | 9.28 8 1.41 1 9.07 2 1.31 2 1.92 1 0.03 2 3.15 1 3.28 7.58 2 2.96 2 0.29 0.66 4 7.42 4 7.59 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8575.70<br>893.12<br>2252.60<br>209.60<br>811.72<br>962.22<br>427.55<br>2220.9<br>2220.9<br>077.20<br>003.12                                               | 66 67<br>22 83<br>66 95<br>00 213<br>22 57<br>11 297<br>99 256<br>23 431<br>11 154<br>45<br>88 225<br>88 98<br>77 220<br>99 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.93<br>3.77<br>5.42<br>3.60<br>7.18<br>7.90<br>6.80<br>2.30<br>1.00<br>4.20<br>9.35<br>5.10<br>3.49<br>0.20<br>5.90                                                                                                                                      | 17.00<br>28.00<br>20.00<br>14.00<br>11.00<br>28.00<br>20.00<br>11.00<br>28.00<br>6.00<br>11.00<br>24.00           | 0.0050<br>0.0619<br>0.0841<br>0.3127<br>0.1075<br>0.0500<br>0.4285<br>0.0524<br>0.1282<br>0.1822<br>0.0737<br>0.0983<br>0.0943                                         |    |
| 0bs 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74             |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2                     | R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T                                                                                           | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R | 1389<br>1871<br>2229<br>2181<br>1801<br>2940<br>1408<br>13<br>2387<br>2212<br>310<br>4270<br>818<br>3987<br>1437<br>3277                                         | 9.28 8 1.41 1 1.92 1 1.92 1 1.92 1 1.92 2 1.96 2 1.96 2 1.96 2 1.96 2 1.96 2 1.96 2 1.96 2 1.96 2 1.96 2 1.96 2 1.96 2 1.96 2 1.96 2 1.96 2 1.96 2 1.96 2 1.96 2 1.96 2 1.96 2 1.96 2 1.96 2 1.96 2 1.96 2 1.96 2 1.96 2 1.96 2 1.96 2 1.96 2 1.96 2 1.96 2 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1.96 3 1. | 2575.76<br>893.12<br>2252.66<br>2209.66<br>811.72<br>962.22<br>427.55<br>2220.9<br>2279.96<br>077.26<br>0077.26<br>512.56<br>302.0                         | 66 67<br>22 83<br>66 95<br>00 213<br>22 57<br>11 297<br>99 256<br>24<br>49<br>49<br>49<br>88 225<br>88 98<br>77 220<br>99 155<br>11 261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.93<br>3.77<br>5.42<br>3.60<br>7.18<br>7.90<br>6.80<br>2.30<br>1.00<br>4.20<br>9.35<br>5.10<br>8.49<br>0.20<br>6.90                                                                                                                                      | 17.00 28.00 20.00 14.00 11.00 28.00 20.00 11.00 28.00 6.00 11.00 24.00 12.00                                      | 0.0050<br>0.0619<br>0.0841<br>0.3127<br>0.1075<br>0.0500<br>0.4285<br>0.0524<br>0.1282<br>0.0737<br>0.0983<br>0.0943<br>0.1546                                         |    |
| 0bs 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75          |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2                     | R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T                                                                                  | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R | 1389<br>1871<br>2229<br>2181<br>1801<br>2940<br>1408<br>13<br>2387<br>2212<br>310<br>4270<br>818<br>3987<br>1437<br>3277<br>2638                                 | 9.28 8 1.41 1 9.07 2 1.31 2 1.92 1 0.03 2 3.15 1 3.28 7.58 2 0.29 2 0.66 4 7.42 4 7.59 1 7.56 3 3.51 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2575.76<br>893.12<br>2252.66<br>2209.66<br>811.72<br>962.22<br>427.55<br>2220.9<br>279.96<br>077.26<br>0077.26<br>512.56<br>302.0<br>890.66                | 66 67<br>22 83<br>66 95<br>00 213<br>11 297<br>11 297<br>11 297<br>11 256<br>12 256<br>13 28<br>14 49<br>15 49<br>16 28<br>17 20<br>18 20<br>19 25<br>10 28<br>10 28<br>11 29<br>11 | 7.93<br>3.77<br>5.42<br>3.60<br>7.18<br>7.90<br>6.80<br>2.30<br>1.00<br>4.20<br>9.35<br>5.10<br>3.49<br>0.20<br>6.90<br>1.90                                                                                                                              | 17.00 28.00 20.00 14.00 11.00 28.00 20.00 11.00 28.00 11.00 28.00 11.00 28.00 11.00 12.00 11.00                   | 0.0050<br>0.0619<br>0.0841<br>0.3127<br>0.1075<br>0.0500<br>0.4285<br>0.0524<br>0.1282<br>0.0737<br>0.0983<br>0.0943<br>0.1546<br>0.0067                               |    |
| 0bs 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76       |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2                | R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T                                                                         | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R | 1389<br>1871<br>2229<br>2181<br>1801<br>2940<br>1408<br>13<br>2387<br>2212<br>310<br>4270<br>818<br>3987<br>1437<br>3277<br>2638<br>1283                         | 9.28 8 1.41 1 9.07 2 1.31 2 1.92 1 9.03 2 3.15 1 3.28 7.58 2 9.66 4 9.29 9 9.66 4 7.42 4 7.56 3 3.51 5 3.27 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2575.76<br>893.11<br>2252.66<br>2209.66<br>811.75<br>2962.2<br>427.55<br>2220.9<br>077.26<br>003.11<br>512.55<br>302.0<br>6890.66<br>376.10                | 66 67<br>22 83<br>69 95<br>60 213<br>22 57<br>11 297<br>99 256<br>6 431<br>1 154<br>49 49<br>88 225<br>88 98<br>7 220<br>99 155<br>11 261<br>10 284<br>66 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.93<br>3.77<br>5.42<br>3.60<br>7.18<br>7.90<br>6.80<br>2.30<br>1.00<br>4.20<br>9.35<br>5.10<br>3.49<br>9.20<br>5.90<br>1.90<br>4.00<br>3.10                                                                                                              | 17.00 28.00 20.00 14.00 11.00 28.00 20.00 11.00 28.00 11.00 28.00 11.00 24.00 12.00 12.00 14.00                   | 0.0050<br>0.0619<br>0.0841<br>0.3127<br>0.1075<br>0.0500<br>0.4285<br>0.0524<br>0.1282<br>0.0737<br>0.0983<br>0.0943<br>0.1546<br>0.0067<br>0.0228                     |    |
| 0bs 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77    |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2                | R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T                                              | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R | 1389<br>1871<br>2229<br>2181<br>1801<br>2940<br>1408<br>13<br>2387<br>2212<br>310<br>4270<br>818<br>3987<br>1437<br>3277<br>2638<br>1283<br>2901                 | 9.28 8 1.41 1 9.07 2 1.31 2 1.92 1 9.03 2 3.15 1 3.28 7.58 2 9.66 4 9.29 9 9.66 4 7.42 4 7.56 3 3.51 5 3.27 1 1.91 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 255.76<br>893.11<br>2252.66<br>811.73<br>962.2<br>427.56<br>220.9<br>077.26<br>003.11<br>512.55<br>3302.0<br>6890.66<br>376.10                             | 6 672 836 950 2133 22 571 297 256 22 55 431 154 49 88 2258 89 98 77 220 99 155 126 126 126 126 126 126 126 126 126 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.93<br>3.77<br>5.42<br>3.60<br>7.18<br>7.90<br>6.80<br>2.30<br>1.00<br>4.20<br>9.35<br>5.10<br>3.49<br>9.20<br>6.90<br>1.90<br>4.00<br>3.10                                                                                                              | 17.00 28.00 20.00 14.00 11.00 28.00 20.00 11.00 28.00 12.00 12.00 24.00 12.00 12.00 14.00 13.00                   | 0.0050<br>0.0619<br>0.0841<br>0.3127<br>0.1075<br>0.0500<br>0.4285<br>0.0524<br>0.1282<br>0.0737<br>0.0983<br>0.0943<br>0.1546<br>0.0067<br>0.0228<br>0.0680           |    |
| 0bs 59 60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77 78       |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2           | R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T                            | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R | 1389<br>1871<br>2229<br>2181<br>1801<br>2940<br>1408<br>13<br>2387<br>2212<br>310<br>4270<br>818<br>3987<br>1437<br>2638<br>1283<br>2901<br>910                  | 9.28 8 1.41 1 9.07 2 1.31 2 1.92 1 0.03 2 3.15 1 3.28 7 7.58 2 0.29 0 0.66 4 3.81 1 7.42 4 7.59 1 3.51 5 3.27 1 1.91 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2575.76<br>893.11<br>2252.66<br>2209.66<br>811.77<br>2962.2<br>427.56<br>2220.9<br>077.26<br>003.11<br>512.55<br>3302.0<br>6890.66<br>376.10               | 66 67<br>22 83<br>6 95<br>6 95<br>7 22<br>7 25<br>6 431<br>1 154<br>49<br>8 225<br>8 98<br>7 220<br>9 155<br>1 261<br>1 284<br>6 123<br>5 212<br>1 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.93<br>3.77<br>5.42<br>3.60<br>7.18<br>7.90<br>6.80<br>2.30<br>1.00<br>4.20<br>9.35<br>5.10<br>9.35<br>6.10<br>9.35<br>6.10<br>9.35<br>6.10<br>9.35<br>6.10                                                                                              | 17.00 28.00 20.00 14.00 11.00 28.00 20.00 11.00 28.00 12.00 12.00 12.00 12.00 14.00 13.00 28.00                   | 0.0050<br>0.0619<br>0.0841<br>0.3127<br>0.1075<br>0.0500<br>0.4285<br>0.0524<br>0.1282<br>0.0737<br>0.0983<br>0.0943<br>0.1546<br>0.0067<br>0.0228<br>0.0680           |    |
| 0bs 59 60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77 78 79    |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T                   | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R | 1389<br>1871<br>2229<br>2181<br>1801<br>2940<br>1408<br>2387<br>2212<br>310<br>4270<br>818<br>3987<br>1437<br>2638<br>1283<br>2901<br>910<br>1866                | 9.28 8 1.41 1 9.07 2 1.31 2 1.92 1 0.03 2 3.15 1 3.28 7.58 2 0.29 0.66 4 3.81 1 7.42 4 7.59 1 7.56 3 3.51 5 3.27 1 1.91 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2575.76<br>893.11<br>2252.66<br>811.77<br>2962.2<br>427.56<br>2455.96<br>2220.9<br>077.26<br>003.11<br>512.55<br>3302.0<br>6890.66<br>376.10<br>255.26     | 66 67<br>22 83<br>6 95<br>6 95<br>7 22<br>7 25<br>6 43<br>1 15<br>4 48<br>8 225<br>8 98<br>7 22<br>9 155<br>1 26<br>1 26<br>1 28<br>6 123<br>5 212<br>1 60<br>5 5 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.93<br>3.77<br>5.42<br>3.60<br>7.18<br>7.90<br>6.80<br>2.30<br>1.00<br>4.20<br>9.35<br>5.10<br>9.35<br>6.10<br>9.35<br>6.10<br>9.35<br>6.10<br>9.35<br>6.30<br>9.35<br>6.30<br>9.35<br>6.30<br>9.30<br>9.30<br>9.30<br>9.30<br>9.30<br>9.30<br>9.30<br>9 | 17.00 28.00 20.00 14.00 11.00 28.00 20.00 11.00 28.00 12.00 12.00 12.00 12.00 14.00 12.00 14.00 13.00 28.00 16.03 | 0.0050<br>0.0619<br>0.0841<br>0.3127<br>0.1075<br>0.0500<br>0.4285<br>0.0524<br>0.1282<br>0.0737<br>0.0983<br>0.0943<br>0.1546<br>0.0067<br>0.0228<br>0.0680           |    |
| 0bs 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 88 |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R | 1389<br>1871<br>2229<br>2181<br>1801<br>2940<br>1408<br>2387<br>2212<br>310<br>4270<br>818<br>3987<br>1437<br>2638<br>1283<br>2901<br>910<br>1866<br>1247        | 9.28 8 1.41 1 9.07 2 1.31 2 1.92 1 1.92 1 9.03 2 3.15 1 3.28 7.58 2 9.66 4 3.81 1 7.42 4 7.59 1 7.56 3 3.51 5 3.27 1 1.91 3 7.66 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2575.76<br>893.11<br>2252.66<br>811.77<br>2962.22<br>427.56<br>2455.99<br>2220.9<br>077.26<br>3003.11<br>512.56<br>3302.00<br>8890.66<br>376.10<br>2255.28 | 6 6 67<br>2 83<br>6 95<br>6 95<br>7 22<br>5 43<br>1 15<br>4 49<br>8 225<br>8 98<br>7 22<br>9 155<br>1 26<br>1 28<br>6 123<br>5 212<br>1 60<br>5 6 228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.93<br>3.77<br>5.42<br>3.60<br>7.18<br>7.90<br>6.80<br>2.30<br>1.00<br>1.20<br>9.35<br>5.10<br>3.49<br>9.20<br>5.90<br>1.90<br>1.90<br>1.90<br>1.90<br>1.90<br>1.90<br>1.90<br>1                                                                         | 17.00 28.00 20.00 14.00 11.00 28.00 20.00 11.00 28.00 12.00 12.00 12.00 14.00 12.00 14.00 16.03 6.00 6.00         | 0.0050<br>0.0619<br>0.0841<br>0.3127<br>0.1075<br>0.0500<br>0.4285<br>0.0524<br>0.1282<br>0.0737<br>0.0983<br>0.0943<br>0.1546<br>0.0067<br>0.0228<br>0.0680           |    |
| 0bs 59 60 61 62 63 64 65 66 67 71 72 73 74 75 76 77 78 79       |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T<br>R1R2T                   | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R1<br>R | 1389<br>1871<br>2229<br>2181<br>1801<br>2940<br>1408<br>13<br>2387<br>2212<br>310<br>4270<br>818<br>3987<br>1437<br>2638<br>1283<br>2901<br>1866<br>1247<br>4006 | 9.28 8 1.41 1 9.07 2 1.31 2 1.92 1 9.03 2 3.15 1 3.28 7 7.58 2 9.66 4 7.42 4 7.59 1 7.42 4 7.59 1 7.40 3 9.10 3 9.10 3 9.10 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2575.76<br>893.11<br>2252.66<br>811.77<br>2962.2<br>427.56<br>2455.96<br>2220.9<br>077.26<br>003.11<br>512.55<br>3302.0<br>6890.66<br>376.10<br>255.26     | 6 6 67<br>2 83<br>6 95<br>6 95<br>7 22<br>5 43<br>1 15<br>4 49<br>8 225<br>8 98<br>7 22<br>9 155<br>1 1 26<br>1 28<br>6 123<br>5 212<br>1 60<br>5 5 66<br>6 229<br>2 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.93<br>3.77<br>5.42<br>3.60<br>7.18<br>7.90<br>6.80<br>2.30<br>1.00<br>4.20<br>9.35<br>5.10<br>9.35<br>6.10<br>9.35<br>6.10<br>9.35<br>6.10<br>9.35<br>6.30<br>9.35<br>6.30<br>9.35<br>6.30<br>9.30<br>9.30<br>9.30<br>9.30<br>9.30<br>9.30<br>9.30<br>9 | 17.00 28.00 20.00 14.00 11.00 28.00 20.00 11.00 28.00 12.00 12.00 14.00 12.00 14.00 13.00 28.00 16.03 6.00 28.00  | 0.0050<br>0.0619<br>0.0841<br>0.3127<br>0.1075<br>0.0500<br>0.4285<br>0.0524<br>0.1282<br>0.1822<br>0.0737<br>0.0983<br>0.0943<br>0.1546<br>0.0067<br>0.0228<br>0.0680 |    |

Page 91 of 168

| 83                                                         | 87              | 2                                                                                                                                                                                          | R1R2T                                                                                                                                           | 1                                       | R1 6                                                                                         | 6723.98                                                                                                                                                                                                                            | 7841.87                                                                                                                                                            | 1169.00                                                                                                                                                                                                    | 8.00                                                                                                                                                         | 0.0563                                                                                                                                       |
|------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 0bs                                                        | THALF           | SEQ                                                                                                                                                                                        | TRT                                                                                                                                             | LAUCT                                   | LAUCI                                                                                        | NF LCM                                                                                                                                                                                                                             | AX lat                                                                                                                                                             | 1r lai1                                                                                                                                                                                                    | r ]                                                                                                                                                          | Lc1r                                                                                                                                         |
| 59                                                         | 137.99          | 3                                                                                                                                                                                          | В                                                                                                                                               | 7.23654                                 | 9.0566                                                                                       | 69 4.21                                                                                                                                                                                                                            | 848 7.23                                                                                                                                                           | 654 9.056                                                                                                                                                                                                  | 69 4.2                                                                                                                                                       | 21848                                                                                                                                        |
| 60                                                         | 11.19           |                                                                                                                                                                                            |                                                                                                                                                 | 7.53445                                 |                                                                                              |                                                                                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                            |                                                                                                                                                              | 12807                                                                                                                                        |
| 61                                                         | 8.25            |                                                                                                                                                                                            |                                                                                                                                                 | 7.70934                                 |                                                                                              |                                                                                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                            |                                                                                                                                                              | 55829                                                                                                                                        |
| 62                                                         | 2.22            |                                                                                                                                                                                            |                                                                                                                                                 | 7.68768                                 |                                                                                              |                                                                                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                            |                                                                                                                                                              | 36411                                                                                                                                        |
| 63                                                         | 6.45            | 3                                                                                                                                                                                          | В                                                                                                                                               | 7.49661                                 | 7.5020                                                                                       | 03 4.04                                                                                                                                                                                                                            | 620 7.49                                                                                                                                                           | 661 7.502                                                                                                                                                                                                  | 203 4.0                                                                                                                                                      | 04620                                                                                                                                        |
| 64                                                         | 13.85           | 3                                                                                                                                                                                          | В                                                                                                                                               | 7.98618                                 | 7.9936                                                                                       | 69 5.69                                                                                                                                                                                                                            | 676 7.98                                                                                                                                                           | 618 7.993                                                                                                                                                                                                  | 69 5.6                                                                                                                                                       | 69676                                                                                                                                        |
| 65                                                         | 1.62            | 3                                                                                                                                                                                          | В                                                                                                                                               | 7.25003                                 | 7.263                                                                                        | 74 5.54                                                                                                                                                                                                                            | 830 7.25                                                                                                                                                           | 003 7.263                                                                                                                                                                                                  | 74 5.5                                                                                                                                                       | 54830                                                                                                                                        |
| 66                                                         |                 | 3                                                                                                                                                                                          | В                                                                                                                                               | 2.58597                                 |                                                                                              | 0.83                                                                                                                                                                                                                               | 247 2.58                                                                                                                                                           | 597 .                                                                                                                                                                                                      | 0.8                                                                                                                                                          | 33247                                                                                                                                        |
| 67                                                         | 13.22           | 3                                                                                                                                                                                          | В                                                                                                                                               | 7.77804                                 | 7.8062                                                                                       | 27 6.06                                                                                                                                                                                                                            | 611 7.77                                                                                                                                                           | 804 7.806                                                                                                                                                                                                  | 6.0                                                                                                                                                          | 06611                                                                                                                                        |
| 68                                                         | 5.40            | 3                                                                                                                                                                                          | В                                                                                                                                               | 7.70209                                 | 7.7056                                                                                       | 67 5.03                                                                                                                                                                                                                            | 825 7.70                                                                                                                                                           | 209 7.705                                                                                                                                                                                                  | 67 5.0                                                                                                                                                       | 03825                                                                                                                                        |
| 69                                                         |                 | 3                                                                                                                                                                                          | В                                                                                                                                               | 5.73751                                 |                                                                                              | 3.89                                                                                                                                                                                                                               | 894 5.73                                                                                                                                                           | 751 .                                                                                                                                                                                                      | 3.8                                                                                                                                                          | 39894                                                                                                                                        |
| 70                                                         | 3.80            | 3                                                                                                                                                                                          | В                                                                                                                                               | 8.35952                                 | 8.3617                                                                                       | 70 5.41                                                                                                                                                                                                                            | 654 8.35                                                                                                                                                           | 952 8.361                                                                                                                                                                                                  | 70 5.4                                                                                                                                                       | 11654                                                                                                                                        |
| 71                                                         | 9.41            |                                                                                                                                                                                            | В                                                                                                                                               | 6.70785                                 | 6.982                                                                                        | 19 4.58                                                                                                                                                                                                                            | 996 6.70                                                                                                                                                           | 785 6.982                                                                                                                                                                                                  | 19 4.5                                                                                                                                                       | 58996                                                                                                                                        |
| 72                                                         | 7.05            |                                                                                                                                                                                            |                                                                                                                                                 | 8.29090                                 |                                                                                              |                                                                                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                            |                                                                                                                                                              | 39454                                                                                                                                        |
| 73                                                         | 7.35            |                                                                                                                                                                                            |                                                                                                                                                 | 7.27072                                 |                                                                                              |                                                                                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                            |                                                                                                                                                              | 04921                                                                                                                                        |
| 74                                                         | 4.48            |                                                                                                                                                                                            |                                                                                                                                                 | 8.09485                                 |                                                                                              |                                                                                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                            |                                                                                                                                                              | 56796                                                                                                                                        |
| 75                                                         | 103.93          |                                                                                                                                                                                            |                                                                                                                                                 | 7.87797                                 |                                                                                              |                                                                                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                            |                                                                                                                                                              | 64897                                                                                                                                        |
| 76                                                         | 30.46           |                                                                                                                                                                                            |                                                                                                                                                 | 7.15717                                 |                                                                                              |                                                                                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                            |                                                                                                                                                              | 31300                                                                                                                                        |
| 77                                                         | 10.19           |                                                                                                                                                                                            |                                                                                                                                                 | 7.97312                                 |                                                                                              |                                                                                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                            |                                                                                                                                                              | 35894                                                                                                                                        |
| 78                                                         |                 | 3                                                                                                                                                                                          |                                                                                                                                                 | 6.81355                                 |                                                                                              | 5.07                                                                                                                                                                                                                               |                                                                                                                                                                    |                                                                                                                                                                                                            |                                                                                                                                                              | 07705                                                                                                                                        |
| 79                                                         | 53.48           |                                                                                                                                                                                            |                                                                                                                                                 | 7.53171                                 |                                                                                              |                                                                                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                            |                                                                                                                                                              | 03760                                                                                                                                        |
| 80                                                         | 6.16            |                                                                                                                                                                                            |                                                                                                                                                 | 7.12903                                 |                                                                                              |                                                                                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                            |                                                                                                                                                              | 13547                                                                                                                                        |
| 81                                                         | 5.10            |                                                                                                                                                                                            |                                                                                                                                                 | 8.29563                                 |                                                                                              |                                                                                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                            |                                                                                                                                                              | 12039                                                                                                                                        |
| 82<br>83                                                   | 11.07<br>12.31  |                                                                                                                                                                                            |                                                                                                                                                 | 8.04103<br>8.81344                      |                                                                                              |                                                                                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                            |                                                                                                                                                              | 65634<br>06390                                                                                                                               |
| 00                                                         | 12.01           | 3                                                                                                                                                                                          | ь                                                                                                                                               | 0.01044                                 | 0.9072                                                                                       | 20 7.00                                                                                                                                                                                                                            | 0.01                                                                                                                                                               | 0.907                                                                                                                                                                                                      | 20 7.0                                                                                                                                                       | 00090                                                                                                                                        |
| nofO                                                       |                 |                                                                                                                                                                                            |                                                                                                                                                 |                                         |                                                                                              |                                                                                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                              |
| ref2                                                       |                 |                                                                                                                                                                                            |                                                                                                                                                 |                                         |                                                                                              |                                                                                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                            |                                                                                                                                                              | 17                                                                                                                                           |
| Obs                                                        | SUBJ            | Group                                                                                                                                                                                      | SEQU                                                                                                                                            | PER                                     | TREAT                                                                                        | AUCT                                                                                                                                                                                                                               | AUCI                                                                                                                                                               | Cmax                                                                                                                                                                                                       | TMAX                                                                                                                                                         | 17<br>KE                                                                                                                                     |
|                                                            | SUBJ<br>(b) (6) | Group<br>1                                                                                                                                                                                 | SEQU<br>TR1R2                                                                                                                                   |                                         |                                                                                              | AUCT<br>4715.11                                                                                                                                                                                                                    | AUCI<br>4779.93                                                                                                                                                    |                                                                                                                                                                                                            | TMAX<br>20.00                                                                                                                                                |                                                                                                                                              |
| 0bs                                                        |                 | ·                                                                                                                                                                                          |                                                                                                                                                 | 3                                       | R2 4                                                                                         |                                                                                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                                                            |                                                                                                                                                              | KE                                                                                                                                           |
| Obs                                                        |                 | 1                                                                                                                                                                                          | TR1R2                                                                                                                                           | 3                                       | R2 4                                                                                         | 4715.11                                                                                                                                                                                                                            | 4779.93                                                                                                                                                            | 314.70<br>120.10                                                                                                                                                                                           | 20.00                                                                                                                                                        | KE<br>0.1420                                                                                                                                 |
| 0bs<br>1<br>2                                              |                 | 1<br>1                                                                                                                                                                                     | TR1R2<br>TR1R2                                                                                                                                  | 3 3 3                                   | R2 4<br>R2 7                                                                                 | 4715.11<br>1678.64                                                                                                                                                                                                                 | 4779.93                                                                                                                                                            | 314.70<br>120.10<br>76.84                                                                                                                                                                                  | 20.00<br>95.00                                                                                                                                               | KE<br>0.1420                                                                                                                                 |
| 0bs<br>1<br>2<br>3                                         |                 | 1<br>1<br>1                                                                                                                                                                                | TR1R2<br>TR1R2<br>TR1R2                                                                                                                         | 3 3 3 3 3                               | R2 4<br>R2 7<br>R2 7                                                                         | 4715.11<br>1678.64<br>1499.22                                                                                                                                                                                                      | 4779.93<br>1549.37                                                                                                                                                 | 314.70<br>120.10<br>76.84<br>30.28                                                                                                                                                                         | 20.00<br>95.00<br>15.00                                                                                                                                      | KE 0.1420 . 0.0283                                                                                                                           |
| 0bs  1 2 3 4 5 6                                           |                 | 1<br>1<br>1<br>1                                                                                                                                                                           | TR1R2<br>TR1R2<br>TR1R2<br>TR1R2                                                                                                                | 3<br>3<br>3<br>3<br>3                   | R2 4<br>R2 7<br>R2 7<br>R2 7<br>R2 7                                                         | 4715.11<br>1678.64<br>1499.22<br>1123.15                                                                                                                                                                                           | 4779.93<br>1549.37<br>1671.63                                                                                                                                      | 314.70<br>120.10<br>76.84<br>30.28<br>119.90                                                                                                                                                               | 20.00<br>95.00<br>15.00<br>34.10<br>47.00<br>15.00                                                                                                           | KE 0.1420 . 0.0283 0.0120                                                                                                                    |
| Obs  1 2 3 4 5 6 7                                         |                 | 1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                 | TR1R2<br>TR1R2<br>TR1R2<br>TR1R2<br>TR1R2<br>TR1R2<br>TR1R2                                                                                     | 3 3 3 3 3 3 3 3 3                       | R2 4<br>R2 7<br>R2 7<br>R2 7<br>R2 8<br>R2 4<br>R2 8                                         | 4715.11<br>1678.64<br>1499.22<br>1123.15<br>3304.26<br>4683.08<br>9774.04                                                                                                                                                          | 4779.93<br>1549.37<br>1671.63<br>3322.99<br>4789.66<br>10035.90                                                                                                    | 314.70<br>120.10<br>76.84<br>30.28<br>119.90<br>695.10<br>3168.00                                                                                                                                          | 20.00<br>95.00<br>15.00<br>34.10<br>47.00<br>15.00<br>6.00                                                                                                   | KE 0.1420 . 0.0283 0.0120 0.0891 0.0509 0.0398                                                                                               |
| Obs  1 2 3 4 5 6 7 8                                       |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                            | TR1R2<br>TR1R2<br>TR1R2<br>TR1R2<br>TR1R2<br>TR1R2<br>TR1R2<br>TR1R2                                                                            | 3 3 3 3 3 3 3 3                         | R2 4<br>R2 7<br>R2 7<br>R2 7<br>R2 8<br>R2 8<br>R2 8                                         | 4715.11<br>1678.64<br>1499.22<br>1123.15<br>3304.26<br>4683.08<br>9774.04<br>5197.32                                                                                                                                               | 4779.93<br>1549.37<br>1671.63<br>3322.99<br>4789.66<br>10035.90<br>5252.26                                                                                         | 314.70<br>120.10<br>76.84<br>30.28<br>119.90<br>695.10<br>3168.00<br>468.10                                                                                                                                | 20.00<br>95.00<br>15.00<br>34.10<br>47.00<br>15.00<br>6.00<br>16.00                                                                                          | KE 0.1420 . 0.0283 0.0120 0.0891 0.0509 0.0398 0.1430                                                                                        |
| Obs  1 2 3 4 5 6 7 8 9                                     |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                       | TR1R2                                                                                     | 3 3 3 3 3 3 3 3 3 3 3                   | R2 4<br>R2 7<br>R2 7<br>R2 7<br>R2 8<br>R2 8<br>R2 8<br>R2 8                                 | 4715.11<br>1678.64<br>1499.22<br>1123.15<br>3304.26<br>4683.08<br>9774.04<br>5197.32<br>1917.66                                                                                                                                    | 4779.93<br>1549.37<br>1671.63<br>3322.99<br>4789.66<br>10035.90<br>5252.26<br>2462.76                                                                              | 314.70<br>120.10<br>76.84<br>30.28<br>119.90<br>695.10<br>3168.00<br>468.10<br>80.84                                                                                                                       | 20.00<br>95.00<br>15.00<br>34.10<br>47.00<br>15.00<br>6.00<br>16.00<br>8.00                                                                                  | KE 0.1420 . 0.0283 0.0120 0.0891 0.0509 0.0398 0.1430 0.0242                                                                                 |
| Obs  1 2 3 4 5 6 7 8 9 10                                  |                 | 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                    | TR1R2                                                                               | 3 3 3 3 3 3 3 3 3 3 3 3 3               | R2 4<br>R2 7<br>R2 7<br>R2 7<br>R2 8<br>R2 8<br>R2 8<br>R2 8<br>R2 8<br>R2 8<br>R2 8<br>R2 8 | 4715.11<br>1678.64<br>1499.22<br>1123.15<br>3304.26<br>4683.08<br>9774.04<br>5197.32<br>1917.66<br>6151.55                                                                                                                         | 4779.93<br>1549.37<br>1671.63<br>3322.99<br>4789.66<br>10035.90<br>5252.26<br>2462.76<br>6750.33                                                                   | 314.70<br>120.10<br>76.84<br>30.28<br>119.90<br>695.10<br>3168.00<br>468.10<br>80.84<br>725.40                                                                                                             | 20.00<br>95.00<br>15.00<br>34.10<br>47.00<br>15.00<br>6.00<br>16.00<br>8.00<br>6.00                                                                          | KE 0.1420 . 0.0283 0.0120 0.0891 0.0509 0.0398 0.1430 0.0242 0.1010                                                                          |
| Obs  1 2 3 4 5 6 7 8 9 10 11                               |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                             | TR1R2                                                                         | 3 3 3 3 3 3 3 3 3 3 3 3                 | R2 4<br>R2 7<br>R2 7<br>R2 7<br>R2 8<br>R2 8<br>R2 8<br>R2 8<br>R2 8<br>R2 8<br>R2 8<br>R2 8 | 4715.11<br>1678.64<br>1499.22<br>1123.15<br>3304.26<br>4683.08<br>9774.04<br>5197.32<br>1917.66<br>6151.55<br>2573.61                                                                                                              | 4779.93<br>1549.37<br>1671.63<br>3322.99<br>4789.66<br>10035.90<br>5252.26<br>2462.76<br>6750.33<br>2640.01                                                        | 314.70<br>120.10<br>76.84<br>30.28<br>119.90<br>695.10<br>3168.00<br>468.10<br>80.84<br>725.40<br>177.90                                                                                                   | 20.00<br>95.00<br>15.00<br>34.10<br>47.00<br>15.00<br>6.00<br>16.00<br>8.00<br>6.00<br>17.00                                                                 | KE 0.1420 . 0.0283 0.0120 0.0891 0.0509 0.0398 0.1430 0.0242 0.1010 0.0320                                                                   |
| Obs  1 2 3 4 5 6 7 8 9 10 11 12                            |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                        | TR1R2                                                                   | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3           | R2 4<br>R2 7<br>R2 7<br>R2 8<br>R2 8<br>R2 8<br>R2 8<br>R2 8<br>R2 8<br>R2 8<br>R2 8         | 4715.11<br>1678.64<br>1499.22<br>1123.15<br>3304.26<br>4683.08<br>9774.04<br>5197.32<br>1917.66<br>6151.55<br>2573.61<br>2628.00                                                                                                   | 4779.93<br>1549.37<br>1671.63<br>3322.99<br>4789.66<br>10035.90<br>5252.26<br>2462.76<br>6750.33<br>2640.01<br>2878.92                                             | 314.70<br>120.10<br>76.84<br>30.28<br>119.90<br>695.10<br>3168.00<br>468.10<br>80.84<br>725.40<br>177.90<br>236.00                                                                                         | 20.00<br>95.00<br>15.00<br>34.10<br>47.00<br>15.00<br>6.00<br>16.00<br>8.00<br>6.00<br>17.00<br>22.00                                                        | KE 0.1420 . 0.0283 0.0120 0.0891 0.0509 0.0398 0.1430 0.0242 0.1010 0.0320 0.1528                                                            |
| Obs  1 2 3 4 5 6 7 8 9 10 11 12 13                         |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                   | TR1R2                                                                   | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3           | R2 4<br>R2 7<br>R2 7<br>R2 8<br>R2 8<br>R2 8<br>R2 8<br>R2 8<br>R2 8<br>R2 8<br>R2 8         | 4715.11<br>1678.64<br>1499.22<br>1123.15<br>3304.26<br>4683.08<br>9774.04<br>5197.32<br>1917.66<br>6151.55<br>2573.61<br>2628.00                                                                                                   | 4779.93<br>1549.37<br>1671.63<br>3322.99<br>4789.66<br>10035.90<br>5252.26<br>2462.76<br>6750.33<br>2640.01<br>2878.92<br>1506.02                                  | 314.70<br>120.10<br>76.84<br>30.28<br>119.90<br>695.10<br>3168.00<br>468.10<br>80.84<br>725.40<br>177.90<br>236.00<br>124.30                                                                               | 20.00<br>95.00<br>15.00<br>34.10<br>47.00<br>15.00<br>6.00<br>16.00<br>8.00<br>6.00<br>17.00<br>22.00<br>24.00                                               | KE  0.1420 . 0.0283 0.0120 0.0891 0.0509 0.0398 0.1430 0.0242 0.1010 0.0320 0.1528 0.0394                                                    |
| Obs  1 2 3 4 5 6 7 8 9 10 11 12 13 14                      |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                | TR1R2                                                             | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3   | R2 4<br>R2 7<br>R2 7<br>R2 8<br>R2 8<br>R2 8<br>R2 8<br>R2 8<br>R2 8<br>R2 8<br>R2 8         | 4715.11<br>1678.64<br>1499.22<br>1123.15<br>3304.26<br>4683.08<br>9774.04<br>5197.32<br>1917.66<br>6151.55<br>2573.61<br>2628.00<br>1353.96<br>4901.88                                                                             | 4779.93<br>1549.37<br>1671.63<br>3322.99<br>4789.66<br>10035.90<br>5252.26<br>2462.76<br>6750.33<br>2640.01<br>2878.92<br>1506.02<br>4967.56                       | 314.70<br>120.10<br>76.84<br>30.28<br>119.90<br>695.10<br>3168.00<br>468.10<br>80.84<br>725.40<br>177.90<br>236.00<br>124.30<br>248.20                                                                     | 20.00<br>95.00<br>15.00<br>34.10<br>47.00<br>15.00<br>6.00<br>16.00<br>8.00<br>6.00<br>17.00<br>22.00<br>24.00<br>32.00                                      | KE  0.1420 . 0.0283 0.0120 0.0891 0.0509 0.0398 0.1430 0.0242 0.1010 0.0320 0.1528 0.0394 0.2063                                             |
| Obs  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                   |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                | TR1R2                                                 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | R2 4 R2                                                  | 4715.11<br>1678.64<br>1499.22<br>1123.15<br>3304.26<br>4683.08<br>9774.04<br>5197.32<br>1917.66<br>6151.55<br>2573.61<br>2628.00<br>1353.96<br>4901.88                                                                             | 4779.93<br>1549.37<br>1671.63<br>3322.99<br>4789.66<br>10035.90<br>5252.26<br>2462.76<br>6750.33<br>2640.01<br>2878.92<br>1506.02<br>4967.56<br>4228.34            | 314.70<br>120.10<br>76.84<br>30.28<br>119.90<br>695.10<br>3168.00<br>468.10<br>80.84<br>725.40<br>177.90<br>236.00<br>124.30<br>248.20<br>278.50                                                           | 20.00<br>95.00<br>15.00<br>34.10<br>47.00<br>15.00<br>6.00<br>16.00<br>8.00<br>6.00<br>17.00<br>22.00<br>24.00<br>32.00<br>14.00                             | KE  0.1420 . 0.0283 0.0120 0.0891 0.0509 0.0398 0.1430 0.0242 0.1010 0.0320 0.1528 0.0394 0.2063 0.0743                                      |
| Obs  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16                |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                | TR1R2                                           | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | R2 4 R2                                                  | 4715.11<br>1678.64<br>1499.22<br>1123.15<br>3304.26<br>4683.08<br>9774.04<br>5197.32<br>1917.66<br>5151.55<br>2573.61<br>2628.00<br>1353.96<br>4901.88<br>4214.56<br>2314.30                                                       | 4779.93<br>1549.37<br>1671.63<br>3322.99<br>4789.66<br>10035.90<br>5252.26<br>2462.76<br>6750.33<br>2640.01<br>2878.92<br>1506.02<br>4967.56<br>4228.34<br>2460.88 | 314.70<br>120.10<br>76.84<br>30.28<br>119.90<br>695.10<br>3168.00<br>468.10<br>80.84<br>725.40<br>177.90<br>236.00<br>124.30<br>248.20<br>278.50<br>177.80                                                 | 20.00<br>95.00<br>15.00<br>34.10<br>47.00<br>15.00<br>6.00<br>16.00<br>8.00<br>6.00<br>17.00<br>22.00<br>24.00<br>32.00<br>14.00<br>28.00                    | KE  0.1420 . 0.0283 0.0120 0.0891 0.0509 0.0398 0.1430 0.0242 0.1010 0.0320 0.1528 0.0394 0.2063 0.0743 0.0974                               |
| Obs  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17             |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                | TR1R2                                     | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | R2 R                                                     | 4715.11<br>1678.64<br>1499.22<br>1123.15<br>3304.26<br>4683.08<br>9774.04<br>5197.32<br>1917.66<br>5151.55<br>2573.61<br>2628.00<br>1353.96<br>4901.88<br>4214.56<br>2314.30<br>1563.92                                            | 4779.93<br>                                                                                                                                                        | 314.70<br>120.10<br>76.84<br>30.28<br>119.90<br>695.10<br>3168.00<br>468.10<br>80.84<br>725.40<br>177.90<br>236.00<br>124.30<br>248.20<br>278.50<br>177.80<br>280.40                                       | 20.00<br>95.00<br>15.00<br>34.10<br>47.00<br>15.00<br>6.00<br>16.00<br>8.00<br>6.00<br>17.00<br>22.00<br>24.00<br>32.00<br>14.00<br>28.00<br>11.00           | KE  0.1420 . 0.0283 0.0120 0.0891 0.0509 0.0398 0.1430 0.0242 0.1010 0.0320 0.1528 0.0394 0.2063 0.0743 0.0974 0.2197                        |
| Obs  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18          |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                | TR1R2                               | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | R2 R                                                     | 4715.11<br>1678.64<br>1499.22<br>1123.15<br>3304.26<br>4683.08<br>9774.04<br>5197.32<br>1917.66<br>5151.55<br>2573.61<br>2628.00<br>1353.96<br>4901.88<br>4214.56<br>2314.30<br>1563.92<br>1304.85                                 | 4779.93<br>                                                                                                                                                        | 314.70<br>120.10<br>76.84<br>30.28<br>119.90<br>695.10<br>3168.00<br>468.10<br>80.84<br>725.40<br>177.90<br>236.00<br>124.30<br>248.20<br>278.50<br>177.80<br>280.40<br>86.66                              | 20.00<br>95.00<br>15.00<br>34.10<br>47.00<br>15.00<br>6.00<br>16.00<br>22.00<br>24.00<br>32.00<br>14.00<br>28.00<br>11.00<br>20.00                           | KE  0.1420 . 0.0283 0.0120 0.0891 0.0509 0.0398 0.1430 0.0242 0.1010 0.0320 0.1528 0.0394 0.2063 0.0743 0.0974 0.2197 0.1552                 |
| Obs  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19       |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                | TR1R2                         | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | R2 R                                                     | 4715.11<br>1678.64<br>1499.22<br>1123.15<br>3304.26<br>4683.08<br>9774.04<br>5197.32<br>1917.66<br>5151.55<br>2573.61<br>2628.00<br>1353.96<br>4901.88<br>4214.56<br>2314.30<br>1563.92<br>1304.85<br>5042.66                      | 4779.93<br>                                                                                                                                                        | 314.70<br>120.10<br>76.84<br>30.28<br>119.90<br>695.10<br>3168.00<br>468.10<br>80.84<br>725.40<br>177.90<br>236.00<br>124.30<br>248.20<br>278.50<br>177.80<br>280.40<br>86.66<br>281.30                    | 20.00<br>95.00<br>15.00<br>34.10<br>47.00<br>15.00<br>6.00<br>16.00<br>22.00<br>24.00<br>32.00<br>14.00<br>28.00<br>11.00                                    | KE  0.1420 . 0.0283 0.0120 0.0891 0.0509 0.0398 0.1430 0.0242 0.1010 0.0320 0.1528 0.0394 0.2063 0.0743 0.0974 0.2197 0.1552 0.0158          |
| Obs  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20    |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | TR1R2 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | R2 R                                                     | 4715.11<br>1678.64<br>1499.22<br>1123.15<br>3304.26<br>4683.08<br>9774.04<br>5197.32<br>1917.66<br>5151.55<br>2573.61<br>2628.00<br>1353.96<br>4901.88<br>4214.56<br>2314.30<br>1563.92<br>1304.85<br>5042.66                      | 4779.93<br>                                                                                                                                                        | 314.70<br>120.10<br>76.84<br>30.28<br>119.90<br>695.10<br>3168.00<br>468.10<br>80.84<br>725.40<br>177.90<br>236.00<br>124.30<br>248.20<br>278.50<br>177.80<br>280.40<br>86.66<br>281.30<br>101.70          | 20.00<br>95.00<br>15.00<br>34.10<br>47.00<br>15.00<br>6.00<br>16.00<br>22.00<br>24.00<br>32.00<br>14.00<br>28.00<br>11.00<br>20.00<br>11.00<br>6.00          | KE  0.1420 . 0.0283 0.0120 0.0891 0.0509 0.0398 0.1430 0.0242 0.1010 0.0320 0.1528 0.0394 0.2063 0.0743 0.0974 0.2197 0.1552 0.0158 0.0567   |
| Obs  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | TR1R2 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | R2 R                                                     | 4715.11<br>1678.64<br>1499.22<br>1123.15<br>3304.26<br>4683.08<br>9774.04<br>5197.32<br>1917.66<br>6151.55<br>2573.61<br>2628.00<br>1353.96<br>4901.88<br>4214.56<br>2314.30<br>1563.92<br>1304.85<br>5042.66<br>2310.62<br>548.24 | 4779.93<br>                                                                                                                                                        | 314.70<br>120.10<br>76.84<br>30.28<br>119.90<br>695.10<br>3168.00<br>468.10<br>80.84<br>725.40<br>177.90<br>236.00<br>124.30<br>248.20<br>278.50<br>177.80<br>280.40<br>86.66<br>281.30<br>101.70<br>97.67 | 20.00<br>95.00<br>15.00<br>34.10<br>47.00<br>15.00<br>6.00<br>16.00<br>22.00<br>24.00<br>32.00<br>14.00<br>28.00<br>11.00<br>20.00<br>11.00<br>6.00<br>28.00 | KE  0.1420 . 0.0283 0.0120 0.0891 0.0509 0.0398 0.1430 0.0242 0.1010 0.0320 0.1528 0.0394 0.2063 0.0743 0.0974 0.2197 0.1552 0.0158 0.0567 . |
| Obs  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20    |                 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | TR1R2 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | R2 R                                                     | 4715.11<br>1678.64<br>1499.22<br>1123.15<br>3304.26<br>4683.08<br>9774.04<br>5197.32<br>1917.66<br>5151.55<br>2573.61<br>2628.00<br>1353.96<br>4901.88<br>4214.56<br>2314.30<br>1563.92<br>1304.85<br>5042.66                      | 4779.93<br>                                                                                                                                                        | 314.70<br>120.10<br>76.84<br>30.28<br>119.90<br>695.10<br>3168.00<br>468.10<br>80.84<br>725.40<br>177.90<br>236.00<br>124.30<br>248.20<br>278.50<br>177.80<br>280.40<br>86.66<br>281.30<br>101.70<br>97.67 | 20.00<br>95.00<br>15.00<br>34.10<br>47.00<br>15.00<br>6.00<br>16.00<br>22.00<br>24.00<br>32.00<br>14.00<br>28.00<br>11.00<br>20.00<br>11.00<br>6.00          | KE  0.1420 . 0.0283 0.0120 0.0891 0.0509 0.0398 0.1430 0.0242 0.1010 0.0320 0.1528 0.0394 0.2063 0.0743 0.0974 0.2197 0.1552 0.0158 0.0567   |

|      | (1.) (0) |       |      |         |        |            |         |         |       |         |
|------|----------|-------|------|---------|--------|------------|---------|---------|-------|---------|
| 24   | (b) (6)  | 2     | TR1R | 2 3     | R2     | 1336.31    | 2009.04 | 92.91   | 17.00 | 0.0401  |
| 25   |          | 2     | TR1R | 2 3     | R2     | 2175.18    | 2328.41 | 282.20  | 11.00 | 0.0108  |
| 26   |          | 2     | TR1R | 2 3     | R2     | 1287.36    | 1468.26 | 108.50  | 16.00 | 0.0496  |
| 27   |          | 2     | TR1R | 2 3     | R2     | 2067.68    | 2478.57 | 111.40  | 16.00 | 0.0181  |
| 28   |          | 2     | TR1R | 2 3     | R2     | 2873.18    | 2880.44 | 207.40  | 16.00 | 0.2068  |
| 29   |          | 2     | TR1R | 2 3     | R2     | 6.27       | 14.00   | 1.90    | 13.00 | 0.1739  |
| 0bs  | THALF    | SEQ   | TRT  | LAUCT   | LAUCIN | NF LCMAX   | lat2r   | lai2r   | 1c2   | ?r      |
|      |          |       | _    |         |        |            |         |         |       |         |
| 1    | 4.88     | 1     |      | 8.45853 | 8.4721 |            |         | 8.47218 |       |         |
| 2    |          | 1     |      | 7.42574 |        | 4.78832    |         |         | 4.788 |         |
| 3    | 24.50    | 1     |      | 7.31270 | 7.3456 |            |         | 7.34560 |       |         |
| 4    | 57.99    | 1     |      | 7.02389 | 7.4215 |            |         | 7.42155 |       |         |
| 5    | 7.78     | 1     |      | 8.10297 | 8.1086 |            |         | 8.10862 |       |         |
| 6    | 13.61    | 1     |      | 8.45171 | 8.4742 |            |         | 8.47421 |       |         |
| 7    | 17.42    | 1     |      | 9.18749 | 9.2139 |            |         | 9.21392 |       |         |
| 8    | 4.85     | 1     |      | 8.55590 | 8.5664 |            |         | 8.56641 |       |         |
| 9    | 28.60    |       |      | 7.55886 | 7.8090 |            |         | 7.80904 |       |         |
| 10   | 6.86     |       |      | 8.72446 | 8.8173 |            |         | 8.81735 |       |         |
| 11   | 21.64    | 1     |      | 7.85306 | 7.8785 |            |         | 7.87854 |       |         |
| 12   | 4.54     | 1     |      | 7.87398 | 7.9651 |            |         | 7.96517 |       |         |
| 13   | 17.61    | 1     |      | 7.21079 | 7.3172 |            |         | 7.31723 |       |         |
| 14   | 3.36     | 1     |      | 8.49737 | 8.5106 |            |         | 8.51068 |       |         |
| 15   | 9.33     |       |      | 8.34630 | 8.3495 |            |         | 8.34956 |       |         |
| 16   | 7.11     | 1     |      | 7.74686 | 7.8082 |            |         | 7.80827 |       |         |
| 17   | 3.16     |       |      | 7.35495 | 7.3616 |            |         | 7.36160 |       |         |
| 18   | 4.47     | 1     | В :  | 7.17384 | 7.1883 | 33 4.46199 | 7.17384 | 7.18833 | 4.461 | 99      |
| 19   | 43.92    |       |      | 8.52569 | 9.1994 |            |         | 9.19944 |       |         |
| 20   | 12.23    | 1     |      | 7.74527 | 7.7624 |            |         | 7.76245 | 4.622 | 203     |
| 21   | •        | 1     |      | 6.30671 |        | 4.58159    |         | •       | 4.581 |         |
| 22   | 10.09    | 1     |      | 8.07798 | 8.2567 |            |         | 8.25672 |       |         |
| 23   | •        | 1     |      | 6.96518 | •      | 4.38677    |         | •       | 4.386 |         |
| 24   | 17.26    | 1     |      | 7.19767 | 7.6054 |            |         | 7.60541 |       |         |
| 25   | 64.33    | 1     |      | 7.68487 | 7.7529 |            |         | 7.75294 |       |         |
| 26   | 13.97    |       |      | 7.16035 | 7.2918 |            |         | 7.29183 |       |         |
| 27   | 38.21    | 1     |      | 7.63418 | 7.8154 |            |         | 7.81544 |       |         |
| 28   | 3.35     | 1     |      | 7.96317 | 7.9657 |            |         | 7.96570 |       |         |
| 29   | 3.99     | 1     | В    | 1.83625 | 2.6392 | 20 0.64343 | 1.83625 | 2.63920 | 0.643 | 343     |
| ref2 |          |       |      |         |        |            |         |         |       | 18      |
| 0bs  | SUBJ     | Group | SEQU | PER     | TREAT  | AUCT       | AUCI    | Cmax    | TMAX  | KE      |
| 30   | (b)      | 1     | R1TR | 2 3     | R2     | 3168.43    | 3194.35 | 480.40  | 9.00  | 0.1936  |
| 31   | (6)      | 1     | R1TR |         | R2     | 785.37     | 870.26  | 88.29   | 11.00 | 0.1164  |
| 32   |          | 1     | R1TR |         | R2     | 3517.84    | 3589.57 | 160.80  | 13.00 | 0.0601  |
| 33   |          | 1     | R1TR |         | R2     | 92.94      |         | 18.23   | 28.00 |         |
| 34   |          | 1     | R1TR |         | R2     | 2225.56    |         | 134.60  | 47.00 |         |
| 35   |          | 1     | R1TR |         | R2     | 2695.02    | 2745.60 | 195.10  | 11.00 | 0.0352  |
| 36   |          | 1     | R1TR |         | R2     | 1756.51    | 4812.39 | 143.80  | 28.00 | 0.0354  |
| 37   |          | 1     | R1TR |         | R2     | 1920.96    | 1943.73 | 36.61   | 71.00 | 0.0664  |
| 38   |          | 1     | R1TR |         | R2     | 1928.83    | 2209.98 | 184.80  | 14.00 | 0.0698  |
| 39   |          | 1     | R1TR |         | R2     | 4334.44    | 4717.32 | 94.82   | 47.00 | 0.0387  |
| 40   |          | 1     | R1TR |         | R2     | 3138.48    | 3146.33 | 456.50  | 8.00  | 0.1916  |
| 41   |          | 1     | R1TR |         | R2     | 3152.28    | 4999.50 | 277.90  | 11.00 | 0.0475  |
| 42   |          | 2     | R1TR |         | R2     | 747.52     |         | 59.88   | 48.00 |         |
| 43   |          | 2     | R1TR |         | R2     | 1350.40    | 1361.56 | 110.40  | 24.07 | 0.1622  |
|      |          | -     |      | -       |        |            |         |         |       | <b></b> |

| 44   | (b) (6) | 2     | R1TF | 12 3    | R2      | 4749.15   | 4783.85 | 221.70  | 36.00 | 0.1162 |
|------|---------|-------|------|---------|---------|-----------|---------|---------|-------|--------|
| 45   |         | 2     | R1TF | 12 3    | R2      | 2475.29   | 2815.48 | 127.50  | 13.00 | 0.1288 |
| 46   |         | 2     | R1TF | 12 3    | R2      | 4681.43   | 4694.62 | 598.20  | 11.00 | 0.1805 |
| 47   |         | 2     | R1TF | 12 3    | R2      | 6406.82   | 6431.64 | 180.10  | 22.00 | 0.1152 |
| 48   |         | 2     | R1TF | 12 3    | R2      | 695.39    | 3718.25 | 64.43   | 17.00 | 0.0160 |
| 49   |         | 2     | R1TF | 12 3    | R2      | 1057.95   | 1065.32 | 73.16   | 28.00 | 0.1949 |
| 50   |         | 2     | R1TF | 12 3    | R2      | 1894.66   | 1899.92 | 150.30  | 15.00 | 0.3470 |
| 51   |         | 2     | R1TF | R2 3    | R2      | 10.51     |         | 1.59    | 28.00 |        |
| 52   |         | 2     | R1TF | 12 3    | R2      | 978.96    | 1268.10 | 57.01   | 17.03 | 0.0897 |
| 53   |         | 2     | R1TF | 12 3    | R2      | 5075.59   | 5899.77 | 346.50  | 2.00  | 0.0634 |
| 54   |         | 2     | R1TF |         | R2      | 1798.41   | 2029.79 | 173.10  | 15.00 | 0.0415 |
| 55   |         | 2     | R1TF |         | R2      | 998.44    | 1022.96 | 85.89   | 11.05 | 0.0906 |
| 56   |         | 2     | R1TF |         | R2      | 2656.81   | 2669.05 | 236.80  | 7.00  | 0.1945 |
| 57   |         | 1     | R1R2 |         | R2      | 967.41    | 986.30  | 168.90  | 11.00 | 0.0854 |
| 58   |         | 1     | R1R2 | 2T 2    | R2      | 335.53    | •       | 36.03   | 28.00 | •      |
| 0bs  | THALF   | SEQ   | TRT  | LAUCT   | LAUCIN  | LCMAX     | lat2r   | lai2r   | lc2   | r      |
| 30   | 3.58    | 2     | В    | 8.06099 | 8.06914 | 4 6.17462 | 8.06099 | 8.06914 | 6.174 | 62     |
| 31   | 5.96    | 2     | В    | 6.66615 | 6.76880 |           |         | 6.76880 |       |        |
| 32   | 11.54   | 2     | В    | 8.16560 | 8.18579 |           |         | 8.18579 | 5.080 |        |
| 33   |         | 2     | В    | 4.53192 |         | 2.90307   |         |         | 2.903 |        |
| 34   |         | 2     | В    | 7.70776 |         | 4.90231   | 7.70776 |         | 4.902 |        |
| 35   | 19.66   | 2     | В    | 7.89916 | 7.91775 |           | 7.89916 | 7.91775 |       |        |
| 36   | 19.56   | 2     | В    | 7.47108 | 8.47895 |           |         | 8.47895 |       |        |
| 37   | 10.44   | 2     | В    | 7.56058 | 7.57236 | 3.60032   | 7.56058 | 7.57236 | 3.600 | 32     |
| 38   | 9.93    | 2     | В    | 7.56467 | 7.70074 | 4 5.21927 | 7.56467 | 7.70074 | 5.219 | 27     |
| 39   | 17.92   | 2     | В    | 8.37435 | 8.45900 | 4.55198   | 8.37435 | 8.45900 | 4.551 | 98     |
| 40   | 3.62    | 2     | В    | 8.05149 | 8.05399 | 6.12359   | 8.05149 | 8.05399 | 6.123 | 59     |
| 41   | 14.59   | 2     | В    | 8.05588 | 8.51709 | 5.62726   | 8.05588 | 8.51709 | 5.627 | 26     |
| 42   |         | 2     | В    | 6.61676 |         | 4.09234   | 6.61676 |         | 4.092 | 34     |
| 43   | 4.27    | 2     | В    | 7.20816 | 7.21639 | 9 4.70411 | 7.20816 | 7.21639 | 4.704 | 11     |
| 44   | 5.96    | 2     | В    | 8.46572 | 8.47300 | 5.40133   | 8.46572 | 8.47300 | 5.401 | 33     |
| 45   | 5.38    | 2     | В    | 7.81411 | 7.94289 | 9 4.84812 | 7.81411 | 7.94289 | 4.848 | 12     |
| 46   | 3.84    | 2     | В    | 8.45136 | 8.45417 | 7 6.39393 | 8.45136 | 8.45417 | 6.393 | 93     |
| 47   | 6.01    | 2     | В    | 8.76512 | 8.76898 | 3 5.19351 | 8.76512 | 8.76898 | 5.193 | 51     |
| 48   | 43.40   | 2     | В    | 6.54447 | 8.2210  | 1 4.16558 | 6.54447 | 8.22101 | 4.165 | 58     |
| 49   | 3.56    | 2     | В    | 6.96409 | 6.97103 | 3 4.29265 | 6.96409 | 6.97103 | 4.292 | 65     |
| 50   | 2.00    | 2     | В    | 7.54679 | 7.54957 | 7 5.01263 | 7.54679 | 7.54957 | 5.012 | 63     |
| 51   |         | 2     | В    | 2.35261 |         |           | 2.35261 |         | 0.460 | 58     |
| 52   | 7.72    | 2     | В    | 6.88649 | 7.14527 | 7 4.04323 | 6.88649 | 7.14527 | 4.043 | 23     |
| 53   | 10.93   | 2     | В    | 8.53220 | 8.68267 | 7 5.84788 | 8.53220 | 8.68267 | 5.847 | 88     |
| 54   | 16.69   | 2     | В    | 7.49466 | 7.61569 | 9 5.15387 | 7.49466 | 7.61569 | 5.153 | 87     |
| 55   | 7.65    | 2     | В    | 6.90620 |         | 6 4.45307 | 6.90620 | 6.93046 | 4.453 | 07     |
| 56   | 3.56    | 2     | В    | 7.88488 | 7.88948 | 3 5.46722 | 7.88488 | 7.88948 | 5.467 | 22     |
| 57   | 8.11    | 3     | В    |         | 6.89396 |           | 6.87463 |         |       | 31     |
| 58   |         | 3     | В    | 5.81571 | •       | 3.58435   | 5.81571 | •       | 3.584 | 35     |
| ref2 |         |       |      |         |         |           |         |         |       | 19     |
| 0bs  | SUBJ    | Group | SEQL | J PER   | TREAT   | AUCT      | AUCI    | Cmax    | TMAX  | KE     |
| 59   | (b) (6) | 1     | R1R2 | 2T 2    | R2      | 2220.44   |         | 97.94   | 36.00 |        |
| 60   |         | 1     | R1R2 |         | R2      | 1627.93   | 1677.32 |         |       | 0.1174 |
| 61   |         | 1     | R1R2 |         | R2      | 3012.29   | 3543.32 | 165.90  |       | 0.0652 |
| 62   |         | 1     | R1R2 |         | R2      | 1045.77   | 1049.38 | 92.16   |       | 0.4654 |
| 63   |         | 1     | R1R2 |         | R2      | 3196.58   |         | 190.20  |       |        |
|      |         |       |      |         |         |           |         |         |       |        |

