## **CENTER FOR DRUG EVALUATION AND RESEARCH**

## Approval Package for:

## **APPLICATION NUMBER:**

## 125326Orig1s070

| Trade Name:<br>Generic or Proper<br>Name: | KESIMPTA<br>(ofatumumab)                                                                                                                                                                                                                                         |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sponsor:                                  | Novartis                                                                                                                                                                                                                                                         |
| Approval Date:                            | August 20, 2020                                                                                                                                                                                                                                                  |
| Indication:                               | KESIMPTA is a CD20-directed cytolytic antibody<br>indicated for the treatment of relapsing forms of multiple<br>sclerosis (MS), to include clinically isolated syndrome,<br>relapsing-remitting disease, and active secondary<br>progressive disease, in adults. |

## **CENTER FOR DRUG EVALUATION AND RESEARCH**

## 125326Orig1s070

## CONTENTS

## **Reviews / Information Included in this NDA Review.**

| Approval Letter                               | Χ |
|-----------------------------------------------|---|
| Other Action Letters                          |   |
| Labeling                                      | Χ |
| REMS                                          |   |
| Summary Review                                | Χ |
| Officer/Employee List                         |   |
| Office Director Memo                          |   |
| <b>Cross Discipline Team Leader Review</b>    |   |
| Clinical Review(s)                            | Χ |
| Product Quality Review(s)                     |   |
| Non-Clinical Review(s)                        | Χ |
| Statistical Review(s)                         | Χ |
| Clinical Microbiology / Virology Review(s)    |   |
| Clinical Pharmacology Review(s)               | Χ |
| Other Reviews                                 | Χ |
| Risk Assessment and Risk Mitigation Review(s) |   |
| Proprietary Name Review(s)                    | X |
| Administrative/Correspondence Document(s)     |   |

## CENTER FOR DRUG EVALUATION AND RESEARCH

**APPLICATION NUMBER:** 

## 125326Orig1s070

## **APPROVAL LETTER**



BLA 125326/S-70

## SUPPLEMENT APPROVAL

Novartis Pharmaceuticals Corporation Attention: Lisa Perkins, MBA Senior Global Program Regulatory Manager One Health Plaza, Building 310 / Room 2132D East Hanover, NJ 07936-1080

Dear Ms. Perkins:

Please refer to your supplemental biologics license application (sBLA), dated and received December 20, 2019, and your amendments, submitted under section 351(a) of the Public Health Service Act for Kesimpta (ofatumumab) injection.

We acknowledge receipt of your major amendment dated May 13, 2020, which extended the goal date by three months.

This Prior Approval sBLA provides for the subcutaneous administration of Kesimpta (ofatumumab) injection (20 mg/0.4 mL pre-filled syringe and pre-filled pen presentations) for the treatment of relapsing forms of multiple sclerosis (RMS), to include clinically isolated syndrome, relapsing-remitting disease, and active secondary progressive disease, in adults.

## **APPROVAL & LABELING**

We have completed our review of this application, as amended. It is approved, effective on the date of this letter, for use as recommended in the enclosed agreed-upon labeling.

## **CONTENT OF LABELING**

As soon as possible, but no later than 14 days from the date of this letter, submit, via the FDA automated drug registration and listing system (eLIST), the content of labeling [21 CFR 601.14(b)] in structured product labeling (SPL) format, as described at FDA.gov,<sup>1</sup> that is identical to the enclosed labeling (text for the Prescribing Information, Instructions for Use, and Medication Guide) and include the labeling changes proposed in any pending "Changes Being Effected" (CBE) supplements.

<sup>&</sup>lt;sup>1</sup> <u>http://www.fda.gov/ForIndustry/DataStandards/StructuredProductLabeling/default.htm</u>

Information on submitting SPL files using eLIST may be found in the guidance for industry *SPL Standard for Content of Labeling Technical Qs and As.*<sup>2</sup>

The SPL will be accessible via publicly available labeling repositories.

Also within 14 days, amend all pending supplemental applications that include labeling changes for this BLA, including pending "Changes Being Effected" (CBE) supplements, for which FDA has not yet issued an action letter, with the content of labeling [21 CFR 601.12(f)] in Microsoft Word format that includes the changes approved in this supplemental application, as well as annual reportable changes. To facilitate review of your submission(s), provide a highlighted or marked-up copy that shows all changes, as well as a clean Microsoft Word version. The marked-up copy should provide appropriate annotations, including supplement number(s) and annual report date(s).

## **CARTON AND CONTAINER LABELING**

Submit final printed carton and container labeling that are identical to the enclosed carton and container labeling as soon as they are available, but no more than 30 days after they are printed. Please submit these labeling electronically according to the guidance for industry *Providing Regulatory Submissions in Electronic Format* — *Certain Human Pharmaceutical Product Applications and Related Submissions Using the eCTD Specifications*. For administrative purposes, designate this submission "**Final Printed Carton and Container Labeling for approved BLA 125326/S-070**." Approval of this submission by FDA is not required before the labeling is used.

## REQUIRED PEDIATRIC ASSESSMENTS

Under the Pediatric Research Equity Act (PREA) (21 U.S.C. 355c), all applications for new active ingredients (which includes new salts and new fixed combinations), new indications, new dosage forms, new dosing regimens, or new routes of administration are required to contain an assessment of the safety and effectiveness of the product for the claimed indication in pediatric patients unless this requirement is waived, deferred, or inapplicable.

We are waiving the pediatric studies requirement for children 0 to less than 10 years of age because necessary studies are impossible or highly impracticable. This waiver is being granted because the number of children diagnosed with RMS in that age group is small.

We are deferring submission of your pediatric studies for children 10 to less than 18 years of age for this application because this product is ready for approval for use in adults and the pediatric study has not been completed.

<sup>&</sup>lt;sup>2</sup> We update guidances periodically. For the most recent version of a guidance, check the FDA Guidance Documents Database <u>https://www.fda.gov/RegulatoryInformation/Guidances/default.htm</u>.

Your deferred pediatric study required by section 505B(a) of the Federal Food, Drug, and Cosmetic Act is a required postmarketing study. The status of this postmarketing study must be reported annually according to 21 CFR 601.28 and section 505B(a)(4)(B) of the Federal Food, Drug, and Cosmetic Act. This required study is listed below.

3901-1 A two-part study of Kesimpta (ofatumumab) in pediatric patients with relapsing forms of multiple sclerosis (RMS) at least 10 years and less than 18 years of age. Part A is an open-label study of the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of Kesimpta (ofatumumab) in pediatric patients. Part A will include two cohorts, one with body weights less than 40 kg and the other with body weights 40 kg or more. The objective of Part A is to determine maintenance doses of Kesimpta (ofatumumab) that will result in PK and PD effects that are comparable to those of the dose administered to adult patients. Part B is a randomized, blinded, non-inferiority trial with Gilenya (fingolimod) as a comparator.

| Draft Protocol Submission: | 09/2020 |
|----------------------------|---------|
| Final Protocol Submission: | 01/2021 |
| Study Completion:          | 09/2025 |
| Final Report Submission:   | 03/2026 |

FDA considers the term *final* to mean that the applicant has submitted a protocol, the FDA review team has sent comments to the applicant, and the protocol has been revised as needed to meet the goal of the study or clinical trial.<sup>3</sup>

Submit the protocol(s) to your IND 111116, with a cross-reference letter to this BLA. Reports of this required pediatric postmarketing study must be submitted as a BLA or as a supplement to your approved BLA with the proposed labeling changes you believe are warranted based on the data derived from this study. When submitting the reports, please clearly mark your submission "**SUBMISSION OF REQUIRED PEDIATRIC ASSESSMENTS**" in large font, bolded type at the beginning of the cover letter of the submission.

## POSTMARKETING REQUIREMENTS UNDER 505(o)

Section 505(o)(3) of the Federal Food, Drug, and Cosmetic Act (FDCA) authorizes FDA to require holders of approved drug and biological product applications to conduct postmarketing studies and clinical trials for certain purposes, if FDA makes certain findings required by the statute.

<sup>&</sup>lt;sup>3</sup> See the guidance for Industry *Postmarketing Studies and Clinical Trials—Implementation of Section* 505(o)(3) of the Federal Food, Drug, and Cosmetic Act (October 2019). https://www.fda.gov/RegulatoryInformation/Guidances/default.htm.

We have determined that an analysis of spontaneous postmarketing adverse events reported under subsection 505(k)(1) of the FDCA will not be sufficient to identify an unexpected serious risk of adverse maternal, fetal, and infant outcomes resulting from the use of Kesimpta (ofatumumab) during pregnancy.

Furthermore, the active postmarket risk identification and analysis system as available under section 505(k)(3) of the FDCA will not be sufficient to assess this serious risk.

Therefore, based on appropriate scientific data, FDA has determined that you are required to conduct the following:

Prospective pregnancy exposure registry cohort analyses in the 3901-2 United States that compare the maternal, fetal, and infant outcomes of women with multiple sclerosis exposed to Kesimpta (ofatumumab) during pregnancy with two unexposed control populations: one consisting of women with multiple sclerosis who have not been exposed to Kesimpta (ofatumumab) before or during pregnancy and the other consisting of women without multiple sclerosis. The registry will identify and record pregnancy complications, major and minor congenital malformations, spontaneous abortions, stillbirths, elective terminations, preterm births, small-for-gestational-age births, and any other adverse outcomes, including postnatal growth and development. Outcomes will be assessed throughout pregnancy. Infant outcomes, including effects on postnatal growth and development, will be assessed through at least the first year of life.

The timetable you submitted on July 28, 2020, states that you will conduct this study according to the following schedule:

| Draft Protocol Submission:         | 06/2021 |
|------------------------------------|---------|
| Final Protocol Submission:         | 02/2022 |
| Annual Interim Report Submissions: | 08/2023 |
|                                    | 08/2024 |
|                                    | 08/2025 |
|                                    | 08/2026 |
|                                    | 08/2027 |
|                                    | 08/2028 |
|                                    | 08/2029 |
|                                    | 08/2030 |
|                                    | 08/2031 |
|                                    | 08/2032 |
| Study Completion:                  | 02/2033 |
| Final Report Submission:           | 02/2034 |
|                                    |         |

U.S. Food and Drug Administration Silver Spring, MD 20993 www.fda.gov

> 3901-3 A pregnancy outcomes study using a different study design than provided for in PMR 3901-2 (for example, a retrospective cohort study using claims or electronic medical record data with outcome validation or a case-control study) to assess major congenital malformations, spontaneous abortions, stillbirths, preterm births, and small-for-gestational-age births in women exposed to Kesimpta (ofatumumab) during pregnancy compared to an unexposed control population.

The timetable you submitted on July 28, 2020, states that you will conduct this study according to the following schedule:

| Draft Protocol Submission:         | 06/2021 |
|------------------------------------|---------|
| Final Protocol Submission:         | 02/2022 |
| Annual Interim Report Submissions: | 08/2023 |
|                                    | 08/2024 |
|                                    | 08/2025 |
|                                    | 08/2026 |
|                                    | 08/2027 |
|                                    | 08/2028 |
|                                    | 08/2029 |
|                                    | 08/2030 |
|                                    | 08/2031 |
|                                    | 08/2032 |
| Study Completion:                  | 02/2033 |
| Final Report Submission:           | 02/2034 |
|                                    |         |

FDA considers the term *final* to mean that the applicant has submitted a protocol, the FDA review team has sent comments to the applicant, and the protocol has been revised as needed to meet the goal of the study or clinical trial.<sup>4</sup>

Finally, we have determined that only a clinical trial (rather than a nonclinical or observational study) will be sufficient to assess a signal of a serious risk of diminished serum immunoglobulin levels and the potential for a resultant increased risk of infections, particularly opportunistic infections.

Therefore, based on appropriate scientific data, FDA has determined that you are required to conduct the following trial:

<sup>&</sup>lt;sup>4</sup> See the guidance for Industry *Postmarketing Studies and Clinical Trials—Implementation of Section* 505(o)(3) of the Federal Food, Drug, and Cosmetic Act (October 2019). https://www.fda.gov/RegulatoryInformation/Guidances/default.htm.

> 3901-4 A safety trial to monitor serum immunoglobulin G and M levels in patients with relapsing forms of multiple sclerosis during treatment with Kesimpta (ofatumumab) to establish the nadir in circulating immunoglobulins during chronic treatment, and to monitor patients after discontinuation of treatment with Kesimpta (ofatumumab) in order to ascertain the time needed to ensure restoration of pretreatment baseline circulating serum levels of immunoglobulins G and M. This trial also should be designed to capture rates of infections, especially opportunistic and recurrent infections associated with immune suppression, and there should be monitoring of B-cell counts throughout treatment and after discontinuation until repletion of immunoglobulin levels.

The timetable you submitted on July 23, 2020, states that you will conduct this trial according to the following schedule:

| Draft Protocol Submission: | 05/2021 |
|----------------------------|---------|
| Final Protocol Submission: | 01/2022 |
| Trial Completion:          | 05/2028 |
| Final Report Submission:   | 05/2029 |

FDA considers the term *final* to mean that the applicant has submitted a protocol, the FDA review team has sent comments to the applicant, and the protocol has been revised as needed to meet the goal of the study or clinical trial.<sup>5</sup>

Submit the protocols to your IND 111116, with a cross-reference letter to this BLA. Submit nonclinical and chemistry, manufacturing, and controls protocols and all postmarketing final reports to your BLA. Prominently identify the submission with the following wording in bold capital letters at the top of the first page of the submission, as appropriate: **"Required Postmarketing Protocol Under 505(o)"**, **"Required Postmarketing Final Report Under 505(o)"**, **"Required Postmarketing Correspondence Under 505(o)"**.

Submission of the protocols for required postmarketing observational studies to your IND is for purposes of administrative tracking only. These studies do not constitute clinical investigations pursuant to 21 CFR 312.3(b) and therefore are not subject to the IND requirements under 21 CFR part 312 or FDA's regulations under 21 CFR parts 50 (Protection of Human Subjects) and 56 (Institutional Review Boards).

Section 505(o)(3)(E)(ii) of the FDCA requires you to report periodically on the status of any study or clinical trial required under this section. This section also requires you to

U.S. Food and Drug Administration Silver Spring, MD 20993 www.fda.gov

<sup>&</sup>lt;sup>5</sup> See the guidance for Industry *Postmarketing Studies and Clinical Trials—Implementation of Section* 505(o)(3) of the Federal Food, Drug, and Cosmetic Act (October 2019). https://www.fda.gov/RegulatoryInformation/Guidances/default.htm.

periodically report to FDA on the status of any study or clinical trial otherwise undertaken to investigate a safety issue. Section 506B of the FDCA, as well as 21 CFR 601.70 requires you to report annually on the status of any postmarketing commitments or required studies or clinical trials.

FDA will consider the submission of your annual report under section 506B and 21 CFR 601.70 to satisfy the periodic reporting requirement under section 505(o)(3)(E)(ii) provided that you include the elements listed in 505(o) and 21 CFR 601.70 We remind you that to comply with 505(o), your annual report must also include a report on the status of any study or clinical trial otherwise undertaken to investigate a safety issue. Failure to submit an annual report for studies or clinical trials required under 505(o) on the date required will be considered a violation of FDCA section 505(o)(3)(E)(ii) and could result in enforcement action.

## POSTMARKETING COMMITMENTS NOT SUBJECT TO THE REPORTING REQUIREMENTS UNDER SECTION 506B

We remind you of your postmarketing commitment:

3901-5 Conduct a study to evaluate the presence of leachables in pre-filled syringe drug product material that is representative of the commercial process and stored in the intended pre-filled syringe at long-term storage conditions ( $5\pm3^{\circ}$ C) up to the proposed expiry date

The timetable you submitted on August 4, 2020, states that you will conduct this study according to the following schedule:

| Study Completion:        | 10/2021 |
|--------------------------|---------|
| Final Report Submission: | 12/2021 |

Submit clinical protocols to your IND 111116 for this product. Submit nonclinical and chemistry, manufacturing, and controls protocols and all postmarketing final reports to this BLA. In addition, under 21 CFR 601.70 you should include a status summary of each commitment in your annual progress report of postmarketing studies to this BLA. The status summary should include expected summary completion and final report submission dates, any changes in plans since the last annual report, and, for clinical studies/trials, number of patients entered into each study/trial. All submissions, including supplements, relating to these postmarketing commitments should be prominently labeled "Postmarketing Commitment Protocol," "Postmarketing Commitment Correspondence."

U.S. Food and Drug Administration Silver Spring, MD 20993 www.fda.gov

## **PROMOTIONAL MATERIALS**

You may request advisory comments on proposed introductory advertising and promotional labeling. For information about submitting promotional materials, see the final guidance for industry *Providing Regulatory Submissions in Electronic and Non-Electronic Format*—*Promotional Labeling and Advertising Materials for Human Prescription Drugs.*<sup>6</sup>

As required under 21 CFR 601.12(f)(4), you must submit final promotional materials, and the Prescribing Information, at the time of initial dissemination or publication, accompanied by a Form FDA 2253. Form FDA 2253 is available at FDA.gov.<sup>7</sup> Information and Instructions for completing the form can be found at FDA.gov.<sup>8</sup>

### **REPORTING REQUIREMENTS**

We remind you that you must comply with reporting requirements for an approved BLA (in 21 CFR 600.80 and in 21 CFR 600.81).

If you have any questions, call Candido Alicea, Regulatory Project Manager, at (240) 402-8310.

Sincerely,

{See appended electronic signature page}

Nick Kozauer, MD Acting Director Division of Neurology 2 Office of Neuroscience Center for Drug Evaluation and Research

ENCLOSURES:

- Content of Labeling
  - Prescribing Information
  - o Medication Guide
  - o Instructions for Use

<sup>6</sup> For the most recent version of a guidance, check the FDA guidance web page at<u>https://www.fda.gov/media/128163/download.</u>

<sup>7</sup> http://www.fda.gov/downloads/AboutFDA/ReportsManualsForms/Forms/UCM083570.pdf

<sup>8</sup> <u>http://www.fda.gov/downloads/AboutFDA/ReportsManualsForms/Forms/UCM375154.pdf</u>
U.S. Food and Drug Administration

Silver Spring, MD 20993 www.fda.gov This is a representation of an electronic record that was signed electronically. Following this are manifestations of any and all electronic signatures for this electronic record.

/s/

NICHOLAS A KOZAUER 08/20/2020 10:36:51 AM

## CENTER FOR DRUG EVALUATION AND RESEARCH

**APPLICATION NUMBER:** 

## 125326Orig1s070

## **LABELING**

#### HIGHLIGHTS OF PRESCRIBING INFORMATION

#### These highlights do not include all the information needed to use KESIMPTA safely and effectively. See full prescribing information for KESIMPTA.

#### KESIMPTA® (ofatumumab) injection, for subcutaneous use Initial U.S. Approval: 2009

#### -----DOSAGE AND ADMINISTRATION-----

- Hepatitis B virus (HBV) and quantitative serum immunoglobulins screening are required before the first dose. (2.1)
- Administer KESIMPTA by subcutaneous injection only. (2.2, 2.3)
- Initial Dosing: 20 mg administered at Week 0, 1, and 2. (2.2)
- Subsequent Dosing: 20 mg administered monthly starting at Week 4. (2.2)

#### -----DOSAGE FORMS AND STRENGTHS------

- Injection: 20 mg/0.4 mL solution in a single-dose prefilled Sensoready<sup>®</sup> nen (3)
- Injection: 20 mg/0.4 mL solution in a single-dose prefilled syringe (3)
- -----CONTRAINDICATIONS------
- Active HBV infection. (4)

#### -----WARNINGS AND PRECAUTIONS------

- <u>Infections:</u> Delay KESIMPTA administration in patients with an active infection until the infection is resolved. Vaccination with live-attenuated or live vaccines is not recommended during treatment with KESIMPTA and after discontinuation, until B-cell repletion. (5.1)
- <u>Injection-Related Reactions:</u> Management for injection-related reactions depends on the type and severity of the reaction. (5.2)
- <u>Reduction in Immunoglobulins</u>: Monitor the level of immunoglobulins at the beginning, during, and after discontinuation of treatment with KESIMPTA until B-cell repletion. Consider discontinuing KESIMPTA if a patient develops a serious opportunistic infection or recurrent infections if immunoglobulin levels indicate immune compromise. (5.3)
- <u>Fetal Risk:</u> May cause fetal harm based on animal data. Advise females of reproductive potential of the potential risk to a fetus and to use an effective method of contraception during treatment and for 6 months after stopping KESIMPTA. (5.4, 8.1)

------ADVERSE REACTIONS-------Most common adverse reactions (incidence greater than 10%) are upper respiratory tract infection, headache, injection-related reactions, and local injection site reactions. (6.1)

#### To report SUSPECTED ADVERSE REACTIONS, contact Novartis Pharmaceuticals Corporation at 1-888-669-6682 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

See 17 for PATIENT COUNSELING INFORMATION and Medication Guide.

Revised: 8/2020

FULL PRESCRIBING INFORMATION: CONTENTS\* 1 INDICATIONS AND USAGE

#### 2 DOSAGE AND ADMINISTRATION

- 2.1 Assessments Prior to First Dose of KESIMPTA
- 2.2 Recommended Dosage
- 2.3 Administration Instructions
- 2.4 Preparation of KESIMPTA
- 3 DOSAGE FORMS AND STRENGTHS
- 4 CONTRAINDICATIONS
- 5 WARNINGS AND PRECAUTIONS
  - 5.1 Infections
  - 5.2 Injection-Related Reactions
  - 5.3 Reduction in Immunoglobulins
  - 5.4 Fetal Risk

#### 6 ADVERSE REACTIONS

- 6.1 Clinical Trials Experience
- 6.2 Immunogenicity
- 7 DRUG INTERACTIONS
- 7.1 Immunosuppressive or Immune-Modulating Therapies
- USE IN SPECIFIC POPULATIONS
- 8.1 Pregnancy

8

- 8.2 Lactation
- 8.3 Females and Males of Reproductive Potential
- 8.4 Pediatric Use
- 8.5 Geriatric Use
- 11 DESCRIPTION

13

- 12 CLINICAL PHARMACOLOGY
  - 12.1 Mechanism of Action
  - 12.2 Pharmacodynamics
  - 12.3 Pharmacokinetics
  - NONCLINICAL TOXICOLOGY
- 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility14 CLINICAL STUDIES
- 16 HOW SUPPLIED/STORAGE AND HANDLING
  - 16.1 How Supplied
  - 16.2 Storage and Handling
- 17 PATIENT COUNSELING INFORMATION

\*Sections or subsections omitted from the full prescribing information are not listed.

## FULL PRESCRIBING INFORMATION

## 1 INDICATIONS AND USAGE

KESIMPTA is indicated for the treatment of relapsing forms of multiple sclerosis (MS), to include clinically isolated syndrome, relapsing-remitting disease, and active secondary progressive disease, in adults.

### 2 DOSAGE AND ADMINISTRATION

### 2.1 Assessments Prior to First Dose of KESIMPTA

#### Hepatitis B Virus Screening

Prior to initiating KESIMPTA, perform Hepatitis B virus (HBV) screening. KESIMPTA is contraindicated in patients with active HBV confirmed by positive results for Hepatitis B surface antigen [HBsAg] and anti-HBV tests. For patients who are negative for HBsAg and positive for Hepatitis B core antibody [HBcAb+] or are carriers of HBV [HBsAg+], consult liver disease experts before starting and during treatment with KESIMPTA [see Warnings and Precautions (5.1)].

#### Serum Immunoglobulins

Prior to initiating KESIMPTA, perform testing for quantitative serum immunoglobulins [see Warnings and Precautions (5.3)]. For patients with low serum immunoglobulins, consult immunology experts before initiating treatment with KESIMPTA.

#### Vaccinations

Because vaccination with live-attenuated or live vaccines is not recommended during treatment and after discontinuation until B-cell repletion, administer all immunizations according to immunization guidelines at least 4 weeks prior to initiation of KESIMPTA for live or live-attenuated vaccines, and whenever possible, at least 2 weeks prior to initiation of KESIMPTA for inactivated vaccines [see Warnings and Precautions (5.1)].

### 2.2 Recommended Dosage

The recommended dosage of KESIMPTA is:

- initial dosing of 20 mg by subcutaneous injection at Weeks 0, 1, and 2, followed by
- subsequent dosing of 20 mg by subcutaneous injection once monthly starting at Week 4.

### Missed Doses

If an injection of KESIMPTA is missed, it should be administered as soon as possible without waiting until the next scheduled dose. Subsequent doses should be administered at the recommended intervals.

#### 2.3 Administration Instructions

Administer by subcutaneous injection only.

KESIMPTA is intended for patient self-administration by subcutaneous injection.

Administer KESIMPTA in the abdomen, thigh, or outer upper arm subcutaneously. Do not give injection into moles, scars, stretch marks or areas where the skin is tender, bruised, red, scaly or hard.

The first injection of KESIMPTA should be performed under the guidance of a healthcare professional *[see Warnings and Precautions (5.2)]*.

KESIMPTA Sensoready<sup>®</sup> pens and syringes are for one-time use only and should be discarded after use. See Instructions for Use for complete administration instructions.

### 2.4 Preparation of KESIMPTA

The KESIMPTA "Instructions for Use" for each presentation contains more detailed instructions on the preparation of KESIMPTA.

Before administration, remove KESIMPTA Sensoready pen or KESIMPTA prefilled syringe from the refrigerator and allow KESIMPTA to reach room temperature for about 15 to 30 minutes. DO NOT remove the needle cover while allowing the prefilled syringe to reach room temperature.

Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever solution and container permit. Do not use if the liquid contains visible particles or is cloudy.

## **3 DOSAGE FORMS AND STRENGTHS**

KESIMPTA is a clear to slightly opalescent, and colorless to slightly brownish-yellow solution available as follows:

- Injection: 20 mg/0.4 mL in a single-dose prefilled Sensoready pen
- Injection: 20 mg/0.4 mL in a single-dose prefilled syringe

## 4 CONTRAINDICATIONS

KESIMPTA is contraindicated in patients with:

• Active HBV infection [see Warnings and Precautions (5.1)].

## 5 WARNINGS AND PRECAUTIONS

### 5.1 Infections

An increased risk of infections has been observed with other anti-CD20 B-cell depleting therapies.

KESIMPTA has the potential for an increased risk of infections, including serious bacterial, fungal, and new or reactivated viral infections; some of these infections have been fatal in patients treated with other anti-CD20 antibodies. In Study 1 and Study 2 *[see Clincial Studies (14)]*, the overall rate of infections and serious infections in patients treated with KESIMPTA was similar to patients who were treated with teriflunomide (51.6% vs 52.7%, and 2.5% vs 1.8%, respectively). The most common infections reported by KESIMPTA-treated patients in the randomized clinical relapsing MS (RMS) trials included upper respiratory tract infection (39%) and urinary tract infection (10%). Delay KESIMPTA administration in patients with an active infection until the infection is resolved.

### Possible Increased Risk of Immunosuppressant Effects with Other Immunosuppressants

When initiating KESIMPTA after an immunosuppressive therapy or initiating an immunosuppressive therapy after KESIMPTA, consider the potential for increased immunosuppressive effects [see Drug Interactions (7.1) and Clinical Pharmacology (12.2)]. KESIMPTA has not been studied in combination with other MS therapies.

### Hepatitis B Virus

### Reactivation

There were no reports of HBV reactivation in patients with MS treated with KESIMPTA. However, HBV reactivation, in some cases resulting in fulminant hepatitis, hepatic failure, and death, has occurred in patients being treated with ofatumumab for chronic lymphocytic leukemia (CLL) (at higher intravenous doses than the recommended dose in MS but for a shorter duration of treatment) and in patients treated with other anti-CD20 antibodies.

### Infection

KESIMPTA is contraindicated in patients with active hepatitis B disease. Fatal infections caused by HBV in patients who have not been previously infected have occurred in patients being treated with ofatumumab for CLL (at higher intravenous doses than the recommended dose in MS but for a shorter duration of treatment). HBV screening should be performed in all patients before initiation of treatment with KESIMPTA. At a minimum, screening should include Hepatitis B surface antigen (HBsAg) and Hepatitis B Core Antibody (HBcAb) testing. These can be complemented with other appropriate markers as per local guidelines. For patients who are negative for HBsAg and positive for HB core antibody [HBcAb+] or are carriers of HBV [HBsAg+], consult liver disease experts before starting and during treatment with KESIMPTA. These patients should be monitored and managed following local medical standards to prevent HBV infection or reactivation.

### Progressive Multifocal Leukoencephalopathy

Progressive multifocal leukoencephalopathy (PML) is an opportunistic viral infection of the brain caused by the JC virus (JCV) that typically occurs in patients who are immunocompromised, and that usually leads to death or severe disability.

Although no cases of PML have been reported for KESIMPTA in the RMS clinical studies, PML resulting in death has occurred in patients being treated with ofatumumab for CLL (at substantially higher intravenous doses than the recommended dose in MS but for a shorter duration of treatment). In addition, JCV infection resulting in PML has also been observed in patients treated with other anti-CD20 antibodies and other MS therapies. At the first sign or symptom suggestive of PML, withhold KESIMPTA and perform an appropriate diagnostic evaluation. Magnetic reasonance imaging (MRI) findings may be apparent before clinical signs or symptoms. Typical symptoms associated with PML are diverse, progress over days to weeks, and include progressive weakness on one side of the body or clumsiness of limbs, disturbance of vision, and changes in thinking, memory, and orientation leading to confusion and personality changes.

If PML is confirmed, treatment with KESIMPTA should be discontinued.

#### Vaccinations

Administer all immunizations according to immunization guidelines at least 4 weeks prior to initiation of KESIMPTA for live or live-attenuated vaccines, and whenever possible, at least 2 weeks prior to initiation of KESIMPTA for inactivated vaccines.

KESIMPTA may interfere with the effectiveness of inactivated vaccines.

The safety of immunization with live or live-attenuated vaccines following KESIMPTA therapy has not been studied. Vaccination with live or live-attenuated vaccines is not recommended during treatment and after discontinuation until B-cell repletion [see Clinical Pharmacology (12.2)].

### Vaccination of Infants Born to Mothers Treated with KESIMPTA During Pregnancy

In infants of mothers treated with KESIMPTA during pregnancy, do not administer live or live-attenuated vaccines before confirming the recovery of B-cell counts. Depletion of B-cells in these infants may increase the risks from live or live-attenuated vaccines.

Inactivated vaccines may be administered, as indicated, prior to recovery from B-cell depletion, but an assessment of vaccine immune responses, including consultation with a qualified specialist, should be considered to determine whether a protective immune response was mounted.

### 5.2 Injection-Related Reactions

In Study 1 and Study 2, systemic and local injection reactions were reported in 21% and 11% of patients treated with KESIMPTA compared to 15% and 6% of patients treated with teriflunomide who received matching placebo injections, respectively [see Adverse Reactions (6.1) and Clinical Studies (14)].

Injection-related reactions with systemic symptoms observed in clinical studies occurred most commonly within 24 hours of the first injection, but were also observed with later injections. Symptoms observed included fever, headache, myalgia, chills, and fatigue, and were predominantly (99.8%) mild to moderate in severity. There were no life-threatening injection reactions in the RMS clinical studies.

Local injection-site reaction symptoms observed in clinical studies included erythema, swelling, itching, and pain.

Only limited benefit of premedication with corticosteroids, antihistamines, or acetaminophen was observed in RMS clinical studies. The first injection of KESIMPTA should be performed under the guidance of an appropriately trained healthcare professional. If injection-related reactions occur, symptomatic treatment is recommended.

### 5.3 Reduction in Immunoglobulins

As expected with any B-cell depleting therapy, decreased immunoglobulin levels were observed. Decrease in immunoglobulin M (IgM) was reported in 7.7% of patients treated with KESIMPTA compared to 3.1% of patients treated with teriflunomide in RMS clinical trials *[see Adverse Reactions (6.1)]*. Treatment was discontinued because of decreased immunoglobulins in 3.4% of patients treated with KESIMPTA and in 0.8% of patients treated with teriflunomide. No decline in immunoglobulin G (IgG) was observed at the end of the study. Monitor the levels of quantitative serum immunoglobulins during treatment, especially in patients with opportunistic or recurrent infections, and after discontinuation of therapy until B-cell repletion. Consider discontinuing KESIMPTA therapy if a patient with low immunoglobulins develops a serious opportunistic infection or recurrent infections, or if prolonged hypogammaglobulinemia requires treatment with intravenous immunoglobulins.

## 5.4 Fetal Risk

Based on animal data, KESIMPTA can cause fetal harm due to B-cell lymphopenia and reduce antibody response in offspring exposed to KESIMPTA in utero. Transient peripheral B-cell depletion and lymphocytopenia have been reported in infants born to mothers exposed to other anti-CD20 B-cell depleting antibodies during pregnancy. Advise females of reproductive potential to use effective contraception while receiving KESIMPTA and for at least 6 months after the last dose [see Use in Specific Populations (8.1)].

## 6 ADVERSE REACTIONS

The following clinically significant adverse reactions are discussed in greater detail elsewhere in the labeling:

- Infections [see Warnings and Precautions (5.1)]
- Injection-Related Reactions [see Warnings and Precautions (5.2)]
- Reduction in Immunoglobulins [see Warnings and Precautions (5.3)]

### 6.1 Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reactions rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice.

Approximately 1500 patients with RMS received KESIMPTA in clinical studies. In Study 1 and Study 2, 1882 patients with RMS were randomized, 946 of whom were treated with KESIMPTA for a median duration of 85 weeks; 33% of patients receiving KESIMPTA were treated for up to 120 weeks [see Clinical Studies (14.1)]. The most common adverse reactions occurring in greater than 10% of patients treated with KESIMPTA and more frequently than in patients treated with teriflunomide were upper respiratory tract infections, injection-related reactions (systemic), headache, and injection-site reactions (local). The most common cause of discontinuation in patients treated with KESIMPTA was low immunoglobulin M (3.3%), defined in trial protocols as IgM at 10% below the lower limit of normal (LLN).

Table 1 summarizes the adverse drug reactions that occurred in Study 1 and Study 2.

## Table 1: Adverse Reactions in Patients with RMS with an Incidence of at Least 5% with KESIMPTA and a Greater Incidence Than Teriflunomide (Pooled Study 1 and Study 2)

| Adverse Reactions                               | KESIMPTA 20 mg<br>N = 946<br>% | Teriflunomide 14 mg<br>N = 936<br>% |
|-------------------------------------------------|--------------------------------|-------------------------------------|
| Upper respiratory tract infections <sup>a</sup> | 39                             | 38                                  |
| Injection-related reactions<br>(systemic)       | 21                             | 15                                  |
| Headache                                        | 13                             | 12                                  |
| Injection-site reactions (local)                | 11                             | 6                                   |
| Urinary tract infection                         | 10                             | 8                                   |
| Back pain                                       | 8                              | 6                                   |
| Blood immunoglobulin M<br>decreased             | 6                              | 2                                   |

<sup>a</sup>Includes the following: nasopharyngitis, upper respiratory tract infection, influenza, sinusitis, pharyngitis, rhinitis, viral upper respiratory infection, tonsillitis, acute sinusitis, pharyngotonsillitis, laryngitis, pharyngitis streptococcal, viral rhinitis, sinusitis bacterial, tonsillitis bacterial, viral pharyngitis, viral tonsillitis, chronic sinusitis, nasal herpes, tracheitis.

#### Injection-Related Reactions and Injection-Site Reactions

The incidence of injection-related reactions (systemic) was highest with the first injection (14.4%), decreasing with subsequent injections (4.4% with second, less than 3% with third injection). Injection-related reactions were mostly (99.8%) mild to moderate in severity. Two (0.2%) patients treated with KESIMPTA reported serious injection-related

reactions. There were no life-threatening injection-related reactions. Most frequently reported symptoms (2% or greater) included fever, headache, myalgia, chills, and fatigue.

In addition to systemic injection-related reactions, local reactions at the administration site were very common. Local injection-site reactions were all mild to moderate in severity. The most frequently reported symptoms (2% or greater) included erythema, pain, itching, and swelling *[see Warnings and Precautions (5.2)]*.

#### Laboratory Abnormalities

#### Immunoglobulins

In Study 1 and Study 2, a decrease in the mean level of IgM was observed in KESIMPTA-treated patients but was not associated with an increased risk of infections *[see Warnings and Precautions (5.3)]*. In 14.3% of patients in Study 1 and Study 2, treatment with KESIMPTA resulted in a decrease in a serum IgM that reached a value below 0.34 g/dL. KESIMPTA was associated with a decrease of 4.3% in mean IgG levels after 48 weeks of treatment and an increase of 2.2% after 96 weeks.

#### 6.2 Immunogenicity

As with all therapeutic proteins, there is potential for immunogenicity. The detection of antibody formation is highly dependent on the sensitivity and specificity of the assay. Additionally, the observed incidence of antibody (including neutralizing antibody) positivity in an assay may be influenced by several factors, including assay methodology, sample handling, timing of sample collection, concomitant medication, and the underlying disease. For these reasons, comparison of the incidence of antibodies in the studies described below with the incidence of antibodies in other studies or to other of atumumab products may be misleading.

Treatment induced anti-drug antibodies (ADAs) were detected in 2 of 914 (0.2%) KESIMPTA-treated patients; no patients with treatment enhancing or neutralizing ADAs were identified. There was no impact of positive ADA titers on PK, safety profile or B-cell kinetics in any patient; however, these data are not adequate to assess the impact of ADAs on the safety and efficacy of KESIMPTA.

#### 7 DRUG INTERACTIONS

### 7.1 Immunosuppressive or Immune-Modulating Therapies

Concomitant usage of KESIMPTA with immunosuppressant drugs, including systemic corticosteroids, may increase the risk of infection. Consider the risk of additive immune system effects when coadministering immunosuppressive therapies with KESIMPTA.

When switching from therapies with immune effects, the duration and mechanism of action of these therapies should be taken into account because of potential additive immunosuppressive effects when initiating KESIMPTA.

### 8 USE IN SPECIFIC POPULATIONS

#### 8.1 Pregnancy

#### **Risk Summary**

There are no adequate data on the developmental risk associated with the use of KESIMPTA in pregnant women. Ofatumumab may cross the placenta and cause fetal B-cell depletion based on findings from animal studies (*see Data*).

Transient peripheral B-cell depletion and lymphocytopenia have been reported in infants born to mothers exposed to other anti-CD20 antibodies during pregnancy. B-cell levels in infants following maternal exposure to KESIMPTA have not been studied in clinical trials. The potential duration of B-cell depletion in infants exposed to ofatumumab *in utero*, and the impact of B-cell depletion on the safety and effectiveness of vaccines, are unknown. Avoid administering live vaccines to neonates and infants exposed to KESIMPTA *in utero* until B-cell recovery occurs [see Warnings and Precautions (5.2) and Clinical Pharmacology (12.2)].

Following administration of of atumumab to pregnant monkeys, increased mortality, depletion of B-cell populations, and impaired immune function were observed in the offspring, in the absence of maternal toxicity, at plasma levels substantially higher than that in humans (*see Data*).

In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2% to 4% and 15% to 20%, respectively. The background risk of major birth defects and miscarriage for the indicated population is unknown.

## Data

### Animal Data

Intravenous administration of ofatumumab (weekly doses of 0, 20, or 100 mg/kg) to pregnant monkeys during the period of organogenesis (gestations days 20 to 50) resulted in no adverse effects on embryofetal development; however, B-cell depletion was observed in fetuses at both doses when assessed on gestation day 100. Plasma exposure ( $C_{ave}$ ) at the no-effect dose (100 mg/kg) for adverse effects on embryofetal development was greater than 5000 times that in humans at the recommended human maintenance dose of 20 mg. A no-effect dose for effects on B-cells was not identified; plasma exposure ( $C_{ave}$ ) at the low-effect dose (20 mg/kg) was approximately 780 times that in humans at the recommended human maintenance dose (RHMD) of 20 mg/month.

Intravenous administration of ofatumumab (5 weekly doses of 0, 10, and 100 mg/kg, followed by biweekly doses of 0, 3, and 20 mg/kg) to pregnant monkeys throughout pregnancy resulted in no adverse effects on the development of the offspring. However, postnatal death, B-cell depletion, and impaired immune function were observed in the offspring at the high dose. The deaths at the high dose were considered secondary to B-cell depletion. Plasma exposure ( $C_{ave}$ ) in dams at the no-effect dose (100/20 mg/kg) for adverse developmental effects was approximately 500 times that in humans at RHMD. A no-effect level for mortality and immune effects in offspring was not established because of the limited number of evaluable offspring at the low dose.

## 8.2 Lactation

## Risk Summary

There are no data on the presence of ofatumumab in human milk, the effects on the breastfed infant, or the effects of the drug on milk production. Human IgG is excreted in human milk, and the potential for absorption of ofatumumab to lead to B-cell depletion in the infant is unknown. The developmental and health benefits of breastfeeding should be considered along with the mother's clinical need for KESIMPTA and any potential adverse effects on the breastfed infant from KESIMPTA or from the underlying maternal condition.

### 8.3 Females and Males of Reproductive Potential

### **Contraception**

Females of childbearing potential should use effective contraception while receiving KESIMPTA and for 6 months after the last treatment of KESIMPTA [see Warnings and Precautions (5.4) and Clinical Pharmacology (12.3)].

### 8.4 Pediatric Use

Safety and effectiveness in pediatric patients have not been established.

## 8.5 Geriatric Use

Clinical studies of KESIMPTA did not include sufficient numbers of geriatric patients to determine whether they respond differently from younger subjects.

## 11 **DESCRIPTION**

Ofatumumab is a recombinant human monoclonal immunoglobulin G1 (IgG1) antibody that binds to human CD20 expressed on B-cells. Ofatumumab is produced in a murine NS0 cell line and consists of two IgG1 heavy chains and two kappa light chains with a molecular weight of approximately 146 kDa.

KESIMPTA (ofatumumab) injection is a sterile, preservative-free solution for subcutaneous use.

Each 20 mg/0.4 mL KESIMPTA Sensoready pen or prefilled syringe delivers 0.4 mL of solution. Each 0.4 mL contains 20 mg of ofatumumab, and arginine (4 mg), disodium edetate (0.007 mg), polysorbate 80 (0.08 mg), sodium acetate trihydrate (2.722 mg), sodium chloride (1.192 mg), and Water for Injection, USP with a pH of 5.5. Hydrochloric acid may have been added to adjust pH.

## 12 CLINICAL PHARMACOLOGY

### 12.1 Mechanism of Action

The precise mechanism by which of atumumab exerts its therapeutic effects in multiple sclerosis is unknown, but is presumed to involve binding to CD20, a cell surface antigen present on pre-B and mature B lymphocytes. Following cell surface binding to B lymphocytes, of atumumab results in antibody-dependent cellular cytolysis and complement-mediated lysis.

### 12.2 Pharmacodynamics

#### **B-cell Depletion**

For B-cell counts, assays for CD19+ B-cells are used because the presence of KESIMPTA interferes with the CD20 assay. In Study 1 and Study 2, KESIMPTA administered as recommended, resulted in a reduction of CD19+ B-cells to below the LLN in 77.0% and 78.8% of patients, respectively, one week after treatment initiation, and in 95.0% and 95.8% of patients, respectively, two weeks after treatment initiation *[see Dosage and Administration (2.2) and Clinical Studies (14)]*. In Study 1 and Study 2, at Week 12, 99.3% to 99.5% of patients had CD19+ B-cell counts below LLN. The CD19+ B-cell counts remained below LLN for approximately 97% of patients in Study 1 and 92% of patients in Study 2 from 12 weeks through 120 weeks while on KESIMPTA treatment.

In a study of bioequivalence using the same dosing regimen as in Study 1 and Study 2, before initiation of the maintenance phase, total CD19+ B-cell levels below the defined threshold of 10 cells/ $\mu$ L were achieved in 94% of patients starting at Week 4 and 98% of patients at Week 12.

#### **B-cell Repletion**

Data from RMS clinical studies indicate B-cell recoveries over the LLN in at least 50% of patients in 24 to 36 weeks post treatment discontinuation. Modeling and simulation for B-cell repletion corroborates these data, predicting median time to B-cell recovery of 40 weeks post treatment discontinuation.

#### 12.3 Pharmacokinetics

#### Absorption

A subcutaneous dose of 20 mg every 4 weeks leads to a mean AUC<sub>tau</sub> of 483 mcg h/mL and a mean  $C_{max}$  of 1.43 mcg/mL at steady state.

After subcutaneous administration, of a unumab is believed to be predominantly absorbed via the lymphatic system similarly to other therapeutic monoclonal antibodies.

#### Distribution

The volume of distribution at steady-state was estimated to be 5.42 L following subcutaneous administration of repeated KESIMPTA 20 mg dose.

#### **Elimination**

#### Metabolism

Of a protein for which the expected metabolic pathway is degradation to small peptides and amino acids by ubiquitous proteolytic enzymes.

#### Excretion

Ofatumumab is eliminated in two ways: a target-independent route as with other IgG molecules and a target-mediated route that is related to binding to B-cells. Higher baseline B-cell count results in greater component of target-mediated elimination clearance and shorter of atumumab half-life at the start of therapy. Following B cell depletion, clearance was estimated to be 0.34 L/day following repeated subcutaneous administration of KESIMPTA 20 mg injections. The half-life at steady state was estimated to be approximately 16 days following subcutaneous administration of repeated KESIMPTA 20 mg dose.

#### Specific Populations

The following population characteristics do not have a clinically meaningful effect on the pharmacokinetics of ofatumumab: body weight, sex, age, race, or baseline B-cell count.

### Patients with Renal/Hepatic Impairment

Pharmacokinetics of ofatumumab in patients with renal or hepatic impairment have not been studied.

#### **Drug Interaction Studies**

Ofatumumab does not share a common clearance pathway with chemical drugs that are metabolized by the cytochrome P450 system or other drug metabolizing enzymes. Additionally, there is no evidence that CD20 monoclonal antibodies are involved in the regulation of the expression of drug metabolizing enzymes. Interactions between KESIMPTA and other medicinal products have not been investigated in formal studies.

## 13 NONCLINICAL TOXICOLOGY

### 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

#### Carcinogenesis

No carcinogenicity studies have been conducted to assess the carcinogenic potential of ofatumumab.

### **Mutagenesis**

No studies have been conducted to assess the mutagenic potential of ofatumumab. As an antibody, ofatumumab is not expected to interact directly with DNA.

#### Impairment of Fertility

No effects on reproductive parameters, including hormones, menstrual cycle, sperm analysis, or histopathological evaluation of reproductive organs, were observed in male or female monkeys administered of atumumab by intravenous injection (5 weekly doses of 0, 10, and 100 mg/kg, followed by biweekly doses of 0, 3, and 20 mg/kg). Plasma exposures ( $C_{ave}$ ) at the high dose tested in monkey are greater than 500 times that in humans at the recommended human maintenance dose of 20 mg/month.

### 14 CLINICAL STUDIES

The efficacy of KESIMPTA was demonstrated in two randomized, double-blind, double-dummy, active comparatorcontrolled clinical trials of identical design, in patients with relapsing forms of MS [Study 1 (NCT02792218) and Study 2 (NCT02792231)]. Both studies enrolled patients with at least one relapse in the previous year, 2 relapses in the previous 2 years, or the presence of a T1 gadolinium-enhancing (GdE) lesion in the previous year. Patients were also required to have an Expanded Disability Status Scale (EDSS) score from 0 to 5.5.

Patients were randomized to receive either KESIMPTA, 20 mg subcutaneously on Days 1, 7, and 14, followed by 20 mg every 4 weeks thereafter starting at Week 4 with a daily oral placebo, or the active comparator, teriflunomide, at a dose of 14 mg orally once daily with a placebo administered subcutaneously on Days 1, 7, 14, and every 4 weeks thereafter. The treatment duration for an individual patient was variable based on when the end of study criteria were met. The maximal duration of treatment for an individual patient was 120 weeks. Neurologic evaluations were performed at baseline, every 3 months during blinded treatment, and at the time of a suspected relapse. Brain MRI scans were performed at baseline, 1 and 2 years.

The primary endpoint of both trials was the annualized relapse rate (ARR) over the treatment period. Additional outcome measures included: 1) the time to 3-month confirmed disability progression for the pooled populations, 2) the number of T1 GdE lesions per scan at Weeks 24, 48, and 96, and 3) the annualized rate of new or enlarging T2 MRI lesions. Disability progression was defined as an increase in EDSS of at least 1.5, 1, or 0.5 points in patients with a baseline EDSS of 0, 1 to 5, or 5.5 or greater, respectively.

In Study 1, a total of 927 patients were randomized to receive KESIMPTA (n = 465) or teriflunomide (n = 462). Of those randomized to KESIMPTA, 90% completed the study; of those randomized to teriflunomide, 81% completed the study. Demographics and disease characteristics were balanced across treatment arms. The mean age was 38 years, 89% were White, and 69% were female. The mean time since MS diagnosis was 5.7 years and the median EDSS score at baseline was 3.0; 60% had been treated with a non-steroid therapy for MS. At baseline, the mean number of relapses in the previous year was 1 and the mean number of T1 GdE lesions on MRI scan was 1.5.

In Study 2, a total of 955 patients were randomized to receive KESIMPTA (n = 481) or teriflunomide (n = 474). Of those randomized to KESIMPTA, 83% completed the study; of those randomized to teriflunomide, 82% completed the study.

Demographics and disease characteristics were balanced across treatment arms. The mean age was 38 years, 87% were White, and 67% were female. The mean time since MS diagnosis was 5.5 years and the median EDSS score at baseline was 2.5; 61% had been treated with a non-steroid therapy for MS. At baseline, the mean number of relapses in the previous year was 1.3, and the mean number of T1 GdE lesions on MRI scan was 1.6.

In both studies, KESIMPTA significantly lowered the ARR compared to teriflunomide.

KESIMPTA significantly reduced the risk of 3-month confirmed disability progression compared to teriflunomide.

KESIMPTA significantly reduced the number of T1 GdE lesions and the rate of new or enlarging T2 lesions in both studies.

Key results for Study 1 and Study 2 are presented in Table 2 and Figure 1.

| Table 2: Key Clinical and MRI | <b>Endpoints From S</b> | Study 1 and Study 2 |
|-------------------------------|-------------------------|---------------------|
|                               |                         |                     |

|                                                                                                                                                                                    | Stu                                     | dy 1                   | Study 2           |                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------|-------------------|------------------------|
| Endpoints                                                                                                                                                                          | KESIMPTA<br>20 mg                       | Teriflunomide<br>14 mg | KESIMPTA<br>20 mg | Teriflunomide<br>14 mg |
|                                                                                                                                                                                    | (n = 465)                               | (n = 462)              | (n = 481)         | (n = 474)              |
|                                                                                                                                                                                    | Clinical En                             | dpoints                |                   |                        |
| Annualized relapse rate (Primary Endpoint)                                                                                                                                         | 0.11                                    | 0.22                   | 0.10              | 0.25                   |
| Relative Reduction                                                                                                                                                                 | 51% ( $p < 0.001$ ) 59% ( $p < 0.001$ ) |                        | < 0.001)          |                        |
| Proportion of Patients with 3-month<br>Confirmed Disability Progression <sup>a,b</sup>                                                                                             | 10.9% KESIMPTA vs 15.0% teriflunomide   |                        |                   |                        |
| Relative Risk Reduction                                                                                                                                                            | 34.4% (p = 0.002)                       |                        |                   |                        |
|                                                                                                                                                                                    | MRI End                                 | points                 |                   |                        |
| Mean number of T1 Gd-enhancing lesions per MRI scan                                                                                                                                | 0.01                                    | 0.45                   | 0.03              | 0.51                   |
| Relative Reduction                                                                                                                                                                 | 98% (p < 0.001)                         |                        | 94% (p            | < 0.001)               |
| Number of new or enlarging T2 lesions per year                                                                                                                                     | 0.72                                    | 4.00                   | 0.64              | 4.15                   |
| Relative Reduction                                                                                                                                                                 | 82% (p < 0.001)                         |                        | 85% (p            | < 0.001)               |
| <sup>a</sup> Disability progression was defined as an increase in greater, respectively.<br><sup>b</sup> Prospective pooled analysis of Studies 1 and 2. Proestimates at Month 24. |                                         |                        |                   |                        |

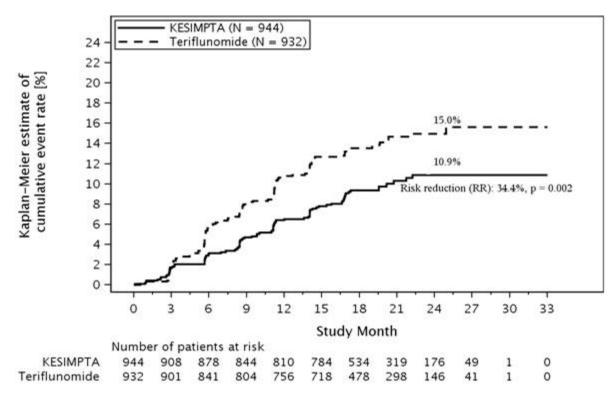



Figure 1: Time to First 3-month Confirmed Disability Progression by Treatment Full Analysis Set

A similar effect of KESIMPTA on the key efficacy results compared to teriflunomide was observed across the two studies in exploratory subgroups defined by sex, age, body weight, prior non-steroid MS therapy, and baseline disability and disease activity.

## 16 HOW SUPPLIED/STORAGE AND HANDLING

### 16.1 How Supplied

KESIMPTA (of a preservative-free, clear to slightly opalescent and colorless to slightly brownishyellow solution for subcutaneous administration, which is supplied as follows:

### KESIMPTA Sensoready Pen:

| Carton of one 20 mg/0.4 mL single-dose prefilled Sensoready pen | NDC 0078-1007-68 |
|-----------------------------------------------------------------|------------------|
| KESIMPTA Prefilled Syringe:                                     |                  |
| Carton of one 20 mg/0.4 mL single-dose prefilled syringe        | NDC 0078-1007-69 |
|                                                                 |                  |

### 16.2 Storage and Handling

KESIMPTA Sensoready pens and prefilled syringes must be refrigerated at 2°C to 8°C (36°F to 46°F). Keep the product in the original carton to protect from light until the time of use. Do not freeze. To avoid foaming, do not shake.

## 17 PATIENT COUNSELING INFORMATION

Advise the patient to read FDA-approved patient labeling (Medication Guide and Instructions for Use).

### Infections

Advise patients to contact their healthcare provider for any signs of infection during treatment or after the last dose. Signs include fever, chills, constant cough, or dysuria [see Warnings and Precautions (5.1)].

Advise patients that KESIMPTA may cause reactivation of hepatitis B infection and that monitoring will be required if they are at risk [see Warnings and Precautions (5.1)].

Advise patients that PML has happened with an intravenous form of ofatumumab administered at a higher intravenous dosage in patients with CLL, as well as with drugs that are similar to KESIMPTA, and may happen with KESIMPTA. Inform the patient that PML is characterized by a progression of deficits and usually leads to death or severe disability over weeks or months. Instruct the patient of the importance of contacting their healthcare provider if they develop any symptoms suggestive of PML. Inform the patient that typical symptoms associated with PML are diverse, progress over days to weeks, and include progressive weakness on one side of the body or clumsiness of limbs, disturbance of vision, and changes in thinking, memory, and orientation leading to confusion and personality changes [see Warnings and Precautions (5.1)].

#### Vaccinations

Advise patients to complete any required live or live-attenuated vaccinations at least 4 weeks and, whenever possible at least 2 weeks prior to initiation of KESIMPTA for inactivated vaccines.

Administration of live-attenuated or live vaccines is not recommended during KESIMPTA treatment and until B-cell recovery [see Warnings and Precautions (5.1)].

#### Injection-Related Reactions

Inform patients about the signs and symptoms of injection-related reactions, and that these reactions generally occur within 24 hours and predominantly following the first injection. Advise patients to contact their healthcare provider if they experience signs or symptoms of injection-related reactions [see Warnings and Precautions (5.2)].

#### Contraception

Advise females of childbearing potential to use effective contraception while receiving KESIMPTA and for 6 months after the last treatment of KESIMPTA [see Warnings and Precautions (5.4) and Use in Specific Populations (8.3)].

#### Instruction on Injection Technique

Patients or caregivers should be instructed by a healthcare professional on how to administer KESIMPTA [see Instructions for Use].

Instruct patients or caregivers in the technique of proper syringe and needle disposal, and advise them not to reuse these items. Instruct patients to inject the full amount of KESIMPTA according to the directions provided in the Instructions for Use. Dispose of pens and syringes in a puncture-resistant container.

Manufactured by: Novartis Pharmaceuticals Corporation East Hanover, NJ 07936 U.S. License No.: 1244

KESIMPTA and SENSOREADY is a [registered] trademark of Novartis AG.

#### MEDICATION GUIDE

KESIMPTA<sup>®</sup> (KEY-simp-ta)

(ofatumumab) injection, for subcutaneous use

#### What is the most important information I should know about KESIMPTA?

#### KESIMPTA can cause serious side effects, including:

**Infections.** Serious infections can happen during treatment with KESIMPTA. If you have an active infection, your healthcare provider should delay your treatment with KESIMPTA until your infection is gone. KESIMPTA taken before or after other medicines that weaken the immune system may increase your risk of getting infections.

Tell your healthcare provider right away if you have any infections or get any symptoms, including painful and frequent urination, nasal congestion, runny nose, sore throat, fever, chills, cough, or body aches.

 Hepatitis B virus (HBV) reactivation. Before starting treatment with KESIMPTA, your healthcare provider will do blood tests to check for HBV. If you have ever had HBV infection, the HBV may become active again during or after treatment with KESIMPTA. Hepatitis B virus becoming active again (called reactivation) may cause serious liver problems, including liver failure or death. You should not receive KESIMPTA if you have active hepatitis B liver disease. Your healthcare provider will monitor you for HBV infection during and after you stop using KESIMPTA.

Tell your healthcare provider right away if you get worsening tiredness or yellowing of your skin or white part of your eyes during treatment with KESIMPTA.

- **Progressive Multifocal Leukoencephalopathy (PML)**. PML may happen with KESIMPTA. PML is a rare, serious brain infection caused by a virus that may get worse over days or weeks. PML can result in death or severe disability. Tell your healthcare provider right away if you have any new or worsening neurologic signs or symptoms. These may include weakness on one side of your body, loss of coordination in arms and legs, vision problems, changes in thinking and memory which may lead to confusion and personality changes.
- Weakened immune system. KESIMPTA taken before or after other medicines that weaken the immune system could increase your risk of getting infections.

#### What is KESIMPTA?

KESIMPTA is a prescription medicine used to treat adults with relapsing forms of multiple sclerosis (MS) including:

- clinically isolated syndrome
- relapsing-remitting disease
- active secondary progressive disease

It is not known if KESIMPTA is safe or effective in children.

#### Do not use KESIMPTA if you:

• have active hepatitis B virus infection.

Before using KESIMPTA, tell your healthcare provider about all of your medical conditions, including if you:

- have or think you have an infection including HBV or PML. See "What is the most important information I should know about KESIMPTA?"
- have ever taken, currently take, or plan to take medicines that affect your immune system. These medicines could increase your risk of getting an infection.
- have had a recent vaccination or are scheduled to receive any vaccinations.
  - You should receive any required 'live' or 'live-attenuated' vaccines at least 4 weeks before you start treatment with KESIMPTA. You should not receive 'live' or 'live-attenuated' vaccines while you are being treated with KESIMPTA and until your healthcare provider tells you that your immune system is no longer weakened.
  - Whenever possible, you should receive any 'non-live' vaccines at least 2 weeks before you start treatment with KESIMPTA.
  - Talk to your healthcare provider about vaccinations for your baby if you used KESIMPTA during your pregnancy.
- are pregnant, think that you might be pregnant, or plan to become pregnant. It is not known if KESIMPTA will harm your unborn baby. Females who can become pregnant should use birth control (contraception) during treatment

with KESIMPTA and for 6 months after your last treatment. Talk with your healthcare provider about what birth control method is right for you during this time.

• are breastfeeding or plan to breastfeed. It is not known if KESIMPTA passes into your breast milk. Talk to your healthcare provider about the best way to feed your baby if you take KESIMPTA.

Tell your healthcare provider about all the medicines you take, including prescription and over-the-counter medicines, vitamins, and herbal supplements.

Know the medicines you take. Keep a list of them to show your healthcare provider and pharmacist when you get a new medicine.

#### How should I use KESIMPTA?

See the detailed Instructions for Use that comes with KESIMPTA for information about how to prepare and inject a dose of KESIMPTA and how to properly throw away (dispose of) used KESIMPTA Sensoready pens or prefilled syringes.