Page 94 of 168

```
(b) (6)
                  R1R2T
                                       1864.63
                                                  1932.95
                                                             93.78 14.00 0.0361
64
             1
                           2
                                R2
                                                                   11.00
 65
                  R1R2T
                                                             64.95
                                R2
                                        663.67
                                                   874.12
                                                                           0.0441
             1
                           2
 66
                  R1R2T
                                        279.45
                                                             45.77
                                                                    32.00
                           2
                                R2
                                                     .
 67
                  R1R2T
                           2
                                R2
                                        897.49
                                                   923.40
                                                            105.00
                                                                    12.00
                                                                            0.0763
                  R1R2T
 68
                           2
                                R2
                                       1427.53
                                                  1439.31
                                                            117.40
                                                                    18.00
                                                                            0.1516
                                                  1322.13
                  R1R2T
                                       1301.61
 69
                           2
                                R2
                                                            107.10
                                                                    12.05
                                                                            0.1309
             1
                                                  2479.70
 70
                  R1R2T
                           2
                                R2
                                                            150.40
                                                                    13.00
                                                                            0.0264
             1
                                       2418.26
 71
             2
                  R1R2T
                           2
                                R2
                                        498.41
                                                             31.15
                                                                     32.00
72
             2
                  R1R2T
                           2
                                R2
                                       4462.43
                                                  4922.46
                                                           1151.00
                                                                      4.00
                                                                            0.0249
73
             2
                  R1R2T
                                       1234.76
                                                  1250.80
                                                             74.45
                                                                    10.00
                                                                            0.1495
                           2
                                R2
                  R1R2T
                                                  825.06
                                                            143.20
                                                                    22.00
                                                                            0.2441
74
             2
                           2
                                R2
                                        806.22
 75
             2
                  R1R2T
                           2
                                R2
                                       2062.17
                                                  2073.01
                                                            115.70
                                                                     22.00
                                                                            0.1956
 76
             2
                  R1R2T
                           2
                                R2
                                       3304.76
                                                  3337.52
                                                            155.70
                                                                     20.00
                                                                            0.1913
 77
             2
                                                            217.40
                                                                     28.00 0.1486
                  R1R2T
                           2
                                R2
                                       3564.68
                                                  3635.11
                                                   995.08
 78
             2
                  R1R2T
                           2
                                        980.45
                                                             88.71
                                                                     14.00 0.1431
                                R2
 79
             2
                  R1R2T
                           2
                                R2
                                       1802.09
                                                  1823.66
                                                             59.29
                                                                     36.00
                                                                            0.0684
 80
             2
                  R1R2T
                           2
                                R2
                                       6596.70
                                                  6636.48
                                                           3183.00
                                                                      6.00
                                                                            0.0619
                                                                    28.00
81
             2
                  R1R2T
                           2
                                R2
                                       2885.88
                                                  2915.76
                                                            153.80
                                                                            0.1926
                                                                           0.0772
82
             2
                  R1R2T
                                       4739.94
                                                  4752.99
                                                            229.20
                                                                    12.00
                           2
                                R2
 83
             2
                  R1R2T
                           2
                                R2
                                      17015.10
                                                17033.30
                                                           3959.00
                                                                      4.00 0.0665
0bs
     THALF
            SEQ
                 TRT
                        LAUCT
                                LAUCINF
                                          LCMAX
                                                    lat2r
                                                             lai2r
                                                                        lc2r
59
             3
                  В
                       7.70546
                                         4.58436
                                                  7.70546
                                                                      4.58436
                       7.39506
                                         4.95230
                                                   7.39506
 60
      5.91
                  В
                                7.42495
                                                            7.42495
                       8.01046
                                         5.11139
                                                   8.01046
 61
     10.63
             3
                  В
                                8.17282
                                                            8.17282
                                                                      5.11139
 62
                       6.95251
                                6.95595
                                         4.52353
                                                   6.95251
                                                            6.95595
      1.49
             3
                  В
                                                                      4.52353
 63
             3
                  В
                       8.06984
                                         5.24808
                                                   8.06984
                                                                      5.24808
     19.20
                       7.53082
                                         4.54095
                                                   7.53082
                                                                      4.54095
 64
             3
                  В
                                7.56680
                                                            7.56680
 65
     15.71
             3
                  В
                       6.49778
                                6.77322
                                         4.17362
                                                   6.49778
                                                            6.77322
                                                                      4.17362
                       5.63283
                                         3.82363
 66
             3
                  В
                                                   5.63283
                                                                      3.82363
                                         4.65396
 67
      9.09
             3
                  В
                       6.79960
                                6.82806
                                                  6.79960
                                                            6.82806
                                                                      4.65396
             3
                       7.26370
                                         4.76559
 68
      4.57
                  В
                                7.27192
                                                  7.26370
                                                            7.27192
                                                                      4.76559
 69
      5.30
                       7.17136
                                7.18700
                                         4.67376
                                                  7.17136
                                                            7.18700
                                                                      4.67376
             3
                  В
                                         5.01330
70
     26.26
             3
                       7.79080
                                7.81589
                                                  7.79080
                                                            7.81589
                                                                      5.01330
                  В
 71
             3
                  В
                       6.21142
                                         3.43881
                                                   6.21142
                                                                      3.43881
                                                             .
 72
     27.80
             3
                  В
                       8.40345
                                8.50156
                                         7.04839
                                                   8.40345
                                                            8.50156
                                                                      7.04839
 73
      4.64
             3
                       7.11863
                                7.13154
                                         4.31013
                                                   7.11863
                                                            7.13154
                                                                      4.31013
                  В
74
      2.84
             3
                  В
                       6.69236
                                6.71546
                                         4.96424
                                                   6.69236
                                                            6.71546
                                                                      4.96424
      3.54
                       7.63151
                                         4.75100
                                                  7.63151
                                                            7.63676
 75
             3
                  В
                                7.63676
                                                                      4.75100
 76
      3.62
                       8.10312
                                8.11298
                                         5.04793
                                                  8.10312
                                                            8.11298
77
      4.66
                       8.17883
                                8.19839
                                         5.38174
                                                   8.17883
                                                            8.19839
                                                                      5.38174
             3
                  В
                                                            6.90282
      4.84
78
             3
                  В
                       6.88801
                                6.90282
                                         4.48537
                                                   6.88801
                                                                      4.48537
 79
     10.13
             3
                  В
                       7.49670
                                7.50860
                                         4.08244
                                                   7.49670
                                                            7.50860
                                                                      4.08244
 80
     11.20
             3
                  В
                       8.79432
                                8.80034
                                         8.06558
                                                   8.79432
                                                            8.80034
                                                                      8.06558
 81
      3.60
             3
                  В
                       7.96759
                                7.97789
                                         5.03565
                                                   7.96759
                                                            7.97789
                                                                      5.03565
 82
      8.98
             3
                  R
                       8.46378
                                8.46653
                                         5.43459
                                                   8.46378
                                                            8.46653
                                                                      5.43459
     10.43
             3
                  R
                       9.74186
                                9.74293
                                         8.28375 9.74186
                                                           9.74293
83
                                                                     8.28375
dataset for scaled average BE
                                                                                 20
Obs SUBJ PER SEQ TRT
                        ilat
                                 ilai
                                           ilc
                                                    dlat
                                                             dlai
                                                                        dlc
          3
                  В
                       0.01787
                                1
              1
  2
          3
              1
                  В
                       0.46849
                                         1.12292 0.19745
                                                            .
  3
          3
              1
                  В
                       0.26537
                                4
          3
                       0.06416 -0.09958 -0.33576  0.54440  0.15427  1.81365
```

Page 95 of 168

```
5
                   1
6
                   -0.20539 -0.25360 -0.63368 0.13822 0.22634
        3
                В
            1
7
                   -0.02528
                            0.01471 -0.24151 -0.44092 -0.44176 -2.42108
        3
            1
                B
8
        3
                В
                   -0.65318 -0.64922 -0.42440 0.08041 0.07854 -0.04501
            1
                                     0.95583 -0.14004 -0.38104 -0.42501
9
        3
            1
                В
                    0.37583
                             0.29475
                             10
        3
                В
                    0.76088
            1
                                     -0.80930 0.20705 0.18580 -0.03839
                В
                   -0.95681
11
        3
            1
12
                   -2.36096 -2.37004 -2.24101 -0.04315 -0.07428
13
                   -0.31014 -0.31391 -1.45337
                                             1.03920
                                                      0.96833
            1
                            0.18357 0.33359 0.10894 0.09735
                    0.15578
14
        3
            1
                B
                                                               0.53172
15
                   -0.49892 -0.47957 -1.17053 -0.03844 -0.03436 -0.37140
        3
            1
                В
16
        3
            1
                В
                    0.82238
                            0.84830
                                     0.58472 -0.54601 -0.60479 -0.12187
                   -0.40893 -0.31025 -0.90296
                                             0.76087
17
        3
            1
                В
                                                       0.75686 -0.07285
                    0.97457
                             1.02940
                                     1.44961
                                             0.59678
                                                      0.58727
18
        3
                В
                                                                0.17468
            1
        3
                В
                    0.64687
                             0.82706  0.78662 -1.15921 -1.24275 -1.19009
19
            1
20
        3
            1
                   -0.21996 -0.22172 -0.63589 0.15632
                                                      0.15991
                                                                0.29356
21
        3
            1
                В
                   -1.26635
                                     -1.08462 1.62135
22
        3
            1
                В
                    0.51490
                             1.69960 0.39518 -0.57279 -0.74829 -0.15161
23
        3
                В
                    0.23183
                                     -0.00930 -0.16825
                                                               -0.26481
            1
                             .
                                                       .
24
        3
            1
                В
                   -0.12659 -0.67289 -0.78767
                                              0.48134
                                                       0.82739
                                                               0.37808
                                              0.26847
25
        3
            1
                В
                   -0.03480 -0.16294
                                     0.15688
                                                       0.42752 -0.53063
26
                В
                    0.53666
                             0.55711
                                     1.16943
                                              0.30774
                                                       0.21501
        3
            1
                                                                0.46074
27
                                     0.36646
                                                       0.08667 -0.09307
        3
            1
                В
                    0.04403
                             0.06304
                                             0.23045
28
        3
            1
                В
                   -2.03128 -2.03015 -1.76978 -0.78026 -0.72140
                                                                0.29692
                                             5.90363
29
            1
                    3.64478
                             3.27247
                                     3.46973
                                                       5.10766
                    0.10800
                                     1.12462 -0.41476
                                                      -0.40348 -1.07232
30
        3
            2
                В
                             0.11886
                                              1.43650
31
            2
                    0.62390
                                     -0.05299
        3
                В
                                                                1.01654
32
        3
            2
                В
                    0.40591
                             0.39135 0.10335
                                              0.43081
                                                               0.99127
                                                       0.42478
33
        3
            2
                В
                    1.82503
                                     1.38769
                                              2.75129
                                                                2.85583
34
        3
            2
                В
                   -0.38802
                                     -0.51348 -0.17086
                                                               -0.76044
35
        3
            2
                   -0.10824
                            -0.12155 0.38722 0.45078
                                                       0.50037 0.01071
                В
            2
                                     36
        3
                В
                    0.30407
37
        3
            2
                    1.62069
                             1.63040 1.50540 -0.89339 -0.64996 -0.61161
                В
38
        3
            2
                    0.32498
                             0.27212 -0.21871 0.77613 0.65361 -0.56056
                В
                                     0.33504 -0.79353 -0.83066 -0.16273
39
        3
            2
                В
                    0.42954
                             0.40100
40
        3
            2
                В
                   -0.25481
                             0.16520 -0.07630 -0.32167 -0.32122 -1.13998
41
        3
            2
                В
                    0.43129
                             2
                В
                    0.22823
                                     0.03014 2.14662
                                                                3.46461
42
        3
                             0.67452 0.31033 -0.08569 -0.03500
43
        3
            2
                В
                    0.68294
                                                               0.22024
            2
                   -0.27163 -0.27480 -0.13972 -0.45358 -0.44198 -0.40818
44
        3
                В
        3
                    0.02247 -0.25031
                                     0.04781 -0.37694 -0.05180
45
        3
            2
                   -0.47832 -0.47726 -1.39062 0.61587 0.61614
46
                B
                                                                1.41358
                                     0.44810 -0.87783
47
        3
            2
                B
                    0.36351
                                                                0.12901
48
        3
            2
                В
                    1.11406
                             0.27693
                                    1.04740
                                             1.24041 -0.43414
                                                                1.68432
49
        3
            2
                В
                   -2.14651
                                     -1.17560 0.62880 0.62835
50
        3
            2
                В
                    0.93166
                             0.78428
                                     1,79081 -2,50827 -2,21669 -2,95697
51
        3
            2
                R
                    2.98015
                                     2.91951 3.39845
                                                                3.87605
52
        3
            2
                    0.48750
                                     0.51174 -0.19056 -0.44241
                                                                0.16340
                В
                            0.36054
53
        3
            2
                В
                    0.28374
                             0.22328
                                     1.94900 -0.13649 -0.28169
54
        3
            2
                В
                    1.09869
                             1.11014
                                     0.95468
                                             0.16508
                                                       0.14688
                                                                0.10363
55
        3
            2
                    0.87362
                                     2.06736
                                             0.16543
                В
                             0.82910
                                                       0.26496
                                                                0.86652
56
        3
            2
                В
                    0.32726
                             0.25455 -0.26561 -0.47733
                                                      -0.32801
                                                               -0.15648
57
        2
            3
                В
                    0.17763
                             0.16430 -0.31232
                                              1.06833
                                                       1.06509
                                                                1.29199
58
        2
            3
                В
                    2.19652
                                     2.04568 0.42053
                                                                0.06864
59
        2
            3
                В
                    0.14736
                                     0.61055 -0.46892
                                                               -0.36588
60
        2
            3
                В
                                     -0.29687 -0.31197
61
        2
```

22

| 0bs | SUBJ    | PER | SEQ | TRT | ilat     | ilai     | ilc      | dlat     | dlai     | dlc      |
|-----|---------|-----|-----|-----|----------|----------|----------|----------|----------|----------|
|     | (b) (c) |     |     |     |          |          |          |          |          |          |
| 62  | (b) (6) | 2   | 3   | В   | -0.45872 | -0.45012 | -0.41046 | 0.73517  | 0.74461  | 0.84058  |
| 63  |         | 2   | 3   | В   | -0.29833 |          | 1.33326  | -0.57323 |          | -1.20187 |
| 64  |         | 2   | 3   | В   | 0.81702  | 0.79965  | -0.12097 | 0.45536  | 0.42689  | 1.15581  |
| 65  |         | 2   | 3   | В   | -0.70883 |          | -0.47022 | 0.75225  | 0.49052  | 1.37468  |
| 66  |         | 2   | 3   | В   | -0.11968 |          | -0.05048 | -3.04687 |          | -2.99115 |
| 67  |         | 2   | 3   | В   | 0.19301  | 0.17543  | 0.01894  | 0.97843  | 0.97821  | 1.41215  |
| 68  |         | 2   | 3   | В   | 0.26059  | 0.27207  | 0.66452  | 0.43839  | 0.43375  | 0.27266  |
| 69  |         | 2   | 3   | В   | 1.18745  |          | 1.78554  | -1.43385 |          | -0.77483 |
| 70  |         | 2   | 3   | В   | -0.47076 | -0.46178 | -0.60576 | 0.56872  | 0.54581  | 0.40325  |
| 71  |         | 2   | 3   | В   | -0.21369 |          | 0.00200  | 0.49643  |          | 1.15114  |
| 72  |         | 2   | 3   | В   | -0.16722 | -0.15596 | -0.54095 | -0.11255 | -0.20672 | -1.65385 |
| 73  |         | 2   | 3   | В   | -0.05523 | -0.06404 | -0.21883 | 0.15209  | 0.19004  | 0.73909  |
| 74  |         | 2   | 3   | В   | 0.98113  | 0.97381  | 1.15422  | 1.40250  | 1.38683  | 0.60372  |
| 75  |         | 2   | 3   | В   | -1.03605 |          | -0.90216 | 0.24646  | 1.04436  | 0.89797  |
| 76  |         | 2   | 3   | В   | -0.07734 | 0.02422  | -0.59920 | -0.94595 | -0.88593 | -0.23493 |
| 77  |         | 2   | 3   | В   | -0.05049 | 0.06201  | -0.08714 | -0.20571 | -0.11037 | -0.02280 |
| 78  |         | 2   | 3   | В   | 0.30850  |          | 0.16542  | -0.07446 |          | 0.59167  |
| 79  |         | 2   | 3   | В   | 0.01537  | 0.05514  | -0.26701 | 0.03501  | 0.61313  | -0.04484 |
| 80  |         | 2   | 3   | В   | -0.75644 | -0.78821 | -1.49355 | -1.66530 | -1.60916 | -2.63011 |
| 81  |         | 2   | 3   | В   | 0.51104  | 0.51051  | 1.05386  | 0.32804  | 0.32004  | 0.08473  |
| 82  |         | 2   | 3   | В   | -0.22539 | -0.21139 | -0.09787 | -0.42275 | -0.41818 | 0.22175  |
| 83  |         | 2   | 3   | В   | -0.36562 | -0.26960 | -0.09619 | -0.92842 | -0.77569 | -1.21984 |

unscaled BE 90% CI - guidance version

The Mixed Procedure

### Model Information

 $\begin{array}{ll} {\rm Data \ Set} & {\rm WORK.PKN} \\ {\rm Dependent \ Variable} & {\rm LCMAX} \end{array}$ 

Covariance Structures Factor Analytic, Variance

Components
Subject Effects SUBJ, SUBJ
Group Effect TRT
Estimation Method REML
Residual Variance Method None

Fixed Effects SE Method Model-Based
Degrees of Freedom Method Satterthwaite

### Class Level Information

| Class | Levels | Values                        |
|-------|--------|-------------------------------|
|       |        |                               |
| Group | 2      | 1 2                           |
| SEQ   | 3      | 1 2 3                         |
| SUBJ  | 83     | 1 2 3 4 5 6 7 8 9 10 12 13 14 |
|       |        | 15 16 17 18 19 20 21 23 24 25 |
|       |        | 26 27 28 29 30 31 32 33 34 35 |
|       |        | 36 37 38 39 42 43 44 45 46 47 |
|       |        | 48 49 50 51 52 53 54 55 56 57 |

58 59 60 61 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

79 80 82 83 84 85 86 87 89 90

PER 3 1 2 3 TRT 2 A B

#### Dimensions

| Covariance            | Parameters    | 5  |  |  |
|-----------------------|---------------|----|--|--|
| Columns in            | X             | 24 |  |  |
| ${\tt Columns\ in}$   | Z Per Subject | 2  |  |  |
| Subjects 83           |               |    |  |  |
| Max Obs Per Subject 3 |               |    |  |  |

#### Number of Observations

| Number | of | Observations 0       | Read     | 249 |
|--------|----|----------------------|----------|-----|
| Number | of | ${\tt Observations}$ | Used     | 249 |
| Number | of | ${\tt Observations}$ | Not Used | 0   |

# Iteration History

| Iteration | Evaluations | -2 Res Log Like | Criterion  |
|-----------|-------------|-----------------|------------|
| 0         | 1           | 732.28140459    |            |
| 1         | 2           | 709.32335027    | 0.12021925 |
| 2         | 1           | 703.89537215    | 0.00996137 |
| 3         | 1           | 702.86138588    | 0.0000005  |
| 4         | 4           | 702.86138470    | 0.0000004  |
| 5         | 1           | 702.86137966    | 0.00000000 |

unscaled BE 90% CI - guidance version

The Mixed Procedure

Convergence criteria met.

#### Estimated G Matrix

| Row | Effect | TRT | SUBJ | Col1   | Col2   |
|-----|--------|-----|------|--------|--------|
| 1   | TRT    | Α   | 1    | 0.8078 | 0.3833 |
| 2   | TRT    | В   | 1    | 0.3833 | 0.4155 |

#### Covariance Parameter Estimates

| Cov Parm | Subject | Group | Estimate |
|----------|---------|-------|----------|
|          |         |       |          |
| FA(1,1)  | SUBJ    |       | 0.8988   |
| FA(2,1)  | SUBJ    |       | 0.4264   |
| FA(2,2)  | SUBJ    |       | 0.4834   |
| Residual | SUBJ    | TRT A | 0.1186   |

Page 98 of 168

Residual SUBJ TRT B 0.7539

### Fit Statistics

-2 Res Log Likelihood 702.9
AIC (smaller is better) 712.9
AICC (smaller is better) 713.1
BIC (smaller is better) 725.0

#### Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq 4 29.42 <.0001

# Type 3 Tests of Fixed Effects

|            | Num | Den  |         |        |
|------------|-----|------|---------|--------|
| Effect     | DF  | DF   | F Value | Pr > F |
|            |     |      |         |        |
| Group      | 1   | 77   | 0.18    | 0.6739 |
| SEQ        | 2   | 77.6 | 0.03    | 0.9742 |
| Group*SEQ  | 2   | 77.6 | 2.50    | 0.0887 |
| PER(Group) | 4   | 158  | 2.41    | 0.0511 |
| TRT        | 1   | 78.8 | 3.36    | 0.0706 |
| Group*TRT  | 1   | 78.8 | 0.10    | 0.7582 |

#### Estimates

Standard

Label Estimate Error DF t Value Pr > |t| Alpha Lower Upper T vs. R 0.1967 0.1073 78.8 1.83 0.0706 0.1 0.01807 0.3752

unscaled BE 90% CI - guidance version 24

The Mixed Procedure

### Least Squares Means

| Effect | TRT | Estimate | Standard<br>Error | DF   | t Value | Pr >  t |
|--------|-----|----------|-------------------|------|---------|---------|
| TRT    | A   | 5.2064   | 0.1059            | 77.6 | 49.15   | <.0001  |
| TRT    | B   | 5.0097   | 0.09799           | 77.4 | 51.13   | <.0001  |

unscaled BE 90% CI - guidance version 25

The Mixed Procedure

Model Information

Data Set WORK.PKN
Dependent Variable LAUCT

Covariance Structures Factor Analytic, Variance

Components

None

Subject Effects SUBJ, SUBJ Group Effect TRT Estimation Method REML

Residual Variance Method

Fixed Effects SE Method Model-Based
Degrees of Freedom Method Satterthwaite

#### Class Level Information

| Class | Levels | Values                        |
|-------|--------|-------------------------------|
| Group | 2      | 1 2                           |
| SEQ   | 3      | 1 2 3                         |
| SUBJ  | 83     | 1 2 3 4 5 6 7 8 9 10 12 13 14 |
|       |        | 15 16 17 18 19 20 21 23 24 25 |
|       |        | 26 27 28 29 30 31 32 33 34 35 |
|       |        | 36 37 38 39 42 43 44 45 46 47 |
|       |        | 48 49 50 51 52 53 54 55 56 57 |
|       |        | 58 59 60 61 63 64 65 66 67 68 |
|       |        | 69 70 71 72 73 74 75 76 77 78 |
|       |        | 79 80 82 83 84 85 86 87 89 90 |
| PER   | 3      | 1 2 3                         |
| TRT   | 2      | АВ                            |

# Dimensions

| Covariance  | Parameters    | 5  |
|-------------|---------------|----|
| Columns in  | Χ             | 24 |
| Columns in  | Z Per Subject | 2  |
| Subjects    |               | 83 |
| Max Obs Per | Subject       | 3  |

### Number of Observations

| Nu | mber | of | Observations        | Read     | 249 |
|----|------|----|---------------------|----------|-----|
| Nu | mber | of | Observations        | Used     | 249 |
| Nu | mber | of | <b>Observations</b> | Not Used | 0   |

# Iteration History

| Iteration | Evaluations | -2 Res Log Like | Criterion  |
|-----------|-------------|-----------------|------------|
| 0         | 1           | 696.41380189    |            |
| 1         | 2           | 667.21756057    | 0.04815432 |
| 2         | 1           | 664.01463270    | 0.30261259 |
| 3         | 1           | 663.95117818    | 0.00116396 |
| 4         | 1           | 663.95091004    | 0.0000004  |
| 5         | 1           | 663.95091002    | 0.00000000 |

# The Mixed Procedure

Convergence criteria met but final hessian is not positive definite.

#### Estimated G Matrix

| Row | Effect | TRT | SUBJ | Col1   | Col2   |
|-----|--------|-----|------|--------|--------|
| 1   | TRT    | Α   | 1    | 0.5139 | 0.3344 |
| 2   | TRT    | В   | 1    | 0.3344 | 0.3770 |

#### Covariance Parameter Estimates

| Cov Parm | Subject | Group | Estimate |
|----------|---------|-------|----------|
| FA(1,1)  | SUBJ    |       | 0.7168   |
| FA(2,1)  | SUBJ    |       | 0.4664   |
| FA(2,2)  | SUBJ    |       | 0.3992   |
| Residual | SUBJ    | TRT A | 0.2357   |
| Residual | SUBJ    | TRT B | 0.6517   |
|          |         |       |          |

### Fit Statistics

| -2 Res Log Likelihood    | 664.0 |
|--------------------------|-------|
| AIC (smaller is better)  | 674.0 |
| AICC (smaller is better) | 674.2 |
| BIC (smaller is better)  | 686.0 |

### Null Model Likelihood Ratio Test

| DF | Chi-Square | Pr > ChiSq |
|----|------------|------------|
| 4  | 32.46      | <.0001     |

# Type 3 Tests of Fixed Effects

|            | Num | Den  |         |        |
|------------|-----|------|---------|--------|
| Effect     | DF  | DF   | F Value | Pr > F |
|            |     |      | 0.04    | 0.0540 |
| Group      | 1   | 77   | 0.21    | 0.6513 |
| SEQ        | 2   | 78.1 | 0.72    | 0.4879 |
| Group*SEQ  | 2   | 78.1 | 4.05    | 0.0212 |
| PER(Group) | 4   | 157  | 1.74    | 0.1439 |
| TRT        | 1   | 78.6 | 2.78    | 0.0997 |
| Group*TRT  | 1   | 78.6 | 0.10    | 0.7529 |
|            |     |      |         |        |

Estimates

Standard

Label Estimate Error DF t Value Pr > |t| Alpha Upper Lower T vs. R 0.09733 78.6 0.1 0.000154 0.3242 0.1622 1.67 0.0997 unscaled BE 90% CI - guidance version

27

Least Squares Means

Standard Effect TRT **Estimate** Error DF t Value Pr > |t|7.6968 0.09529 80.77 <.0001 TRT Α 77.5 TRT В 7.5346 0.09228 77.4 81.65 <.0001

unscaled BE 90% CI - guidance version 28

The Mixed Procedure

The Mixed Procedure

Model Information

Data Set WORK.PKN Dependent Variable LAUCINF

Covariance Structures Factor Analytic, Variance

Components

Subject Effects SUBJ, SUBJ Group Effect TRT Estimation Method REML

Residual Variance Method None Fixed Effects SE Method Model-Based

Degrees of Freedom Method Satterthwaite

Class Level Information

Class Levels Values Group 2 1 2 SEQ 3 1 2 3 SUBJ 83 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 82 83 84 85 86 87 89 90 PER 3 1 2 3 TRT 2 АВ

Dimensions

Covariance Parameters 5 Columns in X 24

| Columns  | in Z | Z Per | Subject | 2  |
|----------|------|-------|---------|----|
| Subjects | 3    |       |         | 83 |
| Max Obs  | Per  | Subje | ect     | 3  |

### Number of Observations

| Number | of | Observations         | Read     | 249 |
|--------|----|----------------------|----------|-----|
| Number | of | ${\tt Observations}$ | Used     | 222 |
| Number | of | Observations         | Not Used | 27  |

### Iteration History

| Iteration | Evaluations | -2 Res Log Like | Criterion  |
|-----------|-------------|-----------------|------------|
| 0         | 1           | 522.95375021    |            |
| 1         | 2           | 515.91312817    | 0.13504295 |
| 2         | 1           | 512.31120946    | 0.01422259 |
| 3         | 1           | 511.58272740    | 0.00009267 |
| 4         | 1           | 511.57698263    | 0.00001072 |
| 5         | 1           | 511.57698012    | 0.00000000 |

unscaled BE 90% CI - guidance version

The Mixed Procedure

Convergence criteria met.

# Estimated G Matrix

| Row | Effect | TRT | SUBJ | Col1   | Col2   |
|-----|--------|-----|------|--------|--------|
| 1   | TRT    | Α   | 1    | 0.4795 | 0.1512 |
| 2   | TRT    | В   | 1    | 0.1512 | 0.1545 |

#### Covariance Parameter Estimates

| Cov Parm | Subject | Group | Estimate |
|----------|---------|-------|----------|
| FA(1,1)  | SUBJ    |       | 0.6925   |
| FA(2,1)  | SUBJ    |       | 0.2184   |
| FA(2,2)  | SUBJ    |       | 0.3268   |
| Residual | SUBJ    | TRT A | 0.06786  |
| Residual | SUBJ    | TRT B | 0.4545   |

#### Fit Statistics

| -2 Res Log Likelihood    | 511.6 |
|--------------------------|-------|
| AIC (smaller is better)  | 521.6 |
| AICC (smaller is better) | 521.9 |
| BIC (smaller is better)  | 533.7 |

Page 103 of 168

#### Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq 4 11.38 0.0226

### Type 3 Tests of Fixed Effects

|            | Num | Den  |         |        |
|------------|-----|------|---------|--------|
| Effect     | DF  | DF   | F Value | Pr > F |
|            |     |      |         |        |
| Group      | 1   | 74.4 | 0.14    | 0.7140 |
| SEQ        | 2   | 72.9 | 0.30    | 0.7423 |
| Group*SEQ  | 2   | 72.9 | 3.32    | 0.0418 |
| PER(Group) | 4   | 140  | 0.63    | 0.6454 |
| TRT        | 1   | 71.4 | 2.29    | 0.1345 |
| Group*TRT  | 1   | 71.4 | 0.60    | 0.4399 |

#### Estimates

Standard

Label Estimate Error DF t Value Pr > |t| Alpha Lower Upper T vs. R 0.1409 0.09305 71.4 1.51 0.1345 0.1 -0.01421 0.2959

unscaled BE 90% CI - guidance version 30

The Mixed Procedure

### Least Squares Means

| Effect | TRT | Estimate | Standard<br>Error | DF   | t Value | Pr >  t |
|--------|-----|----------|-------------------|------|---------|---------|
| TRT    | A   | 7.9187   | 0.08559           | 70.9 | 92.52   | <.0001  |
| TRT    | B   | 7.7778   | 0.07146           | 67.5 | 108.84  | <.0001  |

scaled average BE 31 intermediate analysis - &ipar glm

The GLM Procedure

### Class Level Information

Class Levels Values
SEQ 3 1 2 3

Number of Observations Read 83 Number of Observations Used 83

scaled average BE 32 intermediate analysis - &ipar glm

### The GLM Procedure

Dependent Variable: ilat

| Dependent var | Table: Ilat |        |         |           |               |           |          |        |
|---------------|-------------|--------|---------|-----------|---------------|-----------|----------|--------|
|               |             |        |         | Sum of    |               |           |          |        |
| Source        |             | DF     |         | Squares   | Mea           | n Square  | F Value  | Pr > F |
| Model         |             | 2      | 3.0     | 1478172   | 1.            | 50739086  | 1.92     | 0.1527 |
| Error         |             | 80     | 62.6    | 7836582   | 0.            | 78347957  |          |        |
| Corrected Tot | al          | 82     | 65.6    | 9314754   |               |           |          |        |
|               |             |        |         |           |               |           |          |        |
| R-Square      | Coeff Var   | Root   | MSE     | ilat      | Mean          |           |          |        |
| 0.045892      | 537.7830    | 0.88   | 5144    | 0.16      | 4591          |           |          |        |
|               |             |        |         |           |               |           |          |        |
| Source        |             | DF     | Ту      | pe I SS   | Mea           | n Square  | F Value  | Pr > F |
| SEQ           |             | 2      | 3.0     | 1478172   | 1.            | 50739086  | 1.92     | 0.1527 |
|               |             |        |         |           |               |           |          |        |
| Source        |             | DF     | Туре    | III SS    | Mea           | n Square  | F Value  | Pr > F |
| SEQ           |             | 2      | 3.0     | 1478172   | 1.            | 50739086  | 1.92     | 0.1527 |
|               |             |        |         |           |               |           |          |        |
| Parameter     |             | Esti   | mata    | St        | andar<br>Erro |           | ue Dr    | >  t   |
| i ai aile cei |             | LSCI   | illa CC |           | LITO          | t var     | ue II    | ,   [  |
| average       |             | 0.1683 | 8021    | 0.09      | 72122         | 9 1.      | 73 0     | .0871  |
| Parameter     |             | 90% Co | nfide   | nce Limit | s             |           |          |        |
| average       |             | 0.0066 | 0685    | 0.33015   | 357           |           |          |        |
| dev iglmilat1 | l           |        |         |           |               |           |          | 33     |
| Obs Dependent | Source      |        | DF      |           | SS            | M         | S FValue | ProbF  |
| 1 ilat        | Model       |        | 2       | 3.01478   | 172           | 1.5073908 | 6 1.92   | 0.1527 |
| 2 ilat        | Error       | -+-1   | 80      | 62.67836  |               | 0.7834795 | 7 _      | _      |
| 3 ilat        | Corrected T | σται   | 82      | 65.69314  | /54           | _         | _        | _      |

scaled average BE 34 intermediate analysis - &dpar glm

The GLM Procedure

Class Level Information

Class Levels Values
SEQ 3 1 2 3

| Number of Observations Re                      |       | 83<br>83                 |             |
|------------------------------------------------|-------|--------------------------|-------------|
| scaled average BE<br>intermediate analysis - & | kdpar | glm                      |             |
| The GLM Procedure                              |       |                          |             |
| Dependent Variable: dlat                       |       |                          |             |
| Source                                         | DF    | Sum of<br>Squares        | Mean Square |
| Model                                          | 2     | 1.6059298                | 0.8029649   |
| Error                                          | 80    | 105.7041724              | 1.3213022   |
| Corrected Total                                | 82    | 107.3101022              |             |
| R-Square Coeff Var<br>0.014965 919.9929        |       | t MSE dlat<br>49479 0.12 |             |
| Source                                         | DF    | Type I SS                | Mean Square |
| SEQ                                            | 2     | 1.60592976               | 0.80296488  |

| Source                  | DF     | Type I SS      | Mean Square | F Value | Pr > F |
|-------------------------|--------|----------------|-------------|---------|--------|
| SEQ                     | 2      | 1.60592976     | 0.80296488  | 0.61    | 0.5471 |
| Source                  | DF     | Type III SS    | Mean Square | F Value | Pr > F |
| SEQ                     | 2      | 1.60592976     | 0.80296488  | 0.61    | 0.5471 |
| output needed for mixed | scaled | av. BE - using | glm         |         | 36     |

35

F Value Pr > F

0.61 0.5471

| 0bs   | method_<br>used                          | unscabe_<br>lower | unscabe_<br>upper | dfi  | s2i     | param   |      | StdErr  |  |  |
|-------|------------------------------------------|-------------------|-------------------|------|---------|---------|------|---------|--|--|
| 1     | Scaled/PE                                | 1.00015           | 1.38289           | 80   | 0.78348 | LAUCT   | 0.09 | 9721229 |  |  |
| 0bs   | pointest                                 | x                 | boundx            | ni   | dfd     | s2wr    | nd   | theta   |  |  |
| 1     | 1.18339                                  | 0.018902          | 0.10900           | 83   | 80      | 0.66065 | 83   | 0.79669 |  |  |
| 0bs   | у                                        | boundy            | sWR               | crit | bound   | outcome |      |         |  |  |
| 1     | -0.52633                                 | -0.41330          | 0.81280           | -0.  | 36288   | PASS    |      |         |  |  |
| final | final output - &parameter - using glm 37 |                   |                   |      |         |         |      |         |  |  |

method\_ unscabe\_ unscabe\_
Obs used lower upper param pointest s2wr sWR critbound outcome

1 Scaled/PE 1.00015 1.38289 LAUCT 1.18339 0.66065 0.81280 -0.36288 PASS

scaled average BE 38

intermediate analysis - &ipar glm

The GLM Procedure

Class Level Information

Class Levels Values

SEQ 3 1 2 3

Number of Observations Read 83 Number of Observations Used 62

scaled average BE 39

intermediate analysis - &ipar glm

The GLM Procedure

Dependent Variable: ilai

Model 2 1.13649455 0.56824727 0.93 0.3987

Error 59 35.89252901 0.60834795

Corrected Total 61 37.02902356

R-Square Coeff Var Root MSE ilai Mean

0.030692 518.6931 0.779967 0.150372

Source DF Type I SS Mean Square F Value Pr > F

SEQ 2 1.13649455 0.56824727 0.93 0.3987

Source DF Type III SS Mean Square F Value Pr > F

SEQ 2 1.13649455 0.56824727 0.93 0.3987

Standard

Parameter Estimate Error t Value Pr > |t|

average 0.15346786 0.10008293 1.53 0.1305

Parameter 90% Confidence Limits

| average | -0.01378003 | 0.32071575 |
|---------|-------------|------------|

| dev | iqlmilai1 | 40 | ) |
|-----|-----------|----|---|
|     |           |    |   |

| ado | Dependent | Source | DF | 88          | MS         | FValue Probf |  |
|-----|-----------|--------|----|-------------|------------|--------------|--|
| 1   | ilai      | Model  | 2  | 1.13649455  | 0.56824727 | 0.93 0.3987  |  |
| 2   | ilai      | Error  | 59 | 35.89252901 | 0.60834795 |              |  |

3 ilai Corrected Total 61 37.02902356 \_ \_ \_ \_

scaled average BE 41 intermediate analysis - &dpar glm

The GLM Procedure

Class Level Information

Class Levels Values

SEQ 3 1 2 3

Number of Observations Read 83 Number of Observations Used 67

scaled average BE 42 intermediate analysis - &dpar glm

The GLM Procedure

Dependent Variable: dlai

Model 2 1.89288754 0.94644377 1.11 0.3373

Error 64 54.79119904 0.85611248

Corrected Total 66 56.68408658

R-Square Coeff Var Root MSE dlai Mean

0.033394 3103.733 0.925263 0.029811

Source DF Type I SS Mean Square F Value Pr > F

SEQ 2 1.89288754 0.94644377 1.11 0.3373

Source DF Type III SS Mean Square F Value Pr > F

SEQ 2 1.89288754 0.94644377 1.11 0.3373

output needed for mixed scaled av. BE - using glm 43

| 0bs | metho<br>s used | _       | unscabe_<br>lower | unscabe<br>upper | _       | s2i     | param      | n       | Std     | Err |
|-----|-----------------|---------|-------------------|------------------|---------|---------|------------|---------|---------|-----|
| 1   | Scaled          | d/PE    | 0.98590           | 1.3443           | 8 59    | 0.6083  | 5 LAUCIN   | NF      | 0.10008 | 293 |
| 0bs | s pointe        | est     | x                 | bound            | lx ni   | dfd     | s2wr       | nd      | the     | ta  |
| 1   | 1.165           | 587     | 0.013536          | 0.1028           | 62      | 64      | 0.42806    | 67      | 0.79    | 669 |
| 0bs | у у             |         | boundy            | sWR              | cr      | itbound | outcome    |         |         |     |
| 1   | -0.341          | 103     | -0.26084          | 0.6542           | .6 -    | 0.20746 | PASS       |         |         |     |
| fir | nal output      | t - &pa | rameter -         | using gl         | .m      |         |            |         |         | 44  |
|     |                 | u       | u                 |                  |         |         |            |         |         |     |
|     |                 | n       | n                 |                  |         |         |            |         |         |     |
|     | m               | s       | s                 |                  |         |         |            |         |         |     |
|     | е               | С       | С                 |                  |         |         |            |         |         |     |
|     | t               | а       | а                 |                  |         |         |            | С       |         |     |
|     | h               | b       | b                 |                  | р       |         |            | r       |         |     |
|     | 0               | е       | е                 |                  | 0       |         |            | i       | 0       |     |
|     | d               | _       | _                 |                  | i       |         |            | t       | u       |     |
|     | _               | 1       | u                 | р                | n       |         |            | b       | t       |     |
|     | u               | 0       | р                 | а                | t       | S       |            | 0       | С       |     |
| 0   | S               | W       | р                 | r                | е       | 2       | S          | u       | 0       |     |
| b   | е               | е       | е                 | а                | S       | W       | W          | n       | m       |     |
| s   | d               | r       | r                 | m                | t       | r       | R          | d       | е       |     |
| 1 5 | Scaled/PE       | 0.9859  | 0 1.34438         | LAUCINF          | 1.16587 | 0.42806 | 0.65426 -0 | 0.20746 | PASS    |     |

scaled average BE 45 intermediate analysis - &ipar glm

The GLM Procedure

Class Level Information

Class Levels Values
SEQ 3 1 2 3

Number of Observations Read 83 Number of Observations Used 83

scaled average BE 46 intermediate analysis - &ipar glm

The GLM Procedure

Dependent Variable: ilc

Sum of

| Source         |                                | DF        | Squares                    | Mean Square | F Value Pr > F |    |
|----------------|--------------------------------|-----------|----------------------------|-------------|----------------|----|
| Model          |                                | 2 3       | .88381429                  | 1.94190714  | 1.99 0.1440    |    |
| Error          |                                | 80 78     | .23190645                  | 0.97789883  |                |    |
| Corrected To   | tal                            | 82 82     | .11572073                  |             |                |    |
| R-Square       | Coeff Var                      | Root MS   | E ilc M                    | Mean        |                |    |
| 0.047297       | 491.9215                       | 0.98888   | 8 0.201                    | 1025        |                |    |
| Source         |                                | DF        | Type I SS                  | Mean Square | F Value Pr > F |    |
| SEQ            |                                | 2 3       | .88381429                  | 1.94190714  | 1.99 0.1440    |    |
| Source         |                                | DF Ty     | pe III SS                  | Mean Square | F Value Pr > F |    |
| SEQ            |                                | 2 3       | .88381429                  | 1.94190714  | 1.99 0.1440    |    |
|                |                                |           | Sta                        | andard      |                |    |
| Parameter      |                                | Estimat   |                            | Error t Val | ue Pr >  t     |    |
| average        |                                | 0.2065365 | 8 0.108                    | 360612 1.   | 90 0.0608      |    |
| Parameter      |                                | 90% Confi | dence Limits               | 5           |                |    |
| average        |                                | 0.0258024 | 7 0.387270                 | 069         |                |    |
| dev iglmilc1   |                                |           |                            |             | 2              | 47 |
| Obs Dependen   | t Source                       | С         | F                          | SS M        | S FValue ProbF |    |
| 1 ilc          | Model                          |           | 2 3.883814                 |             |                |    |
| 2 ilc<br>3 ilc | Error<br>Corrected             |           | 0 78.231906<br>2 82.115720 |             | 3              |    |
| scaled avera   | ige BE<br>: analysis -         | &dpar glm |                            |             | 2              | 48 |
| The GLM Proc   | edure                          |           |                            |             |                |    |
| Class Lev      | el Informati                   | .on       |                            |             |                |    |
| Class          | Levels                         | Values    |                            |             |                |    |
| SEQ            | 3                              | 1 2 3     |                            |             |                |    |
|                | oservations R<br>oservations U |           | 83<br>83                   |             |                |    |
| scaled avera   | ıge BE                         |           |                            |             | 2              | 19 |

intermediate analysis - &dpar glm

The GLM Procedure

Dependent Variable: dlc

| Dependent Variable: dlc                                                                                                    |           |                   |         |         |         |             |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|---------|---------|---------|-------------|--|--|--|--|
| Source                                                                                                                     | DF        | Sum of<br>Squares | Mean    | Square  | F Value | Pr > F      |  |  |  |  |
| Model                                                                                                                      | 2         | 1.9790956         | 0.9     | 895478  | 0.65    | 0.5270      |  |  |  |  |
| Error                                                                                                                      | 80 12     | 2.5959020         | 1.5     | 324488  |         |             |  |  |  |  |
| Corrected Total                                                                                                            | 82 12     | 1.5749976         |         |         |         |             |  |  |  |  |
| R-Square Coeff Var                                                                                                         | Root MS   | ≣ dl              | c Mean  |         |         |             |  |  |  |  |
| 0.015887 918.0817                                                                                                          | 1.23792   | 1 0.              | 134838  |         |         |             |  |  |  |  |
| Source                                                                                                                     | DF        | Гуре I SS         | Mean    | Square  | F Value | Pr > F      |  |  |  |  |
| SEQ                                                                                                                        | 2 1       | .97909559         | 0.98    | 954779  | 0.65    | 0.5270      |  |  |  |  |
| Source                                                                                                                     | DF Ty     | oe III SS         | Mean    | Square  | F Value | Pr > F      |  |  |  |  |
| SEQ                                                                                                                        | 2 1       | .97909559         | 0.98    | 954779  | 0.65    | 0.5270      |  |  |  |  |
| output needed for mixed so                                                                                                 | caled av. | BE - usin         | g glm   |         |         | 50          |  |  |  |  |
| method_ unscabe_<br>Obs used lower                                                                                         | -         | _                 | s2i     | param   |         | StdErr      |  |  |  |  |
| 1 Scaled/PE 1.01823                                                                                                        | 3 1.455   | 34 80             | 0.97790 | LCMAX   | 0.10    | 0860612     |  |  |  |  |
| Obs pointest x                                                                                                             | boun      | dx ni             | dfd     | s2wr    | nd      | theta       |  |  |  |  |
| 1 1.22941 0.030862                                                                                                         | 2 0.149   | 98 83             | 80      | 0.76622 | 83      | 0.79669     |  |  |  |  |
| Obs y boundy                                                                                                               | sWR       | cri               | tbound  | outcome |         |             |  |  |  |  |
| 1 -0.61044 -0.47934                                                                                                        | 1 0.875   | 34 -0             | .40245  | PASS    |         |             |  |  |  |  |
| final output - &parameter - using glm 51                                                                                   |           |                   |         |         |         |             |  |  |  |  |
| method_ unscabe_ uns<br>Obs used lower u                                                                                   |           | am pointe         | st s2wr | sWR     | critbou | und outcome |  |  |  |  |
| 1 Scaled/PE 1.01823 1.45534 LCMAX 1.22941 0.76622 0.87534 -0.40245 PASS                                                    |           |                   |         |         |         |             |  |  |  |  |
| ANDA: 203286 Mesalamine Delayed Release Tablets USP STUDY TYPE: Fasting 52 SUMMARY OF STATISTICAL ANALYSIS - UNSCALED DATA |           |                   |         |         |         |             |  |  |  |  |

| Geometric Means |         |           |           |  |  |  |  |  |  |  |
|-----------------|---------|-----------|-----------|--|--|--|--|--|--|--|
| Parameter       | Test    | Reference | T/R Ratio |  |  |  |  |  |  |  |
|                 |         |           |           |  |  |  |  |  |  |  |
| LAUCT           | 2201.32 | 1871.79   | 1.18      |  |  |  |  |  |  |  |
| LAUCI           | 2748.11 | 2387.03   | 1.15      |  |  |  |  |  |  |  |
| LCMAX           | 182.43  | 149.86    | 1.22      |  |  |  |  |  |  |  |

ANDA: 203286 Mesalamine Delayed Release Tablets USP STUDY TYPE: Fasting 53 SUMMARY OF STATISTICAL ANALYSIS - UNSCALED DATA

| 909      | ₺ CI     |
|----------|----------|
| Lower CI | Upper CI |
|          |          |
| 100.02   | 138.29   |
| 98.59    | 134.44   |
| 101.82   | 145.53   |

# SUMMARY OF STATISTICAL ANALYSIS - SCALED DATA

| Parameter | T/R Ratio | Lower<br>90% CI |
|-----------|-----------|-----------------|
| LAUCT     | 1.18      | 100.02          |
| LAUCI     | 1.17      | 98.59           |
| LCMAX     | 1.23      | 101.82          |

### SUMMARY OF STATISTICAL ANALYSIS - SCALED DATA

Reference ID: 3404865

| Upper<br>90% CI | s2wr      | sWR       | Criteria Bound |
|-----------------|-----------|-----------|----------------|
| 138.29          | 0.6606511 | 0.8128045 | -0.362881      |
| 134.44          | 0.4280562 | 0.6542601 | -0.207455      |
| 145.53          | 0.7662244 | 0.8753424 | -0.402449      |

Page 112 of 168

54

56

### SUMMARY OF STATISTICAL ANALYSIS - SCALED DATA

| Method Used | OUTCOME |
|-------------|---------|
| Scaled/PE   | PASS    |
| Scaled/PE   | PASS    |
| Scaled/PE   | PASS    |

# 4.6.3 Fed Study Codes

```
/*-----
/ Program : HVScale3Period.SAS
/ SubMacros :
/ Updated : 15 Aug 2009
/ Purpose : To analyze three period reference-scaled bioequivalence
studies.
/ Notes : EXCEL DATA FILE MUST BE OPEN WHEN RUNNING THIS PROGRAM.
             : OUTPUT FILE (WORD DOCUMENT) CONTAINING SUMMARY TABLES IS
CREATED.
/ PARAMETERS: THE FOLLOWING COLUMNS SHOULD BE IN THE INPUT DATASET (EXCEL
/-----name----- -----description------
NAME OF VARIABLE
    SUBJ SUBJECT NUMBER
    TRT
             TREATMENT - CHARACTER (EITHER A OR B) A=TEST; B=REF
                  SEQUENCE NUMBER - NUMERIC (EITHER 1, 2, OR 3)
    SEQ
                  PERIOD NUMBER - NUMERIC (EITHER 1, 2, 3, OR 4)
    AUCT
            AREA UNDER CURVE 0-T
    AUCI
            AREA UNDER CURVE 0-INF
    CMAX
            CMAX
    TMAX
            TMAX
                 ELIMINATION RATE CONSTANT
    KEL
    THALF HALF LIFE
    sequence 1
                     R
                         R
                 T
                          R
                 R
                      T
    sequence 2
                 R R
    sequence 3
                          T
GROUP EFFECT:
Line 176: If trt*grp interaction is not significant,
```

```
remove TRT*GROUP term from line 176.
/-----
/ AMENDMENT HISTORY:
options nofmterr nocenter nodate symbolgen mlogic macrogen mprint ps=65
ls=80;
****STEP 1: ENTER ANDA INFORMATION *****;
%let drug= Mesalamine Delayed Release Tablets USP;
%let anda=203286;
%let studytype=FedALL;
*****STEP 2: ENTER UNITS FOR PK PARAMETERS *****;
%let aucunit = ng hr/mL;
%let cmaxunit = ng/mL;
%let timeunit = hr;
**** STEP 3: ENTER LOCATION OF DATASETS AND LOCATION FOR SAVING OUTPUT
REPORTS ****;
*let studydir=C:\Documents and Settings\renp\My Documents\203286Mesalamine;
***** STEP 4: ENTER THE NAME OF THE DATASET FILE (EXCEL FILE) *****;
%let excelfile = &studydir\203286FedSAS.xls;
**** STEP 5: ENTER THE NAME OF THE EXCEL WORKSHEET NAME CONTAINING STUDY
DATA ****;
%let sheetname = FePK;
proc import datafile="&excelfile"
         out=base
          dbms=excel replace;
              sheet="&sheetname";
               getnames=yes;
              mixed=yes;
run;
libname studylib "&studydir";
**** STEP 5: PROVIDE NAMES OF THE VARIABLES TO READ IN FROM EXCEL FILE
****;
***** PROVIDE STANDARD VARIABLE NAMES FROM THE PARAMETER LIST ABOVE *****;
**** VARIABLE NAMES: SUBJ TRT(A,B) SEQ(1,2) PER(1,2,3) AUCT AUCINF CMAX TMAX
KEL THALF *****;
data base;
 set base;
 /*sequence 1
                  T R
                            R
              R
     sequence 2
                        Т
```

```
R R T
    sequence 3
 * /
 IF SEQU="TR1R2" THEN SEQ=1;
 ELSE IF SEQU="R1TR2" THEN SEQ=2;
 ELSE IF SEQU="R1R2T" THEN SEQ=3;
 IF TREAT="T" THEN TRT="A";
 ELSE IF TREAT IN("R1", "R2") THEN TRT="B";
run;
proc print data=base;
run;
**********************
        **** DO NOT CHANGE ANYTHING BELOW THIS LINE ****;
**********************
data pk;
 set base;
 LAUCT=log(auct);
 LAUCINF=log(auci);
 LCMAX=log(cmax);
run;
data pkn;
 set pk;
run;
data full;
 set pkn;
run;
proc sort
 data=pkn;
 by seq subj per;
data test; set pkn; if trt='A'; latt=LAUCT; lait=LAUCINF; lct=LCMAX;
run;
data ref; set pkn; if trt='B';
run;
```

```
T R
                                 R
  /*sequence 1
      sequence 2
                       R
      sequence 3
                       R
                             R
  * /
/*** ORIGINAL DON'S CODE ***
data ref1; set ref; if (seq=1 and per=1) or (seq=2 and per=2) or (seq=3 and
per=1); lat1r=LAUCT; lai1r=LAUCINF; lc1r=LCMAX;
run;
***/
data ref1; set ref; if (seq=1 and per=2) or (seq=2 and per=1) or (seq=3 and
per=1); lat1r=LAUCT; lai1r=LAUCINF; lc1r=LCMAX;
run;
data ref2; set ref; if (seq=1 and per=3) or (seq=2 and per=3) or (seq=3 and
per=2); lat2r=LAUCT; lai2r=LAUCINF; lc2r=LCMAX;
run;
title "ref1";
proc print data=ref1;
run;
title "ref2";
proc print data=ref2;
run;
title;
data scavbe; merge test ref1 ref2; by seq subj;
ilat=latt-(0.5*(lat1r+lat2r)); *auct;
ilai=lait-(0.5*(lai1r+lai2r)); *auci;
ilc=lct-(0.5*(lc1r+lc2r));
                               *cmax;
dlat=lat1r-lat2r; *auct;
dlai=lai1r-lai2r; *auci;
                  *cmax;
dlc=lc1r-lc2r;
keep seg subj per trt ilat dlat ilai dlai ilc dlc;
proc print data=scavbe;
title1 'dataset for scaled average BE';
run;
%macro calc(param,no);
      PROC MIXED data=pkn;
      CLASSES GROUP SEQ SUBJ PER TRT;
     MODEL &param = GROUP SEQ GROUP*SEQ PER(GROUP) TRT TRT*GROUP /
DDFM=SATTERTH;
     RANDOM TRT/TYPE=FA0(2) SUB=SUBJ G;
     REPEATED/GRP=TRT SUB=SUBJ;
     lsmeans trt; /* DEV */
      ods output lsmeans=lsm&param(keep=trt estimate); /* DEV */
      ods output Estimates=unsc&no;
     title1 'unscaled BE 90% CI - guidance version';
     run;
```

```
DATA UPARAM&NO(KEEP=PARAMETER LCI UCI);
        SET UNSC&NO;
        ESTIMATE = 100 * EXP(ESTIMATE);
        PARAMETER = "&PARAM";
        LCI = 100 * EXP(LOWER);
       UCI = 100 * EXP(UPPER);
      RUN;
   *** for scaled dataset***;
      DATA UNSC&PARAM;
       SET UNSC&NO;
      RUN;
%mend calc;
%calc(LCMAX,1);
%calc(LAUCT,2);
**** ESTIMATES ****;
DATA LSMLAUCT;
  SET LSMLAUCT;
 PARAMETER = "LAUCT";
RUN;
DATA LSMLAUCINF;
 SET LSMLAUCINF;
 PARAMETER = "LAUCI";
RUN;
DATA LSMLCMAX;
 SET LSMLCMAX;
 PARAMETER = "LCMAX";
RUN;
DATA UESTIMATE;
 SET LSMLAUCT LSMLAUCINF LSMLCMAX;
RUN;
DATA UESTIMATE;
  SET UESTIMATE;
 GEOMEAN = EXP(ESTIMATE);
RUN;
PROC SORT
 DATA=UESTIMATE;
 BY PARAMETER;
RUN;
PROC TRANSPOSE
 DATA=UESTIMATE
 OUT=TRANSUEST(DROP= NAME );
 VAR GEOMEAN;
 BY PARAMETER;
```

```
ID TRT;
RUN;
DATA UEST;
  SET TRANSUEST;
 RATIO = ROUND((A/B), .01);
RUN;
DATA UALL;
 SET UPARAM1 UPARAM2 UPARAM3;
RUN;
PROC SORT
 DATA=UALL;
 BY PARAMETER;
RUN;
PROC SORT
 DATA=UEST;
 BY PARAMETER;
RUN;
DATA UPARAMS;
 MERGE UEST
          UALL;
 BY PARAMETER;
RUN;
*** PROPER ORDER AUCT, AUCI, CMAX ***;
DATA UPARAMS;
 SET UPARAMS;
 IF PARAMETER = "LAUCT" THEN ORDER=1;
  ELSE IF PARAMETER = "LAUCI" THEN ORDER=2;
 ELSE IF PARAMETER = "LCMAX" THEN ORDER=3;
RUN;
PROC SORT
 DATA=UPARAMS;
 BY ORDER;
RUN;
proc template;
  define style mystyle1;
 parent = styles.rtf;
   REPLACE fonts /
       'docFont' = ("Arial", 8pt)
     'TitleFont2' = ("Arial", 8pt, Bold)
       'TitleFont' = ("Arial", 8pt, Bold)
       'StrongFont' = ("Arial", 8pt, Bold)
       'EmphasisFont' = ("Arial",8pt)
       'FixedEmphasisFont' = ("Arial", 8pt)
```

```
'FixedStrongFont' = ("Arial", 8pt, Bold)
       'FixedHeadingFont' = ("Arial", 8pt, Bold)
       'BatchFixedFont' = ("Arial", 8pt)
       'FixedFont' = ("Arial",8pt)
       'headingEmphasisFont' = ("Arial", 8pt, Bold);
    style SysTitleAndFooterContainer from Container /
      cellpadding = 2
      cellspacing = 2
      borderwidth = 0;
      REPLACE Body from Document /
        bottommargin = 1.0in
        topmargin = 1.0in
        rightmargin = 1in
        leftmargin = 1in;
  END;
run;
data unsc1; set unsc1; unscabe_lower=exp(lower); unscabe_upper=exp(upper);
keep unscabe_lower unscabe_upper; run;
***** SCALED ANALYSIS ****;
%MACRO SCALE(parameter, ipar, dpar);
      proc glm data=scavbe;
      class seq;
      model &ipar =seq/clparm alpha=0.1;
      estimate 'average' intercept 1 seq 0.333333333 0.3333333333
0.333333333;
      ods output overallanova=iglm&ipar.1;
      ods output Estimates=iglm&ipar.2;
      ods output NObs=iglm&ipar.3;
      title1 'scaled average BE';
      title2 'intermediate analysis - &ipar glm';
      run;
title "dev iglm&ipar.1";
proc print data=iglm&ipar.1;
run;
      proc glm data=scavbe;
      class seq;
      model &dpar =seq;
      ods output overallanova=dqlm&dpar.1;
      ods output NObs=dqlm&dpar.3;
      title1 'scaled average BE';
      title2 'intermediate analysis - &dpar glm';
```

```
run;
      data unsc&PARAMETER; set unsc&PARAMETER; unscabe_lower=exp(lower);
unscabe_upper=exp(upper);
     keep unscabe lower unscabe upper;
     run;
     data iglm&ipar.1; set iglm&ipar.1; if _n_=2; dfi=df; s2i=ms; keep dfi
s2i param;
     param = "&parameter";
    run;
      data iglm&ipar.2; set iglm&ipar.2; pointest=exp(estimate);
x=(estimate**2)-(stderr**2);
      boundx=(max((abs(LowerCL)),(abs(UpperCL))))**2;
     keep pointest x boundx stderr param;
     param = "&parameter";
   run;
      data iqlm&ipar.3; set iqlm&ipar.3; if n = 2; ni=NobsUsed; keep ni
param;
     param = "&parameter";
  run;
      data dglm&dpar.1; set dglm&dpar.1; if _n_=2; dfd=df; s2wr=ms/2; keep
dfd s2wr param;
     param = "&parameter";
    run;
      data dglm&dpar.3; set dglm&dpar.3; if _n_ = 2; nd=NobsUsed; keep nd
param;
     param = "&parameter";
   run;
     data idallglm&parameter;
        length method used $15;
     merge unsc&parameter iglm&ipar.1 iglm&ipar.2 iglm&ipar.3 dglm&dpar.1
dglm&dpar.3;
boundy=y*dfd/cinv(0.95,dfd); sWR=sqrt(s2wr);
      critbound=(x+y)+sqrt(((boundx-x)**2)+((boundy-y)**2));
      outcome='FAIL';
      if (s2wr < 0.086436) then method_used='Unscaled'; else
method used='Scaled/PE';
      if ((s2wr < 0.086436) and (unscabe_lower ge 0.8) and (unscabe_upper le
1.25)) then outcome='PASS';
      if ((s2wr ge 0.086436) and (pointest ge 0.8) and (pointest le 1.25) and
(critbound le 0)) then outcome='PASS';
     else outcome='FAIL';
 run;
     proc print data=idallqlm&parameter;
      title1 'output needed for mixed scaled av. BE - using qlm';
     data finalglm; set idallglm&parameter;
```

```
keep param s2wr sWR unscabe_lower unscabe_upper pointest critbound
outcome method_used;
      run;
      proc print data=finalqlm;
      title1 'final output - &parameter - using glm';
%mend scale;
%scale(LAUCT, ilat, dlat);
%scale(LAUCINF, ilai, dlai);
data all;
  set idallqlmLAUCT
      idallqlmLAUCINF
        idallglmLCMAX;
       unscabe lower = round((unscabe lower*100),.01);
       unscabe upper = round((unscabe upper*100),.01);
run;
ods rtf file="&studydir\&ANDA.-ANALYSIS.doc" style=mystyle1 bodytitle;
**** ARITHMETIC MEANS ****;
/*
footnote "* Tmax values are presented as median, range.";
TITLE "ARITHMETIC MEANS AND RATIOS - REPLICATE 1 (PERIODS 1 AND 2)";
proc report data=pkratio1 nowd split='\' box
  style(header)={background=lightorange
                 foreground=black}
  style(column)={background=white
                 foreground=black};
  column nname units ("Test" mean1 cv1 min1 max1)
         ("Reference" mean2 cv2 min2 max2)
             ("Ratio" rmean12);
 define nname /format=$12. spacing=2 "Parameter";
  define units /format=$12. spacing=2 "Unit";
  define mean1 /format=8.3 spacing=2 "Mean";
 define cv1  /format=8.2 spacing=2 "CV%";
define min1  /format=8.2 spacing=2 "Min";
  define max1 /format=8.2 spacing=2 "Max";
  define mean2 /format=8.3 spacing=2 "Mean";
  define cv2 /format=8.2 spacing=2 "CV%";
 define min2 /format=8.2 spacing=2 "Min";
 define max2 /format=8.2 spacing=2 "Max";
 define rmean12 /format=8.2 spacing=2 "(T/R)";
run;
footnote;
footnote "* Tmax values are presented as median, range.";
TITLE "ARITHMETIC MEANS AND RATIOS - REPLICATE 2 (PERIODS 3 AND 4)";
proc report data=pkratio2 nowd split='\' box
```

```
style(header)={background=lightorange
                 foreground=black}
  style(column)={background=white
                 foreground=black};
  column nname units ("Test" mean1 cv1 min1 max1)
         ("Reference" mean2 cv2 min2 max2)
             ("Ratio" rmean12);
  define nname /format=$12. spacing=2 "Parameter";
  define units /format=$12. spacing=2 "Unit";
  define mean1 /format=8.3 spacing=2 "Mean";
  define cv1 /format=8.2 spacing=2 "CV%";
  define min1 /format=8.2 spacing=2 "Min";
  define max1 /format=8.2 spacing=2 "Max";
 define mean2 /format=8.3 spacing=2 "Mean";
 define cv2  /format=8.2 spacing=2 "CV%";
define min2  /format=8.2 spacing=2 "Min";
 define max2 /format=8.2 spacing=2 "Max";
 define rmean12 /format=8.2 spacing=2 "(T/R)";
run;
footnote;
footnote "* Tmax values are presented as median, range.";
TITLE "ARITHMETIC MEANS AND RATIOS - ALL PERIODS (PERIODS 1, 2, 3, AND 4)";
proc report data=pkratio3 nowd split='\' box
  style(header)={background=lightorange
                 foreground=black}
  style(column)={background=white
                 foreground=black};
  column nname units ("Test" mean1 cv1 min1 max1)
         ("Reference" mean2 cv2 min2 max2)
             ("Ratio" rmean12);
 define nname /format=$12. spacing=2 "Parameter";
 define units /format=$12. spacing=2 "Unit";
  define mean1 /format=8.3 spacing=2 "Mean";
  define cv1 /format=8.2 spacing=2 "CV%";
  define min1 /format=8.2 spacing=2 "Min";
  define max1 /format=8.2 spacing=2 "Max";
 define mean2 /format=8.3 spacing=2 "Mean";
 define cv2 /format=8.2 spacing=2 "CV%";
 define min2 /format=8.2 spacing=2 "Min";
 define max2 /format=8.2 spacing=2 "Max";
 define rmean12 /format=8.2 spacing=2 "(T/R)";
run;
footnote;
* /
*** UNSCALED ANALYSIS REPORT ****;
title1 "ANDA: &anda
                     &drug
                                STUDY TYPE: &STUDYTYPE";
title2 "SUMMARY OF STATISTICAL ANALYSIS - UNSCALED DATA";
      proc report
        data=uparams
```

```
headline
       headskip
       nowd
        split="|" box
  style(header)={background=lightorange
                 foreground=black}
  style(column) = {background=white
                 foreground=black};
        column parameter ("Geometric Means | " a b) ratio ("90% CI | " lci uci);
       define parameter /display "Parameter" width=20 center;
       define a
                              /display "Test"
                                                   width=15 center
format=8.2;
       define b
                             /display "Reference" width=15 center
format=8.2;
       define ratio
                             /display "T/R Ratio" width=15 center
format=8.2;
       define lci
                             /display "Lower CI" width=20 center format=8.2;
                             /display "Upper CI" width=20 center format=8.2;
       define uci
     run;
***** SCALED ANALYSIS REPORT ****;
title1 "SUMMARY OF STATISTICAL ANALYSIS - SCALED DATA";
     proc report
       data=all
       headline
       headskip
       nowd
        split='|' box
  style(header)={background=lightorange
                 foreground=black}
  style(column) = {background=white
                 foreground=black};
       column param pointest unscabe_lower unscabe_upper s2wr swr critbound
method_used outcome;
       define param /display "Parameter" width=20 center;
       define pointest /display "T/R Ratio" width=15 center format=8.2;
       define unscabe_lower /display "Lower | 90% CI" width=20 center
format=8.2;
       define unscabe_upper /display "Upper | 90% CI" width=20 center
format=8.2;
       define s2wr /display "s2wr" width=15 center;
       define swr /display "sWR" width=15 center;
       define critbound /display "Criteria Bound" width=15 center;
       define method used /display "Method Used" width=25 center;
       define outcome /display "OUTCOME" width=15 center;
     run;
ods rtf close;
```