- Use KESIMPTA exactly as your healthcare provider tells you to use it.
- KESIMPTA is given as an injection under your skin (subcutaneous injection), in your thigh or stomach-area (abdomen) by you or a caregiver. A caregiver may also give you an injection of KESIMPTA in your upper outer arm.
- Your healthcare provider will show you how to prepare and inject KESIMPTA the right way before you use it for the first time.
- **Do not** inject into areas where the skin is tender, bruised, red, scaly or hard. Avoid areas with moles, scars or stretch marks.
- The initial dosing is 20 mg of KESIMPTA given by subcutaneous injection at Weeks 0, 1, and 2. There is no injection at Week 3. Starting at Week 4 and then every month, the recommended dose is 20 mg of KESIMPTA administered by subcutaneous injection.
- If you miss an injection of KESIMPTA at Week 0, 1, or 2, talk to your healthcare provider. If you miss a monthly injection, give it as soon as possible without waiting until the next scheduled dose. After that, give your KESIMPTA injections a month apart.

#### What are the possible side effects of KESIMPTA?

KESIMPTA may cause serious side effects, including:

#### See "What is the most important information I should know about KESIMPTA?"

- Injection-related reactions. Injection-related reactions is a common side effect of KESIMPTA. Injecting KESIMPTA can cause injection-related reactions that can happen within 24 hours (1 day) following the first injections and with later injections. Talk with your healthcare provider if you have any of these signs and symptoms:
  - at or near the injection site: redness of the skin, swelling, itching and pain or
  - that may happen when certain substances are released in your body: fever, headache, pain in the muscles, chills, and tiredness.
- Low immunoglobulins. KESIMPTA may cause a decrease in some types of antibodies. Your healthcare provider will do blood tests to check your blood immunoglobulin levels.

#### The most common side effects of KESIMPTA include:

- upper respiratory tract infection, with symptoms such as sore throat and runny nose, and headache. See "What is the most important information I should know about KESIMPTA?"
- headache

These are not all the possible side effects of KESIMPTA. Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088.

#### How should I store KESIMPTA?

- Store KESIMPTA in a refrigerator between 36°F to 46°F (2°C to 8°C).
- Keep KESIMPTA in the original carton until ready for use to protect from light.
- Do not freeze KESIMPTA.
- Do not shake KESIMPTA.

Keep KESIMPTA and all medicines out of the reach of children.

General information about the safe and effective use of KESIMPTA.

Medicines are sometimes prescribed for purposes other than those listed in a Medication Guide. Do not use KESIMPTA for a condition for which it was not prescribed. Do not give KESIMPTA to other people, even if they have the same symptoms that you have. It may harm them. You can ask your pharmacist or healthcare provider for information about KESIMPTA that is written for health professionals.

What are the ingredients in KESIMPTA? Active ingredient: ofatumumab Inactive ingredients: Sensoready pen an

**Inactive ingredients: Sensoready pen and prefilled syringe:** arginine, disodium edetate, polysorbate 80, sodium acetate trihydrate, sodium chloride, and Water for Injection. Hydrochloric acid may be added.

Distributed by: Novartis Pharmaceuticals Corporation, East Hanover, New Jersey 07936

For more information, go to www.novartis.us.com or call 1-888-669-6682.

This Medication Guide has been approved by the U.S. Food and Drug Administration.

Approved: 08/2020

## INSTRUCTIONS FOR USE KESIMPTA<sup>®</sup> [KEY-simp-ta ] (ofatumumab) injection, for subcutaneous use

#### Sensoready<sup>®</sup> Pen

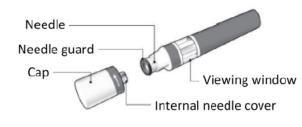
This Instructions for Use contains information on how to inject KESIMPTA Sensoready Pen.

Be sure that you read, understand, and follow this Instructions for Use before injecting KESIMPTA. Your healthcare provider should show you how to prepare and inject KESIMPTA the right way using the Sensoready Pen before you use it for the first time. Talk to your healthcare provider if you have any questions before you use KESIMPTA for the first time.

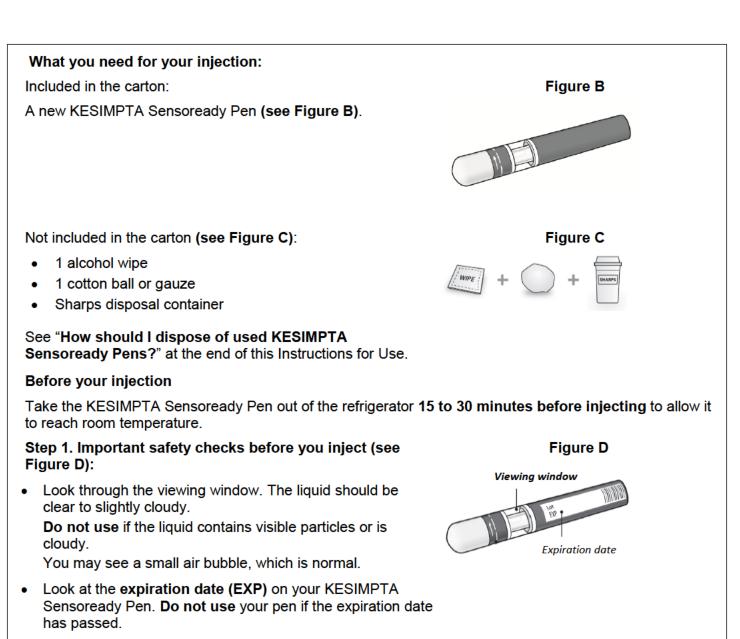
#### Important Information You Need to Know Before Injecting KESIMPTA Sensoready Pen.

- Do not use the KESIMPTA Sensoready Pen if either the seal on the outer carton or the seal on the KESIMPTA Sensoready Pen is broken. Keep the KESIMPTA Sensoready Pen in the sealed outer carton until you are ready to use it.
- Do not shake the KESIMPTA Sensoready Pen.
- If you drop your KESIMPTA Sensoready Pen, do not use it if it looks damaged, or if you dropped it with the cap removed.

Throw away (dispose of) the used KESIMPTA Sensoready Pen right away after use. **Do not re-use a KESIMPTA Sensoready Pen**. See "**How should I dispose of used KESIMPTA Sensoready Pens**?" at the end of this Instructions for Use.


#### How should I store KESIMPTA Sensoready Pen?

- Store your carton of KESIMPTA Sensoready Pen in a refrigerator, between 36°F to 46°F (2°C to 8°C).
- · Keep KESIMPTA Sensoready Pen in the original carton until ready to use to protect from light.
- Do not freeze KESIMPTA Sensoready Pen.

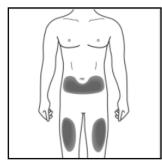

### Keep KESIMPTA Sensoready Pen and all medicines out of the reach of children.

### KESIMPTA Sensoready Pen parts (see Figure A):

### Figure A

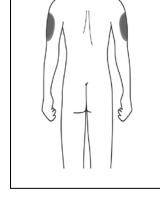


The KESIMPTA Sensoready Pen is shown with the cap removed. **Do not** remove the cap until you are ready to inject.




Contact your pharmacist or healthcare provider if your pen fails any of these checks.

#### Step 2. Choose your injection site:


- The recommended site is the front of the thighs. You may also use the lower stomach area (lower abdomen), but not the area 2 inches around the navel (belly button) (see Figure E).
- Do not inject into areas where the skin is tender, bruised, red, scaly or hard. Avoid areas with moles, scars or stretch marks.





# • If a caregiver or healthcare provider is giving you your injection, they may also inject into your outer upper arm (see Figure F).

#### Figure F (Caregiver and healthcare provider only)

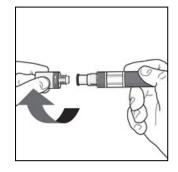


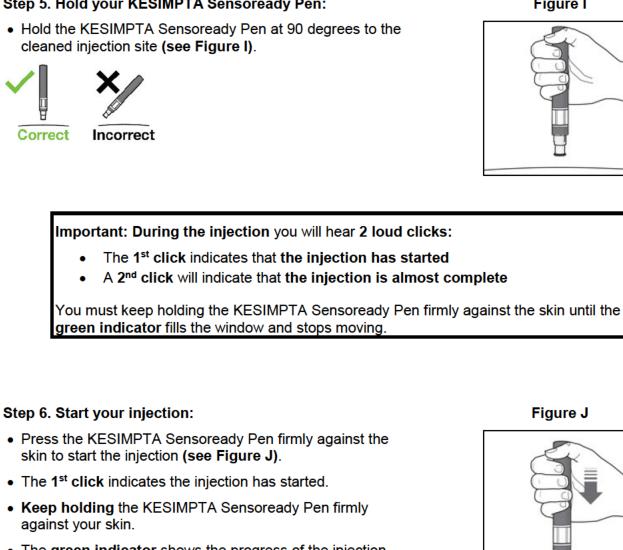
## Step 3. Clean your injection site:

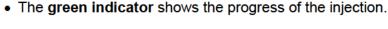
- Wash your hands with soap and water.
- Using a circular motion, clean the injection site with the alcohol wipe. Leave it to dry before injecting (see Figure G).
- Do not touch the cleaned area again before injecting.

Figure G




### Your injection


#### Step 4. Remove the cap:


- Only remove the cap when you are ready to use the KESIMPTA Sensoready Pen.
- Twist off the cap in the direction of the arrow (see Figure H).
- Throw away the cap. Do not try to re-attach the cap.
- Use the KESIMPTA Sensoready Pen within 5 minutes of removing the cap.

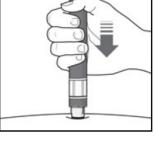
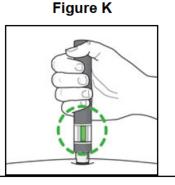

You may see a few drops of medicine come out of the needle. This is normal.

Figure H










## Step 7. Complete your injection:

- Listen for the 2<sup>nd</sup> click. This indicates that the injection is almost complete.
- Check to see if the green indicator fills the window and has stopped moving (see Figure K).
- The KESIMPTA Sensoready Pen can now be removed (see Figure L).





## Step 5. Hold your KESIMPTA Sensoready Pen:

Figure I



#### After your injection

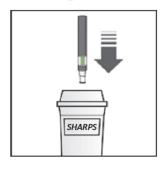
- In case the green indicator does not fill the window, it means the medicine has not been delivered. Contact your healthcare provider if the green indicator is not visible.
- There may be a small amount of blood at the injection site. You can press a cotton ball or gauze over the injection site and hold it for 10 seconds. Do not rub the injection site. You may cover the injection site with a small adhesive bandage, if needed.

## How should I dispose of used KESIMPTA Sensoready<sup>®</sup> Pens?

**Step 8.** Put your used KESIMPTA Sensoready Pen in a FDAcleared sharps disposal container right away after use (see **Figure M)**. **Do not throw away (dispose of)** your used KESIMPTA Sensoready Pen in your household trash.

If you do not have a FDA-cleared sharps disposal container, you may use a household container that is:

- made of a heavy-duty plastic,
- can be closed with a tight-fitting, puncture-resistant lid, without sharps being able to come out,
- upright and stable during use,
- · leak-resistant, and
- properly labeled to warn of hazardous waste inside the container.


When your sharps disposal container is almost full, you will need to follow your community guidelines for the right way to dispose of your sharps disposal container. There may be state or local laws about how you should throw away used needles, syringes and pens. For more information about safe sharps disposal, and for specific information about sharps disposal in the state that you live in, go to the FDA's website at: http://www.fda.gov/safesharpsdisposal.

### Keep the sharps container out of the reach of children.

Manufactured by:

Novartis Pharmaceuticals Corporation

Figure M



U.S. License No.: 1244

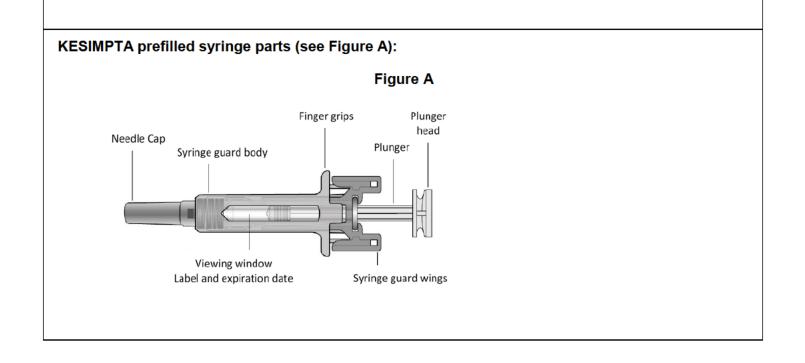
This Instructions for Use has been approved by the U.S. Food and Drug Administration.

Issued: 8/2020

#### INSTRUCTIONS FOR USE KESIMPTA<sup>®</sup> [KEY-simp-ta] (ofatumumab) injection, for subcutaneous use Prefilled Syringe

This Instructions for Use contains information on how to inject KESIMPTA Prefilled Syringe.

Be sure that you read, understand, and follow this Instructions for Use before injecting KESIMPTA prefilled syringe. Your healthcare provider should show you how to prepare and inject KESIMPTA the right way before using the prefilled syringe the first time. Talk to your healthcare provider if you have any questions.


#### Important Information You Need to Know Before Injecting KESIMPTA prefilled syringe.

- Do not use the KESIMPTA prefilled syringe if either the seal on the outer carton or the seal of the blister is broken. Keep the KESIMPTA prefilled syringe in the sealed carton until you are ready to use it.
- Do not shake the KESIMPTA prefilled syringe.
- The KESIMPTA prefilled syringe has a needle guard that will be activated to cover the needle after the injection is finished. The needle guard will help to prevent needle stick injuries to anyone who handles the KESIMPTA prefilled syringe after injection.
- Do not remove the needle cap until just before you give the injection.
- Avoid touching the syringe guard wings before use. Touching them may cause the needle guard to be activated too early.
- Throw away (dispose of) the used KESIMPTA prefilled syringe right away after use. Do not re-use a
  KESIMPTA prefilled syringe. See "How should I dispose of used KESIMPTA prefilled syringe?" at
  the end of these Instructions for Use.

#### How should I store KESIMPTA Prefilled Syringe?

- Store your carton of the KESIMPTA prefilled syringe in a refrigerator, between 36°F to 46°F (2°C to 8°C).
- Keep the KESIMPTA prefilled syringe in the original carton until ready to use to protect from light.
- Do not freeze the KESIMPTA prefilled syringe.

Keep KESIMPTA Prefilled Syringe and all medicines out of the reach of children.



## What you need for your injection

Included in the carton:

A new KESIMPTA prefilled syringe.

Not included in the carton (see Figure B):

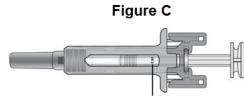
- 1 alcohol wipe
- 1 cotton ball or gauze
- Sharps disposal container

See "How should I dispose of used KESIMPTA prefilled syringe?" at the end of these Instructions for Use.

## Prepare the KESIMPTA prefilled syringe

Step 1. Find a clean, well-lit, flat work surface.

**Step 2.** Take the carton containing the KESIMPTA prefilled syringe out of the refrigerator and leave it **unopened** on your work surface for about 15 to 30 minutes so that it reaches room temperature.


Step 3. Wash your hands well with soap and water.

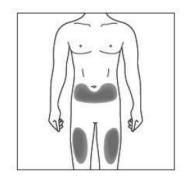
**Step 4.** Remove the KESIMPTA prefilled syringe from the outer carton and take it out of the blister by holding the syringe guard body.

**Step 5.** Look through the viewing window on the KESIMPTA prefilled syringe. The liquid inside should be clear to slightly cloudy. You may see a small air bubble in the liquid, which is normal. **Do not use** the KESIMPTA prefilled syringe if the liquid contains particles or is cloudy.

**Step 6. Do not use** the KESIMPTA prefilled syringe if it is broken. Return the KESIMPTA prefilled syringe and the package it came in to the pharmacy.

**Step 7. Do not use** the KESIMPTA prefilled syringe if the expiration date has passed (see Figure C). Return the expired KESIMPTA prefilled syringe and the package it came in to the pharmacy.

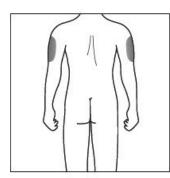



**Expiration date** 

### Choose and clean the injection site

- Areas of your body that you may use as injection sites include:
  - o the front of your thighs (see Figure D)
  - the lower stomach-area (abdomen), but not the area 2 inches around your navel (belly button) (see Figure D)
  - your outer upper arms, if a healthcare provider or caregiver is giving you the injection (see Figure E).
- Do not inject into areas where the skin is tender, bruised, red, scaly, or hard. Avoid areas with moles, scars or stretch marks.

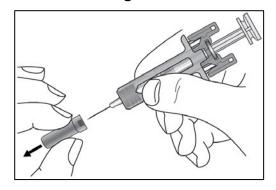
**Step 8.** Using a circular motion, clean the injection site with the alcohol wipe. Leave it to dry before injecting. Do not touch the cleaned area again before injecting.


Figure D








# Figure E (Caregiver and healthcare provider only)



**Giving your injection** 

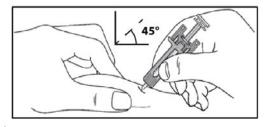

**Step 9**. Carefully remove the needle cap from the KESIMPTA prefilled syringe (see Figure F). Throw away the needle cap. You may see a drop of liquid at the end of the needle. This is normal.

Figure F



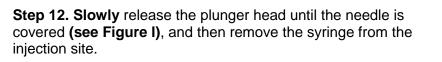
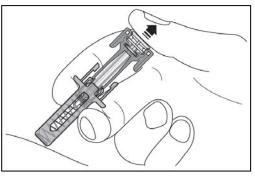

**Step 10.** With one hand, gently pinch the skin at the injection site. With your other hand insert the needle into your skin at an angle of about 45 degrees as shown (**see Figure G**). Push the needle all the way in to make sure that you inject your full dose.

Figure G




**Step 11.** Hold the KESIMPTA prefilled syringe finger grips as shown (see Figure H). Slowly press down on the plunger head as far as it will go, so that the plunger head is completely between the syringe guard wings.

Continue to press fully on the plunger head for an additional 5 seconds. Hold the syringe in place for the full 5 seconds.



**Step 13.** There may be a small amount of blood at the injection site. You can press a cotton ball or gauze over the injection site and hold it for 10 seconds. Do not rub the injection site. You may cover the injection site with a small adhesive bandage, if needed.

Figure I



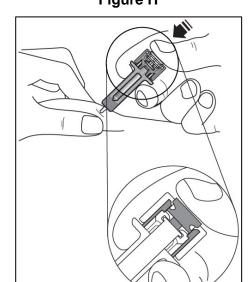


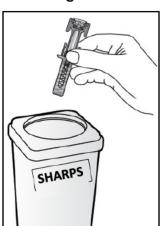

Figure H

#### How should I dispose of used KESIMPTA prefilled syringe?

**Step 14.** Put your used KESIMPTA prefilled syringe in a FDAcleared sharps disposal container right away after use (see **Figure J). Do not throw away (dispose of)** your used KESIMPTA prefilled syringe in your household trash. Never try to reuse your KESIMPTA prefilled syringe.

If you do not have an FDA-cleared sharps disposal container, you may use a household container that is:

- made of a heavy-duty plastic,
- can be closed with a tight-fitting, puncture-resistant lid, without sharps being able to come out,
- upright and stable during use,
- leak-resistant, and
- properly labeled to warn of hazardous waste inside the container.


When your sharps disposal container is almost full, you will need to follow your community guidelines for the right way to dispose of your sharps disposal container. There may be state or local laws about how you should throw away used needles, syringes and prefilled syringes. For more information about safe sharps disposal, and for specific information about sharps disposal in the state that you live in, go to the FDA's website at: http://www.fda.gov/safesharpsdisposal.

#### Keep the sharps container out of the reach of children.

Manufactured by: Novartis Pharmaceuticals Corporation East Hanover, NJ 07936

U.S. License No.: 1244

This Instructions for Use has been approved by the U.S. Food and Drug Administration.



#### Figure J

# CENTER FOR DRUG EVALUATION AND RESEARCH

**APPLICATION NUMBER:** 

# 125326Orig1s070

# **SUMMARY REVIEW**

| Data                            | August 20, 2020                                   |
|---------------------------------|---------------------------------------------------|
| Date                            | August 20, 2020                                   |
| _                               | Paul R. Lee, MD, PhD, Acting Deputy Director,     |
| From                            | Division of Neurology 2 (DN2)                     |
|                                 | Nick Kozauer, MD, Acting Director, DN2            |
| Subject                         | Summary Review                                    |
| sBLA #                          | 125326                                            |
| Applicant                       | Novartis                                          |
| Date of Submission              | February 7, 2020                                  |
| PDUFA Goal Date                 | September 20, 2020                                |
| Proprietary Name                | Kesimpta                                          |
| Established or Proper Name      | Ofatumumab                                        |
| Dosage Form(s)                  | 20 mg/4mL for subcutaneous injection              |
|                                 | Adults with relapsing forms of multiple sclerosis |
| Applicant Proposed              | (MS), to include clinically isolated syndrome,    |
| Indication(s)/Population(s)     | relapsing-remitting disease, and active secondary |
|                                 | progressive disease.                              |
|                                 | Initial dose: 20 mg subcutaneous at Weeks 0, 1,   |
| Applicant Proposed Dosing       | and 2, 20 mg subcutaneous monthly starting at     |
| Regimen(s)                      | Week 4                                            |
| Recommendation on               | Approval                                          |
| Regulatory Action               |                                                   |
|                                 | Adults with relapsing forms of multiple sclerosis |
| Recommended                     | (MS), to include clinically isolated syndrome,    |
| Indication(s)/Population(s) (if | relapsing-remitting disease, and active secondary |
| applicable)                     | progressive disease.                              |
|                                 | Initial dose: 20 mg subcutaneous at Weeks 0, 1,   |
| Recommended Dosing              | and 2, 20 mg subcutaneous monthly starting at     |
| Regimen(s) (if applicable)      | Week 4                                            |
|                                 |                                                   |

1

# 1. Benefit-Risk Assessment

# Benefit-Risk Integrated Assessment

Ofatumumab is a fully-human anti-CD20 monoclonal antibody that targets an epitope of the B-lymphocyte antigen CD20 expressed on the cell membranes of lymphocytes. After binding to CD20, ofatumumab induces B-cell destruction primarily by complement-dependent cytotoxicity and by antibody-dependent cell-mediated cytotoxicity. This monoclonal antibody was approved on April 19, 2010, for the treatment of chronic lymphocytic leukemia refractory to alemtuzumab and fludarabine and is marketed for this indication as Arzerra. Ocrevus (ocrelizumab) is a humanized murine monoclonal anti-CD20 therapy that is approved for the relapsing and primary progressive forms of multiple sclerosis (MS). Rituxan (rituximab), a chimeric murine/human monoclonal antibody directed against CD20, which is approved to treat several malignancies and rheumatologic autoimmune diseases, is sometimes used to treat MS but has not been demonstrated to be safe and effective for the treatment of MS.

Relapsing forms of MS, which include clinically isolated syndrome, relapsing-remitting disease, and active secondary progressive disease (secondary progressive MS with relapses), are phenotypes of the chronic and potentially disabling central nervous system disease of apparent autoimmune etiology termed "multiple sclerosis." In the relapsing forms of MS, patients experience episodes of focal neurological deficits and disseminated lesions of demyelination within the brain. Symptoms of relapsing forms of MS commonly include recurrent paroxysms of diminished sensory or motor function that can be temporarily or permanently disabling. Over time, many, but not all, patients with relapsing forms of MS experience some degree of persistent disability that may gradually worsen over years. Over fifteen therapies have been approved for the treatment of relapsing forms of MS, and all these approved therapies share a basic common feature of modifying the immune response. The mechanism of action of anti-CD20 therapy in the treatment of relapsing forms of MS is unknown but presumably is linked to depletion of B-cells and immunosuppression.

The applicant presents the results from two adequate and well-controlled Phase 3 clinical trials, Studies COMB157G2301 and COMB157G2302 (Studies G2301 and G2302 hereafter) as the basis of a supplemental application to support a claim of safety and efficacy in the treatment of relapsing forms of MS. Studies G2301 and G2302 were both randomized, double-blind, double-dummy, active-controlled trials that compared 20 mg subcutaneous ofatumumab (Kesimpta) to 14 mg teriflunomide (Aubagio). The two studies were identical in design with the same primary efficacy outcome measure, the frequency of confirmed relapses, as well as the same secondary outcome measures enumerated in hierarchical order as follows: 3-month confirmed disability worsening, the number of gadolinium-enhancing T1 lesions, the number of new or enlarging T2 lesions, 6-month confirmed disability worsening, serum level of neurofilament light chain at month 3, brain volume loss, and 6-month confirmed disability improvement. The analyses of disability worsening were based on the pooled disability data from the two studies.

In both studies, treatment with Kesimpta resulted in statistically significant reductions in relapse rates and disability worsening compared to

treatment with teriflunomide. These significant results in Studies G2301 and G2302 were achieved relative to an active comparator, teriflunomide, a therapy itself approved for relapsing forms of MS based upon significant treatment effects on relapse frequency and disability worsening in placebo-controlled studies. With respect to the primary efficacy outcome finding, in Study G2301, Kesimpta-treated patients had a significant (p<0.001) reduction of 50.5% in annualized relapse rate (ARR) as compared to teriflunomide-treated patients' ARR. In Study G2302, the relative reduction in ARR was 58.5% in Kesimpta treatment relative to teriflunomide treatment and was statistically significant (p<0.001). A comparison of pooled data from Studies G2301 and G2302 demonstrated that 3-month and 6-month risk of confirmed disability worsening was reduced significantly (34.4% and 32.5%, p<0.002 and p<0.012, respectively) with Kesimpta relative to teriflunomide. There were also significant findings on gadolinium-enhancing T1 and T2 lesion outcomes for Kesimpta that provide further evidence to support the significant treatment effect observed in the clinical outcome findings.

Anti-CD20 therapies like of atumumab reduce the number of B-cells available to prevent and combat infection and are immune suppressants. The safety findings for Kesimpta in patients with relapsing forms of MS were similar to reported safety outcomes with other anti-CD20 therapies in MS. The findings for Kesimpta are similar and supplemental to the safety database used to support approval of Arzerra in the treatment of patients with chronic lymphocytic leukemia. The most common treatment-emergent adverse event and serious adverse event associated with Kesimpta was an increased risk of infections. Serious, potentially fatal opportunistic infections such as progressive multifocal leukoencephalopathy have been reported in chronic lymphocytic leukemia patients treated with Arzerra; there were no cases of PML in patients with MS treated in these trials but the potential for PML infection exists with Kesimpta. Injection-related reactions occurred in approximately 20% of patients treated with Kesimpta and were not usually serious. A fraction of patients treated with Kesimpta had a sustained, progressive decline in immunoglobulin M which could predispose to possible infection risk, and a postmarketing evaluation will be requested to explore this safety issue.

The overall benefit-risk profile of Kesimpta supports approval. The labeling for Kesimpta will include a warning regarding infection risk, including the known risk of serious opportunistic infections identified with the use of ofatumumab in patients with chronic lymphocytic leukemia and a warning of reduced immunoglobulins with chronic use.

# Benefit-Risk Dimensions

| Dimension                       | Evidence and Uncertainties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Conclusions and Reasons                                                                                                                                                                                                         |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analysis of<br>Condition        | <ul> <li>Relapsing forms of MS, which include clinically isolated syndrome, relapsing-remitting disease, and active secondary progressive disease (SPMS with relapses), are phenotypes of the chronic and potentially disabling central nervous system disease known as MS, a disease of apparent autoimmune etiology which in its relapsing form is characterized by episodes of worsening focal neurological deficits and disseminated lesions representing demyelination.</li> <li>The usual age of onset of relapsing forms of MS is 20 to 50 years old. Symptoms commonly include recurrent paroxysms of diminished sensory or motor function that can be disabling and usually resolve within one month. Over time, many, but not all, patients with relapsing forms of MS experience some degree of persistent disability that may gradually worsen over years. Some patients may have a relatively benign manifestation with few discrete relapse events; others may become severely disabled after only a few years. There are no reliable biomarkers or predictors of outcome.</li> </ul> | Relapsing forms of MS are serious and<br>disabling.<br>The defining symptom of relapsing forms of<br>MS are paroxysms of focal neurological deficits<br>termed "relapses" which can be disabling and<br>reduce quality of life. |
| Current<br>Treatment<br>Options | • There are eighteen unique therapies approved to treat relapsing forms of MS. All of these therapies reduce patient relapse rates, and many include disability progression outcomes in their labeling. All except glatiramer acetate and mitoxantrone include at least one trial that showed a statistically significant treatment effect for a disability progression outcome versus a placebo comparator.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | All therapies approved for the treatment of<br>relapsing forms of MS reduce the frequency of<br>relapses and some of these therapies also<br>reduce accumulation of disability.                                                 |
| Benefit                         | <ul> <li>The annualized relapse rate in Kesimpta-treated patients was<br/>0.11 and 0.10, vs. 0.22 and 0.25 for teriflunomide-treated<br/>patients. Based on the results of Studies G2301 and G2302, the<br/>percent reduction in relapse rate associated with Kesimpta</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Two adequate and well-controlled trials<br>provided substantial evidence of efficacy in<br>significantly reduced likelihood of<br>experiencing a relapse and significantly                                                      |

|                                | Evidence and Uncertainties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Conclusions and Reasons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | <ul> <li>treatment relative to teriflunomide treatment was 50.5% and 58.5%, respectively. The overall mean reduction in relapses estimated for patients with relapsing forms of MS based on these trials would be approximately 0.12 fewer relapses per year on Kesimpta treatment as compared teriflunomide treatment and treating approximately 8 patients with Kesimpta would prevent one clinical relapse that might have otherwise occurred on teriflunomide treatment.</li> <li>Kesimpta treatment reduced the relative risks of 3-month and 6-month confirmed disability worsening by 34.4% and 32.5%, respectively, as compared to teriflunomide.</li> </ul>                                                                                                                                                                                                                                    | reduced the likelihood of disability worsening<br>relative to an active comparator.<br>The pooled results from two adequate and<br>well-controlled trials provided substantial<br>evidence of efficacy that Kesimpta reduced the<br>likelihood of accumulation of disability in<br>patients with relapsing forms of MS relative to<br>an active comparator with a significant effect<br>on disability worsening.                                                                                                                                             |
| Risk and<br>Risk<br>Management | <ul> <li>Ofatumumab, a monoclonal antibody targeting CD20, causes immune suppression by selectively reducing the number of B-cells. Findings from studies in oncology patients identified that ofatumumab primarily is associated with a higher risk of infections. In comparison with the safety profiles of two other approved anti-CD20 therapies (rituximab and ocrelizumab), ofatumumab has a safety profile that is similar and consistent with these other therapies which cause immune suppression via reduction in B-cell counts.</li> <li>The MS development program did not reveal any previously unidentified risks associated with ofatumumab treatment. The most common treatment-emergent adverse events reported in patients treated with Kesimpta were nasopharyngitis (17.6%), injection site reaction (16.3%), headache (12.3%), and upper respiratory infection (10.3%).</li> </ul> | <ul> <li>The safety data from the ofatumumab MS development program support approval and are consistent with ofatumumab's established safety profile for its approved intravenous form for oncology indications.</li> <li>Most adverse events associated with subcutaneous ofatumumab (Kesimpta) were treatable, not medically serious, or reversible upon discontinuation.</li> <li>Immunosuppression using anti-CD20 therapies has a known association with increased infection risk.</li> <li>Most of the injection-related reactions occurred</li> </ul> |

| Dimension | Evidence and Uncertainties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Conclusions and Reasons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | to the rates reported with the intravenous route (67%). The majority of injection-related reactions associated with Kesimpta were mild and all reactions were managed without a need for hospitalization. Premedication reduced injection-related reactions to the same extent for Kesimpta (6.9% with corticosteroids, 4.5% with nonsteroidal anti-inflammatory agents) as it did for placebo administration (6.9% with corticosteroids, 4.4% with nonsteroidal anti-inflammatory agents).                                                                             | groups (84% for Kesimpta, ~100% of placebo).<br>Premedication did not appear to significantly<br>impact Kesimpta injection-related reactions.                                                                                                                                                                                                                                                                                                                                                                                     |
|           | <ul> <li>Severe adverse events associated with treatment occurred in approximately 10% of patients treated with Kesimpta and approximately 8% of patients treated with the active comparator, teriflunomide. The most common serious adverse events in Kesimpta-treated patients were isolated cases of serious infections (2.5%); the most often reported serious infection was appendicitis (reported in 8 patients, or 1.8%).</li> <li>There were no deaths reported in Kesimpta-treated patients in the Phase 3 clinical trials.</li> </ul>                         | Increased risk of serious infections is a known<br>risk of B-cell depleting therapies. The labeling<br>for Arzerra has a boxed warning for hepatitis<br>reactivation and progressive multifocal<br>leukoencephalopathy. These warnings will be<br>included in Kesimpta's labeling even though<br>no cases of either of these serious infections<br>were observed in clinical trials because of the<br>known risks associated with ofatumumab in<br>the treatment of leukemia and other anti-CD2<br>monoclonal antibody therapies. |
|           | <ul> <li>In Studies G2301 and G2302, the rate of adverse events leading to Kesimpta discontinuation were 5.2% and 5.6% as compared to 5.0% and 4.9% in the teriflunomide treatment arms. The most common reason for discontinuation of Kesimpta was low immunoglobulins. The median reduction in immunoglobulin M in Kesimpta-treated patients during the clinical trial period was 29% compared to 17% for teriflunomide.</li> <li>Nonclinical studies demonstrated that offspring exposed to ofatumumab before birth had depletion of B-cells and impaired</li> </ul> | Immunoglobulin screening before initiation<br>and during Kesimpta therapy will be a labelin<br>warning because of low immunoglobulin<br>levels observed during clinical trials. There ar<br>published data form other B-cell depleting<br>therapies that long-term use is associated with<br>decreased immunoglobulins and possible<br>increased risk of infections. There will be a<br>postmarketing requirement to study the                                                                                                    |

| Dimension | Evidence and Uncertainties                                                                                                                        | Conclusions and Reasons                                                                                                                                                                                                                                                                          |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | T-cell responses to a novel antigen. Whether long-term impaired immune function occurs in infants exposed to Kesimpta <i>in utero</i> is unclear. | relationship between low immunoglobulins<br>and risk of infection for Kesimpta.<br>Labeling will warn that animal studies<br>suggested risk of fetal harm and advise<br>continuous use of adequate contraception.<br>There will be a required postmarketing<br>pregnancy registry and a required |
|           |                                                                                                                                                   | postmarketing pregnancy outcomes study.                                                                                                                                                                                                                                                          |

APPEARS THIS WAY ON ORIGINAL

# 2. Background

This application contains data in support of the safety and effectiveness of Kesimpta (ofatumumab), a fully human anti-CD20 monoclonal antibody (mAb) that selectively targets an epitope of the CD20 molecule on the cell membrane of Bcells. Ofatumumab is administered subcutaneously once weekly for three consecutive weeks then continued monthly as a maintenance dose. In 2010, ofatumumab (as Arzerra) was approved for the intravenous treatment of chronic lymphocytic leukemia (CLL) refractory to alemtuzumab and fludarabine. This application was submitted as a supplement to the approved Biologics License Application (BLA) for Arzerra.

Relapsing forms of multiple sclerosis (MS), which include clinically isolated syndrome, relapsing-remitting disease, and secondary progressive MS with relapses (active secondary progressive disease), are related phenotypes of a chronic and potentially disabling central nervous system disease of apparent autoimmune etiology characterized by episodes of worsening focal neurological deficits and disseminated lesions of demyelination. Patients diagnosed with relapsing forms of MS are typically White women between 20 to 50 years of age. Symptoms commonly include recurrent paroxysms of diminished sensory or motor function that can be disabling and usually resolve within one month. As disease duration increases, many, but not all, patients with relapsing disease experience some degree of persistent disability that may gradually worsen over years as a result of incomplete recovery of the disability that resulted from MS relapses. In some patients, disability may accrue progressively with clear independence from acutely disabling relapse events, a process termed secondary progressive disease.

There is no widely accepted biomarker to assess disease status in patients with relapsing forms of MS. The diagnosis of relapsing forms of MS relies on clinical criteria, and the ongoing evaluation of patients with MS is reliant on clinical investigation. To support an indication for the treatment of relapsing forms of MS, clinical trials should demonstrate that a therapy is associated with a significant, clinically meaningful decrease in the frequency of MS-associated relapses, typically measured as an annual relapse rate (ARR). Some therapies approved for the treatment of relapsing forms of MS, including another anti-CD20 therapy, have also demonstrated an additional significant reduction of the accrual of disability over three-month or six-month observational periods.

In 2017, Ocrevus (ocrelizumab) was the first anti-CD20 therapy approved for the treatment of relapsing forms of MS (as well the first approved therapy for primary progressive MS) in adults. Ocrelizumab is a humanized murine anti-CD20 mAb and is administered as an initial 300 mg intravenous infusion, followed two weeks later by a second 300 mg intravenous infusion, with subsequent doses of 600 mg intravenously infused every 6 months. Rituxan (rituximab), an anti-CD20 chimeric murine-human mAb, became the first anti-CD20 mAb therapy approved for any indication in 1997. Rituximab is not indicated for the treatment of MS but is sometimes used to treat MS and other neuroimmune diseases on an "off-label" basis. Rituximab's relatively higher antigenicity is a consideration in its safety and efficacy. Ofatumumab is a fully human antibody and therefore is predicted to have less antigenicity than chimeric or partially humanized antibodies. Kesimpta is presented as a subcutaneous administration for home use, a key difference from these other anti-CD20 therapies and from ofatumumab's Arzerra presentation which require administration via intravenous infusions in a monitored medical setting.

The CD20 antigen is a transmembrane calcium channel that is expressed on the surfaces of B-cells beginning in the late pre-B-cell stage of maturation through the fully matured memory B-cell. Administration of mAb anti-CD20 therapies such as ofatumumab reduces B-cell counts in serum via B-cell lysis by complement-dependent cytotoxicity (CDC) and by antibody-dependent cell-mediated cytotoxicity (ADCC). The precise mechanism by which ofatumumab exerts its therapeutic effects in MS is not known, but immune suppression by a variety of treatments that target B-cells, including the other approved anti-CD20 mAb therapy ocrelizumab, appears to prevent relapses and accumulation of significant disability in patients with various forms of MS.

The applicant presents results from two adequate and well-controlled Phase 3 clinical trials as the basis of support for the effectiveness of ofatumumab for the treatment of relapsing forms of MS. These two efficacy and safety studies, Studies COMB157G2301 and COMB157G2302, were both randomized, double-blind, double-dummy, active-controlled studies comparing ofatumumab to teriflunomide treatment in adult patients with relapsing forms of MS. These trials were identical in design with the same primary efficacy outcome measure, ARR, along with the same secondary endpoints (3-month confirmed disability worsening, the number of gadolinium-enhancing T1 lesions, the number of new or enlarging

T2 lesions, 6-month confirmed disability worsening, serum neurofilament light chain levels at 3 months, brain volume loss, and 6-month confirmed disability improvement) that were analyzed in a hierarchical analysis.

### **Regulatory History**

Dr. Lawrence Rodichok's clinical review provides the full regulatory history of the development program for ofatumumab for the treatment of relapsing forms of MS. Ofatumumab is currently marketed worldwide as Arzerra. Ofatumumab (as Arzerra) was granted accelerated approval as on October 26, 2009, for the treatment of CLL refractory to alemtuzumab and fludarabine. Since its original action, Arzerra has been approved, in combination with chlorambucil, for the treatment of previously untreated patients with CLL for whom fludarabine-based therapy is considered inappropriate and for extended treatment of patients who are in complete or partial response after at least two lines of therapy for recurrent or progressive CLL.

This submission is a supplemental BLA (sBLA) to BLA 125326, the original Arzerra BLA, approved in 2009. In this sBLA, the applicant proposes a new proprietary name for the MS indication ("Kesimpta") because of the new proposed subcutaneous route of administration (Arzerra is administered intravenously) and the need to differentiate the labeling for the MS indication given the anticipated differences from the labeling for the oncology indication.

The applicant opened IND 111116 for ofatumumab for the treatment of MS on April 29, 2011. There was an end-of-Phase 2 meeting held on March 25, 2014, with much of the discussion relating to the design of the Phase 3 trials and how best to reference product quality data from the existing BLA in a future application. The applicant submitted an initial pediatric study plan on August 30, 2018, with the Agency's subsequent agreement. A pre-BLA meeting with the applicant was held on October 2, 2019, and it was at this meeting that the applicant stated an intention to propose a standalone, different tradename for ofatumumab for the MS indication. The applicant submitted notification of an intention to use a priority review voucher (PRV 208711) on September 17, 2019. The sBLA for ofatumumab (Kesimpta) was submitted on September 20, 2019, and was filed for a priority review on February 18, 2020. The basis for the priority review was the applicant's use of a rare tropical disease priority review voucher.

On June 1, 2020, after review of the applicant's May 13, 2020, response to an Information Request sent by the Agency regarding chemistry-manufacturing, and control issues, the Agency notified the applicant that the submission dated May 13, 2020, constituted a major amendment to the application. As a result of this major amendment, the review goal date was extended by three months to September 20, 2020.

# 3. Product Quality

The Office of Biotechnology Products (OBP) provided an integrated review. The primary, secondary, and tertiary clinical reviewers from were Drs. Anshu Rastogi, Brian Janelsins, and Rachel Novak, respectively. Refer to the OBP review for the full listing of the OBP review team. The OBP team recommends approval.

The drug substance, of atumumab, is approved as Arzerra for intravenous infusion, but of atumumab presented as Kesimpta is formulated for subcutaneous administration. Thus, while Kesimpta contains the same drug substance (of atumumab) as Arzerra, the proposed new subcutaneous route necessitates changes in the drug product from Arzerra's formulation with subsequent changes in manufacturing. The OBP review therefore focused on the changes in chemistry, manufacturing, controls issues associated with the Kesimpta formulation.

# General Product Quality Considerations

Kesimpta is formulated as a 20 mg/0.4 mL solution for injection in two new subcutaneous delivery systems, a pre-filled syringe with a needle safety device, and a pre-filled syringe assembled into an autoinjector. The concentration of ofatumumab in Kesimpta is higher (50 mg/ml) than in Arzerra (20 mg/ml); there is no change to the rest of the formulation (i.e., excipients). Stability of the Kesimpta formulation was evaluated at long term (2 – 8°C), at accelerated (25°C), and stressed (40°C) storage conditions. Formulations containing minimal and maximal amounts of excipients within the tested ranges showed comparable stability. The ranges tested for the excipients, pH, and protein concentration did not impact the quality attributes of Kesimpta within 12 months at 5°C and up to 6 months at 25°C.

The OBP team noted that the leachables study data for the pre-filled syringe submitted in the sNDA only included data for up to 3 months at long-term storage conditions, but the applicant proposes a product shelf-life of . OBP

determined that a postmarketing commitment (PMC) needed to be issued for the applicant to perform a leachable assessment for Kesimpta in its proposed primary container closure system at the intended storage conditions for up to the proposed self-life. The applicant clarified that the leachables study is ongoing and is intended to provide the shelf-life assessment requested in the PMC. The applicant provided the study protocol of the ongoing study as well as data from the 6-month time point which showed leachable levels were not exceeding the safety concern threshold. The OBP team concluded that the protocol and timelines of the ongoing study were acceptable; hence the agreed upon PMC does not have goal dates for a draft and final protocol submissions, and the completion/report goal dates align with the projected dates of the ongoing leachables study (see Section 11).

The manufacturing process of ofatumumab was revised extensively for the Kesimpta presentations. Significant changes included the institution of a main new manufacturing site, validation of new release and stability test methods for testing of the syringe and autoinjector, and transfer of the release and stability test methods (except for potency) to a new testing site. The OBP team sent several information requests to the applicant to clarify the manufacturing changes made to support the new presentations. An information request response from the applicant received on May 13, 2020, contained many clarifications and new details regarding numerous aspects of the manufacturing changes. Upon evaluation, this response was sufficiently extensive to necessitate additional review time and therefore constituted a major amendment to the sNDA (see Section 2). The OBP review concluded that the subsequent responses to manufacturing and related drug product inquiries provided by the applicant, taken together with the supplemental application's initial submission materials and earlier information request responses, provided an adequate basis for approval.

## Facilities Review/Inspection

All facilities inspections have been completed, and the Office of Pharmaceutical Quality and Office of Compliance have determined these facilities to be acceptable.

# 4. Nonclinical Pharmacology/Toxicology

The nonclinical reviewer for this application was Dr. Melissa Banks-Muckenfuss. Dr. Lois Freed provided a supervisory review. Dr. Banks-Muckenfuss recommends approval, and Dr. Freed concurs. The principal conclusions of Dr. Banks-Muckenfuss's and Dr. Freed's reviews are as follows:

- Based on the toxicology studies conducted to support Arzerra's approval, the following were identified as clinically-relevant risks: increased risk of infection, infusion-reaction/cytokine response, delayed onset anemia, fetal toxicity (i.e., decreased placental, fetal spleen, and fetal thymus weights), and clinical chemistry alterations (i.e., increased lactate dehydrogenase, increased C-reactive protein). These toxicities were deemed to be related to the anti-CD20 effects of ofatumumab.
- To support a new indication for chronic treatment of relapsing forms of MS using subcutaneous of atumumab, the applicant provided nonclinical subcutaneous, fertility, and enhanced pre- and post-natal development studies.
- A subcutaneous administration study was conducted in female cynomolgus monkeys to support the proposed subcutaneous route of administration for Kesimpta. CD20+ B-cells were totally depleted, and CD40+ B-cells were markedly reduced, in all ofatumumab treatment groups regardless of administration route. Lymphocyte recovery was observed in all groups within the 33-week observation period after discontinuation of ofatumumab treatment.
- The applicant provided a fertility study conducted in cynomolgus monkeys who received of atumumab (0, 10, or 100 mg/kg weekly for 5 weeks then 0, 3, or 20 mg/kg every 2 weeks) for 3 months followed by an 8-week recovery period. In all treated monkeys, CD20+ cells were depleted in the spleen and lymphatic tissues (with reduced CD3+ cells considered secondary to reduced germinal centers reflecting marked depletion of CD20+ cells). Anti-drug antibodies (ADAs) were observed at the high and low doses, and neutralizing ADAs were observed at the low dose. There was no clear drug effect on female reproductive tissues and inconclusive findings in the reproductive tissues of high-dose treated male monkeys.

- The enhanced prenatal and postnatal development studies demonstrated CD20+ B-cell depletion in maternal animals at all doses, and increased fetal loss in the low dose treatment group. In the high dose group, early postnatal losses appeared to be due to drug-dependent (infections) and drug-independent (accidents) causes; overall infant postnatal survival was reduced in the high dose group.
- Infants exposed to ofatumumab had initial CD20+ depletion and abnormal immune responses even after B-cell repletion, especially in the high dose exposed group. CD3+ and CD3+CD4+ T cells were increased in high dose female infants up to postnatal day 119. Immunoglobulin G levels were reduced in the high dose infants and while immunoglobulin levels recovered in males females did not show full recovery. The T-Cell-Dependent Antibody Response (TDAR) assay, using immunizations on PND119 and PND147, demonstrated persistent reductions in expected immune responsivity in the high dose offspring of ofatumumab-dosed females. A warning regarding avoidance of use during pregnancy is included in labeling based on these and the enhanced prenatal development study's findings. Such a warning is consistent with a warning in the labeling of another approved anti-CD20 mAb (i.e., rituximab.)

# 5. Clinical Pharmacology

An integrated Office of Clinical Pharmacology (OCP) Review was written by Drs. Jagan Parepally (primary reviewer), Angela Men (the clinical pharmacology team leader), Vishnu Sharma (reviewer for Division of Pharmacometrics), and Atul Bhattaram (the Division of Pharmacometrics team leader). The OCP review notes that ofatumumab is approved as Arzerra (at a higher dose, via the intravenous route, for the treatment of CLL) and that the Kesimpta application contains two Phase 2 and two Phase 3 studies as well as a pharmacokinetic (PK) study comparing ofatumumab administered via pre-filled syringe assembled with a safety needle device and via pre-filled syringe assembled with an autoinjector to support the new proposed dose, proposed route of administration, indication, and chronicity of use. The OCP team found that for Kesimpta, the proposed 20 mg subcutaneous dose with initial dosing at Weeks 0, 1, and 2 followed by subsequent monthly dosing starting at Week 4 supported approval for the relapsing forms of MS indication. The OCP team recommends approval.

Ofatumumab is already approved (as Arzerra), and therefore, there has been extensive adequate and sufficient prior characterization to support approval of this anti-CD20 monoclonal antibody with respect to basic pharmacological properties (e.g., mechanism of action, metabolism, excretion) that would not be altered by the changes associated with the proposed Kesimpta formulation. The OCP review therefore focused on three topics relevant to ofatumumab as proposed for use as Kesimpta: (1) the relative bioavailability of ofatumumab comparing ofatumumab administered via pre-filled syringe assembled with a safety needle device and via pre-filled syringe assembled with an autoinjector, (2) whether a population pharmacokinetic analysis focusing patient specific characteristics on the pharmacokinetics of Kesimpta provided evidence of a need for dose adjustments based on these factors, and (3) immunogenicity of Kesimpta.

The OCP review major conclusions regarding these topics were as follows:

- 1. Of a tumumab administered by a pre-filled syringe assembled in an autoinjector device and via a pre-filled syringe assembled in a needle safety device are bioequivalent.
- 2. There is no need for dose adjustment of Kesimpta in patients with MS based on age, sex, body weight, race, or baseline B-cell count.
- 3. The overall incidence of positive ADAs in patients with relapsing forms of MS was low. Treatment-induced ADAs were detected in less than 1% of patients (2/923 patients) with relapsing forms of MS treated with Kesimpta in the two Phase 3 studies. No patients with treatment-enhanced ADAs were identified. No neutralizing antibodies were identified in ADA-positive samples from the Phase 2 and Phase 3 studies.

The labeling reviewers stated that the applicant's population PK analysis supported most of the labeling statements as proposed but recommended changes to the labeling language for Kesimpta as follows:

• Revisions to Sections 6.2 (Immunogenicity), 7 (Drug-Drug Interactions), and 12.3 (Pharmacokinetics) to align with the key conclusions discussed in their review.

• Deletion of

<sup>4)</sup> which was not needed.

• Need for inclusion of an explicit statement in Section 12.3 that the following population characteristics do not have a clinically meaningful effect on the pharmacokinetics of Kesimpta: body weight, sex, age, race and baseline B-cell count.

# 4. Clinical Microbiology

Not applicable.

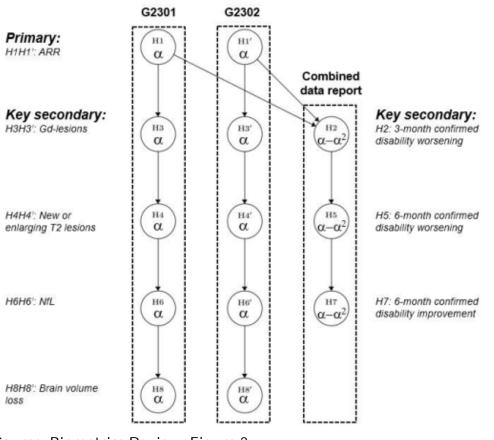
# 5. Clinical/Statistical- Efficacy

Dr. Lawrence Rodichok was the clinical efficacy reviewer for this application. Dr. Xiang Ling was the biometrics reviewer, and Dr. Kun Jin was the biometrics team leader. Dr. Rodichok finds that the application provides substantial evidence of efficacy for ofatumumab in the treatment of patients with relapsing forms of MS. Drs. Ling and Jin agree that the application provides adequate statistically significant findings on the primary outcome measure and relevant clinical disability endpoints; the biometrics team recommends approval.

# Study Design

The applicant submitted data from two adequate and well-controlled efficacy studies, Study COMB157G2301 (hereafter "Study G2301"), and Study COMB157G2302 (hereafter "Study G2302"). These studies were identical Phase 3, multinational, randomized, double-blind, double-dummy, parallel-group, active-controlled studies that evaluated 20 mg ofatumumab (subcutaneously once weekly for 3 weeks then monthly) compared to 15 mg oral teriflunomide administered daily.

The treatment durations for patients in both these studies was variable because patients received treatment in the controlled phase of the trial until sufficient blinded data were available to provide the pre-determined power for the key statistical outcomes. Patients enrolled in these trials were not permitted to receive other chronic immune treatments for


MS, and there were exclusion criteria and allowances for adequate treatment abstinence periods prior to randomization designed to prevent carry over of previous treatments' effects into the controlled trial phase. Patients could continue dalfampridine at a stable dose during the trial and corticosteroids could be administered for acute treatment of relapses and as premedication to prevent infusion-related reactions. The inclusion criteria for Studies G2301 and G2302 were a diagnosis of a relapsing form of MS using the standard international 2010 Revised McDonald criteria and documentation of at least 1 relapse during the previous 1 year, or 2 relapses during the previous 2 years prior to screening, or a positive gadolinium-enhancing (GdE) T1 lesion on magnetic resonance imaging (MRI) scan during the year prior to randomization.

Relapses were assessed by independent raters who were the only study personnel allowed to provide disability scoring and were blinded with respect to patient treatment condition. Patients reporting a potential relapse event were evaluated at an unscheduled study visit using standardized procedures. Measures were taken to maintain rater blinding including covering potential injection sites and preventing independent raters from accessing patient data such as adverse event history and B-lymphocyte counts that might reveal treatment condition. Confirmation of MS relapse was done centrally based on the independent rater evaluation findings. A confirmed MS relapse required an increase of at least 0.5 points on the Expanded Disability Status Scale (EDSS) score, or an increase of 1 point on two functional scores (FS) or 2 points on one FS, excluding changes involving bowel/bladder or cerebral FS compared to the previously available rating (the last EDSS rating that did not occur during a relapse).

The primary efficacy endpoint for Studies G2301 and G2302 was the annualized relapse rate (ARR). The secondary endpoints of Studies G2301 and G2302, were analyzed in a closed sequential hierarchy as indicated in the figure below. Thus, within each study, the primary endpoint (ARR) was tested first, and if the null hypothesis could be rejected, the key secondary endpoints were tested according to the following hierarchy: the number of GdE T1 lesions, the number of new or enlarging T2 lesions, neurofilament light levels, and brain volume loss. A meta-analysis for the combined data (pooled from Studies G2301 and G2302) was prespecified for the key secondary disability-related endpoints, 3-month confirmed disability worsening, and 6-month confirmed disability worsening because the individual studies were not powered for these analyses. If both studies successfully rejected the null-hypothesis of the primary endpoint, disability-related

endpoints could be tested at 1-sided significance level of 0.024 using the combined data from both studies, regardless of the outcomes of MRI- and neurofilament-related endpoints.

Figure 1: Testing Procedure and Type-I Error Control in Studies G2301 and G2302



Source: Biometrics Review, Figure 2

# Study G2301

### **Demographics**

In Study G2301, the intention-to-treat (ITT) population, defined as every patient receiving at least one dose of treatment, comprised nine-hundred and twenty-seven (927) patients who were randomized to treatment, 465 to treatment with Kesimpta and 462 to treatment with teriflunomide. Patients enrolled from 170 centers in 28 countries worldwide. Most (68.5%) of the enrolled patients came from Eastern Europe, and 20.8% came from the United States.

The ITT population in Study G2301 was 68.5% female, had a median and mean age of 39.0 and 38.3 years old, respectively, and 88.8% of the patients were White. These demographic data are entirely consistent with the well-established demographics of the worldwide population diagnosed with a relapsing form of MS. The ITT population was adequately balanced between treatment arms with respect to key demographic and baseline disease variables.

Eighty-six percent of the Kesimpta-treated patients and 78.8% of the teriflunomide-treated patients completed Study G2301 on treatment. The two most frequent reasons for treatment discontinuation in the Kesimpta treatment arm were patient/guardian decision (4.9%), adverse event (5.2%), and physician decision (2.2%). Dr. Rodichok noted an overall higher rate of discontinuation in the teriflunomide treatment group (17.5% vs. 10.3%) which was the result of a much higher rate of discontinuation due to patient and physician decision (14.7% in teriflunomide versus 7.1% in Kesimpta). While this imbalance might suggest subject or physician level unblinding, this imbalance was only prominent in Study G2301, and there was broad consistency in the statistically significant efficacy outcome results from both trials, including independently evaluated clinical and radiological outcomes which would not be impacted by this potential unblinding. Aside from this numerical discrepancy, there is no evidence that there was patient or investigator unblinding nor that unblinding by any party significantly influenced the outcome results in these trials.

## Primary Outcome Measure

ARR was analyzed using a negative binomial regression model with treatment and region as factors; the number of relapses in previous year, baseline EDSS score, baseline number of gadolinium-enhancing T1 lesions, and the patient's age

at baseline were covariates. The patient's time in study was calculated in a manner to correct for the fact that patients would not all be enrolled in the study for the same durations due to the study design.

In Study G2301, there were 79 patients treated with Kesimpta who experienced a total of 90 confirmed relapses during the randomized controlled trial; there were 132 patients treated with teriflunomide who had a total of 177 confirmed relapses. There was a similar rate of relapse confirmation in both treatment arms.

The following table, adapted from the biometrics review, provides the results of the primary efficacy analysis:

|                                        | *                    |                   |
|----------------------------------------|----------------------|-------------------|
|                                        | Kesimpta             | Teriflunomide     |
|                                        | 20 mg                | 14 mg             |
|                                        | N=465                | N=462             |
| Adjusted ARR (95% confidence interval) | 0.11 (0.09, 0.14)    | 0.22 (0.18, 0.26) |
| Rate ratio (95% confidence interval)   | 0.495 (0.374, 0.654) |                   |
| Percentage reduction                   | 50.5%                |                   |
| p-value*                               | <0.001               |                   |

# Table 1: Study G2301: Summary of Annualized Relapse Rate (ARR)

\*This endpoint was analyzed in a negative binomial model.

Source: Biometrics Review, Table 8

The primary efficacy analysis of Study G2301 was statistically significant (p<0.001) in favor of Kesimpta in patients with relapsing forms of MS. Drs. Rodichok and Ling agree that the ARR outcome of the primary efficacy analysis is convincing evidence of a significant treatment effect of Kesimpta that exceeds the established efficacy of teriflunomide in the prevention of relapses in MS.

Dr. Ling confirmed the findings of all of the applicant's pre-planned sensitivity analyses. The statistical analysis plan stipulated that primary analysis was to be repeated to include all reported MS relapses (confirmed or unconfirmed). The primary analysis was also repeated using a "per-protocol" data set to provide an analysis of on-treatment data from

patients who had no major protocol violations. In this analysis, only relapses with a start date during the on-treatment period were included, in comparison with the primary analysis which used all available data up to the end of treatment epoch date, irrespective of on or off study treatment. Additionally, the time-to-first relapse was analyzed in a Cox proportional hazards model. Dr. Ling confirmed that the ARR results remained highly significant in all of these prespecified analyses and confirmed that the analysis of time-to-first relapse showed significantly longer time-to-first relapse in Kesimpta-treated patients.

The biometrics reviewer also confirmed the applicant's results from exploratory subgroup analyses for age, gender, race, and region. The confirmed findings demonstrate that Kesimpta treatment had a significantly greater treatment effect on ARR than teriflunomide in all of these subgroups, and the subgroup findings were consistent with the overall primary outcome analysis.

## Secondary Outcome Measures

# GdE T1 Lesions and New or Enlarging T2 Lesions

The following tables, adapted from the biometrics review, provides the confirmed results of the secondary outcome efficacy analyses of MRI outcomes (T1 GdE lesions and new or enlarging T2 lesions):

## Table 2: Study G2301: Summary of GdE T1 Lesions

|                                                 | Kesimpta             | Teriflunomide  |
|-------------------------------------------------|----------------------|----------------|
|                                                 | 20 mg                | 14 mg          |
|                                                 | N=465                | N=462          |
| Adjusted Mean Number of T1 GdE Lesions per Scan | 0.01                 | 0.45           |
| (95% confidence interval)                       | (0.006, 0.022)       | (0.356, 0.575) |
| Rate ratio (95% confidence interval)            | 0.025 (0.013, 0.049) |                |
| Percentage rate reduction                       | 97.5%                |                |
| p-value*                                        | <0.001               |                |

\*This endpoint was analyzed in a negative binomial model.

Source: Biometrics Review, Table 9

# Table 3: Study G2301: Summary of New or Enlarging T2 Lesions

|                                                           | Kesimpta          | Teriflunomide |
|-----------------------------------------------------------|-------------------|---------------|
|                                                           | 20 mg             | 14 mg         |
|                                                           | N=465             | N=462         |
| Adjusted Mean Number of New/enlarging T2 lesions per Scan | 0.72              | 4.00          |
| (95% confidence interval)                                 | (0.61, 0.85)      | (3.47, 4.61)  |
| Rate ratio (95% confidence interval)                      | 0.18 (0.15, 0.22) |               |
| Percentage rate reduction                                 | 82.0%             |               |
| p-value*                                                  | <0.001            |               |

\*This endpoint was analyzed in a negative binomial model. Source: Biometrics Review, Table 10

The MRI outcome findings show a robust statistically significant treatment effect of Kesimpta on GdE T1 and new or enlarging T2 lesions on MRI scans. These MRI outcomes provide additional support for a treatment effect of Kesimpta as evidenced by the highly significant primary outcome analysis finding of a reduction in ARR and the prevention of disability worsening discussed below.