#### 4.6.4 **Fed Study Output**

| G T T A A A C T T H  S r S r S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SUMMA    | RY         | 0F | STATIST | ICA | L AN | ALYSIS - S | CALED DAT | ·A      |    |        |       |   | 48 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|----|---------|-----|------|------------|-----------|---------|----|--------|-------|---|----|
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |            | G  |         |     | Т    |            |           |         |    |        | т     |   |    |
| Decoration   Color   Decoration   Color   Decoration   Color   Color |          | s          |    | S       |     |      | Α          | Α         | С       | Т  |        |       |   |    |
| Description   Property   Proper | 0        |            |    |         | Р   |      |            |           |         |    |        |       | s | Т  |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |            |    |         |     |      |            |           |         |    | K      |       |   |    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |            |    |         |     |      |            |           |         |    |        |       |   |    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |            | •  |         |     |      |            |           |         |    |        |       |   |    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        | (b)<br>(6) | 1  | R1R2T   | 1   | R1   | 3834.63    | 3916.77   | 408.00  | 28 | 0.3365 | 2.06  | 3 | В  |
| 4         1         R1TR2         1         R1         258.81         .         58.93         24         .         .         2         B           5         1         R1TR2         2         T         1530.85         1554.76         94.44         24         0.0965         7.18         2         A           6         1         R1TR2         3         R2         649.59         .         73.95         36         .         2         B           7         1         TRIR2         1         T         5633.45         5661.88         286.70         13         0.1077         6.43         1         A           8         1         TRIR2         2         R1         1658.20         1716.9         86.84         24         0.0738         9.39         1         B           9         1         TRIR2         1         R1         1375.01         1520.78         90.53         24         0.0738         9.39         1         B           10         2         R1R2         1         R1375.01         1520.78         90.53         24         0.0738         9.39         1         B           11         R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2        | , ,        | 1  | R1R2T   | 2   | R2   | 3330.45    | 3575.4    | 212.30  | 28 | 0.1199 | 5.78  | 3 | В  |
| 5         1         R1TR2         2         T         1530.85         1554.76         94.44         24         0.0965         7.18         2         A           6         1         R1TR2         1         T         563.45         5661.88         286.70         13         0.10738         9.39         1         A           8         1         TR1R2         2         R1         1658.20         1716.9         86.84         24         0.0738         9.39         1         B           9         1         TR1R2         3         R2         2768.72         2795.33         67.17         36         0.0578         11.98         1         B           10         2         R1R2T         1         R1         1375.01         1520.78         90.53         24         0.0799         8.67         3         B           11         2         R1R2T         2         R2         3650.62         3680.96         612.40         8         0.274         2.53         3         B           12         2         R1R2T         3         T         1875.70         1881.34         108.90         0.0632         10.1033         6.71         2<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3        |            | 1  | R1R2T   | 3   | Т    | 1928.01    | 1959.09   | 679.60  | 12 | 0.1304 | 5.32  | 3 | Α  |
| 6         1         R1TR2         3         R2         649.59         .         73.95         36         .         .         2         B           7         1         TR1R2         1         T         5633.45         5661.88         286.70         13         0.1077         6.43         1         A           8         1         TR1R2         2         R1         1658.20         1716.9         86.84         24         0.0738         9.39         1         B           9         1         TR1R2         3         R2         2768.72         2795.33         67.17         36         0.0578         11.98         1         B           10         2         R1R2T         1         R1         1375.01         1520.78         90.53         24         0.0799         8.67         3         B           11         2         R1R2T         1         R1         8281.60         8304.09         2078.00         24         0.01         6.93         2         B           14         1         R1R2         2         T         9047.96         9061.58         1999.00         24         0.01         6.93         2         B </td <td>4</td> <td></td> <td>1</td> <td>R1TR2</td> <td>1</td> <td>R1</td> <td>258.81</td> <td></td> <td>58.93</td> <td>24</td> <td></td> <td></td> <td>2</td> <td>В</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4        |            | 1  | R1TR2   | 1   | R1   | 258.81     |           | 58.93   | 24 |        |       | 2 | В  |
| 7         1         TR1R2         1         T         5633.45         5661.88         286.70         13         0.1077         6.43         1         A           8         1         TR1R2         2         R1         1658.20         1716.9         86.84         24         0.0738         9.39         1         B           9         1         TR1R2         3         R2         2768.72         2795.33         67.17         36         0.0578         11.98         1         B           10         2         R1R2T         1         R1         1375.01         1520.78         90.53         2         0.0578         11.98         1         B           11         2         R1R2T         2         R2650.62         3680.99         612.40         8         0.274         2.53         3         B           12         2         R1R2T         3         T         1847.50         1881.34         108.90         7         0.1553         4.46         3         A           13         1         R17R2         1         R1         8284.93         273.30         32         0.1033         6.71         2         A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5        |            | 1  | R1TR2   | 2   | Т    | 1530.85    | 1554.76   | 94.44   | 24 | 0.0965 | 7.18  | 2 | Α  |
| 8         1         TR1R2         2         R1         1658.20         1716.9         86.84         24         0.0738         9.39         1         B           9         1         TR1R2         3         R2         2768.72         2795.33         67.17         36         0.0578         11.98         1         B           10         2         R1R2T         1         R1         1375.01         1520.78         90.53         24         0.0799         8.67         3         B           11         2         R1R2T         2         R2         3650.62         3680.96         612.40         8         0.274         2.53         3         B           12         2         R1R2T         3         T         1847.50         1881.34         108.90         7         0.1553         4.46         3         A           13         1         R1TR2         1         R1         8281.60         8304.09         2078.00         24         0.1033         6.71         2         A           15         1         R1TR2         2         T         9067.96         9061.58         1909.00         24         0.01033         6.71         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6        |            | 1  | R1TR2   | 3   | R2   | 649.59     |           | 73.95   | 36 |        |       | 2 | В  |
| 9       1       TR1R2       3       R2       2768.72       2795.33       67.17       36       0.0578       11.98       1         10       2       R1R2T       1       R1       1375.01       1520.78       90.53       24       0.0799       8.67       3       B         11       2       R1R2T       2       R2       3650.62       3680.96       612.40       8       0.274       2.53       3       B         12       2       R1R2T       3       T       1881.50       1881.34       108.90       7       0.1553       3       B         13       1       R1R2T       1       R1       8281.60       8304.09       2078.00       24       0.1       6.93       2       B         14       1       R1TR2       2       T       9047.96       9061.58       1909.00       24       0.1033       6.71       2       A         15       1       R1TR2       3       R2       13678.70       13698.8       4115.00       24       0.0541       12.82       2       B         16       1       TR1R2       1       T       3655.33       3684.93       273.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7        |            | 1  | TR1R2   | 1   | Τ    | 5633.45    | 5661.88   | 286.70  | 13 | 0.1077 | 6.43  | 1 | Α  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8        |            | 1  | TR1R2   | 2   | R1   | 1658.20    | 1716.9    | 86.84   | 24 | 0.0738 | 9.39  | 1 | В  |
| 11         2         R1R2T         2         R2         3650.62         3680.96         612.40         8         0.274         2.53         3         B           12         2         R1R2T         3         T         1847.50         1881.34         108.90         7         0.1553         4.46         3         A           13         1         R1TR2         1         R1         8281.60         8304.09         2078.00         24         0.1         6.93         2         B           14         1         R1TR2         2         T         9047.96         9061.58         1909.00         24         0.1033         6.71         2         A           15         1         R1TR2         3         R2         13678.70         13698.8         4115.00         24         0.0541         12.82         2         B           16         1         TR1R2         1         T         3655.38         3684.93         273.30         32         0.1093         6.34         1         A           17         1         TR1R2         2         R1         16335.7         3343.00         28         0.0632         10.97         1         B<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9        |            | 1  | TR1R2   | 3   | R2   | 2768.72    | 2795.33   | 67.17   | 36 | 0.0578 | 11.98 | 1 | В  |
| 12       2 R1R2T 3 T 1847.50       1881.34 108.90       7 0.1553 4.46       3 A         13       1 R1TR2 1 R1       8281.60       8304.09       2078.00       24 0.1       6.93       2 B         14       1 R1TR2 2 T 9047.96       9061.58 1909.00       24 0.1033 6.71       2 A         15       1 R1TR2 3 R2 13678.70       13698.8 4115.00       24 0.0541 12.82       2 B         16       1 TR1R2 1 T 3655.38 3684.93       273.30       32 0.1093 6.34 1 A       1 A         17       1 TR1R2 2 R1 16333.60 16355.7 3343.00       28 0.0632 10.97 1 B       1 B         18       1 TR1R2 3 R2 3458.51 3497.5 241.00       24 0.0938 7.39 1 B       1 B         19       1 R1TR2 1 R1 2224.95 2368.49 244.50 24 0.2173 3.19 2 B         20       1 R1TR2 2 T 2216.61 2302.15 226.80 12 0.243 2.85 2 A         21       1 R1TR2 3 R2 1819.58 1853.96 138.90 24 0.2603 2.66 2 B         22       1 R1R2T 1 R1 3871.22 3899.59 554.60 28 0.062 11.19 3 B         23       1 R1R2T 2 R2 3381.44 3552.28 89.33 48 0.0383 18.11 3 B         24       1 R1R2T 3 T 1786.82 1873.29 75.49 36 0.0383 18.11 3 B         25       1 TR1R2 1 T 2761.86 4137.02 143.70 9 0.0348 19.92 1 A         26       1 TR1R2 2 R1 2325.32 2433.67 141.60 28 0.136 5.1 1 B         27       1 R1R2T 3 R2 3660.05 5839.97 226.30 24 0.0539 12.87 1 B<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10       |            | 2  | R1R2T   | 1   | R1   | 1375.01    | 1520.78   | 90.53   | 24 | 0.0799 | 8.67  | 3 | В  |
| 13       1       R1TR2       1       R1       8281.60       8304.09       2078.00       24       0.1       6.93       2       B         14       1       R1TR2       2       T       9047.96       9061.58       1909.00       24       0.1033       6.71       2       A         15       1       R1TR2       3       R2       13678.70       13698.8       4115.00       24       0.0541       12.82       2       B         16       1       TR1R2       1       T       3655.38       3684.93       273.30       32       0.1093       6.34       1       A         17       1       TR1R2       2       R1       16333.60       16355.7       3343.00       28       0.0632       10.97       1       B         18       1       TR1R2       2       R1       16333.60       16355.7       3343.00       28       0.0632       10.097       1       B         18       1       TR1R2       2       R1       16333.60       16355.7       3343.00       28       0.0632       1       8         19       1       R1TR1R2       1       R1       23458.51       3497.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11       |            | 2  | R1R2T   | 2   | R2   | 3650.62    | 3680.96   | 612.40  | 8  | 0.274  | 2.53  | 3 | В  |
| 14       1       R1TR2       2       T       9047.96       9061.58       1909.00       24       0.1033       6.71       2       A         15       1       R1TR2       3       R2       13678.70       13698.8       4115.00       24       0.0541       12.82       2       B         16       1       TR1R2       1       T       3655.38       3684.93       273.30       32       0.1093       6.34       1       A         17       1       TR1R2       2       R1       16333.60       16355.7       3343.00       28       0.0632       10.97       1       B         18       1       TR1R2       3       R2       3458.51       3497.5       241.00       24       0.0938       7.39       1       B         19       1       R1TR2       1       R1       2224.95       2368.49       244.50       24       0.02173       3.19       2         20       1       R1TR2       2       T       2216.61       2302.15       226.80       12       0.243       2.85       2       A         21       R1TR2       3       R2       1819.58       1853.96       138.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12       |            | 2  | R1R2T   | 3   | Т    | 1847.50    | 1881.34   | 108.90  | 7  | 0.1553 | 4.46  | 3 | Α  |
| 15       1       R1TR2       3       R2       13678.70       13698.8       4115.00       24       0.0541       12.82       2       B         16       1       TR1R2       1       T       3655.38       3684.93       273.30       32       0.1093       6.34       1       A         17       1       TR1R2       2       R1       16333.60       16355.7       3343.00       28       0.0632       10.97       1       B         18       1       TR1R2       2       R1       16333.60       16355.7       3343.00       28       0.0632       10.97       1       B         18       1       TR1R2       2       R1       16333.60       16355.7       3343.00       28       0.0632       10.97       1       B         19       1       R1R2       2       R1       224.95       2368.49       244.50       24       0.2173       3.19       2       B         20       1       R1R2       2       7       2216.61       2302.15       226.80       12       0.243       2.85       2       A         21       1       R1R2T       1       R1       3871.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13       |            | 1  | R1TR2   | 1   | R1   | 8281.60    | 8304.09   | 2078.00 | 24 | 0.1    | 6.93  | 2 | В  |
| 16       1       TR1R2       1       T       3655.38       3684.93       273.30       32       0.1093       6.34       1       A         17       1       TR1R2       2       R1       16333.60       16355.7       3343.00       28       0.0632       10.97       1       B         18       1       TR1R2       3       R2       3458.51       3497.5       241.00       24       0.0938       7.39       1       B         19       1       R1TR2       1       R1       2224.95       2368.49       244.50       24       0.2173       3.19       2       B         20       1       R1TR2       1       R1       2224.95       2368.49       244.50       24       0.243       2.85       2       A         21       1       R1TR2       3       R2       1819.58       1853.96       138.90       24       0.2603       2.66       2       B         22       1       R1R2T       1       R1       3871.22       3899.59       554.60       28       0.062       11.19       3       B         23       1       R1R2T       2       R2       3381.44       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14       |            | 1  | R1TR2   | 2   | T    | 9047.96    | 9061.58   | 1909.00 | 24 | 0.1033 | 6.71  | 2 | Α  |
| 17       1       TR1R2       2       R1       16333.60       16355.7       3343.00       28       0.0632       10.97       1       B         18       1       TR1R2       3       R2       3458.51       3497.5       241.00       24       0.0938       7.39       1       B         19       1       R1TR2       1       R1       2224.95       2368.49       244.50       24       0.2173       3.19       2       B         20       1       R1TR2       1       R1       2224.95       2368.49       244.50       24       0.243       2.85       2       A         21       1       R1TR2       2       T       2216.61       2302.15       226.80       12       0.243       2.85       2       A         21       1       R1TR2       3       R2       1819.58       1853.96       138.90       24       0.2603       2.66       2       B         22       1       R1R2T       1       R1       3871.22       3899.59       554.60       28       0.062       11.19       3       B         23       1       R1R2T       1       7       2761.86 <td< td=""><td>15</td><td></td><td>1</td><td>R1TR2</td><td>3</td><td>R2</td><td>13678.70</td><td>13698.8</td><td>4115.00</td><td>24</td><td>0.0541</td><td>12.82</td><td>2</td><td>В</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15       |            | 1  | R1TR2   | 3   | R2   | 13678.70   | 13698.8   | 4115.00 | 24 | 0.0541 | 12.82 | 2 | В  |
| 18       1       TR1R2       3       R2       3458.51       3497.5       241.00       24       0.0938       7.39       1       B         19       1       R1TR2       1       R1       2224.95       2368.49       244.50       24       0.2173       3.19       2       B         20       1       R1TR2       2       T       2216.61       2302.15       226.80       12       0.243       2.85       2       A         21       1       R1TR2       3       R2       1819.58       1853.96       138.90       24       0.2603       2.66       2       B         22       1       R1R2T       1       R1       3871.22       3899.59       554.60       28       0.062       11.19       3       B         23       1       R1R2T       2       R2       3381.44       3552.28       89.33       48       0.0383       18.11       3       B         24       1       R1R2T       3       T       1786.82       1873.29       75.49       36       0.0386       17.96       3       A         25       1       TR1R2       1       T       2761.86       41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16       |            | 1  | TR1R2   | 1   | T    | 3655.38    | 3684.93   | 273.30  | 32 | 0.1093 | 6.34  | 1 | Α  |
| 19       1       R1TR2       1       R1       2224.95       2368.49       244.50       24       0.2173       3.19       2       B         20       1       R1TR2       2       T       2216.61       2302.15       226.80       12       0.243       2.85       2       A         21       1       R1TR2       3       R2       1819.58       1853.96       138.90       24       0.2603       2.66       2       B         22       1       R1R2T       1       R1       3871.22       3899.59       554.60       28       0.062       11.19       3       B         23       1       R1R2T       2       R2       3381.44       3552.28       89.33       48       0.0383       18.11       3       B         24       1       R1R2T       3       T       1786.82       1873.29       75.49       36       0.0386       17.96       3       A         25       1       TR1R2       1       T       2761.86       4137.02       143.70       9       0.0348       19.92       1       A         26       1       TR1R2       2       R1       2325.32       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17       |            | 1  | TR1R2   | 2   | R1   | 16333.60   | 16355.7   | 3343.00 | 28 | 0.0632 | 10.97 | 1 | В  |
| 20       1       R1TR2       2       T       2216.61       2302.15       226.80       12       0.243       2.85       2       A         21       1       R1TR2       3       R2       1819.58       1853.96       138.90       24       0.2603       2.66       2       B         22       1       R1R2T       1       R1       3871.22       3899.59       554.60       28       0.062       11.19       3       B         23       1       R1R2T       2       R2       3381.44       3552.28       89.33       48       0.0383       18.11       3       B         24       1       R1R2T       3       T       1786.82       1873.29       75.49       36       0.0386       17.96       3       A         25       1       TR1R2       1       T       2761.86       4137.02       143.70       9       0.0348       19.92       1       A         26       1       TR1R2       2       R1       2325.32       2433.67       141.60       28       0.136       5.1       1       B         27       1       TR1R2       3       R2       4568.59       583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18       |            | 1  | TR1R2   | 3   | R2   | 3458.51    | 3497.5    | 241.00  | 24 | 0.0938 | 7.39  | 1 | В  |
| 21       1       R1TR2       3       R2       1819.58       1853.96       138.90       24       0.2603       2.66       2       B         22       1       R1R2T       1       R1       3871.22       3899.59       554.60       28       0.062       11.19       3       B         23       1       R1R2T       2       R2       3381.44       3552.28       89.33       48       0.0383       18.11       3       B         24       1       R1R2T       3       T       1786.82       1873.29       75.49       36       0.0386       17.96       3       A         25       1       TR1R2       1       T       2761.86       4137.02       143.70       9       0.0348       19.92       1       A         26       1       TR1R2       2       R1       2325.32       2433.67       141.60       28       0.136       5.1       1       B         27       1       TR1R2       3       R2       4568.59       5839.97       226.30       24       0.0539       12.87       1       B         28       1       R1TR2       1       R1       6075.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19       |            | 1  | R1TR2   | 1   | R1   | 2224.95    | 2368.49   | 244.50  | 24 | 0.2173 | 3.19  | 2 | В  |
| 22       1       R1R2T       1       R1       3871.22       3899.59       554.60       28       0.062       11.19       3       B         23       1       R1R2T       2       R2       3381.44       3552.28       89.33       48       0.0383       18.11       3       B         24       1       R1R2T       3       T       1786.82       1873.29       75.49       36       0.0386       17.96       3       A         25       1       TR1R2       1       T       2761.86       4137.02       143.70       9       0.0348       19.92       1       A         26       1       TR1R2       2       R1       2325.32       2433.67       141.60       28       0.136       5.1       1       B         27       1       TR1R2       3       R2       4568.59       5839.97       226.30       24       0.0539       12.87       1       B         28       1       R1TR2       1       R1       6075.91       6104.88       2577.00       9       0.0766       9.04       2       B         29       1       R1TR2       2       T       8418.24       8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20       |            | 1  | R1TR2   | 2   | Т    | 2216.61    | 2302.15   | 226.80  | 12 | 0.243  | 2.85  | 2 | Α  |
| 23       1       R1R2T       2       R2       3381.44       3552.28       89.33       48       0.0383       18.11       3       B         24       1       R1R2T       3       T       1786.82       1873.29       75.49       36       0.0386       17.96       3       A         25       1       TR1R2       1       T       2761.86       4137.02       143.70       9       0.0348       19.92       1       A         26       1       TR1R2       2       R1       2325.32       2433.67       141.60       28       0.136       5.1       1       B         27       1       TR1R2       3       R2       4568.59       5839.97       226.30       24       0.0539       12.87       1       B         28       1       R1TR2       1       R1       6075.91       6104.88       2577.00       9       0.0766       9.04       2       B         29       1       R1TR2       2       T       8418.24       8431.81       3189.00       13       0.1701       4.07       2       A         30       1       R1TR2       3       R2       3060.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            | 1  |         | 3   | R2   | 1819.58    | 1853.96   | 138.90  | 24 | 0.2603 | 2.66  | 2 | В  |
| 24       1       R1R2T       3       T       1786.82       1873.29       75.49       36       0.0386       17.96       3       A         25       1       TR1R2       1       T       2761.86       4137.02       143.70       9       0.0348       19.92       1       A         26       1       TR1R2       2       R1       2325.32       2433.67       141.60       28       0.136       5.1       1       B         27       1       TR1R2       3       R2       4568.59       5839.97       226.30       24       0.0539       12.87       1       B         28       1       R1TR2       1       R1       6075.91       6104.88       2577.00       9       0.0766       9.04       2       B         29       1       R1TR2       2       T       8418.24       8431.81       3189.00       13       0.1701       4.07       2       A         30       1       R1TR2       3       R2       3060.05       .       249.00       28       .       .       2       B         31       1       R1R2T       1       R1       3051.10       9426.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |    |         |     |      |            | 3899.59   | 554.60  |    |        | 11.19 |   |    |
| 25       1 TR1R2 1 T       2761.86 4137.02 143.70 9 0.0348 19.92 1 A         26       1 TR1R2 2 R1 2325.32 2433.67 141.60 28 0.136 5.1 1 B         27       1 TR1R2 3 R2 4568.59 5839.97 226.30 24 0.0539 12.87 1 B         28       1 R1TR2 1 R1 6075.91 6104.88 2577.00 9 0.0766 9.04 2 B         29       1 R1TR2 2 T 8418.24 8431.81 3189.00 13 0.1701 4.07 2 A         30       1 R1TR2 3 R2 3060.05 . 249.00 28 2 B         31       1 R1R2T 1 R1 3051.10 9426.52 160.40 22 0.0152 45.74 3 B         32       1 R1R2T 2 R2 2801.21 . 273.50 32 3 B         33       1 R1R2T 3 T 2334.31 2352.56 171.90 18 0.1196 5.79 3 A         34       1 R1TR2 1 R1 1737.63 2603.65 355.50 24 0.0561 12.35 2 B         35       1 R1TR2 2 T 92.38 . 6.86 48 2 A         36       1 R1TR2 3 R2 6017.88 6111.11 1040.00 24 0.0975 7.11 2 B         37       1 TR1R2 1 T 1104.47 1287.57 71.16 28 0.0676 10.26 1 A         38       1 TR1R2 2 R1 1275.21 1462.72 75.76 13 0.0708 9.79 1 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |            |    |         |     |      |            |           |         |    |        |       |   |    |
| 26       1       TR1R2       2       R1       2325.32       2433.67       141.60       28       0.136       5.1       1       B         27       1       TR1R2       3       R2       4568.59       5839.97       226.30       24       0.0539       12.87       1       B         28       1       R1TR2       1       R1       6075.91       6104.88       2577.00       9       0.0766       9.04       2       B         29       1       R1TR2       2       T       8418.24       8431.81       3189.00       13       0.1701       4.07       2       A         30       1       R1TR2       3       R2       3060.05       249.00       28       .       .       2       B         31       1       R1R2T       1       R1       3051.10       9426.52       160.40       22       0.0152       45.74       3       B         32       1       R1R2T       2       R2       2801.21       .       273.50       32       .       .       3       B         33       1       R1R2T       3       T       2334.31       2352.56       171.90 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |            |    |         |     |      |            |           |         |    |        |       |   |    |
| 27       1 TR1R2 3 R2 4568.59 5839.97 226.30 24 0.0539 12.87 1 B         28       1 R1TR2 1 R1 6075.91 6104.88 2577.00 9 0.0766 9.04 2 B         29       1 R1TR2 2 T 8418.24 8431.81 3189.00 13 0.1701 4.07 2 A         30       1 R1TR2 3 R2 3060.05 . 249.00 28 2 B         31       1 R1R2T 1 R1 3051.10 9426.52 160.40 22 0.0152 45.74 3 B         32       1 R1R2T 2 R2 2801.21 . 273.50 32 3 B         33       1 R1R2T 3 T 2334.31 2352.56 171.90 18 0.1196 5.79 3 A         34       1 R1TR2 1 R1 1737.63 2603.65 355.50 24 0.0561 12.35 2 B         35       1 R1TR2 2 T 92.38 . 6.86 48 2 A         36       1 R1TR2 3 R2 6017.88 6111.11 1040.00 24 0.0975 7.11 2 B         37       1 TR1R2 1 T 1104.47 1287.57 71.16 28 0.0676 10.26 1 A         38       1 TR1R2 2 R1 1275.21 1462.72 75.76 13 0.0708 9.79 1 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |    |         |     |      |            |           |         |    |        |       |   |    |
| 28       1       R1TR2       1       R1       6075.91       6104.88       2577.00       9       0.0766       9.04       2       B         29       1       R1TR2       2       T       8418.24       8431.81       3189.00       13       0.1701       4.07       2       A         30       1       R1TR2       3       R2       3060.05       .       249.00       28       .       .       2       B         31       1       R1R2T       1       R1       3051.10       9426.52       160.40       22       0.0152       45.74       3       B         32       1       R1R2T       2       R2       2801.21       .       273.50       32       .       .       3       B         33       1       R1R2T       3       T       2334.31       2352.56       171.90       18       0.1196       5.79       3       A         34       1       R1TR2       1       R1       1737.63       2603.65       355.50       24       0.0561       12.35       2       B         35       1       R1TR2       2       T       92.38       .       6.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |            |    |         |     |      |            |           |         |    |        |       |   |    |
| 29       1       R1TR2       2       T       8418.24       8431.81       3189.00       13       0.1701       4.07       2       A         30       1       R1TR2       3       R2       3060.05       .       249.00       28       .       .       2       B         31       1       R1R2T       1       R1       3051.10       9426.52       160.40       22       0.0152       45.74       3       B         32       1       R1R2T       2       R2       2801.21       .       273.50       32       .       .       3       B         33       1       R1R2T       3       T       2334.31       2352.56       171.90       18       0.1196       5.79       3       A         34       1       R1TR2       1       R1       1737.63       2603.65       355.50       24       0.0561       12.35       2       B         35       1       R1TR2       2       T       92.38       .       6.86       48       .       .       2       A         36       1       R1TR2       3       R2       6017.88       6111.11       1040.00       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |            |    |         |     |      |            |           |         |    |        |       |   |    |
| 30       1       R1TR2       3       R2       3060.05       .       249.00       28       .       .       2       B         31       1       R1R2T       1       R1       3051.10       9426.52       160.40       22       0.0152       45.74       3       B         32       1       R1R2T       2       R2       2801.21       .       273.50       32       .       .       3       B         33       1       R1R2T       3       T       2334.31       2352.56       171.90       18       0.1196       5.79       3       A         34       1       R1TR2       1       R1       1737.63       2603.65       355.50       24       0.0561       12.35       2       B         35       1       R1TR2       2       T       92.38       .       6.86       48       .       .       2       A         36       1       R1TR2       3       R2       6017.88       6111.11       1040.00       24       0.0975       7.11       2       B         37       1       TR1R2       1       T       1104.47       1287.57       71.16 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |            |    |         |     |      |            |           |         |    |        |       |   |    |
| 31       1       R1R2T       1       R1       3051.10       9426.52       160.40       22       0.0152       45.74       3       B         32       1       R1R2T       2       R2       2801.21       .       273.50       32       .       .       3       B         33       1       R1R2T       3       T       2334.31       2352.56       171.90       18       0.1196       5.79       3       A         34       1       R1TR2       1       R1       1737.63       2603.65       355.50       24       0.0561       12.35       2       B         35       1       R1TR2       2       T       92.38       .       6.86       48       .       .       2       A         36       1       R1TR2       3       R2       6017.88       6111.11       1040.00       24       0.0975       7.11       2       B         37       1       TR1R2       1       T       1104.47       1287.57       71.16       28       0.0676       10.26       1       A         38       1       TR1R2       2       R1       1275.21       1462.72       75.76<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |            |    |         |     |      |            | 8431.81   |         |    | 0.1701 | 4.07  |   |    |
| 32       1       R1R2T       2       R2       2801.21       .       273.50       32       .       .       3       B         33       1       R1R2T       3       T       2334.31       2352.56       171.90       18       0.1196       5.79       3       A         34       1       R1TR2       1       R1       1737.63       2603.65       355.50       24       0.0561       12.35       2       B         35       1       R1TR2       2       T       92.38       .       6.86       48       .       .       2       A         36       1       R1TR2       3       R2       6017.88       61111.11       1040.00       24       0.0975       7.11       2       B         37       1       TR1R2       1       T       1104.47       1287.57       71.16       28       0.0676       10.26       1       A         38       1       TR1R2       2       R1       1275.21       1462.72       75.76       13       0.0708       9.79       1       B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |            |    |         |     |      |            |           |         |    |        |       |   |    |
| 33       1       R1R2T       3       T       2334.31       2352.56       171.90       18       0.1196       5.79       3       A         34       1       R1TR2       1       R1       1737.63       2603.65       355.50       24       0.0561       12.35       2       B         35       1       R1TR2       2       T       92.38       .       6.86       48       .       .       2       A         36       1       R1TR2       3       R2       6017.88       6111.11       1040.00       24       0.0975       7.11       2       B         37       1       TR1R2       1       T       1104.47       1287.57       71.16       28       0.0676       10.26       1       A         38       1       TR1R2       2       R1       1275.21       1462.72       75.76       13       0.0708       9.79       1       B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |            |    |         |     |      |            | 9426.52   |         |    |        | 45.74 |   |    |
| 34     1     R1TR2     1     R1     1737.63     2603.65     355.50     24     0.0561     12.35     2     B       35     1     R1TR2     2     T     92.38     6.86     48     .     .     2     A       36     1     R1TR2     3     R2     6017.88     6111.11     1040.00     24     0.0975     7.11     2     B       37     1     TR1R2     1     T     1104.47     1287.57     71.16     28     0.0676     10.26     1     A       38     1     TR1R2     2     R1     1275.21     1462.72     75.76     13     0.0708     9.79     1     B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |            |    |         |     |      |            |           |         |    |        |       |   |    |
| 35     1 R1TR2 2 T     92.38 .     6.86 48 .     .     2 A       36     1 R1TR2 3 R2 6017.88 6111.11 1040.00 24 0.0975 7.11 2 B       37     1 TR1R2 1 T 1104.47 1287.57 71.16 28 0.0676 10.26 1 A       38     1 TR1R2 2 R1 1275.21 1462.72 75.76 13 0.0708 9.79 1 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |            |    |         |     |      |            |           |         |    |        |       |   |    |
| 36     1 R1TR2 3 R2 6017.88 6111.11 1040.00 24 0.0975 7.11 2 B       37     1 TR1R2 1 T 1104.47 1287.57 71.16 28 0.0676 10.26 1 A       38     1 TR1R2 2 R1 1275.21 1462.72 75.76 13 0.0708 9.79 1 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |            |    |         |     |      |            |           |         |    |        |       |   |    |
| 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |            |    |         |     |      |            |           |         |    |        |       |   |    |
| 38 1 TR1R2 2 R1 1275.21 1462.72 75.76 13 0.0708 9.79 1 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |    |         |     |      |            |           |         |    |        |       |   |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |            |    |         |     |      |            |           |         |    |        |       |   |    |
| - 39 - 1 1H1H2 3 H2 1340.93 13/3.32 94./0 28 0.082 8.45 1 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |            |    |         |     |      |            |           |         |    |        |       |   |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |            |    |         |     |      |            |           |         |    |        |       |   |    |
| 40 1 R1TR2 1 R1 4438.02 4501.25 1083.00 22 0.0843 8.22 2 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |            |    |         |     |      |            |           |         |    |        |       |   |    |
| 41 1 R1TR2 2 T 828.79 . 72.69 48 2 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |            |    |         |     |      |            |           |         |    |        | •     |   |    |
| 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42<br>43 |            |    |         |     |      |            |           |         |    |        | 13 32 |   |    |

1 R1R2T 1 R1 9309.60 11377.3 1738.00 24 0.052 13.32 3 B

```
4455.87
                                         4578.06
                                                     197.10
                                                                  0.0844
 44
             R1R2T
                         R2
                                                                            8.22
 45
                      3
                               2101.36
                                                      82.62
                                                                   0.0837
                                                                                    3
             R1R2T
                         Т
                                         2119.13
                                                              48
                                                                            8.28
                                                                                       Α
 46
                      1
                         Т
                               1659.50
                                         3459.14
                                                     130.20
                                                                   0.0384
             TR1R2
                                                              13
                                                                            18.04
                                                                                    1
 47
             TR1R2
                      2
                         R1
                               1538.95
                                         1560.7
                                                     138.10
                                                              22
                                                                   0.2042
                                                                            3.39
                                                                                    1
                     3
                               2028.64
 48
             TR1R2
                         R2
                                         2505.33
                                                     176.30
                                                              22
                                                                   0.0908
                                                                            7.64
                                                                                    1
                                                                                       В
                               2803.98
                                                                                       В
 49
             R1R2T
                      1
                         R1
                                                     191.70
                                                              36
                                                                                    3
                               7040.32
 50
             R1R2T
                     2
                         R2
                                                     928.00
                                                                                    3
                                         7625.05
                                                              24
                                                                  0.0617
                                                                            11.23
 51
             R1R2T
                      3
                         Т
                               2160.63
                                         2177.51
                                                     156.60
                                                                   0.1212
                                                                            5.72
                                                                                    3
 52
             TR1R2
                      1
                         Т
                               5933.88
                                         6641.65
                                                   2428.00
                                                              11
                                                                   0.0392
                                                                            17.7
                                                                                    1
 53
             TR1R2
                               2175.01
                                         2273.33
                                                     101.60
                                                                  0.0935
                                                                            7.41
                     2
                         R1
                                                              18
                                                                                    1
                                                                                       В
                                                                            7.62
                                         1801.97
                                                                   0.091
 54
             TR1R2
                     3
                         R2
                               1783.48
                                                     170.80
                                                              32
                                                                                    1
                                                                                       В
 55
             R1TR2
                      1
                         R1
                               8454.90
                                         8627.25
                                                   2364.00
                                                              24
                                                                   0.069
                                                                            10.05
                                                                                    2
                                                                                       В
                                                                   0.0884
                                                                                    2
 56
          1
             R1TR2
                     2
                         Т
                              16047.80
                                         16102.5
                                                   4692.00
                                                              24
                                                                            7.84
                     3
                              10262.60
                                         10495.5
                                                   3181.00
                                                                  0.042
                                                                            16.52
                                                                                    2
 57
          1
             R1TR2
                         R2
                                                              24
SUMMARY OF STATISTICAL ANALYSIS - SCALED DATA
                                                                                          49
          G
                         Τ
                                                                               Т
      S
             S
                                                          C
                                                                Т
                                                                               Н
          r
                         r
                                  Α
                                         Α
 0
      U
          0
             Ε
                      Ρ
                         е
                                  U
                                         U
                                                          M
                                                                М
                                                                               Α
                                                                                       S
                                                                                           Τ
 h
      В
          u
             Q
                      Ε
                         а
                                  С
                                         С
                                                          Α
                                                                Α
                                                                      Κ
                                                                               L
                                                                                       Ε
                                                                                           R
             U
                      R
                                  Т
                                                                Χ
                                                                               F
                                                                                           Т
 s
 58
             TR1R2
                     1
                         Τ
                               8057.66
                                         11530.8
                                                   2013.00
                                                              24.00
                                                                      0.0171
                                                                               40.5
                                                                                           Α
 59
                     2
                               8028.52
                                         8049.42
                                                   1960.00
                                                              22.00
                                                                      0.095
                                                                               7.29
             TR1R2
                         R1
 60
             TR1R2
                     3
                               8250.24
                                         8922.43
                                                   2035.00
                                                              24.00
                                                                      0.0323
                                                                               21.49
                         R2
                                                                                           В
                                                                                       1
 61
                               6566.37
                                                              22.00
             TR1R2
                      1
                         Т
                                         6596.2
                                                    1809.00
                                                                      0.1423
                                                                               4.87
 62
             TR1R2
                      2
                         R1
                               2246.72
                                         2278.53
                                                     703.70
                                                              22.00
                                                                      0.1369
                                                                               5.06
                      3
                               1165.49
                                         1192.25
                                                     169.90
                                                              22.03
                                                                      0.0655
                                                                               10.58
 63
              TR1R2
                         R2
                                                                                       1
                                                                                           В
 64
             R1TR2
                      1
                         R1
                               4269.53
                                         4281.5
                                                     256.30
                                                              11.00
                                                                      0.1246
                                                                               5.56
                                                                                       2
                                                                                           В
          1
 65
                     2
                               6123.77
                                         6202.55
                                                     389.90
                                                              28.00
                                                                      0.0863
                                                                               8.03
                                                                                       2
             R1TR2
                         Т
                                                                                           Α
          1
                                                                                       2
 66
             R1TR2
                      3
                         R2
                               6010.40
                                         6849.49
                                                     238.80
                                                              22.00
                                                                      0.0432
                                                                               16.06
                                                                                           В
 67
                         R1
                                363.80
                                                      88.78
                                                              24.00
                                                                                        2
             R1TR2
                      1
                                                                                           В
 68
                     2
                         Т
                                 15.19
                                                       4.19
                                                              22.00
                                                                                       2
             R1TR2
                                                                                           Α
          1
                                                              24.00
                                                      16.95
 69
             R1TR2
                     3
                         R2
                                 78.37
                                                                                       2
                                                                                           В
          1
 70
             R1R2T
                      1
                         R1
                               4432.67
                                         4511.17
                                                     662.10
                                                              24.00
                                                                      0.1476
                                                                               4.69
                                                                                       3
                                                                                           В
 71
             R1R2T
                      2
                         R2
                               5247.50
                                         5257.84
                                                     364.40
                                                               9.00
                                                                      0.4911
                                                                                       3
                                                                                           В
                                                                               1.41
 72
             R1R2T
                     3
                         Т
                               1509.17
                                         1524.34
                                                     133.80
                                                              32.00
                                                                      0.2238
                                                                               3.1
                                                                                       3
                                                                                           Α
          1
                               2003.30
                                                     103.50
                                                              22.00
                                                                      0.2276
 73
             R1R2T
                      1
                         R1
                                         2013.53
                                                                               3.04
                                                                                       3
                                                                                           В
                     2
                               2143.35
                                         2205.53
                                                      95.90
                                                              24.00
                                                                      0.1482
                                                                               4.68
                                                                                        3
                                                                                           В
 74
             R1R2T
                         R2
 75
             R1R2T
                      3
                         Т
                               1355.75
                                                     175.20
                                                              32.00
 76
             TR1R2
                         Т
                               4576.13
                                         4615.35
                                                     436.50
                                                              24.00
                                                                      0.0487
                                                                               14.24
                      1
                                                                                       1
                                                                                           Α
                                                      48.78
                                                              32.00
                                                                      0.0258
                                                                               26.88
 77
             TR1R2
                     2
                         R1
                                766.13
                                         1847.93
                                                                                       1
                                                                                           В
 78
             TR1R2
                     3
                         R2
                               1020.95
                                                      83.74
                                                              36.00
                                                                                        1
                                                                                           В
 79
             R1TR2
                      1
                         R1
                                142.63
                                                      38.01
                                                              28.00
                                                                                       2
                                                                                           В
 80
             R1TR2
                     2
                         Т
                               2306.11
                                         6052.88
                                                     182.40
                                                              11.00
                                                                      0.0151
                                                                               45.89
                                                                                       2
                                                                                           Α
          1
             R1TR2
                     3
                         R2
                               1701.26
                                         1806.09
                                                     111.70
                                                              28.00
                                                                      0.1157
                                                                               5.99
                                                                                        2
                                                                                           В
 81
          1
                                         3918.57
                                                     200.20
                                                              32.00
                                                                      0.0426
                                                                               16.27
                                                                                        1
 82
             TR1R2
                      1
                         Т
                               3431.00
                                                                                           Α
 83
             TR1R2
                      2
                         R1
                                 48.62
                                                      16.14
                                                              22.00
                                                                                           В
 84
             TR1R2
                      3
                         R2
                                985.96
                                                     109.60
                                                              36.00
                                                                                           В
          1
                                                                                        1
 85
                         R1
                                                     196.20
                                                              24.00
                                                                                       2
                                                                                           В
             R1TR2
                      1
                               1846.87
                                         2201.01
                                                                      0.0152
                                                                               45.66
          1
                      2
 86
          1
             R1TR2
                         Τ
                               5707.98
                                         5813.12
                                                     918.80
                                                              24.00
                                                                      0.0418
                                                                               16.6
                                                                                        2
                                                                                           Α
 87
                      3
                         R2
                               3249.96
                                         3392.24
                                                     443.90
                                                              22.00
                                                                      0.0334
                                                                               20.76
                                                                                       2
                                                                                           В
             R1TR2
 88
             R1R2T
                      1
                         R1
                                113.91
                                         248.43
                                                       6.07
                                                               9.00
                                                                      0.0121
                                                                               57.24
                                                                                        3
                                                                                           В
          1
 89
             R1R2T
                      2
                         R2
                                 93.42
                                         134.489
                                                       5.90
                                                               8.00
                                                                      0.046
                                                                               15.06
                                                                                       3
                                                                                           В
          1
 90
             R1R2T
                     3
                         Τ
                               2901.11
                                                     159.90
                                                              48.17
                                                                                        3
                                                                                           Α
          1
 91
             R1TR2
                     1
                         R1
                                787.36
                                         792.674
                                                     122.40
                                                              28.00
                                                                      0.4831
                                                                               1.43
                                                                                        2
```

```
92
             R1TR2
                               1626.91
                                         1632.73
                                                    607.30
                                                               9.00
                                                                      0.2042
                     2
                         Т
 93
                     3
                               3283.14
                                         3616.73
                                                   1099.00
                                                              11.00
                                                                      0.0336
                                                                               20.65
                                                                                       2
             R1TR2
                         R2
                                                                               23.83
 94
                     1
                         Т
                               1489.55
                                         1530.62
                                                     419.00
                                                               9.05
                                                                      0.0291
             TR1R2
                                                                                       1
                                                                                          Α
 95
          2
             TR1R2
                     2
                         R1
                               1315.30
                                         1354.81
                                                     216.00
                                                              10.00
                                                                      0.0266
                                                                               26.05
                     3
                               1538.74
 96
             TR1R2
                         R2
                                         1580.5
                                                     119.30
                                                              14.00
                                                                      0.0548
                                                                               12.65
                                                                                           В
                         R1
                               5011.73
                                         5033.85
                                                     816.90
                                                              24.00
                                                                      0.0778
                                                                               8.91
 97
             R1R2T
                     1
                                                                                       3
                                                                                          В
          1
 98
             R1R2T
                     2
                         R2
                              10553.70
                                         10689
                                                   2942.00
                                                              24.03
                                                                      0.0288
                                                                               24.08
                                                                                       3
 99
             R1R2T
                     3
                         Т
                               6149.41
                                         6195.63
                                                   1548.00
                                                              24.00
                                                                      0.036
                                                                               19.26
                                                                                       3
100
             TR1R2
                     1
                         Т
                                149.62
                                         263.219
                                                      15.89
                                                              32.00
                                                                      0.0485
                                                                               14.29
                                                                                       1
                                                                                          Α
101
             TR1R2
                     2
                               1499.04
                                                     127.30
                                                              32.00
                         R1
                                                                                       1
                                                                                          В
             TR1R2
                               1868.14
102
                     3
                                                     110.30
                                                              28.00
                                                                               3.36
          1
                         R2
                                         1971.05
                                                                      0.2061
                                                                                       1
                                                                                          В
103
          2
             R1R2T
                     1
                         R1
                               3077.79
                                                     210.70
                                                              36.00
                                                                                       3
                                                                                          В
                     2
                               2633.66
                                                     415.70
                                                              24.00
104
          2
             R1R2T
                         R2
                                         2673.03
                                                                      0.1648
                                                                               4.21
                                                                                       3
                                                                                           В
105
          2
                     3
                               2779.09
                                         2784.82
                                                     214.60
                                                              32.00
                                                                      0.3138
                                                                               2.21
                                                                                       3
             R1R2T
                         Т
                                                                                          Α
                                                     147.00
                                                              36.00
             TR1R2
                                                                      0.0858
106
          2
                     1
                               2718.56
                                         2795.01
                                                                               8.08
                         Т
                                                                                       1
                                                                                          Α
107
          2
             TR1R2
                     2
                         R1
                               3011.82
                                         3219.94
                                                     154.00
                                                              32.00
                                                                      0.0443
                                                                               15.66
                                                                                       1
                               2347.91
108
          2
             TR1R2
                     3
                         R2
                                         2396.73
                                                     171.10
                                                              32.00
                                                                      0.0379
                                                                               18.27
                                                                                       1
                                                                                           В
                               2376.31
                                                     288.70
                                                              28.00
109
          2
             R1TR2
                     1
                         R1
                                         3053.53
                                                                      0.1396
                                                                               4.97
                                                                                       2
                                                                                          В
110
          2
             R1TR2
                     2
                         Т
                               5073.49
                                                     444.30
                                                              36.00
                                                                                       2
                                                                                          Α
111
          2
             R1TR2
                     3
                         R2
                               5893.15
                                         8170.91
                                                     247.20
                                                              18.00
                                                                      0.0372
                                                                               18.61
                                                                                       2
                                                                                          В
112
             R1R2T
                     1
                         R1
                               1110.19
                                         1232.37
                                                     138.20
                                                              24.00
                                                                      0.1615
                                                                               4.29
                                                                                       3
                                                                                           В
          2
             R1R2T
                     2
                         R2
                               1812.56
                                         1978.82
                                                     415.60
                                                              11.00
                                                                      0.1034
                                                                               6.7
                                                                                       3
                                                                                          В
113
          2
             R1R2T
                     3
                                520.57
                                         551.357
                                                     147.40
                                                              22.00
                                                                      0.1566
                                                                                       3
                         Т
                                                                               4.43
                                                                                          Α
114
SUMMARY OF STATISTICAL ANALYSIS - SCALED DATA
                                                                                          50
          G
                                                                               Т
                         T
      S
          r
             S
                                         Α
                                                          С
                                                                Т
                                                                               Н
                                      Α
 0
      U
             Ε
                     Ρ
                                      U
                                         U
                                                          M
                                                                М
                                                                                       S
                                                                                          Т
          0
                         е
                                                                               Α
                     Ε
                                                                                       Ε
 b
      В
          u
             Q
                                      С
                                         С
                                                          Α
                                                                Α
                                                                      Κ
                                                                               L
                                                                                          R
                         а
                     R
                                                                      Е
                                                                               F
                                                                                       Q
                                      т
                                                          Χ
                                                                Χ
                                                                                          Τ
          р
             U
 s
115
             R1TR2
                               2871.51
                                         3294.97
                                                     727.50
                                                               9.00
                                                                      0.0783
                                                                               8.86
                                                                                       2
                                                                                          В
                     1
                         R1
             R1TR2
                     2
                         Т
                               4588.80
                                         4608.36
                                                     739.00
                                                               9.00
                                                                      0.1437
                                                                               4.82
                                                                                       2
116
          2
                                                                                          Α
                                                              12.00
             R1TR2
                     3
                         R2
                               7553.40
                                         7613.46
                                                   2949.00
                                                                      0.1505
                                                                               4.61
                                                                                       2
                                                                                          В
117
          2
                                                                               2.74
118
          2
             TR1R2
                     1
                         Т
                               3505.41
                                         3621.38
                                                     400.90
                                                              24.00
                                                                      0.2527
                                                                                       1
                                                                                           Α
119
          2
             TR1R2
                     2
                         R1
                               2136.54
                                         2150.48
                                                     293.60
                                                              12.00
                                                                      0.0801
                                                                               8.66
                                                                                           В
                                                                                       1
120
          2
             TR1R2
                     3
                         R2
                                 64.02
                                         72.4269
                                                      20.20
                                                               8.00
                                                                      0.1256
                                                                               5.52
                                                                                           В
                                                                                       1
                                                     353.10
                                                              22.00
121
          2
             R1R2T
                     1
                         R1
                               1663.63
                                         1726.37
                                                                      0.1266
                                                                               5.48
                                                                                       3
                                                                                          В
             R1R2T
                     2
                                                     564.30
                                                              22.00
                                                                      0.1142
                                                                               6.07
                                                                                       3
122
          2
                         R2
                               2041.29
                                         2092.77
                                                                                          В
123
             R1R2T
                     3
                                827,66
                                         829.973
                                                     200.00
                                                              28.00
                                                                      0.6178
                         Т
124
             R1TR2
                         R1
                              14765.10
                                         14865.9
                                                   2573.00
                                                              24.00
                                                                      0.1021
                                                                               6.79
                                                                                       2
                                                                                          В
          2
                     1
125
                               3793.76
                                                    522.70
                                                              24.00
          2
             R1TR2
                     2
                         Т
                                         5791.66
                                                                      0.0421
                                                                               16.47
                                                                                       2
                                                                                          Α
126
          2
             R1TR2
                     3
                         R2
                              13262.60
                                         13299
                                                   2538.00
                                                              24.00
                                                                      0.2044
                                                                               3.39
                                                                                       2
                                                                                          В
127
          2
             TR1R2
                     1
                         Τ
                               1113.69
                                                      94.83
                                                              36.00
                                                                                       1
                                                                                           Α
128
          2
             TR1R2
                     2
                         R1
                               2641.73
                                         2856.12
                                                     196.10
                                                              32.00
                                                                      0.125
                                                                               5.55
                                                                                       1
                                                                                          В
129
          2
             TR1R2
                     3
                         R2
                               7423.42
                                         7432.25
                                                   1727.00
                                                              24.00
                                                                      0.2011
                                                                               3.45
                                                                                          В
                                                                                       1
          2
                               6550.04
                                         6936.29
                                                     346.40
                                                              28.00
                                                                      0.0527
                                                                                       3
130
             R1R2T
                     1
                         R1
                                                                               13.14
                                                                                          В
131
          2
             R1R2T
                     2
                         R2
                                800.85
                                         850.919
                                                     431.60
                                                              14.00
                                                                      0.0306
                                                                               22.68
                                                                                       3
                                                                                           В
132
          2
             R1R2T
                     3
                         Т
                               5701.72
                                         5711.32
                                                     671.30
                                                              24.00
                                                                      0.2851
                                                                               2.43
                                                                                       3
                                                                                          Α
133
          2
                         R1
                               3695.27
                                         5434.75
                                                    1802.00
                                                              10.00
                                                                      0.0093
                                                                               74.75
                                                                                       2
             R1TR2
                     1
                                                                                          В
                     2
                         Τ
                                                                                       2
134
          2
             R1TR2
                              11088.20
                                         11120.8
                                                   3586.00
                                                              22.00
                                                                      0.0323
                                                                               21.49
                                                                                           Α
135
          2
             R1TR2
                     3
                         R2
                               3607.57
                                         3637.83
                                                     949.00
                                                               8.00
                                                                      0.0475
                                                                               14.61
                                                                                       2
                                                                                           В
136
          2
             R1R2T
                     1
                         R1
                               1918.11
                                                      58.91
                                                              48.00
                                                                                       3
                                                                                           В
137
          2
             R1R2T
                     2
                         R2
                               2303.82
                                         2887.53
                                                     495.10
                                                              24.00
                                                                      0.0657
                                                                               10.55
                                                                                       3
                                                                                          В
138
          2
             R1R2T
                     3
                         Τ
                                946.07
                                                      72.27
                                                              48.00
                                                                                       3
                                                                                          Α
```