# Neurofilament Light Chain

The following table, taken from the biometrics review, summarizes the findings of neurofilament light chain serum concentrations at month 3:

|                                        | Kesimpta          | Teriflunomide |
|----------------------------------------|-------------------|---------------|
|                                        | 20 mg             | 14 mg         |
|                                        | N=465             | N=462         |
| Adjusted Mean Concentration at Month 3 | 8.80              | 9.41          |
| (95% confidence interval)              | (8.48, 9.12)      | (9.06, 9.77)  |
| Ratio (95% confidence interval)        | 0.93 (0.89, 0.98) |               |
| p-value*                               | 0.011             |               |

## Table 4: Study G2301: Neurofilament Light Chain Concentrations at Month 3

\*This endpoint was analyzed using a repeated measures mixed effects model.

Source: Biometrics Review, Table 11

The applicant provided data demonstrating that serum levels of neurofilament light chain at month 3 were statistically different between the two treatment arms. The use of neurofilament light chain as a potential serum marker of neuronal injury is speculative. The specificity and interpretability of serum neurofilament levels are not clear because many neurological diseases and insults yield similar changes in serum neurofilament light chain levels, and there is no consensus opinion regarding what represents an "abnormal" finding in this laboratory assessment. Serum measurement

of neurofilament light chain is not an established, accepted biomarker for MS. This finding is reported for completeness because it was within the applicant's hierarchical analysis, but discussion of this finding is not an endorsement of this measurement as an acceptable regulatory endpoint nor is this finding considered to represent substantial evidence of efficacy.

## Percent Change in Brain Volume from Baseline

The following table, taken from the biometrics review, summarizes the change in brain volume from baseline:

# Table 5: Study G2301: Percent Change in Brain Volume from Baseline

|                                      | Kesimpta           | Teriflunomide  |
|--------------------------------------|--------------------|----------------|
|                                      | 20 mg              | 14 mg          |
|                                      | N=465              | N=462          |
| Annual Rate of Change from Baseline  | -0.28              | -0.35          |
| (95% confidence interval)            | (-0.34, -0.22)     | (-0.41, -0.29) |
| Difference (95% confidence interval) | 0.07 (-0.02, 0.15) |                |
| p-value*                             | 0.116              |                |

\*This endpoint was analyzed using a random coefficients model.

Source: Biometrics Review, Table 12

The percent change in brain volume was not statistically different between the Kesimpta and teriflunomide treatment arms.

# Study G2302

# **Demographics**

In Study G2302, the ITT population comprised nine hundred and fifty-five (955) patients who were randomized to treatment, 481 to treatment with Kesimpta and 474 to treatment with teriflunomide. Patients enrolled from 180 centers in

30 countries worldwide. Most (69.9%) of the enrolled patients came from Eastern Europe, and 20.9% came from the United States.

The ITT population in Study G2302 was 66.8% female, had both a median and a mean age of approximately 38 years old, and 87.4% of the patients were White. These demographic data are entirely consistent with the well-established demographics of the worldwide population diagnosed with a relapsing form of MS. The ITT population were adequately balanced between treatment arms with respect to key demographic and baseline disease variables.

In this study, 80% of the Kesimpta group and 78.5% of the teriflunomide group, respectively, completed study on treatment. As in Study G2301, the most frequent reasons for treatment discontinuation in the Kesimpta treatment arm in Study G2302 were patient/guardian decision (7.3%), physician decision (5.2%), and adverse event (5.6%). There was less of an imbalance between the overall discontinuation rates (20.0% and 21.5%) in the Kesimpta and teriflunomide conditions, as well as a relative lack of discrepancy between the combined physician and subject decision discontinuation rates (12.7% and 14.6%) in Study G2302.

# Primary Outcome Measure

ARR was analyzed using a negative binomial regression model with treatment and region as factors; the number of relapses in previous year, baseline EDSS score, baseline number of GdE T1 lesions, and the patient's age at baseline were covariates. The patient's time in study was calculated in a manner to correct for the fact that patients would not all be enrolled in the study for the same durations due to the study design.

In Study G2302, there were 72 patients treated with Kesimpta who experienced a total of 95 confirmed relapses during the randomized controlled trial; there were 138 patients treated with teriflunomide who had a total of 198 confirmed relapses. The relapse confirmation rate was similar in both treatment arms.

The following table, adapted from the biometrics review, provides the results of the primary efficacy analysis:

|                                        | Kesimpta             | Teriflunomide     |
|----------------------------------------|----------------------|-------------------|
|                                        | 20 mg                | 14 mg             |
|                                        | N=465                | N=462             |
| Adjusted ARR (95% confidence interval) | 0.10 (0.08, 0.13)    | 0.25 (0.21, 0.30) |
| Rate ratio (95% confidence interval)   | 0.415 (0.308, 0.559) |                   |
| Percentage reduction                   | 58.5%                |                   |
| p-value*                               | <0.001               |                   |

# Table 6: Study G2302: Summary of Annualized Relapse Rate (ARR)

\*This endpoint was analyzed in a negative binomial model.

Source: Biometrics Review, Table 13

The primary efficacy analysis of Study G2302 was statistically significant (p<0.001) in favor of Kesimpta in patients with relapsing forms of MS. Drs. Rodichok and Ling agree that the ARR outcome of the primary efficacy analysis is convincing evidence of a significant treatment effect of Kesimpta that exceeds the established efficacy of teriflunomide in the prevention of relapses in MS. The findings are nearly identical to the findings from Study G2301 which confirms the treatment effect is robust and consistent.

Dr. Ling confirmed the findings of all of the applicant's pre-planned sensitivity analyses. The statistical analysis plan stipulated that primary analysis was to be repeated to include all reported MS relapses (confirmed or unconfirmed). The primary analysis was also repeated using a "per-protocol" data set to provide an analysis of on-treatment data from patients who had no major protocol violations. In this analysis, only relapses with a start date during the on-treatment period were included, in comparison with the primary analysis which used all available data up to the end of treatment epoch date, irrespective of on or off study treatment. Additionally, the time-to-first relapse was analyzed in a Cox proportional hazards model. Dr. Ling confirmed that the ARR results remained highly significant in all of these prespecified analyses and confirmed that the analysis of time-to-first relapse showed significantly longer time-to-first relapse in Kesimpta-treated patients.

The biometrics reviewer also confirmed the applicant's results from exploratory subgroup analyses for age, gender, race, and region. The confirmed findings demonstrate that Kesimpta treatment had a significantly greater treatment effect on ARR than teriflunomide in all of these subgroups, and the subgroup findings were consistent with the overall primary outcome analysis.

## Secondary Outcome Measures

# GdE T1 Lesions and New or Enlarging T2 Lesions

The following tables, adapted from the biometrics review, provides the confirmed results of the secondary outcome efficacy analyses of MRI outcomes (T1 GdE lesions and new or enlarging T2 lesions):

## Table 7: Study G2302: Summary of GdE T1 Lesions

|                                                 | Kesimpta             | Teriflunomide  |
|-------------------------------------------------|----------------------|----------------|
|                                                 | 20 mg                | 14 mg          |
|                                                 | N=465                | N=462          |
| Adjusted Mean Number of T1 GdE Lesions per Scan | 0.03                 | 0.51           |
| (95% confidence interval)                       | (0.021, 0.048)       | (0.402, 0.658) |
| Rate ratio (95% confidence interval)            | 0.062 (0.037, 0.101) |                |
| Percentage rate reduction                       | 93.8%                |                |
| p-value*                                        | <0.001               |                |

\*This endpoint was analyzed in a negative binomial model.

Source: Biometrics Review, Table 14

# Table 8: Study G2302: Summary of New or Enlarging T2 Lesions

|                                                           | Kesimpta          | Teriflunomide |
|-----------------------------------------------------------|-------------------|---------------|
|                                                           | 20 mg             | 14 mg         |
|                                                           | N=465             | N=462         |
| Adjusted Mean Number of New/enlarging T2 lesions per Scan | 0.64              | 4.15          |
| (95% confidence interval)                                 | (0.55, 0.75)      | (3.64, 4.74)  |
| Rate ratio (95% confidence interval)                      | 0.15 (0.13, 0.19) |               |
| Percentage rate reduction                                 | 84.5%             |               |
| p-value*                                                  | <0.001            |               |

\*This endpoint was analyzed in a negative binomial model. Source: Biometrics Review, Table 15

As in Study G2302, the MRI outcome findings for Study G2302 demonstrate a robust, statistically significant treatment effect of Kesimpta on GdE T1 and new or enlarging T2 lesions on MRI scans. These MRI outcomes provide additional support for a treatment effect of Kesimpta as evidenced by the highly significant replicated primary outcome analysis finding of a reduction in ARR and the prevention of disability worsening discussed below.

# Neurofilament Light Chain

The following table, taken from the biometrics review, summarizes the findings of neurofilament light chain serum concentrations at month 3:

|                                        | Kesimpta          | Teriflunomide |
|----------------------------------------|-------------------|---------------|
|                                        | 20 mg             | 14 mg         |
|                                        | N=465             | N=462         |
| Adjusted Mean Concentration at Month 3 | 8.92              | 10.02         |
| (95% confidence interval)              | (8.62, 9.23)      | (9.68, 10.36) |
| Ratio (95% confidence interval)        | 0.89 (0.85, 0.93) |               |
| p-value*                               | <0.001            |               |

# Table 9: Study G2302: Neurofilament Light Chain Concentrations at Month 3

\*This endpoint was analyzed using a repeated measures mixed effects model.

Source: Biometrics Review, Table 16

The applicant provided data demonstrating that serum levels of neurofilament light chain at month 3 were statistically different between the two treatment arms. This laboratory assessment is not an accepted outcome measure providing meaningful information regarding any aspect of relapsing forms of MS. Refer to the discussion of this outcome measure in Study G2301 for further elaboration.

## Percent Change in Brain Volume from Baseline

The following table, taken from the biometrics review, summarizes the change in brain volume from baseline:

|  | Table 10: Study G2302: | Percent Change in Brain | Volume from Baseline |
|--|------------------------|-------------------------|----------------------|
|--|------------------------|-------------------------|----------------------|

|                                      | Kesimpta           | Teriflunomide  |
|--------------------------------------|--------------------|----------------|
|                                      | 20 mg              | 14 mg          |
|                                      | N=465              | N=462          |
| Annual Rate of Change from Baseline  | -0.29              | -0.35          |
| (95% confidence interval)            | (-0.35, -0.23)     | (-0.42, -0.29) |
| Difference (95% confidence interval) | 0.07 (-0.02, 0.15) |                |
| p-value*                             | 0.129              |                |

\*This endpoint was analyzed using a random coefficients model.

Source: Biometrics Review, Table 17

The percent change in brain volume was not statistically different between the Kesimpta and teriflunomide treatment arms.

# Pooled Disability Outcome Findings

As per prior agreement, the disability-related key secondary outcome assessments of disability at 3-month and 6-months were to be based on analyses of the pooled data from Studies G2301 and G2302 because each individual trial would not be adequately powered to provide individual study outcome analyses of these relatively small number of outcomes.

# 3-month Confirmed Disability Worsening

The following table and figure, taken from the biometrics review, summarizes the time to 3-month confirmed disability worsening in both trials:

| Studies G2301 + | KM Estimate               | n/N     | Hazard Ratio              | Risk      | p-value |
|-----------------|---------------------------|---------|---------------------------|-----------|---------|
| G2302           | at Month 24               | (%)     | (95% Confidence Interval) | Reduction |         |
|                 | (95% Confidence Interval) |         |                           |           |         |
| Kesimpta        | 10.9                      | 88/944  | 0.656                     | 34.4%     | 0.002   |
| 20 mg           | (8.8, 13.4)               | (9.3%)  | (0.499, 0.862)            |           |         |
| Teriflunomide   | 15.0                      | 125/931 |                           |           |         |
| 14 mg           | (12.6, 17.7)              | (13.4%) |                           |           |         |

# Table 11: Studies G2301 and G2302: Time to 3-month Confirmed Disability Worsening

Source: Biometrics review, Table 18

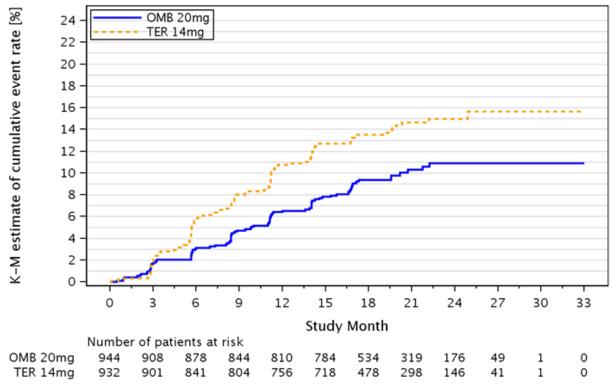



Figure 2: Studies G2301 and G2302: Time to 3-Month Confirmed Disability Worsening

Source: Biometrics review, Figure 3

The time to 3-month disability worsening was statistically significant (p=0.002) in favor of Kesimpta treatment. Patients treated with Kesimpta had a lower rate of confirmed 3-month disability worsening as compared to patients treated with teriflunomide. Even though the individual studies were not powered for this endpoint, analysis of Study G2301 and G2302 individually yielded statistically significant results for the 3-month disability worsening endpoint (p=0.029 and p=0.036, respectively.) In prior clinical trials, teriflunomide reduced the confirmed disability progression at a 3-month interval relative to placebo; Kesimpta is therefore demonstrating superiority over a treatment that has a significant effect on disability progression in relapsing forms of MS.

The biometrics reviewer confirmed the findings of the pre-specified secondary outcome analysis and several sensitivity analyses including a "worst-case" analysis in which Kesimpta-treated patients who discontinued from the study due to lack of efficacy were considered as having a confirmed 3-month disability worsening outcome (a risk reduction for ofatumumab vs. teriflunomide of 32.9%, p=0.004). The confirmed sensitivity analyses replicated the pre-specified analysis result, which is a significant effect on prevention of 3-month disability worsening in patients treated with Kesimpta.

### 6-month Confirmed Disability Worsening

The following table and figure, taken from the biometrics review, summarizes the time to 6-month confirmed disability worsening in both trials:

| Studies G2301 + | KM Estimate               | n/N     | Hazard Ratio              | Risk      | p-value |
|-----------------|---------------------------|---------|---------------------------|-----------|---------|
| G2302           | at Month 24               | (%)     | (95% Confidence Interval) | Reduction |         |
|                 | (95% Confidence Interval) |         |                           |           |         |
| Kesimpta        | 8.1                       | 71/944  | 0.675                     | 32.5%     | 0.012   |
| 20 mg           | (6.5, 10.2)               | (7.5%)  | (0.498, 0.916)            |           |         |
| Teriflunomide   | 12.0                      | 99/931  |                           |           |         |
| 14 mg           | (9.9, 14.5)               | (10.6%) |                           |           |         |

Table 12: Studies G2301 and G2302: Time to 6-month Confirmed Disability Worsening

Source: Biometrics review, Table 18

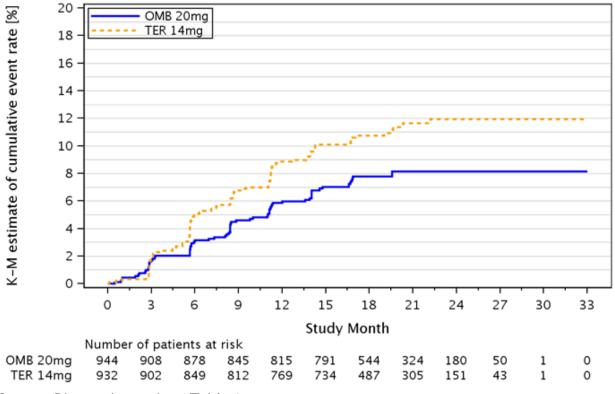



Figure 3: Studies G2301 and G2302: Time to 6-Month Confirmed Disability Worsening

Source: Biometrics review, Table 4

The time to 6-month disability worsening was statistically significant (p=0.012) in favor of Kesimpta treatment. Patients treated with Kesimpta had a lower rate of confirmed 6-month disability worsening as compared to patients treated with teriflunomide. Even though the individual studies were not powered for this endpoint, analysis of Study G2301 and G2302 individually yielded statistically significant results for the 6-month disability worsening endpoint for Study G2301 (p=0.022) but the result for Study G2302 was not significant (p=0.209). In clinical trials, teriflunomide reduced the confirmed disability worsening relative to placebo; in the pooled analysis, Kesimpta is therefore demonstrating superiority over a treatment that has a significant effect on disability worsening in relapsing forms of MS.

The biometrics reviewer confirmed the findings of the pre-specified secondary outcome analysis and several sensitivity analyses including a "worst-case" analysis in which Kesimpta-treated patients who discontinued from the study due to lack of efficacy were considered as having a confirmed 6-month disability worsening outcome (a risk reduction for ofatumumab vs. teriflunomide of 29.6%, p=0.022). The confirmed sensitivity analyses largely replicated the pre-specified analysis result, which is a significant effect on prevention of 6-month disability worsening in patients treated with Kesimpta.

### 6-month Confirmed Disability Improvement

The following table and figure, taken from the biometrics review, summarizes the time to 6-month confirmed disability improvement in both trials:

| Studies G2301 + | KM Estimate               | n/N    | Hazard Ratio              | Risk      | p-value |
|-----------------|---------------------------|--------|---------------------------|-----------|---------|
| G2302           | at Month 24               | (%)    | (95% Confidence Interval) | Reduction |         |
|                 | (95% Confidence Interval) |        |                           |           |         |
| Kesimpta        | 11.0                      | 74/749 | 1.352                     | -35.2     | 0.094   |
| 20 mg           | (8.8, 13.7)               | (9.9%) | (0.950, 1.924)            |           |         |
| Teriflunomide   | 8.1                       | 53/723 |                           |           |         |
| 14 mg           | (6.2, 10.6)               | (7.3%) |                           |           |         |

### Table 13: Studies G2301 and G2302: Time to 6-month Confirmed Disability Improvement

Source: Biometrics review, Table 22

The analysis of confirmed disability improvement at 6-months was not statistically significant (p=0.094).

## Conclusions on the Substantial Evidence of Effectiveness

Approval for Kesimpta (ofatumumab) for relapsing forms of MS is supported by efficacy findings from two adequate and well-controlled clinical trials, Studies G2301 and G2302. These studies demonstrated that Kesimpta treatment yielded consistent statistically significant reductions of over 50% (50.5% and 58.5%) in ARR relative to an active comparator,

teriflunomide. A reduction of over 50% in ARR is a robust and meaningful outcome for a therapeutic to treat relapsing forms of MS; in these studies, a significant treatment effect on ARR is established relative to teriflunomide, an active comparator with its own significant treatment effect on ARR. The significant MRI findings in these two studies provide additional supportive findings for the primary clinical outcome analysis. With respect to the primary efficacy endpoint, these studies have provided substantial evidence of effectiveness for Kesimpta in the treatment of patients with relapsing forms of MS and a strong treatment effect on relapses.

The disability assessment outcomes from Studies G2301 and G2302 support the conclusion that Kesimpta is superior to the active comparator with respect to reducing the likelihood of confirmed disability worsening. Various sensitivity analyses demonstrate that this effect on disability worsening is independent of relapse occurrences in the trial and is maintained through more conservative sensitivity analyses that assume worsening with missing final confirmation assessments. Drs. Rodichok and Ling note that the applicant's methodology for calculating disability "worsening" at both time points differed from the conventions used for some historical assessments of confirmed disability "progression" in other development programs. Dr. Rodichok asked for, via an information request, an exploratory analysis from the applicant that utilized calculation methods excluding patient relapse visits as events that initiated or confirmed EDSS progression assessment and assumed patients with any worsening, but without confirmation of disability visits, had confirmed disability progression. The results of this exploratory analysis were confirmed by Dr. Ling and are discussed in the biometrics review. This confirmed disability progression analysis is conservative, even more so than the "worst case" scenario in the applicant's sensitivity analyses, but the findings from this analysis remained significant for the 3-month confirmed disability progression endpoint (nominal p=0.012) and revealed a strong trend (nominal p=0.074) for the 6month confirmed disability progression endpoint. Thus, the requested exploratory analysis of outcomes using this conservative approach were consistent with the applicant's primary analysis and did not suggest that the applicant's findings regarding disability worsening were driven entirely by relapses and absent confirmatory visits. Finally, the Division requested an analysis that allowed a clinical relapse to occur at the initiation of a disability progression, but excluded relapses that occurred within 30 days of a disability worsening confirmation visit for the 3- month disability confirmation endpoint. This analysis, verified by biometrics reviewer, again demonstrates a significant effect of Kesimpta on disability progression at 3 months (relative risk reduction of 34.9%, nominal p=0.002) in comparison to teriflunomide. The findings of this exploratory analysis are nearly identical to the prespecified primary analysis findings, and this

analysis aligns with the Division's current approach to disability outcome assessment. Thus, there is confidence that the robust treatment effect on disability progression from the applicant's pre-specified primary analysis that is described in Section 14 of the labeling is comparable to the disability progression outcomes obtained in both historical and contemporary analyses, regardless of the differences in the definition of progression and how relapses were considered within the analytical methods.

Furthermore, disability worsening or progression as an endpoint is considered to be a singular concept. A treatment effect that prevents an increase in disability as measured by EDSS over 3 months and 6 months represents only a difference in time of observed persistence, not an achievement of a treatment effect on two entirely unrelated, unique, clinically relevant outcomes. Achieving a significant finding on a single disability outcome, or both 3-month and 6-month outcomes, represents the same fundamental finding, that is, a relative prevention of a clinically relevant accumulation of disability over a quantum of time.

# 6. Safety

According to Dr. Rodichok's review, 1230 unique patients with MS were exposed to at least one dose of Kesimpta of at least 20 mg via any route in the MS development program. Of these 1230 patients, 946 patients in Studies G2301 and G2302 were exposed to the 20 mg subcutaneous dose proposed for the treatment of relapsing forms of MS; the remaining 284 patients were exposed to Kesimpta in the other antecedent studies within this program, at doses ranging from 20-60 mg. The comparator in Studies G2301 and G2302 was teriflunomide, an approved therapy for relapsing forms of MS with its own well characterized safety profile. While of atumumab is approved for treatment of CLL, Dr. Rodichok's safety review focused on any safety signals in patients with relapsing forms of MS because the studies in CLL used to support of atumumab's use in CLL were obtained in the setting of a substantially higher intravenous dose along with the

concurrent use of multiple potent immune suppressing agents, and, therefore, the applicability of the existing labeled warnings and safety findings was limited.

The following table, adapted from a table in Dr. Rodichok's review, summarizes the extent of exposure to Kesimpta in the applicant's development program for relapsing forms of MS:

| Duration of Exposure | Kesimpta |
|----------------------|----------|
|                      | (N=1230) |
| ≥ 6 months           | 889      |
| ≥ 12 months          | 824      |
| ≥ 18 months          | 551      |
| All Exposed ≥ 1 dose | 1230     |

### Table 14: Kesimpta Safety Population Duration of Exposure

Source: Clinical Safety Review, Table 57

The safety database consisting of 1230 exposed patients is adequate with respect to number exposed and duration of exposure (824 patients exposed for at least 1 year and 1555 patient-years of cumulative experience overall) for generating meaningful safety conclusions regarding the MS indication. Two-thirds (66.7%) of the patients in these studies were women, 58.1% were less than 40 years old, and 88.1% were White, all of which are to be expected for studies of relapsing forms of MS because of the disease's typical and well-known demographics.

### Deaths

There were no deaths reported in ofatumumab-exposed patients in the MS development program.

### Serious Adverse Events

Despite identical designs and largely similar serious adverse event (SAE) findings, Studies G2301 and G2302 are discussed separately due to a notable difference in the findings between the two studies.

### Study G2301

In Study G2301, SAEs occurred in 48/466 patients (10.3%) treated with Kesimpta and in 38/463 patients (8.2%) treated with teriflunomide. The most frequently reported SAEs, categorically, were infections and infestations (2.6% vs. 1.5% in teriflunomide comparator arm), psychiatric disorders (1.9% vs. 0%), and injury, poisoning, and procedural complications (1.3% vs. 0.2%). The most often reported infections were appendicitis (which occurred in three patients treated with Kesimpta and one patient treated with teriflunomide) and gastroenteritis (which occurred in two patients treated with Kesimpta versus no teriflunomide-treated patients). Increased risk of infections, including serious infections, is a known consequence of immune suppression achieved with anti-CD20 treatments, generally, and with ofatumumab, specifically. Labeling for risks of infection and warning against the use of Kesimpta in patients with active infections should be adequate to mitigate this serious issue. The increased rate of procedural complications was attributable to a higher rate of injection-related reactions in the Kesimpta treatment group, which is expected in comparison to a comparator arm which featured an inert injection.

There were nine serious psychiatric adverse events in the Kesimpta treatment arm of Study G2301, but no serious psychiatric events were reported in the teriflunomide treatment arm. Two of the psychiatric SAEs were suicidal ideation; the remaining psychiatric SAEs were isolated events such as stress, suicidal depression, depression, and a suicide attempt. There were no deaths by suicide in the MS development program, and suicide assessments collected routinely during these trials did not reveal an increased suicidality signal in Kesimpta-treated patients. Dr. Rodichok also notes that there was not a disproportionate number of psychiatric SAEs for Kesimpta-treated patients in the other MS and non-MS trials with ofatumumab which argues against ofatumumab as the specific unique explanation for this outcome. Monoclonal antibody anti-CD20 therapies would not be expected to cross the blood-brain barrier and directly interact with the central nervous system to potentiate a centrally-mediated neuropsychiatric adverse event. Additionally, high dose ofatumumab has not been associated with more psychiatric adverse events in CLL patients treated with Arzerra. In response to an information request, the applicant provided an analysis of psychiatric adverse events that confirmed Dr. Rodichok's analysis and did not support the hypothesis that Kesimpta was associated with increased risk of psychiatric adverse events. Depression, anxiety, and suicide are common in patients with the diagnosis of MS and are reported to be severalfold more likely to occur in patients with MS than in the general population. Therefore, this apparent increase in

psychiatric SAE findings appears reflective of the known psychiatric sequelae of MS, overrepresented by chance in the Kesimpta treatment arm, and very unlikely to be a treatment-emergent effect.

### Study G2302

In Study G2302, SAEs occurred in 38/481 patients (7.9%) treated with Kesimpta and in 36/474 patients (7.6%) treated with teriflunomide. As in Study G2301, two of the most common categories of SAEs were infections and procedural complications (injection-site reactions), but the risks of these categories of SAEs were more balanced in this study than in Study G2301 between the Kesimpta and teriflunomide treatment arms at 2.5% vs. 2.1%, and 1.5% vs. 1.7%, respectively. Appendicitis was again the most common infection noted in 5 patients treated with Kesimpta and 1 patient treated with teriflunomide. As discussed, an imbalance in suicidal depression/ideation in Kesimpta-treated patients was not reported in Study G2302.

Most SAEs in these trials were isolated events, and, aside from the general patterns noted above, the safety database did not identify other broad categories of serious risks nor any new signals previously unseen in association with of atumumab.

### Interruptions and Discontinuations

During Studies G2301 and G2302, 5.8% of patients treated with Kesimpta and 5.2% of patients treated with teriflunomide discontinued treatment. The most common reason for discontinuation of therapy, reported in over half of the 5.8% of patients who discontinued Kesimpta treatment in both studies, was decreased serum immunoglobulins. By contrast, less than 1% of patients ended teriflunomide because of low serum immunoglobulins. Per protocol, patients with serum immunoglobulin M (IgM) less than 10% of the lower limit of normal or immunoglobulin G (IgG) less than 20% of the lower limit of normal were to discontinue treatment. A reduction in serum immunoglobulins is not unexpected with anti-CD20 therapy such as ofatumumab because anti-CD20 therapy selectively targets B-lymphocytes, the immune cells that secrete immunoglobulins. Further, there is an established direct relationship between CD20 inhibition using monoclonal antibodies and a relatively acute downregulation of IgM release from B-cells. Dr. Rodichok notes in his review of laboratory findings that the median serum reduction in serum IgM of 28% (versus 17% noted with teriflunomide treatment) occurs early in treatment (within 90 days of therapy initiation) with Kesimpta. The IgM reduction appears

relatively selective for IgM and was not noted as consistently with IgG. In patients who completed 96 weeks of treatment, the mean decrease in IgM was approximately 40% vs. 20% for teriflunomide treated patients at the same time point. Given the observation that IgM reduction appears to increase over longer durations of treatment, there is concern that the longest observation duration for patients in the MS development program, approximately 30 months, is not sufficient to determine the nadir of this IgM reduction. Published data from similar B-cell precursor depleting therapies (i.e., rituximab, ocrelizumab) suggest that chronic administration of anti-CD20 B-cell depleting monoclonal antibodies causes serial B-cell precursor depletion that eventually impacts the pool of mature plasma cells that maintain the serum IgM and IgG pools necessary to prevent recurrent or serious infections. Based on the controlled trial findings for Kesimpta, low IgM was the most common cause of discontinuation of treatment within 2 years of therapy, and if the IgM or IgG continued to worsen over years of further treatment, hypogammaglobulinemia could yield clinically significant immune suppression and recurrent or serious infections that may limit longitudinal therapy in some patients. Since of atumumab is administered as a short-term therapy to treat CLL, there are no comparable longitudinal data from previous of atumumab experience to inform this potential safety risk. Therefore, labeling needs to warn of the observed IgM reduction, advise of a need for immunoglobulin screening, and that a postmarketing study to evaluate IgM and IgG in patients with MS receiving chronic Kesimpta is needed to clarify the consequences of B-cell depletion associated with of atumumab. The goal of this postmarketing requirement would be to identify whether the immunoglobulin levels in patients reach a consistent nadir, to identify whether there are more patients who may require exogenous immunoglobulins to treat hypogammaglobulinemia and recurrent opportunistic infections, and to identify the timetable for recovery of immunoglobulins in patients who discontinue therapy.