298.90

28.00

0.0476

14.56

2

139

2

R1TR2

1 R1

7933.51

8012.48

```
140
          2
             R1TR2
                               2430.23
                                                     295.40
                                                              20.00
                     2
                         Т
                                         2444.71
                                                                      0.1228
                                                                                       2
141
                     3
                               6037.90
                                         6061.26
                                                     287.30
                                                              28.00
                                                                      0.0817
                                                                               8.49
                                                                                       2
             R1TR2
                         R2
                                                                                           В
                     1
                         Т
                               3898.93
                                         3927.25
                                                    1075.00
                                                              16.00
                                                                      0.1771
                                                                               3.91
142
             TR1R2
                                                                                       1
                                                                                           Α
143
          2
             TR1R2
                     2
                         R1
                               3718.90
                                         4001.71
                                                     258.30
                                                              24.00
                                                                      0.1084
                                                                               6.39
                                                                                           В
                     3
                               4553.82
144
             TR1R2
                         R2
                                         4569.42
                                                     308.60
                                                              24.12
                                                                      0.2425
                                                                               2.86
                                                                                           В
                                                              12.00
             TR1R2
                               3278.74
                                         3370.46
                                                     919.70
                                                                      0.025
                                                                               27.69
145
          2
                     1
                         Т
                                                                                           Α
                                                                                       1
                                                                      0.0392
                     2
                               2904.10
                                         4540.12
                                                     166.10
                                                              24.00
146
          2
             TR1R2
                         R1
                                                                               17.67
147
             TR1R2
                     3
                         R2
                               6797.01
                                         6849.38
                                                   3470.00
                                                              11.00
                                                                      0.0236
                                                                               29.39
148
          2
             R1TR2
                     1
                         R1
                               7751.51
                                         7780.96
                                                   2820.00
                                                               9.00
                                                                      0.0764
                                                                               9.07
                                                                                       2
                                                                                           В
             R1TR2
                     2
                               3283.46
                                         3290.73
                                                     968.20
                                                               9.00
                                                                      0.407
                                                                                       2
149
          2
                         Т
                                                                               1.7
                                                                                           Α
150
                                637.62
                                         643.129
                                                      63.95
                                                              24.00
                                                                      0.1926
                                                                                           В
          2
             R1TR2
                     3
                         R2
                                                                               3.6
                                                                                       2
151
          2
             TR1R2
                     1
                         Τ
                               3061.59
                                         3121.43
                                                     116.90
                                                              36.00
                                                                      0.0449
                                                                               15.44
                                                                                       1
                                         2586.53
                                                              36.00
                                                                      0.0519
152
          2
             TR1R2
                     2
                         R1
                               2551.11
                                                     107.20
                                                                               13.36
                                                                                       1
                                                                                           В
          2
             TR1R2
                     3
                               4499.02
                                         4908.76
                                                     342.30
                                                              22.00
                                                                      0.0308
                                                                               22.52
153
                         R2
                                                                                           В
                                                                                       1
                                         1491.05
                                                              36.00
          2
                     1
                         R1
                               1279.51
                                                      64.83
                                                                      0.0243
                                                                               28.54
                                                                                       2
154
             R1TR2
                                                                                           В
155
          2
             R1TR2
                     2
                         Τ
                               4333.79
                                         4437.6
                                                     201.40
                                                              24.00
                                                                      0.0513
                                                                               13.51
                                                                                       2
                               5420.99
156
          2
             R1TR2
                     3
                         R2
                                         6078.85
                                                    1436.00
                                                              13.05
                                                                      0.0363
                                                                               19.07
                                                                                       2
                                                                                           В
                               3022.92
                                         3070.81
157
          2
             TR1R2
                     1
                         Т
                                                     633.80
                                                               9.00
                                                                      0.0693
                                                                               10
                                                                                       1
                                                                                           Α
                                                              10.00
158
          2
             TR1R2
                     2
                         R1
                               3571.20
                                         3603.28
                                                   1143.00
                                                                      0.1101
                                                                               6.29
                                                                                           В
                                                                                       1
159
          2
             TR1R2
                     3
                         R2
                                465.48
                                         480.591
                                                      63.75
                                                              24.00
                                                                      0.2502
                                                                               2.77
                                                                                       1
                                                                                           В
160
          2
             R1TR2
                     1
                         R1
                               2146.19
                                         2158.76
                                                     117.60
                                                              32.00
                                                                      0.1185
                                                                               5.85
                                                                                       2
                                                                                           В
161
          2
             R1TR2
                     2
                         Т
                               5655.68
                                         5670.06
                                                   1489.00
                                                              17.00
                                                                      0.1128
                                                                               6.15
                                                                                       2
                                                                                           Α
                               1442.28
                                                              22.00
                                                                      0.0775
                                                                                       2
162
          2
             R1TR2
                     3
                         R2
                                         1669.48
                                                      90.98
                                                                               8.95
                                                                                           В
163
          2
             R1R2T
                     1
                         R1
                               3489.98
                                         3505.59
                                                     624.00
                                                               8.00
                                                                      0.0708
                                                                               9.79
                                                                                       3
                                                                                           В
                               8885.70
                                                   2557.00
                                                               8.00
                                                                      0.0588
164
             R1R2T
                     2
                         R2
                                         8903.41
                                                                               11.79
                                                               9.00
165
             R1R2T
                               5731.30
                                                    1011.00
                                                                      0.0249
          2
                     3
                         Т
                                         6323
                                                                               27.82
                                                                                       3
                                                                                           Α
             TR1R2
                                                              48.00
166
                               7948.12
                                                     177.50
                                                                      0.0232
                                                                               29.83
          2
                     1
                         Т
                                         10452.6
                                                                                       1
167
          2
             TR1R2
                     2
                         R1
                               5434.97
                                         5441.2
                                                    1374.00
                                                              13.00
                                                                      0.5036
                                                                               1.38
                                                                                           В
168
                     3
                               1412.80
                                         1989.56
                                                      28.03
                                                              36.00
                                                                      0.0142
                                                                               48.95
          2
             TR1R2
                         R2
                                                                                       1
                                                                                           В
169
          2
             R1TR2
                     1
                         R1
                               2119.26
                                         2138.31
                                                     102.90
                                                              36.00
                                                                      0.1096
                                                                               6.32
                                                                                       2
                                                                                           В
          2
                     2
                               3103.14
                                                     354.00
                                                              36.00
                                                                                       2
170
             R1TR2
                         Т
                                                                                           Α
                               3136.38
                                                     830.80
                                                                                       2
                                                                                           В
171
          2
             R1TR2
                     3
                         R2
                                         3289.99
                                                              11.00
                                                                      0.096
                                                                               7.22
SUMMARY OF STATISTICAL ANALYSIS - SCALED DATA
                                                                                          51
          G
                         Τ
                                                                               Т
      S
             S
                                                          С
                                                                Т
                                                                               Н
          r
                                      Α
                                         Α
 0
      U
             Ε
                     Ρ
                                         U
                                                          M
                                                                M
                                      U
                                                                               Α
                                                                                       S
                                                                                          Т
          0
                         е
                     Ε
                                         С
                                                                                       Ε
 h
      В
             Q
                                      С
                                                                Α
                                                                                           R
          u
                                                          Α
                                                                      Κ
                                                                               L
                         а
                     R
                                                                      Ε
                                                                               F
             U
                                      Т
                                                          Χ
                                                                Χ
                                                                                       O
                                                                                           Т
 s
       J
          р
172
          2
             TR1R2
                     1
                         Т
                                  8.99
                                         71.5999
                                                       1.51
                                                              15.00
                                                                      0.0214
                                                                               32.32
                                                                                       1
                                                                                           Α
                                         2884.6
173
             TR1R2
                     2
                                                     756.60
                                                              10.00
                                                                      0.1493
                         R1
                               2858.70
                                                                               4.64
                                                                                       1
                                                                                           В
174
          2
             TR1R2
                     3
                         R2
                              11422.00
                                         11447.8
                                                   3689.00
                                                              13.00
                                                                      0.2365
                                                                               2.93
                                                                                       1
                                                                                           В
175
          2
             R1R2T
                     1
                         R1
                               3085.80
                                         3188.74
                                                     230.70
                                                              32.00
                                                                      0.0831
                                                                               8.34
                                                                                       3
                                                                                           В
176
          2
             R1R2T
                     2
                         R2
                               5344.55
                                         17470.1
                                                     280.90
                                                              24.00
                                                                      0.0127
                                                                               54.51
                                                                                       3
                                                                                           В
177
          2
             R1R2T
                     3
                         Т
                               5568.16
                                         5902.5
                                                     233.50
                                                              36.00
                                                                      0.0456
                                                                               15.2
                                                                                       3
                                                                                           Α
                     1
                               1600.45
                                         2275.23
                                                     113.30
                                                              32.00
                                                                      0.0653
                                                                                       2
                                                                                           В
178
          2
             R1TR2
                         R1
                                                                               10.61
179
          2
             R1TR2
                     2
                         Т
                               5357.90
                                         5837.54
                                                     881.80
                                                              22.00
                                                                      0.1052
                                                                               6.59
                                                                                       2
                                                                                           Α
180
          2
             R1TR2
                     3
                         R2
                               1273.07
                                                     275.70
                                                              22.00
                                                                                       2
                                                                                           В
181
          2
                     1
                         R1
                               1661.92
                                                     526.20
                                                              22.00
                                                                                       3
                                                                                           В
             R1R2T
                                         1680.85
                                                                      0.1739
                                                                               3.99
                     2
                                                     135.70
182
          2
             R1R2T
                         R2
                               1709.58
                                         1731.74
                                                              12.00
                                                                      0.1763
                                                                               3.93
                                                                                       3
                                                                                           В
183
          2
             R1R2T
                     3
                         Т
                                726.70
                                         763.802
                                                      85.68
                                                              32.00
                                                                      0.1631
                                                                               4.25
                                                                                       3
                                                                                           Α
184
          2
             TR1R2
                     1
                         Т
                              10307.20
                                         10354.1
                                                    2890.00
                                                              22.00
                                                                      0.1427
                                                                               4.86
                                                                                           Α
                                                                                       1
185
          2
             TR1R2
                     2
                         R1
                                144.64
                                         151.693
                                                      35.67
                                                              22.00
                                                                      0.2013
                                                                               3.44
                                                                                           В
                                                                                       1
186
          2
             TR1R2
                     3
                         R2
                               2715.30
                                                     217.90
                                                              36.00
                                                                                           В
                                                                                       1
187
             R1R2T
                     1
                         R1
                               3242.60
                                         3250.07
                                                     211.10
                                                              24.00
                                                                      0.282
                                                                               2.46
                                                                                       3
                                                                                           В
```

|     | (b) (6) |   |       |   |    |         |         |         |       |        |       |   |   |
|-----|---------|---|-------|---|----|---------|---------|---------|-------|--------|-------|---|---|
| 188 |         | 2 | R1R2T | 2 | R2 | 2097.78 | 2117.28 | 81.97   | 10.00 | 0.0767 | 9.04  | 3 | В |
| 189 |         | 2 | R1R2T | 3 | T  | 1136.86 | 1284.57 | 174.00  | 9.00  | 0.0551 | 12.59 | 3 | Α |
| 190 |         | 2 | R1TR2 | 1 | R1 | 4212.26 | 4225.54 | 1396.00 | 10.17 | 0.2199 | 3.15  | 2 | В |
| 191 |         | 2 | R1TR2 | 2 | T  | 1315.24 | 1323.35 | 124.60  | 24.00 | 0.4265 | 1.63  | 2 | Α |
| 192 |         | 2 | R1TR2 | 3 | R2 | 1717.40 | 1728.3  | 434.50  | 13.00 | 0.1426 | 4.86  | 2 | В |
| 193 |         | 2 | R1R2T | 1 | R1 | 3390.43 | 3399.17 | 1444.00 | 11.00 | 0.3039 | 2.28  | 3 | В |
| 194 |         | 2 | R1R2T | 2 | R2 | 63.77   | 70.3547 | 17.75   | 22.00 | 0.3407 | 2.03  | 3 | В |
| 195 |         | 2 | R1R2T | 3 | T  | 513.05  | 522.257 | 73.85   | 20.00 | 0.286  | 2.42  | 3 | Α |
| 196 |         | 2 | TR1R2 | 1 | T  | 1225.40 | 1238.15 | 156.80  | 10.00 | 0.1355 | 5.12  | 1 | Α |
| 197 |         | 2 | TR1R2 | 2 | R1 | 950.14  | 986.789 | 73.71   | 28.00 | 0.2571 | 2.7   | 1 | В |
| 198 |         | 2 | TR1R2 | 3 | R2 | 1561.27 | 1572.04 | 151.50  | 20.00 | 0.4289 | 1.62  | 1 | В |
| 199 |         | 2 | R1TR2 | 1 | R1 | 4147.04 | 4301.32 | 110.60  | 28.00 | 0.035  | 19.79 | 2 | В |
| 200 |         | 2 | R1TR2 | 2 | T  | 5995.94 | 6167.76 | 1100.00 | 15.00 | 0.022  | 31.57 | 2 | Α |
| 201 |         | 2 | R1TR2 | 3 | R2 | 8710.68 | 8930.34 | 2424.00 | 14.00 | 0.0185 | 37.54 | 2 | В |
| 202 |         | 2 | R1R2T | 1 | R1 | 2144.74 | 2164.4  | 139.20  | 28.00 | 0.2156 | 3.22  | 3 | В |
| 203 |         | 2 | R1R2T | 2 | R2 | 1080.29 | 1182.77 | 324.20  | 7.00  | 0.0708 | 9.8   | 3 | В |
| 204 |         | 2 | R1R2T | 3 | T  | 3749.69 | 3785.66 | 543.20  | 15.00 | 0.2097 | 3.31  | 3 | Α |
| 205 |         | 2 | R1TR2 | 1 | R1 | 3650.57 | 4116.52 | 220.40  | 32.00 | 0.1011 | 6.86  | 2 | В |
| 206 |         | 2 | R1TR2 | 2 | T  | 2749.29 | •       | 142.50  | 36.00 |        |       | 2 | Α |
| 207 |         | 2 | R1TR2 | 3 | R2 | 3363.01 | 3561.33 | 232.90  | 28.00 | 0.1289 | 5.38  | 2 | В |
| 208 |         | 2 | TR1R2 | 1 | T  | 3641.42 | 3649.14 | 1332.00 | 10.00 | 0.2732 | 2.54  | 1 | Α |
| 209 |         | 2 | TR1R2 | 2 | R1 | 3726.99 | 4001.95 | 457.00  | 24.00 | 0.1338 | 5.18  | 1 | В |
| 210 |         | 2 | TR1R2 | 3 | R2 | 1974.27 | 2075.49 | 258.00  | 24.00 | 0.1959 | 3.54  | 1 | В |
|     |         |   |       |   |    |         |         |         |       |        |       |   |   |

| ref1 | 52 |
|------|----|

| 0bs | SUBJ    | Group | SEQL | J PER   | Treat  | AUCT       | AUCI     | CMAX      | TMAX   | KE     |
|-----|---------|-------|------|---------|--------|------------|----------|-----------|--------|--------|
| 1   | (b) (6) | 1     | TR1F | 12 2    | R1     | 1658.20    | 1716.9   | 86.84     | 24.00  | 0.0738 |
| 2   |         | 1     | TR1F |         | R1     | 16333.60   | 16355.7  |           | 28.00  | 0.0632 |
| 3   |         | 1     | TR1F |         | R1     | 2325.32    | 2433.67  | 141.60    | 28.00  | 0.136  |
| 4   |         | 1     | TR1F |         | R1     | 1275.21    | 1462.72  | 75.76     | 13.00  | 0.0708 |
| 5   |         | 1     | TR1F |         | R1     | 1538.95    | 1560.7   | 138.10    | 22.00  | 0.2042 |
| 6   |         | 1     | TR1F |         | R1     | 2175.01    | 2273.33  | 101.60    | 18.00  | 0.0935 |
| 7   |         | 1     | TR1F | 2 2     | R1     | 8028.52    | 8049.42  | 1960.00   | 22.00  | 0.095  |
| 8   |         | 1     | TR1F | 2 2     | R1     | 2246.72    | 2278.53  | 703.70    | 22.00  | 0.1369 |
| 9   |         | 1     | TR1F |         | R1     | 766.13     | 1847.93  | 48.78     | 32.00  | 0.0258 |
| 10  |         | 1     | TR1F | 2 2     | R1     | 48.62      |          | 16.14     | 22.00  |        |
| 11  |         | 2     | TR1F | 2 2     | R1     | 1315.30    | 1354.81  | 216.00    | 10.00  | 0.0266 |
| 12  |         | 1     | TR1F | 2 2     | R1     | 1499.04    |          | 127.30    | 32.00  |        |
| 13  |         | 2     | TR1F | 2 2     | R1     | 3011.82    | 3219.94  | 154.00    | 32.00  | 0.0443 |
| 14  |         | 2     | TR1F | 2 2     | R1     | 2136.54    | 2150.48  | 293.60    | 12.00  | 0.0801 |
| 15  |         | 2     | TR1F | 2 2     | R1     | 2641.73    | 2856.12  | 196.10    | 32.00  | 0.125  |
| 16  |         | 2     | TR1F | 2 2     | R1     | 3718.90    | 4001.71  | 258.30    | 24.00  | 0.1084 |
| 17  |         | 2     | TR1F | 2 2     | R1     | 2904.10    | 4540.12  | 166.10    | 24.00  | 0.0392 |
| 18  |         | 2     | TR1F | 2 2     | R1     | 2551.11    | 2586.53  | 107.20    | 36.00  | 0.0519 |
| 19  |         | 2     | TR1F | 2 2     | R1     | 3571.20    | 3603.28  | 1143.00   | 10.00  | 0.1101 |
| 20  |         | 2     | TR1F |         | R1     | 5434.97    | 5441.2   | 1374.00   | 13.00  | 0.5036 |
| 21  |         | 2     | TR1F |         | R1     | 2858.70    | 2884.6   | 756.60    | 10.00  | 0.1493 |
| 22  |         | 2     | TR1F |         | R1     | 144.64     | 151.693  | 35.67     | 22.00  | 0.2013 |
| 23  |         | 2     | TR1F |         | R1     | 950.14     | 986.789  | 73.71     | 28.00  | 0.2571 |
| 24  |         | 2     | TR1F |         | R1     | 3726.99    | 4001.95  | 457.00    | 24.00  | 0.1338 |
| 25  |         | 1     | R1TF |         | R1     | 258.81     | •        | 58.93     | 24.00  |        |
| 26  |         | 1     | R1TF |         | R1     | 8281.60    | 8304.09  | 2078.00   | 24.00  | 0.1    |
| 27  |         | 1     | R1TF |         | R1     | 2224.95    | 2368.49  | 244.50    | 24.00  | 0.2173 |
| 28  |         | 1     | R1TF |         | R1     | 6075.91    | 6104.88  | 2577.00   | 9.00   | 0.0766 |
| 29  |         | 1     | R1TF | 12 1    | R1     | 1737.63    | 2603.65  | 355.50    | 24.00  | 0.0561 |
| 0bs | THALF   | SEQ   | TRT  | LAUCT   | LAUCIN | NF LCMAX   | lat1r    | lai1r     | lc     | 1r     |
| 1   | 9.39    | 1     | В    | 7.41349 | 7.4482 | 28 4.4640  | 7.4134   | 9 7.44828 | 3 4.46 | 407    |
| 2   | 10.97   | 1     | В    | 9.70098 | 9.7023 | 33 8.11462 | 2 9.7009 | 8 9.70233 | 8.11   | 462    |
| 3   | 5.1     | 1     | В    | 7.75161 | 7.7971 | 16 4.9530° | 1 7.7516 | 1 7.79716 | 4.95   | 301    |
| 4   | 9.79    | 1     | В    | 7.15087 | 7.2880 | 05 4.3275  | 7.1508   | 7 7.2880  | 5 4.32 | 757    |
| 5   | 3.39    | 1     | В    | 7.33886 | 7.3528 | 39 4.92798 | 3 7.3388 | 6 7.35289 | 9 4.92 | 798    |
| 6   | 7.41    | 1     | В    | 7.68479 | 7.7290 | 00 4.6210  | 4 7.6847 | 9 7.72900 | 4.62   | 104    |
| 7   | 7.29    | 1     | В    | 8.99076 | 8.9933 | 36 7.58070 | 8.9907   | 6 8.99336 | 7.58   | 070    |
| 8   | 5.06    | 1     | В    | 7.71723 | 7.7312 | 29 6.5563  | 5 7.7172 | 3 7.73129 | 9 6.55 | 635    |
| 9   | 26.88   | 1     | В    | 6.64135 | 7.5218 | 32 3.88732 | 2 6.6413 | 5 7.52182 | 2 3.88 | 732    |
| 10  | •       | 1     | В    | 3.88402 |        | 2.78130    |          |           | 2.78   | 130    |
| 11  | 26.05   | 1     | В    | 7.18182 | 7.2114 |            |          |           | 2 5.37 | 528    |
| 12  |         | 1     | В    | 7.31258 |        | 4.8465     |          |           | 4.84   | 655    |
| 13  | 15.66   | 1     | В    | 8.01030 | 8.0771 |            |          |           |        |        |
| 14  | 8.66    | 1     | В    | 7.66694 |        |            |          |           |        |        |
| 15  | 5.55    | 1     | В    | 7.87919 | 7.9572 |            |          |           |        |        |
| 16  | 6.39    | 1     | В    | 8.22118 | 8.2944 |            |          |           |        |        |
| 17  | 17.67   |       | В    | 7.97388 | 8.4207 |            |          |           |        |        |
| 18  | 13.36   |       | В    | 7.84428 | 7.8580 |            |          |           |        |        |
| 19  | 6.29    | 1     | В    | 8.18066 | 8.1896 |            |          |           |        |        |
| 20  | 1.38    | 1     | В    | 8.60061 | 8.6017 | 75 7.22548 | 8.6006   | 1 8.6017  | 5 7.22 | 548    |

| 01               | 1 61         | 4      | D.    | 7 05010            | 7 0671             | 4 6 6000               | 7 05010            | 7 06714 | 6 60           | 002              |
|------------------|--------------|--------|-------|--------------------|--------------------|------------------------|--------------------|---------|----------------|------------------|
| 21<br>22         | 4.64<br>3.44 | 1<br>1 |       | 7.95812<br>4.97425 | 7.96714<br>5.02186 |                        |                    |         |                |                  |
| 23               | 2.7          | 1      |       | 6.85661            | 6.89446            |                        |                    |         |                |                  |
| 24               | 5.18         | 1      |       | 8.22336            | 8.2945             |                        |                    |         |                |                  |
| 25               |              | 2      |       | 5.55609            |                    | 4.07635                |                    |         | 4.07           |                  |
| 26               | 6.93         | 2      |       | 9.02179            | 9.02450            |                        |                    | 9.02450 |                |                  |
| 27               | 3.19         | 2      | В     | 7.70749            | 7.7700             | 1 5.49922              | 2 7.70749          | 7.77001 | 5.49           | 922              |
| 28               | 9.04         | 2      | В     | 8.71209            | 8.71684            | 4 7.85438              | 8.71209            | 8.71684 | 7.85           | 438              |
| 29               | 12.35        | 2      | В     | 7.46028            | 7.8646             | 7 5.87353              | 3 7.46028          | 7.86467 | 5.87           | 353              |
| ref1             |              |        |       |                    |                    |                        |                    |         |                | 53               |
| 0bs              | SUBJ         | Group  | SEQU  | PER                | Treat              | AUCT                   | AUCI               | CMAX    | TMAX           | KE               |
| 30               | (b) (6)      | 1      | R1TR: | 2 1                | R1                 | 4438.02                | 4501.25            | 1083.00 | 22.00          | 0.0843           |
| 31               |              | 1      | R1TR  |                    | R1                 | 8454.90                | 8627.25            |         | 24.00          | 0.069            |
| 32               |              | 1      | R1TR  |                    | R1                 | 4269.53                | 4281.5             |         | 11.00          | 0.1246           |
| 33               |              | 1      | R1TR  | 2 1                | R1                 | 363.80                 |                    | 88.78   | 24.00          |                  |
| 34               |              | 1      | R1TR  | 2 1                | R1                 | 142.63                 |                    | 38.01   | 28.00          |                  |
| 35               |              | 1      | R1TR  | 2 1                | R1                 | 1846.87                | 2201.01            | 196.20  | 24.00          | 0.0152           |
| 36               |              | 1      | R1TR  | 2 1                | R1                 | 787.36                 | 792.674            | 122.40  | 28.00          | 0.4831           |
| 37               |              | 2      | R1TR  | 2 1                | R1                 | 2376.31                | 3053.53            | 288.70  | 28.00          | 0.1396           |
| 38               |              | 2      | R1TR  |                    | R1                 | 2871.51                | 3294.97            | 727.50  | 9.00           | 0.0783           |
| 39               |              | 2      | R1TR: |                    |                    | 14765.10               | 14865.9            |         | 24.00          | 0.1021           |
| 40               |              | 2      | R1TR: |                    | R1                 | 3695.27                | 5434.75            |         | 10.00          | 0.0093           |
| 41               |              | 2      | R1TR: |                    | R1                 | 7933.51                | 8012.48            |         | 28.00          | 0.0476           |
| 42               |              | 2      | R1TR: |                    | R1                 | 7751.51                | 7780.96            | 2820.00 | 9.00           | 0.0764           |
| 43               |              | 2      | R1TR: |                    | R1                 | 1279.51                | 1491.05            |         | 36.00          | 0.0243           |
| 44<br>45         |              | 2<br>2 | R1TR: |                    | R1<br>R1           | 2146.19<br>2119.26     | 2158.76<br>2138.31 |         | 32.00<br>36.00 | 0.1185<br>0.1096 |
| 46               |              | 2      | R1TR: |                    | R1                 | 1600.45                | 2275.23            |         | 32.00          | 0.0653           |
| 47               |              | 2      | R1TR: |                    | R1                 | 4212.26                | 4225.54            |         | 10.17          | 0.2199           |
| 48               |              | 2      | R1TR: |                    | R1                 | 4147.04                | 4301.32            |         | 28.00          | 0.035            |
| 49               |              | 2      | R1TR  |                    | R1                 | 3650.57                | 4116.52            |         | 32.00          | 0.1011           |
| 50               |              | 1      | R1R2  |                    | R1                 | 3834.63                | 3916.77            |         | 28.00          | 0.3365           |
| 51               |              | 2      | R1R2  | T 1                | R1                 | 1375.01                | 1520.78            | 90.53   | 24.00          | 0.0799           |
| 52               |              | 1      | R1R2  | T 1                | R1                 | 3871.22                | 3899.59            | 554.60  | 28.00          | 0.062            |
| 53               |              | 1      | R1R2  | T 1                | R1                 | 3051.10                | 9426.52            | 160.40  | 22.00          | 0.0152           |
| 54               |              | 1      | R1R2  |                    | R1                 | 9309.60                | 11377.3            |         | 24.00          | 0.052            |
| 55               |              | 1      | R1R2  |                    | R1                 | 2803.98                |                    | 191.70  |                |                  |
| 56               |              | 1      | R1R2  |                    | R1                 |                        | 4511.17            |         |                | 0.1476           |
| 57               |              | 1      | R1R2  |                    | R1                 |                        | 2013.53            |         |                | 0.2276           |
| 58               |              | 1      | R1R2  | T 1                | R1                 | 113.91                 | 248.43             | 6.07    | 9.00           | 0.0121           |
| 0bs              | THALF        | SEQ    | TRT   | LAUCT              | LAUCIN             | F LCMAX                | lat1r              | lai1r   | lc             | 1r               |
|                  | 8.22         | 2      |       |                    |                    |                        | 9 8.39796          |         |                |                  |
| 31               | 10.05        |        |       |                    |                    | 3 7.7681°              |                    | 9.06268 |                |                  |
| 32               | 5.56         | 2      |       |                    | 8.3620             |                        |                    |         |                |                  |
| 33               | •            | 2      |       | 5.89661            | •                  | 4.48616                |                    |         | 4.48           |                  |
| 34               |              | 2      |       | 4.96022            |                    |                        |                    |         | 3.63           |                  |
| 35<br>36         | 45.66        |        |       | 7.52125            |                    | 7 5.27913              |                    |         |                |                  |
| 36<br>37         | 1.43<br>4.97 | 2<br>2 |       | 6.66869            |                    | 1 4.80729<br>5 5.66539 |                    |         |                |                  |
| 3 <i>1</i><br>38 | 8.86         | 2      |       |                    |                    | 5 6.5896°              |                    |         |                |                  |
| 39               | 6.79         | 2      |       |                    |                    | 3 7.85283              |                    |         |                |                  |
| 40               | 74.75        |        |       | 8.21481            |                    |                        |                    |         |                |                  |
| -                |              | _      |       |                    |                    |                        |                    |         |                |                  |

```
14.56
                                 8.98876
                                           5.70011
                                                    8.97885
                                                              8.98876
             2
                       8.97885
 42
    9.07
                                 8.95944
                                           7.94449
                                                              8.95944
              2
                   В
                       8.95564
                                                     8.95564
                                                                        7.94449
 43
     28.54
                       7.15423
                                 7.30724
                                                              7.30724
              2
                   В
                                           4.17177
                                                     7.15423
                                                                        4.17177
 44
     5.85
              2
                   В
                       7.67145
                                 7.67729
                                           4.76729
                                                     7.67145
                                                              7.67729
                                                                        4.76729
 45
     6.32
              2
                   В
                       7.65882
                                 7.66777
                                           4.63376
                                                     7.65882
                                                              7.66777
                                                                        4.63376
     10.61
 46
              2
                   В
                       7.37804
                                           4.73004
                                 7.72984
                                                     7.37804
                                                              7.72984
                                                                        4.73004
                                 8.34890
                                                     8.34575
 47
     3.15
              2
                   В
                       8.34575
                                           7.24137
                                                              8.34890
                                                                        7.24137
 48
     19.79
              2
                   В
                       8.33015
                                 8.36668
                                           4.70592
                                                     8.33015
                                                              8.36668
                                                                        4.70592
 49
     6.86
              2
                   В
                       8.20264
                                 8.32276
                                           5.39544
                                                     8.20264
                                                              8.32276
                                                                        5.39544
     2.06
 50
                       8.25183
                                 8.27302
                                           6.01127
                                                     8.25183
                                                              8.27302
              3
                   В
                                                                        6.01127
                                                     7.22622
 51
     8.67
                       7.22622
                                 7.32698
                                           4.50568
                                                              7.32698
              3
                   В
                                                                        4.50568
 52
     11.19
              3
                   В
                       8.26132
                                 8.26863
                                           6.31825
                                                     8.26132
                                                              8.26863
                                                                        6.31825
 53
                       8.02326
     45.74
              3
                   В
                                 9.15128
                                           5.07767
                                                     8.02326
                                                              9.15128
                                                                        5.07767
 54
     13.32
                       9.13880
                                 9.33938
                                           7.46049
                                                     9.13880
                                                              9.33938
              3
                   В
                                                                        7.46049
                                                    7.93880
 55
              3
                   В
                       7.93880
                                           5.25593
                                                                        5.25593
 56
    4.69
              3
                   В
                       8.39676
                                 8.41431
                                           6.49542
                                                     8.39676
                                                              8.41431
                                                                        6.49542
                                           4.63957
 57
     3.04
                   В
                       7.60255
                                 7.60764
                                                     7.60255
                                                              7.60764
                                                                        4.63957
     57.24
                                           1.80352 4.73536 5.51516
 58
              3
                   R
                       4.73536
                                5.51516
                                                                        1.80352
ref1
0bs
     SUBJ
           Group
                   SEQU
                           PER
                                Treat
                                          AUCT
                                                  AUCI
                                                                CMAX
                                                                       TMAX
                                                                             ΚE
 59
                   R1R2T
                                 R1
                                         5011.73
                                                  5033.85
                                                             816.90
                                                                      24.00
                                                                              0.0778
              1
                   R1R2T
                                                             210.70
                                                                      36.00
 60
              2
                                 R1
                                         3077.79
                            1
 61
                   R1R2T
                                                  1232.37
                                                             138.20
                                                                      24.00
              2
                                 R1
                                         1110.19
                                                                              0.1615
                            1
 62
              2
                   R1R2T
                                 R1
                                         1663.63
                                                  1726.37
                                                             353.10
                                                                      22.00
                                                                             0.1266
                            1
 63
              2
                   R1R2T
                                 R1
                                         6550.04
                                                  6936.29
                                                             346.40
                                                                      28.00
                                                                              0.0527
                            1
              2
                   R1R2T
                                         1918.11
                                                              58.91
                                                                      48.00
 64
                            1
                                 R1
 65
              2
                   R1R2T
                                         3489.98
                                                  3505.59
                                                             624.00
                                                                       8.00
                                                                              0.0708
                            1
                                 R1
                                                                      32.00
              2
                                                  3188.74
                                                             230.70
                                                                              0.0831
 66
                   R1R2T
                                 R1
                                         3085.80
                            1
                                                  1680.85
 67
              2
                   R1R2T
                            1
                                 R1
                                         1661.92
                                                              526.20
                                                                      22.00
                                                                              0.1739
              2
                                         3242.60
                                                  3250.07
                                                                      24.00
 68
                   R1R2T
                            1
                                 R1
                                                              211.10
                                                                              0.282
 69
              2
                   R1R2T
                                         3390.43
                                                  3399.17
                                                            1444.00
                                                                      11.00
                                                                              0.3039
                                 R1
                            1
              2
 70
                   R1R2T
                                         2144.74
                                                  2164.4
                                                              139.20
                                                                      28.00
                                                                             0.2156
                            1
                                 R1
0bs
     THALF
            SEQ
                  TRT
                        LAUCT
                                 LAUCINF
                                            LCMAX
                                                      lat1r
                                                                lai1r
                                                                           lc1r
59
     8.91
              3
                   В
                       8.51954
                                 8.52394
                                           6.70552
                                                    8.51954
                                                              8.52394
                                                                        6.70552
 60
                   В
                       8.03197
                                           5.35044
                                                     8.03197
                                                                        5.35044
              3
                                 7.11669
 61
     4.29
              3
                   В
                       7.01229
                                           4.92870
                                                     7.01229
                                                              7.11669
                                                                        4.92870
 62
     5.48
              3
                       7.41676
                                 7,45378
                                           5.86675
                                                     7,41676
                                                              7.45378
                                                                        5.86675
                   B
                       8.78723
     13.14
                                 8.84452
 63
              3
                   В
                                           5.84759
                                                     8.78723
                                                              8.84452
                                                                        5.84759
 64
              3
                   В
                       7.55910
                                           4.07601
                                                     7.55910
                                                                        4.07601
 65
     9.79
              3
                   В
                       8.15765
                                 8.16211
                                           6.43615
                                                     8.15765
                                                              8.16211
                                                                        6.43615
 66
     8.34
              3
                   В
                       8.03457
                                 8.06738
                                           5.44112
                                                     8.03457
                                                              8.06738
                                                                        5.44112
 67
     3.99
              3
                       7.41573
                                 7.42705
                                           6.26568
                                                     7.41573
                                                              7.42705
                                                                        6.26568
                   В
 68
    2.46
                       8.08413
                                 8.08643
                                           5.35233
                                                              8.08643
              3
                   В
                                                    8.08413
                                                                        5.35233
 69
    2.28
              3
                       8.12871
                                 8.13129
                                           7.27517
                                                     8.12871
                                                              8.13129
                                                                        7.27517
 70 3.22
                       7.67077 7.67990 4.93591 7.67077 7.67990
                                                                        4.93591
```

ref2 55

| 0bs | SUBJ    | Group | SEQU | PER     | Treat | AUCT                   | AUCI     | CMAX      | TMAX   | KE     |
|-----|---------|-------|------|---------|-------|------------------------|----------|-----------|--------|--------|
| 1   | (b) (6) | 1     | TR1R | 2 3     | R2    | 2768.72                | 2795.33  | 67.17     | 36.00  | 0.0578 |
| 2   |         | 1     | TR1R |         | R2    | 3458.51                | 3497.5   | 241.00    | 24.00  | 0.0938 |
| 3   |         | 1     | TR1R |         | R2    | 4568.59                | 5839.97  | 226.30    | 24.00  | 0.0539 |
| 4   |         | 1     | TR1R |         | R2    | 1346.93                | 1573.32  | 94.76     | 28.00  | 0.082  |
| 5   |         | 1     | TR1R |         | R2    | 2028.64                | 2505.33  | 176.30    | 22.00  | 0.0908 |
| 6   |         | 1     | TR1R |         | R2    | 1783.48                | 1801.97  | 170.80    | 32.00  | 0.091  |
| 7   |         | 1     | TR1R |         | R2    | 8250.24                | 8922.43  | 2035.00   | 24.00  | 0.0323 |
| 8   |         | 1     | TR1R |         | R2    | 1165.49                | 1192.25  | 169.90    | 22.03  | 0.0655 |
| 9   |         | 1     | TR1R |         | R2    | 1020.95                |          | 83.74     | 36.00  |        |
| 10  |         | 1     | TR1R |         | R2    | 985.96                 |          | 109.60    | 36.00  |        |
| 11  |         | 2     | TR1R |         | R2    | 1538.74                | 1580.5   | 119.30    | 14.00  | 0.0548 |
| 12  |         | 1     | TR1R |         | R2    | 1868.14                | 1971.05  | 110.30    | 28.00  | 0.2061 |
| 13  |         | 2     | TR1R |         | R2    | 2347.91                | 2396.73  | 171.10    | 32.00  | 0.0379 |
| 14  |         | 2     | TR1R |         | R2    | 64.02                  | 72.4269  | 20.20     | 8.00   | 0.1256 |
| 15  |         | 2     | TR1R |         | R2    | 7423.42                | 7432.25  | 1727.00   | 24.00  | 0.2011 |
| 16  |         | 2     | TR1R |         | R2    | 4553.82                | 4569.42  | 308.60    | 24.12  | 0.2425 |
| 17  |         | 2     | TR1R |         | R2    | 6797.01                | 6849.38  | 3470.00   | 11.00  | 0.0236 |
| 18  |         | 2     | TR1R | 2 3     | R2    | 4499.02                | 4908.76  | 342.30    | 22.00  | 0.0308 |
| 19  |         | 2     | TR1R |         | R2    | 465.48                 | 480.591  | 63.75     | 24.00  | 0.2502 |
| 20  |         | 2     | TR1R | 2 3     | R2    | 1412.80                | 1989.56  | 28.03     | 36.00  | 0.0142 |
| 21  |         | 2     | TR1R | 2 3     | R2    | 11422.00               | 11447.8  | 3689.00   | 13.00  | 0.2365 |
| 22  |         | 2     | TR1R |         | R2    | 2715.30                |          | 217.90    | 36.00  |        |
| 23  |         | 2     | TR1R | 2 3     | R2    | 1561.27                | 1572.04  | 151.50    | 20.00  | 0.4289 |
| 24  |         | 2     | TR1R | 2 3     | R2    | 1974.27                | 2075.49  | 258.00    | 24.00  | 0.1959 |
| 25  |         | 1     | R1TR | 2 3     | R2    | 649.59                 |          | 73.95     | 36.00  |        |
| 26  |         | 1     | R1TR | 2 3     | R2    | 13678.70               | 13698.8  | 4115.00   | 24.00  | 0.0541 |
| 27  |         | 1     | R1TR | 2 3     | R2    | 1819.58                | 1853.96  | 138.90    | 24.00  | 0.2603 |
| 28  |         | 1     | R1TR | 2 3     | R2    | 3060.05                |          | 249.00    | 28.00  |        |
| 29  |         | 1     | R1TR | 2 3     | R2    | 6017.88                | 6111.11  | 1040.00   | 24.00  | 0.0975 |
| 0bs | THALF   | SEQ   | TRT  | LAUCT   | LAUCI | NF LCMAX               | lat2r    | lai2r     | lc     | 2r     |
| 1   | 11.98   | 1     | В    | 7.92614 | 7.935 | 71 4.2072              | 3 7.9261 | 4 7.93571 | 4.20   | 723    |
| 2   | 7.39    | 1     | В    | 8.14859 | 8.159 | 80 5.48480             | 0 8.1485 | 9 8.15980 | 5.48   | 480    |
| 3   | 12.87   | 1     | В    | 8.42696 | 8.672 | 48 5.42186             | 8.4269   | 6 8.67248 | 5.42   | 186    |
| 4   | 8.45    | 1     | В    | 7.20558 | 7.360 | 94 4.5513              | 5 7.2055 | 8 7.36094 | 4.55   | 135    |
| 5   | 7.64    | 1     | В    | 7.61512 | 7.826 | 18 5.17219             | 9 7.6151 | 2 7.82618 | 5.17   | 219    |
| 6   | 7.62    | 1     | В    | 7.48632 | 7.496 | 64 5.14049             | 9 7.4863 | 2 7.49664 | 5.14   | 049    |
| 7   | 21.49   | 1     | В    | 9.01800 | 9.096 | 32 7.6182              | 5 9.0180 | 0 9.09632 | 7.61   | 825    |
| 8   | 10.58   | 1     | В    | 7.06090 | 7.083 | 60 5.1352 <sup>-</sup> | 7.0609   | 0 7.08360 | 5.13   | 521    |
| 9   |         | 1     | В    | 6.92849 |       | 4.42772                | 2 6.9284 | 9.        | 4.42   | 772    |
| 10  |         | 1     | В    | 6.89362 |       | 4.69684                | 4 6.8936 | 2.        | 4.69   | 684    |
| 11  | 12.65   | 1     | В    | 7.33872 | 7.365 | 50 4.7816              | 4 7.3387 | 2 7.36550 | 4.78   | 164    |
| 12  | 3.36    | 1     | В    | 7.53270 | 7.586 | 32 4.70320             | 0 7.5327 | 0 7.58632 | 4.70   | 320    |
| 13  | 18.27   |       |      | 7.76128 | 7.781 |                        |          |           |        |        |
| 14  | 5.52    | 1     |      | 4.15913 | 4.282 |                        |          |           | 3.00   | 568    |
| 15  | 3.45    | 1     |      | 8.91240 | 8.913 |                        |          |           |        |        |
| 16  | 2.86    | 1     |      | 8.42372 |       |                        |          |           |        |        |
| 17  | 29.39   |       |      | 8.82424 |       |                        |          |           |        |        |
| 18  | 22.52   |       |      | 8.41161 | 8.498 |                        |          |           |        |        |
| 19  | 2.77    | 1     |      | 6.14306 |       |                        |          |           |        |        |
| 20  | 48.95   | 1     | В    | 7.25333 | 7.595 | 67 3.33328             | 8 7.2533 | 3 7.59567 | 7 3.33 | 328    |

| 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29 | 2.93<br>1.62<br>3.54<br>12.82<br>2.66<br>7.11 | 1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2 | B<br>B<br>B<br>B<br>B | 9.34330<br>7.90666<br>7.35325<br>7.58795<br>6.47635<br>9.52360<br>7.50636<br>8.02619<br>8.70249 | 9.345<br>7.360<br>7.637<br>9.525<br>7.525 | 13<br>95<br>06<br>08 | 8.2131<br>5.38404<br>5.02056<br>5.55296<br>4.30338<br>8.32238<br>4.93378<br>5.51748<br>6.94698 | 4 7<br>9 7<br>6 7<br>9 6<br>9 9<br>5 7<br>5 8 | .34330<br>.90666<br>.35325<br>.58795<br>.47635<br>.52360<br>.50636<br>.02619 | 6 .<br>5 7.36013<br>5 7.63799<br>6 .<br>0 9.52509<br>6 7.52509 | 5.38<br>5.02<br>5.55<br>4.30<br>6.8.32<br>8.4.93<br>5.51 | 3404<br>2059<br>5296<br>0339<br>2239<br>3375 |
|----------------------------------------------------|-----------------------------------------------|-------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|
| ref2                                               |                                               |                                           |                       |                                                                                                 |                                           |                      |                                                                                                |                                               |                                                                              |                                                                |                                                          | 56                                           |
| 0bs                                                | SUBJ                                          | Group                                     | SEQU                  | PER                                                                                             | Treat                                     |                      | AUCT                                                                                           | AUC                                           | I                                                                            | CMAX                                                           | TMAX                                                     | KE                                           |
| 00                                                 | (b) (6)                                       |                                           | D4 TD                 |                                                                                                 | D.O.                                      |                      | 100 11                                                                                         |                                               |                                                                              | 00.05                                                          | 00.00                                                    |                                              |
| 30                                                 |                                               | 1                                         | R1TR                  |                                                                                                 | R2                                        |                      | 166.44                                                                                         |                                               | 05 5                                                                         | 90.95                                                          | 36.00                                                    |                                              |
| 31                                                 |                                               | 1                                         | R1TR                  |                                                                                                 | R2                                        |                      | 262.60                                                                                         |                                               | 95.5                                                                         | 3181.00                                                        | 24.00                                                    | 0.042                                        |
| 32                                                 |                                               | 1                                         | R1TR                  |                                                                                                 | R2                                        |                      | 010.40                                                                                         |                                               | 9.49                                                                         | 238.80                                                         | 22.00                                                    | 0.0432                                       |
| 33<br>34                                           |                                               | 1<br>1                                    | R1TR<br>R1TR          |                                                                                                 | R2<br>R2                                  |                      | 78.37<br>701.26                                                                                | 100                                           | 6.09                                                                         | 16.95<br>111.70                                                | 24.00<br>28.00                                           | 0.1157                                       |
| 35                                                 |                                               | 1                                         | R1TR                  |                                                                                                 | n∠<br>R2                                  |                      | 249.96                                                                                         |                                               | 2.24                                                                         | 443.90                                                         | 22.00                                                    | 0.1137                                       |
| 36                                                 |                                               | 1                                         | R1TR                  |                                                                                                 | R2                                        |                      | 283.14                                                                                         |                                               | 6.73                                                                         | 1099.00                                                        | 11.00                                                    | 0.0334                                       |
| 37                                                 |                                               | 2                                         | R1TR                  |                                                                                                 | R2                                        |                      | 893.15                                                                                         |                                               | 0.73                                                                         | 247.20                                                         | 18.00                                                    | 0.0372                                       |
| 38                                                 |                                               | 2                                         | R1TR                  |                                                                                                 | R2                                        |                      | 553.40                                                                                         |                                               | 3.46                                                                         | 2949.00                                                        | 12.00                                                    | 0.1505                                       |
| 39                                                 |                                               | 2                                         | R1TR                  |                                                                                                 | R2                                        |                      | 262.60                                                                                         | 132                                           |                                                                              | 2538.00                                                        | 24.00                                                    | 0.2044                                       |
| 40                                                 |                                               | 2                                         | R1TR                  |                                                                                                 | R2                                        |                      | 607.57                                                                                         |                                               | 7.83                                                                         | 949.00                                                         | 8.00                                                     | 0.0475                                       |
| 41                                                 |                                               | 2                                         | R1TR                  |                                                                                                 | R2                                        |                      | 037.90                                                                                         |                                               | 1.26                                                                         | 287.30                                                         | 28.00                                                    | 0.0817                                       |
| 42                                                 |                                               | 2                                         | R1TR                  |                                                                                                 | R2                                        |                      | 637.62                                                                                         |                                               | .129                                                                         | 63.95                                                          | 24.00                                                    | 0.1926                                       |
| 43                                                 |                                               | 2                                         | R1TR                  |                                                                                                 | R2                                        |                      | 420.99                                                                                         |                                               | 8.85                                                                         | 1436.00                                                        | 13.05                                                    | 0.0363                                       |
| 44                                                 |                                               | 2                                         | R1TR                  |                                                                                                 | R2                                        |                      | 442.28                                                                                         |                                               | 9.48                                                                         | 90.98                                                          | 22.00                                                    | 0.0775                                       |
| 45                                                 |                                               | 2                                         | R1TR                  |                                                                                                 | R2                                        |                      | 136.38                                                                                         |                                               | 9.99                                                                         | 830.80                                                         | 11.00                                                    | 0.096                                        |
| 46                                                 |                                               | 2                                         | R1TR                  |                                                                                                 | R2                                        |                      | 273.07                                                                                         |                                               |                                                                              | 275.70                                                         | 22.00                                                    |                                              |
| 47                                                 |                                               | 2                                         | R1TR                  | 2 3                                                                                             | R2                                        | 1                    | 717.40                                                                                         | 172                                           | 8.3                                                                          | 434.50                                                         | 13.00                                                    | 0.1426                                       |
| 48                                                 |                                               | 2                                         | R1TR                  | 2 3                                                                                             | R2                                        | 8                    | 710.68                                                                                         | 893                                           | 0.34                                                                         | 2424.00                                                        | 14.00                                                    | 0.0185                                       |
| 49                                                 |                                               | 2                                         | R1TR                  | 2 3                                                                                             | R2                                        | 3                    | 363.01                                                                                         | 356                                           | 1.33                                                                         | 232.90                                                         | 28.00                                                    | 0.1289                                       |
| 50                                                 |                                               | 1                                         | R1R2                  | T 2                                                                                             | R2                                        | 3                    | 330.45                                                                                         | 357                                           | 5.4                                                                          | 212.30                                                         | 28.00                                                    | 0.1199                                       |
| 51                                                 |                                               | 2                                         | R1R2                  | T 2                                                                                             | R2                                        | 3                    | 650.62                                                                                         | 368                                           | 0.96                                                                         | 612.40                                                         | 8.00                                                     | 0.274                                        |
| 52                                                 |                                               | 1                                         | R1R2                  | T 2                                                                                             | R2                                        | 3                    | 381.44                                                                                         | 355                                           | 2.28                                                                         | 89.33                                                          | 48.00                                                    | 0.0383                                       |
| 53                                                 |                                               | 1                                         | R1R2                  | T 2                                                                                             | R2                                        | 2                    | 801.21                                                                                         |                                               |                                                                              | 273.50                                                         | 32.00                                                    |                                              |
| 54                                                 |                                               | 1                                         | R1R2                  | T 2                                                                                             | R2                                        | 4                    | 455.87                                                                                         | 457                                           | 8.06                                                                         | 197.10                                                         | 36.00                                                    | 0.0844                                       |
| 55                                                 |                                               | 1                                         | R1R2                  | T 2                                                                                             | R2                                        | 7                    | 040.32                                                                                         | 762                                           | 5.05                                                                         | 928.00                                                         | 24.00                                                    | 0.0617                                       |
| 56                                                 |                                               | 1                                         | R1R2                  |                                                                                                 | R2                                        |                      | 247.50                                                                                         |                                               | 7.84                                                                         | 364.40                                                         | 9.00                                                     | 0.4911                                       |
| 57                                                 |                                               | 1                                         | R1R2                  |                                                                                                 | R2                                        | 2                    | 143.35                                                                                         |                                               | 5.53                                                                         | 95.90                                                          | 24.00                                                    | 0.1482                                       |
| 58                                                 |                                               | 1                                         | R1R2                  | T 2                                                                                             | R2                                        |                      | 93.42                                                                                          | 134                                           | .489                                                                         | 5.90                                                           | 8.00                                                     | 0.046                                        |
| 0bs                                                | THALF                                         | SEQ                                       | TRT                   | LAUCT                                                                                           | LAUCI                                     | NF                   | LCMAX                                                                                          |                                               | lat2r                                                                        | lai2r                                                          | 10                                                       | e2r                                          |
| 30                                                 |                                               | 2                                         | В                     | 7.06171                                                                                         |                                           |                      | 4.5103                                                                                         | 1 7                                           | .06171                                                                       |                                                                | 4.51                                                     | 1031                                         |
| 31                                                 | 16.52                                         | 2                                         | В                     | 9.23626                                                                                         | 9.258                                     | 70                   | 8.0649                                                                                         | 5 9                                           | .23626                                                                       | 9.2587                                                         | 8.06                                                     | 6495                                         |
| 32                                                 | 16.06                                         | 2                                         | В                     | 8.70125                                                                                         | 8.831                                     | 93                   | 5.47563                                                                                        | 3 8                                           | .70125                                                                       | 8.8319                                                         | 3 5.47                                                   | 7563                                         |
| 33                                                 |                                               | 2                                         | В                     | 4.36142                                                                                         |                                           |                      | 2.8302                                                                                         | 7 4                                           | .36142                                                                       | 2 .                                                            | 2.83                                                     | 3027                                         |
| 34                                                 | 5.99                                          | 2                                         | В                     | 7.43912                                                                                         | 7.498                                     | 92                   | 4.71582                                                                                        | 2 7                                           | .43912                                                                       | 7.4989                                                         | 2 4.71                                                   | 1582                                         |
| 35                                                 | 20.76                                         | 2                                         | В                     | 8.08640                                                                                         | 8.129                                     | 25                   | 6.09560                                                                                        | 8 0                                           | .08640                                                                       | 8.1292                                                         | 5 6.09                                                   | 9560                                         |
| 36                                                 | 20.65                                         | 2                                         | В                     | 8.09656                                                                                         | 8.193                                     | 33                   | 7.00216                                                                                        | 6 8                                           | .09656                                                                       | 8.1933                                                         | 3 7.00                                                   | 0216                                         |
| 37                                                 | 18.61                                         | 2                                         |                       | 8.68155                                                                                         | 9.008                                     |                      | 5.51020                                                                                        |                                               | .68155                                                                       |                                                                |                                                          | 1020                                         |
| 38                                                 | 4.61                                          | 2                                         | В                     | 8.92975                                                                                         | 8.937                                     | 67                   | 7.98922                                                                                        | 2 8                                           | .92975                                                                       | 8.9376                                                         | 7 7.98                                                   | 3922                                         |
| 39                                                 | 3.39                                          | 2                                         |                       | 9.49270                                                                                         | 9.495                                     |                      | 7.83913                                                                                        |                                               | .49270                                                                       |                                                                |                                                          | 3913                                         |
| 40                                                 | 14.61                                         | 2                                         | В                     | 8.19079                                                                                         | 8.199                                     | 14                   | 6.8554 <sup>-</sup>                                                                            | 1 8                                           | .19079                                                                       | 8.1991                                                         | 4 6.85                                                   | 5541                                         |

```
8.49
                                  8.70967
                                            5.66053 8.70581
                                                                8.70967
 41
              2
                        8.70581
                                  6.46635
 42
     3.6
                                            4.15810
                                                                6.46635
              2
                    В
                        6.45774
                                                      6.45774
                                                                          4.15810
 43
     19.07
                        8.59803
                                  8.71257
                                            7.26962
                                                      8.59803
                                                                8.71257
                                                                          7.26962
              2
                    В
 44
     8.95
              2
                    В
                        7.27398
                                  7.42027
                                            4.51064
                                                      7.27398
                                                                7.42027
                                                                          4.51064
                                            6.72239
 45
     7.22
              2
                    В
                        8.05082
                                  8.09864
                                                      8.05082
                                                                8.09864
                                                                          6.72239
 46
              2
                   В
                        7.14919
                                            5.61931
                                                      7.14919
                                                                          5.61931
 47
     4.86
              2
                    В
                        7.44857
                                            6.07420
                                                                          6.07420
                                  7.45489
                                                      7.44857
                                                                7.45489
 48
     37.54
              2
                    В
                        9.07231
                                  9.09721
                                            7.79317
                                                      9.07231
                                                                9.09721
                                                                          7.79317
 49
     5.38
              2
                    В
                        8.12059
                                  8.17789
                                            5.45061
                                                      8.12059
                                                                8.17789
                                                                          5.45061
 50
     5.78
                        8.11086
                                  8.18183
                                            5.35800
                                                      8.11086
                                                                8.18183
                                                                          5.35800
              3
                    В
 51
     2.53
                        8.20265
                                  8.21093
                                            6.41739
                                                      8.20265
                                                                8.21093
              3
                   В
                                                                          6.41739
 52
     18.11
              3
                    В
                        8.12606
                                  8.17534
                                            4.49234
                                                      8.12606
                                                                8.17534
                                                                          4.49234
 53
              3
                        7.93781
                   В
                                            5.61130
                                                      7.93781
                                                                          5.61130
 54
     8.22
                        8.40198
                                            5.28371
              3
                   В
                                  8,42903
                                                      8.40198
                                                                8.42903
                                                                          5.28371
 55
     11.23
              3
                   В
                        8.85941
                                  8.93919
                                            6.83303
                                                                8.93919
                                                                          6.83303
                                                      8.85941
 56
     1.41
              3
                    В
                        8.56551
                                  8.56748
                                            5.89825
                                                      8.56551
                                                                8.56748
                                                                          5.89825
 57
     4.68
              3
                    В
                        7.67013
                                  7.69872
                                            4.56331
                                                      7.67013
                                                                7.69872
                                                                          4.56331
                        4.53711
 58
     15.06
              3
                    R
                                  4.90148
                                            1.77427
                                                      4.53711
                                                                4.90148
                                                                          1.77427
ref2
0bs
     SUBJ
            Group
                   SEQU
                           PER
                                Treat
                                             AUCT
                                                   AUCI
                                                                 CMAX
                                                                         TMAX
                                                                               ΚE
      (b) (6)
 59
              1
                   R1R2T
                            2
                                  R2
                                         10553.70
                                                    10689
                                                              2942.00
                                                                        24.03
                                                                               0.0288
                    R1R2T
                                          2633.66
                                                    2673.03
                                                               415.70
                                                                        24.00
 60
              2
                            2
                                  R2
                                                                               0.1648
 61
                   R1R2T
                                          1812.56
                                                    1978.82
                                                               415.60
                                                                        11.00
                                                                               0.1034
              2
                                  R2
                            2
                                                    2092.77
 62
              2
                   R1R2T
                                  R2
                                          2041.29
                                                               564.30
                                                                        22.00
                                                                                0.1142
                            2
 63
              2
                   R1R2T
                            2
                                  R2
                                           800.85
                                                    850.919
                                                               431.60
                                                                        14.00
                                                                                0.0306
              2
                   R1R2T
                            2
                                          2303.82
                                                    2887.53
                                                               495.10
                                                                        24.00
                                                                                0.0657
 64
                                  R2
 65
              2
                   R1R2T
                            2
                                  R2
                                          8885.70
                                                    8903.41
                                                              2557.00
                                                                         8.00
                                                                                0.0588
                                                                        24.00
                                                                                0.0127
              2
                            2
                                                    17470.1
                                                               280.90
 66
                   R1R2T
                                  R2
                                          5344.55
              2
 67
                   R1R2T
                            2
                                  R2
                                          1709.58
                                                    1731.74
                                                               135.70
                                                                        12.00
                                                                                0.1763
              2
                            2
                                          2097.78
                                                    2117.28
                                                                81.97
                                                                        10.00
                                                                                0.0767
 68
                    R1R2T
                                  R2
 69
              2
                    R1R2T
                                            63.77
                                                    70.3547
                                                                17.75
                                                                        22.00
                                                                                0.3407
                            2
                                  R2
              2
                                                                               0.0708
 70
                    R1R2T
                            2
                                          1080.29
                                                    1182.77
                                                               324.20
                                                                         7.00
                                  R2
0bs
     THALF
             SEQ
                  TRT
                         LAUCT
                                  LAUCINF
                                             LCMAX
                                                       lat2r
                                                                 lai2r
                                                                            1c2r
                                                                          7.98684
 59
     24.08
              3
                   В
                        9.26423
                                  9.27697
                                            7.98684
                                                      9.26423
                                                                9.27697
                                  7.89097
                                                                7.89097
 60
     4.21
                    В
                        7.87613
                                            6.02996
                                                      7.87613
                                                                          6.02996
              3
 61
     6.7
              3
                    В
                        7.50250
                                  7.59026
                                            6.02972
                                                      7.50250
                                                                7.59026
                                                                          6.02972
 62
     6.07
              3
                    В
                        7.62134
                                  7,64624
                                            6.33559
                                                      7.62134
                                                                7,64624
                                                                          6.33559
     22.68
                        6.68567
 63
              3
                    B
                                  6.74632
                                            6.06750
                                                      6.68567
                                                                6.74632
                                                                          6.06750
 64
     10.55
              3
                    В
                        7.74232
                                  7.96816
                                            6.20476
                                                      7.74232
                                                                7.96816
                                                                          6.20476
 65
     11.79
              3
                    В
                        9.09220
                                  9.09419
                                            7.84659
                                                      9.09220
                                                                9.09419
                                                                          7.84659
 66
     54.51
              3
                   В
                        8.58383
                                  9.76825
                                            5.63800
                                                      8.58383
                                                                9.76825
                                                                          5.63800
 67
     3.93
              3
                   В
                        7.44400
                                  7.45688
                                            4.91045
                                                      7.44400
                                                                7.45688
                                                                          4.91045
 68
     9.04
                        7.64863
                                  7.65789
                                            4.40635
                                                                7.65789
                                                                          4.40635
              3
                    В
                                                      7.64863
 69
     2.03
              3
                    В
                        4.15535
                                  4.25355
                                            2.87639
                                                      4.15535
                                                                4.25355
                                                                          2.87639
 70
     9.8
                        6.98498
                                 7.07561
                                            5.78136 6.98498
                                                               7.07561
                                                                          5.78136
```

| 0bs | SUBJ       | PER | SEQ | TRT | ilat     | ilai     | ilc      | dlat     | dlai     | dlc      |
|-----|------------|-----|-----|-----|----------|----------|----------|----------|----------|----------|
| 1   | (b)<br>(6) | 3   | 1   | В   | 0.96666  | 0.94952  | 1.32279  | -0.51265 | -0.48743 | 0.25684  |
| 2   | (6)        | 3   | 1   | В   | -0.72083 | -0.71906 | -1.18914 | 1.55239  | 1.54253  | 2.62983  |
| 3   |            | 3   | 1   | В   | -0.16563 | 0.09291  | -0.21971 | -0.67535 | -0.87533 | -0.46886 |
| 4   |            | 3   | 1   | В   | -0.17110 | -0.16399 | -0.17453 | -0.05472 | -0.07289 | -0.22378 |
| 5   |            | 3   | 1   | В   | -0.06272 | 0.55924  | -0.18101 | -0.27627 | -0.47329 | -0.24421 |
| 6   |            | 3   | 1   | В   | 1.10288  | 1.18830  | 2.91405  | 0.19847  | 0.23237  | -0.51945 |
| 7   |            | 3   | 1   | В   | -0.01000 | 0.30794  | 0.00791  | -0.02724 | -0.10297 | -0.03755 |
| 8   |            | 3   | 1   | В   | 1.40065  | 1.38681  | 1.65475  | 0.65633  | 0.64769  | 1.42114  |
| 9   |            | 3   | 1   | В   | 1.64369  |          | 1.92127  | -0.28714 |          | -0.54040 |
| 10  |            | 3   | 1   | В   | 2.75179  |          |          | -3.00959 |          | -1.91554 |
| 11  |            | 3   | 1   | В   | 0.04596  | 0.04497  | 0.95941  | -0.15690 | -0.15408 | 0.59364  |
| 12  |            | 3   | 1   | В   | -2.41451 |          | -2.00919 | -0.22012 |          | 0.14334  |
| 13  |            | 3   | 1   | В   | 0.02207  | 0.00610  | -0.09917 | 0.24902  | 0.29526  | -0.10530 |
| 14  |            | 3   | 1   | В   | 2.24902  | 2.21660  | 1.64976  | 3.50781  | 3.39087  | 2.67654  |
| 15  |            | 3   | 1   | В   | -1.38036 |          | -1.81430 | -1.03321 | -0.95636 | -2.17552 |
| 16  |            | 3   | 1   | В   | -0.05400 | -0.08511 | 1.33699  | -0.20254 | -0.13266 | -0.17792 |
| 17  |            | 3   | 1   | В   | -0.30384 | -0.50351 | 0.19180  | -0.85036 | -0.41120 | -3.03932 |
| 18  |            | 3   | 1   | В   | -0.10126 | -0.13238 | -0.49387 | -0.56733 | -0.64070 | -1.16099 |
| 19  |            | 3   | 1   | В   | 0.85212  | 0.84739  | 0.85354  | 2.03760  | 2.01458  | 2.88644  |
| 20  |            | 3   | 1   | В   | 1.05372  | 1.15589  | -0.10041 | 1.34728  | 1.00609  | 3.89221  |
| 21  |            | 3   | 1   | В   | -6.45482 | -4.38525 | -7.01019 | -1.38517 | -1.37841 | -1.58428 |
| 22  |            | 3   | 1   | В   | 2.80015  |          | 3.48984  | -2.93241 |          | -1.80973 |
| 23  |            | 3   | 1   | В   | 0.00609  | -0.00592 | 0.39461  | -0.49664 | -0.46567 | -0.72045 |
| 24  |            | 3   | 1   | В   | 0.29447  | 0.23600  | 1.35562  | 0.63540  | 0.65658  | 0.57172  |
| 25  |            | 3   | 2   | В   | 1.31736  |          | 0.35809  | -0.92025 |          | -0.22704 |
| 26  |            | 3   | 2   | В   | -0.16240 | -0.16298 | -0.42644 | -0.50180 | -0.50056 | -0.68323 |
| 27  |            | 3   | 2   | В   | 0.09681  | 0.09406  | 0.20758  | 0.20113  | 0.24493  | 0.56546  |
| 28  |            | 3   | 2   | В   | 0.66902  |          |          | 0.68590  |          | 2.33693  |
| 29  |            | 3   | 2   | В   | -3.55551 |          | -4.48425 | -1.24221 | -0.85319 | -1.07345 |
| 30  |            | 3   | 2   | В   | -1.00987 |          | -1.46270 | 1.33625  |          | 2.47718  |
| 31  |            | 3   | 2   | В   | 0.54395  | 0.52604  | 0.53708  | -0.19376 | -0.19602 | -0.29684 |
| 32  |            | 3   | 2   | В   | 0.18968  | 0.13572  | 0.45490  | -0.34199 | -0.46987 | 0.07072  |
| 33  |            | 3   | 2   | В   | -2.40864 |          | -2.22575 | 1.53519  |          | 1.65589  |
| 34  |            | 3   | 2   | В   | 1.54365  |          | 1.02937  | -2.47891 |          | -1.07797 |
| 35  |            | 3   | 2   | В   | 0.84580  | 0.75491  | 1.13570  | -0.56515 | -0.43257 | -0.81646 |
| 36  |            | 3   | 2   | В   | 0.01182  | -0.03636 | 0.50430  | -1.42787 | -1.51791 | -2.19486 |
| 37  |            | 3   | 2   | В   | 0.30436  |          | 0.50871  | -0.90824 | -0.98428 | 0.15519  |
| 38  |            | 3   | 2   | В   | -0.01480 | -0.08329 | -0.68412 | -0.96716 | -0.83752 | -1.39961 |
| 39  |            | 3   | 2   | В   |          | -0.88696 | -1.58697 | 0.10732  | 0.11138  | 0.01370  |
| 40  |            | 3   | 2   | В   | 1.11084  | 0.91672  | 1.00876  |          | 0.40143  | 0.64124  |
| 41  |            | 3   | 2   | В   | -1.04659 | -1.04753 |          |          | 0.27908  | 0.03958  |
| 42  |            | 3   | 2   | В   | 0.38996  |          |          |          | 2.49309  |          |
| 43  |            | 3   | 2   | В   |          |          |          | -1.44380 | -1.40533 |          |
| 44  |            | 3   | 2   | В   | 1.16770  | 1.09418  | 2.66690  |          | 0.25702  | 0.25665  |
| 45  |            | 3   | 2   | В   | 0.18535  |          |          | -0.39200 | -0.43087 | -2.08863 |
| 46  |            | 3   | 2   | В   | 1.32271  |          | 1.60729  |          |          | -0.88927 |
| 47  |            | 3   | 2   | В   |          |          | -1.83267 |          | 0.89401  |          |
| 48  |            | 3   | 2   | В   |          | -0.00485 |          | -0.74216 |          |          |
| 49  |            | 3   | 2   | В   | -0.24252 |          | -0.46368 |          |          | -0.05517 |
| 50  |            | 2   | 3   | В   |          |          | 0.83687  |          | 0.09119  |          |
| 51  |            | 2   | 3   | В   |          |          |          | -0.97644 |          |          |
| 52  |            | 2   | 3   | В   | -0.70550 | -0.68653 | -1.08129 | 0.13527  | 0.09328  | 1.82591  |

```
53
        2
                -0.22506
                               -0.19757 0.08545
                                                        -0.53363
54
        2
                 -1.12005 -1.22544 -1.95785 0.73682 0.91034 2.17678
           3
               В
                          .
55
        2
           3
               В
                 -0.72095
                                 -0.99079 -0.92061
                                                 .
                                                        -1.57710
56
        2
           3
               В
                 -1.16182 -1.16158 -1.30049 -0.16875 -0.15316 0.59716
57
        2
               В
                                 0.56449 -0.06757 -0.09108 0.07627
                 -0.42423
58
        2
           3
               В
                                 3.28565 0.19826 0.61368 0.02925
                  3.33661
        2
           3
59
               В
                 -0.16777 -0.16886 -0.00146 -0.74470 -0.75303 -1.28133
        2
 60
           3
                 -0.02417 . -0.32142 0.15584
                 -1.00247 -1.04109 -0.48606 -0.49021 -0.47356 -1.10102
61
                                                                  59
dataset for scaled average BE
Obs SUBJ PER SEQ TRT
                           ilai
                                   ilc
                                                  dlai
                                                          dlc
                   ilat
                                          dlat
62
        2
                -0.80044 -0.82862 -0.80285 -0.20458 -0.19247 -0.46883
           3
               В
63
        2
                  0.91207  0.85479  0.55167  2.10156  2.09821 -0.21991
64
        2
               В
                 -0.79839
                                 -0.85998 -0.18323
65
                  2
           3
               В
66
        2
           3
               В
                  0.31562 -0.23468 -0.08638 -0.54927 -1.70086 -0.19688
67
        2
           3
               В
                 -0.84135 -0.80366 -1.13744 -0.02827 -0.02983 1.35523
68
        2
           3
               В
                  -0.83036 -0.71398 0.27971 0.43550 0.42854
                                                        0.94598
69
        2
           3
               В
                  70
        2
           3
               В
```

60

unscaled BE 90% CI - guidance version

The Mixed Procedure

#### Model Information

Data Set WORK.PKN Dependent Variable LCMAX Covariance Structures Factor Analytic, Variance Components SUBJ, SUBJ Subject Effects Group Effect TRT Estimation Method REML Residual Variance Method None Fixed Effects SE Method Model-Based Degrees of Freedom Method Satterthwaite

#### Class Level Information

| Class | Levels | Values                        |
|-------|--------|-------------------------------|
| Group | 2      | 1 2                           |
| SEQ   | 3      | 1 2 3                         |
| SUBJ  | 70     | 1 2 3 4 6 7 9 10 11 12 13 14  |
|       |        | 15 16 17 18 19 20 22 24 25 27 |
|       |        | 28 29 31 32 33 34 35 36 38 39 |
|       |        | 40 41 43 44 45 46 47 48 50 51 |
|       |        | 54 55 58 60 62 63 64 66 67 68 |
|       |        | 70 71 72 74 76 77 78 79 80 82 |
|       |        | 83 84 85 86 87 88 89 90       |
| PER   | 3      | 1 2 3                         |
| TRT   | 2      | АВ                            |

## Dimensions

| Covariance  | Parameters    | 5  |
|-------------|---------------|----|
| Columns in  | X             | 24 |
| Columns in  | Z Per Subject | 2  |
| Subjects    |               | 70 |
| Max Obs Per | Subject       | 3  |

## Number of Observations

| Number | of | Observations         | Read     | 210 |
|--------|----|----------------------|----------|-----|
| Number | of | ${\tt Observations}$ | Used     | 210 |
| Number | of | <b>Observations</b>  | Not Used | 0   |

## Iteration History

| Iteration | Evaluations | -2 Res Log Like | Criterion  |
|-----------|-------------|-----------------|------------|
|           |             |                 |            |
| 0         | 1           | 737.00818740    |            |
| 1         | 2           | 729.89478925    | 0.05269775 |
| 2         | 1           | 726.89264855    | 0.01118891 |
| 3         | 1           | 725.88479755    | 0.00280006 |
| 4         | 1           | 725.58141197    | 0.00075115 |
| 5         | 1           | 725.49441106    | 0.00021791 |
| 6         | 1           | 725.46936538    | 0.00007143 |
| 7         | 1           | 725.46177802    | 0.00002807 |
| 8         | 1           | 725.45926101    | 0.00001385 |

unscaled BE 90% CI - guidance version

The Mixed Procedure

## Iteration History

| Iteration | Evaluations | -2 Res Log Like | Criterion  |
|-----------|-------------|-----------------|------------|
| 9         | 1           | 725.45832720    | 0.00000861 |
| 10        | 1           | 725.45794217    | 0.00000645 |
| 11        | 1           | 725.45777024    | 0.00000549 |
| 12        | 1           | 725.45768941    | 0.0000504  |
| 13        | 1           | 725.45765033    | 0.00000482 |
| 14        | 1           | 725.45763070    | 0.00000470 |
| 15        | 1           | 725.45761708    | 0.00067698 |
| 16        | 1           | 725.45761677    | 0.00000462 |
| 17        | 1           | 725.45757972    | 0.00064668 |
| 18        | 1           | 725.45757960    | 0.00064664 |
| 19        | 1           | 725.45757541    | 0.00000439 |
| 20        | 1           | 725.45752651    | 0.00060357 |
| 21        | 1           | 725.45752570    | 0.00060296 |
| 22        | 1           | 725.45752384    | 0.00000410 |
| 23        | 1           | 725.45696832    | 0.00000101 |
| 24        | 1           | 725.45678546    | 0.00000000 |

Page 137 of 168

## Convergence criteria met.

## Estimated G Matrix

| Row | Effect | TRT | SUBJ | Col1   | Col2   |
|-----|--------|-----|------|--------|--------|
| 1   | TRT    | Α   | 1    | 2.2689 | 0.4447 |
| 2   | TRT    | В   | 1    | 0.4447 | 0.5379 |

#### Covariance Parameter Estimates

| Cov Parm | Subject | Group | Estimate |
|----------|---------|-------|----------|
| FA(1,1)  | SUBJ    |       | 1.5063   |
| FA(2,1)  | SUBJ    |       | 0.2952   |
| FA(2,2)  | SUBJ    |       | 0.6714   |
| Residual | SUBJ    | TRT A | 7.002E-6 |
| Residual | SUBJ    | TRT B | 1.3257   |

#### Fit Statistics

| -2 Res Log Likelihood    | 725.5 |
|--------------------------|-------|
| AIC (smaller is better)  | 735.5 |
| AICC (smaller is better) | 735.8 |
| BIC (smaller is better)  | 746.7 |

## Null Model Likelihood Ratio Test

| DF | Chi-Square | Pr > ChiSq |
|----|------------|------------|
| 4  | 11.55      | 0.0210     |

unscaled BE 90% CI - guidance version

The Mixed Procedure

Type 3 Tests of Fixed Effects

| Num<br>DF | Den<br>DF                   | F Value                                  | Pr > F                                                                    |
|-----------|-----------------------------|------------------------------------------|---------------------------------------------------------------------------|
| 1         | 64.4                        | 1.05                                     | 0.3088                                                                    |
| 2         | 64.1                        | 1.84                                     | 0.1667                                                                    |
| 2         | 64.1                        | 0.20                                     | 0.8217                                                                    |
| 4         | 132                         | 0.38                                     | 0.8202                                                                    |
| 1         | 66.8                        | 0.01                                     | 0.9070                                                                    |
| 1         | 66.8                        | 0.03                                     | 0.8631                                                                    |
|           | DF<br>1<br>2<br>2<br>4<br>1 | DF DF  1 64.4 2 64.1 2 64.1 4 132 1 66.8 | DF DF F Value  1 64.4 1.05 2 64.1 1.84 2 64.1 0.20 4 132 0.38 1 66.8 0.01 |

Estimates

Standard

| Label  | Estimate | Error  | DF   | t Value | Pr >  t | Alpha | Lower   | Upper  |
|--------|----------|--------|------|---------|---------|-------|---------|--------|
| T vs R | 0.02264  | 0 1930 | 66.8 | 0 12    | 0 9070  | 0 1   | -0 2993 | 0 3446 |

## Least Squares Means

| Effect   | TRT    | Estimate    | Standard<br>Error | DF   | t Value | Pr >  t |  |
|----------|--------|-------------|-------------------|------|---------|---------|--|
| TRT      | Α      | 5.6156      | 0.1812            | 65.8 | 30.99   | <.0001  |  |
| TRT      | В      | 5.5930      | 0.1320            | 64.6 | 42.39   | <.0001  |  |
| unscaled | BE 90% | CI - guidan | ce version        |      |         |         |  |

63

The Mixed Procedure

## Model Information

| Data Set                  | WORK.PKN                  |
|---------------------------|---------------------------|
| Dependent Variable        | LAUCT                     |
| Covariance Structures     | Factor Analytic, Variance |
|                           | Components                |
| Subject Effects           | SUBJ, SUBJ                |
| Group Effect              | TRT                       |
| Estimation Method         | REML                      |
| Residual Variance Method  | None                      |
| Fixed Effects SE Method   | Model-Based               |
| Degrees of Freedom Method | Satterthwaite             |

## Class Level Information

| Class | Levels | Values                        |
|-------|--------|-------------------------------|
| 0     | 0      | 1.0                           |
| Group | 2      | 1 2                           |
| SEQ   | 3      | 1 2 3                         |
| SUBJ  | 70     | 1 2 3 4 6 7 9 10 11 12 13 14  |
|       |        | 15 16 17 18 19 20 22 24 25 27 |
|       |        | 28 29 31 32 33 34 35 36 38 39 |
|       |        | 40 41 43 44 45 46 47 48 50 51 |
|       |        | 54 55 58 60 62 63 64 66 67 68 |
|       |        | 70 71 72 74 76 77 78 79 80 82 |
|       |        | 83 84 85 86 87 88 89 90       |
| PER   | 3      | 1 2 3                         |
| TRT   | 2      | АВ                            |

## Dimensions

| Covariance          | Parameters    | 5  |
|---------------------|---------------|----|
| Columns in          | Χ             | 24 |
| ${\tt Columns\ in}$ | Z Per Subject | 2  |
| Subjects            |               | 70 |
| Max Obs Per         | ^ Subject     | 3  |

Page 139 of 168

## Number of Observations

| Number | of | Observations 0       | Read     | 210 |
|--------|----|----------------------|----------|-----|
| Number | of | ${\tt Observations}$ | Used     | 210 |
| Number | of | Observations         | Not Used | 0   |

## Iteration History

| Iteration | Evaluations | -2 Res Log Like | Criterion  |
|-----------|-------------|-----------------|------------|
| 0         | 1           | 665.53720148    |            |
| 1         | 2           | 650.29969893    | 0.05406058 |
| 2         | 1           | 647.66672296    | 0.01191577 |
| 3         | 1           | 646.79828708    | 0.00301027 |
| 4         | 1           | 646.53951817    | 0.00081184 |
| 5         | 1           | 646.46562641    | 0.00023707 |
| 6         | 1           | 646.44434780    | 0.00007849 |
| 7         | 1           | 646.43787605    | 0.00003127 |
| 8         | 1           | 646.43571526    | 0.00001567 |

unscaled BE 90% CI - guidance version

The Mixed Procedure

## Iteration History

| Iteration | Evaluations | -2 Res Log Like | Criterion  |
|-----------|-------------|-----------------|------------|
| 9         | 1           | 646.43490791    | 0.00000987 |
| 10        | 1           | 646.43457303    | 0.00000747 |
| 11        | 1           | 646.43442290    | 0.0000640  |
| 12        | 1           | 646.43435217    | 0.00000589 |
| 13        | 1           | 646.43431767    | 0.0000564  |
| 14        | 1           | 646.43430866    | 0.00000558 |
| 15        | 1           | 646.43430125    | 0.00000553 |
| 16        | 1           | 646.43429511    | 0.00107237 |
| 17        | 1           | 646.43428688    | 0.00000541 |
| 18        | 1           | 646.43426724    | 0.00000527 |
| 19        | 1           | 646.43424914    | 0.00000514 |
| 20        | 1           | 646.43422906    | 0.0000500  |
| 21        | 1           | 646.43416197    | 0.00088765 |
| 22        | 1           | 646.43415840    | 0.00000449 |
| 23        | 1           | 646.43387336    | 0.00048672 |
| 24        | 1           | 646.43387321    | 0.00000247 |
| 25        | 1           | 646.43372068    | 0.00000138 |
| 26        | 1           | 646.43352539    | 0.00000000 |

Convergence criteria met.