### Treatment-Emergent Adverse Events

The following tables, adapted from Dr. Rodichok's safety review, summarize the most common treatment-emergent adverse events that occurred in clinical trial subjects in Studies G2301 and G2302:

Table 15: Treatment Emergent Adverse Events by Preferred Term, End of Study+100 days, Occurring in 5% or More in Either Treatment Group, Study G2301

| Adverse Event Preferred Term      | Kesimpta   | Teriflunomide |
|-----------------------------------|------------|---------------|
|                                   | 20 mg      | 14 mg         |
|                                   | (n=465)    | (n=462)       |
| Nasopharyngitis                   | 82 (17.6%) | 69 (14.9%)    |
| Injection related reaction        | 76 (16.3%) | 77 (16.7%)    |
| Headache                          | 57 (12.3%) | 51 (11.0%)    |
| Upper respiratory tract infection | 48 (10.3%) | 73 (15.8%)    |
| Fatigue                           | 46 (9.9%)  | 40 (8.7%)     |
| Urinary tract infection           | 42 (9.0%)  | 41 (8.9%)     |
| Injection site reaction           | 42 (9.0%)  | 26 (5.6%)     |
| Back pain                         | 37 (8.0%)  | 34 (7.4%)     |
| Influenza                         | 32 (6.9%)  | 29 (6.3%)     |
| Nausea                            | 31 (6.7%)  | 32 (6.9%)     |
| Alopecia                          | 27 (5.8%)  | 64 (13.9%)    |
| Blood immunoglobulin M decreased  | 26 (5.6%)  | 13 (2.8%)     |
| Arthralgia                        | 25 (5.4%)  | 23 (5.0%)     |
| Diarrhea                          | 21 (4.5%)  | 62 (13.4%)    |
| Pain in extremity                 | 23 (4.9%)  | 36 (7.8%)     |
| Paresthesia                       | 16 (3.4%)  | 31 (6.7%)     |
| Hypertension                      | 15 (3.2%)  | 24 (5.2%)     |

Source: Clinical Safety Review, Table 71

Table 16: Treatment Emergent Adverse Events by Preferred Term, End of Study+100 days, Occurring in 5% or More in Either Treatment Group, Study G2302

| Adverse Event Preferred Term      | Kesimpta    | Teriflunomide |
|-----------------------------------|-------------|---------------|
|                                   | 20 mg       | 14 mg         |
|                                   | (n=481)     | (n=474)       |
| Injection related reaction        | 119 (24.7%) | 66 (13.9%)    |
| Nasopharyngitis                   | 88 (18.3%)  | 87 (18.4%)    |
| Headache                          | 69 (14.3%)  | 65 (13.7%)    |
| Injection site reaction           | 61 (12.7%)  | 26 (5.5%)     |
| Urinary tract infection           | 55 (11.4%)  | 37 (7.8%)     |
| Upper respiratory tract infection | 49 (10.2%)  | 47 (9.9%)     |
| Back pain                         | 35 (7.3%)   | 24 (5.1%)     |
| Blood immunoglobulin M decreased  | 30 (6.2%)   | 8 (1.7%)      |
| Influenza                         | 30 (6.2%)   | 30 (6.3%)     |
| Nausea                            | 30 (6.2%)   | 32 (6.8%)     |
| Diarrhea                          | 28 (5.8%)   | 49 (10.3%)    |
| Anxiety                           | 28 (5.8%)   | 18 (3.8%)     |
| Alopecia                          | 27 (5.6%)   | 74 (15.6%)    |
| Fatigue                           | 25 (5.2%)   | 32 (6.8%)     |
| Insomnia                          | 24 (5.0%)   | 19 (4.0%)     |
| Depression                        | 24 (5.0%)   | 24 (5.1%)     |
| Arthralgia                        | 24 (5.0%)   | 21 (4.4%)     |
| Pain in extremity                 | 23 (4.8%)   | 30 (6.3%)     |
| Hypertension                      | 20 (4.2%)   | 31 (6.5%)     |

Source: Clinical Safety Review, Table 73

## Adverse Events of Special Interest and Special Safety Concerns

### Serious Infections

As noted above, infections were among the most common adverse events in the two controlled clinical trials in patients with MS. Ofatumumab is an immune suppressant; ofatumumab treatment is expected to confer an increased risk of infection. Labeling can advise prescribers and patients of this potential adverse event as it does for Arzerra. Enhanced pharmacovigilance for serious infections will provide expedited reporting to identify risks in postmarketing that were not noted in the clinical trials.

The risk of progressive multifocal leukoencephalopathy (PML), identified with Arzerra, should be included among the labeling risks for Kesimpta. PML is a serious potentially serious, potentially fatal, opportunistic infection. PML occurred with ofatumumab given for a shorter duration (but at a higher dose) in patients with CLL, but PML is an identified risk associated with other MS therapies, including the anti-CD20 treatment ocrelizumab, and therefore a significant potential exists for PML occurring with chronic use of Kesimpta.

Dr. Rodichok notes that Arzerra has a boxed warning for reactivation of hepatitis B infection. In patients with refractory CLL, hepatitis B virus reactivation would represent a severe and life-threatening event in a patient being treated with multiple concurrent immune suppressants and merits a boxed warning in that setting (medically fragile patients with an ablated immune system). However, there were no hepatitis reactivation cases in the Kesimpta development program. Ocrelizumab (an anti-CD20 therapy like of a boxed warning because the severity of cases with reactivated hepatitis B did not merit such a significant elevation in the warning. Because of the lack of observed hepatitis reaction in patients with MS treated in this development program, and the relative immune competence in typical MS patients as compared to patients with CLL, there is insufficient basis for a boxed warning for hepatitis reactivation in the Kesimpta labeling as there is in the Arzerra labeling. Even without hepatitis B cases occurring in the MS program, based on the CLL development program safety database and the postmarketing experience of other anti-CD20 mAbs, there exists a potential for reactivation of hepatitis B in patients with MS treated with Kesimpta that merits a labeling warning and a contraindication for use in

patients with active hepatitis B infection. Finally, hepatitis B infection status should be assessed before beginning Kesimpta treatment.

The observed, and expected, risks of serious and opportunistic infections associated with Kesimpta appear similar to other approved therapies for relapsing forms of MS and do not preclude approval.

### Injection-related Reactions

Arzerra's labeling lists a warning and precaution for infusion-related reactions, advises a premedication regimen, and states that 67% of patients experienced any infusion-related reaction, with 10% of those reactions being Grade 3 or higher in severity. However, Arzerra is infused via the intravenous route at a higher administered dose than Kesimpta, which is administered subcutaneously. According to Dr. Rodichok's review, a treatment-emergent adverse event with the preferred term of "injection-related reaction" occurred in 20.6% of subjects treated with Kesimpta as compared to 15.2% of those who received a placebo dummy injection. Most patients treated with Kesimpta who experienced a reaction reported this adverse event on the first day (84%) or second day (13%) of administration. There were two patients treated with Kesimpta who experienced a serious injection-related event; neither of these events was life-threatening and both events responded to treatment without a need for hospitalization. One patient each in the Kesimpta and dummy treatment groups discontinued treatment due to injection-related reactions in the Phase 3 trials. According to Dr. Rodichok's analysis, premedication with steroids (6.9% vs. 6.9%) or with non-steroidal anti-inflammatory treatments (4.5% vs. 4.4%) reduced injection-related reactions to the same extent in both the Kesimpta and placebo-treated patients. Based on these findings, it appears of atumumab administered via the subcutaneous route as Kesimpta yields an overall lower rate of reactions and a much lower risk of serious adverse events than of atumumab administered intravenously as Arzerra. The rate of systemic reactions for Kesimpta is overall guite low in comparison to those reported for the other chimeric anti-CD20 therapies approved for autoimmune diseases, which is consistent with of atumumab being a fully human antibody with less antigenic potential than murine hybrid chimeric antibodies. Premedication appears to have no significant differential impact on injection-related reactions for Kesimpta and will not be recommended as a universal measure before administration. The usually mild nature of injection-related reactions reported in these trials do not appear to pose a significant safety risk for Kesimpta's use in a home setting without medical supervision.

### Safety Conclusions

Kesimpta is associated with adverse reactions, some serious, but the risks of most treatment-emergent events identified in the clinical trials undertaken in patients with MS can be reduced through minimally invasive screening, monitoring, and mitigated by discontinuation of therapy. The most common treatment-emergent adverse events, injection reactions, mild upper respiratory infection, and headache, were similar to the active comparator treatment arm, were not serious, and were not the most frequent reasons for discontinuing use of Kesimpta. Overall, the identified risks are consistent with those identified for of atumumab in patients with refractory CLL. There were no deaths in the MS development program, and the most serious adverse events associated with Arzerra, such as hepatitis B reactivation and PML, were not reported in MS patients. There are several possible explanations for why the safety profile for Arzerra is appears to have greater risk of more serious outcomes than for Kesimpta. Patients with CLL have a serious, life-threatening illness that is considerably more acute and likely to be fatal than MS. Second, the degree of immune suppression in CLL patients is much greater than would be necessary to treat MS. The goal of the combined immunosuppressive treatment regimen for patients with CLL is total eradication of lymphocytes, as opposed to a reduction of serum B-cells below the lower limit of normal range as would be the goal with MS therapy. Aggressive rapid immune ablation using multiple agents would confer a much greater risk of serious, potentially fatal opportunistic infections than Kesimpta would. Finally, Arzerra is administered at a higher dose (albeit for a shorter duration of treatment) than Kesimpta and thus potentiates serious risks within a shorter exposure duration. This final point regarding duration of therapy is noteworthy because, while Kesimpta may be administered at a lower per administration dose than Arzerra, there is an expectation that patients will continue treatment with Kesimpta on a chronic basis for years, perhaps lifelong, which differs significantly from Arzerra's use as a short-term chemotherapy agent. It is expected that, given sufficient chronicity in a larger population of patients with MS, some safety issues associated with Kesimpta that were not apparent in the relatively short-term use in these pivotal trials will emerge. The labeling of Kesimpta therefore justifiably includes risks of PML and hepatitis B reactivation both because Arzerra has an association with these outcomes and because reactivated hepatitis B and PML have occurred in the postmarketing setting in patients treated with another anti-CD20 mAb therapy (ocrelizumab) approved to treat patients with MS. The inclusion in labeling of a need to monitor immunoglobulins is also a recognition that there is emerging evidence that chronic long-term use of mAb anti-CD20 therapies is associated with, eventually, a clinically significant depletion of immunoglobulin pools in serum, with a concurrent potential increased risk of serious infection. A postmarketing requirement to study immunoglobulins during long-term Kesimpta therapy is being imposed to allow for

further understanding of this emerging, potentially fatal, safety issue. Pregnancy registry and outcomes studies are needed because Kesimpta will be used in the MS population which is predominantly women of childbearing potential and data regarding pregnancy outcomes are limited. Furthermore, animal studies suggest *in utero* of atumumab exposure is associated with B-cell depletion and reduced immune responses in offspring so women using Kesimpta need to use effective contraception and labeling will provide a warning to this effect. Even with these potentially serious concerns, relapsing forms of MS have serious, potentially fatal sequelae. Kesimpta is a highly effective therapy and therefore can be approved even with proven or strongly suspected serious safety risks because the disease that Kesimpta is proposed to treat, MS, remains incurable, disabling, and possibly fatal.

# 7. Advisory Committee Meeting

This application was not referred to an Advisory Committee for review because this biologic is not the first in its class, the safety profile is known because of its previous pre- and post-marketing experience in other indications, and is similar to that of the other biologic in this class approved for this indication, the clinical trial designs were acceptable, the efficacy findings were clear, and the safety profile was acceptable in light of the serious nature of the disease being treated. Labeling specific to the MS indication will make prescribers fully aware of the risks associated with Kesimpta treatment for MS.

# 8. Pediatrics

No clinical pediatric data are provided. An initial Pediatric Study Plan to study Kesimpta in patients ages 10-17 years with relapsing forms of MS that was submitted by the applicant on August 30, 2018, as required by the Pediatric Research Equity Act (PREA), was deemed acceptable. The PMR for a pediatric study is described in Section 11.

# 9. Other Relevant Regulatory Issues

This section may include discussion on other issues (if not addressed in previous sections):

- The Division of Medication Error Prevention and Analysis (DMEPA) provided a review of the proprietary name, "Kesimpta." Dr. Denise Baugh was the primary evaluator and Dr. Briana Rider was the team leader. The DMEPA team did not identify any potential risks with there being two proprietary names (Arzerra and Kesimpta) for ofatumumab. After a standard battery of assessments, the DMEPA team concluded that the name Kesimpta, and the name proposed for the subcutaneous delivery device ("Kesimpta Sensoready Pen") were acceptable for use.
- DMEPA provided a review of the human factors validation studies submitted with the sNDA. The applicant
  provided human factor validation studies of the two proposed presentations of Kesimpta, the prefilled syringe
  and the prefilled pen. Review of these studies identified errors and difficulties of use for which the applicant
  provided acceptable remedies. DMEPA provided additional recommendations to the labeling instructions for use
  for both presentations, with subsequent agreement by the applicant, and concluded no additional mitigation
  strategies were necessary to ensure safe, effective use.
- The Office of Scientific Investigations (OSI) conducted an inspection of one clinical site (Dr. Sundaram). The OSI review noted minor discrepancies associated with transcription of EDSS scores recorded at scheduled visits from paper to electronic format but concluded all but one of these discrepancies would not impact the secondary disability outcome measure which largely relied on EDSS scores obtained at baseline and unscheduled visits. In the one instance of a discrepancy that impacted a baseline EDSS score which could affect the disability outcome assessment, an information request to the applicant confirmed the change of the score in the applicant's database, and a new analysis with this corrected baseline score yielded the same overall statistical outcomes for confirmed disability worsening. The COVID-19 global pandemic precluded inspection of additional study sites as originally planned, but OSI provided a consult dated January 21, 2020, summarizing recent Good Clinical Practice (GCP) inspections for three other clinical sites (Drs. Selmaj, Maciejowski, and Bosnjak-Pasic) used in Studies G2301 and G2302. These sites were noted to be in compliance with GCP at the time of their most recent inspections.

# 10. Labeling

See the final negotiated product label. Labeling negotiations with the applicant have been completed and the applicant has accepted all recommended changes.

# 11. Postmarketing Recommendations

### Risk Evaluation and Management Strategies (REMS)

A REMS is not necessary for Kesimpta (ofatumumab). A REMS was not necessary after approval of Arzerra (ofatumumab).

### Postmarketing Requirements (PMRs) and Commitments (PMCs)

The following are postmarketing requirements:

1. A two-part study of Kesimpta (ofatumumab) in pediatric patients with relapsing forms of multiple sclerosis (RMS) at least 10 years and less than 18 years of age. Part A is an open-label study of the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of Kesimpta (ofatumumab) in pediatric patients. Part A will include two cohorts, one with body weights less than 40 kg and the other with body weights 40 kg or more. The objective of Part A is to determine maintenance doses of Kesimpta (ofatumumab) that will result in PK and PD effects that are comparable to those of the dose administered to adult patients. Part B is a randomized, blinded, non-inferiority trial with Gilenya (fingolimod) as a comparator.

| Draft Protocol Submission: | 09/2020 |
|----------------------------|---------|
| Final Protocol Submission: | 01/2021 |
| Study Completion:          | 09/2025 |
| Final Report Submission:   | 03/2026 |

2. Prospective pregnancy exposure registry cohort analyses in the United States that compare the maternal, fetal, and infant outcomes of women with multiple sclerosis exposed to Kesimpta (ofatumumab) during pregnancy with two unexposed control populations: one consisting of women with multiple sclerosis who have not been exposed to Kesimpta (ofatumumab) before or during pregnancy and the other consisting of women without multiple sclerosis. The registry will identify and record pregnancy complications, major and minor congenital malformations, spontaneous abortions, stillbirths, elective terminations, preterm births, small-for-gestational-age births, and any other adverse outcomes, including postnatal growth and development. Outcomes will be assessed throughout pregnancy. Infant outcomes, including effects on postnatal growth and development, will be assessed through at least the first year of life.

| Draft Protocol Submission:         | 06/2021 |
|------------------------------------|---------|
| Final Protocol Submission:         | 02/2022 |
| Annual Interim Report Submissions: | 08/2023 |
|                                    | 08/2024 |
|                                    | 08/2025 |
|                                    | 08/2026 |
|                                    | 08/2027 |
|                                    | 08/2028 |
|                                    | 08/2029 |
|                                    | 08/2030 |
|                                    | 08/2031 |
|                                    | 08/2032 |
| Study Completion:                  | 02/2033 |
| Final Report Submission:           | 02/2034 |
|                                    |         |

3. A pregnancy outcomes study using a different study design than provided for in PMR 3901-2 (for example, a retrospective cohort study using claims or electronic medical record data with outcome validation or a case-control

study) to assess major congenital malformations, spontaneous abortions, stillbirths, preterm births, and small-forgestational-age births in women exposed to Kesimpta (ofatumumab) during pregnancy compared to an unexposed control population.

| 06/2021 |
|---------|
| 02/2022 |
| 08/2023 |
| 08/2024 |
| 08/2025 |
| 08/2026 |
| 08/2027 |
| 08/2028 |
| 08/2029 |
| 08/2030 |
| 08/2031 |
| 08/2032 |
| 02/2033 |
| 02/2034 |
|         |

4. A safety trial to monitor serum immunoglobulin G and M levels in patients with relapsing forms of multiple sclerosis during treatment with Kesimpta (ofatumumab) to establish the nadir in circulating immunoglobulins during chronic treatment, and to monitor patients after discontinuation of treatment with Kesimpta (ofatumumab) in order to ascertain the time needed to ensure restoration of pre-treatment baseline circulating serum levels of immunoglobulins G and M. This trial also should be designed to capture rates of infections, especially opportunistic and recurrent infections associated with immune suppression, and there should be monitoring of B-cell counts throughout treatment and after discontinuation until repletion of immunoglobulin levels.

51

Draft Protocol Submission: 05/2021

| Final Protocol Submission: | 01/2022 |
|----------------------------|---------|
| Trial Completion:          | 05/2028 |
| Final Report Submission:   | 05/2029 |

The following is a postmarketing <u>commitment</u>:

 Conduct a study to evaluate the presence of leachables in pre-filled syringe drug product material that is representative of the commercial process and stored in the intended pre-filled syringe at long-term storage conditions (5±3°C) up to the proposed expiry date

| Trial Completion:        | 10/31/2021 |
|--------------------------|------------|
| Final Report Submission: | 12/31/2021 |

# 2. Recommended Comments to the Applicant

There are no additional recommended comments to the applicant.

This is a representation of an electronic record that was signed electronically. Following this are manifestations of any and all electronic signatures for this electronic record.

-----

/s/

PAUL R LEE 08/19/2020 04:21:10 PM

NICHOLAS A KOZAUER 08/19/2020 04:53:23 PM

# CENTER FOR DRUG EVALUATION AND RESEARCH

**APPLICATION NUMBER:** 

# 125326Orig1s070

# **CLINICAL REVIEW(S)**

### **CLINICAL REVIEW**

| Application Type            | sBLA                                                       |
|-----------------------------|------------------------------------------------------------|
|                             |                                                            |
| Application Number(s)       | 125326 SUPPL-70 (Efficacy)                                 |
| Priority or Standard        | Priority                                                   |
| Submit Date(s)              | 12/20/2019                                                 |
| Received Date(s)            | 12/20/2019                                                 |
| PDUFA Goal Date             | 6/20/2020                                                  |
| Division/Office             | DN2/Office of Neuroscience                                 |
| Reviewer Name(s)            | Lawrence Rodichok MD                                       |
| Review Completion Date      | 6/17/2020                                                  |
| Established/Proper Name     | ofatumumab                                                 |
| (Proposed) Trade Name       | Arzerra                                                    |
| Applicant                   | Novartis Pharmaceuticals Corporation                       |
| Dosage Form(s)              | 20 mg/4mL for injection                                    |
| Applicant Proposed Dosing   | Initial dose: 20 mg SC at Weeks 0, 1, and 2                |
| Regimen(s)                  | 20 mg SC monthly starting at Week 4                        |
| Applicant Proposed          | Adults with relapsing forms of multiple sclerosis (MS), to |
| Indication(s)/Population(s) | include clinically isolated syndrome, relapsing-remitting  |
|                             | disease, and active secondary progressive disease.         |
| Recommendation on           | Approval                                                   |
| Regulatory Action           |                                                            |
| Recommended                 | Adults with relapsing forms of multiple sclerosis (MS), to |
| Indication(s)/Population(s) | include clinically isolated syndrome, relapsing-remitting  |
| (if applicable)             | disease, and active secondary progressive disease.         |

### **Table of Contents**

| Glossar                | y 1                                                                                                                                                                                                                                         | 10                                     |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 1. Exe                 | ecutive Summary                                                                                                                                                                                                                             | 13                                     |
| 1.1.                   | Product Introduction1                                                                                                                                                                                                                       | 13                                     |
| 1.2.                   | Conclusions on the Substantial Evidence of Effectiveness                                                                                                                                                                                    | 13                                     |
| 1.3.                   | Benefit-Risk Assessment 1                                                                                                                                                                                                                   | 13                                     |
| 1.4.                   | Patient Experience Data 1                                                                                                                                                                                                                   | 16                                     |
| 2. The                 | erapeutic Context                                                                                                                                                                                                                           | 16                                     |
| 2.1.                   | Analysis of Condition1                                                                                                                                                                                                                      | 17                                     |
| 2.2.                   | Analysis of Current Treatment Options 1                                                                                                                                                                                                     | 17                                     |
| 3. Reg                 | gulatory Background 2                                                                                                                                                                                                                       | 22                                     |
| 3.1.                   | U.S. Regulatory Actions and Marketing History2                                                                                                                                                                                              | 22                                     |
| 3.2.                   | Summary of Presubmission/Submission Regulatory Activity                                                                                                                                                                                     | 22                                     |
| 3.3.                   | Foreign Regulatory Actions and Marketing History2                                                                                                                                                                                           | 22                                     |
| -                      | nificant Issues from Other Review Disciplines Pertinent to Clinical Conclusions on                                                                                                                                                          |                                        |
|                        | icacy and Safety                                                                                                                                                                                                                            |                                        |
| 4.1.                   | Office of Scientific Investigations (OSI)                                                                                                                                                                                                   |                                        |
| 4.2.                   | Product Quality                                                                                                                                                                                                                             | 22                                     |
| 4.3.                   |                                                                                                                                                                                                                                             | ~ ~                                    |
| 4.4.                   | Clinical Microbiology                                                                                                                                                                                                                       |                                        |
| 15                     | Nonclinical Pharmacology/Toxicology 2                                                                                                                                                                                                       | 23                                     |
| 4.5.                   | Nonclinical Pharmacology/Toxicology                                                                                                                                                                                                         | 23<br>23                               |
| 4.6.                   | Nonclinical Pharmacology/Toxicology                                                                                                                                                                                                         | 23<br>23<br>23                         |
|                        | Nonclinical Pharmacology/Toxicology                                                                                                                                                                                                         | 23<br>23                               |
| 4.6.<br>4.7.           | Nonclinical Pharmacology/Toxicology                                                                                                                                                                                                         | 23<br>23<br>23<br>23                   |
| 4.6.<br>4.7.           | Nonclinical Pharmacology/Toxicology       2         Clinical Pharmacology       2         Devices and Companion Diagnostic Issues       2         Consumer Study Reviews       2                                                            | 23<br>23<br>23<br>23<br>23             |
| 4.6.<br>4.7.<br>5. Sou | Nonclinical Pharmacology/Toxicology       2         Clinical Pharmacology       2         Devices and Companion Diagnostic Issues       2         Consumer Study Reviews       2         urces of Clinical Data and Review Strategy       2 | 23<br>23<br>23<br>23<br>23<br>23<br>23 |

|    |       | Study COMB157G2301: A Randomized, double-blind, double dummy, parallel group y comparing the efficacy and safety of ofatumumab vs. teriflunomide in patients with                           |     |
|----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | rela  | osing multiple sclerosis                                                                                                                                                                    |     |
|    |       | 6.1.1. Study Design                                                                                                                                                                         | 25  |
|    |       | 6.1.2. Study Results                                                                                                                                                                        | 38  |
|    |       | Study COMB157G2302: A Randomized, double-blind, double dummy, parallel group y comparing the efficacy and safety of ofatumumab vs. teriflunomide in patients with psing multiple sclerosis. | 66  |
|    | i ciu | 6.2.1. Study Design                                                                                                                                                                         |     |
|    |       | 6.2.2. Study Results                                                                                                                                                                        |     |
|    |       | 0.2.2. Study Results                                                                                                                                                                        | 00  |
| 7. | Int   | tegrated Review of Effectiveness                                                                                                                                                            | 93  |
|    | 7.1.  | Assessment of Efficacy Across Trials                                                                                                                                                        | 93  |
|    |       | 7.1.1. Primary Endpoint                                                                                                                                                                     | 94  |
|    |       | 7.1.2. Secondary and Other Endpoints                                                                                                                                                        | 94  |
|    |       | 7.1.3. Subpopulations 1                                                                                                                                                                     | .07 |
|    |       | 7.1.4. Dose and Dose-Response1                                                                                                                                                              | .08 |
|    |       | 7.1.5. Onset, Duration, and Durability of Efficacy Effects1                                                                                                                                 | .08 |
|    | 7.2.  | Additional Efficacy Considerations1                                                                                                                                                         | .09 |
|    |       | 7.2.1. Considerations on Benefit in the Post-market Setting                                                                                                                                 | .09 |
|    |       | 7.2.2. Other Relevant Benefits                                                                                                                                                              | .09 |
|    | 7.3.  | Integrated Assessment of Effectiveness1                                                                                                                                                     | .09 |
| 8. | Re    | eview of Safety1                                                                                                                                                                            | .09 |
|    | 8.1.  | Safety Review Approach1                                                                                                                                                                     | .09 |
|    | 8.2.  | Review of the Safety Database1                                                                                                                                                              | .10 |
|    |       | 8.2.1. Overall Exposure                                                                                                                                                                     | .10 |
|    |       | 8.2.2. Relevant characteristics of the safety population:                                                                                                                                   | .10 |
|    |       | 8.2.3. Adequacy of the safety database:                                                                                                                                                     | .12 |
|    | 8.3.  | Adequacy of Applicant's Clinical Safety Assessments1                                                                                                                                        | .12 |
|    |       | 8.3.1. Issues Regarding Data Integrity and Submission Quality                                                                                                                               | .12 |
|    |       | 8.3.2. Categorization of Adverse Events                                                                                                                                                     | .12 |
|    |       | 8.3.3. Routine Clinical Tests                                                                                                                                                               |     |
|    |       |                                                                                                                                                                                             |     |

CDER Clinical Review Template Version date: September 6, 2017 for all NDAs and BLAs

| 8.4. Safety Results                                                                 |
|-------------------------------------------------------------------------------------|
| 8.4.1. Deaths                                                                       |
| 8.4.2. Serious Adverse Events                                                       |
| 8.4.3. Dropouts and/or Discontinuations Due to Adverse Effects                      |
| 8.4.4. Significant Adverse Events                                                   |
| 8.4.5. Treatment Emergent Adverse Events and Adverse Reactions 119                  |
| 8.4.6. Laboratory Findings                                                          |
| 8.4.7. Vital Signs                                                                  |
| 8.4.8. Electrocardiograms (ECGs)130                                                 |
| 8.4.9. QT                                                                           |
| 8.4.10. Immunogenicity131                                                           |
| 8.5. Analysis of Submission-Specific Safety Issues 132                              |
| 8.5.1. Injection-related reactions132                                               |
| 8.6. Safety Analyses by Demographic Subgroups132                                    |
| 8.7. Specific Safety Studies/Clinical Trials                                        |
| 8.8. Additional Safety Explorations134                                              |
| 8.8.1. Human Carcinogenicity or Tumor Development                                   |
| 8.8.2. Human Reproduction and Pregnancy135                                          |
| 8.8.3. Pediatrics and Assessment of Effects on Growth                               |
| 8.8.4. Overdose, Drug Abuse Potential, Withdrawal, and Rebound 135                  |
| 8.9. Safety in the Post-market Setting135                                           |
| 8.9.1. Safety Concerns Identified Through Post-market Experience                    |
| 8.9.2. Expectations on Safety in the Postmarket Setting                             |
| 8.9.3. Additional Safety Issues From Other Disciplines                              |
| 8.10. Integrated Assessment of Safety136                                            |
| 9. Advisory Committee Meeting and Other External Consultations                      |
| 10. Labeling Recommendations                                                        |
| 10.1. Prescription Drug Labeling                                                    |
| 10.2. Nonprescription Drug Labeling147                                              |
| 11. Risk Evaluation and Mitigation Strategies (REMS)147                             |
| CDER Clinical Review Template4Version date: September 6, 2017 for all NDAs and BLAs |

| 12. Postn | narketing Requirements and Commitments | 147 |
|-----------|----------------------------------------|-----|
| 13. Appe  | ndices                                 |     |
| 13.1.     | References                             | 147 |
| 13.2.     | Financial Disclosure                   |     |
| 13.3.     | Eligibility Criteria                   | 149 |
| 13.4.     | Relapse severity criteria              | 154 |
| 13.5.     | Schedule of Assessments                | 156 |
| 13.6.     | Narratives                             | 156 |