## Estimated G Matrix

| Row | Effect | TRT | SUBJ | Col1   | Col2   |
|-----|--------|-----|------|--------|--------|
| 1   | TRT    | Α   | 1    | 1.6869 | 0.2839 |

#### 2 TRT B 1 0.2839 0.5356

#### Covariance Parameter Estimates

| Cov Parm | Subject | Group | Estimate |
|----------|---------|-------|----------|
| FA(1,1)  | SUBJ    |       | 1.2988   |
| FA(2,1)  | SUBJ    |       | 0.2186   |
| FA(2,2)  | SUBJ    |       | 0.6985   |
| Residual | SUBJ    | TRT A | 2.369E-6 |
| Residual | SUBJ    | TRT B | 0.7143   |

## Fit Statistics

| -2 Res Log Likelihood    | 646.4 |
|--------------------------|-------|
| AIC (smaller is better)  | 656.4 |
| AICC (smaller is better) | 656.7 |
| BIC (smaller is better)  | 667.7 |

#### Null Model Likelihood Ratio Test

| DF | Chi-Square | Pr > ChiSq |
|----|------------|------------|
| 4  | 19.10      | 0.0007     |

unscaled BE 90% CI - guidance version

The Mixed Procedure

Type 3 Tests of Fixed Effects

|            | Num | Den  |         |        |
|------------|-----|------|---------|--------|
| Effect     | DF  | DF   | F Value | Pr > F |
|            |     |      |         |        |
| Group      | 1   | 64.2 | 0.23    | 0.6348 |
| SEQ        | 2   | 64.1 | 0.50    | 0.6074 |
| Group*SEQ  | 2   | 64.1 | 1.92    | 0.1554 |
| PER(Group) | 4   | 123  | 0.20    | 0.9399 |
| TRT        | 1   | 66.6 | 0.00    | 0.9744 |
| Group*TRT  | 1   | 66.6 | 0.05    | 0.8299 |
|            |     |      |         |        |

#### Estimates

Standard

Label Estimate Error DF t Value Pr > |t| Alpha Lower Upper T vs. R -0.00549 0.1704 66.6 -0.03 0.9744 0.1 -0.2897 0.2787

## Least Squares Means

 $\label{eq:Standard} \mbox{ Effect TRT Estimate Error DF t Value Pr > |t|}$ 

| TRT | Α | 7.7412 | 0.1562 | 65.4 | 49.55 | <.0001 |
|-----|---|--------|--------|------|-------|--------|
| TRT | В | 7.7467 | 0.1138 | 64.5 | 68.09 | <.0001 |

unscaled BE 90% CI - guidance version

66

The Mixed Procedure

Model Information

Data Set WORK.PKN
Dependent Variable LAUCINF

Covariance Structures Factor Analytic, Variance

 ${\tt Components}$ 

Subject Effects SUBJ, SUBJ Group Effect TRT Estimation Method REML

Estimation Method REML Residual Variance Method None

Fixed Effects SE Method Model-Based
Degrees of Freedom Method Satterthwaite

Class Level Information

| Class  | Levels | Values                        |
|--------|--------|-------------------------------|
| Group  | 2      | 1 2                           |
| ai oup | _      | 1 2                           |
| SEQ    | 3      | 1 2 3                         |
| SUBJ   | 70     | 1 2 3 4 6 7 9 10 11 12 13 14  |
|        |        | 15 16 17 18 19 20 22 24 25 27 |
|        |        | 28 29 31 32 33 34 35 36 38 39 |
|        |        | 40 41 43 44 45 46 47 48 50 51 |
|        |        | 54 55 58 60 62 63 64 66 67 68 |
|        |        | 70 71 72 74 76 77 78 79 80 82 |
|        |        | 83 84 85 86 87 88 89 90       |
| PER    | 3      | 1 2 3                         |
| TRT    | 2      | A B                           |

#### Dimensions

| Covariance  | Parameters    | 5  |
|-------------|---------------|----|
| Columns in  | X             | 24 |
| Columns in  | Z Per Subject | 2  |
| Subjects    |               | 70 |
| Max Obs Per | Subject       | 3  |

#### Number of Observations

| Number | of | Observations         | Read     | 210 |
|--------|----|----------------------|----------|-----|
| Number | of | ${\tt Observations}$ | Used     | 183 |
| Number | of | Observations         | Not Used | 27  |

Iteration History

| Iteration | Evaluations | -2 Res Log Like | Criterion  |
|-----------|-------------|-----------------|------------|
|           |             |                 |            |
| 0         | 1           | 507.36048559    |            |
| 1         | 2           | 501.37409921    | 0.03051303 |
| 2         | 1           | 499.59117012    | 0.00036309 |
| 3         | 1           | 499.55919941    | 0.00051355 |
| 4         | 1           | 499.55903031    | 0.0000002  |
| 5         | 1           | 499.55903030    | 0.00000000 |
|           |             |                 |            |

unscaled BE 90% CI - guidance version

The Mixed Procedure

Convergence criteria met but final hessian is not positive definite.

67

#### Estimated G Matrix

| Row | Effect | TRT | SUBJ | Col1   | Col2   |
|-----|--------|-----|------|--------|--------|
| 1   | TRT    | Α   | 1    | 0.6723 | 0.1417 |
| 2   | TRT    | В   | 1    | 0.1417 | 0.3041 |

## Covariance Parameter Estimates

| Cov Parm | Subject | Group | Estimate |
|----------|---------|-------|----------|
| FA(1,1)  | SUBJ    |       | 0.8199   |
| FA(2,1)  | SUBJ    |       | 0.1729   |
| FA(2,2)  | SUBJ    |       | 0.5237   |
| Residual | SUBJ    | TRT A | 0.1972   |
| Residual | SUBJ    | TRT B | 0.6384   |
|          |         |       |          |

#### Fit Statistics

| -2 Res Log Likelihood    | 499.6 |
|--------------------------|-------|
| AIC (smaller is better)  | 509.6 |
| AICC (smaller is better) | 509.9 |
| BIC (smaller is better)  | 520.8 |

#### Null Model Likelihood Ratio Test

| DF | Chi-Square | Pr > ChiSq |
|----|------------|------------|
| 4  | 7.80       | 0.0991     |

## Type 3 Tests of Fixed Effects

|        | Num | Den  |         |        |
|--------|-----|------|---------|--------|
| Effect | DF  | DF   | F Value | Pr > F |
| Group  | 1   | 57.7 | 1.41    | 0.2405 |

| SEQ        | 2 | 60.2 | 4.08 | 0.0218 |
|------------|---|------|------|--------|
| Group*SEQ  | 2 | 60.2 | 0.24 | 0.7911 |
| PER(Group) | 4 | 115  | 0.20 | 0.9380 |
| TRT        | 1 | 53.3 | 0.04 | 0.8469 |
| Group*TRT  | 1 | 53.3 | 0.00 | 0.9968 |

Estimates

Standard

Label Estimate Error DF t Value Pr > |t| Alpha Upper Lower T vs. R 0.02791 0.1438 53.3 0.19 0.8469 0.1 -0.2128 0.2687 unscaled BE 90% CI - guidance version 68

The Mixed Procedure

Least Squares Means

Standard Pr > |t|Effect TRT Estimate Error DF t Value TRT Α 8.0256 0.1216 56 66.02 <.0001 TRT В 7.9977 0.1005 60.9 79.54 <.0001

scaled average BE 69 intermediate analysis - &ipar glm

The GLM Procedure

Class Level Information

Class Levels Values
SEQ 3 1 2 3

Number of Observations Read 70 Number of Observations Used 70

scaled average BE 70 intermediate analysis - &ipar glm

The GLM Procedure

Dependent Variable: ilat

Sum of Source DF Squares Mean Square F Value Pr > F Model 2 1.2344905 0.6172452 0.31 0.7326 Error 67 132.2730200 1.9742242 Corrected Total 69 133.5075105

| R-Square         | Coeff Var                      | Root M    | ISE      | ilat M                 | ean            |           |         |        |    |
|------------------|--------------------------------|-----------|----------|------------------------|----------------|-----------|---------|--------|----|
| 0.009247         | -10292.38                      | 1.4050    | 71       | -0.013                 | 652            |           |         |        |    |
| Source           |                                | DF        | Ту       | pe I SS                | Mean           | Square    | F Value | Pr >   | F  |
| SEQ              |                                | 2         | 1.2      | 3449048                | 0.6            | 1724524   | 0.31    | 0.732  | 6  |
| Source           |                                | DF T      | ype      | III SS                 | Mean           | Square    | F Value | Pr >   | F  |
| SEQ              |                                | 2         | 1.2      | 3449048                | 0.6            | 1724524   | 0.31    | 0.732  | 6  |
| Parameter        |                                | Estima    | ıte      |                        | ndard<br>Error |           | e Pr:   | >  t   |    |
| average          |                                | -0.021139 | 34       | 0.168                  | 40394          | -0.1      | 3 0     | .9005  |    |
| Parameter        |                                | 90% Conf  | ide      | nce Limits             |                |           |         |        |    |
| average          |                                | -0.302022 | 99       | 0.259744               | 30             |           |         |        |    |
| dev iglmila      | t1                             |           |          |                        |                |           |         |        | 71 |
| Obs Depender     | nt Source                      |           | DF       |                        | SS             | MS        | FValue  | ProbF  |    |
| 1 ilat           | Model                          |           | 2        |                        |                | 0.6172452 |         | 0.7326 |    |
| 2 ilat<br>3 ilat | Error<br>Corrected             |           | 67<br>69 | 132.27302<br>133.50751 |                | 1.9742242 | _       | _      |    |
| scaled avera     | age BE<br>e analysis -         | &dpar glm | 1        |                        |                | _         | _       | _      | 72 |
| The GLM Pro      | cedure                         |           |          |                        |                |           |         |        |    |
| Class Lev        | vel Informati                  | .on       |          |                        |                |           |         |        |    |
| Class            | Levels                         | Values    |          |                        |                |           |         |        |    |
| SEQ              | 3                              | 1 2 3     |          |                        |                |           |         |        |    |
|                  | oservations F<br>oservations L |           |          | 70<br>70               |                |           |         |        |    |
| scaled avera     | age BE<br>e analysis -         | &dpar glm | 1        |                        |                |           |         |        | 73 |
| The GLM Pro      | cedure                         |           |          |                        |                |           |         |        |    |
| Dependent Va     | ariable: dlat                  | :         |          |                        |                |           |         |        |    |
| Source           |                                | DF        | ;        | Sum of<br>Squares      | Mean           | Square    | F Value | Pr >   | F  |

| Model                                           | 2 1.2               | 7400317 | 0.63700158       | 0.44 0.6441       |
|-------------------------------------------------|---------------------|---------|------------------|-------------------|
| Error                                           | 67 96.3             | 9308011 | 1.43870269       |                   |
| Corrected Total                                 | 69 97.6             | 6708328 |                  |                   |
| R-Square Coeff Var                              | Root MSE            | dlat    | Mean             |                   |
| 0.013044 -2815.908                              | 1.199459            | -0.0    | 42596            |                   |
|                                                 |                     |         |                  |                   |
| Source                                          | DF Ty               | pe I SS | Mean Square      | F Value Pr > F    |
| SEQ                                             | 2 1.2               | 7400317 | 0.63700158       | 0.44 0.6441       |
| Source                                          | DF Type             | III SS  | Mean Square      | F Value Pr > F    |
| SEQ                                             | 2 1.2               | 7400317 | 0.63700158       | 0.44 0.6441       |
| output needed for mixed sc                      | aled av. BE         | - using | glm              | 74                |
| method_ unscabe_<br>Obs used lower              | unscabe_<br>upper   |         | s2i param        | ı StdErr          |
| 1 Scaled/PE 0.74848                             | 1.32147             | 67      | 1.97422 LAUCT    | 0.16840394        |
|                                                 |                     |         |                  |                   |
| Obs pointest x                                  | boundx              | ni      | dfd s2wr         | nd theta          |
| 1 0.97908 -0.027913                             | 0.091218            | 70      | 67 0.71935       | 70 0.79669        |
| Obs y boundy                                    | sWR                 | crit    | bound outcome    |                   |
| 1 -0.57310 -0.44080                             | 0.84815             | -0.     | 42298 PASS       |                   |
| final output - &parameter                       | - using glm         |         |                  | 75                |
| method_ unscabe_ uns<br>Obs used lower u        | cabe_<br>pper param | pointes | t s2wr sWR       | critbound outcome |
| 1 Scaled/PE 0.74848 1.                          | 32147 LAUCT         | 0.9790  | 8 0.71935 0.8481 | 5 -0.42298 PASS   |
| scaled average BE<br>intermediate analysis - &i | par olm             |         |                  | 76                |
| The GLM Procedure                               | par gim             |         |                  |                   |
| Class Level Information                         |                     |         |                  |                   |
|                                                 | lues                |         |                  |                   |
|                                                 | 2 3                 |         |                  |                   |

| Number | of | Observations        | Read | 70 |
|--------|----|---------------------|------|----|
| Number | of | <b>Observations</b> | Used | 49 |

scaled average BE 77 intermediate analysis - &ipar glm

The GLM Procedure

Dependent Variable: ilai

| •            |           |         |           |       |         |         |       |        |
|--------------|-----------|---------|-----------|-------|---------|---------|-------|--------|
| 0            |           | DE      |           | m of  | Maran 0 |         |       | D      |
| Source       |           | DF      | Squ       | ares  | Mean Sq | uare F  | Value | Pr > F |
| Model        |           | 2       | 2.8211    | 9709  | 1.41059 | 9854    | 1.52  | 0.2303 |
| Error        |           | 46      | 42.8001   | 6721  | 0.9304  | 3842    |       |        |
| Corrected To | otal      | 48      | 45.6213   | 6430  |         |         |       |        |
|              |           |         |           |       |         |         |       |        |
| R-Square     | Coeff Var | Root    | MSE       | ilai  | Mean    |         |       |        |
| 0.061839     | -3195.229 | 0.96    | 34592     | -0.03 | 0189    |         |       |        |
|              |           |         |           |       |         |         |       |        |
| Source       |           | DF      | Type      | I SS  | Mean Sq | uare F  | Value | Pr > F |
| SEQ          |           | 2       | 2.8211    | 9709  | 1.41059 | 9854    | 1.52  | 0.2303 |
|              |           |         |           |       |         |         |       |        |
| Source       |           | DF      | Type II   | I SS  | Mean Sq | uare F  | Value | Pr > F |
| SEQ          |           | 2       | 2.8211    | 9709  | 1.4105  | 9854    | 1.52  | 0.2303 |
|              |           |         |           |       |         |         |       |        |
|              |           |         |           | St    | andard  |         |       |        |
| Parameter    |           | Esti    | mate      |       | Error   | t Value | Pr >  | ·  t   |
| average      |           | -0.0468 | 39045     | 0.13  | 865581  | -0.34   | 0.    | 7368   |
| Parameter    |           | 90% Co  | onfidence | Limit | S       |         |       |        |
|              |           |         |           |       |         |         |       |        |

-0.27964646 0.18586557

average

| dev iglmilai1              |                             |          |    |                                          |                               |                |                  | 78 |
|----------------------------|-----------------------------|----------|----|------------------------------------------|-------------------------------|----------------|------------------|----|
| Obs Dependent              | Source                      |          | DF | SS                                       | MS                            | FValue         | ProbF            |    |
| 1 ilai<br>2 ilai<br>3 ilai | Model<br>Error<br>Corrected | Total    |    | 2.82119709<br>42.80016721<br>45.62136430 | 1.41059854<br>0.93043842<br>- | 1.52<br>-<br>- | 0.2303<br>-<br>- |    |
| scaled average             |                             | &dpar gl | Lm |                                          |                               |                |                  | 79 |
| The GLM Proce              | dure                        |          |    |                                          |                               |                |                  |    |
| Class Leve                 | l Informat                  | ion      |    |                                          |                               |                |                  |    |
| Class                      | Levels                      | Values   |    |                                          |                               |                |                  |    |
| SEQ                        | 3                           | 1 2 3    |    |                                          |                               |                |                  |    |
| Number of Obse             |                             |          |    | 70<br>56                                 |                               |                |                  |    |
| scaled average             | e BE                        |          |    |                                          |                               |                |                  | 80 |

intermediate analysis - &dpar glm

The GLM Procedure

Dependent Variable: dlai

| Source                    | DF    | Sum of<br>Squares | Mean Square | F Value | Pr > F |
|---------------------------|-------|-------------------|-------------|---------|--------|
| Model                     | 2     | 1.80848962        | 0.90424481  | 0.74    | 0.4828 |
| Error                     | 53    | 64.91611536       | 1.22483237  |         |        |
| Corrected Total           | 55    | 66.72460498       |             |         |        |
| R-Square Coeff Var        | Roo   | t MSE dlai        | Mean        |         |        |
| 0.027104 1717.109         | 1.1   | 06721 0.06        | 4453        |         |        |
|                           |       |                   |             |         |        |
| Source                    | DF    | Type I SS         | Mean Square | F Value | Pr > F |
| SEQ                       | 2     | 1.80848962        | 0.90424481  | 0.74    | 0.4828 |
|                           |       |                   |             |         |        |
| Source                    | DF    | Type III SS       | Mean Square | F Value | Pr > F |
| SEQ                       | 2     | 1.80848962        | 0.90424481  | 0.74    | 0.4828 |
| output needed for mixed s | caled | av. BE - using    | glm         |         | 81     |

| 0bs   | method_<br>used            | unscabe_<br>lower            | unscabe_<br>upper | dfi    | s2     | i paı     | ram   | Sto      | dErr |
|-------|----------------------------|------------------------------|-------------------|--------|--------|-----------|-------|----------|------|
| 1     | Scaled/PE                  | 0.80828                      | 1.30822           | 46     | 0.93   | 044 LAU   | CINF  | 0.1386   | 5581 |
|       |                            |                              |                   |        |        |           |       |          |      |
| 0bs   | pointest                   | Х                            | boundx            | ni     | dfd    | s2wr      | nd    | theta    |      |
| 1     | 0.95419                    | -0.017027                    | 0.078202          | 49     | 53     | 0.61242   | 56    | 0.79669  |      |
| 0bs   | у                          | boundy                       | sWR               | cri    | tbound | outcor    | ne    |          |      |
| 1     | -0.48791                   | -0.36424                     | 0.78257           | - 0    | .34885 | PASS      |       |          |      |
| final | output - 8                 | kparameter -                 | using glm         |        |        |           |       |          | 82   |
|       | U                          | ı u                          |                   |        |        |           |       |          |      |
|       | n                          | n n                          |                   |        |        |           |       |          |      |
|       | m s                        | s s                          |                   |        |        |           |       |          |      |
|       | e c                        | С                            |                   |        |        |           |       |          |      |
|       | t a                        |                              |                   |        |        |           | С     |          |      |
|       | h b                        | b b                          |                   | р      |        |           | r     |          |      |
|       | о е                        | e e                          |                   | 0      |        |           | i     |          |      |
|       | d _                        |                              |                   | i      |        |           | t     |          |      |
|       | _ 1                        | . u                          | р                 | n      |        |           | b     | t        |      |
|       | u c                        | р                            | а                 | t      | S      |           | 0     | С        |      |
| 0     | s w                        | •                            | r                 | е      | 2      | S         | u     |          |      |
| b     | e e                        |                              | а                 | S      | W      | W         | n     |          |      |
| S     | d r                        | r                            | m                 | t      | r      | R         | d     | е        |      |
| 1 Sca | led/PE 0.80                | 0828 1.30822                 | LAUCINF 0.        | 95419  | 0.6124 | 2 0.78257 | -0.34 | 885 PASS |      |
|       | d average E                | BE<br>alysis - &ipa          | ar alm            |        |        |           |       |          | 83   |
|       | LM Procedur                |                              | g                 |        |        |           |       |          |      |
| C1    | ass Level I                | Information                  |                   |        |        |           |       |          |      |
| Class | Le                         | evels Valu                   | ıes               |        |        |           |       |          |      |
| SEQ   |                            | 3 12                         | 3                 |        |        |           |       |          |      |
|       |                            |                              |                   |        |        |           |       |          |      |
|       |                            | vations Read<br>vations Used |                   | 0<br>0 |        |           |       |          |      |
|       | d average E<br>mediate ana | BE<br>alysis - &ipa          | ar glm            |        |        |           |       |          | 84   |
| The G | LM Procedur                | `e                           |                   |        |        |           |       |          |      |
| Depen | dent Variab                | ole: ilc                     |                   |        |        |           |       |          |      |
|       |                            |                              |                   | Sum of | :      |           |       |          |      |

Squares

Mean Square F Value Pr > F

DF

Source

| Model          |                                  | 2        | 2.62     | 29516                | 1.3    | 3114758   | 0.51     | 0.6018 |
|----------------|----------------------------------|----------|----------|----------------------|--------|-----------|----------|--------|
| Error          |                                  | 67       | 171.69   | 52443                | 2.     | 5626156   |          |        |
| Corrected To   | otal                             | 69       | 174.31   | 81958                |        |           |          |        |
| R-Square       | Coeff Var                        | Root     | MSE      | ilc N                | lean   |           |          |        |
| 0.015047       | 8106.324                         | 1.600    | 817      | 0.019                | 9748   |           |          |        |
| Source         |                                  | DF       | Туре     | I SS                 | Mean   | Square    | F Value  | Pr > F |
| SEQ            |                                  | 2        | 2.622    | 95158                | 1.3    | 1147579   | 0.51     | 0.6018 |
| Source         |                                  | DF       | Туре І   | II SS                | Mean   | Square    | F Value  | Pr > F |
| SEQ            |                                  | 2        | 2.622    | 95158                | 1.3    | 1147579   | 0.51     | 0.6018 |
|                |                                  |          |          | Sta                  | andard |           |          |        |
| Parameter      |                                  | Estim    | ate      |                      | Error  |           | ie Pr    | >  t   |
| average        |                                  | 0.01042  | 835      | 0.191                | 86499  | 0.0       | 05 0     | .9568  |
| Parameter      |                                  | 90% Con  | fidenc   | e Limits             | 3      |           |          |        |
| average        |                                  | -0.30958 | 637      | 0.330443             | 307    |           |          |        |
| dev iglmilc1   | 1                                |          |          |                      |        |           |          | 85     |
| Obs Depender   | nt Source                        |          | DF       |                      | SS     | MS        | S FValue | ProbF  |
| 1 ilc          |                                  |          | 2        | 2.62295              |        | 1.3114758 |          | 0.6018 |
| 2 ilc<br>3 ilc | Error<br>Corrected 1             | 「otal    |          | 71.69524<br>74.31819 |        | 2.5626156 | -        | -      |
| scaled avera   | age BE<br>e analysis - 8         | kdpar gl | n        |                      |        | _         | _        | 86     |
| The GLM Prod   | cedure                           |          |          |                      |        |           |          |        |
| Class Lev      | el Informatio                    | on       |          |                      |        |           |          |        |
| Class          | Levels \                         | /alues   |          |                      |        |           |          |        |
| SEQ            | 3 1                              | 1 2 3    |          |                      |        |           |          |        |
|                | oservations Re<br>oservations Us |          | 70<br>70 |                      |        |           |          |        |
| scaled avera   | age BE<br>e analysis - 8         | kdpar gl | n        |                      |        |           |          | 87     |

## The GLM Procedure

| Dependent  | Variable: | d1c              |
|------------|-----------|------------------|
| Debellaell | variable. | u <sub>T</sub> C |

| Source                                                                                                                    | DF                | S                | Sum of quares | Mean S  | Square  | F Value | Pr > F  |
|---------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|---------------|---------|---------|---------|---------|
| Model                                                                                                                     | 2                 | 0.3              | 904541        | 0.19    | 952271  | 0.07    | 0.9299  |
| Error                                                                                                                     | 67                | 179.7            | 221818        | 2.68    | 324206  |         |         |
| Corrected Total                                                                                                           | 69                | 180.1            | 126359        |         |         |         |         |
| R-Square Coeff Va                                                                                                         | ar Ro             | ot MSE           | dlc           | Mean    |         |         |         |
| 0.002168 -3041.86                                                                                                         | 00 1.             | 637810           | -0.0          | 53843   |         |         |         |
| Source                                                                                                                    | DF                | Тур              | e I SS        | Mean S  | Square  | F Value | Pr > F  |
| SEQ                                                                                                                       | 2                 | 0.39             | 045415        | 0.195   | 522707  | 0.07    | 0.9299  |
| Source                                                                                                                    | DF                | Type             | III SS        | Mean S  | Square  | F Value | Pr > F  |
| SEQ                                                                                                                       | 2                 | 0.39             | 045415        | 0.195   | 522707  | 0.07    | 0.9299  |
| output needed for mix                                                                                                     | xed scaled        | av. BE           | - using       | glm     |         |         | 88      |
| <b>—</b>                                                                                                                  | scabe_ u<br>lower | nscabe_<br>upper | dfi           | s2i     | param   |         | StdErr  |
| 1 Scaled/PE 0                                                                                                             | .74131            | 1.41146          | 67            | 2.56262 | LCMAX   | 0.19    | 186499  |
| Obs pointest                                                                                                              | x                 | boundx           | ni            | dfd     | s2wr    | nd      | theta   |
| 1 1.01048 -0                                                                                                              | .036703           | 0.10919          | 70            | 67      | 1.3412  | 1 70    | 0.79669 |
| Obs y be                                                                                                                  | oundy             | sWR              | crit          | bound   | outcome |         |         |
| 1 -1.06853 -0                                                                                                             | .82187            | 1.15811          | -0.           | 81865   | PASS    |         |         |
| final output - &parameter - using glm 89                                                                                  |                   |                  |               |         |         |         |         |
| method_ unscabe_ unscabe_ Obs used lower upper param pointest s2wr sWR critbound outcome                                  |                   |                  |               |         |         |         |         |
| 1 Scaled/PE 0.74131 1.41146 LCMAX 1.01048 1.34121 1.15811 -0.81865 PASS                                                   |                   |                  |               |         |         |         |         |
| ANDA: 203286 Mesalamine Delayed Release Tablets USP STUDY TYPE: FedALL 90 SUMMARY OF STATISTICAL ANALYSIS - UNSCALED DATA |                   |                  |               |         |         |         |         |

Page 151 of 168

|           | Geometric Means |           |           |  |  |  |  |
|-----------|-----------------|-----------|-----------|--|--|--|--|
| Parameter | Test            | Reference | T/R Ratio |  |  |  |  |
|           |                 |           |           |  |  |  |  |
|           |                 |           |           |  |  |  |  |
| LAUCT     | 2301.26         | 2313.92   | 0.99      |  |  |  |  |
|           |                 |           |           |  |  |  |  |
| LAUCI     | 3058.24         | 2974.08   | 1.03      |  |  |  |  |
| LCMAX     | 274.69          | 268.54    | 1.02      |  |  |  |  |

ANDA: 203286 Mesalamine Delayed Release Tablets USP STUDY TYPE: FedALL 91 SUMMARY OF STATISTICAL ANALYSIS - UNSCALED DATA

| 909<br>Lower CI | % CI<br>Upper CI |
|-----------------|------------------|
|                 |                  |
| 74.85           | 132.15           |
| 80.83           | 130.82           |
| 74.13           | 141.15           |

## SUMMARY OF STATISTICAL ANALYSIS - SCALED DATA

| Parameter | T/R Ratio | Lower<br>90% CI |
|-----------|-----------|-----------------|
| LAUCT     | 0.98      | 74.85           |
| LAUCI     | 0.95      | 80.83           |
| LCMAX     | 1.01      | 74.13           |

## SUMMARY OF STATISTICAL ANALYSIS - SCALED DATA

| Upper<br>90% CI | s2wr      | sWR       | Criteria Bound |
|-----------------|-----------|-----------|----------------|
| 132.15          | 0.7193513 | 0.8481458 | -0.422984      |
| 130.82          | 0.6124162 | 0.7825702 | -0.348853      |
| 141.15          | 1.3412103 | 1.1581063 | -0.818653      |

Page 152 of 168

92

| Method Used | OUTCOME |
|-------------|---------|
|             |         |
| Scaled/PE   | PASS    |
| Scaled/PE   | PASS    |
| Scaled/PE   | PASS    |

#### 4.7 Additional Attachments

#### 4.7.1 Attachment I

# Background for Reference Scaled Average BE Approach<sup>20</sup>

In the analysis of a bioequivalence study, the measurements of both Cmax and AUC are subject to the procedure described below. The measurement for each subject is log-transformed and the averages,  $\mu T$  and  $\mu R$ , of the test and reference products are calculated. The within subject variability of the reference product,  $\sigma 2$  WR, is also calculated.

There are two parts to the proposed bioequivalence criteria, a scaled average bioequivalence evaluation and a point estimate (geometric mean ratio) constraint of 80-125%. An additional requirement of a point-estimate constraint will impose a limit on the difference between the test and reference means, thereby eliminating the potential that a test product would enter the market based on a bioequivalence study with a large mean difference.

In order to demonstrate bioequivalence both parts must pass.

Scaled Average Bioequivalence

Scaled average bioequivalence (BE) for both AUC and  $C_{\text{max}}$  is evaluated by testing the following null hypothesis

$$H_0: \frac{\left(\mu_T - \mu_R\right)^2}{\sigma_{WR}^2} > \theta$$

(for given  $\theta > 0$ ) versus the alternative hypothesis

$$H_1: \frac{\left(\mu_T - \mu_R\right)^2}{\sigma_{WP}^2} \leq \theta$$
,

where  $\mu_T$  and  $\mu_R$  are the averages of the log-transformed measure ( $C_{max}$ , AUC) for the test and reference products, respectively; usually testing is done at level  $\alpha=0.05$ ; and  $\theta$  is the scaled average BE limit. Furthermore,

$$\theta = \frac{\left(\ln\Delta\right)^2}{\sigma_{w_0}^2}$$

 $<sup>20\</sup> V:\ Firms AM \ Barr \ Protocols \ 07049p0707. doc$ 

where  $\Delta$  is 1.25, the usual average BE upper limit for the untransformed Test/Reference ratio of geometric means, and  $\sigma_{W0} = 0.25$ . Note that rejection of the null hypothesis H<sub>0</sub> supports the conclusion of equivalence.

A 95% upper confidence bound for  $\frac{\left(\overline{Y}_T - \overline{Y}_R\right)^2}{S_{TD}^2}$  determined in a BE study must be  $\leq \theta$ , or

equivalently, a 95% upper confidence bound for  $(\overline{Y}_T - \overline{Y}_R)^2 - \theta_{SWR}^2$  must be  $\leq 0$ .

Where  $S_{WR}$  is within reference standard deviation determined in the BE study.

Additionally, the point estimate (test/reference geometric mean ratio) must fall within [0.80, 1.25]. The test drug must pass both conditions before it is judged bioequivalent to the reference product.

The overall analysis is a mixed scaling approach. If the estimated intrasubject reference variability  $(s_{WR})$  is less than the pre-specified value set by the Agency (0.294), then the nonscaled average bioequivalence approach is used. If  $s_{WR}$  is greater than or equal to 0.294, then the bioequivalence limits will scale to the variability of the reference product and an additional acceptance criteria for the point-estimate of 80 to 125% will be applied.

## 4.7.2 Attachment II (Study of two Group Design)

Control document #98-392 that discusses the Group-by-Treatment interaction
Firm:

Reviewer: Bio Control Document No: 98-392

Barbara M. Davit

v:\firmsnz\ppd\controls\98-392a.doc Submission date: 10/30/98 Date finalized: 8/6/99

## Addendum to the Review

#### Introduction:

The firm is requesting that the Division of Bioequivalence (DBE) comment on the appropriateness of the following dosing schemes to be used when bioequivalence study subjects are not recruited as a single group. Two proposed dosing schemes are shown below, for a drug with a one week washout period:

| <b>Dosing Scheme</b> | 11/1     | 11/8     | 11/15    | 11/22    |
|----------------------|----------|----------|----------|----------|
| 1                    | Group 1  | Group 1  | Group 2  | Group 2  |
|                      | Period 1 | Period 2 | Period 1 | Period 2 |
| 2                    | Group 1  | Group 1  | Group 2  |          |
| 1040                 | Period 1 | Period 2 | Period 2 |          |
|                      |          | Group 2  |          |          |
|                      |          | Period 1 |          |          |

The firm is also requesting comment on the appropriate of the statistical model to be used in data analysis for the above bioequivalence study designs.

## **Comments:**

CDER Quantitative Methods and Research Staff (QMRS) provided a written review commenting on the firm's proposals. The review is attached. The review written by the DBE primary reviewer is also attached.

Both Dosing Schemes are acceptable to QMRS. Dosing Scheme 1 is the classic two group design.

For both dosing schemes, the DBE recommends the following statistical model:

Group

Sequence

Treatment

Subject (nested within Group\*Sequence)

Period (nested within Group)

Group-by-Sequence Interaction

Group-by-Treatment Interaction

Subject (nested within Group\*Sequence) is a random effect and all other factors are fixed effects. QMRS states that if SAS PROC GLM or equivalent software is used to analyze the study, including or not including this interaction will not change the confidence intervals. If SAS PROC MIXED is used, including this interaction might change the confidence intervals. By nesting the Period effect within Group, the model allows for the possibility that the effects of Period 1 and Period 2 in Group 1 may not be the same as the effects of Period 1 and Period 2 in Group 2.

An alternate model for Dosing Scheme 2 would include the following factors:

Group

Sequence

Treatment

Subject (nested within Group\*Sequence)

Week

Group-by-Sequence Interaction

Group-by-Treatment Interaction

The factor Week reflects which of the three weeks (11/1, 11/8, 11/15) the observations came from. If SAS PROC GLM or equivalent software is used to analyze the study, this model should produce the same confidence intervals as the model with Period (nested within Group).

For both models, if the Group-by-Treatment interaction test is not statistically significant (p  $\exists$  0.1), the Group-by-Treatment term can be dropped from the statistical model.

If the Group-by-Treatment interaction is statistically significant (p < 0.1), DBE recommends that equivalence be demonstrated in one of the groups, provided that the group meets minimum requirements for a complete bioequivalence study. This is similar to the recommendation presented by QMRS as option #3 (see attached QMRS review). The firm should be cautioned that statistical analysis for bioequivalence studies dosed in more than one group should commence only after all subjects have been dosed and all pharmacokinetic parameters have been calculated. Statistical analysis to determine bioequivalence within each dosing group should never be initiated prior to dosing the next group; otherwise the study becomes one of sequential design.

With both Dosing Schemes, if <u>all</u> of the following criteria are met, it may not be necessary to test for group effects in the model:

- the clinical study takes place at one site;
- all study subjects have been recruited from the same enrollment pool;
- all of the subjects have similar demographics;
- all enrolled subjects are randomly assigned to treatment groups at study outset.

In this latter case, the appropriate statistical model would include only the factors Sequence, Period, Treatment, and Subject (nested within Sequence). Recommendations:

The following comments should be conveyed to the sponsor:

- 1. Both Dosing Schemes are acceptable to the Division of Bioequivalence.
- 2. The following statistical model can be applied to both Dosing Schemes.

Group

Sequence

Treatment

Subject (nested within Group\*Sequence)

Period (nested within Group)

Group-by-Sequence Interaction

**Group-by-Treatment Interaction** 

- 3. Subject (nested within Group\*Sequence) is a random effect and all other factors are fixed effects. If SAS PROC GLM or equivalent software is used to analyze the study, including or not including this interaction will not change the confidence intervals. If SAS PROC MIXED is used, including this interaction might change the confidence intervals. By nesting the Period effect within Group, the model allows for the possibility that the effects of Period 1 and Period 2 in Group 1 may not be the same as the effects of Period 1 and Period 2 in Group 2.
- 4. An alternate model for Dosing Scheme 2 would include the following factors:

Group

Sequence

Treatment

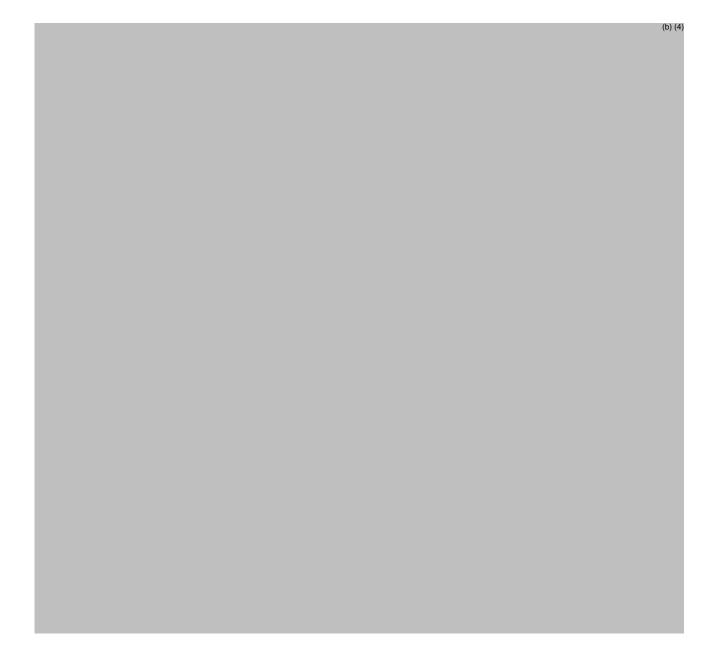
Subject (nested within Group\*Sequence)

Week

Group-by-Sequence Interaction

Group-by-Treatment Interaction

- 5. The factor Week in the statistical model for Dosing Scheme 2 reflects which of the three weeks the observations came from. If SAS PROC GLM or equivalent software is used to analyze the study, this model should produce the same confidence intervals as the model with Period (nested within Group).
- 6. If the Group-by-Treatment interaction test is not statistically significant (p  $\exists$  0.1), only the Group-by-Treatment term can be dropped from the statistical model.
- 7. If the Group-by-Treatment interaction is statistically significant (p < 0.1), DBE requests that equivalence be demonstrated in one of the groups, provided that the group meets minimum requirements for a complete bioequivalence study.
- 8. DBE cautions the firm that statistical analysis for bioequivalence studies dosed in more than one group should commence only after all subjects have been dosed and all pharmacokinetic parameters have been calculated. Statistical analysis to determine bioequivalence within each dosing group should never be initiated prior to dosing the next group; otherwise the study becomes one of sequential design.
- 9. If <u>ALL</u> of the following criteria are met, it may not be necessary to include Group-by-Treatment in the statistical model:
  - the clinical study takes place at one site;
  - all study subjects have been recruited from the same enrollment pool;
  - all of the subjects have similar demographics;
  - all enrolled subjects are randomly assigned to treatment groups at study outset.


In this latter case, the appropriate statistical model need include only the factors Sequence, Period, Treatment, and Subject (nested within Sequence).

10. Please be advised that the above comments are subject to revision by the Division of Bioequivalence.

Barbara M. Davit, Ph.D. Team Leader Review Branch III Division of Bioequivalence

Rabinandra Patnaik, Ph.D.

| Deputy Division Director                                                   |
|----------------------------------------------------------------------------|
| Division of Bioequivalence                                                 |
|                                                                            |
|                                                                            |
| Concur:Date:                                                               |
| Dale P. Conner, Pharm.D.                                                   |
| Director                                                                   |
| Division of Bioequivalence                                                 |
|                                                                            |
| v:\new\firmsnz\ppd\controls\98-392a.doc                                    |
| cc: HFD-630, HFD-650 (Director), HFD-658 (Davit), Drug File, Division File |
|                                                                            |



## BIOEQUIVALENCE DEFICIENCY

ANDA: 203286

APPLICANT: Zydus Pharmaceuticals (USA) Inc.

DRUG PRODUCT: Mesalamine Delayed Release Tablets USP, 800

mg

The Division of Bioequivalence II (DB II) has completed its review of your submission(s) acknowledged on the cover sheet. The following deficiencies have been identified:

- 1. We can not locate the individual data for comparative dissolution testing in 0.1 N HCl followed by pH 4.5 Acetate buffer.
- 2. Due to the high variability of your submitted dissolution data conducted in multimedia, an f2 test using mean profiles of test vs. reference listed drug ("RLD") is not sufficient as per the CDER Guidance for Industry: Dissolution Testing of Immediate Release Solid Oral Dosage Forms ("Dissolution Guidance"). Therefore, we calculated the f2 metric (an f2 confidence interval) using a bootstrapping method for the dissolution profile comparison. For general information on this approach, please refer to Shah et al. In Vitro Dissolution Profile Comparison-Statistics and Analysis of the Similarity Factor, f2. Pharmaceutical Research (1998) Vol. 15, No.6, page 889-896.

For the test products, the mean values (f2) in pH 6.8 and pH 7.5 phosphate buffer are lower than 50 and the lower bound of 90% confidence interval ("CI") for the f2 test comparing test vs. RLD in pH 6.8, pH 7.2, and pH 7.5 phosphate buffer is lower than those comparing the RLD against itself under the same conditions. These values suggest that the dissolution profiles of the test product are significantly different from those of the corresponding reference under these conditions. Your dissolution data in pH 6.8, 7.2 and 7.5 are not acceptable.

3. To address why the test product is different from the RLD product, please repeat comparative dissolution testing on your **fresh test product** using a **larger sample** of tablets to provide a better estimate of the mean difference, or take other appropriated steps as necessary to reduce the variability for the purpose of achieving accurate f2 calculation.

The dissolution testing should be conducted on at least 24 tablets (more if necessary) of the test product and at least two lots of unexpired RLD product (using 12 tablets per lot) using the following method as specified in the FDA Guidance on Mesalamine (800 mg):

Apparatus: USP Apparatus II (paddle)
Pretreatment Stage: 2 hours in 0.1 N HCl at 100 rpm

Evaluation Stage:

Each of

- (1) pH 4.5 Acetate buffer at 50 rpm
- (2) pH 6.8 Phosphate buffer at 50 rpm
- (3) pH 7.2 Phosphate buffer at 50 rpm
- (4) pH 7.5 Phosphate buffer at 50 rpm

Volume: 900 mL Temperature: 37°C

Sample times: 0, 10, 20, 30, 45, 60, 75, 90, 120, 150, 180, 240, 300, and 360 minutes or as needed for profile comparison

(

Please submit individual dissolution data as well as the mean, range, %coefficient of variation (CV) at each time point for the total numbers of tablets tested including dates of dissolution testing, manufacture date and expiration date as applicable.

The DB II will perform an f2 test on your submitted dissolution data. If the variability of the dissolution data is such that mean data cannot be used for the f2 test, as per the Dissolution Guidance, we will use the above-referenced bootstrapping approach.

For the bootstrapping method, sampling with replacement is used for creating 10,000 replicates of test and reference products. The means of the test

and reference units at each time point for each replicate are obtained and used for f2 calculation. The 90% confidence intervals of the f2 values are calculated using the percentile approach as described in the Shah et al. reference. Similar procedure can be followed for comparing reference vs. reference products.

Please note only one measurement after 85% dissolution of both the products should be included in the f2 calculation.

Sincerely yours,

{See appended electronic signature page}

Ethan M. Stier, Ph.D., R.Ph Acting Director Division of Bioequivalence II Office of Generic Drugs Center for Drug Evaluation and Research

## 4.8 Outcome Page

ANDA: 203286

**Reviewer:** Ren, Ping **Date Completed: Verifier:** , **Date Verified:** 

**Division:** Division of Bioequivalence

Description: Mesalamine Delayed Release Tablets USP, 800 mg

# *Productivity:*

| ID    | Letter<br>Date | Productivity<br>Category             | Sub Category                                                  | Productivity | Subtota<br>l |             |               |
|-------|----------------|--------------------------------------|---------------------------------------------------------------|--------------|--------------|-------------|---------------|
| 20919 | 7/12/2011      | Bioequivalence<br>Study<br>(REGULAR) | Fasting Study                                                 | 1            | 1            | Edit        | <u>Delete</u> |
| 20919 | 7/12/2011      | Bioequivalence<br>Study<br>(REGULAR) | Fed Study                                                     | 1            | 1            | <u>Edit</u> | Delete        |
| 20919 | 7/12/2011      | Bioequivalence<br>Study<br>(REGULAR) | In Vitro Study<br>(other dosage<br>forms, each<br>study type) | 1            | 1            | Edit        | Delete        |
| 20919 | 7/12/2011      | Bioequivalence<br>Study<br>(REGULAR) | In Vitro Study<br>(other dosage<br>forms, each<br>study type) | 1            | 1            | <u>Edit</u> | <u>Delete</u> |
| 20919 | 7/12/2011      | Bioequivalence<br>Study<br>(REGULAR) | In Vitro Study<br>(other dosage<br>forms, each<br>study type) | 1            | 1            | <u>Edit</u> | <u>Delete</u> |
| 20919 | 7/12/2011      | Bioequivalence<br>Study<br>(REGULAR) | In Vitro Study<br>(other dosage<br>forms, each<br>study type) | 1            | 1            | Edit        | Delete        |
| 20919 | 7/12/2011      | Bioequivalence<br>Study<br>(REGULAR) | In Vitro Study<br>(other dosage<br>forms, each<br>study type) | 1            | 1            | <u>Edit</u> | <u>Delete</u> |
|       |                |                                      |                                                               | Total:       | 7            |             |               |

**Enter Review Productivity and Generate Report Typical BE Study Applications** 

| BE Study Fasting and Fed      |       |  |  |  |
|-------------------------------|-------|--|--|--|
| Clinical (Common to all APIs) | 1     |  |  |  |
| Bioanalytical (API 1)         | 1     |  |  |  |
| Statistical Analysis (API 1)  | 1     |  |  |  |
| Fasting Study Total           | 3     |  |  |  |
| Clinical (Common to all APIs) | 1     |  |  |  |
| Bioanalytical (API 1)         | 1     |  |  |  |
| Statistical Analysis (API 1)  | 1     |  |  |  |
| Fed Study Total               | 3     |  |  |  |
| In vitro Dissol               | ution |  |  |  |
| Multi media Dissolution       | 5     |  |  |  |
| Dissolution waiver            | 0     |  |  |  |
| Others                        |       |  |  |  |
| Study Summary Total           | 11    |  |  |  |

This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

\_\_\_\_\_

/s/

\_\_\_\_\_\_

PING REN 11/12/2013

MINGLEI CUI 11/12/2013

ETHAN M STIER 11/15/2013

### DIVISION OF BIOEQUIVALENCE DISSOLUTION REVIEW

| ANDA No.                                                  | 203        | 286                                                                                  |        |                  |                       |  |
|-----------------------------------------------------------|------------|--------------------------------------------------------------------------------------|--------|------------------|-----------------------|--|
| Drug Product Name                                         | Mes        | salamine Delayed Re                                                                  | lease  | Tablets USP      |                       |  |
| Strength (s)                                              | 800        | 800 mg                                                                               |        |                  |                       |  |
| Applicant Name                                            | Zyd        | lus Pharmaceuticals (                                                                | (USA)  | Inc.             |                       |  |
| Address                                                   | 05000000   | Route 31 North,<br>nington, NJ 08534                                                 |        |                  |                       |  |
| Applicant's Point of Contact                              | Zyd<br>73, | G. Srinivas Zydus Pharmaceuticals USA Inc., 73, Route 31 North, Pennington, NJ 08534 |        |                  |                       |  |
| Contact's Phone Number                                    | 609        | -730-1900                                                                            |        |                  |                       |  |
| Contact's Fax Number                                      | 609        | -730-1999                                                                            |        |                  |                       |  |
| Submission Date(s)                                        | 07/1       | 12/2011                                                                              |        |                  |                       |  |
| First Generic                                             | Yes        |                                                                                      |        |                  | 2)                    |  |
| Reviewer                                                  | Z.Z        | . Wahba, Ph.D.                                                                       |        |                  |                       |  |
|                                                           |            |                                                                                      |        |                  |                       |  |
| Study Number (s)                                          | # M        | ISN-P0-732                                                                           | # M    | SN-P0-733        |                       |  |
| Study Type (s)                                            | Fast       | ting                                                                                 | Fed    |                  |                       |  |
| Strength(s)                                               | 800        | mg                                                                                   | 800    | mg               |                       |  |
| Clinical Site                                             | Alg        | orithme Pharma Inc.                                                                  |        |                  |                       |  |
| Clinical Site Address                                     | 120<br>Moi | orithme Pharma Inc.<br>0 Beaumont Ave.<br>unt-Royal, Quebec, O<br>2 3P1              | Canada | a                |                       |  |
| Analytical Site                                           |            |                                                                                      |        |                  | (b) (4)               |  |
| Analytical Address                                        |            |                                                                                      |        |                  |                       |  |
| OVERALL REVIEW<br>RESULT                                  | INA        | DEQUATE                                                                              |        |                  |                       |  |
| BIOEQUIVALENCE STUD'<br>TRACKING/SUPPORTING<br>DOCUMENT # |            | STUDY/TEST TY                                                                        | YPE    | STRENGTH         | REVIEW RESULT         |  |
| 1                                                         |            | Fasting                                                                              | 3      | 800 mg           | PENDING               |  |
| 1                                                         |            | Fed DISSOLUTION                                                                      | J      | 800 mg<br>800 mg | PENDING<br>INADEQUATE |  |
| (1)                                                       |            | DISSOLUTIO                                                                           | N      | ooo mg           | INADEQUATE            |  |

#### I. EXECUTIVE SUMMARY

This is a review of the dissolution testing data only.

There is a USP method for this product. The firm's dissolution testing data with the USP method are acceptable. The DB II acknowledges that the firm will follow the USP method and specifications.

The firm has conducted acceptable dissolution method validation for Mesalamine.

The submitted Long Term Storage Stability (LTSS) data is not sufficient to cover the maximum storage period of the fasting (#MSN-P0-732) and fed (#MSN-P0-733) bioequivalence (BE) studies. The firm is requested to submit sufficient LTSS to cover at least the maximum storage period (116 days) of the BE studies samples for Mesalamine.

The firm submitted all the requested summary bio-tables in MSWord format.

The DB II will review the fasted and fed BE studies at a later date.