APPEARS THIS WAY ON ORIGINAL

### **Table of Tables**

| Table 1: Current approved treatments for relapsing forms of MS                                                   |   |
|------------------------------------------------------------------------------------------------------------------|---|
| Table 2: Table of Clinical Studies       27         Table 3: Schedule of key assessments during the RCP       32 |   |
| Table 4: Assessments during Safety Follow-up       33                                                            |   |
| Table 5: Disposition by End of Treatment status, FAS, Study 2301                                                 |   |
| Table 6: Reason for early discontinuation from treatment, FAS, Study 2301                                        |   |
| Table 7: Disposition by End of Study status, FAS, Study 2301                                                     |   |
| Table 8: Reasons for early study discontinuation, FAS, Study 2301                                                |   |
| Table 9: Randomization by Region, FAS, Study 2301                                                                |   |
| Table 10: Protocol deviations, FAS population, study 2301                                                        |   |
| Table 11: Baseline demographic characteristics, study 2301                                                       |   |
| Table 12: Concurrent medical disorders by MHSOC, 10% or more of OMB group, study 2301 4                          |   |
| Table 13: Concurrent medical disorders by MHDECOD, 5% for more of OMB group, study 2301                          |   |
|                                                                                                                  |   |
| Table 14: Selected concurrent medical disorders by MHSOC and preferred term, study 2301 4                        |   |
| Table 15: All previous treatments for MS, FAS, study 2301 48                                                     | 8 |
| Table 16: Most recent treatment for MS, FAS, study 2301 48                                                       | 8 |
| Table 17: Most recent end date of previous MS treatment, study 2301                                              | 0 |
| Table 18: Baseline disease characteristics, FAS, study 2301                                                      | 1 |
| Table 19: Percent compliance by treatment group, study 2301                                                      | 3 |
| Table 20: Concurrent medications, not MS-related, RCP, 10% or more of OMB treatment group,                       | , |
| study 2301                                                                                                       | 3 |
| Table 21: Proportion of subjects with at least one dose of systemic corticosteroids for relapse                  |   |
| treatment during the RCP, FAS, study 2301 54                                                                     |   |
| Table 22: Confirmed relapses, FAS, study 230154                                                                  | 4 |
| Table 23: Time in study, years, FAS, study 23015!                                                                |   |
| Table 24: All reported relapses, FAS, study 23015!                                                               | 5 |
| Table 25: Rate of confirmation of relapses by assigned treatment, FAS                                            | 6 |
| Table 26: Relapse severity rating, confirmed and unconfirmed relapses, FAS, study 2301 50                        | 6 |
| Table 27: ARR calculations, unadjusted vs. adjusted, FAS, study 23015                                            | 7 |
| Table 28: Disposition of subjects by treatment status, ITT, study 23026                                          | 7 |
| Table 29: Reasons for discontinuation of treatment, ITT, study 2302                                              | 7 |
| Table 30: End of Study status, ITT, study 2302                                                                   | 8 |
| Table 31: Reasons for Discontinuation from study, ITT, study 2302                                                | 8 |
| Table 32: Randomization by region, FAS, study 230269                                                             | 9 |
| Table 33: Protocol deviations, FAS population, study 2302                                                        | 0 |
| Table 34: Baseline demographic characteristics, study 2302                                                       |   |
| Table 35: Concurrent medical disorders by MHSOC, 10% or more of OMB group, study 230274                          | 4 |

| Table 36: Concurrent medical disorders by MHDECOD, 5% or more of OMB population, study         | ,    |
|------------------------------------------------------------------------------------------------|------|
| 2302                                                                                           | . 75 |
| Table 37: Selected concurrent medical disorders, by MHSOC, study 2302                          | . 75 |
| Table 38: All previous treatments for MS, FAS, study 2302                                      | . 77 |
| Table 39: Most recent MS treatment, FAS, study 2302                                            | . 77 |
| Table 40: The last relative study day of previous treatment for MS, by CMDECOD, FAS, study     |      |
| 2302                                                                                           | . 79 |
| Table 41: Baseline disease characteristics, study 2302                                         | . 80 |
| Table 42: Percent compliance, study 2302                                                       | . 81 |
| Table 43: Concurrent non-MS drugs during the trial. 10% or more in OMB group, study 2302 .     | . 81 |
| Table 44: Proportion of subjects with one or more courses of systemic corticosteroids for      |      |
| relapse treatment during the RCP, FAS, study 2302                                              | . 82 |
| Table 45: Confirmed relapses, FAS, study 2302                                                  | . 83 |
| Table 46: Time in study, years, FAS, study 2302                                                | . 83 |
| Table 47: All reported relapses, FAS, study 2302                                               | . 84 |
| Table 48: Rate of confirmation of relapses by assigned treatment, FAS, study 2302              | . 84 |
| Table 49: ARR calculations, unadjusted vs. adjusted, FAS, study 2302                           | . 85 |
| Table 50: ARR across studies                                                                   | . 94 |
| Table 51: Summary of analyses of 3MCDW                                                         | 100  |
| Table 52: Summary of analyses of 6MCDW                                                         | 106  |
| Table 53: ARR by subgroups, FAS, PoolC2 ISE                                                    | 107  |
| Table 54: 3- and 6-month CDW by subgroups, PoolC2, ISE                                         | 107  |
| Table 55: EDSS change from baseline to EOS visit, ISE                                          |      |
| Table 56: Overall exposure to ofatumumab                                                       | 110  |
| Table 57: Duration of exposure to ofatumumab, 20 mg SC q4W, or teriflunomide comparator        | .,   |
| pool L2                                                                                        |      |
| Table 58: Demographic characteristics, studies 2301 and 2302 pooled                            | 111  |
| Table 59: Serious adverse events by SOC, Safety population, EOT* + 100 days, study 2301 2      |      |
| Table 60: Serious adverse events by preferred term, Safety population, 2 or more OMB           |      |
| subjects, FAS, EOT + 100 days, study 2301                                                      | 114  |
| Table 61: SAEs, Infections and infestations by preferred term, safety population, EOT plus 100 | 0    |
| days, study 2301                                                                               |      |
| Table 62: SAEs, Psychiatric SOC, by preferred term, safety population, EOT plus 100 days, stud | dy   |
| 2301                                                                                           | 114  |
| Table 63: Serious adverse events by SOC, safety population, EOT* + 100 days, study 2302 2      | 115  |
| Table 64: Serious adverse events by preferred term, safety population, 2 or more OMB subject   | cts, |
| FAS, EOT + 100 days, study 2302                                                                |      |
| Table 65: SAEs, Infections and infestations SOC by preferred term, safety population, EOT plu  | IS   |
| 100 days, study 2302                                                                           | 116  |
| Table 66: Discontinuation of Study Treatment due to a treatment emergent adverse event,        |      |
| study 2301, EOT+100 days, safety population                                                    | 117  |

| Table 67: TEAE related to Immunoglobulin reduction leading to discontinuation of treatment  | t,   |
|---------------------------------------------------------------------------------------------|------|
| EOT+100 days safety population, study 2301                                                  | 118  |
| Table 68: Discontinuation of Study Treatment due to a treatment emergent adverse event,     |      |
| safety population, study 2302                                                               | 118  |
| Table 69: TEAE related to Immunoglobulin reduction leading to discontinuation of treatment  | t,   |
| safety population, study 2302                                                               |      |
| Table 70: Adverse events by SOC, Safety population, EOT +100 days, study 2301               | 120  |
| Table 71: Adverse events by PT, 5% or more of either treatment group, safety population, EC | )T + |
| 100 days, study 2301                                                                        | 120  |
| Table 72: Treatment emergent adverse events by SOC, EOT + 100 days, study 2302              | 121  |
| Table 73: Treatment emergent adverse events by preferred term, EOT+100days, 5% or more      | : in |
| either treatment group, study 2302                                                          |      |
| Table 74: QTcF changes during RCP, study 2301                                               |      |
| Table 75: QTcF changes during RCP, study 2302                                               | 131  |
| Table 76: Systemic symptoms in subjects with a treatment emergent IRR, ISS pool C2          | 132  |
| Table 77: Proportion with an IRR by pre-medication, ISS, PoolC2                             | 132  |
| Table 78: Dosing regimens, study 112831                                                     | 133  |
| Table 79: Proportion of subjects with a neoplasm, ISS all                                   | 134  |
| Table 80: TEAEs by SOC, RCP, EOT+100days, ISS                                               | 136  |
| Table 81: Most common non-serious events in the SOC Infections and Infestations during the  |      |
| RCP, ISS                                                                                    |      |
| Table 82: Selected preferred terms, Investigations SOC, RCP, ISS                            | 137  |
| Table 83: TEAEs by preferred term, EOT+100days, ISS, 2% or more in either treatment group   | 140  |
| Table 84: ODE1 grouping of MedDRA terms, ISS, 5% or more in OMB group                       |      |
| Table 85: Distribution of subjects by sex, RCP, ISS                                         | 142  |
| Table 86: TEAEs by SOC by SEX, RCP, ISS                                                     |      |
| Table 87: TEAEs, Infection and Infestations, most frequent, RCP, ISS                        |      |
| Table 88: TEASs related to immunoglobulins, Investigations, RCP, ISS                        |      |
| Table 89: Percent change from baseline, CD19+ cells, PoolC2, ISS                            | 145  |

# Table of Figures

| Figure 1: Distribution of end date for most recent MS treatment, study 2301                    | . 50 |
|------------------------------------------------------------------------------------------------|------|
| Figure 2: Number of GdE lesions at baseline, study 2301                                        |      |
| Figure 3: Time to 3-month confirmed disability worsening, FAS, study 2301                      |      |
| Figure 4: Time to 3-month confirmed disability worsening, no relapses during trial, FAS, study |      |
| 2301                                                                                           |      |
| Figure 5: Time to 3-month confirmed disability worsening, censor at any preceding relapse, F.  | AS,  |
| study 2301                                                                                     | 60   |
| Figure 6: Time to 6-month confirmed disability worsening, FAS, study 2301                      | 61   |
| Figure 7: Time to 6-month confirmed disability worsening, subjects with no relapses at any     |      |
| time, FAS, study 2301                                                                          | 62   |
| Figure 8: Time to 6-month confirmed disability worsening, censor at any preceding relapse, F.  | AS,  |
| study 2301                                                                                     | 63   |
| Figure 9: Time to first confirmed relapse, study 2301                                          | 65   |
| Figure 10: Distribution of the last date of most recent MS treatment, FAS, study 2302          | .79  |
| Figure 11: Time to 3MCDW, FAS, study 2302                                                      | 86   |
| Figure 12: Time to 3-month CDW, FAS, subjects with no relapses at any time                     | 87   |
| Figure 13: Time to 3MCDW, FAS, study 2302, censor at any prior relapse                         | 88   |
| Figure 14: Time to 6-month confirmed disability worsening, FAS                                 | 89   |
| Figure 15; Time to 6-month confirmed disability worsening, FAS, study 2302, subjects with no   | )    |
| relapse at any time                                                                            | 90   |
| Figure 16: Time to 6-month confirmed disability worsening, censor at any preceding relapse,    |      |
| FAS, study 2302                                                                                | 91   |
| Figure 17: Time to first confirmed relapse, study 2302                                         | 93   |
| Figure 18: Time to first 3-month confirmed disability worsening, FAS, combined populations     | 95   |
| Figure 19: Time to first 3-month confirmed disability worsening, FAS, combined studies,        |      |
| subjects with no relapse at any time (reviewer analysis)                                       |      |
| Figure 20: Time to 3MCDW, IPCW analysis, PoolC2                                                |      |
| Figure 21: Time to 3-month confirmed disability progression, Pool C2, Reviewer criteria        | 98   |
| Figure 22: Time to first 6-month confirmed disability worsening, FAS, combined studies 1       | 101  |
| Figure 23: Time to 6-month confirmed disability worsening, FAS, combined studies, subjects     |      |
|                                                                                                | 102  |
| Figure 24: Time to 6-month confirmed disability worsening, FAS, combined studies, subjects     |      |
| with relapse prior censored 1                                                                  |      |
| Figure 25: Time to 6-month confirmed disability progression, Pool C2, Reviewer criteria 1      |      |
| Figure 26: Median percent change in IgM level, by study day of treatment, study 2301 1         |      |
| Figure 27: Median percent change in IgM level, by study day on treatment, study 2302 1         |      |
| Figure 28: Percent change from baseline, CD19+ cells, PoolC2, ISS1                             | 146  |

# Glossary

| AC      | advisory committee                                     |
|---------|--------------------------------------------------------|
| ADA     | anti-drug antibodies                                   |
| AE      | adverse event                                          |
| AIDS    | acquired immunodeficiency syndrome                     |
| AR      | adverse reaction                                       |
| ARR     | annualized relapse rate                                |
| BLA     | biologics license application                          |
| BPCA    | Best Pharmaceuticals for Children Act                  |
| BRF     | Benefit Risk Framework                                 |
| BUN     | blood urea nitrogen                                    |
| CBC     | complete blood count                                   |
| CBER    | Center for Biologics Evaluation and Research           |
| CDER    | Center for Drug Evaluation and Research                |
| CDRH    | Center for Devices and Radiological Health             |
| CDTL    | Cross-Discipline Team Leader                           |
| CFR     | Code of Federal Regulations                            |
| CIS     | clinically isolated syndrome                           |
| СМС     | chemistry, manufacturing, and controls                 |
| CNS     | central nervous system                                 |
| COSTART | Coding Symbols for Thesaurus of Adverse Reaction Terms |
| CRF     | case report form                                       |
| CRO     | contract research organization                         |
| C-SSRS  | Columbia suicide severity rating scale                 |
| CRT     | clinical review template                               |
| CSR     | clinical study report                                  |
| CSS     | Controlled Substance Staff                             |
| CTCAE   | common terminology criteria for adverse events         |
| DBP     | diastolic blood pressure                               |
| DMC     | data monitoring committee                              |
| DMT     | disease modifying treatment                            |
| ECG     | electrocardiogram                                      |
| EDSS    | expanded disability status scale                       |
| eCTD    | electronic common technical document                   |
| EOS     | end of study                                           |
| EOT     | end of treatment                                       |
| ETASU   | elements to assure safe use                            |
|         |                                                        |

CDER Clinical Review Template Version date: September 6, 2017 for all NDAs and BLAs

| FDA       | Food and Drug Administration                                            |
|-----------|-------------------------------------------------------------------------|
| FDAAA     | Food and Drug Administration Amendments Act of 2007                     |
| FDASIA    | Food and Drug Administration Safety and Innovation Act                  |
| GCP       | good clinical practice                                                  |
| Gd        | gadolinium                                                              |
| GRMP      | good review management practice                                         |
| HBV       | hepatitis B virus                                                       |
| HDL       | high density lipoprotein                                                |
| HIV       | human immunodeficiency virus                                            |
| ICH       | International Council for Harmonization                                 |
| lgG       | immunoglobulin G                                                        |
| lgM       | immunoglobulin M                                                        |
| IND       | Investigational New Drug Application                                    |
| IRR       | injection related reaction                                              |
| ISE       | integrated summary of effectiveness                                     |
| ISR       | injection site reaction                                                 |
| ISS       | integrated summary of safety                                            |
| ITT       | intent to treat                                                         |
| LDL       | low density lipoprotein                                                 |
| LLN       | lower limit of normal                                                   |
| mAb       | monoclonal antibody                                                     |
| MedDRA    | Medical Dictionary for Regulatory Activities                            |
| mITT      | modified intent to treat                                                |
| MRI       | magnetic resonance imaging                                              |
| MS        | multiple sclerosis                                                      |
| NCI-CTCAE | National Cancer Institute-Common Terminology Criteria for Adverse Event |
| NDA       | new drug application                                                    |
| NEDA      | no evidence of disease activity                                         |
| NME       | new molecular entity                                                    |
| OCS       | Office of Computational Science                                         |
| OMB       | ofatumumab                                                              |
| OPQ       | Office of Pharmaceutical Quality                                        |
| OSE       | Office of Surveillance and Epidemiology                                 |
| OSI       | Office of Scientific Investigation                                      |
| PBRER     | Periodic Benefit-Risk Evaluation Report                                 |
| PD        | pharmacodynamics                                                        |
| PI        | prescribing information or package insert                               |
| РК        | pharmacokinetics                                                        |
| РМС       | postmarketing commitment                                                |
| PML       | progressive multifocal leukoencephalopathy                              |
| PMR       | postmarketing requirement                                               |
|           |                                                                         |

| PP   | per protocol                            |
|------|-----------------------------------------|
| PPI  | patient package insert                  |
| PREA | Pediatric Research Equity Act           |
| PRO  | patient reported outcome                |
| PSUR | Periodic Safety Update report           |
| REMS | risk evaluation and mitigation strategy |
| RMS  | relapsing forms of MS                   |
| SAE  | serious adverse event                   |
| SAP  | statistical analysis plan               |
| SBP  | systolic blood pressure                 |
| SC   | subcutaneous                            |
| SGE  | special government employee             |
| SOC  | system organ class                      |
| TEAE | treatment emergent adverse event        |
| TER  | teriflunomide                           |
| US   | United States of America                |

# **1. Executive Summary**

## 1.1. **Product Introduction**

Ofatumumab is a fully human anti-CD20 monoclonal antibody (mAb) that targets an epitope of the CD20 molecule on the cell membrane. It is approved for the treatment of patients with chronic lymphocytic leukemia (Arzerra<sup>®</sup>). Other mAbs that target the CD20 molecule are rituximab, commonly used off-label for the treatment of relapsing forms of multiple sclerosis (RMS), and ocrelizumab, approved for the treatment of relapsing and progressive forms of MS (Ocrevus<sup>®</sup>). Ofatumumab induces B-cell lysis primarily by complement-dependent cytotoxicity (CDC) and by antibody-dependent cell-mediated cytotoxicity (ADCC). The link to the Arzerra<sup>®</sup> is below.

https://www.accessdata.fda.gov/drugsatfda\_docs/label/2016/125326s063lbl.pdf

## 1.2. Conclusions on the Substantial Evidence of Effectiveness

Two adequate and well-controlled trials provide substantial evidence that treatment with ofatumumab 20 mg administered subcutaneously (SC) at an initial dose: 20 mg SC at Weeks 0, 1, and 2 and then 20 mg SC monthly starting at Week 4 reduces the frequency of relapses in comparison to treatment with teriflunomide in patients with relapsing forms of MS. A reduction in the proportion of RMS patients with 3-month confirmed progression of disability was demonstrated in the pooled population from the two pivotal trials. Treatment with ofatumumab significantly reduced MRI evidence of MS disease activity in comparison to teriflunomide.

### 1.3. Benefit-Risk Assessment

### **Benefit-Risk Integrated Assessment**

Two adequate and well controlled trials in adult patients with RMS have provided substantial evidence that treatment with ofatumumab reduces the annualized relapse rate, reduces periods of disability lasting 12 weeks, and reduces evidence of disease activity on magnetic resonance imaging in comparison to teriflunomide. There is evidence of a benefit on the acute loss of function due to a relapse (defined in part by an increase in disability) as well as for the longer 3-month periods of disability that are generally not related to relapses. These are all clinically relevant benefits that would justify a low to moderate safety risk. The risks of ofatumumab treatment of RMS are those expected with suppression of B-cells and decreased levels of immunoglobulin M, most notably an increased risk of infections. Serious or opportunistic infections do not appear to be a major safety issue although longer term experience is needed to further assess these risks. The risk can be mitigated to some extent with ongoing surveillance and continued monitoring of immunoglobulin M levels. Infusion reactions were not a serious safety concern, even without the use of pre-medications. Therefore, based on the available data, the manageable risk justifies the benefit of treatment with ofatumumab in patients with RMS.

| Dimension                              | Evidence and Uncertainties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Conclusions and Reasons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Analysis of</u><br><u>Condition</u> | <ul> <li>RMS is a condition associated periods of short-term neurologic signs<br/>and symptoms due to relapses. It is also associated with periods of<br/>disability due in part to incomplete recovery from relapses. These<br/>periods of disability typically last about 3 to 6 months but<br/>commonly resolve after that. These features of RMS are generally<br/>thought to be due to acute inflammatory events that are<br/>disseminated over time and occur in most myelinated areas of the<br/>CNS and to a lesser extent within neuronal aggregates and even<br/>within the meninges. However longer term and irreversible<br/>disability may also develop due to neurodegenerative changes that<br/>are largely independent of the occurrence of relapses. These may<br/>not be due to acute inflammation but rather to a different but</li> </ul> | Treatment with ofatumumab results in a<br>statistically significant and clinically<br>meaningful reduction in relapses and in the<br>occurrence of short-term periods of disability<br>largely unrelated to relapses. Two adequate<br>and well-controlled studies have<br>demonstrated a reduction in the annualized<br>relapse rate and the proportion of patients<br>experiencing 12-week confirmed progression<br>of disability, endpoints considered valid-<br>measures of function in MS patients. |

### -----

CDER Clinical Review Template Version date: September 6, 2017 for all NDAs and BLAs

| Dimension                                            | Evidence and Uncertainties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Conclusions and Reasons                                                                                                                                                                                |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                      | perhaps related type of pathophysiology. There is uncertainty as to<br>whether current therapies have a beneficial effect on the latter<br>process and therefore there is uncertainty as to whether current<br>therapies reduce long-term (5 to 20 years) disability                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                        |
| <u>Current</u><br><u>Treatment</u><br><u>Options</u> | • There are currently multiple treatment options all of which have been demonstrated to reduce the frequency of relapses and many of which have been shown to have some effect on short term but still largely reversible disability. All target some aspect of the immune system. In general, those that have demonstrated a greater benefit also are associated with greater risk. The primary risk is an increased risk of infection. Many are also associated with an increased risk of autoimmune disorders. Some with an increased risk of neoplasms.                     | Current treatment options offer a spectrum of<br>benefit to risk balance. Nevertheless, there<br>remains a significant population of patients<br>with RMS with a need for a more effective<br>therapy. |
| <u>Benefit</u>                                       | • Two adequate and well-controlled trials provide substantial evidence<br>that treatment with of a unumab will reduce the occurrence of<br>disabling relapses in a statistically significant and clinically relevant<br>proportion of the RMS population. The two pivotal trials also<br>demonstrate a statistically significant reduction in the relatively small<br>proportion of patients with RMS who experience periods of disability<br>not attributable to relapses over a 1- to 2-year period. The trial results<br>leave minimal uncertainty regarding these benefits. | There is substantial evidence that treatment of<br>RMS with ofatumumab provides a clinically<br>meaningful benefit                                                                                     |
| <u>Risk and Risk</u><br><u>Management</u>            | • The primary risk of treatment of RMS with ofatumumab is the risk of infection. The trial data suggest that this is not a major risk and primarily involves viral upper respiratory infections. Ongoing clinical surveillance and monitoring of IgM levels may be able to mitigate the risk of more serious infections.                                                                                                                                                                                                                                                        | The risk of treatment of RMS with<br>ofatumumab appears to be relatively modest.<br>The demonstrated benefit justifies the risks.                                                                      |

# 1.4. **Patient Experience Data**

Patient Experience Data Relevant to this Application (check all that apply)

| 1 41 | Circi                                                                                  | Experience Data Relevant to this Application (check an that apply)  |                            |  |  |  |  |  |  |
|------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------|--|--|--|--|--|--|
| Х    | The patient experience data that was submitted as part of the Section where discussed, |                                                                     |                            |  |  |  |  |  |  |
|      | арр                                                                                    | plication include:                                                  | if applicable              |  |  |  |  |  |  |
|      | X Clinical outcome assessment (COA) data, such as [e.g., Sec 6.1 Study                 |                                                                     |                            |  |  |  |  |  |  |
|      |                                                                                        |                                                                     | endpoints]                 |  |  |  |  |  |  |
|      |                                                                                        | Patient reported outcome (PRO)                                      | 6.1.2, 6.2.2               |  |  |  |  |  |  |
|      | [                                                                                      | Observer reported outcome (ObsRO)                                   |                            |  |  |  |  |  |  |
|      |                                                                                        | Clinician reported outcome (ClinRO)                                 | 6.1.2, 6.2.2               |  |  |  |  |  |  |
|      | [                                                                                      | Performance outcome (PerfO)                                         |                            |  |  |  |  |  |  |
|      |                                                                                        | Qualitative studies (e.g., individual patient/caregiver interviews, |                            |  |  |  |  |  |  |
|      | 1                                                                                      | ocus group interviews, expert interviews, Delphi Panel, etc.)       |                            |  |  |  |  |  |  |
|      |                                                                                        | Patient-focused drug development or other stakeholder meeting       | [e.g., Sec 2.1 Analysis of |  |  |  |  |  |  |
|      |                                                                                        | summary reports                                                     | Condition]                 |  |  |  |  |  |  |
|      |                                                                                        | Observational survey studies designed to capture patient            |                            |  |  |  |  |  |  |
|      | (                                                                                      | experience data                                                     |                            |  |  |  |  |  |  |
|      |                                                                                        | Natural history studies                                             |                            |  |  |  |  |  |  |
|      |                                                                                        | Patient preference studies (e.g., submitted studies or scientific   |                            |  |  |  |  |  |  |
|      |                                                                                        | publications)                                                       |                            |  |  |  |  |  |  |
|      |                                                                                        | Other: (Please specify)                                             |                            |  |  |  |  |  |  |
|      | Patient experience data that were not submitted in the application, but were           |                                                                     |                            |  |  |  |  |  |  |
|      | cor                                                                                    | sidered in this review:                                             |                            |  |  |  |  |  |  |
|      | [                                                                                      | Input informed from participation in meetings with patient          |                            |  |  |  |  |  |  |
|      |                                                                                        | stakeholders                                                        |                            |  |  |  |  |  |  |
|      | [                                                                                      | Patient-focused drug development or other stakeholder               | [e.g., Current Treatment   |  |  |  |  |  |  |
|      |                                                                                        | meeting summary reports Options]                                    |                            |  |  |  |  |  |  |
|      | [ [                                                                                    | Observational survey studies designed to capture patient            |                            |  |  |  |  |  |  |
|      |                                                                                        | experience data                                                     |                            |  |  |  |  |  |  |
|      | [                                                                                      | Other: (Please specify)                                             |                            |  |  |  |  |  |  |
|      | Pat                                                                                    | ient experience data was not submitted as part of this application. |                            |  |  |  |  |  |  |
|      |                                                                                        |                                                                     |                            |  |  |  |  |  |  |

# 2. Therapeutic Context

# 2.1. Analysis of Condition

Multiple Sclerosis is a chronic disorder of the CNS characterized by recurrent episodes (relapses) of neurologic deficits that are due to one or more areas of acute injury to myelin, oligodendrocytes, and to a lesser extent axons and neurons. Areas of acute inflammatory injury may involve subcortical white matter, brainstem, optic nerve and /or spinal cord. The diagnostic criteria for MS essentially require clinical and/or imaging evidence of a dissemination of these events "in space and time" <sup>1</sup>. Although early relapses may be followed by complete recovery, over time the recurrent relapses are associated with an accumulation of residual deficits and increasing disability<sup>2</sup>. Over time a slow progression of disability independent of the occurrence of relapses is seen in most patients with MS<sup>3,4</sup>. This "relapsing and remitting" pattern with or without the slow progression of disability, occurs in approximately 85% of patients with MS. Of those with a typical relapsing onset, approximately one-third will enter a slowly progressive phase with or without superimposed relapses<sup>5</sup>. Although disability can result from residual deficits following relapses<sup>6</sup>, relapses may not be the dominant factor resulting in severe and permanent disability<sup>7</sup>. Therefore, a reduction in the relapse rate does not necessarily correlate with a significant reduction in long term disability. However, the early frequency and severity of relapses and incomplete recovery from early relapses all tend to predict a more rapid progression of irreversible disability<sup>3,8</sup>. Relapses are associated with a mean increase of 0.75 on the EDSS scale<sup>6</sup>. For most patients, the disability incurred at a relapse improves significantly within 2 to three months<sup>6</sup>. Increases on the EDSS that meet generally accepted criteria for confirmed progression of disability for 3 or 6 months are usually not sustained to one or two years<sup>9</sup>.

# 2.2. Analysis of Current Treatment Options

# Relapsing forms of MS

The currently approved therapies for RMS are shown in **Table 1** below. Available therapies reduce the relapse rate by 30 to 50%. While a reduction in the number of relapses is desirable, it is unclear that this alone will result in a significant reduction in long term disability. Differences in methodology and the populations studied limit interpretation of the effect of these therapies on long-term disability. Several have shown a numeric reduction in some measure of disability that was confirmed 12 and/or 24 weeks after an initial significant increase in EDSS score. However, if a statistically significant reduction was seen in one trial, the result was often not replicated in a second trial. However, ocrelizumab has recently been approved for the treatment of primary progressive MS in part because a reduction of confirmed disability progression was demonstrated, and which could not be attributed to the reduction in relapses. Although most therapies approved for the treatment of RMS show a reduction in various MRI findings in RMS, there is no evidence at this time to support the use of any of these MRI measures as the primary criterion for the choice of therapy.

Because they were the earliest approved therapies and because there have been relatively few major safety concerns, either a  $\beta$ -interferon or glatiramer acetate are often the initial choice for treatment for new onset typical RMS. Because the interferons share the same presumed mechanism of action and have similar efficacy, if the response is not adequate to one interferon then the choice of next therapy is usually not a different interferon and usually not glatiramer acetate. There are now several approved alternative therapies with efficacy at least comparable and in some cases demonstrated in controlled trials to be superior to the interferons and glatiramer acetate. Each of the approved therapies has somewhat unique benefits and risks. The choice of first line therapy and any subsequent therapies due to lack of efficacy or safety concerns is determined based on the risk compared to the potential benefit for an individual patient.