Reference ID: 3088639

Table 1: SUBMISSION CONTENT CHECKLIST

|                                         | Information                                                                                                                                               |                                                 |             |             |             |  |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------|-------------|-------------|--|--|--|
| Did the firm us                         |                                                                                                                                                           |                                                 | $\boxtimes$ |             |             |  |  |  |
| Did the                                 | firm use the USP dis                                                                                                                                      | solution method                                 | $\boxtimes$ |             |             |  |  |  |
| Did the firm use 12 u                   | nits of both test and r                                                                                                                                   | eference in dissolution testing                 | $\boxtimes$ | П           |             |  |  |  |
| , — , — , — , — , — , — , — , — , — , — | de complete dissolutio<br>, % CV, dates of disso                                                                                                          | n data (all raw data, range,<br>dution testing) | $\boxtimes$ | П           |             |  |  |  |
| Did the firm conduc                     | t dissolution testing w                                                                                                                                   | ith its own proposed method                     |             | $\boxtimes$ |             |  |  |  |
| Is FDA method                           | in the public dissoluti                                                                                                                                   | on database (on the web)                        |             |             | $\boxtimes$ |  |  |  |
|                                         | Fasting BE study                                                                                                                                          | PK parameters                                   | $\boxtimes$ |             |             |  |  |  |
| SAS datasets                            | Fasting BE study                                                                                                                                          | Plasma concentrations                           | $\boxtimes$ |             |             |  |  |  |
| submitted to the electronic             | Fed BE study                                                                                                                                              | PK parameters                                   | $\boxtimes$ |             |             |  |  |  |
| document room                           |                                                                                                                                                           | Plasma concentrations                           |             |             |             |  |  |  |
| (edr)                                   | Other study                                                                                                                                               | PK parameters                                   |             |             | $\boxtimes$ |  |  |  |
|                                         | Other study                                                                                                                                               | Plasma concentrations                           |             |             | $\boxtimes$ |  |  |  |
|                                         | *                                                                                                                                                         |                                                 |             | 2           |             |  |  |  |
|                                         | Are the DBE Summary Tables present an in either PDF and/or MS Word Format?                                                                                |                                                 |             |             |             |  |  |  |
| 7,000,000                               | If any of the tables are missing or incomplete please indicate that in the comments and request the firm to provide the complete DBE Summary Tables 1-16. |                                                 |             |             |             |  |  |  |
| 2.<br>                                  |                                                                                                                                                           |                                                 |             |             |             |  |  |  |
|                                         | Is the Long Term Storage Stability (LTSS) sufficient to cover the maximum storage time of the study samples?                                              |                                                 |             |             |             |  |  |  |
| If the LTSS                             | is NOT sufficient plea                                                                                                                                    | se request the firm to provide th               | e necessar  | y data.     |             |  |  |  |

#### II. DISSOLUTION METHOD VALIDATION

| Information Requested                                                     |                                                                 |                                                                                                                         |                                                                                                                                                                                                         |                                                                                                                                                                          |
|---------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bioanalytical method validation report location                           | Analytical m<br>(Validation o                                   | ction 3.2.P.5.3<br>ale 3                                                                                                |                                                                                                                                                                                                         |                                                                                                                                                                          |
| Analyte:                                                                  | Mesalamine                                                      |                                                                                                                         |                                                                                                                                                                                                         | descen                                                                                                                                                                   |
| Study Report Number                                                       |                                                                 |                                                                                                                         |                                                                                                                                                                                                         | (b)                                                                                                                                                                      |
| Method description                                                        |                                                                 |                                                                                                                         | ution for Dissolution<br>USP for strength 800                                                                                                                                                           | by UV of Mesalamine<br>) mg                                                                                                                                              |
| Standard curve concentrations (units/mL)                                  | Linearity Re                                                    |                                                                                                                         |                                                                                                                                                                                                         |                                                                                                                                                                          |
| (units in E)                                                              | Linearity Lev                                                   | el Concentra                                                                                                            | ation of Mesalamine in μg/m                                                                                                                                                                             | L Absorbance at 302 nm                                                                                                                                                   |
|                                                                           | 10%                                                             |                                                                                                                         | 1.5980                                                                                                                                                                                                  | 0.044                                                                                                                                                                    |
|                                                                           | 40%                                                             |                                                                                                                         | 6.3920                                                                                                                                                                                                  | 0.160                                                                                                                                                                    |
|                                                                           | 60%                                                             |                                                                                                                         | 9.5880                                                                                                                                                                                                  | 0.243                                                                                                                                                                    |
|                                                                           | 80%                                                             |                                                                                                                         | 12.7840                                                                                                                                                                                                 | 0.322                                                                                                                                                                    |
|                                                                           | 100%                                                            |                                                                                                                         | 15.9800                                                                                                                                                                                                 | 0.376                                                                                                                                                                    |
|                                                                           | 120%                                                            | J. L. P.                                                                                                                | 19.1760                                                                                                                                                                                                 | 0.448                                                                                                                                                                    |
|                                                                           | 1554<br>1659 (1956) 1650 (1650)   1650                          |                                                                                                                         | th a correlation co-efficient of                                                                                                                                                                        | 0.99820.                                                                                                                                                                 |
|                                                                           | Table 5 (for pH 6                                               |                                                                                                                         | uffer)<br>ation of Mesalamine in μg/m                                                                                                                                                                   | L Absorbance at 330 nm                                                                                                                                                   |
|                                                                           | 10%                                                             |                                                                                                                         | 0.9980                                                                                                                                                                                                  | 0.013                                                                                                                                                                    |
|                                                                           | 40%                                                             |                                                                                                                         | 3.9920                                                                                                                                                                                                  | 0.067                                                                                                                                                                    |
|                                                                           | 60%                                                             |                                                                                                                         | 5.9880                                                                                                                                                                                                  | 0.099                                                                                                                                                                    |
|                                                                           | 80%                                                             |                                                                                                                         | 7.9840                                                                                                                                                                                                  | 0.132                                                                                                                                                                    |
|                                                                           | 100%                                                            |                                                                                                                         | 9.9840                                                                                                                                                                                                  | 0.167                                                                                                                                                                    |
|                                                                           | 120%                                                            |                                                                                                                         | 11.9760                                                                                                                                                                                                 | 0.192                                                                                                                                                                    |
|                                                                           | Linearity Lev                                                   | el Concentr                                                                                                             | ation of Mesalamine in ug/m                                                                                                                                                                             | L Absorbance at 332 nm                                                                                                                                                   |
|                                                                           | 20%<br>40%                                                      | el Concentra                                                                                                            | ation of Mesalamine in μg/m<br>5.4000<br>10.8000                                                                                                                                                        | 0.117<br>0.217                                                                                                                                                           |
|                                                                           | 20%<br>40%<br>60%                                               | el Concentr                                                                                                             | 5.4000<br>10.8000<br>16.2000                                                                                                                                                                            | 0.117<br>0.217<br>0.333                                                                                                                                                  |
|                                                                           | 20%<br>40%<br>60%<br>80%                                        | Concentr                                                                                                                | 5.4000<br>10.8000<br>16.2000<br>21.6000                                                                                                                                                                 | 0.117<br>0.217<br>0.333<br>0.446                                                                                                                                         |
|                                                                           | 20%<br>40%<br>60%                                               | Concentr                                                                                                                | 5.4000<br>10.8000<br>16.2000                                                                                                                                                                            | 0.117<br>0.217<br>0.333                                                                                                                                                  |
| System Suitability and Precision                                          | 20%<br>40%<br>60%<br>80%<br>100%                                | Concentr                                                                                                                | 5.4000<br>10.8000<br>16.2000<br>21.6000<br>27.0000                                                                                                                                                      | 0.117<br>0.217<br>0.333<br>0.446<br>0.557                                                                                                                                |
| System Suitability and Precision                                          | 20%<br>40%<br>60%<br>80%<br>100%<br>120%                        | Concentr                                                                                                                | 5.4000<br>10.8000<br>16.2000<br>21.6000<br>27.0000                                                                                                                                                      | 0.117<br>0.217<br>0.333<br>0.446<br>0.557                                                                                                                                |
| System Suitability and Precision                                          | 20%<br>40%<br>60%<br>80%<br>100%<br>120%                        | 0.1 N HCI                                                                                                               | 5.4000<br>10.8000<br>16.2000<br>21.6000<br>27.0000<br>32.4000<br>Absorbance<br>pH 6.0 Buffer                                                                                                            | 0.117<br>0.217<br>0.333<br>0.446<br>0.557<br>0.653                                                                                                                       |
| System Suitability and Precision                                          | 20%<br>40%<br>60%<br>80%<br>100%<br>120%                        | 0.1 N HCl<br>(at 302 nm)                                                                                                | 5.4000<br>10.8000<br>16.2000<br>21.6000<br>27.0000<br>32.4000<br>Absorbance<br>pH 6.0 Buffer<br>(at 330 nm)                                                                                             | 0.117<br>0.217<br>0.333<br>0.446<br>0.557<br>0.653<br>pH 7.2 Buffer<br>(at 332 nm)                                                                                       |
| System Suitability and Precision                                          | 20%<br>40%<br>60%<br>80%<br>100%<br>120%                        | 0.1 N HCI<br>(at 302 nm)<br>0.383                                                                                       | 5.4000<br>10.8000<br>16.2000<br>21.6000<br>27.0000<br>32.4000<br>Absorbance<br>pH 6.0 Buffer<br>(at 330 nm)<br>0.162                                                                                    | 0.117<br>0.217<br>0.333<br>0.446<br>0.557<br>0.653<br>pH 7.2 Buffer<br>(at 332 nm)<br>0.554                                                                              |
| System Suitability and Precision                                          | 20% 40% 60% 80% 100% 120%  Reading No. 1 2                      | 0.1 N HCl<br>(at 302 nm)<br>0.383<br>0.382                                                                              | 5.4000<br>10.8000<br>16.2000<br>21.6000<br>27.0000<br>32.4000<br>Absorbance<br>pH 6.0 Buffer<br>(at 330 nm)<br>0.162<br>0.162                                                                           | 0.117<br>0.217<br>0.333<br>0.446<br>0.557<br>0.653<br>PH 7.2 Buffer<br>(at 332 nm)<br>0.554<br>0.555                                                                     |
| System Suitability and Precision                                          | 20% 40% 60% 80% 100% 120%  Reading No. 1 2 3                    | 0.1 N HC1<br>(at 302 nm)<br>0.383<br>0.382<br>0.383                                                                     | 5.4000<br>10.8000<br>16.2000<br>21.6000<br>27.0000<br>32.4000<br>Absorbance<br>pH 6.0 Buffer<br>(at 330 nm)<br>0.162<br>0.162<br>0.163                                                                  | 0.117<br>0.217<br>0.333<br>0.446<br>0.557<br>0.653<br>PH 7.2 Buffer<br>(at 332 nm)<br>0.554<br>0.555<br>0.557                                                            |
| System Suitability and Precision                                          | 20% 40% 60% 80% 100% 120%  Reading No.  1 2 3 4                 | 0.1 N HCl<br>(at 302 nm)<br>0.383<br>0.382<br>0.383<br>0.383                                                            | 5.4000 10.8000 16.2000 21.6000 27.0000 32.4000  Absorbance pH 6.0 Buffer (at 330 nm) 0.162 0.162 0.163 0.163                                                                                            | 0.117<br>0.217<br>0.333<br>0.446<br>0.557<br>0.653<br>PH 7.2 Buffer<br>(at 332 nm)<br>0.554<br>0.555<br>0.557                                                            |
| System Suitability and Precision                                          | 20% 40% 60% 80% 100% 120%  Reading No. 1 2 3 4 5                | 0.1 N HCI<br>(at 302 nm)<br>0.383<br>0.382<br>0.383<br>0.383                                                            | 5.4000 10.8000 16.2000 21.6000 27.0000 32.4000  Absorbance pH 6.0 Buffer (at 330 nm) 0.162 0.162 0.163 0.163 0.161                                                                                      | 0.117<br>0.217<br>0.333<br>0.446<br>0.557<br>0.653<br>pH 7.2 Buffer<br>(at 332 nm)<br>0.554<br>0.555<br>0.557<br>0.557                                                   |
| System Suitability and Precision                                          | 20% 40% 60% 80% 100% 120%  Reading No.  1 2 3 4 5 Average       | 0.1 N HCI<br>(at 302 nm)<br>0.383<br>0.382<br>0.383<br>0.383<br>0.383                                                   | 5.4000 10.8000 16.2000 21.6000 27.0000 32.4000  Absorbance pH 6.0 Buffer (at 330 nm) 0.162 0.163 0.163 0.161 0.162                                                                                      | 0.117<br>0.217<br>0.333<br>0.446<br>0.557<br>0.653<br>PH 7.2 Buffer<br>(at 332 nm)<br>0.554<br>0.555<br>0.557<br>0.557<br>0.558<br>0.556                                 |
|                                                                           | 20% 40% 60% 80% 100% 120%  Reading No. 1 2 3 4 5                | 0.1 N HCI<br>(at 302 nm)<br>0.383<br>0.382<br>0.383<br>0.383                                                            | 5.4000 10.8000 16.2000 21.6000 27.0000 32.4000  Absorbance pH 6.0 Buffer (at 330 nm) 0.162 0.162 0.163 0.163 0.161 0.162 0.5                                                                            | 0.117<br>0.217<br>0.333<br>0.446<br>0.557<br>0.653<br>PH 7.2 Buffer<br>(at 332 nm)<br>0.554<br>0.555<br>0.557<br>0.557<br>0.558<br>0.556<br>0.3                          |
|                                                                           | 20% 40% 60% 80% 100% 120%  Reading No.  1 2 3 4 5 Average % RSD | 0.1 N HC1<br>(at 302 nm)<br>0.383<br>0.382<br>0.383<br>0.383<br>0.383<br>0.383                                          | 5.4000 10.8000 16.2000 21.6000 27.0000 32.4000  Absorbance pH 6.0 Buffer (at 330 nm) 0.162 0.163 0.163 0.163 0.161 0.162 0.5                                                                            | 0.117<br>0.217<br>0.333<br>0.446<br>0.557<br>0.653<br>PH 7.2 Buffer<br>(at 332 nm)<br>0.554<br>0.555<br>0.557<br>0.557<br>0.557<br>0.558<br>0.556<br>0.3                 |
| Method Validation for Dissolution                                         | 20% 40% 60% 80% 100% 120%  Reading No. 1 2 3 4 5 Average % RSD  | 0.1 N HCI<br>(at 302 nm)<br>0.383<br>0.382<br>0.383<br>0.383<br>0.383<br>0.1                                            | 5.4000 10.8000 16.2000 21.6000 27.0000 32.4000  Absorbance pH 6.0 Buffer (at 330 nm) 0.162 0.163 0.163 0.161 0.162 0.5  % Interference from the pH 6.0 Phosphate Buffer                                 | 0.117 0.217 0.333 0.446 0.557 0.653   pH 7.2 Buffer (at 332 nm) 0.554 0.555 0.557 0.557 0.557 0.558 0.556 0.3                                                            |
| Method Validation for Dissolution                                         | 20%   40%   60%   80%   100%   120%                             | 0.1 N HCl<br>(at 302 nm)<br>0.383<br>0.382<br>0.383<br>0.383<br>0.383<br>0.1                                            | 5.4000 10.8000 16.2000 21.6000 27.0000 32.4000  Absorbance pH 6.0 Buffer (at 330 nm) 0.162 0.163 0.163 0.163 0.161 0.162 0.5  % Interference from the pH 6.0 Phosphate Buffer (at 1 Hour)               | 0.117 0.217 0.313 0.446 0.557 0.653   pH 7.2 Buffer (at 332 nm) 0.554 0.555 0.557 0.557 0.558 0.556 0.3  pH 7.2 Phosphate Buffer (at 90 minutes)                         |
| Method Validation for Dissolution                                         | 20%   40%   60%   80%   100%   120%                             | 0.1 N HCl<br>(at 302 nm)<br>0.383<br>0.382<br>0.383<br>0.383<br>0.383<br>0.1<br>0.1 N HCl<br>(at 2 Hours)               | 5.4000 10.8000 16.2000 21.6000 27.0000 32.4000  Absorbance pH 6.0 Buffer (at 330 nm) 0.162 0.163 0.163 0.161 0.162 0.5  % Interference from the pH 6.0 Phosphate Buffer (at 1 Hour) 0.0                 | 0.117 0.217 0.313 0.346 0.557 0.653   pH 7.2 Buffer (at 332 nm) 0.554 0.555 0.557 0.557 0.557 0.557 0.556 0.3  pH 7.2 Phosphate Buffer (at 90 minutes) 0.0               |
| Method Validation for Dissolution                                         | 20%   40%   60%   80%   100%   120%                             | 0.1 N HCl<br>(at 302 nm)<br>0.383<br>0.382<br>0.383<br>0.383<br>0.383<br>0.1                                            | 5.4000 10.8000 16.2000 21.6000 27.0000 32.4000  Absorbance pH 6.0 Buffer (at 330 nm) 0.162 0.163 0.163 0.161 0.162 0.5  % Interference from the pH 6.0 Phosphate Buffer (at 1 Hour) 0.0 0.0             | 0.117 0.217 0.333 0.446 0.557 0.653   pH 7.2 Buffer (at 332 nm) 0.554 0.555 0.557 0.557 0.558 0.558 0.556 0.3  pH 7.2 Phosphate Buffer (at 90 minutes) 0.0               |
| Method Validation for Dissolution                                         | 20%   40%   60%   80%   100%   120%                             | 0.1 N HCl<br>(at 302 nm)<br>0.383<br>0.382<br>0.383<br>0.383<br>0.383<br>0.1<br>0.1 N HCl<br>(at 2 Hours)<br>0.0<br>0.0 | 5.4000 10.8000 16.2000 21.6000 27.0000 32.4000  Absorbance pH 6.0 Buffer (at 330 nm) 0.162 0.163 0.163 0.161 0.162 0.5  % Interference from the pH 6.0 Phosphate Buffer (at 1 Hour) 0.0 0.0             | 0.117 0.217 0.333 0.446 0.557 0.653   pH 7.2 Buffer (at 332 nm) 0.554 0.555 0.557 0.557 0.558 0.556 0.3  placebo pH 7.2 Phosphate Buffer (at 90 minutes) 0.0 0.0 0.0     |
| Method Validation for Dissolution                                         | 20%   40%   60%   80%   100%   120%     120%                    | 0.1 N HCI (at 302 nm) 0.383 0.382 0.383 0.383 0.1  0.1 N HCI (at 2 Hours) 0.0 0.0 0.0                                   | 5.4000 10.8000 16.2000 21.6000 27.0000 32.4000  Absorbance pH 6.0 Buffer (at 330 nm) 0.162 0.163 0.163 0.161 0.162 0.5  % Interference from the pH 6.0 Phosphate Buffer (at 1 Hour) 0.0 0.0 0.0 0.0     | 0.117 0.217 0.333 0.446 0.557 0.653   pH 7.2 Buffer (at 332 nm) 0.554 0.555 0.557 0.557 0.558 0.556 0.3  placebo pH 7.2 Phosphate Buffer (at 90 minutes) 0.0 0.0 0.7 0.0 |
| System Suitability and Precision  Method Validation for Dissolution by UV | 20%   40%   60%   80%   100%   120%                             | 0.1 N HCI (at 302 nm) 0.383 0.382 0.383 0.383 0.383 0.1  0.1 N HCI (at 2 Hours) 0.0 0.0 0.0 0.0                         | 5.4000 10.8000 16.2000 21.6000 27.0000 32.4000  Absorbance pH 6.0 Buffer (at 330 nm) 0.162 0.163 0.163 0.161 0.162 0.5  % Interference from the pH 6.0 Phosphate Buffer (at 1 Hour) 0.0 0.0 0.0 0.0 0.0 | 0.117 0.217 0.313 0.346 0.557 0.653   pH 7.2 Buffer (at 332 nm) 0.554 0.555 0.557 0.557 0.558 0.556 0.3  pH 7.2 Phosphate Buffer (at 90 minutes) 0.0 0.0 0.7 0.0 0.0 0.7 |
| Method Validation for Dissolution                                         | 20%   40%   60%   80%   100%   120%     120%                    | 0.1 N HCI (at 302 nm) 0.383 0.382 0.383 0.383 0.1  0.1 N HCI (at 2 Hours) 0.0 0.0 0.0                                   | 5.4000 10.8000 16.2000 21.6000 27.0000 32.4000  Absorbance pH 6.0 Buffer (at 330 nm) 0.162 0.163 0.163 0.161 0.162 0.5  % Interference from the pH 6.0 Phosphate Buffer (at 1 Hour) 0.0 0.0 0.0 0.0     | 0.117 0.217 0.333 0.446 0.557 0.653   pH 7.2 Buffer (at 332 nm) 0.554 0.555 0.557 0.557 0.558 0.556 0.3  placebo pH 7.2 Phosphate Buffer (at 90 minutes) 0.0 0.0 0.7 0.0 |

| Method Recovery   | Recovery for Mesalam                                                                                                                                                                                                                                                                                                                                                                                                                   | ine                                     |                                 |                     |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------|---------------------|--|--|
|                   | Table 14                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                 |                     |  |  |
|                   | Recovery at LOQ level Sample No.   Amou                                                                                                                                                                                                                                                                                                                                                                                                | el<br>nt Spiked (mg)                    | Amount Recovered (mg)           | % Recovery          |  |  |
|                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                      | in Spikeu (ing)                         | 0.0490                          | 97.8                |  |  |
|                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0501                                  | 0.0477                          | 95.2                |  |  |
|                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 0.0492                          | 98.2                |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                        | Average                                 |                                 | 97.1                |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                        | % RSD                                   |                                 | 1.7                 |  |  |
|                   | Table 15 Recovery at 50 % lev                                                                                                                                                                                                                                                                                                                                                                                                          | el                                      |                                 |                     |  |  |
|                   | Sample No. Amou                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | Amount Recovered (mg)           | % Recovery          |  |  |
|                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 0.1010                          | 100.7               |  |  |
|                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1003                                  | 0.1003                          | 100.0               |  |  |
|                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                      | ACCES AUGUS                             | 0.1013                          | 101.0               |  |  |
|                   | 41                                                                                                                                                                                                                                                                                                                                                                                                                                     | Average                                 |                                 | 100.6               |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                        | % RSD                                   |                                 | 0.5                 |  |  |
|                   | Table 16<br>Recovery at 100 % le                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                 |                     |  |  |
|                   | Sample No. Amou                                                                                                                                                                                                                                                                                                                                                                                                                        | nt Spiked (mg)                          | Amount Recovered (mg)           | % Recovery          |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0005                                  | 0.2009                          | 100.2               |  |  |
|                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2005                                  | 0.2004                          | 100.0               |  |  |
|                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 0.2048                          | 102.1               |  |  |
|                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                      | Average                                 |                                 | 100.8               |  |  |
|                   | 3-                                                                                                                                                                                                                                                                                                                                                                                                                                     | % RSD                                   |                                 | 1.1                 |  |  |
|                   | Recovery at 150 % le Sample No. Amou                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | Amount Recovered (mg)<br>0.3044 | % Recovery<br>101.2 |  |  |
|                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3008                                  | 0.3063                          | 101.8               |  |  |
|                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 0.3044                          | 101.2               |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                        | Average                                 |                                 | 101.4               |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                        | % RSD                                   |                                 | 0.3                 |  |  |
| Method Ruggedness | The ruggedness of test method was demonstrated for analyte by carrying out precision at LOQ level (in terms of Mesalamine) using second HPLC systems of different make. The precision of the results obtained using the second HPLC system was evaluated by computing the percentage relative standard deviation for Mesalamine. The response for Mesalamine obtained on the second system is tabulated below.  Precision at LOO Level |                                         |                                 |                     |  |  |
|                   | Injection 1                                                                                                                                                                                                                                                                                                                                                                                                                            | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | Peak Area of Mes                | alamine             |  |  |
|                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 12.374                          |                     |  |  |
|                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 14.213                          |                     |  |  |
|                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 13.698                                |                                 |                     |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                 |                     |  |  |
|                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 11.930                          |                     |  |  |
|                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 15.597                          |                     |  |  |
|                   | Mean %RSD                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | 13.641<br>9.7                   |                     |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                 |                     |  |  |

#### Comments on the Dissolution Method Validation:

The dissolution method validation is acceptable.

RLD information (Current Orange Book)

| Appl<br>No | TE<br>Code |     | Active<br>Ingredient | Dosage Form;<br>Route            |               | Proprietary<br>Name | Applicant              |
|------------|------------|-----|----------------------|----------------------------------|---------------|---------------------|------------------------|
| N021830    |            | Yes |                      | TABLET, DELAYED<br>RELEASE; ORAL | 0 0 0 0 1 1 1 | 11011002            | WARNER<br>CHILCOTT LLC |

#### **USP Dissolution Method**

| COI Dissolution viction              |                                                                                                                 |        |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------|
| *Source of Method (USP, FDA or Firm) | USP                                                                                                             |        |
| Medium                               | Acid Stage: 0.1N HCl<br>Buffer Stage I: pH 6.0 Phosphate Buffer<br>Buffer Stage II: pH 7.2 Phosphate Buffer     |        |
| Volume (mL)                          | Acid Stage: 500 mL<br>Buffer Stage: 900 mL                                                                      |        |
| USP Apparatus type                   | USP 2 (Paddle)                                                                                                  |        |
| Rotation (rpm)                       | Acid Stage: 100 RPM 2 hours<br>Buffer Stage I: 100 RPM 1 hour<br>Buffer Stage II: 50 RPM 90 minutes             |        |
| USP-recommended specifications       | Acid Stage: NMT 1% in 2 hours<br>Buffer Stage I: NMT 1% in 1 hour<br>Buffer Stage II: NLT 80% (Q) in 90 minutes |        |
| VNI 4 A1 DADDTC AND A                |                                                                                                                 | (b) (4 |

\*Note: Also per DARRTS ANDA

Firm's summary Dissolution testing conditions (provided by the firm)

|             |                                                                                                                                                | Rationale                                    |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Apparatus   | USP-II (Paddle)                                                                                                                                | The dissolution                              |
| Medium      | pH 1.2, 0.1N HCl (Acid Stage) followed by pH 6.0<br>Phosphate buffer (Buffer Stage I) followed by pH 7.2<br>Phosphate buffer (Buffer Stage II) | method, limit and parameter are based on USP |
| Volume      | 500 mL for Acid Stage, 900 mL (Buffer Stage I)<br>900 mL (Buffer Stage II)                                                                     | monograph of this drug product.              |
| Speed       | 100 RPM (Acid stage and Buffer Stage I),<br>50 RPM (Buffer Stage II)                                                                           |                                              |
| Time        | 2 Hours (Acid Stage), 1 Hour (Buffer Stage I)<br>90 Minutes (Buffer Stage II)                                                                  |                                              |
| Temperature | $37^{\circ}\text{C} \pm 0.5^{\circ}\text{C}$                                                                                                   |                                              |

Specification: Acceptance criteria for dissolution as per given below:

Acid Stage (2 hour): Not more than 1.0 % Buffer Stage I (1 hour): Not more than 1.0 %

Buffer Stage II (90 Minutes): Not less than 80% (Q) of the labeled amount

of Mesalamine is dissolved in 90 Minutes.

Table 2: SUMMARY OF IN VITRO DISSOLUTION DATA

| Dissolution Conditions                              |                                               | Apparatus:                           |                | USP-II (P                                                                                                                                                                                                           | addle)                                                                                                |                                         |                            |                 |               |               |       |      |       |                    |
|-----------------------------------------------------|-----------------------------------------------|--------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------|-----------------|---------------|---------------|-------|------|-------|--------------------|
|                                                     |                                               | Speed of Rotation: 50 RPM            |                |                                                                                                                                                                                                                     |                                                                                                       |                                         |                            |                 |               |               |       |      |       |                    |
|                                                     |                                               |                                      | Medium:        |                                                                                                                                                                                                                     | 0.1N HCl (for 2 hours) followed by pH 6.0 Phosphate buffer (for 1 hours) followed by pH 7.2 Phosphate |                                         |                            | hosphate buffer | ĺ             |               |       |      |       |                    |
|                                                     |                                               | Volume:                              |                | 900 mL                                                                                                                                                                                                              |                                                                                                       | 111111111111111111111111111111111111111 | 1475                       | 1 1 30          |               | a dia         |       |      |       |                    |
|                                                     |                                               |                                      | Temperature:   |                                                                                                                                                                                                                     | 37 C±0.5 C                                                                                            |                                         |                            |                 |               |               |       |      |       |                    |
| Firm's Proposed Specifications Acid Sta<br>Buffer S |                                               |                                      | Buffer Stage   | ucid Stage: Not more that 1% dissolved in 2 hours.  Suffer Stage I: Not more that 1% dissolved in 1 hours.  Suffer Stage II: Not less than 80 % (Q) of the labeled amount of Mesalamine is dissolved in 90 minutes. |                                                                                                       |                                         |                            |                 |               |               |       |      |       |                    |
| Dissolution<br>(Name, Ad                            | n Testing Site<br>Idress)                     |                                      | Cadila Health  | icare Ltd., Sark                                                                                                                                                                                                    | thej-Bav <mark>l</mark> a, N                                                                          | H. No. 8A,                              | Moraiya, T                 | al.: Sanand, D  | oist, Ahmedal | oad – 382 210 | 0)    |      |       |                    |
| Study                                               | Testing Product ID \ Ba                       |                                      | h No.          | Dosage                                                                                                                                                                                                              | No. of                                                                                                | No. of                                  | Collection Times (Minutes) |                 |               |               | Study |      |       |                    |
|                                                     | Ref No.                                       | (Test-Manufactur<br>(Reference-Expir | 317 ACC 180 ST | Strength<br>& Form                                                                                                                                                                                                  | Dosage<br>Units                                                                                       |                                         | 2 hour                     | 1 hour          | 15            | 30            | 45    | 60   | 90    | Report<br>Location |
| Study<br>Report                                     | June 27,<br>2011                              | Mesalamine Dela<br>Tablets USP, 800  |                | 800 mg<br>Tablet                                                                                                                                                                                                    | 12                                                                                                    | Mean                                    | 0.0                        | 0.1             | 18.4          | 46.4          | 73.5  | 85.9 | 100.6 |                    |
| #: Lot N                                            | Lot                                           | Lot No.: EMK150<br>Mfg Date: March   | 0              |                                                                                                                                                                                                                     |                                                                                                       | Range                                   |                            |                 | ·             | ***           |       |      | (b)   | (4)<br>Refer       |
|                                                     |                                               |                                      |                |                                                                                                                                                                                                                     |                                                                                                       | %CV                                     | 233.5                      | 159.5           | 82.1          | 60.0          | 41.9  | 31.7 | 6.2   | Module             |
| Study<br>Report                                     | June 27, 2011                                 | ASACOL® HD (<br>Delayed Release      |                | 800 mg<br>Tablet                                                                                                                                                                                                    | 12                                                                                                    | Mean                                    | 0.0                        | 0.1             | 14.1          | 30.7          | 60.8  | 82.0 | 99.6  | 5.3.1.3            |
| #: 80<br>Lc                                         | 800 mg<br>Lot No: 442661S3<br>Expiry: 03/2013 |                                      |                | Range                                                                                                                                                                                                               | 30                                                                                                    | ×                                       |                            | ( <del>0)</del> | **            | ***           | (b) ( | 4)   |       |                    |
|                                                     |                                               | 3 ST 1111 111 1                      |                |                                                                                                                                                                                                                     |                                                                                                       | %CV                                     | 233.5                      | 184.6           | 142.8         | 104.0         | 45.2  | 18.4 | 1.2   | 7                  |

F2: 51.20

Dissolution Conditions:

Medium: 900 mL, Phosphate buffer pH 7.2

Apparatus : USP-II (Paddle)

RPM: 50

Temperature: 37  $C \pm 0.5 C$ 

Acceptance Criteria: Acid Stage: Not more that 1% dissolved in 2 hours.

Buffer Stage I: Not more that 1% dissolved in 1 hour.

Buffer Stage II: Not less than 80 % (Q) of the labeled amount of Mesalamine is dissolved in 90 minutes.

#### III. COMMENTS:

- 1. There is a USP method for this product. The firm's dissolution testing data with the USP method are acceptable. The DB II acknowledges that the firm will follow the USP method and specifications.
- 2. The firm has conducted acceptable dissolution method validation for Mesalamine.
- 3. The submitted Long Term Storage Stability (LTSS) data is not sufficient to cover the maximum storage period of the fasting (#MSN-P0-732) and fed (#MSN-P0-733) bioequivalence (BE) studies. The firm is requested to submit sufficient LTSS to cover at least the maximum storage period (116 days) of the BE studies samples for Mesalamine.
- 4. The firm submitted all the requested summary bio-tables in MSWord format.
- 5. The DB II will review the fasted and fed BE studies and the waiver request at a later date.

#### IV. DEFICIENCY COMMENTS:

1. The submitted Long Term Storage Stability (LTSS) data is not sufficient to cover the maximum storage period of the fasting (#MSN-P0-732) and fed (#MSN-P0-733) bioequivalence (BE) studies. The firm is requested to submit sufficient LTSS to cover at least the maximum storage period (116 days) of the BE studies samples for Mesalamine.

#### V. RECOMMENDATIONS:

The in vitro dissolution testing conducted by Zydus Pharmaceuticals (USA) Inc. on its test product, Mesalamine Delayed Release Tablets USP, 800 mg is acceptable. The test product meets the USP following dissolution specifications.

Acid Stage: NMT 1% in 2 hours Buffer Stage I: NMT 1% in 1 hour

Buffer Stage II: NLT 80% (Q) in 90 minutes

#### BIOEQUIVALENCE DEFICIENCIES

| ANDA:         | 203286                                         |
|---------------|------------------------------------------------|
| APPLICANT:    | Zydus Pharmaceuticals (USA) Inc.               |
| DRUG PRODUCT: | Mesalamine Delayed Release Tablets USP, 800 mg |

The Division of Bioequivalence II (DB II) has completed its review of the dissolution testing portion of your submission acknowledged on the cover sheet. The review of the bioequivalence (BE) studies will be conducted later. The following deficiency has been identified:

The submitted Long Term Storage Stability (LTSS) data is not sufficient to cover the maximum storage period of the fasting (#MSN-P0-732) and fed (#MSN-P0-733) bioequivalence (BE) studies. Please submit sufficient LTSS to cover at least the maximum storage period (116 days) of the BE studies samples for Mesalamine.

Sincerely yours,

{See appended electronic signature page}

Barbara M. Davit, Ph.D., J.D.
Acting Director
Division of Bioequivalence II
Office of Generic Drugs
Center for Drug Evaluation and Research

#### VI. OUTCOME

ANDA: 203286

#### Completed Assignment for 203286 ID: 16035

Reviewer: Wahba, Zakaria Date Completed: Verifier: , Date Verified:

Division: Division of Bioequivalence

Description:

#### Productivity:

| ID    | Letter Date | Productivity Category | Sub Category       | Productivity | Subtotal |
|-------|-------------|-----------------------|--------------------|--------------|----------|
| 16035 | 7/12/2011   | Dissolution Data      | Dissolution Review | 1            | 1        |
|       |             |                       |                    | Bean Total:  | 1        |

# DIVISION OF BIOEQUIVALENCE 2 REVIEW COMPLEXITY SUMMARY ANDA 203286

| Diss                     | solution Review |
|--------------------------|-----------------|
| Dissolution Review       | 1               |
| Dissolution Review Total | 1               |

MOHEB H MAKARY 02/16/2012

02/16/2012

ETHAN M STIER on behalf of BARBARA M DAVIT 02/16/2012

## CENTER FOR DRUG EVALUATION AND RESEARCH

# APPLICATION NUMBER: ANDA 203286

# **OTHER REVIEWS**

#### MEMORANDUM

# DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION CENTER FOR DRUG EVALUATION AND RESEARCH

DATE: July 30, 2014

TO: Ethan M. Stier, Ph.D., R.Ph

Director (Acting)

Division of Bioequivalence-II

Office of Generic Drugs

FROM: Sripal R. Mada, Ph.D.

BE Branch

Division of Bioequivalence and GLP Compliance

Office of Scientific Investigations

THROUGH: Sam H. Haidar, Ph.D., R.Ph.

Chief, BE Branch

Division of Bioequivalence and GLP Compliance

Office of Scientific Investigations

William H. Taylor, Ph.D.

Director

Division of Bioequivalence and GLP Compliance

Office of Scientific Investigations

SUBJECT: Review of EIR covering studies (ANDA 204-299 and ANDA

203-286), inspection utilizing bioequivalence

surveillance approach

(b) (4)

(b) (4)

#### Table of Contents

| 1. | Summary                   | 1 |
|----|---------------------------|---|
| 2. | Recommendation            | 3 |
| 3. | Inspectional Findings     | 3 |
| 4. | Final Site Classification | 3 |
| 5. | Attachments               | 3 |

#### 1. Summary

At the request of Division of Bioequivalence-II (DBE-II), Office of Generic Drugs (OGD), the Division of Bioequivalence and GLP Compliance (DBGLPC) inspected both clinical and analytical portions of the above applications utilizing a bioequivalence surveillance approach. A summary of the inspected studies is provided below.

| Review | Application  | Studies  | Facility   | Drug          | Sponsor  | Recommend  |
|--------|--------------|----------|------------|---------------|----------|------------|
| Div.   |              |          |            | Product       |          |            |
| DBE-II | ANDA 204-299 | BA111334 | Clinical   | Zolpidem      | Novel    | Acceptable |
| Ethan  |              | 27-01    | and        | Tartrate      | Laborato |            |
| М.     |              | and      | Analytical | Sublingual    | ries,    |            |
| Stier  |              | BA111334 |            | Tablets, 1.75 | Inc.     |            |
|        |              | 28-01    |            | and 3.5 mg    |          |            |
| DBE-II | ANDA 203-286 | MSN-P0-  | Analytical | Mesalamine    | Zydus    | Acceptable |
| Ethan  |              | 732 and  |            | Delayed       | Pharmace |            |
| М.     |              | MSN-P0-  |            | Release       | uticals, |            |
| Stier  |              | 733      |            | Tablets, USP, | USA Inc. |            |
|        |              |          |            | 800 mg        |          |            |

The FDA inspectors planned and included the following studies for the audit (b)(4)

# BA11133427-01: "An open label, randomized, two-period, two-treatment, two-sequence, crossover, balanced, single dose oral bioequivalence study of Zolpidem Tartrate Sublingual Tablets 3.5 mg of Novel Laboratories Inc., USA and INTERMEZZO® (Zolpidem Tartrate) Sublingual Tablets 3.5 mg of Transcept Pharmaceuticals, Inc., CA 94084 in healthy adult human subjects under fasting conditions"

- BA11133428-01: "An open label, randomized, two-period, two-treatment, two-sequence, crossover, balanced, single dose oral bioequivalence study of Zolpidem Tartrate Sublingual Tablets 3.5 mg of Novel Laboratories Inc., USA and INTERMEZZO® (Zolpidem Tartrate) Sublingual Tablets 3.5 mg of Transcept Pharmaceuticals, Inc., CA 94084 in healthy adult human subjects under fed conditions"
- <u>MSN-P0-732</u>: "Single Dose, Partial Replicate, Crossover Comparative Bioavailability Study of Mesalamine 800 mg Delayed-Release Tablets in Healthy Male and Female Volunteers under Fasting State"
- <u>MSN-P0-733</u>: "Single Dose, Partial Replicate, Crossover Comparative Bioavailability Study of Mesalamine 800 mg Delayed-Release Tablets in Healthy Male and Female Volunteers under Fed State"

The FDA inspectors covered clinical portion of study #BA11133427-01, and analytical portions of studies #MSN-P0-732 and #BA11133427-01. The selection of studies for this BE surveillance inspection was based on pre-set, risk-based criteria.

#### Recommendation 2.

#### ANDA 204-299:

The clinical data from study BA11133427-01, and analytical data from studies BA11133427-01 and BA11133428-01 are acceptable for review.

#### ANDA 203-286:

The analytical data from studies MSN-P0-732 and MSN-P0-733 are acceptable for review.

#### 3. Inspectional Findings

Following the inspection by Gopa Biswas, Ph.D (OSI) and Scott B. Laufenberg (ORA, OIP, India Office) , there were no significant observations at the clinical site and no Form FDA-483 was issued.

#### Final Site Classification 4.

cc: OSI/Kassim OSI/DBGLPC/Taylor/Dejernett/Johnson/Fenty-Stewart/Nkah OSI/DBGLPC/GLPB/Bonapace/Dasgupta OSI/DBGLPC/BB/Biswas/Mada/Choi/Skelly/Haidar OPS/OGD/DBEII/Stier/Kreger/Mahadevan ORA/OIP, India Office/Laufenberg ECMS: Cabinets/CDER OC/OSI/Division of Bioequivalence & Good Laboratory Practice Compliance/Inspections/BE Program/Analytical sites/ Draft: SRM 07/17/2014

Edits: YMC 07/29/2014; SHH 07/29/2014

OSI FILE# BE6575; O:\Bioequiv\EIRCover\204299 nov zol.doc

FACTS: 8737064

OSI FILE# BE6322; O:\Bioequiv\EIRCover\203286 zyd mes.doc

FACTS: 1391158

#### 5. Attachments none

(b) (4)

This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

/s/

SRIPAL R MADA
07/30/2014

SAM H HAIDAR
07/30/2014

**MEMORANDUM** DEPARTMENT OF HEALTH AND HUMAN SERVICES

PUBLIC HEALTH SERVICE

FOOD AND DRUG ADMINISTRATION

CENTER FOR DRUG EVALUATION AND RESEARCH

DATE: September 09, 2010

TO: Johnny Young, R.Ph.

Office of Generic Drugs (OGD)

DLPS/RSS

FROM: Sushanta K. Chakder, Ph.D.

Supervisory Pharmacologist

Division of Gastroenterology and Inborn Errors Products (DGIEP)

Through: Andrew Mulberg, M.D.

**Deputy Division Director** 

Division of Gastroenterology and Inborn Errors Products (DGIEP)

SUBJECT: Consult Request from the OGD for assessment of safety of the proposed level of Eudragit S in Mesalamine Delayed Release Tablets USP, 800 mg (Zydus Pharma USA Inc.) (ANDA 203286; Consult No. 2011-0543).

Attached, please find the review of the consult request (#2011-0543) for safety assessment of the proposed level of Eudragit S <sup>(b) (4)</sup> in Mesalamine Delayed Release Tablets USP, 800 mg.

Sushanta K. Chakder, Ph.D. Supervisory Pharmacologist, DGIEP

CC:
DGP
DGIEP/WIshihara
DGIEP/BStrongin
OGD/JYoung
OGD/TTran
DGP/AMulberg

DGP/SChakder

#### Safety Assessment of the Proposed Eudragit S ((b) (4) (Methacrylic Acid Copolymer, Type B) Levels in Mesalamine Delayed Release Tablets.

(ANDA 203286; Consult No: 2011-0543)

Background: Zydus Pharmaceuticals USA Inc. submitted an ANDA (ANDA # 203286)
application for Mesalamine Delayed Release Tablets (800 mg). Each Mesalamine Delayed
Release Tablet contains (b) (4) of Eudragit S (b) (4) The proposed daily dose of the Mesalamine
Delayed Release Tablets is 6 tablets a day (2 tablets 3 times a day). Thus, the maximum daily
Eudragit S (b) (4) intake from Mesalamine Delayed Release Tablets would be (b) (4) x 6 = (b) (4)

The proposed amount of Eudragit S in the existing approved Drug Products Database (IIG). The Office of Generic Drugs has sent a consult to DGIEP for nonclinical safety assessment of the level of Eudragit S in the proposed formulation of Mesalamine Delayed Release Tablets.

The composition of Mesalamine Delayed Release Tablets (800 mg) is provided in the Sponsor's Table below.

#### • Quantitaive composition of Mesalamine Delayed Release Tablets USP, 800 mg:

| Name of Ingr                     | Quantity/<br>Tablet (mg) | Quantity<br>(% w/w)/Tablet <sup>S</sup> |          |         |
|----------------------------------|--------------------------|-----------------------------------------|----------|---------|
|                                  |                          | (b) (4)                                 |          |         |
| Mesalamine, USP                  |                          |                                         | 800.000  | (b) (4  |
| Sodium Starch Glycolate, NF      | -0                       | (b) (4)                                 | (b) (    | 4)      |
| Colloidal Silicon Dioxide, NF    | (b) (4)                  |                                         |          |         |
| Magnesium Stearate, NF           |                          |                                         |          |         |
|                                  |                          | (b) (4)                                 |          |         |
| Microcrystalline Cellulose, NF   | (b) (4)                  | T T                                     |          |         |
| Povidone (b) (4) USP (b) (       | 4)                       |                                         |          |         |
|                                  |                          | (b) (4)                                 |          |         |
|                                  |                          | (b) (4)                                 |          |         |
| Sodium Starch GlycolateNF,       |                          | (b) (4)                                 |          |         |
| Talc, USP (b) (4)                |                          |                                         |          |         |
| Colloidal Silicon Dioxide, NF    | (b) (4)                  | -                                       |          |         |
| Magnesium Stearate, NF           | -                        |                                         |          |         |
|                                  |                          | (b) (4)                                 |          |         |
| Methacrylic Acid Copolymer, NF - | Type B (Eudra            | git S (b) (4)                           |          |         |
| Tale, USP                        |                          |                                         |          |         |
| Acetyltributyl Citrate, NF       |                          | -                                       |          |         |
| Titanium Dioxide, USP            | (                        | b) (4)                                  |          |         |
| Ferric Oxide Red, NF             |                          |                                         |          |         |
| Isopropyl Alcohol USP*           |                          |                                         |          |         |
| (b) (4)                          |                          | -                                       |          |         |
|                                  |                          | (b) (4)                                 |          |         |
| Opacode Black (b) (4)            |                          |                                         |          |         |
| Isopropyl Alcohol, USP*          |                          |                                         |          |         |
|                                  |                          | Total                                   | 1102.400 | 100.000 |
|                                  |                          | (b) (4)                                 |          |         |

#### **NONCLINICAL STUDY REPORTS SUBMITTED:**

The sponsor submitted full reports of two 6-month oral toxicity studies in rats, a 6-week oral toxicity study in male mice and a 6-week oral toxicity study in rabbits with Eudragit S toxicity study

#### General Toxicology:

#### Feeding Experiments with Eudragit L and Eudragit S in Rats:

The sponsor submitted a summarized report of a feeding study of Eudragit L and Eudragit S in rats. Three groups (30 animals/group) of rats were fed pan-coated (two groups) or uncoated (one group) barley for about one month. However, the animals de-husked the barley and ate the grains, and it was not possible to determine how much lacquer was taken by the animals. The animals were then given a granulated standard rat feed to with a mixture of lactose and pan coating lacquers containing a 5% mixture of Eudragit L and Eudragit S in equal ratios were added. Group 1 and Group 2 animals consumed approximately 3.1 mg and 15.5 mg of lacquer solid/animal/day. Group 3 (control) animals received a standard diet. All animals gained normal body weight during the study. Macroscopic examination of all tissues and microscopic examination of the liver did not reveal any adverse effects related to Eudragit.

This was not a standard toxicology study and is not useful in assessing the safety of Eudragit S (6) (4)

#### **Six-Month Oral Toxicity Studies in Rats:**

Two 6-month repeat dose oral (gavage) toxicity studies with Eudragit S <sup>(b) (4)</sup> in rats were submitted in this submission.

In the first 6-month oral toxicity study of Eudragit S in rats, 0, 200, 600 and 1500 mg/kg/day doses were administered once daily to four groups (25 animals/sex/group for the main study) of Wistar rats. Subgroups of 10 animals/sex/group from the control and high dose groups were assigned to a 4-week treatment-free recovery period. In this study, the NOAEL was not established, because an activation of the thyroid epithelium was observed at all doses. The severity and the incidence of the effect on the thyroid gland was dose related and was not reversible at the end of the 4-week recovery period. In addition, a decrease in the liver weight was observed at all doses, and an increased incidence of peripheral fatty degeneration pattern of liver cells was observed at the high dose.

The second study was conducted to determine whether oral administration of Eudragit S doses lower than 200 mg/kg/day produces morphological changes in the thyroid glands of rats. The previous study in rats showed an activation of thyroid epithelium in rats at 200 mg/kg and higher doses of Eudragit S  $^{(b)}$  (4).

In this 6-month oral toxicity study (Project No. 3-4-120-89; GLP compliant), groups of male and female Wistar rats (15 males and 15 females in each group; 6 weeks of age at the beginning of dosing; body wt. 132-169 g for males, 111-142 g for females) were administered Eudragit S at dose levels of 0, 10, 30, 100 mg/kg/day once daily by oral gavage for 6 months. Control animals received the vehicle (purified water). No treatment-related clinical signs were observed in any group. There were no treatment related mortalities; one animal from the 10 mg/kg group died after 15 weeks of dosing due to a gavage error. No significant changes in food consumption, body weight, hematology, gross pathology or organ weight were observed in any group. Histopathological examination of the thyroid gland did not show any test article related changes. Thus, the 100 mg/kg/day dose was the NOAEL for Eudragit S in this study.

7

#### Six-Week Oral Subchronic Toxicity Study in Male Mice (IBR Project No. 2-1-772-87)

In a 6-week oral toxicity study of Eudragit S <sup>(b) (4)</sup> in male NMRI (SPF Han) mice, 0, 100, 600 and 1500 mg/kg QD doses were orally administered to groups of animals (12 animals/group). Thyroids were slightly activated at the 1500 mg/kg dose, and a tendency towards activation was observed at the 600 mg/kg dose. No effect on the thyroid gland was observed at the low dose of 100 mg/kg/day. Thus, the 100 mg/kg/day dose was the NOAEL in this study.

#### Six-Week Oral Toxicity Study in Rabbits:

In a 6-week oral toxicity study in New Zealand white rabbits (6 males and 6 females/group), Eudragit S was administered by oral gavage at 0, 100, 600 and 1500 mg/kg/day doses. There were no mortalities in any group. No treatment-related effects on clinical signs, body weight, food consumption, hematology, or organ weights were observed. Histopathology examinations showed dose-related activation of the thyroid epithelium in the mid- and high-dose groups. The NOAEL was 100 mg/kg/day in this study, and the thyroid gland was the target organ of toxicity.

Genetic Toxicology: EUDRAGIT S (b) (4) was not mutagenic in the bacterial reverse mutation (Ames test) assay in the presence or absence of metabolic activation.

# Experiments to Determine the Effect of 2577 G and 2697 on Pregnant Rats and Their Fetuses

Twenty pregnant Wistar rats were administered 1000 mg/kg/day doses of 2577 G and 2697 from gestation day 6 through gestation day 16. No adverse effects on maternal animals or fetuses were reported. However, the compounds used in this study were identified by their code names, and it is not known whether Eudragit S was one of them used in the study. In another study, Eudragit S and Eudragit L did not show any teratogenic potential in rats at an oral dose of 500 mg/kg/day.

#### SUMMARY AND EVALUATION:

Eudragit S

deliver drugs in the intestine. Zydus Pharmaceuticals, USA Inc. submitted ANDA 203286 in the OGD for Mesalamine Delayed Release Tablets. Each Mesalamine Delayed Release Tablet contains

(b) (4) of Eudragit S

(b) (4) of Eudragit S

(b) (4) The proposed daily dose of the Mesalamine Delayed Release Tablets is 6 tablets/day (2 tablets 3 times a day). Thus, the maximum daily amount of Eudragit S

(b) (4) intake from the Mesalamine Delayed Release Tablets would be

(b) (4) x 6 =

(b) (4) The proposed amount of Eudragit S

in the existing approved Drug Products Database (IIG). The

Office of Generic Drugs has sent a consult request to DGIEP for nonclinical safety assessment of the proposed level of Eudragit S (b) (4) in Mesalamine Delayed Release Tablets.

In support of the safety of the proposed Eudragit S (b) (4) levels in the Mesalamine Delayed Release Tablet formulation, the sponsor submitted full reports of two 6-month oral toxicity studies in rats, a 6-week oral toxicity study in male mice and a 6-week oral toxicity study in rabbits with Eudragit S (b) (4). In addition, summary report of a non-GLP feeding study of Eudragit L (b) (4) and Eudragit S (b) (4) in rats, a bacterial reverse mutation assay (Ames test) and an embryofetal development study in rats were submitted.

Eudragit S (b)(4) is present in a number of FDA approved products as an enteric coating agent. However, the level proposed in the mesalamine delayed release tablet formulation is (b)(4) Eudragit S (b)(4) is considered to be relatively safe as an enteric coating agent.

In a 6-month oral toxicity study of Eudragit S (b)(4) in rats, thyroid was the target organ of toxicity, and the NOAEL was identified as 100 mg/kg/day. The 100 mg/kg/day dose was also identified as the NOAEL in a 6-week oral toxicity study in male mice and a 6-week oral toxicity study in rabbits. The NOAEL of 100 mg/kg/day provides about 24 times safety margin for the anticipated daily intake of (b)(4) Eudragit S (b)(4) from the maximum daily recommended dose of mesalamine (4.8 g/day). Eudragit S (b)(4) showed no genotoxic potential in the Ames test, and was not teratogenic in rats.

Thus, from a nonclinical standpoint, there are no safety concerns for the sponsor's proposed amount of Eudragit S (b) (4) in Mesalamine Delayed Release Tablets (800 mg), and the proposed amount of Eudragit S (b) (4) per tablet is acceptable.

This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

/s/

SUSHANTA K CHAKDER
09/09/2011

ANDREW E MULBERG
09/11/2011

## CENTER FOR DRUG EVALUATION AND RESEARCH

# APPLICATION NUMBER: ANDA 203286

# ADMINISTRATIVE and CORRESPONDENCE DOCUMENTS

|                                                                                                                                                                                                                     | Food                                                                                                                                                                                                                                                                                                           | and Drug Administration                                                                                                                                                                                                                                                                                          | Document No.:                                                                                                                        | Version:                 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|
|                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                | CDER / Office of Generic Drugs                                                                                                                                                                                                                                                                                   | 4000-LPS-066                                                                                                                         | 02                       |  |
|                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                | Document Status: DRAFT                                                                                                                                                                                                                                                                                           |                                                                                                                                      |                          |  |
|                                                                                                                                                                                                                     | Title                                                                                                                                                                                                                                                                                                          | : Approval Routing Summary Form                                                                                                                                                                                                                                                                                  | Author: Heather Strandb                                                                                                              | erg                      |  |
| Approval Type: ⊠ FULL APPROVAL □ TENTATIVE APPROVAL □ SUPPLEMENTAL APPROVAL (NEW STRENGTH)                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                      |                          |  |
|                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                | Taylor Team Leader: Taylor                                                                                                                                                                                                                                                                                       |                                                                                                                                      |                          |  |
| □ P                                                                                                                                                                                                                 | □ PI $\boxtimes$ PII $\square$ PIII $\boxtimes$ PIV (eligible for 180 day exclusivity $\boxtimes$ Yes $\square$ No) $\square$ MOU $\boxtimes$ RX or $\square$ OTC                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                      |                          |  |
|                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                | 03286 Applicant: Zydus Pharmaceuticals (USA) Inc.<br>d Product Name: Mesalamine Delayed-Release Tablets USP, 800 m                                                                                                                                                                                               | g                                                                                                                                    |                          |  |
| Basis                                                                                                                                                                                                               | Basis of Submission (RLD): 021830/Asacol HD  Basis Of Submission Discontinued? Yes □ No ⊠  If yes, has FR published indicating the Agency determined the product was not withdrawn for reasons of safety or effectiveness?  Yes □ FR Notice dated; Vol; No  No □ Consult completed but not yet published in FR |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                      |                          |  |
|                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                | used on an approved Suitability Petition? $\square$ Yes $\boxtimes$ No, if yes, use SP language  NDA contain REMS? $\square$ Yes $\boxtimes$ No (If YES, initiate approval action 6 we                                                                                                                           | ,                                                                                                                                    |                          |  |
|                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                | Project Manager Evaluation:                                                                                                                                                                                                                                                                                      |                                                                                                                                      | e: 7/7/2017              |  |
|                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                | ceived) Acceptable for Filing Date 7/13/2011                                                                                                                                                                                                                                                                     |                                                                                                                                      |                          |  |
|                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                              | Complete Response (CR) letter was issued Date 2/3/2017                                                                                                                                                                                                                                                           |                                                                                                                                      |                          |  |
|                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                | y reviewed and tentatively approved (if applicable) Date                                                                                                                                                                                                                                                         |                                                                                                                                      |                          |  |
| YES                                                                                                                                                                                                                 | NO                                                                                                                                                                                                                                                                                                             | 7 11 \ 11 /                                                                                                                                                                                                                                                                                                      |                                                                                                                                      |                          |  |
| $\boxtimes$                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                | All submissions have been reviewed and relevant disciplines are adequate ar                                                                                                                                                                                                                                      | nd finalized in the platform (Da                                                                                                     | te or N/A)               |  |
|                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                | <ul> <li>Date of BE Guidance (if any) 6/1/2016</li> <li>Date of Acceptable Labeling 6/22/2017</li> <li>Date of last RLD labeling update 5/5/2016</li> <li>Date of Acceptable Quality 6/23/2017</li> <li>DMF No(s). 22999 Date(s) Acceptable 7/29/2016</li> <li>No outstanding DMF review amendments ⊠</li> </ul> | If applicable: Date of Acceptable Microbiolopate of Acceptable Clinical R Date of Acceptable Dissolution Date of Acceptable REMS N/2 | eview N/A<br>n 2/16/2012 |  |
|                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                | Date of Acceptable Overall Manufacturing Inspection 6/16/2017                                                                                                                                                                                                                                                    |                                                                                                                                      |                          |  |
| MMA: All amendments submitted to the Agency on or after December 5, 2016 contain (1) a patent certification or section viii statement, (2) a recertification, or (3) a verification statement per 21 CFR 314.96(d). |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                      |                          |  |
|                                                                                                                                                                                                                     | ⊠                                                                                                                                                                                                                                                                                                              | Are consults pending for any discipline?                                                                                                                                                                                                                                                                         |                                                                                                                                      |                          |  |
| $\boxtimes$                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                | OSIS Clinical Endpoint and Bioequivalence Site Inspections are acceptable                                                                                                                                                                                                                                        |                                                                                                                                      |                          |  |
|                                                                                                                                                                                                                     | ×                                                                                                                                                                                                                                                                                                              | Is there a pending legal or regulatory issue (refer to Policy Alert Tracker)? If YES $\rightarrow$ OGD Policy Lead confirmed ANDA may proceed $\Box$ ; Memo up                                                                                                                                                   | loaded (if applicable)                                                                                                               |                          |  |
|                                                                                                                                                                                                                     | ×                                                                                                                                                                                                                                                                                                              | Has there been an amendment providing for a major change in formulation or new strength since filing?  If YES→Verify a second filing review was completed (if applicable) and that all disciplines completed new reviews □                                                                                       |                                                                                                                                      |                          |  |

Email from BioPM stating Bio is still adequate after guidance revision uploaded to Quality Check . . . task

\*\*Lead Division: Program Management\*\* | Effective Date: | Page 1 of 6

Is ANDA a Priority Approval (First generic, drug shortage, PEPFAR, other OGD Communications priorities)?

If YES → Email OGD Communications Staff or Division liaison 30 to 60 days prior to approval, Date emailed 6/23/2017

Additional Notes (if applicable)

Review Discipline/Division and RPM TL Endorsements

RPM Team Leader endorsement completed

Applicable review discipline/division endorsements completed

For DMF 22999 There is a DARRTS NAI dated 3/24/2017 after receipt of an annual report on 8/2/2016

 $\boxtimes$ 

 $\boxtimes$ 

 $\boxtimes$ 

| Food and Drug Administration         | Document No.:        | Version: |  |
|--------------------------------------|----------------------|----------|--|
| CDER / Office of Generic Drugs       | 4000-LPS-066         | 02       |  |
| Document Status: DRAFT               |                      |          |  |
| Title: Approval Routing Summary Form | Author: Heather Stra | andberg  |  |

(b) (4)

| Lead Division: Program ManagementEffective Date:Page 2 of 6 |  |
|-------------------------------------------------------------|--|
|-------------------------------------------------------------|--|

| Food and Drug Administration         | Document No.:           | Version: |  |  |
|--------------------------------------|-------------------------|----------|--|--|
| CDER / Office of Generic Drugs       | 4000-LPS-066            | 02       |  |  |
| Document Status: DRAFT               |                         |          |  |  |
| Title: Approval Routing Summary Form | Author: Heather Strandb | erg      |  |  |

#### ANDA APPROVAL ROUTING SUMMARY ENDORSEMENTS AND FINAL DECISION

Division of Legal and Regulatory Support Endorsement **Date:** 7/11/2017

| 1. Division of Degai and Regulatory Suppl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ori Emao | rsement   | Name: IM for MHS                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|----------------------------------------------------------------------------------------|
| Patent/Exclusivity Certification:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |           |                                                                                        |
| □ PI ⋈ PII □ PIII ⋈ PIV □ section viii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |           | RLD = Asacol HD NDA# $\underline{21830}$ $\boxtimes$ <b>RX or</b> $\square$ <b>OTC</b> |
| If Paragraph IV Certification- did applicant:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |           | Date Checked in Orange Book#: 7/11/2017                                                |
| Notify patent holder/NDA holder:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Yes 🛛    | No □      |                                                                                        |
| Was applicant sued w/in 45 days:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Yes 🛛    | No □      | Type of Letter:                                                                        |
| Has case been settled:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes 🛛    | No □      | ☑ APPROVAL                                                                             |
| Applicant addressed all listed exclusivities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Yes 🛛    | No □      | ☐ TENTATIVE APPROVAL                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           | ☐ SUPPLEMENTAL APPROVAL (NEW STRENGTH)                                                 |
| Do the patent and exclusivity certifications align                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | No □      |                                                                                        |
| Have there been any revisions to the use code since the original submission?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Yes □    | No ⊠      | LETTER RECOMMENDED FOR DRUGS@FDA Yes ☒ No ☐                                            |
| Forfeiture Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |           | 180 Day Exclusivity Information                                                        |
| Is a forfeiture memo needed for the first applican                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t: Yes □ | No 🛛      | Is applicant eligible for 180 day exclusivity Yes ⊠ No □                               |
| If yes, the date forfeiture memo was completed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |           | ⊠ Sole                                                                                 |
| Date ANDA number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |           | ☐ Shared ANDA Exclusivity for each strength: Yes ☐ No ☐                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           | Which strength(s) eligible                                                             |
| Comments: BOS = Asacol HD (NDA 21830) Application submission 7/13/2011 with PIII certifications to the '170 and '171 and a PIV certification to the '662 patent. Acknowledgment letter signed 9/9/2011.  Amendment 10/11/2011 with copies of PIV return receipts sent via USPS to Warner Chilcott LLC (NJ) x2 and Fitzpatrick Cel & Scinto (NY) and received 9/27/201, 9/27/2011, 9/28/2011. PIV filing notice also sent via (b) (4) 9/26/2011 to Warner Chilcott (NJ) x2, Fitzpatrick Cella Harper & Scinto (NY) and an unknown location in Ireland and received 9/27/2011, 9/27/2011, 9/28/2011.  Amendment 10/12/2011 Zydus provided an additional PIV return not included in the 10/11/2011 amendment sent via USPS to Chilcott Company (PR) and received 10/7/2011.  Amendment 12/5/2011 with a copy of a complaint filed 11/8/2011 in USDC for the District of Delaware, CA# 1:11-cv-01105-infringement of the '662 patent. The 30-month stay associated with this complaint would expire 4/7/2014.  Amendment 7/15/2014 Zydus addressed the newly listed '302 patent with a PIV certification, as well as revising their certifica '170 and '171 patents from PIII to PII (exp. 7/30/2013).  Amendment 7/22/2014 with copies of PIV return receipts for the '302 patent sent 7/15/2014 via (b) (4) Warner Chilcott LLC (Fitzpatrick Cella Harper & Scinto (NY), Warner Chilcott PLC (Ireland) and Warner Chilcott Company LLC (PR) and receive 7/16/2014, 7/16/2014, 7/17/2014 and 7/16/2014.  Amendment 5/1/2015 Zydus submitted a Stipulation and Order of Dismissal issued 6/9/2014 by the USDC for the District of ICA# 1:11-cv-01105, which states the parties have agreed to the terms of a negotiated settlement agreement, and all claims and counterclaims are dismissed without prejudice. Also included is a press release from Actavis dated 6/9/2014 which announces settlement agreement with Zydus for Asacol HD which would allow Zydus to begin marketingtheir generic product 11/15/201 Zydus may commence commercial marketing an AG 7/1/2016 if FDA approval of the ANDA has not been granted by th |          |           |                                                                                        |
| <b>Lead Division:</b> Program Manag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ement    | Effective | Date: Page 3 of 6                                                                      |

| Food and Drug Administration                                    | Document No.: | Version: |  |  |
|-----------------------------------------------------------------|---------------|----------|--|--|
| CDER / Office of Generic Drugs                                  | 4000-LPS-066  | 02       |  |  |
| Document Status: DRAFT                                          |               |          |  |  |
| Title: Approval Routing Summary Form Author: Heather Strandberg |               |          |  |  |
|                                                                 |               |          |  |  |

Amendment 8/5/2016 respons to an OGD request regarding marketing with Zydus stating they launched an AG 8/1/2016. There are no additional unexpired patents and no unexpired exclusivities listed in the OB for the NDA. There is no pending CP for the drug product.

With respect to 180-day, Zydus is the first ANDA received with a PIV certification to the NDA and would be eligible for 180-day exclusivity. However, the ANDA has not received a tentative approval within 30 months of the original submission date and may have forfeited the exclusivity based upon this issue. Since Zydus commenced commercial marketing of an AG 8/1/2016, this action triggered their exclusivity and it began to run as of that date and expired 1/28/2017.

This ANDA is eligible for immediate Full Approval and the letter will acknowledge the 180-day exclusivity has expired.

Justification for Full/Tentative Approval: Litigation dismissed and no 30-month stay on the two later listed patents

**180 Day Exclusivity Status/Landscape:** triggered by marketing of an AG by Zydus

Citizen Petitions Impact: N/A

First Legally Approvable Date: 5/1/2015 when Zydus provided a copy of the dismissal

If Tentative Approval, anticipated full approval date: N/A

Lead Division: Program ManagementEffective Date:Page 4 of 6

|                                                  | Food and Drug Administration                                                                                                                                                                                                                         |                                                                                           | Document No.:                 | Version:      |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------|---------------|
|                                                  |                                                                                                                                                                                                                                                      | of Generic Drugs                                                                          | 4000-LPS-066                  | 02            |
|                                                  |                                                                                                                                                                                                                                                      | Document Status: DRAFT                                                                    |                               |               |
|                                                  | <b>Title:</b> Approval Routing Summary                                                                                                                                                                                                               | Author: Heather Stra                                                                      | indberg                       |               |
| 2. Fi                                            | nal Decision                                                                                                                                                                                                                                         |                                                                                           | Date:                         |               |
| RTR'd<br>Priorit<br>Basis o<br>Patent<br>As of _ | A received on for the str<br>I? Yes □ No □ If y<br>y Status? Yes □ No □ If y<br>of Submission<br>Drug Name<br>NDA/ANDA#<br>Applicant Name<br>t/Exclusivity Certifications:<br>, there are no applicable change<br>and Regulatory Support Endorsement | yes, RTR'd on and subseques, prioritization factor is es in patents/exclusivities for the | equently resubmitted on       |               |
| Yes □                                            | Pending POLICY ALERT BASIS  Memo dated from OGD  Memo not needed  There are no issues noted on the OG                                                                                                                                                | P, <mark>SIGNATURE AUTHORITY</mark>                                                       | Y, states OGD determined LIST | DETERMINATION |
|                                                  | relevant disciplines are adequate and onal Comments:                                                                                                                                                                                                 | endorsements and checklists h                                                             | nave been completed.          |               |
| □ Ye<br>□ No                                     | ere visible alerts in the platform? es, comment on why alert does not afform verall manufacturing inspection recon                                                                                                                                   | <del></del>                                                                               | een shot below)               |               |
| This A                                           | NDA is ready for FULL/TENTATIN                                                                                                                                                                                                                       | <mark>/E</mark> APPROVAL.                                                                 |                               |               |

INCLUDE SNIP OF SUBMISSION FACILITY STATUS VIEW AT THE TIME OF APPROVAL

| <b>Lead Division:</b> Program Management | Effective Date: | Page <b>5</b> of <b>6</b> |
|------------------------------------------|-----------------|---------------------------|
|                                          |                 |                           |

| Food and Drug Administration         | Document No.:           | Version: |  |  |
|--------------------------------------|-------------------------|----------|--|--|
| CDER / Office of Generic Drugs       | 4000-LPS-066            | 02       |  |  |
| Document Status: DRAFT               |                         |          |  |  |
| Title: Approval Routing Summary Form | Author: Heather Strandb | erg      |  |  |

#### **REFERENCES / ASSOCIATED DOCUMENTS**

4000-LPS-041 Processing Approval and Tentative Approval of an Original ANDA

#### **REVISION HISTORY**

| Version | Effective date | Name               | Role    | Summary of changes                                                           |
|---------|----------------|--------------------|---------|------------------------------------------------------------------------------|
| 01      | 10/1/2014      | Heather Strandberg | Author  | New Form                                                                     |
| 02      |                | Kevin Denny        | Reviser | Update form to reflect revisions to SOP      (b) (4) Processing Approval and |
|         |                |                    |         | Tentative Approval of an Original ANDA, Version 04                           |
|         |                |                    |         | Remove content adequately captured in the platform                           |
|         |                |                    |         | Update information captured in the<br>Division of Legal and Regulatory       |
|         |                |                    |         | Support Endorsement section                                                  |
|         |                |                    |         | Other minor administrative corrections                                       |
|         |                |                    |         | to format and content                                                        |

Lead Division: Program Management Effective Date: Page 6 of 6

## BACKLOG & COHORT YEAR 1-2 COMPLETE RESPONSE CHECKLIST\*\*

| RPM: E                                                                                                                                                                          | A T | aylor                                                                                                                                                                                         | Action Type: CR                                 |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--|--|
| RX or OTC ANDA #: 203286 Applicant: Zydus Pharmaceuticals (USA), Inc. Cohort Year:  Backlog/FY2011  ANDA Drug Name and Strength: Mesalamine Delayed-Release Tablets USP, 800 mg |     |                                                                                                                                                                                               |                                                 |  |  |
| The Drug Frame and Strength. Mesalamine Belayed Release Tablets CS1, 000 mg                                                                                                     |     |                                                                                                                                                                                               |                                                 |  |  |
| Basis of Submission (RLD): NDA021830/Asacol HD Delayed-release Tablets MAPP 5240.3 Priority ANDA:                                                                               |     |                                                                                                                                                                                               |                                                 |  |  |
| (Is ANDA based on an approved Suitability Petition?                                                                                                                             |     |                                                                                                                                                                                               |                                                 |  |  |
| Does the ANDA contain REMS?  Yes No (If YES, CR Letter must go through the Safety Review Team; clearance may take 2-3 weeks)                                                    |     |                                                                                                                                                                                               |                                                 |  |  |
|                                                                                                                                                                                 |     |                                                                                                                                                                                               |                                                 |  |  |
| Regulatory Project Manager Evaluation: Date: 1/3                                                                                                                                |     |                                                                                                                                                                                               |                                                 |  |  |
| Yes/N/A                                                                                                                                                                         | No  |                                                                                                                                                                                               | L' L' CDED L' CL' DL' C 9 (1 - 27/1)            |  |  |
|                                                                                                                                                                                 | Ш   | Have all submissions been reviewed and relevant disciplines fi                                                                                                                                | If applicable:                                  |  |  |
|                                                                                                                                                                                 |     |                                                                                                                                                                                               | Date of Last Complete Response 4/29/2016        |  |  |
|                                                                                                                                                                                 |     | Date of Product Quality Review <u>1/6/2017 IQ - minor</u> Date of Bioequivalence Review <u>12/11/2015 AQ</u> (see notes)                                                                      | Date of Microbiology Review N/A                 |  |  |
|                                                                                                                                                                                 |     | Date of Bioequivaience Review 12/11/2013 AQ (see notes)  Date of Labeling Review 12/15/2016 IQ                                                                                                | Date of Dissolution Review <u>11/15/2013 AQ</u> |  |  |
|                                                                                                                                                                                 |     | Date of Euroming Neview 12/10/2010 1Q                                                                                                                                                         | Date of Clinical Review N/A                     |  |  |
|                                                                                                                                                                                 |     | Is DME adaquate and/or has the first evale review been complete.                                                                                                                              | Date of REMS Review N/A                         |  |  |
|                                                                                                                                                                                 |     | Is DMF adequate and/or has the first cycle review been completed (DMF <u>022999</u> )? AQ per 7/29/2016, annual report only after this.                                                       |                                                 |  |  |
| $\boxtimes$                                                                                                                                                                     |     | Are all consults complete?                                                                                                                                                                    |                                                 |  |  |
| $\boxtimes$                                                                                                                                                                     |     | Are all issues resolved?                                                                                                                                                                      |                                                 |  |  |
|                                                                                                                                                                                 |     | Have all Policy issues (e.g., citizen petitions) been resolved? No alerts per 1/30/2017 DLRS PAL *If Policy issue, check with OGDP if necessary (e.g., to see whether CP blocks CR issuance). |                                                 |  |  |
| $\boxtimes$                                                                                                                                                                     |     | Is Overall Manufacturing Inspection Recommendation task acceptable/withhold?                                                                                                                  |                                                 |  |  |
|                                                                                                                                                                                 |     | Is OSIS complete (if applicable)? Complete/AQ per 12/11/2015 BE review                                                                                                                        |                                                 |  |  |
|                                                                                                                                                                                 |     | Notes (if applicable): BE guidance revision 6/2016 but per 1/31/2016 email from Eva Chan, bio remains adequate                                                                                |                                                 |  |  |
| Draft Complete Response Letter                                                                                                                                                  |     |                                                                                                                                                                                               |                                                 |  |  |
| $\boxtimes$                                                                                                                                                                     |     | Is CR letter drafted and uploaded to "Final Decision" task?                                                                                                                                   |                                                 |  |  |
| Review Discipline/Division Endorsements                                                                                                                                         |     |                                                                                                                                                                                               |                                                 |  |  |
| N/A                                                                                                                                                                             |     | If ANDA has a pending citizen petition, did RPM notify and obtain clearance from Office of Generic Drug Policy at OGDpolicy@fda.hhs.gov? Date                                                 |                                                 |  |  |
| N/A                                                                                                                                                                             |     | If ANDA contains REMS, did RPM notify and obtain clearance from                                                                                                                               |                                                 |  |  |
|                                                                                                                                                                                 |     | REMS Coordinator? Date                                                                                                                                                                        |                                                 |  |  |
|                                                                                                                                                                                 |     |                                                                                                                                                                                               |                                                 |  |  |
|                                                                                                                                                                                 |     |                                                                                                                                                                                               |                                                 |  |  |
| Project Close-Out                                                                                                                                                               |     |                                                                                                                                                                                               |                                                 |  |  |

Is CR checklist uploaded into "Quality Check and Close Project" task?

<sup>\*\*</sup>Entire Complete Response Checklist to be completed by the RPM



Food and Drug Administration Silver Spring, MD 20993

Sent: 08/05/2016 11:44:32 AM To: gsrinivas@zydususa.com CC: edward.taylor@fda.hhs.gov

BCC:

Subject: TARGET ACTION DATE NOTIFICATION on ANDA 203286

ANDA 203286

NOTIFICATION --TARGET ACTION DATE

Zydus Pharmaceuticals (USA), Inc.
73 Route 31 North
Pennington, NJ 08534
Attention: G. Srinivas
Head – Regulatory Affairs

Dear Sir or Madam:

This letter is in reference to your abbreviated new drug application (ANDA) submitted pursuant to section 505(j) of the Federal Food, Drug, and Cosmetic Act (FD&C Act), for Mesalamine Delayed-release Tablets USP, 800 mg.

We acknowledge your response to the Complete Response letter dated June 21, 2016.

The Office of Generic Drugs (OGD), Center for Drug Evaluation and Research, Food and Drug Administration (FDA), is notifying you of our new internal, administrative TARGET ACTION DATE for the above indicated ANDA.

The Target Action Date is the date by which FDA will strive to provide a communication on this ANDA. A TAD will be considered met if the applicant receives an Approval, Tentative Approval, Complete Response (CR) or a complete set of Informational Requests (IRs) by the action date. A complete set of IRs means that each pending discipline communicated

its comments to the applicant. In that case, the TAD will be met if the last discipline communicates its IR by the action date.

We note that FDA is not required to inform applicants of Target Action Dates, but is providing Target Action Dates at this time as a courtesy to help applicants ascertain when communications may occur for their applications as we implement the Generic Drug User Fee Amendments of 2012 (GDUFA). Notification of a Target Action Date does not constitute a commitment or guarantee that we will take action on your application by the Target Action Date. Any amendments submitted after this notification will affect whether FDA will provide a communication on the application by the Target Action Date.

GDUFA establishes goal dates for the review of ANDAs submitted beginning October 1, 2014. Target

Action Dates are not GDUFA goal dates.

The Target Action Date for this ANDA is February 28, 2017.

Please contact your Regulatory Project Manager, Edward Taylor at (240) 402-6094 for an additional status update of your application.

Sincerely,

Edward Taylor
Regulatory Project Manager
OFFICE OF GENERIC DRUGS
Center for Drug Evaluation and Research
U.S. Food and Drug Administration

From: OPF Facilities Questions

To: <u>Johnson-Nimo, Maya; OPF Facilities Questions</u>

Cc: <u>Taylor, Edward</u>

 Subject:
 RE: ANDA-203286-ORIG-1-AMEND-15

 Date:
 Friday, January 29, 2016 1:23:29 PM

#### Good afternoon,

An overall rec: Withhold has been entered for this application. Cadila Healthcare Limited, FEI 3002984011 was issued a Warning Letter in December 2015. If language is needed for a CR Letter, this would be "option B" as it refers to one or more sites that are unacceptable.

#### Ebern

From: Johnson-Nimo, Maya

Sent: Thursday, January 28, 2016 5:18 PM

To: OPF Facilities Questions

Cc: Taylor, Edward

Subject: ANDA-203286-ORIG-1-AMEND-15

Good Afternoon OPF -1 am re-submitting this request as the project TAD (2/22/16) is quickly approaching. Please review and complete the overall mfr inspection recommendation task for this application.

Thank you, Maya

From: Johnson-Nimo, Maya

Sent: Wednesday, November 18, 2015 11:17 AM

To: OPF Facilities Questions

Cc: Taylor, Edward

Subject: ANDA-203286-ORIG-1-AMEND-15

Good Morning OPF – Please review and complete the overall mfr inspection recommendation task.

Thank you,

Maya

## BACKLOG & COHORT YEAR 1-2 COMPLETE RESPONSE CHECKLIST\*\*

| CHECKLIST                                                                                                                                                            |          |                                                                                                                                                                                                       |                                                         |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|
| RPM: E                                                                                                                                                               | A Tay    | vlor                                                                                                                                                                                                  | Action Type: CR                                         |  |  |
| RX or OTC ANDA #: 203286 Applicant: Zydus Pharmaceuticals (USA), Inc. Cohort Year: Backlog,                                                                          |          |                                                                                                                                                                                                       |                                                         |  |  |
| FY2011                                                                                                                                                               |          |                                                                                                                                                                                                       |                                                         |  |  |
| ANDA Drug Name and Strength: Mesalamine Delayed-release Tablets USP, 800 mg                                                                                          |          |                                                                                                                                                                                                       |                                                         |  |  |
| Basis of Submission (RLD): NDA021830/Asacol HD Delayed-release Tablets (Is ANDA based on an approved Suitability Petition? ☐ Yes ☒ No)  MAPP 5240.3 Priority ANDA: ☒ |          |                                                                                                                                                                                                       |                                                         |  |  |
| Does the ANDA contain REMS? Yes No (If YES, CR Letter must go through the Safety Review Team; clearance may take 2-3 weeks)                                          |          |                                                                                                                                                                                                       |                                                         |  |  |
|                                                                                                                                                                      |          |                                                                                                                                                                                                       |                                                         |  |  |
| Regulatory Project Manager Evaluation: Date: 4/28/2016                                                                                                               |          |                                                                                                                                                                                                       |                                                         |  |  |
| Yes/N/A                                                                                                                                                              | No       | Have all submissions been reviewed and relevant discip                                                                                                                                                | lines finalized in CDFR Informatics Platform? (date or  |  |  |
| $\boxtimes$                                                                                                                                                          | <u> </u> | N/A)                                                                                                                                                                                                  | mics manzed in ODER miormatics Flatform: (date of       |  |  |
|                                                                                                                                                                      |          | D . CD 1 . O 1' D                                                                                                                                                                                     | If applicable: Date of Last Complete Response 8/13/2015 |  |  |
|                                                                                                                                                                      |          | Date of Product Quality Review 4/28/2016 IQ Date of Bioequivalence Review 12/11/2015 AQ                                                                                                               | Date of Microbiology Review N/A                         |  |  |
|                                                                                                                                                                      |          | Date of Labeling Review 6/26/2015 AQ                                                                                                                                                                  | Date of Dissolution Review <u>11/15/2013 AQ</u>         |  |  |
|                                                                                                                                                                      |          | Butto of European State (110)                                                                                                                                                                         | Date of Clinical Review N/A                             |  |  |
| $\boxtimes$                                                                                                                                                          | -        | Is DME adaguate and/or has the first avale ravious been                                                                                                                                               | Date of REMS Review N/A                                 |  |  |
| 20-93                                                                                                                                                                |          | Is DMF adequate and/or has the first cycle review been completed (DMF <u>22999)</u> ? AQ w/IR 1/6/2016                                                                                                |                                                         |  |  |
|                                                                                                                                                                      |          | Are all consults complete?                                                                                                                                                                            |                                                         |  |  |
| $\boxtimes$                                                                                                                                                          | Щ        | Are all issues resolved?                                                                                                                                                                              |                                                         |  |  |
|                                                                                                                                                                      |          | Have all Policy issues (e.g., citizen petitions) been resolved? No Policy Alerts per 4/22/2016 DLRS list *If Policy issue, check with OGDP if necessary (e.g., to see whether CP blocks CR issuance). |                                                         |  |  |
| $\boxtimes$                                                                                                                                                          |          | Is Overall Manufacturing Inspection Recommendation task acceptable/withhold?  OPF WH confirmation date: 1/29/2016 See confirmation email uploaded to quality check task                               |                                                         |  |  |
| $\boxtimes$                                                                                                                                                          |          | Is OSIS complete (if applicable)? Complete/AQ per 5/19/2015 BE review                                                                                                                                 |                                                         |  |  |
| Draft Complete Response Letter                                                                                                                                       |          |                                                                                                                                                                                                       |                                                         |  |  |
| $\boxtimes$                                                                                                                                                          |          | Is CR letter drafted and uploaded to "Final Decision" ta                                                                                                                                              | sk?                                                     |  |  |
|                                                                                                                                                                      |          | <u>Review Discipline/Division E</u>                                                                                                                                                                   | <u>Endorsements</u>                                     |  |  |
| N/A                                                                                                                                                                  |          | If ANDA has a pending citizen petition, did RPM notify and obtain clearance from Office of Generic Drug Policy at OGDpolicy@fda.hhs.gov? Date                                                         |                                                         |  |  |
| N/A                                                                                                                                                                  |          | If ANDA contains REMS, did RPM notify and obtain clearance from REMS Coordinator? Date                                                                                                                |                                                         |  |  |
|                                                                                                                                                                      | ı        |                                                                                                                                                                                                       |                                                         |  |  |

Is CR checklist uploaded into "Quality Check and Close Project" task?

Project Close-Out

X

<sup>\*\*</sup>Entire Complete Response Checklist to be completed by the RPM



### **DEPARTMENT OF HEALTH & HUMAN SERVICES**

Food and Drug Administration Silver Spring, MD 20993

Sent: 02/01/2016 03:01:30 PM To: gsrinivas@zydususa.com

CC: maya.johnson-nimo@fda.hhs.gov

BCC: Ying.Zhang@fda.hhs.gov, Huiquan.Wu@fda.hhs.gov

Subject: INFORMATION REQUEST for Amendment to Original 203286

Please view the attached document regarding ANDA 203286 and acknowledge receipt of this information request.

Sincerely, Maya Johnson-Nimo, MHSA



Food and Drug Administration Silver Spring, MD 20993

ANDA 203286 Original ANDA

#### INFORMATION REQUEST

Zydus Pharmaceuticals (USA) Inc. Attention: Mr. G. Srinivas, Head Regulatory Affairs 73, Route 31 North Pennington, NJ 08534

Dear Sir/Madam:

Please refer to your Abbreviated New Drug Application (ANDA) 203286 submitted October 19, 2015 under section 505(j) of the Federal Food, Drug, and Cosmetic Act for Mesalamine Delayed Release Tablets, 800mg.

We are reviewing the Chemistry section of your submission and have the following comments and information requests. We request a prompt written response for the deficiencies indicated below, no later than March 1, 2016 (30 days), in order to continue our evaluation of your ANDA.

Please note, submitting unsolicited information in your response to this Information Request may have an impact on your Target Action Date.

#### A. Deficiencies

| 1. | 3) | 5) (4 |
|----|----|-------|
|    |    |       |
|    |    |       |
|    |    |       |
|    |    |       |
|    |    |       |
|    |    |       |
|    |    |       |
|    |    |       |
|    |    |       |
|    |    |       |



#### -End of Deficiencies-

If you do not submit a complete response by March 1, 2016 the review will be closed and the listed deficiencies will be incorporated in a COMPLETE RESPONSE correspondence.

Send your submission through the Electronic Submission Gateway:

http://www.fda.gov/ForIndustry/ElectronicSubmissionsGateway/default.htm.

Prominently identify the submission with the following wording in bold capital letters at the top of the first page of the submission:

# INFORMATION REQUEST

Chemistry

Reference #: 216563

If you have any questions, please contact Maya Johnson-Nimo, Regulatory Business Project Manager, at 301-796-5885 or Maya.Johnson-Nimo@fda.hhs.gov.

#### Sincerely,

Maya Johnson-Nimo, MHSA Regulatory Business Process Manager Office of Program and Regulatory Operations Office of Pharmaceutical Quality Center for Drug Evaluation and Research



Food and Drug Administration Silver Spring, MD 20993

Sent: 10/28/2015 03:04:46 PM To: gsrinivas@zydususa.com CC: edward.taylor@fda.hhs.gov

BCC:

Subject: TARGET ACTION DATE NOTIFICATION on ANDA 203286

ANDA 203286

NOTIFICATION --TARGET ACTION DATE

Zydus Pharmaceuticals (USA), Inc.
73 Route 31 North
Pennington, NJ 08534
Attention: G. Srinivas
Head – Regulatory Affairs

Dear Sir:

Please refer to your Abbreviated New Drug Application (ANDA) dated July 12, 2011, received July 13, 2011, submitted under section 505(j) of the Federal Food, Drug, and Cosmetic Act for Mesalamine Delayed-release Tablets USP, 800 mg.

We acknowledge your response to the Complete Response letter dated October 19, 2015.

The Office of Generic Drugs (OGD), Center for Drug Evaluation and Research, Food and Drug

Administration (FDA), is notifying you of our new internal, administrative TARGET ACTION DATE for the above indicated ANDA.

The Target Action Date is the date by which FDA will strive to provide a communication on this ANDA. A TAD will be considered met if the applicant receives an Approval, Tentative

Approval, Complete Response (CR) or a complete set of Informational Requests (IRs) by the action date. A complete set of IRs means that each pending discipline communicated its comments to the applicant. In that case, the TAD will be met if the last discipline communicates its IR by the action date.

We note that FDA is not required to inform applicants of Target Action Dates, but is providing Target

Action Dates at this time as a courtesy to help applicants ascertain when communications may occur for their applications as we implement the Generic Drug User Fee Amendments of 2012 (GDUFA). Notification of a Target Action Date does not constitute a commitment or guarantee that we will take action on your application by the Target Action Date. Any amendments submitted after this notification will affect whether FDA will provide a communication on the application by the Target Action Date.

GDUFA establishes goal dates for the review of ANDAs submitted beginning October 1, 2014. Target

Action Dates are not GDUFA goal dates.

The Target Action Date for this ANDA is February 22, 2016.

Please contact your Regulatory Project Manager, Edward Taylor at (240) 402-6094 for an additional status update of your application.

Sincerely,

Edward Taylor
Regulatory Project Manager
OFFICE OF GENERIC DRUGS
Center for Drug Evaluation and Research
U.S. Food and Drug Administration

#### **Complete Response Letter Checklists**

#### 203286 ANDA

Complete Response Letter (not cGMP)

| Yes         | No          | If any statement is checked NO, STOP and DO NOT issue letter                                                                                                                              |
|-------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\boxtimes$ |             | All relevant discipline reviews are complete and finalized in GDRP                                                                                                                        |
| $\boxtimes$ |             | DMF first cycle review(s) complete                                                                                                                                                        |
| $\boxtimes$ |             | DMF Deficiency letter(s) issued to DMF holder(s) prior to ANDA CR issuance OR DMF is adequate 5/14/15                                                                                     |
|             | ]           | Status of the DMF(s) cited in the Product Quality and Microbiology (if applicable) sections is/are current                                                                                |
| $\boxtimes$ | Ш           | →if needed, update DMF deficiencies to reflect current status per <u>DMF Status and ANDA CR Chart</u> Quality def #1                                                                      |
| $\boxtimes$ |             | All amendments have been addressed (reviewed or deferred per IQP 4025.02)                                                                                                                 |
| $\boxtimes$ |             | There are no pending consults                                                                                                                                                             |
|             | $\boxtimes$ | Received clearance from REMS Coordinator (if applicable)                                                                                                                                  |
| $\boxtimes$ |             | ANDA is not on hold for "other" reasons (e.g. safety, tamper resistance, abuse deterrent)                                                                                                 |
| $\boxtimes$ |             | Chemistry (Product Quality) deficiencies have been accurately added to CR letter OR Chemistry is adequate 6/19/15                                                                         |
| $\boxtimes$ |             | Bioequivalence deficiencies have been accurately added to the CR letter OR Bioequivalence is adequate 5/19/15                                                                             |
| $\boxtimes$ |             | Dissolution deficiencies have been accurately added to the CR letter <u>OR</u> Dissolution is adequate 2/16/12-11/15/13                                                                   |
| N/A         |             | Microbiology deficiencies have been accurately added to the CR letter <u>OR</u> Microbiology is adequate (if applicable)                                                                  |
| N/A         |             | Clinical deficiencies have been accurately added to the CR letter <u>OR</u> Clinical is adequate (if applicable)                                                                          |
| $\boxtimes$ |             | Labeling deficiencies have been accurately added to the CR letter OR Labeling is adequate 6/26/2015                                                                                       |
| $\boxtimes$ |             | EES is acceptable or withheld (if withheld EES provided approval of selected CR template language) OR RPM followed proper procedure to send with pending inspections Cadila 6/26/15 email |
| $\boxtimes$ | ]           | OSI is not pending/is not required <u>OR</u> RPM followed proper procedure followed to send with pending inspections                                                                      |
|             |             | Complete/AQ per 5/19/15 BE review                                                                                                                                                         |

## 203286 ANDA MINOR

cGMP Complete Response Letter

| Yes | No | If any statement is checked NO, STOP and DO NOT issue letter                                                                                                           |
|-----|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |    | All relevant discipline reviews are ADEQUATE and finalized DARRTS (including REMS)                                                                                     |
|     |    | There are no open amendments                                                                                                                                           |
|     |    | There are no pending consults                                                                                                                                          |
|     |    | OSI is adequate/is not pending                                                                                                                                         |
|     |    | Received written confirmation from EES staff authorizing issuance of the cGMP CR letter referencing the withheld facility and approving the selected template language |



Food and Drug Administration Silver Spring, MD 20993

Sent: 06/15/2015 11:05:03 AM To: gsrinivas@zydususa.com CC: carol.yun@fda.hhs.gov

BCC: edward.taylor@fda.hhs.gov; carrie.lemley@fda.hhs.gov Subject: ANDA 203286 EASILY CORRECTABLE DEFICIENCY

Dear Mr. Srinivas:

Please find attached Easily Correctable Labeling Deficiencies for your pending ANDA 203286.

Provide a complete response to these deficiencies as soon as possible but no later than June 29, 2015. We will not process or review a partial response. Facsimile or e-mail responses will not be accepted. Prominently identify the submission with the following wording in bold capital letters at the top of the first page of the submission:

EASILY CORRECTABLE DEFICIENCY Labeling REFERENCE # 123198

If you do not submit a complete response by June 29, 2015, the review may be closed and the listed deficiencies may be incorporated in a COMPLETE RESPONSE correspondence. For more information, please refer to the guidance for industry, ANDA Submissions – Amendments and Easily Correctable Deficiencies Under GDUFA, available on FDA's website.

Please acknowledge the receipt of this email to Carol Yun at carol.yun@fda.hhs.gov.

If you have any questions, contact Carol Yun, Labeling Project Manager, at carol.yun@fda.hhs.gov.

Sincerely,

Division of Labeling Review
Office of Regulatory Operations
Office of Generic Drugs
Center for Drug Evaluation and Research
U.S. Food and Drug Administration

#### EASILY CORRECTABLE DEFICIENCY

ANDA 203286

OFFICE OF GENERIC DRUGS, CDER, FDA Document Control Room, Metro Park North VII 7620 Standish Place Rockville, Maryland 20855



APPLICANT: Zydus Pharmaceuticals (USA) Inc. TEL: 609-730-1900

ATTN: G. Srinivas Email: gsrinivas@zydususa.com

FROM: Carol Yun

Dear Mr. Srinivas:

This communication is in reference to your abbreviated new drug application (ANDA), submitted pursuant to Section 505(j) of the Federal Food, Drug, and Cosmetic Act for Mesalamine Delayed-release Tablets USP, 800 mg.

We acknowledge receipt of your amendment dated February 24, 2015.

The deficiencies presented below represent *EASILY CORRECTABLE DEFICIENCIES* identified during the review and the current review cycle will remain open. You should provide a complete response to these deficiencies within ten (10) U.S. business days.

Prominently identify the submission with the following wording in bold capital letters at the top of the first page of the submission:

EASILY CORRECTABLE DEFICIENCY LABELING REFERENCE # 123198

If you do not submit a complete response within ten (10) U.S. business days, the review will be closed and the listed deficiencies will be incorporated in the next COMPLETE RESPONSE. Please provide your response after that complete response communication is received along with your response to any other issued comments.

If you are unable to submit a complete response within ten (10) U.S. business days, please contact the Labeling Project Manager immediately so a complete response may be issued if appropriate.

Please submit official archival copies of your response to the ANDA, facsimile or e-mail responses will not be accepted. A partial response to this communication will not be processed as an amendment and will not start a review.

If you have questions regarding these deficiencies please contact the Labeling Project Manager, Carol Yun, at carol.yun@fda.hhs.gov.

We have completed our review and have the following comments:

#### **LABELING:**

1. CONTAINER- 180s (b) (4)

#### 2. PRESCRIBING INFORMATION

a. (b) (4) – Revise this section to read as follows:

HIGHLIGHTS OF PRESCRIBING INFORMATION

These highlights do not include all the information needed to use MESALAMINE DELAYED-RELEASE TABLETS safely and effectively. See Full Prescribing Information for MESALAMINE DELAYED-RELEASE TABLETS.

ii. 11 DESCRIPTION:
It appears that the imprinting ink is changed from
"Opacode black S-1-17823 in this current submission. Please justify this change with supporting documents, and/or comment.

iii. 12.3 Pharmacokinetics –

(b) (4)

Submit your revised labeling electronically in final print format.

To facilitate review of your next submission, please provide a side-by-side comparison of your proposed labeling with all differences annotated and explained.

Prior to the submission of your amendment, please check labeling resources, including DRUGS@FDA, the electronic Orange Book and the NF-USP online, for recent updates and make any necessary revisions to your labels and labeling.

In order to keep ANDA labeling current, we suggest that you subscribe to the daily or weekly updates of new documents posted on the CDER web site at the following address – <a href="http://service.govdelivery.com/service/subscribe.html?code=USFDA\_17">http://service.govdelivery.com/service/subscribe.html?code=USFDA\_17</a>

Sincerely yours,

Carol

Digitally signed by Carol Yun - 5
Dix: c=US, o=US. Government,
ou=HHS, ou=FDA, ou=People,
cr=Carol Yun - S
Date: 2015.06.15 11:04:29 -04'00'
Carol Yun, Pharm.D

Labeling Project Manager
Division of Labeling Review
Office of Regulatory Operations
Office of Generic Drugs

Center for Drug Evaluation and Research

# **FDA FAX**

OFFICE OF GENERIC DRUGS, CDER, FDA Document Control Room, Metro Park North VII 7620 Standish Place Rockville, Maryland 20855



TO: ZYDUS PHARMACEUTICALS USA INC TEL: 609-730-1900

ATTN: G. Srinivas FAX: 609-730-1999

This facsimile is in reference to your abbreviated new drug application(s), submitted pursuant to Section 505(j) of the Federal Food, Drug, and Cosmetic Act.

This facsimile is to be regarded as an official FDA communication and unless requested, a hard copy will not be mailed.

Pages (including cover):  $\underline{4}$ 

**SPECIAL INSTRUCTIONS:** 

THIS DOCUMENT IS INTENDED ONLY FOR THE USE OF THE PARTY TO WHOM IT IS ADDRESSED AND MAY CONTAIN INFORMATION THAT IS PRIVILEGED, CONFIDENTIAL, OR PROTECTED FROM DISCLOSURE UNDER APPLICABLE LAW.

If received by someone other than the addressee or a person authorized to deliver this document to the addressee, you are hereby notified that any disclosure, dissemination, copying, or other action to the content of this communication is not authorized. If you have received this document in error, please immediately notify us by telephone and return it to us by mail at the above address.

#### MEMORANDUM

# DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION CENTER FOR DRUG EVALUATION AND RESEARCH

DATE: March 12, 2012

TO: Associate Director

International Operations Drug Group
Division of Foreign Field Investigations

From: Sam H. Haidar, Ph.D., R.Ph.

Chief, Bioequivalence Investigations Branch

Division of Bioequivalence and GLP Compliance (DBGC)

Office of Scientific Investigations (OSI)

SUBJECT: FY 2012, High Priority Pre-Approval Data Validation

Inspection, Bioresearch Monitoring, Human Drugs, CP

7348.001

RE: ANDA 203-286

DRUG: Mesalamine Delayed Release Tablets, USP, 800 mg

SPONSOR: Zydus Pharmaceuticals USA, Inc.

This memo requests an inspection of the <u>analytical</u> portions of the following bioequivalence studies. The site and sponsor should not be informed in advance of the application, drug name, the study to be inspected, or the focus of the inspection. The information will be provided to the sites at the inspection opening meeting.

Study Number: MSN-P0-732

<u>Study Title</u>: Single Dose, Partial Replicate, Crossover

Comparative Bioavailability Study of

Mesalamine 800 mg Delayed-Release Tablets in

Healthy Male and Female Volunteers under

Fasting State

Study Number: MSN-P0-733

Study Title: Single Dose, Partial Replicate, Crossover

Comparative Bioavailability Study of

Mesalamine 800 mg Delayed-Release Tablets in Healthy Male and Female Volunteers under Fed

State

Page 2 - BIMO Assignment, ANDA 203-286, Mesalamine Delayed Release Tablets, USP, 800 mg

| Analytical Site:   | (b) (4) |
|--------------------|---------|
| Contact Person:    |         |
|                    |         |
| Analytical Method: |         |

The inspection should evaluate this possibility. In addition, OSI may identify another study at this facility in order to evaluate overall data integrity.

(b) (4)

In addition to the above items, all pertinent items related to the analytical method for the measurement of mesalamine concentrations should be examined and the sponsor's data should be audited. The analytical data provided in the ANDA submission should be compared with the original documents at the firm. The method validation and the actual assay of the subject plasma samples, as well as the variability between and within runs, QC, stability, the number of repeat assays of the subject plasma samples, and the reason for such repetitions, if any, should be examined. The SOP(s) for repeat assays and other relevant procedures must also be scrutinized. In addition to the standard investigation involving the source documents, the files of communication between the analytical site and the sponsor should be examined for their content.

Following identification of the investigator, background material will be forwarded directly. A scientist from DBGC with specialized knowledge may participate in the inspection to provide scientific and technical expertise. Please contact DBGC upon receipt of this assignment to arrange scheduling of the inspection.

Headquarters Contact Person: Sripal R. Mada, Ph.D.

(301) 796-4112

DFFI Contact Person: Arindam Dasqupta, Ph.D.

(301) 796-3326

Page 3- BIMO Assignment, ANDA 203-286, Mesalamine Delayed Release Tablets, USP, 800 mg

CC:

CDER OSI PM TRACK
OSI/DBGC/Haidar/Skelly/Mada/Dejernett/Dasgupta/CF
HFC-130/ORA HQ DFFI IOB BIMO

OGD/DBE2/Davit/Mahadevan

Draft: SRM 03/09/2012

Edit: MFS 03/09/2012; 03/12/2012

DSI: 6322; O:\BE\assigns\bio203286.doc

FACTS: 1391158

This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

SRIPAL R MADA 03/12/2012

MICHAEL F SKELLY 03/12/2012 Skelly signing on behalf of Dr. Haidar

#### **BIOEQUIVALENCE AMENDMENT**

ANDA 203286

OFFICE OF GENERIC DRUGS, CDER, FDA Document Control Room, Metro Park North VII 7620 Standish Pl. Rockville, MD 20855-2810 Evaluation and Rescal

APPLICANT: Zydus Pharmaceuticals (USA) Inc. TEL: (609) 730-1900

ATTN: G. Srinivas FAX: (609) 730-1999

FROM: Chitra Mahadevan FDA CONTACT PHONE: (240) 276-8817

Dear Sir:

This facsimile is in reference to the bioequivalence data submitted on July 12, 2011, pursuant to Section 505(j) of the Federal Food, Drug, and Cosmetic Act for Mesalamine Delayed Release Tablets USP, 800 mg.

The Division of Bioequivalence II has completed its review of the submission referenced above and has identified deficiencies which are presented on the attached \_\_\_\_\_ page. This facsimile is to be regarded as an official FDA communication and unless requested, a hard-copy will not be mailed.

You should submit a response to these deficiencies in accord with 21 CFR 314.96. Your amendment should respond to all the deficiencies listed. Facsimiles or partial replies will not be considered for review. Your cover letter should clearly indicate:

**Bioequivalence Long Term Stability** 

If applicable, please clearly identify any new studies (i.e., fasting, fed, multiple dose, dissolution data, waiver or dissolution waiver) that might be included for each strength. We also request that you include a copy of this **communication with your response.**Please submit a copy of your amendment in an archival (blue) jacket and unless submitted electronically through the gateway, a review (orange) jacket. Please direct any questions concerning this communication to the project manager identified above.

Please remember that when changes are requested to your proposed dissolution methods and/or specifications by the Division of Bioequivalence II, an amendment to the Division of Chemistry should also be submitted to revise the release and stability specification. We also recommend that supportive dissolution data or scientific justification be provided in the CMC submission to demonstrate that the revised dissolution specification will be met over the shelf life of the drug product.

#### **SPECIAL INSTRUCTIONS:**

Effective <u>01-Aug-2010</u>, the new mailing address for Abbreviated New Drug Application (ANDA) Regulatory Documents is:

Office of Generic Drugs Document Control Room, Metro Park North VII 7620 Standish Place Rockville, Maryland 20855-2810

ANDAs will only be accepted at the new mailing address listed above. For further information, please refer to the following websites prior to submitting your ANDA Regulatory documents: Office of Generic Drugs (OGD): <a href="http://www.fda.gov/cder/ogd">http://www.fda.gov/cder/ogd</a> or Federal Register: <a href="http://www.gpoaccess.gov/fr/">http://www.gpoaccess.gov/fr/</a>

Please submit your response in electronic format. This will improve document availability to review staff.

# THIS DOCUMENT IS INTENDED ONLY FOR THE USE OF THE PARTY TO WHOM IT IS ADDRESSED AND MAY CONTAIN INFORMATION THAT IS PRIVILEGED, CONFIDENTIAL, OR PROTECTED FROM DISCLOSURE UNDER APPLICABLE LAW.

If received by someone other than the addressee or a person authorized to deliver this document to the addressee, you are hereby notified that any disclosure, dissemination, copying, or other action to the content of this communication is not authorized. If you have received this document in error, please immediately notify us by telephone and return it to us by mail at the above address

Reference ID: 3098042

#### BIOEQUIVALENCE DEFICIENCIES

ANDA: 203286

APPLICANT: Zydus Pharmaceuticals (USA) Inc.

DRUG PRODUCT: Mesalamine Delayed Release Tablets USP, 800 mg

The Division of Bioequivalence II (DB II) has completed its review of the dissolution testing portion of your submission acknowledged on the cover sheet. The review of the bioequivalence (BE) studies will be conducted later. The following deficiency has been identified:

The submitted Long Term Storage Stability (LTSS) data is not sufficient to cover the maximum storage period of the fasting (#MSN-P0-732) and fed (#MSN-P0-733) bioequivalence (BE) studies. Please submit sufficient LTSS to cover at least the maximum storage period (116 days) for the mesalamine fasting and fed BE study samples.

Sincerely yours,

{See appended electronic signature page}

Barbara M. Davit, Ph.D., J.D.
Acting Director
Division of Bioequivalence II
Office of Generic Drugs
Center for Drug Evaluation and Research

| This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature. |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| /s/                                                                                                                                             |
| BARBARA M DAVIT<br>03/08/2012                                                                                                                   |

| OSI Consult                               |                                                                                   |  |
|-------------------------------------------|-----------------------------------------------------------------------------------|--|
| Request for Biopharmaceutical Inspections |                                                                                   |  |
| Date                                      | March 6, 2012                                                                     |  |
| Subject                                   | Request for Biopharmaceutical Inspections (BE)                                    |  |
| Addressed to                              | Sam H. Haidar, Ph.D., R.Ph. Chief, Bioequivalence Investigations Branch           |  |
|                                           | Division of Bioequivalence and GLP Compliance Office of Scientific Investigations |  |
| Consulting Office/Division                | OGD/DB2                                                                           |  |
| Project Manager                           | Mahadevan, Chitra                                                                 |  |
| Application Type                          | PEPFAR? ☐ Yes ☐ No                                                                |  |
|                                           | □ NDA □ BLA ☑ ANDA                                                                |  |
| Application Number                        | 203286                                                                            |  |
| Drug Product                              | Mesalamine Delayed Release Tablets USP, 800 mg                                    |  |
| Sponsor Name                              | Zydus Pharmaceuticals (USA) Inc.                                                  |  |
| Sponsor Address                           | 73, Route 31 North,<br>Pennington, NJ 08534                                       |  |
| US Agent (if applicable)                  | G. Srinivas                                                                       |  |
| US Agent Address                          | Zydus Pharmaceuticals USA Inc.,                                                   |  |
| ***                                       | 73, Route 31 North,                                                               |  |
|                                           | Pennington, NJ 08534                                                              |  |
| Electronic Submission                     | ⊠ Yes □ No                                                                        |  |
| PDUFA Due Date                            |                                                                                   |  |
| Action Goal Date                          | June 6, 2012                                                                      |  |
| OSI Review Requested By                   | Barbara M. Davit, Ph.D., J.D.                                                     |  |

| Inspection Request Detail (All fields sho | ould be fill out completely)                   |
|-------------------------------------------|------------------------------------------------|
| Study #1                                  | A- N-W                                         |
| Study Number MSN-P0-732                   |                                                |
| Study Title Fasting BE Study              |                                                |
| Study Type 🛛 In vivo BE 🔲 In vi           | tro BE Permeability Others (specify)           |
| ☐ Inspection Request - Clinical Site      | │                                              |
| Facility #1                               | (6) (4)                                        |
| Name:                                     |                                                |
| Address                                   |                                                |
| Address:                                  |                                                |
|                                           |                                                |
|                                           |                                                |
| (Tel)                                     |                                                |
| (Fax)                                     |                                                |
| Clinical Investigator:                    | Principal Analytical Investigator:             |
| 50 1 11 1005                              | (0)(4)                                         |
| (email)                                   |                                                |
| Facility #2                               | Facility #2                                    |
| Name: (if applicable)                     | Name: (if applicable)                          |
| Address:<br>(Tel)                         | Address: (Tel)                                 |
| (Fax)                                     | (Fax)                                          |
| Clinical Investigator:                    | Principal Analytical Investigator:             |
| ominaa myösägaten                         | Thropal / mary total invocagator.              |
| (email)                                   | (email)                                        |
| Check one: Routine inspection             | Check one: ⊠Routine inspection                 |
| ☐ For cause                               | For cause                                      |
| (A)   | or items to be addressed during the inspection |
| in the appendix below)                    |                                                |
| Study Report: (location, eg., 5.3.1.2)    | Validation Report: (eg., 5.3.1.2)              |
|                                           | ☐ Bioanalytical Report: (eg., 5.3.1.4)         |

| Study #2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |                                                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------|--|
| Study Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MSN-P0-733                         |                                                |  |
| Study Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fed BE Study                       |                                                |  |
| Study Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ☑ In vivo BE ☐ In viti             | ro BE Permeability Others (specify)            |  |
| ☐ Inspection Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | quest - <mark>Clinical</mark> Site |                                                |  |
| Facility #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    | Facility #1                                    |  |
| Part of the second seco | dicate if same as above)           | Name: Same as above                            |  |
| Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    | Address:                                       |  |
| (Tel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    | (Tel)                                          |  |
| (Fax)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | #DLCHARO.                          | (Fax)                                          |  |
| Clinical Investiga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tor:                               | Principal Analytical Investigator:             |  |
| (omoil)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                                                |  |
| (email)<br>Facility #2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    | Facility #2                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | olicable)                          | Facility #2 Name: (if applicable)              |  |
| Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ilicable)                          | Address:                                       |  |
| (Tel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    | (Tel)                                          |  |
| (Fax)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    | (Fax)                                          |  |
| Clinical Investiga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tor:                               | Principal Analytical Investigator:             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                |  |
| (email)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    | (email)                                        |  |
| Check one: Ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | outine inspection                  | Check one: ⊠Routine inspection                 |  |
| A 1400 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or cause                           | For cause                                      |  |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | or items to be addressed during the inspection |  |
| in the appendix b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | elow)                              |                                                |  |
| Study Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (location, eg., 5.3.1.2)           | Validation Report: (eg., 5.3.1.2)              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (100001011, 09., 0.0.1.2)          | Bioanalytical Report: (eg., 5.3.1.4)           |  |

Note: International inspection requests or requests for five or more inspections require sign-off by the OND Division Director and forwarding through the Director, OSI.

# I. Appendix

| Specific Items To be Addressed During the Inspection                                       |                                    |  |
|--------------------------------------------------------------------------------------------|------------------------------------|--|
| Please conduct a new routine inspection of the analytical site only. The in February 2009. | e last inspection request was made |  |
|                                                                                            |                                    |  |

This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

/s/

CHITRA MAHADEVAN
03/06/2012

BARBARA M DAVIT
03/08/2012



Food and Drug Administration Rockville, MD 20857

ANDA 203286

Zydus Pharmaceuticals (USA) Inc. Attention: G. Srinivas 73 Route 31 North Pennington, NJ 08534

Dear Sir:

We acknowledge the receipt of your abbreviated new drug application submitted pursuant to Section 505(j) of the Federal Food, Drug and Cosmetic Act.

NAME OF DRUG: Mesalamine Delayed-release Tablets USP, 800 mg

DATE OF APPLICATION: July 12, 2011

DATE (RECEIVED) ACCEPTABLE FOR FILING: July 13, 2011

You have filed a Paragraph IV patent certification, in accordance with 21 CFR 314.94(a)(12)(i)(A)(4) and Section 505(j)(2)(A)(vii)(IV) of the Act. Please be aware that you need to comply with the notice requirements, as outlined below. In order to facilitate review of this application, we suggest that you follow the outlined procedures below:

#### CONTENTS OF THE NOTICE

You must cite section 505(j)(2)(B)(ii) of the Act in the notice and should include, but not be limited to, the information as described in 21 CFR 314.95(c).

#### SENDING THE NOTICE

In accordance with 21 CFR 314.95(a):

- Send notice by U.S. registered or certified mail with return receipt requested to each of the following:
  - 1) Each owner of the patent or the representative designated by the owner to receive the notice;
  - 2) The holder of the approved application under section 505(b) of the Act for the listed drug claimed by the patent and for which the applicant is seeking approval.

3) An applicant may rely on another form of documentation only if FDA has agreed to such documentation in advance.

#### DOCUMENTATION OF NOTIFICATION/RECEIPT OF NOTICE

You must submit an amendment to this application with the following:

- In accordance with 21 CFR 314.95(b), provide a statement certifying that the notice has been provided to each person identified under 314.95(a) and that notice met the content requirements under 314.95(c).
- In accordance with 21 CFR 314.95(e), provide documentation of receipt of notice by providing a copy of the return receipt or a letter acknowledging receipt by each person provided the notice.
- A designation on the exterior of the envelope and above the body of the cover letter should clearly state "PATENT AMENDMENT". This amendment should be submitted to your application as soon as documentation of receipt by the patent owner and patent holder is received.

#### DOCUMENTATION OF LITIGATION/SETTLEMENT OUTCOME

You are requested to submit an amendment to this application that is plainly marked on the cover sheet "PATENT AMENDMENT" with the following:

- If litigation occurs within the 45-day period as provided for in section 505(j)(4)(B)(iii) of the Act, we ask that you provide a copy of the pertinent notification.
- Although 21 CFR 314.95(f) states that the FDA will presume the notice to be complete and sufficient, we ask that if you are not sued within the 45-day period, that you provide a letter immediately after the 45 day period elapses, stating that no legal action was taken by each person provided notice.
- You must submit a copy of a court order or judgment or a settlement agreement between the parties, whichever is applicable, or a licensing agreement between you and the patent holder, or any other relevant information. We ask that this information be submitted promptly to the application.

If you have further questions you may contact Martin Shimer, Chief, Regulatory Support Branch, at (240) 276-8675.

We will correspond with you further after we have had the opportunity to review the application.

Please identify any communications concerning this application with the ANDA number shown above.

Should you have questions concerning this application, contact:

Frank J. Nice Project Manager 240-276-8555

Sincerely yours,

{See appended electronic signature page}

Wm Peter Rickman Director Division of Labeling and Program Support Office of Generic Drugs Center for Drug Evaluation and Research

| This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature. |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| /s/                                                                                                                                             |
| MARTIN H Shimer 09/09/2011 Signing for Wm Peter Rickman                                                                                         |

# ANDA FILING CHECKLIST

# (CTD or eCTD FORMAT)

### FOR COMPLETENESS AND ACCEPTABILITY of an APPLICATION

| ANDA: 203286 APPLICANT: ZYDUS PHARMACEUTICALS (USA RELATED APPLICATION(S): NA  DRUG NAME: MESALAMINE DOSAGE FORM: DELAYED-RELEASE TABLETS  LETTER DATE: JULY 12, 2011 RECEIVED DATE: JULY 13, 2011                                                                                       |                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| <ul> <li>☐ FIRST GENERIC</li> <li>☐ EXPEDITED REVIEW REQUEST (Approved/Der</li> <li>☐ PEPFAR</li> </ul>                                                                                                                                                                                  | nied)                                                                                                                |
| Electronic or Paper Submission: Gateway                                                                                                                                                                                                                                                  | Type II DMF# MESALAMINE - 22999 (8/3/2009)                                                                           |
|                                                                                                                                                                                                                                                                                          |                                                                                                                      |
| BASIS OF SUBMISSION: NDA/ANDA: 21-830 FIRM: WARNER CHILCOTT RLD: ASACOL HD                                                                                                                                                                                                               |                                                                                                                      |
| **Document Room Note: for New Strength amendments and su<br>please assign to those reviewer(s) instead of the default random                                                                                                                                                             | applements, if specific reviewer(s) have already been assigned for the original, team(s).                            |
| Review Team:                                                                                                                                                                                                                                                                             |                                                                                                                      |
| CHEM Team: DC2 TM 21                                                                                                                                                                                                                                                                     | Bio Team: DBE 2 TM7: Xiaojian Jiang                                                                                  |
| S-1-2 (A) (10 PM or 4 (A) (10 PM or 4 (A)                                                                                                                                                                                                            | Bio Team: DBE 2 TM7: Xiaojian Jiang  XActivity  Bio PM: Chitra Mahadevan  ☐ FYI                                      |
| CHEM Team: DC2 TM 21  Activity  CHEM Team Leader: Radhika Rajagopalan  No Assignment Needed in DARRTS  CHEM RPM: Frank J. Nice  FYI                                                                                                                                                      | Activity Bio PM: Chitra Mahadevan                                                                                    |
| CHEM Team: DC2 TM 21  Activity  CHEM Team Leader: Radhika Rajagopalan  No Assignment Needed in DARRTS  CHEM RPM: Frank J. Nice                                                                                                                                                           |                                                                                                                      |
| CHEM Team: DC2 TM 21  Activity  CHEM Team Leader: Radhika Rajagopalan  No Assignment Needed in DARRTS  CHEM RPM: Frank J. Nice  FYI  DMF Review Team Leader: Aloka Srinivasan                                                                                                            |                                                                                                                      |
| CHEM Team: DC2 TM 21  ☐ Activity  CHEM Team Leader: Radhika Rajagopalan  ☐ No Assignment Needed in DARRTS  CHEM RPM: Frank J. Nice  ☐ FYI  DMF Review Team Leader: Aloka Srinivasan  ☐ FYI  Labeling Reviewer: Park, Sarah  ☐ Activity                                                   |                                                                                                                      |
| CHEM Team: DC2 TM 21  ☐ Activity  CHEM Team Leader: Radhika Rajagopalan  ☐ No Assignment Needed in DARRTS  CHEM RPM: Frank J. Nice  ☐ FYI  DMF Review Team Leader: Aloka Srinivasan  ☐ FYI  Labeling Reviewer: Park, Sarah                                                               |                                                                                                                      |
| CHEM Team: DC2 TM 21  ☐ Activity  CHEM Team Leader: Radhika Rajagopalan  ☐ No Assignment Needed in DARRTS  CHEM RPM: Frank J. Nice  ☐ FYI  DMF Review Team Leader: Aloka Srinivasan  ☐ FYI  Labeling Reviewer: Park, Sarah  ☐ Activity                                                   |                                                                                                                      |
| CHEM Team: DC2 TM 21  Activity  CHEM Team Leader: Radhika Rajagopalan  No Assignment Needed in DARRTS  CHEM RPM: Frank J. Nice  FYI  DMF Review Team Leader: Aloka Srinivasan  FYI  Labeling Reviewer: Park, Sarah  Activity  Regulatory Reviewer: Johnny Young  Date: September 2, 2011 | Bio PM: Chitra Mahadevan  FYI  Clinical Endpoint Team: (No)  Activity  Micro Review: (No)  Activity  Recommendation: |
| CHEM Team: DC2 TM 21  Activity  CHEM Team Leader: Radhika Rajagopalan  No Assignment Needed in DARRTS  CHEM RPM: Frank J. Nice  FYI  DMF Review Team Leader: Aloka Srinivasan  FYI  Labeling Reviewer: Park, Sarah  Activity  Regulatory Reviewer: Johnny Young                          | Bio PM: Chitra Mahadevan  FYI  Clinical Endpoint Team: (No)  Activity  Micro Review: (No)  Activity  Recommendation: |

- For More Information on Submission of an ANDA in Electronic Common Technical Document (eCTD) Format please go to: http://www.fda.gov/cder/regulatory/ersr/ectd.htm
- For a Comprehensive Table of Contents Headings and Hierarchy please go to: <a href="http://www.fda.gov/cder/regulatory/ersr/5640CTOC-v1.2.pdf">http://www.fda.gov/cder/regulatory/ersr/5640CTOC-v1.2.pdf</a>
- For more CTD and eCTD informational links see the final page of the ANDA Checklist
- · A model Quality Overall Summary for an immediate release tablet and an extended release capsule can be found on the OGD webpage

Reference Intransportaneous International

| Edit Application Property Type in DARRTS where applicable for                                                                                                                                |                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| a. First Generic Received  ☐ Yes ☐ No b. Market Availability ☐ Rx ☐ OTC c. Pepfar ☐ Yes ☐ No d. Product Type ☐ Small Molecule Drug e. USP Drug Product (at time of filing review) ☐ Yes ☐ No |                              |
| 2. Edit Submission Patent Records                                                                                                                                                            |                              |
| <ul> <li>∑ Yes</li> <li>3. Edit Contacts Database with Bioequivalence Recordation where applicable</li> <li>∑ Yes</li> <li>4. EER (in Draft)</li> <li>∑ Yes</li> </ul>                       |                              |
| ADDITIONAL COMMENTS REGARDING THE ANDA:                                                                                                                                                      |                              |
| G. Srinivas 609.730.1900; (f) 609.730.1999                                                                                                                                                   |                              |
| Sent pharm/tox info on consult to DGP on 7/28/2011 for evaluation of propos                                                                                                                  | ed Eudragit S (b) (4) level. |
| Awaiting DBE filing review. Ok to file                                                                                                                                                       |                              |
|                                                                                                                                                                                              |                              |
|                                                                                                                                                                                              |                              |
|                                                                                                                                                                                              |                              |
|                                                                                                                                                                                              |                              |
|                                                                                                                                                                                              |                              |
|                                                                                                                                                                                              |                              |
|                                                                                                                                                                                              |                              |
|                                                                                                                                                                                              |                              |
|                                                                                                                                                                                              |                              |

# BIOEQUIVALENCE CHECKLIST for First Generic ANDA FOR APPLICATION COMPLETENESS

ANDA# 203286 FIRM NAME Zydus Pharmaceuticals (USA) Inc.

| equesto     | ed by:<br>Chief, Regul | atory Support Team,     | (HFD-615)  | Date:          |  |
|-------------|------------------------|-------------------------|------------|----------------|--|
|             | 83                     |                         |            | ×              |  |
|             | Summary                | of Findings by <b>D</b> | ivision of | Bioequivalence |  |
| $\boxtimes$ | Study meets            | statutory require       | ments      |                |  |
|             | Study does N           | OT meet statutor        | y require  | ments          |  |
|             | Reason:                |                         |            |                |  |
|             | Waiver meet            | s statutory requir      | ements     |                |  |
|             | Waiver does            | NOT meet statute        | ory requi  | rements        |  |
|             | Reason: application    | Only one stre           | ngth (800  | mg) for this   |  |
|             | MENDATION:             | ⊠ COMPLETE              |            | COMPLETE       |  |
| Reviewe     | ed by:                 |                         |            |                |  |
|             | Ping                   | Ren                     | Date:      | 08/09/2011     |  |
| eviewe      | Ping                   | Ren                     | Date:      | 08/09/2011     |  |
|             |                        |                         |            |                |  |

#### MODULE 1: ADMINISTRATIVE

|           | 2                                                                                     |                   |              |                           |                                                  |                                      |                    | (                   | COMMENT (S     | )   |
|-----------|---------------------------------------------------------------------------------------|-------------------|--------------|---------------------------|--------------------------------------------------|--------------------------------------|--------------------|---------------------|----------------|-----|
| 1.1       | Signed and Completed Application Form (356h) (Rx/OTC Status) Yes (original signature) |                   |              |                           |                                                  |                                      |                    |                     |                |     |
| 1.1.2     | Establishment Information: Yes                                                        |                   |              |                           |                                                  |                                      |                    |                     |                |     |
|           | 1. Drug                                                                               | Subst             | ance Ma      | nufacturer                |                                                  |                                      |                    |                     |                |     |
|           | 2. Drug                                                                               | Produ             | ict Manu     | facturer                  |                                                  |                                      |                    |                     |                |     |
|           | 3. Outsi                                                                              | de Te             | sting Fac    | ility(ies)                |                                                  |                                      |                    |                     |                |     |
| 1.2       | Cover Le                                                                              | etter             | Yes          |                           |                                                  |                                      |                    |                     |                |     |
| 1.2.1     | Form FD                                                                               | A 36'             | 74 (PDF      | ) B                       |                                                  |                                      |                    |                     |                |     |
| *         | Table of                                                                              | Conte             | ents (pape   | er submission             | only) N/A                                        |                                      |                    |                     |                |     |
| 1.3.2     | Field Co                                                                              |                   |              | on (N/A for l             | E-Submissions)                                   | N/A                                  |                    |                     |                |     |
| 1.3.3     |                                                                                       |                   |              |                           | Generic Drug En                                  | forcement Ac                         | t)/Other:          |                     |                |     |
|           | (no qualifying statement)                                                             |                   |              |                           |                                                  |                                      |                    |                     |                |     |
|           |                                                                                       |                   |              |                           | signature) Yes                                   |                                      |                    |                     |                |     |
| 27.2      |                                                                                       |                   |              |                           | ginal signature)                                 | Yes                                  |                    |                     |                |     |
| 1.3.4     | Financia                                                                              |                   |              |                           | 10 25 2 25                                       | TID A GARAS                          | Vor                |                     |                |     |
|           |                                                                                       |                   |              |                           | Certification (Fo                                | orm FDA 3454)                        | Yes                |                     |                |     |
| 1.3.5     | Patent In                                                                             |                   |              | m FDA 3455)               | N/A                                              |                                      |                    | NT.                 |                |     |
| 1.3.3     | The second section of the second                                                      |                   |              | D in the Elec             | tronic Orange I                                  | Rook Approve                         | d Drug             | No une              | expired exclus | IV1 |
|           |                                                                                       |                   |              |                           | ce Evaluations                                   | BOOK Approve                         | d Diug             |                     |                |     |
|           |                                                                                       |                   |              | ne Equivalen              | ec Evaluations                                   |                                      |                    |                     |                |     |
|           | Patent Certification 1. Patent number(s) III: '170, '171; IV: '662                    |                   |              |                           |                                                  |                                      |                    |                     |                |     |
|           |                                                                                       |                   |              |                           | ons that apply)                                  |                                      |                    |                     |                |     |
|           | MOU                                                                                   | PI                | PII          | PIII X                    | PIV (State                                       | ement of Noti                        | fication)          | g                   |                |     |
|           | 3. Expira                                                                             | tion of           | f Patent(s   | ): 11/15/20               | )21                                              | erus sur saut er Districtivit (1988) |                    | <b>-</b>            |                |     |
|           | Expiration of Patent(s): 11/15/2021     a. Pediatric exclusivity submitted? No        |                   |              |                           |                                                  |                                      |                    |                     |                |     |
|           | b. Expiration of Pediatric Exclusivity? N/A                                           |                   |              |                           |                                                  |                                      |                    |                     |                |     |
|           | 4. Exclusivity Statement: State marketing intentions?                                 |                   |              |                           |                                                  |                                      |                    |                     |                |     |
|           | anner sexpenselle                                                                     | The second second |              |                           | oracin et decima in resolute e extende e filo de |                                      |                    |                     |                |     |
|           |                                                                                       |                   |              | ty Search F<br>B_Rx list. | Results from q                                   | uery on App                          | ol No 0218         | 330                 |                |     |
|           | <                                                                                     |                   |              |                           |                                                  |                                      |                    |                     |                |     |
|           | Appl<br>No                                                                            | Prod<br>No        | Patent<br>No | Patent<br>Expiration      | Drug Substance<br>Claim                          | Drug Product<br>Claim                | Patent Use<br>Code | Delist<br>Requested |                |     |
|           | N021830                                                                               | 001               | 5541170      | Jul 30, 2013              |                                                  | Y                                    | <u>U - 141</u>     |                     |                |     |
|           | N021830                                                                               | 001               | 5541171      | Jul 30, 2013              |                                                  | Y                                    | <u>U - 141</u>     |                     |                |     |
|           | N021830                                                                               | 001               | 6893662      | Nov 15, 2021              |                                                  | Y                                    | <u>U - 141</u>     |                     |                |     |
|           |                                                                                       |                   |              |                           |                                                  |                                      |                    |                     |                |     |
|           | . 2000245                                                                             |                   |              |                           |                                                  |                                      |                    |                     |                |     |
| erence ID | 3012045                                                                               |                   |              |                           |                                                  |                                      |                    |                     |                |     |

|         | Appl No Prod No Exclusivity Code Exclusivity Expiration                      |
|---------|------------------------------------------------------------------------------|
|         | N021830 001 NP May 29, 2011                                                  |
|         |                                                                              |
| 1.4.1   | References                                                                   |
|         | Letters of Authorization                                                     |
|         | 1. DMF letters of authorization                                              |
|         | a. Type II DMF authorization letter(s) or synthesis for Active               |
|         | Pharmaceutical Ingredient Yes                                                |
|         | b. Type II DMF# MESALAMINE - 22999                                           |
|         | c. Type III DMF authorization letter(s) for container closure Yes            |
|         | 2. US Agent Letter of Authorization (U.S. Agent [if needed, countersignature |
|         | on 356h]) N/A                                                                |
| 1.12.4  | Request for Comments and Advice - Proprietary name requested No              |
|         | If Yes, did the firm provide the request as a separate electronic amendment  |
|         | labeled "Proprietary Name Request" at initial time of filing                 |
|         | 1. Yes N/A                                                                   |
|         | 2. No - contact the firm to submit the request as a separate electronic      |
| 44844   | amendment.                                                                   |
| 1.12.11 | Basis for Submission                                                         |
|         | NDA#: 21-830                                                                 |
|         | Ref Listed Drug: ASACOL HD Firm: WARNER CHILCOTT                             |
|         | ANDA suitability petition required? No                                       |
|         | If Yes, provide petition number and copy of approved petition                |
|         | ANDA Citizen's Petition Required? No                                         |
|         | If Yes, provide petition number and copy of petition                         |
|         |                                                                              |
| MODIII  | E 1: ADMINISTRATIVE (Continued)                                              |

**MODULE 1: ADMINISTRATIVE (Continued)** 

|         |                                                                                                                                         | COMMENT (S)   |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 1.12.12 | Comparison between Generic Drug and RLD-505(j)(2)(A)                                                                                    |               |
|         | 1. Conditions of use x                                                                                                                  |               |
|         | 2. Active ingredients x                                                                                                                 |               |
|         | 3. Inactive ingredients x                                                                                                               |               |
|         | 4. Route of administration x                                                                                                            |               |
|         | 5. Dosage Form x                                                                                                                        |               |
|         | 6. Strength x                                                                                                                           |               |
| 1.12.14 | Environmental Impact Analysis Statement                                                                                                 |               |
|         | (cite 21CFR 25.31, if applicable) Yes                                                                                                   |               |
| 1.12.15 | Request for Waiver                                                                                                                      |               |
|         | Request for Waiver of In-Vivo BA/BE Study(ies) N/A                                                                                      |               |
| 1.14.1  | Draft Labeling (Multi Copies N/A for E-Submissions)                                                                                     | (b) (4) 180s, |
|         | <b>1.14.1.1</b> 4 copies of draft for paper submission only (each strength and container) Yes                                           | BPs, bulk     |
|         | <b>1.14.1.2</b> 1 side by side labeling comparison of containers and carton with all differences visually highlighted and annotated Yes |               |
|         | <b>1.14.1.3</b> 1 package insert (content of labeling) and SPL submitted                                                                |               |
|         | electronically Yes                                                                                                                      |               |
| 1.14.3  | Listed Drug Labeling                                                                                                                    |               |
|         | <b>1.14.3.1</b> 1 side by side labeling (package and patient insert) comparison with                                                    |               |
|         | all differences visually highlighted and annotated Yes                                                                                  |               |
|         | <b>1.14.3.3</b> RLD package insert, 1 RLD label and 1 RLD container label Yes                                                           |               |

#### **MODULE 2: SUMMARIES**

| MOD | ULE 2: SUMMARIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | COMMENT (S) |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 2.3 | Quality Overall Summary (QOS) E-Submission: PDF Yes Word Processed e.g., MS Word Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
|     | A model Quality Overall Summary for an immediate release tablet and an extended release capsule can be found on the OGD webpage <a href="http://www.fda.gov/cder/ogd/">http://www.fda.gov/cder/ogd/</a>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
|     | Question based Review (QbR) Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|     | 2.3.S Drug Substance (Active Pharmaceutical Ingredient) Yes 2.3.S.1 General Information 2.3.S.2 Manufacture 2.3.S.3 Characterization 2.3.S.4 Control of Drug Substance 2.3.S.5 Reference Standards or Materials 2.3.S.6 Container Closure System 2.3.S.7 Stability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
|     | 2.3.P Drug Product Yes  2.3.P.1 Description and Composition of the Drug Product  2.3.P.2 Pharmaceutical Development  2.3.P.2.1 Components of the Drug Product  2.3.P.2.1.1 Drug Substance  2.3.P.2.1.2 Excipients  2.3.P.2.2 Drug Product  2.3.P.2.3 Manufacturing Process Development  2.3.P.2.4 Container Closure System  2.3.P.3 Manufacture  2.3.P.4 Control of Excipients  2.3.P.5 Control of Drug Product  2.3.P.6 Reference Standards or Materials  2.3.P.7 Container Closure System                                                                                                                                                                                                                                                                               |             |
| 2.7 | 2.3.P.8 Stability  Clinical Summary (Bioequivalence) Model BE Data Summary Tables E-Submission: PDF Yes Word Processed: e.g., MS Word Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
|     | 2.7.1 Summary of Biopharmaceutic Studies and Associated Analytical Methods 2.7.1.1 Background and Overview Table 1. Submission Summary Yes Table 4. Bioanalytical Method Validation Yes Table 6. Formulation Data Yes 2.7.1.2 Summary of Results of Individual Studies Table 5. Summary of In Vitro Dissolution Yes 2.7.1.3 Comparison and Analyses of Results Across Studies Table 2. Summary of Bioavailability (BA) Studies Yes Table 3. Statistical Summary of the Comparative BA Data Yes 2.7.1.4 Appendix N/A 2.7.4.1.3 Demographic and Other Characteristics of Study Population Table 7. Demographic Profile of Subjects Completing the Bioequivalence Study Yes 2.7.4.2.1.1 Common Adverse Events Table 8. Incidence of Adverse Events in Individual Studies Yes |             |

Reference ID: 3012045

#### **MODULE 3: 3.2.S DRUG SUBSTANCE**

|         |                                                                                       | COMMENT (S) |
|---------|---------------------------------------------------------------------------------------|-------------|
| 3.2.S.1 | General Information (Do not refer to DMF) Yes                                         |             |
|         | 3.2.S.1.1 Nomenclature                                                                |             |
|         | 3.2.S.1.2 Structure                                                                   |             |
|         | 3.2.S.1.3 General Properties                                                          |             |
| 3.2.S.2 | Manufacturer                                                                          |             |
|         | Drug Substance (Active Pharmaceutical Ingredient)                                     |             |
|         | 1. Name and Full Address(es)of the Facility(ies) x                                    |             |
|         | 2. Contact name, phone and fax numbers, email address Yes                             |             |
|         | 3. Specify Function or Responsibility Yes                                             |             |
|         | 4. Type II DMF number for API 22999                                                   |             |
|         | 5. CFN or FEI numbers x                                                               |             |
| 3.2.S.3 | Characterization Yes                                                                  |             |
|         | Provide the following in tabular format:                                              |             |
|         | 1. Name of Impurity(ies)                                                              |             |
|         | 2. Structure of Impurity(ies)                                                         |             |
|         | 3. Origin of Impurity(ies)                                                            |             |
| 3.2.S.4 | Control of Drug Substance (Active Pharmaceutical Ingredient)                          |             |
| 0121311 | 3.2.S.4.1 Specification Yes                                                           |             |
|         | Testing specifications and data from drug substance manufacturer(s)                   |             |
|         | 3.2.S.4.2 Analytical Procedures Yes                                                   |             |
|         | 3.2.S.4.3 Validation of Analytical Procedures                                         |             |
|         | (API that is USP or reference made to DMF, must provide verification of USP           |             |
|         | or DMF procedures) Yes                                                                |             |
|         | 1. Spectra and chromatograms for reference standards and test samples Yes             |             |
|         | 2. Samples-Statement of Availability and Identification of:                           |             |
|         | a. Drug Substance Yes                                                                 |             |
|         | b. API lot number(s) x                                                                |             |
|         | 3.2.S.4.4 Batch Analysis                                                              |             |
|         | 1. COA(s) specifications and test results from drug substance mfgr(s) Yes             |             |
|         | 2. Applicant certificate of analysis Yes 3.2.S.4.5 Justification of Specification Yes |             |
| 3.2.S.5 | Reference Standards or Materials (Do not refer to DMF) Yes                            |             |
|         | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                               |             |
| 3.2.S.6 | Container Closure Systems Yes                                                         |             |
| 3.2.S.7 | Stability                                                                             |             |
|         | 1. Retest date or expiration date of API Yes                                          |             |

#### **MODULE 3: 3.2.P DRUG PRODUCT**

|                  |                                                                                                           | COMMENT (S) |
|------------------|-----------------------------------------------------------------------------------------------------------|-------------|
| 3.2.P.1          | Description and Composition of the Drug Product                                                           |             |
| <i>J</i> .2.1 .1 | 1. Unit composition with indication of the function of the inactive                                       |             |
|                  | ingredient(s) Yes                                                                                         |             |
|                  | 2. Inactive ingredients and amounts are appropriate per IIG (per/dose                                     |             |
|                  | justification) Yes                                                                                        |             |
|                  | 3. Conversion from % to mg/dose values for inactive ingredients (if                                       |             |
|                  | applicable) N/A                                                                                           |             |
|                  | 4. (b) (4)                                                                                                |             |
|                  | 4.                                                                                                        |             |
|                  |                                                                                                           |             |
|                  |                                                                                                           |             |
|                  | 5. Injections: If the reference listed drug is packaged with a drug specific                              |             |
|                  | diluent then the diluent must be Q1/Q2 and must be provided in the                                        |             |
|                  | package configuration N/A                                                                                 |             |
| 3.2.P.2          | Pharmaceutical Development                                                                                |             |
| J.2.1 .2         | Pharmaceutical Development Report Yes                                                                     |             |
| 3 A D 3          |                                                                                                           | (b) (4)     |
| 3.2.P.3          | Manufacture                                                                                               |             |
|                  | 3.2.P.3.1 Drug Product  (Finished Dance of Manufacturer and Outside Contract Testing Laboratories)        |             |
|                  | (Finished Dosage Manufacturer and Outside Contract Testing Laboratories)                                  |             |
|                  | 1. Name and Full Address(es) of the Facility(ies) x                                                       |             |
|                  | 2. Contact name, phone and fax numbers, email address Yes                                                 |             |
|                  | 3. Specify Function or Responsibility Yes                                                                 |             |
|                  | 4. CGMP Certification (from both applicant and drug product manufacturer if                               |             |
|                  | different entities) Yes                                                                                   |             |
|                  | 5. CFN or FEI numbers x                                                                                   |             |
|                  | 3.2.P.3.2 Batch Formula Yes                                                                               |             |
|                  | 3.2.P.3.3 Description of Manufacturing Process and Process Controls                                       |             |
|                  | 1. Description of the Manufacturing Process Yes                                                           |             |
|                  | 2. Master Production Batch Record(s) for largest intended production runs                                 |             |
|                  | (no more than 10x pilot batch) with equipment specified x                                                 |             |
|                  | 3. Master packaging records for intended marketing container(s) Yes                                       |             |
|                  | 4. If sterile product N/A  5. Page 200 and (210 P. 211 115) submitted by the days                         |             |
|                  | 5. Reprocessing Statement (cite 21CFR 211.115, submitted by the drug                                      |             |
|                  | product manufacturer and the applicant, if different entities) Yes                                        |             |
|                  | 3.2.P.3.4 Controls of Critical Steps and Intermediates Yes 3.2.P.3.5 Process Validation and/or Evaluation |             |
|                  |                                                                                                           |             |
|                  | 1. Microbiological sterilization validation N/A                                                           |             |
| 2 2 D 4          | 2. Filter validation (if aseptic fill) N/A                                                                |             |
| 3.2.P.4          | Controls of Excipients (Inactive Ingredients)                                                             |             |
|                  | Source of inactive ingredients identified Yes                                                             |             |
|                  | 3.2.P.4.1 Specifications                                                                                  |             |
|                  | 1. Testing specifications (including identification and characterization) Yes                             |             |
|                  | 2. Suppliers' COA (specifications and test results) Yes                                                   |             |
|                  | 3.2.P.4.2 Analytical Procedures N/A                                                                       |             |
|                  | 3.2.P.4.3 Validation of Analytical Procedures N/A                                                         |             |
|                  | 3.2.P.4.4 Justification of Specifications:                                                                |             |
|                  | 1. Applicant COA Yes                                                                                      |             |

#### **MODULE 3: 3.2.P DRUG PRODUCT (Continued)**

| MODU    | LE 3: 3.2.P DRUG PRODUCT (Continued)                                                                                                                             |             |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|         |                                                                                                                                                                  | COMMENT (S) |
| 3.2.P.5 | Controls of Drug Product                                                                                                                                         |             |
|         | 3.2.P.5.1 Specification(s) Yes                                                                                                                                   |             |
|         | 3.2.P.5.2 Analytical Procedures Yes                                                                                                                              |             |
|         | 3.2.P.5.3 Validation of Analytical Procedures                                                                                                                    |             |
|         | (if using USP procedure, must provide verification of USP procedure) Yes Samples - Statement of Availability and Identification of:  1. Finished Dosage Form Yes |             |
|         | 2. Lot number(s) and strength of Drug Product(s) EMK150                                                                                                          |             |
|         | 3.2.P.5.4 Batch Analysis                                                                                                                                         |             |
|         | Certificate of Analysis for Finished Dosage Form Yes                                                                                                             |             |
|         | 3.2.P.5.5 Characterization of Impurities Yes                                                                                                                     |             |
|         | 3.2.P.5.6 Justification of Specifications Yes                                                                                                                    |             |
| 3.2.P.7 | Container Closure System                                                                                                                                         |             |
|         | 1. Summary of Container/Closure System (if new resin, provide data) Yes                                                                                          |             |
|         | 2. Components Specification and Test Data Yes                                                                                                                    |             |
|         | 3. Packaging Configuration and Sizes (b) (4)                                                                                                                     |             |
|         | 4. Container/Closure Testing (recommended additional testing for all plastic)Yes                                                                                 |             |
|         | a. Solid Orals: water permeation, light transmissionYes                                                                                                          |             |
|         | b. Liquids: leachables, extractables, light transmissionN/A                                                                                                      |             |
|         | 5. Source of supply and suppliers address Yes                                                                                                                    |             |
| 3.2.P.8 | 3.2.P.8.1 Stability (Finished Dosage Form)                                                                                                                       |             |
|         | 1. Stability Protocol submitted Yes (b) (4)                                                                                                                      |             |
|         | 2. Expiration Dating Period                                                                                                                                      |             |
|         | 3.2.P.8.2 Post-approval Stability and Conclusion                                                                                                                 |             |
|         | Post Approval Stability Protocol and Commitments Yes 3.2.P.8.3 Stability Data                                                                                    |             |
|         | 1. Accelerated stability data                                                                                                                                    |             |
|         | a. four (4) time points 0,1,2,3 Yes                                                                                                                              |             |
|         | -OR-                                                                                                                                                             |             |
|         | b. three (3) time points 0,3,6 (if 3 time points for accelerated stability data are                                                                              |             |
|         | submitted then provide 3 exhibit batches along with 12 months of room temperature                                                                                |             |
|         | stability data – Refer to Guidance for Industry Q1A(R2) Stability Testing of New                                                                                 |             |
|         | Drug Substances and Products November 2003, Section B) N/A  2. Batch numbers on stability records the same as the test batch Yes                                 |             |
|         | 2. Daten numbers on stability records the same as the test batch. Tes                                                                                            |             |

**MODULE 3: 3.2.R REGIONAL INFORMATION (Drug Substance)** 

|                            |                                                                                                                                                                                                                                                                    | COMMENT (S) |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 3.2.R<br>Drug<br>Substance | 3.2.R.1.S Executed Batch Records for drug substance (if available) Select 3.2.R.2.S Comparability Protocols Select 3.2.R.3.S Methods Validation Package Yes Methods Validation Package (3 copies for paper and N/A for E-Submissions) (Required for Non-USP drugs) |             |

**MODULE 3: 3.2.R REGIONAL INFORMATION (Drug Product)** 

|                          |                                                                                                                                                                            | COMMENT (S) |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 3.2.R<br>Drug<br>Product | 3.2.R.1.P.1<br>Executed Batch Records                                                                                                                                      |             |
| Froduct                  | Copy of Executed Batch Record with Equipment Specified, including Packaging Records (Packaging and Labeling Procedures)                                                    |             |
|                          | Batch Reconciliation and Label Reconciliation Yes  a. Theoretical Yield (b) (4)  b. Actual Yield (b) (4)                                                                   |             |
|                          | c. Packaged Yield (b) (4)                                                                                                                                                  |             |
|                          | Bulk Package Reconciliation required if bulk packaging is used to achieve the minimum package requirement. Provide the following information in their respective sections: |             |
|                          | a. Bulk Package Label (1.14.1) Yes                                                                                                                                         |             |
|                          | b. Bulk Package Stability (accelerated stability data [0,1,2,3] <b>-OR</b> -room temperature [0,3,6]) (3.2.P.8) Yes                                                        |             |
|                          | c. Bulk Package Container and Closure information (3.2.P.7) Yes                                                                                                            |             |
|                          | 3.2.R.1.P.2 Information on Components Yes                                                                                                                                  |             |
|                          | 3.2.R.2.P Comparability Protocols N/A                                                                                                                                      |             |
|                          | 3.2.R.3.P Methods Validation Package Yes                                                                                                                                   |             |
|                          | Methods Validation Package (3 copies for paper and N/A for E-Submissions) (Required for Non-USP drugs)                                                                     |             |

#### MODULE 5: CLINICAL STUDY REPORTS

|             |                                                                           | COMMENT (S) |
|-------------|---------------------------------------------------------------------------|-------------|
| 5.2         | Tabular Listing of Clinical Studies Yes                                   |             |
| 5.3.1       | Bioavailability/Bioequivalence                                            |             |
| (complete   | 1. Formulation data same?                                                 |             |
| study data) | a. Comparison of all Strengths                                            |             |
|             | (check proportionality of multiple strengths) N/A                         |             |
|             | b. Parenterals, Ophthalmics, Otics and Topicals                           |             |
|             | (21 CFR 314.94 (a)(9)(iii)-(v) N/A                                        |             |
|             | 2. Lot Numbers and strength of Products used in BE Study(ies) EMK150      |             |
|             | 3. Study Type: IN-VIVO PK STUDY(IES)                                      |             |
|             | (Continue with the appropriate study type box below)                      |             |
|             | 5.3.1.2 Comparative BA/BE Study Reports                                   |             |
|             | 1. Study(ies) meets BE criteria (90% CI of 80-125, C max, AUC) Select     |             |
|             | 2. Summary Bioequivalence tables:                                         |             |
|             | Table 10. Study Information Yes                                           |             |
|             | Table 12. Dropout Information Yes                                         |             |
|             | Table 13. Protocol Deviations Yes                                         |             |
|             | 5.3.1.3 In Vitro-In-Vivo Correlation Study Reports                        |             |
|             | Summary Bioequivalence tables Yes                                         |             |
|             | Table 11. Product Information Yes                                         |             |
|             | Table 16. Composition of Meal Used in Fed Bioequivalence Study Yes        |             |
|             | 5.3.1.4 Reports of Bioanalytical and Analytical Methods for Human         |             |
|             | Studies                                                                   |             |
|             | Summary Bioequivalence table:                                             |             |
|             | Table 9. Reanalysis of Study Samples Yes                                  |             |
|             | Table 14. Summary of Standard Curve and QC Data for Bioequivalence Sample |             |
|             | Analyses Yes                                                              |             |
|             | Table 15. SOPs Dealing with Bioanalytical Repeats of Study Samples Yes    |             |
|             | Case Report Forms should be placed under the study to which they          |             |
|             | pertain, and appropriately tagged. Refer to The eCTD Backbone File        |             |
|             | Specification for Study Tagging                                           |             |
|             | //www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/FormsSu          |             |
|             | bmissionRequirements/ElectronicSubmissions/UCM163560.pdf                  |             |
|             | omissionicequirements/Electromestromissions/Octv1103300.pdf               |             |
| 5.4         | Literature References                                                     |             |
|             | Possible Study Types:                                                     |             |

|               | IN-VIVO BE STUDY(IES) with PK ENDPOINTS (i.e., fasting/fed/sprinkle)                                                                                                               | 12 –unit in 3.2.P.2 |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Study Type    | FASTING AND FED ON 800 MG                                                                                                                                                          |                     |
|               | 1. Study(ies) meets BE criteria (90% CI of 80-125, C max, AUC) Select                                                                                                              |                     |
|               | 2. EDR Email: Data Files Submitted Yes                                                                                                                                             |                     |
|               | 3. In-Vitro Dissolution Yes                                                                                                                                                        |                     |
| Study Type    | IN-VIVO BE STUDY with CLINICAL ENDPOINTS                                                                                                                                           |                     |
| Study Type    | 1. Properly defined BE endpoints (eval. by Clinical Team) Select                                                                                                                   |                     |
|               | 2. Summary results meet BE criteria: 90% CI of the proportional difference in success rate                                                                                         |                     |
|               | between test and reference must be within (-0.20, +0.20) for a binary/dichotomous endpoint.  For a continuous endpoint, the test/reference ratio of the mean result must be within |                     |
|               | (0.80,1.25) Select                                                                                                                                                                 |                     |
|               | 3. Summary results indicate superiority of active treatments (test & reference) over                                                                                               |                     |
|               | vehicle/placebo (p<0.05) (eval. by Clinical Team) Select                                                                                                                           |                     |
|               | 4. EDR Email: Data Files Submitted Select                                                                                                                                          |                     |
|               | IN-VITRO BE STUDY(IES) (i.e., in vitro binding assays) Select                                                                                                                      |                     |
| Study Type    | 1. Study(ies) meets BE criteria (90% CI of 80-125) Select                                                                                                                          |                     |
|               | 2. EDR Email: Data Files Submitted Select                                                                                                                                          |                     |
|               | 3. In-Vitro Dissolution Select                                                                                                                                                     |                     |
|               | NASALLY ADMINISTERED DRUG PRODUCTS                                                                                                                                                 |                     |
| Study Type    | 1. Solutions (Q1/Q2 sameness) Select                                                                                                                                               |                     |
|               | a. In-Vitro Studies (Dose/Spray Content Uniformity, Droplet/Drug Particle Size Distrib.,                                                                                           |                     |
|               | Spray Pattern, Plume Geometry, Priming & Repriming) Select                                                                                                                         |                     |
|               | 2. <u>Suspensions</u> (Q1/Q2 sameness):                                                                                                                                            |                     |
|               | a. In-Vivo PK Study Select                                                                                                                                                         |                     |
|               | 1. Study(ies) meets BE Criteria (90% CI of 80-125, C max, AUC) Select                                                                                                              |                     |
|               | 2. EDR Email: Data Files Submitted Select                                                                                                                                          |                     |
|               | b. In-Vivo BE Study with Clinical End Points Select                                                                                                                                |                     |
|               | 1. Properly defined BE endpoints (eval. by Clinical Team) Select                                                                                                                   |                     |
|               | 2. Summary results meet BE criteria (90% CI within +/- 20% of 80-125) Select                                                                                                       |                     |
|               | 3. Summary results indicate superiority of active treatments (test & reference)                                                                                                    |                     |
|               | over vehicle/placebo (p<0.05) (eval. by Clinical Team) Select                                                                                                                      |                     |
|               | 4. EDR Email: Data Files Submitted Select                                                                                                                                          |                     |
|               | c. In-Vitro Studies (Dose/Spray Content Uniformity, Droplet/Drug Particle Size Distrib.,                                                                                           |                     |
|               | Spray Pattern, Plume Geometry, Priming & Repriming) Select                                                                                                                         |                     |
| -             | IN-VIVO BE STUDY(IES) with PD ENDPOINTS (e.g., topical corticosteroid vasoconstrictor studies)                                                                                     |                     |
| Study<br>Type | Pilot Study (determination of ED50) Select                                                                                                                                         |                     |
| 1)10          | 2. Pivotal Study (study meets BE criteria 90%CI of 80-125) Select                                                                                                                  |                     |
|               | TRANSDERMAL DELIVERY SYSTEMS                                                                                                                                                       |                     |
| Study Type    | 1. In-Vivo PK Study Select                                                                                                                                                         |                     |
|               | a. Study(ies) meet BE Criteria (90% CI of 80-125, C max, AUC) Select                                                                                                               |                     |
|               | b. In-Vitro Dissolution Select                                                                                                                                                     |                     |
|               | c. EDR Email: Data Files Submitted Select                                                                                                                                          |                     |
|               | 2. Adhesion Study Select                                                                                                                                                           |                     |
|               | 3. Skin Irritation/Sensitization Study Select                                                                                                                                      |                     |

Updated 05/16/2011

Appl RLD Active Dosage Form; Strength Proprietary Applicant TE No Code Ingredient Route Name

N021830 Yes MESALAMINE TABLET, DELAYED RELEASE; ORAL 800MG ASACOL HD WARNER CHILCOTT LLC Reference ID: 3012045

# Search results from the "OB\_Rx" table for query on "021830."

Active Ingredient: MESALAMINE

Dosage Form; Route: TABLET, DELAYED RELEASE; ORAL

Proprietary Name: ASACOL HD

Applicant: WARNER CHILCOTT LLC

Strength: 800MG Application Number: N021830 Product Number: 001

Approval Date: May 29, 2008


Reference Listed Drug Yes RX/OTC/DISCN: RX

## U - 141 TREATMENT OF ULCERATIVE COLITIS

- Qualititative composition of incoatamilie Delayed recease Taoleis Cot, 600 mg.

| Name of Ingredie                    | Quantity/<br>Tablet (mg) | Quantity<br>(% w/w)/Tablet <sup>\$</sup> |          |         |
|-------------------------------------|--------------------------|------------------------------------------|----------|---------|
|                                     |                          | (b) (4)                                  |          | 2       |
| Mesalamine, USP                     | WC2112005                |                                          | 800.000  | (b)     |
| Sodium Starch Glycolate, NF         | (b) (4)                  |                                          | (b) (4   |         |
| Colloidal Silicon Dioxide, NF       | (b) (4)                  |                                          |          |         |
| Magnesium Stearate, NF              | "                        | 10000000                                 |          |         |
|                                     |                          | (b) (4)                                  |          |         |
| Microcrystalline Cellulose, NF      | (b) (4)                  |                                          |          |         |
| Povidone (b) (4) USP (b) (4)        |                          |                                          |          |         |
|                                     |                          | (b) (4)                                  |          |         |
|                                     |                          | (b) (4)                                  |          |         |
| Sodium Starch GlycolateNF,          | (b) (4)                  |                                          |          |         |
| Tale, USP (b) (4)                   |                          |                                          |          |         |
| Colloidal Silicon Dioxide, NF       | (b) (4)                  |                                          |          |         |
| Magnesium Stearate, NF              | *                        |                                          |          |         |
|                                     |                          | (b) (4)                                  |          |         |
| Methacrylic Acid Copolymer, NF - Ty | pe B (Eudragit S         | (b)<br>(4)                               |          |         |
| Tale, USP                           | 11                       | (4)—                                     |          |         |
| Acetyltributyl Citrate, NF          | 0770776400               |                                          |          |         |
| Titanium Dioxide, USP               | (b) (4)                  |                                          |          |         |
| Ferric Oxide Red, NF                | ·                        |                                          |          |         |
| Isopropyl Alcohol, USP*             |                          |                                          |          |         |
| (b) (4)                             |                          |                                          |          |         |
| *                                   |                          | (b) (4)                                  |          |         |
| Opacode Black                       |                          | (b) (4)                                  |          |         |
| Isopropyl Alcohol, USP*             |                          |                                          |          |         |
|                                     | 1                        | otal                                     | 1102.400 | 100.000 |





| Inactive ingredient(s)                                 | Listing In the Inactive Ingredients Database | Mesalamine<br>Delayed Release<br>Tablets USP,<br>800 mg | Levels recommended in Inactive Ingredients Database(mg) (Oral route) |
|--------------------------------------------------------|----------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------|
| Sodium Starch Glycolate, NF                            | Yes                                          |                                                         | (b) (4                                                               |
| Colloidal Silicon Dioxide, NF                          | Yes                                          |                                                         |                                                                      |
| Magnesium Stearate, NF                                 | Yes                                          |                                                         |                                                                      |
| Microcrystalline Cellulose, NF                         | Yes                                          |                                                         |                                                                      |
| Povidone (b) (4) USP                                   | Yes                                          |                                                         |                                                                      |
| Tale, USP                                              | Yes                                          |                                                         |                                                                      |
| Methacrylic Acid Copolymer,<br>NF - Type B (Eudragit S | Yes                                          |                                                         |                                                                      |
| Acetyltributyl Citrate, NF                             | Yes                                          |                                                         |                                                                      |
| Titanium Dioxide, USP                                  | Yes                                          |                                                         |                                                                      |
| Ferric Oxide Red, NF                                   | Yes                                          |                                                         | (b)                                                                  |

| INGREDIENT | ROUTE;DOSA<br>FORM | AGE<br>UNII | NDA LAST COUNT NDA | MAXIMUM POTENCY/UNIT (b) (4) |
|------------|--------------------|-------------|--------------------|------------------------------|
|            |                    |             |                    |                              |
|            |                    |             |                    |                              |
|            |                    |             |                    |                              |
|            |                    |             |                    |                              |
|            |                    |             |                    |                              |
|            |                    |             |                    |                              |
|            |                    |             |                    |                              |

|                      | Mesalamine 800 mg dela<br>1× 800 n<br>Scaled Average Bio | ng                 |  |  |  |  |
|----------------------|----------------------------------------------------------|--------------------|--|--|--|--|
|                      | Fasted Bioequivalence St                                 | udy (MSN-P0-732)   |  |  |  |  |
| Parameter            | Ratio                                                    | 95% Upper bound CI |  |  |  |  |
| AUCt                 | 118.34%                                                  | -0.3629            |  |  |  |  |
| AUCi                 | 116.59%                                                  | -0.2075            |  |  |  |  |
| Cmax 122.94% -0.4024 |                                                          |                    |  |  |  |  |
|                      | Fed Bioequivalence Stud                                  | dy (MSN-P0-733)    |  |  |  |  |
| Parameter            | Ratio                                                    | 95% Upper bound CI |  |  |  |  |
| AUCt                 | 97.91%                                                   | -0.4230            |  |  |  |  |
| AUCi                 | 95.42%                                                   | -0.3489            |  |  |  |  |
| Cmax                 | 101.05%                                                  | -0.8187            |  |  |  |  |

Note: The intra-subject CVs (coefficient of variation) for Cmax, AUCt and AUCi exceeded 30% when administered under fasting and fed conditions, hence the scaled bioequivalence approach was used for Cmax, AUCt and AUCi.

This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

/s/

JOHNNY L YOUNG
09/08/2011

MARTIN H Shimer
09/09/2011

# BIOEQUIVALENCE CHECKLIST for First Generic ANDA FOR APPLICATION COMPLETENESS

ANDA# 203286 FIRM NAME Zydus Pharmaceuticals (USA) Inc.

DRUG NAME Mesalamine Delayed Release Tablets USP

|             |                     | ed Release Tablets, 800                        |                                                       |                        |                |
|-------------|---------------------|------------------------------------------------|-------------------------------------------------------|------------------------|----------------|
|             |                     | ation of: if Zydus Phatisfies the statutory re |                                                       | als (USA) Inc.' s Mesa | lamine Delayed |
| Requested   |                     |                                                | N <del></del> 000-000 100 000 000 000 000 000 000 000 | Date:                  |                |
| <u> </u>    |                     |                                                |                                                       |                        | , i            |
|             | Summary             | y of Findings by Di                            | ivision of                                            | Bioequivalence         |                |
| $\boxtimes$ | Study meets         | statutory requirer                             | nents                                                 |                        |                |
|             | Study does N        | OT meet statutor                               | y require                                             | ments                  |                |
|             | Reason:             |                                                | 2 3555                                                |                        |                |
|             | Waiver meet         | s statutory requir                             | ements                                                |                        |                |
|             | Waiver does         | NOT meet statuto                               | ry requi                                              | rements                |                |
|             | Reason: application | Only one stren                                 | ngth (800                                             | mg) for this           |                |
|             |                     | <b>⊠</b> COMPLETE                              |                                                       | COMPLETE               |                |
| Reviewed    | by:                 |                                                |                                                       |                        |                |
|             | Ping                | Ren                                            | Date:                                                 | 08/09/2011             |                |
| Reviewer    |                     |                                                |                                                       |                        |                |
|             |                     | Xiaojian Jiang                                 | Date:                                                 | 8/17/2011              |                |
| Team Lea    | der                 |                                                |                                                       |                        |                |

BIO\_1G\_CHKLST.dot v.4/4/2003

| Item Verified:    | YES | NO | Required<br>Amount | Amount<br>Sent | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------|-----|----|--------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Protocol          |     |    | 2                  | 2              | 5.3 CLINICAL STUDY REPORTS 5.3.1 Reports of Biopharmaceutic Studies 5.3.1.4 Report of BA and Analytical Methods for Human Studies 5.3.1.4.3: Attachment 5: Fasting study: MSN-P0-732 Bioanalysis of mesalamine in human in support of clinical protocol: Protocol No.SAP1186007.  Fed study: MSN-P0-733 Bioanalysis of mesalamine in human in support of clinical protocol: Protocol No.SAP1186008.  5.3 CLINICAL STUDY REPORTS 5.3.1 Reports of Biopharmaceutic Studies 5.3.1.2.Comparative BA and BE Study Reports 5.3.1.2.4. Protocol or Amendment: Fasting-protocol-and amendment: MSN-P0-732 Fed-protocol-and amendment: MSN-P0-733 |
| Assay Methodology |     |    | 1                  | 1              | 5.3.1.4 Report of BA and Analytical Methods for Human Studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Procedure SOP     |     |    | 3                  | 3              | 5.3.1.3.3. Study Report Body: dissotest-method: QC/STP/F/2990-03 (Dissolution testing SOP).  5.3 CLINICAL STUDY REPORTS 5.3.1 Reports of Biopharmaceutic Studies 5.3.1.4 Report of BA and Analytical Methods for Human Studies 5.3.1.4.3: Attachment 1: Sample Analysis (Chromatographic),  (Sample Reanalysis and Reporting Criteria). Attachment 4: (Incurred sample reanalysis)                                                                                                                                                                                                                                                       |

| Methods Validation        |  | 1 | 1 | 2.7.1. Summary of Biopharmaceutic Studies and Associate Analytical Methods: sum-biopharm-studies-asso-anal-meth: 2.7.1.1. Background and Overview: table 4 Bioanalytical Method Validation.  5.3 CLINICAL STUDY REPORTS 5.3.1 Reports of Biopharmaceutic Studies 5.3.1.4 Reports of Bioanalytical and Analytical Methods for Human Studies: Appendix 16.6 Analytical method validation report. |
|---------------------------|--|---|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study Results Ln/Lin      |  | 2 | 2 | 2.7.1. Summary of Biopharmaceutic Studies and Associate Analytical Methods: sum-biopharm-studies-asso-anal-meth: 2.7.1.1. Background and Overview: table 6 Summary of Statistical Analysis of Mesalamine Data-Scaled Average BE                                                                                                                                                                |
| Adverse Events            |  | 2 | 2 | 2.7.1. Summary of Biopharmaceutic Studies and Associate Analytical Methods: sum-biopharm-studies-asso-anal-meth: 2.7.1.1. Background and Overview: table 8 Incidence of Adverse Events in Individual Studies (Fasting and Fed studies)                                                                                                                                                         |
| IRB Approval              |  | 2 | 2 | 5.3 CLINICAL STUDY REPORTS<br>5.3.1 Reports of Biopharmaceutic<br>Studies 5.3.1.2.6. IEC IRB Consent<br>Form List                                                                                                                                                                                                                                                                              |
| Dissolution Data          |  | 1 | 1 | 2.7.1. Summary of Biopharmaceutic Studies and Associate Analytical Methods: sum-biopharm-studies-asso-anal-meth: 2.7.1.1. Background and Overview: table 5 Summary of In Vitro Dissolution Studies: multiple-media dissolution testing.  5.3.1.3.3. Study Report Body: 5313-in-vit-in-viv-corr-stud-repo-rel-info:                                                                             |
|                           |  |   |   | raw data of dissolution.                                                                                                                                                                                                                                                                                                                                                                       |
| Pre-screening of Patients |  | 2 | 2 | 5.3 CLINICAL STUDY REPORTS 5.3.1 Reports of Biopharmaceutic Studies 5.3.1.2.Comparative BA and BE                                                                                                                                                                                                                                                                                              |

|                                          |  |   |   | Study Reports 5.3.1.2.3. Study Report Body: 5312- stud-info-formu-data: 9.3. Selection of study populations                                                                                       |
|------------------------------------------|--|---|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chromatograms                            |  | 2 | 2 | 5.3 CLINICAL STUDY REPORTS 5.3.1 Reports of Biopharmaceutic Studies 5.3.1.4 Report of Bioanalytical and Analytical Methods for Human Studies 5.3.1.4.3: Attachment 3: Chromatograms.              |
| Consent Forms                            |  | 2 | 2 | 5.3 CLINICAL STUDY REPORTS<br>5.3.1 Reports of Biopharmaceutic<br>Studies 5.3.1.2.Comparative BA and<br>BE Study Reports 5.3.1.2.6. IEC<br>IRB Consent Form List                                  |
| Composition                              |  | 1 | 1 | 2.7.1. Summary of Biopharmaceutic Studies and Associate Analytical Methods: sum-biopharm-studies-asso-anal-meth: 2.7.1.1. Background and Overview: table 6 Formulation Data.                      |
|                                          |  |   |   | 3. Quality 3.2.P. Drug Product 3.2.P.1. Description and Composition of the Drug Product: 32p 1-descr-compo-drug-prod                                                                              |
| Summary of Study                         |  | 1 | 1 | 2.7.1. Summary of Biopharmaceutic<br>Studies and Associate Analytical<br>Methods: sum-biopharm-studies-<br>asso-anal-meth                                                                         |
| Individual Data & Graphs,<br>Linear & Ln |  | 2 | 2 | 5.3 CLINICAL STUDY REPORTS 5.3.1 Reports of Biopharmaceutic Studies 5.3.1.2.Comparative BA and BE Study Reports 5.3.1.2.3.Study Report Body: fasting-study-rep fed-study-rep                      |
| PK/PD Data Disk<br>Submitted)            |  | 2 | 2 | 5.3 CLINICAL STUDY REPORTS 5.3.1 Reports of Biopharmaceutic Studies 5.3.1.2.Comparative BA and BE Study Reports 5.3.1.2.25. Individual Subject Data Listing 5.3.1.2.25.2.1. Data Listing Dataset: |

BIO\_1G\_CHKLST.dot v.4/4/2003

| T                                         |          | 1        | I | T            |                                    |
|-------------------------------------------|----------|----------|---|--------------|------------------------------------|
|                                           |          |          |   |              | Mesalamine-Fasting-drug 1          |
|                                           |          |          |   |              | Mesalamine-Fasting-drug 2          |
|                                           |          |          |   |              | Mesalamine-Fed-drug 1              |
|                                           |          |          |   |              | Mesalamine-Fed-drug 2              |
| Randomization Schedule                    |          |          | 2 | 2            | 5.3 CLINICAL STUDY REPORTS         |
| Randonnization Schedule                   |          |          | 2 |              | 5.3.1 Reports of Biopharmaceutic   |
|                                           |          |          |   |              | Studies                            |
|                                           |          |          |   |              | 5.3.1.2.Comparative BA and BE      |
|                                           |          |          |   |              | Study Reports                      |
|                                           |          |          |   |              | 5.3.1.2.10. Randomization Schedule |
|                                           |          |          |   |              | (fasting and fed BE studies)       |
| D 1 1D 11                                 |          |          | 2 | 2            | 5.3 CLINICAL STUDY REPORTS         |
| Protocol Deviations                       |          | Ш        | 2 | 2            | 5.3.1 Reports of Biopharmaceutic   |
|                                           |          |          |   |              | Studies Studies                    |
|                                           |          |          |   |              | 5.3.1.2.Comparative BA and BE      |
|                                           |          |          |   |              | Study Reports                      |
|                                           |          |          |   |              | 5.3.1.2.17 Protocol Deviations:    |
|                                           |          |          |   |              | fasting-protocol-deviation         |
|                                           |          |          |   |              | fed-protocol-deviation             |
|                                           |          |          |   |              | 5.3 CLINICAL STUDY REPORTS         |
| Clinical Site                             |          |          | 2 | 2            |                                    |
|                                           |          |          |   |              | 5.3.1 Reports of Biopharmaceutic   |
|                                           |          |          |   |              | Studies                            |
|                                           |          |          |   |              | 5.3.1.2.Comparative BA and BE      |
|                                           |          |          |   |              | Study Reports                      |
|                                           |          |          |   |              | 5.3.1.2.3. Study Report Body:      |
|                                           |          |          |   |              | 5312-summ-bioequi-tables (fasting  |
|                                           |          |          |   |              | and fed studies)                   |
| Analytical Site                           |          |          | 2 | 2            | 5.3 CLINICAL STUDY REPORTS         |
|                                           |          |          | _ | _            | 5.3.1 Reports of Biopharmaceutic   |
|                                           |          |          |   |              | Studies                            |
|                                           |          |          |   |              | 5.3.1.2.Comparative BA and BE      |
|                                           |          |          |   |              | Study Reports                      |
|                                           |          |          |   |              | 5.3.1.2.3. Study Report Body:      |
|                                           |          |          |   |              | 5312-summ-bioequi-tables (fasting  |
|                                           | <u>L</u> | <u> </u> |   | <u> </u>     | and fed studies)                   |
| Study Investigators                       |          |          | 2 | 2            | 5.3 CLINICAL STUDY REPORTS         |
| Study Investigators                       |          |          |   | \ \frac{2}{} | 5.3.1 Reports of Biopharmaceutic   |
|                                           |          |          |   |              | Studies                            |
|                                           |          |          |   |              | 5.3.1.2.Comparative BA and BE      |
|                                           |          |          |   |              | Study Reports                      |
|                                           |          |          |   |              | 5.3.1.2.7 List Description         |
|                                           |          |          |   |              | Investigator Site:                 |
|                                           |          |          |   |              | fasting-stud-rep                   |
|                                           |          |          |   |              | fed-stud-rep                       |
| N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |          |          |   |              | 5.3 CLINICAL STUDY REPORTS         |
| Medical Records                           |          | ГП       | 2 | 2            | 5.3.1 Reports of Biopharmaceutic   |
|                                           |          |          |   |              | Studies Studies                    |
|                                           |          |          |   |              | 5.3.1.2.Comparative BA and BE      |
|                                           |          |          |   |              | Study Reports                      |
|                                           |          |          |   |              | Budy Keports                       |

BIO\_1G\_CHKLST.dot v.4/4/2003

|                                 |  |   |   | 5.3.1.2.24. Case Report Form                                                                                                                                                                                                           |
|---------------------------------|--|---|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clinical Raw Data               |  | 2 | 2 | 5.3 CLINICAL STUDY REPORTS 5.3.1 Reports of Biopharmaceutic Studies 5.3.1.2.Comparative BA and BE Study Reports 5.3.1.2.21 Individual Efficacy Response Data: Fasting-ind-eff-response data Fed-ind-eff-response data                  |
| Test Article Inventory          |  | 1 | 1 | 5.3 CLINICAL STUDY REPORTS 5.3.1 Reports of Biopharmaceutic Studies 5.3.1.2.Comparative BA and BE Study Reports 5.3.1.2.3. Study Report Body: Fasting-stud-rep Fed-stud-rep 9.4.8. Treatment Compliance 9.4.8.1. Drug Accountability   |
| BIO Batch Size                  |  | 1 | 1 | <ul><li>3. Quality</li><li>3.2.R. Regional Information</li><li>32r-regional-information</li><li>3.2.R.1.P.1 Executed Batch Records</li></ul>                                                                                           |
| Assay of Active Content<br>Drug |  |   |   | 5.3.1.3.3. Study Report Body: 5313-summ-bioequi-tables                                                                                                                                                                                 |
| Content Uniformity              |  |   |   | 5.3.1.3.3. Study Report Body: 5313-summ-bioequi-tables                                                                                                                                                                                 |
| Date of Manufacture             |  | 1 | 1 | <ul> <li>2.7.1. Summary of Biopharmaceutic Studies and Associate Analytical Methods: sum-biopharm-studies-asso-anal-meth: 2.7.1.1. Background and Overview.</li> <li>5.3.1.3.3. Study Report Body: 5313-summ-bioequi-tables</li> </ul> |
| Exp. Date of RLD                |  | 1 | 1 | 2.7.1. Summary of Biopharmaceutic Studies and Associate Analytical Methods: sum-biopharm-studies-asso-anal-meth: 2.7.1.1. Background and Overview.  5.3.1.3.3. Study Report Body: 5313-summ-bioequi-tables                             |

| BioStudy Lot Numbers                                                         | $\boxtimes$ | 1 | 1 | 5.3.1.3.3. Study Report Body: 5313-summ-bioequi-tables                                                                                                                                                                                          |
|------------------------------------------------------------------------------|-------------|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Statistics                                                                   |             | 2 | 2 | 5.3 CLINICAL STUDY REPORTS 5.3.1 Reports of Biopharmaceutic Studies 5.3.1.2.Comparative BA and BE Study Reports 5.3.1.2.21 Individual Efficacy Response Data: Fasting-ind-eff-response data Fed-ind-eff-response data                           |
| Summary results provided<br>by the firm indicate studies<br>pass BE criteria |             | 2 | 2 | 2.7.1. Summary of Biopharmaceutic Studies and Associate Analytical Methods: sum-biopharm-studies-asso-anal-meth: 2.7.1.1. Background and Overview: table 3 Statistical Summary of the Comparative BA Data (Reference scaled average BE studies) |
| Waiver requests for other strengths / supporting data                        |             | 0 | 0 | N/A, there is only one strength of 800 mg in this application                                                                                                                                                                                   |

# Additional Comments regarding the ANDA:

- 1. This Application for Mesalamine Delayed Release Tablets USP, 800 mg, is based on reference listed drug (RLD) Asacol<sup>®</sup> HD (mesalamine) delayed-release tablet, 800 mg, which was approved in the United States in May 29, 2008 (NDA 021830).
- 2. Mesalamine Delayed Release Tablets is a locally acting aminosalicylate indicated for the treatment of moderately active ulcerative colitis. In two citizen's petitions<sup>1</sup>, the innovators asked the Agency that the applicants for generic formulations of delayed release orally administered mesalamine drug products should show bioequivalence to Asacol and Asacol® HD based on comparative clinical endpoint studies, comparative in vitro dissolution tests, and comparative pharmacokinetic (PK) safety studies under fasting and fed conditions. Yet, in the Agency's responses to the Citizen's Petition, the FDA concluded that in light of new pharmacokinetic data from comparative studies in modified-release mesalamine products, the applications should demonstrate bioequivalence of mesalamine delayed release tablets to reference products (RLD: Asacol and Asacol HD) through a combination of PK bioequivalent (BE) studies and in vitro drug release (dissolution) under multiple conditions representative of the conditions in the GI tract rather than comparative clinical endpoint studies. Also, the Agency suggests using partial AUC (pAUC) or other profile comparison tools to demonstrate

<sup>1</sup> Docket Nos. FDA-2010-P-0111 and FDA-2008-P-0507

bioequivalence for mesalamine products in addition to standard calculations of AUC and Cmax. The OGD is currently in the process of posting the BE recommendation for this product. In the guidance, the FDA will define the pAUC range and provide the in vitro BE studies (dissolution testing) methods.

#### 3. The Results of Fasting and Fed BE studies:

The firm conducted single center, randomized, single dose, 3-period, 3-sequence, partial-reference replicated, crossover study bioequivalence studies in normal healthy male and female subject under Fasting and Fed conditions.

|           | Mesalamine 800 mg delayed-release<br>1× 800 mg<br>Scaled Average Bioequivalence<br>ed Bioequivalence Study (MSN-P0- | 2*                 |
|-----------|---------------------------------------------------------------------------------------------------------------------|--------------------|
| Parameter | Ratio                                                                                                               | 95% Upper bound CI |
| AUCt      | 118.34%                                                                                                             | -0.3629            |
| AUCi      | 116.59%                                                                                                             | -0.2075            |
| Cmax      | 122.94%                                                                                                             | -0.4024            |
| Fed       | Bioequivalence Study (MSN-P0-73                                                                                     | 33), N=83          |
| Parameter | Ratio                                                                                                               | 95% Upper bound CI |
| AUCt      | 97.91%                                                                                                              | -0.4230            |
| AUCi      | 95.42%                                                                                                              | -0.3489            |
| Cmax      | 101.05%                                                                                                             | -0.8187            |

<sup>\*</sup>The intra-subject CVs (coefficient of variation) for Cmax, AUCt and AUCi exceeded 30% when administered under fasting and fed conditions; hence the reference-scaled average bioequivalence approach was used for Cmax, AUC0-Tmax, AUCTmax-24hrs, AUCt, and AUCi.

**Note:** Since the agency is currently in the process of posting the BE guidance and there is no clearly stated pAUC criteria. The pAUC calculation will be a review issue and the study is acceptable for filing at this time.

#### 4. The results of in vitro comparative BE dissolution study

Method:

Apparatus: USP Apparatus 2 (paddle)
Pretreatment Stage: 2 hours in 0.1 N HCl at 100 rpm

Evaluation Stage 1: Each of pH 6.0-7.5 Phosphate buffer at 50 rpm.

Volume: 900 mL

#### Results:

| Test No. | First Medium | Followed by Media       | F2    | Comment                                  |
|----------|--------------|-------------------------|-------|------------------------------------------|
| 1        | 0.1 N HCI    | pH 6.0 Phosphate Buffer | N/A   | No individual value exceeds 1% dissolved |
| 2        | 0.1 N HCI    | pH 6.5 Phosphate Buffer | N/A   | High %CV and low Concentration           |
| 3        | 0.1 N HCI    | pH 6.8 Phosphate Buffer | 15.59 | High %CV                                 |
| 4        | 0.1 N HCI    | pH 7.2 Phosphate Buffer | 62.29 |                                          |
| 5        | 0.1 N HCI    | pH 7.5 Phosphate Buffer | 51.68 |                                          |

BIO\_1G\_CHKLST.dot v.4/4/2003

**Note:** The firm did not submit the in vitro comparative dissolution study for 2 hours in 0.1 N HCl followed by pH 4.5 Acetate buffer. The firm will be requested to submit the data of in vitro comparative dissolution testing in pH 4.5 Acetate buffer at the time of dissolution review.

#### 5. Quality Control (QC) Dissolution study

USP dissolution method and specifications:

Dissolution Media: 0.1 N hydrochloric acid, 500 mL (Acid stage); pH 6.0 Phosphate buffer, 900 mL (Buffer stage 1); and pH 7.2 Phosphate buffer, 900 mL (Buffer stage 2)

Apparatus: USP Apparatus II (Paddle)

Speed: 100 rpm for Acid stage and for Buffer stage 1; 50 rpm for Buffer stage 2.

Times: 2 hours for Acid stage; 1 hour for Buffer stage 1; 90 minutes for Buffer stage 2.

Specifications for acid and buffer stage 1:

#### Acceptance Table

|       | Number        | •                                                                                                                                               |
|-------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Level | <b>Tested</b> | Criteria                                                                                                                                        |
| $L_1$ | 6             | No individual value exceeds 1% dissolved.                                                                                                       |
| $L_2$ | 6             | Average of the 12 units $(L_1 + L_2)$ is not more than 1% dissolved, and no individual unit is greater than 10% dissolved.                      |
| $L_3$ | 12            | Average of the 24 units $(L_1 + L_2 + L_3)$ is not more than 1% dissolved, and not more than one individual unit is greater than 10% dissolved. |

*Specifications for the buffer stage 2:* 

Not less than 80% (Q) of the labeled amount of  $C_7H_7NO_3$  is dissolved in 90 min.

**Note:** There is a USP method for this product. The firm's dissolution testing data with the USP method are acceptable. The firm's proposed specification is the same as the USP specification. The data of QC dissolution testing is acceptable.

#### 6. Formulation

BIO\_1G\_CHKLST.dot v.4/4/2003

Comparative list of excipients used in the RLD product and the proposed Generic product along with the functions:

| Reference Product                           | Proposed generic drug product                              | Function |
|---------------------------------------------|------------------------------------------------------------|----------|
| Sodium starch glycolate                     | Sodium Starch Glycolate, NF (b) (4)                        | (b) (4)  |
| Colloidal silicon dioxide                   | Colloidal Silicon Dioxide, NF (b) (4)                      |          |
| Magnesium stearate                          | Magnesium Stearate, NF                                     |          |
| Lactose monohydrate                         | Microcrystalline Cellulose, NF (b) (4)                     |          |
| Povidone                                    | Povidone (b) (4) USP (b) (4)                               |          |
| Talc                                        | Talc, USP                                                  |          |
| Methacrylic acid copolymer (b) (Eudragit S) | Methacrylic Acid Copolymer, NF (b) (4) (Eudragit S (b) (4) |          |
| Methacrylic acid copolymer (b) (Eudragit L) |                                                            |          |
| Polyethylene glycol                         | Acetyltributyl Citrate, NF                                 |          |
| Dibutyl (b) (4)                             |                                                            |          |
|                                             | Titanium Dioxide, USP (b) (4)                              |          |
| Ferric oxide red and yellow                 | Ferric Oxide Red, NF                                       |          |
| Edible black ink                            | Opacode Black (b) (4)                                      |          |

**Note:** Compared to the reference formulation, majority of excipients used in the test product are the same as those presented in the reference product.

#### 7. Overall Comments:

The Division of Bioequivalence II (DB II) acknowledge that the firm has submitted PK data under the fasting and fed conditions, the data of in vitro comparative dissolution study, and QC dissolution testing data to support its bioequivalence of mesalamine delayed release tablets to reference product (RLD: Asacol® HD). The DB II found this application acceptable for filing based on the data of in vitro comparative dissolution testing and standard calculations of AUC and Cmax. Yet, the calculation of pAUC was not used as the standard for filing because it is unclear about correct pAUC criteria at present. Therefore, the DB II recommends that the Office of Generic Drugs receive this application for filing.

BIO 1G\_CHKLST.dot v.4/4/2003

## **Enter Review Productivity and Generate Report**

ANDA: 203286

Reviewer: Ren, Ping Date Completed:

Verifier: , Date Verified:

**Division:** Division of Bioequivalence

**Description** Mesalamine Delayed Release Tablets USP 800

: MG

#### *Productivity:*

| ID    | Letter<br>Date | Productivity<br>Category | Sub Category             | Productivit y | Subtota<br>l |          |        |
|-------|----------------|--------------------------|--------------------------|---------------|--------------|----------|--------|
| 14805 | 7/12/2011      | Paragraph 4              | Paragraph 4<br>Checklist | 1             | 1            | Edi<br>t | Delete |
|       |                |                          |                          | Bean Total:   | 1            |          |        |

# DIVISION OF BIOEQUIVALENCE 2 REVIEW COMPLEXITY SUMMARY

Application

| F' (C ' C1 11')         | 1 |
|-------------------------|---|
| First Generic Checklist | 1 |
| Total                   | 1 |

| Grand Total | 1 |
|-------------|---|
|-------------|---|

BIO\_1G\_CHKLST.dot v.4/4/2003

This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature.

/s/

PING REN
08/29/2011

XIAOJIAN JIANG
08/29/2011

BARBARA M DAVIT 08/31/2011

| QI.                                                                                                                 |                                                          |                                                                                                                 |                                                                                                                                                                                                                |                                                |  |  |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|--|
| 27-12-19-22-15-23-23-23-23-23-23-23-23-23-23-23-23-23-                                                              | PUBLIC HEALT                                             | AND HUMAN SERVICES TH SERVICE DMINISTRATION                                                                     | REQUEST FOR CONSULTATION Consult No: 2011-0543                                                                                                                                                                 |                                                |  |  |
| TO (Division/Office)<br>DGP - HFD-180 Thru:                                                                         | : Richard (Wes) Is                                       | shihara, ODEIII HFD-103                                                                                         | FROM:<br>Johnny Young, R. Ph. (OGD)                                                                                                                                                                            |                                                |  |  |
| DATE: 7/28/2011                                                                                                     | IND NO.                                                  | ANDA NO.<br>203286                                                                                              | TYPE OF DOCUMENT<br>Original                                                                                                                                                                                   | DATE OF DOCUMENT 7/12/2011                     |  |  |
| NAME OF DRUG<br>Mesalamine Delayed-<br>USP, 800 mg                                                                  | release Tablets                                          | PRIORITY CONSIDERATION<br>60 days                                                                               | CLASSIFICATION OF DRUG<br>Ulcerative Colitis Product                                                                                                                                                           | DESIRED COMPLETION DATE<br>9/26/2011           |  |  |
| NAME OF FIRM Zy                                                                                                     | dus Pharmaceutic                                         | eals (USA) Inc.                                                                                                 |                                                                                                                                                                                                                |                                                |  |  |
|                                                                                                                     |                                                          | REASON FO                                                                                                       | OR REQUEST                                                                                                                                                                                                     |                                                |  |  |
|                                                                                                                     |                                                          | I. GEN                                                                                                          | NERAL                                                                                                                                                                                                          |                                                |  |  |
| Γ NEW PROTOCOL Γ PROGRESS REPOR Γ NEW CORRESPON Γ DRUG ADVERTISE Γ ADVERSE REACTIO Γ MANUFACTURING Γ MEETING PLANNE | DENCE<br>NG<br>ON REPORT<br>CHANGE/ADDII                 | Γ PRE NDA MEETING Γ END OF PHASE II MEETING Γ RESUBMISSION Γ SAFETY/EFFICACY Γ PAPER NDA ΠΟΝ Γ CONTROL SUPPLEMI | Γ RESPONSE TO DEFICIENCY LETTER Γ FINAL PRINTED LABELING Γ LABELING REVISION Γ ORIGINAL NEW CORRESPONDENCE Γ FORMULATIVE REVIEW IENT X OTHER ('specify below)                                                  |                                                |  |  |
|                                                                                                                     |                                                          | II.BION                                                                                                         | IETRICS                                                                                                                                                                                                        |                                                |  |  |
| STA                                                                                                                 | TISTICAL EVALU                                           | ATION BRANCH                                                                                                    | STATISTICAL APPLICATION BRANCH                                                                                                                                                                                 |                                                |  |  |
| Γ TYPE A OR B NDA REVIEW Γ END QF PHASE II MEETING Γ CONTROLLED STUDI ES Γ PROTOCOL REVIEW Γ OTHER                  |                                                          |                                                                                                                 | Γ CHEMISTRY Γ PHARMACOLOGY Γ BIOPHARMACEUTICS Γ OTHER                                                                                                                                                          |                                                |  |  |
|                                                                                                                     |                                                          | ІІІ.ВІОРНАГ                                                                                                     | RMACEUTICS                                                                                                                                                                                                     |                                                |  |  |
| DISSOLUTION<br>PROTOCOL BIOPI<br>INVIVO WAIVER                                                                      |                                                          |                                                                                                                 | DEFICIENCY LETTER RESPONS<br>BIOAVAILABILITY STUDIES<br>PHASE IV STUDIES                                                                                                                                       | SE                                             |  |  |
|                                                                                                                     |                                                          | IV.DRUG E                                                                                                       | XPERIENCE                                                                                                                                                                                                      |                                                |  |  |
| DRUG USE e.g. POF<br>CASE REPORTS OF                                                                                | PULATION EXPOS<br>SPECIFIC REACT                         | IOLOGY PROTOCOL<br>SURE, ASSOCIATED DIAGNOSES<br>TONS(List below)<br>TON GENERIC DRUG GROUP                     | REVIEW OF MARKETING EXPERIENCE, DRUG USE AND SAFETY _SUMMARY OF ADVERSE EXPERIENCE POISON RISK ANALYSIS                                                                                                        |                                                |  |  |
|                                                                                                                     |                                                          | V. SCIENTIFI                                                                                                    | C INVESTIGATIONS                                                                                                                                                                                               |                                                |  |  |
|                                                                                                                     |                                                          | CLINICAL                                                                                                        | PRECLINIC                                                                                                                                                                                                      | AL                                             |  |  |
| Each delayed-release<br>Please comment whe<br>are pdfs of the pharm                                                 | tablet contains<br>ther both the amo<br>/tox report subm | unt per dosage unit and the MDD pritted by the applicant in its ANDA are                                        | l level of Eudragit S  (b) used in their pro (d)  tabs tid. Therefore, the MDD of the inac roposed for this inactive are acceptable. I d the drug product formulation. hen it is being checked into DFS. Thank | etive is<br>Included with this consult request |  |  |
| SIGNATURE OF REQ                                                                                                    | UESTER                                                   |                                                                                                                 | METHOD OF DE LIVERY (Check one)  MAIL  HAND                                                                                                                                                                    |                                                |  |  |
| SIGNATURE OF REC                                                                                                    | EIVER                                                    |                                                                                                                 | SIGNATURE OF DELIVERER                                                                                                                                                                                         |                                                |  |  |

FORM FDA 3291 (7/83)

cc: ANDA Drug File Folder

| This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature. | • |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---|
| /s/                                                                                                                                             | • |
| JOHNNY L YOUNG<br>07/28/2011                                                                                                                    |   |

MEMORANDUM

# DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION CENTER FOR DRUG EVALUATION AND RESEARCH

DATE: July 19, 2011

TO: Director

Division of Bioequivalence (HFD-650)

FROM: Chief, Regulatory Support Branch

Office of Generic Drugs (HFD-615)

SUBJECT: Examination of the bioequivalence study submitted with an ANDA 203286 for

Mesalamine Delayed release Tablets, 800mg to determine if the application is substantially complete for filing and/or granting exclusivity pursuant to 21 USC 355(j)(5)(B)(iv).

(The new strength and first generic product. is 800 mg.)

Zydus Pharmaceuticals USA has submitted ANDA 203286 for Mesalamine Delayed release Tablets, 800mg. The ANDA contains a certification pursuant to 21 USC 355(j)(5)(B)(iv) stating that patent(s) for the reference listed drug will not be infringed by the manufacturing or sale of the proposed product. Also it is a <u>first generic</u>. In order to accept an ANDA that contains a first generic, the Agency must formally review and make a determination that the application is substantially complete. Included in this review is a determination that the bioequivalence study is complete, and could establish that the product is bioequivalent.

Please evaluate whether the request for study submitted by Zydus Pharmaceuticals USA on July 13, 2011 for its Mesalamine product satisfies the statutory requirements of "completeness" so that the ANDA may be filed.

A "complete" bioavailability or bioequivalence study is defined as one that conforms with an appropriate FDA guidance or is reasonable in design and purports to demonstrate that the proposed drug is bioequivalent to the "listed drug".

| This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature. |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| /s/                                                                                                                                             |
| EDA E HOWARD<br>07/19/2011                                                                                                                      |