APPEARS THIS WAY ON ORIGINAL

### Table 1: Current approved treatments for relapsing forms of MS

| Approved Drug      | Name                                  | Sponsor                   | Approved       | Dose                                                                       | Frequency            | Major Safety Concerns                                                                                                    |
|--------------------|---------------------------------------|---------------------------|----------------|----------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------|
| Beta interferon 1b | Betaseron<br>(Betaferon<br>in the EU) | Bayer                     | 1993           | 0.25 mg – (initial dose<br>0.0625 mg - gradually<br>increase over 6 weeks) | SC qod               | None                                                                                                                     |
| Beta interferon 1a | Avonex                                | Biogen Idec               | 1996           | 30 µg (may start at 7.5µg<br>& increase by 7.5 µg<br>weekly for 3 weeks)   | IM q week            | None                                                                                                                     |
| Glatiramer acetate | Copaxone                              | Teva                      | 1996           | 20 mg/day                                                                  | SQ qd                | None                                                                                                                     |
| Mitoxantrone       | Novantrone                            | EMD Serono                | 2000           | 12mg/m <sup>2</sup> IV over 5 to 15<br>min                                 | IV q 3 mo            | Cardiotoxicity                                                                                                           |
| Beta interferon 1a | Rebif                                 | EMD Serono<br>Pfizer Inc. | 2002           | 22μg or 44μg (start at<br>20% of target; increase<br>over 4 weeks)         | SQ tiw               | None                                                                                                                     |
| Natalizumab        | Tysabri                               | Elan                      | 2004           | 300mg IV over 1 hour                                                       | every 4<br>weeks     | PML                                                                                                                      |
| Beta interferon 1b | Extavia                               | Novartis                  | 2009<br>(1993) | 0.25 mg – (initial dose<br>0.0625 mg - gradually<br>increase over 6 weeks) | SQ qod               | None                                                                                                                     |
| Fingolimod         | Gilenya                               | Novartis                  | 2010           | 0.5 mg                                                                     | orally once<br>daily | First dose bradycardia<br>CI for recent MI, unstable angina, TIA,<br>CHF<br>Macular edema<br>Impaired PFTs<br>Fetal risk |
| Teriflunomide      | Aubagio                               | Sanofi                    | 2012           | 7 mg or 14 mg                                                              | orally once<br>daily | Black box warning for hepatotoxicity<br>and teratogenicity; additional concerns                                          |

| Approved Drug             | Name      | Sponsor     | Approved | Dose                                                                                                                                  | Frequency                       | Major Safety Concerns                                                                                                                                                                                                                                                                                                                       |
|---------------------------|-----------|-------------|----------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |           |             |          |                                                                                                                                       |                                 | for WBC decrease, renal failure, skin<br>reactions; peripheral neuropathy                                                                                                                                                                                                                                                                   |
| Dimethyl fumarate         | Tecfidera | Biogen-Idec | 2013     | 120 mg for 7 days, then<br>240 mg                                                                                                     | twice daily                     | Lymphopenia                                                                                                                                                                                                                                                                                                                                 |
| PEGylated<br>interferon β | Plegridy  | Biogen      | 2014     | 125 μg (63 μg on day 1, 94<br>μg on day 15, the full dose<br>starting on day 29)                                                      | Q2 weeks                        | None                                                                                                                                                                                                                                                                                                                                        |
| Alemtuzumab               | Lemtrada  | Genzyme     | 2015     | 1 <sup>st</sup> course: 12 mg/dy X5<br>2 <sup>nd</sup> course: 12 mg/dy X3                                                            | 2 courses 12<br>months<br>apart | Black box warning for serious/fatal<br>autoimmune conditions including<br>thrombocytopenia and anti-glomerular<br>basement membrane disease; serious<br>and life-threatening infusion reactions;<br>special facilities required for infusion;<br>increased risk of malignancies; REMS                                                       |
| Ocrelizumab               | Ocrevus   | Genentech   | 2017     | Initial dose of 300 mg IV<br>followed by second dose<br>of 300 mg IV 2 weeks later<br>Subsequent doses of 600<br>mg IV every 6 months |                                 | Infusion reactions<br>Infections<br>Increased risk of malignancies                                                                                                                                                                                                                                                                          |
| Siponimod                 | Mayzent   | Novartis    | 2019     | 2 mg after titration                                                                                                                  | Daily                           | CI for recent myocardial infarction<br>unstable angina, stroke, TIA,<br>decompensated CHF, Mobitz II second-<br>degree, third-degree AV block, sick<br>sinus syndrome<br>Infections, bradyarrhythmias and AV<br>conduction delays, liver injury, fetal<br>risk, increased blood pressure, decline<br>in respiratory function, macular edema |
| Cladribine                | Mavenclad | EMD Serono  | 2019     | Cumulative dosage of 3.5<br>mg/kg administered orally<br>and divided into 2                                                           | 2 courses<br>one year<br>apart  | Black Box Warning for malignancies<br>and teratogenicity                                                                                                                                                                                                                                                                                    |

| Approved Drug       | Name      | Sponsor | Approved | Dose                                                                                                                      | Frequency | Major Safety Concerns                                                                                                                                                                                                                                           |
|---------------------|-----------|---------|----------|---------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |           |         |          | treatment courses (1.75<br>mg/kg per treatment<br>course). Each treatment<br>course is divided into 2<br>treatment cycles |           | Lymphopenia, infections, liver injury,<br>graft vs. host reaction with blood<br>transfusion, hematologic toxicity                                                                                                                                               |
| Diroximel Fumarate  | Vumerity  | Biogen  | 2019     | 462 mg after titration                                                                                                    | Daily     | Same as for Dimethly fumarate (Tecfidera)                                                                                                                                                                                                                       |
| Ozanimod            | Zeposia   | Celgene | 2020     | 0.92 mg after titration                                                                                                   | Daily     | CI for recent myocardial infarction<br>unstable angina, stroke, TIA,<br>decompensated CHF<br>Infections, bradyarrhythmias and AV<br>conduction delays, liver injury, fetal<br>risk, increased blood pressure, decline<br>in respiratory function, macular edema |
| Monomethyl fumarate | Bafiertam | Banner  | 2020     | 190 mg after titration                                                                                                    | Daily     | Same as for Dimethly fumarate (Tecfidera)                                                                                                                                                                                                                       |

# 3. Regulatory Background

# 3.1. U.S. Regulatory Actions and Marketing History

Ofatumumab is currently marketed as Arzerra<sup>®</sup>. It was granted accelerated approval on October 26, 2009, for treatment of chronic lymphocytic leukemia (CLL) refractory to alemtuzumab and fludarabine. The submission for the treatment of RMS is a supplemental BLA with a different proposed trade name (Kesimpta) to differentiate the therapy's indicated use and because of a different route of administration.

# 3.2. Summary of Presubmission/Submission Regulatory Activity

Original IND 111116: 4/29/2011 EOP2 meeting: 3/25/14 Agreed iPSP: 8/30/18 Pre-BLA meeting: 10/2/19 Priority review voucher notification (PRV 208711): 9/17/19

# 3.3. Foreign Regulatory Actions and Marketing History

Arzerra<sup>®</sup> was first approved in the EU on 4/19/2010 for the treatment of the treatment of CLL refractory to alemtuzumab and fludarabine.

# 4. Significant Issues from Other Review Disciplines Pertinent to Clinical Conclusions on Efficacy and Safety

# 4.1. Office of Scientific Investigations (OSI)

The Clinical Inspection Summary has been submitted. Because of the COVID-19 pandemic, one of 4 planned inspections was completed and there were no significant findings at that site. Based on an early assessment of the quality of the data submitted, and the risk to FDA personnel, the 3 inspections of sites outside the US were deemed unnecessary.

# 4.2. **Product Quality**

See the review by the CMC reviewer. At this time, there do not appear to be major product quality issues.

# 4.3. Clinical Microbiology

See the review by the microbiology reviewer.

# 4.4. Nonclinical Pharmacology/Toxicology

The nonclinical review is not complete at this time

## 4.5. Clinical Pharmacology

The Clinical Pharmacology review is not complete at this time.

# 4.6. Devices and Companion Diagnostic Issues

There do not appear to be any device issues at this time. There is no companion diagnostic.

## 4.7. Consumer Study Reviews

There are no consumer studies.

# 5. Sources of Clinical Data and Review Strategy

# 5.1. Table of Clinical Studies

### **Table 2: Table of Clinical Studies**

| Trial Identifier            | NCT no.     | Design                                                               | Dose regimen                                                                | Endpoints                                    | Treatment<br>duration         | Number treated                                                                                                                 | Population               |  |
|-----------------------------|-------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|
| Controlled Clinical Studies |             |                                                                      |                                                                             |                                              |                               |                                                                                                                                |                          |  |
| COMB157G2301                | NCT02792218 | Active<br>comparator-<br>controlled RCT                              | OMB: 20 mg SC<br>on days 1, 7, 14<br>then 20 mg SC<br>q4W<br>TERI: 14 mg qd | <u>Primary</u>                               | Variable; Max<br>of 30 months | OMB: 465<br>TERI: 462                                                                                                          | Relapsing<br>forms of MS |  |
| COMB157G2302                | NCT02792231 | Active<br>comparator-<br>controlled RCT                              | Same as Study<br>2301                                                       | Same as Study<br>2301                        | Same as<br>Study 2301         | OMB: 481<br>TERI: 474                                                                                                          | Relapsing<br>forms of MS |  |
|                             |             |                                                                      | Studies to S                                                                | upport Safety                                |                               |                                                                                                                                |                          |  |
| COMB157G2102                |             | Open label; BE<br>study of PFS vs.<br>autoinjector                   | 20 mg SC weekly<br>X 3 doses then 20<br>mg q4W                              | BE                                           | 12 weeks                      | 284                                                                                                                            | Relapsing<br>forms of MS |  |
| OMS112831                   |             | Placebo-<br>controlled RCT                                           | OMB 3mg, 30mg,<br>60 mg SC q12W,<br>60mg SC q4W                             | Safety and<br>MRI measures<br>of MS activity | 24 weeks                      | PBO for 12 weeks then<br>OMB 3mg q12W: 67<br>OMB: 3mg q12W: 34<br>OMB 30 mg q12W: 32<br>OMB 60 mg q12W: 34<br>OMB 60mg q4W: 64 | Relapsing<br>forms of MS |  |
| OMS115102                   |             | Placebo-<br>controlled<br>double-blind<br>dose ranging<br>cross-over | OMB 100mg,<br>300mg, 700 mg IV                                              | PK and safety                                | 24 weeks                      | OMB 100mg: 12<br>OMB 300mg: 15<br>OMB 700mg: 11                                                                                | Relapsing<br>forms of MS |  |
|                             | Other s     | tudies pertinent to                                                  | the review of efficac                                                       |                                              |                               | ological studies)                                                                                                              |                          |  |
|                             |             |                                                                      | 1                                                                           | No other clinical s                          | tudies                        |                                                                                                                                |                          |  |

# 5.2. Review Strategy

The two large randomized-controlled clinical trials, studies COMB157G2301 and COMB157G2302, are the primary focus of the review of both efficacy and safety. The phase 2, dose-finding study OMS112831 provides limited efficacy and safety data. Additional safety data are available from a small number of additional studies.

# 6. Review of Relevant Individual Trials Used to Support Efficacy

# 6.1. Study COMB157G2301: A Randomized, double-blind, double dummy, parallel group study comparing the efficacy and safety of ofatumumab vs. teriflunomide in patients with relapsing multiple sclerosis

# 6.1.1. Study Design

## **Overview and Objective**

The primary objective of this study was to demonstrate that of a umumab 20 mg administered subcutaneously (SC) once every 4 weeks (q4W) is superior to teriflunomide 14 mg administered orally (po) once daily in reducing the frequency of confirmed relapses as evaluated by the annualized relapse rate (ARR) in patients with relapsing Multiple Sclerosis (MS).

## Trial Design

The study had a randomized, double-blind, double-dummy, active comparator, parallel group design. The comparator was teriflunomide which is approved for the treatment of relapsing forms of MS. Treatment duration was variable because the study was to continue until the End of Study (EOS) criteria were met. The maximum duration of randomized treatment was limited to 30 months. Eligible patients were randomized 1:1 to either of atumumab 20 mg SC weekly for 3 doses followed by 20 mg SC every 4 weeks, or teriflunomide 14 mg orally once daily. Patients assigned to of atumumab received a daily teriflunomide placebo and those assigned to teriflunomide received an of atumumab placebo SC injection on the same dosing schedule as the active of atumumab patients.

Each of the following end of study criteria had to be met for enrollment to cease:

1. Each of the two confirmatory studies had to have collected sufficient data to provide 90% power for the primary endpoint (Annualized Relapse Rate (ARR)).

- 2. The number of 3-month confirmed disability worsening (3mCDW) events in the pooled 2 confirmatory studies had to be sufficient to provide 90% power for that endpoint
- 3. The number of 6-month CDW (6mCDW) events in the pooled 2 confirmatory studies had to be sufficient to provide 80% power for that endpoint.

The Screening period could last up to 45 days and "baseline period" was defined as Study Day minus 7 to Day 1. Eligibility was based on assessment results from the screening and baseline periods.

Study Day 1 was the beginning of the Randomized Treatment Phase (RTP). The first injection was administered by the study staff on Day 1. Subjects returned to the site at Day 7, Day 14 and Day 28 to administer injections under supervision of the study staff. Subjects then returned to the site at month 3 and every 3 months thereafter. An EOS assessment was conducted when subjects reached 30 months of treatment or when EOS was declared.

Subjects who completed the treatment phase were eligible to enter an open-label treatment study (OLP). Those who completed the treatment phase but chose to not enter the open-label study were to be followed for a minimum of 9 months in a Safety Follow-up phase (SFP).

Subjects were to enter the SFP phase if:

- 1. The subject completed the RTP but did not agree to enter the OLP
- 2. The subject discontinued the study treatment prematurely and did not agree continued follow-up in the RTP
- 3. The subjects discontinued treatment prematurely but did agree to be followed in the RTP but had less than 9 months of follow-up at EOS

All subjects were to be followed for a minimum of 9 months after discontinuation of study treatment, either in the RTP or the SFP. Follow-up continued beyond 9 months, if necessary, until the B-cell count returned to baseline or to the lower limit of normal. Follow-up also continued if the teriflunomide level was above 0.02 mg/L at 9 months. If a new disease modifying or immunosuppressant drug was started before the end of this 9-month follow-up period, then there was no further follow-up assessment.

A phase 2 study in MS patients (OMS112831) of multiple SC and IV regimens was conducted and assessed PK, PD, MRI and clinical outcomes. The dosing regimen is based on data from that study plus PK/PD modelling that support the use of a loading dose of 20 mg SC weekly for three doses in order to attain "high level" depletion of CD19+ cells, i.e.  $\leq$  8 cells/ µL in  $\geq$ 95% of patients. The dose resulted in a significant reduction in disease activity on imaging studies. Higher doses were associated with more adverse events.

Reviewer Comment: The comparator, teriflunomide, is approved for the treatment of relapsing forms of MS. In the two large confirmatory trials, a statistically significant reduction in ARR and time to confirmed disability progression was demonstrated. Aubagio is contraindicated in patients with severe hepatic impairment and in pregnant women and females of reproductive potential not using effective contraception. It may cause fetal harm. The link to the Aubagio label is below.

https://www.accessdata.fda.gov/drugsatfda\_docs/label/2019/202992s008lbl.pdf

## **Eligibility Criteria**

## Key inclusion criteria

- Male or female patients aged 18 to 55 years (inclusive) at Screening
- Diagnosis of MS according to the 2010 Revised McDonald criteria (Polman et al. 2011)<sup>1</sup>
- Relapsing MS: relapsing-remitting course (RRMS), or secondary progressive (SPMS) course with disease activity, as defined by Lublin et al 2014<sup>10</sup>
- Disability status at Screening with an EDSS score of 0 to 5.5 (inclusive)
- Documentation of at least: 1 relapse during the previous 1 year OR 2 relapses during the previous 2 years prior to Screening OR a positive gadolinium-enhancing (GdE) MRI scan during the year prior to randomization. Note: Screening MRI scan could be used if no positive GdE scan existed from prior year.
- Neurologically stable within 1 month prior to randomization

## Key exclusion criteria

- Patients with primary progressive MS (Polman et al. 2011<sup>1</sup>) or SPMS without disease activity (Lublin et al. 2014)<sup>10</sup>
- Patients meeting criteria for neuromyelitis optica (Wingerchuk et al. 2006)<sup>11</sup>
- Disease duration of more than 10 years in patients with EDSS score of 2 or less
- Patients with an active chronic disease (or stable but treated with immune therapy) of the immune system other than MS (e.g. rheumatoid arthritis, scleroderma, Sjögren's syndrome, Crohn's disease, ulcerative colitis, etc.) or with immunodeficiency syndrome (hereditary immune deficiency, drug-induced immune deficiency)
- Patients with active systemic bacterial, viral or fungal infections, or known to have AIDS or to test positive for HIV antibody at Screening
- Patients with neurological findings consistent with PML or confirmed PML
- Patients at risk of developing or having reactivation of syphilis or tuberculosis
- Patients at risk of developing or having reactivation of hepatitis
- CDER Clinical Review Template Version date: September 6, 2017 for all NDAs and BLAs

- Have received any live or live-attenuated vaccines (including for varicella-zoster virus or measles) within 2 months prior to randomization
- History of malignancy of any organ system (other than basal cell carcinoma, in situ squamous cell carcinoma of skin, or in situ carcinoma of cervix of the uterus that have been radically treated e.g. completely excised with clear margins), within the past 5 years, regardless of whether or not there is evidence of local recurrence or metastases
- Any of the following abnormal laboratory values prior to randomization
  - White blood cell (WBC) count <  $3,500/\text{mm}^3$  (<  $3.5 \times 10^9/\text{L}$ )
  - Lymphocyte count < 800/mm3 (<  $0.8 \times 10^{9}/L$ )
  - Serum IgG and IgM < lower limit of normal (according to central laboratory range)

Reviewer Comment: See 13.3 for the complete list of eligibility criteria which include criteria related to male and female contraception, the use of immune modulators and immunosuppressants prior to randomization, and excluded neurologic and medical illnesses.

Eligible patients were randomized 1:1 to either:

• Ofatumumab 20 mg SC injections on Day 1, 7, 14, Week 4 (Study Month 1) and every 4 weeks thereafter + teriflunomide-matching placebo capsule orally once daily.

Or

• Teriflunomide 14 mg capsule orally once daily + ofatumumab-matching placebo injections on Day 1, 7, 14, Week 4 (Study Month 1) and every 4 weeks thereafter.

Randomization was stratified by geographic region, MS subtype (RRMS, Active SPMS)

Blinding to treatment assignment

Only the Data Monitoring Committee (DMC) members, Independent Statisticians and Programmers had access to treatment assignment

Potentially unblinding laboratory parameters (e.g. B-cell counts, teriflunomide plasma level results) were not communicated to the Investigator or other study staff.

For those subjects requiring safety follow-up beyond 9 months because B-cells had not yet been repleted, or whose teriflunomide level remained above 0.2 mg/L, B-cell counts and teriflunomide, the assessment of B-cell counts and teriflunomide plasma levels every 3 months

was performed centrally and the Investigators and Sponsor study team were only informed of whether or not continued follow up was necessary.

The following measures were taken to facilitate blinding of the Independent EDSS rater:

- Prohibited access to patients' study data
- Separate binders of worksheets and CRF materials for Investigator and the Rater
- Prohibited cross-over of Investigator and Rater
- Use of appropriate clothing by patients to cover potential injection sites during neurological examinations
- Limited interactions between Rater and patient: permitting only a minimum required to perform the EDSS rating.

### Treatment

Premedication with acetaminophen and/or antihistamines (or equivalent) was recommended but not required. For the first injection only, the addition of premedication with corticosteroids (methylprednisolone 100 mg IV or the equivalent) was recommended. It was recommended that any premedication should be administered 30 to 60 minutes prior to study drug injection

Subjects were monitored at the site for at least 5 hours after the first dose of investigational product (IP). Dose adjustment was not permitted. Dose delay was permitted if clinically indicated, e.g. for a Serious Adverse Event (SAE), a medical condition, or an abnormal laboratory value of examination result.

The recommended treatment for an MS relapse was methylprednisolone up to 1000 mg per day (or equivalent corticosteroid and dose) for 3 to 5 days. A taper with oral corticosteroids was not permitted.

| Medication                                                     | Additional action                                         |
|----------------------------------------------------------------|-----------------------------------------------------------|
| Immunosuppressive/chemotherapeutic medications                 | Discontinue study treatment, increase vigilance regarding |
| (including herbal) or procedures, including but not limited to | infections.                                               |
| cyclosporine, azathioprine, methotrexate,                      |                                                           |
| cyclophosphamide, mitoxantrone, lymphoid irradiation and       | NOTE: Restarting study treatment in patients              |
| hematopoietic stem cell transplantation                        | exposed to these medications is not permitted.            |
| Monoclonal antibodies targeting the immune system,             | Discontinue study treatment, increase vigilance           |
| including but not limited to natalizumab, alemtuzumab, and     | regarding infections.                                     |
| B-cell depleting agents such as but not limited to rituximab,  |                                                           |
| ocrelizumab and obinutuzumab                                   | NOTE: Restarting study treatment after exposure to B-cell |
|                                                                | depleting agents is not permitted. For others only after  |
|                                                                | consultation with the Sponsor Medical Advisor.            |
| Any other immunomodulatory or disease-modifying MS             | Interrupt or discontinue study treatment, increase        |
| treatment, including but not limited to fingolimod, interferon | vigilance regarding infections.                           |

## Prohibited medications

| Medication                                                                                                                                                                                                                    | Additional action                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| beta, glatiramer acetate, dimethyl fumarate or systemic<br>corticosteroids (except for when given for MS relapse                                                                                                              |                                                                                                                                 |
| treatment                                                                                                                                                                                                                     |                                                                                                                                 |
| Leflunomide                                                                                                                                                                                                                   | Discontinue study treatment                                                                                                     |
| Administration of any live or live-attenuated<br>vaccine (including for measles) is prohibited while<br>patients are exposed to study drug (long-lasting<br>effects of the study drugs should be taken into<br>consideration) | They may be administered when patients are no<br>longer exposed to study drug. Consider<br>risk/benefit and follow local labels |

### Required discontinuation of study treatment

In addition to the more standard criteria for discontinuation of study treatment, the following specific criteria were added:

- Patient with active serious infections or reactivation (e.g. tuberculosis, hepatitis B or C)
- Skin and /or mucosal reactions which raise the suspicion of severe generalized major skin reactions (Stevens-Johnson syndrome, or toxic epidermal necrolysis-Lyell's syndrome)
- Hypersensitivity to the study medication
- Severe hypoproteinemia
- Interstitial lung disease or new onset or worsening of pulmonary symptoms, such as persistent cough and dyspnea, with or without associated fever, suspicious of interstitial lung disease

The Investigator was responsible for the routine care of subjects, determination of eligibility for the trial, referral to the Independent EDSS rater at the time of a potential relapse, and management of relapses.

The Independent EDSS rater was responsible for determining the EDSS score at routine visits and at the time of a potential relapse on referral from the investigator. The independent rater also administered the Timed 25-foot Walk (T25FW), the 9-hole peg test (9HPT), and the Single Digit Modalities Test (SDMT). The communication of new neurological findings on the neurological examination, including the EDSS score, from the Independent EDSS Rater to the Investigator was not permitted. The Independent EDSS Rater remained blinded to adverse events, concomitant medications, laboratory data and any other data that have the potential of revealing the treatment assignment.

#### Assessments

During the Screening period subjects had an initial screening visit that occurred 8 to 45 days

prior to the Day 1 visit when the first dose of IP was given. The 7 days prior to the Day 1 visit were considered the baseline period. Subjects returned on Days 7 and 14 for the next doses of IP and selected clinical laboratory assessments. Beginning with the visit at month 1, subjects returned every 3 months to end of study or end of treatment. Adverse events were collected at every visit after the start of investigational treatment. The key assessments are listed in Table 3.

APPEARS THIS WAY ON ORIGINAL

| EPOCH           | Scree                    | ning                  |                 | Treatment |     |     |     |         |           |              |             |     |     |     |
|-----------------|--------------------------|-----------------------|-----------------|-----------|-----|-----|-----|---------|-----------|--------------|-------------|-----|-----|-----|
| Visit           | SCR<br>Dy -45 to<br>D -8 | BL<br>Dy -7<br>to D 1 | D11             | D7        | D14 | M1  | M3  | M6      | М9        | M12/24       | M15/21/275  | M18 | EOT | EOS |
| Visit No.       | 1                        | 2                     | 101             | 102       | 103 | 104 | 105 | 106     | 107       | 108/112      | 109/111/113 | 110 | 198 | 199 |
| Phone Interview |                          |                       |                 | Х         | Х   |     |     | Monthly | between s | scheduled vi | sits        |     |     |     |
| Physical exam   | X <sup>2a</sup>          |                       |                 |           |     |     |     |         |           |              |             |     |     |     |
| Routine labs    | Х3                       | Х                     |                 |           |     | Х   | Х   | Х       | Х         | Х            | Х           | Х   | Х   | Х   |
| B-cell count    | X                        | Х                     |                 | Х         | Х   | Х   | Х   | Х       | Х         | Х            | Х           | Х   | Х   | Х   |
| TERI level      |                          |                       |                 |           |     |     |     |         |           |              |             |     |     | X6  |
| IgG, IgM        | Х                        | Х                     |                 |           |     | Х   | Х   | Х       | Х         | Х            | Х           | Х   | Х   | Х   |
| ECG             | Х                        | Х                     |                 |           |     |     |     |         |           |              |             |     | Х   | Х   |
| MRI             | Х                        |                       |                 |           |     |     |     |         |           | Х            |             |     |     | Х   |
| eSSRS           | X6                       | X4                    | Х               | Х         | Х   | Х   | Х   | Х       | Х         | Х            | Х           | Х   | Х   | Х   |
| MS relapse      |                          |                       | Х               | Х         | Х   | Х   | Х   | Х       | Х         | Х            | Х           | Х   | Х   | Х   |
| EDSS            | Х                        | X <sup>2b</sup>       | X <sup>2b</sup> |           |     |     | Х   | Х       | Х         | Х            | Х           | Х   | Х   | Х   |
| T25FW           | X <sup>2a</sup>          | X <sup>2a</sup>       |                 |           |     |     | Х   | Х       | Х         | Х            | Х           | Х   | Х   | Х   |
| 9HPT            | X <sup>2a</sup>          | X <sup>2a</sup>       |                 |           |     |     |     | Х       |           | Х            |             | Х   | Х   | Х   |
| SDMT            | X <sup>2a</sup>          | X <sup>2a</sup>       |                 |           |     |     |     | Х       |           | Х            |             | Х   | Х   | Х   |

#### Table 3: Schedule of key assessments during the RCP

1. Randomization and first dose (usually expected on the same day). If first dose occurs on a different day after randomization, the day of first dose should be considered to be Day 1

2. a) Assessment can be conducted either at Screening OR Baseline visit b) Assessment can be conducted at either the Baseline OR the Day 1 visit (they must be conducted before the first dose of investigational treatment).

3. Serology testing to check patient eligibility conducted at Screening only

4. The eCSSRS must be assessed once before randomization, either at the Screening (recommended) or the Baseline visit.

5. For patients who reach Month 27 visit, the next (and last) 3-monthy scheduled visit is the EOS Visit, EOS assessments will be done for all patients; End of treatment (EOT) assessments are done only for patients who prematurely discontinue study drug (at the time of study drug discontinuation) and who continue to stay in the Treatment epoch

6. Only for patients who had EOT ≥ 9 months earlier

Subjects were instructed to complete a diary to recorded administration of study drug and home pregnancy tests where applicable. Beginning at Month 2, subjects were contacted by telephone for a structured interview to identify any new or worsening symptoms that might merit an unscheduled visit, to collect information on any reactions to injections, and to assess adherence to contraception requirements

The assessments during the Safety Follow-up Phase are listed in Table 4.

| Visit Month <sup>1</sup> (relative to EOS) | +M3 | +M6 | +M9 | Every 3 months <sup>5</sup> | End of Safety-FU <sup>2</sup> |
|--------------------------------------------|-----|-----|-----|-----------------------------|-------------------------------|
| Visit Number                               | 201 | 202 | 203 | 204/20X                     | 299                           |
| Visit window (days)                        | ±14 | ±14 | ±14 | ±14                         |                               |
| AEs                                        | Х   | Х   | Х   | Х                           | Х                             |
| Concomitant Meds*                          | Х   | Х   | Х   | Х                           | Х                             |
| Vital Signs                                | Х   | Х   | Х   | Х                           | Х                             |
| eCSSRS                                     | Х   | Х   | Х   | Х                           | Х                             |
| Urine pregnancy test <sup>3</sup>          | Х   | Х   | Х   | Х                           | Х                             |
| Contraception status                       | Х   | Х   | Х   | Х                           | Х                             |
| B-cells                                    | Х   | Х   | Х   | Х                           | Х                             |
| TERI plasma level <sup>6</sup>             | Х   | Х   | Х   | Х                           | Х                             |
| MS Relapse                                 | Х   | Х   | Х   | Х                           | Х                             |
| EDSS                                       | Х   | Х   | Х   | Х                           | Х                             |
| AEP                                        |     |     |     | X <sup>4</sup>              |                               |

#### Table 4: Assessments during Safety Follow-up

1. Time measured from the EOS Visit. M=month.

2. If scheduled visit and End of Safety-FU occur at the same time only End of Safety-FU visit should be done. If patient is prematurely withdrawn from the Safety-FU epoch, the End of Safety-FU assessments should be done at time of withdrawal.

3. Female patients only: monthly urine home pregnancy testing will be conducted between clinic visits. The patient must contact the Investigator immediately in the case of a positive test for confirmatory testing at the Investigator's discretion.

4. AEP. Patients may undergo an accelerated elimination process at Investigator's discretion

5. As needed for patients requiring prolonged B-cell/teriflunomide plasma level monitoring (Section 3.1)

6. As needed (teriflunomide level assessed only when patient has had a total of at least 9 months of follow up and then 3-monthly as needed after study drug discontinuation)

\*including steroids for MS relapse and newly started DMT as applicable

#### Relapse Assessment

Subjects were instructed to make an appointment for an unscheduled visit if any or worsening of old symptoms occurred. There was no requirement that such a visit occur within a specific time interval from the onset. A relapse was defined as the appearance of a new neurological abnormality or worsening of previously stable or improving pre-existing neurological abnormality, separated by at least 30 days from onset of a preceding clinical demyelinating event. The abnormality must have been present for at least 24 hours and occurred in the

absence of fever or known infection. If the investigator determined that the symptoms were consistent with a relapse, the subject was to be referred to the Independent EDSS assessor. No specific time interval was required to complete that assessment. A confirmed MS relapse required an increase of at least 0.5 points on the EDSS score, or an increase of 1 point on two functional scores (FS) or 2 points on one FS, excluding changes involving bowel/bladder or cerebral FS compared to the previous available rating (the last EDSS rating that did not occur during a relapse). Confirmation of MS relapse was be done centrally. All MS relapses, regardless if they met the definition for confirmation or not, were reported on the MS relapse CRF. MS relapses were not reported as an AE/SAE.

MRI scans were read at a single central imaging center blinded to treatment assignment. MRI scans were not to be performed within 30 days after treatment with corticosteroids.

### Laboratory studies

Hematology: red blood cell (RBC) count, hemoglobin, hematocrit, platelets, total white blood cell (WBC) count, WBC differential counts (neutrophils, lymphocytes, basophils, eosinophils, monocytes) and CD19+ B-cell counts.

Chemistry: electrolytes (Na, K, Cl, bicarbonate, Ca, Mg, P), random glucose, total protein, blood urea nitrogen (BUN), albumin (Alb), alkaline phosphatase, ALT, AST, GGT, total bilirubin (TBIL), conjugated bilirubin, creatinine, amylase, total cholesterol, triglycerides, high density lipoprotein (HDL) and low density lipoprotein (LDL), C-Reactive protein (CRP).

### Routine urinalysis

Immunology: Total IgM and IgG levels.

### Teriflunomide levels

Serum pregnancy tests were conducted for all women who of child bearing potential at the Screening, EOT and EOS Visits. Urinary pregnancy tests were conducted for all women who were of child bearing potential at all other scheduled clinic visits. In addition, the women will be provided with urinary pregnancy test kits for monthly home pregnancy testing required between the scheduled 3-monthly clinic visits.

### Patient Reported Outcomes

The Multiple Sclerosis Impact Scale-29 (MSIS-29), European Quality of Life – 5 Dimensions (EQ-5D), and the Work Productivity and Activity Impairment for Multiple Sclerosis (WPAI-MS) were collected at 6 to 12-month intervals throughout the trial period.

### Safety Assessments

Assessment of adverse events adhered to the standard of Good Clinical Practice. Severity was graded according to the Common Terminology Criteria for Adverse Events (CTCAE) severity scale. An MS relapse or worsening of disability were not reported as an AE or SAE unless the investigator considered the event unexpected or unusually severe. There were protocol-defined criteria for laboratory and clinical events indicative of potential hepatotoxicity that required enhanced follow-up laboratory studies and possible discontinuation of study treatment. There were comparable criteria for potential renal toxicity. Guidance was provided for the assessment of new clinical or MRI findings that were not compatible with MS, especially possible PML. Guidance was also provided for the accelerated elimination procedure for teriflunomide if that was necessary.

A Data Monitoring Committee was responsible for ongoing review of safety and, if requested, efficacy data.

### **Study Endpoints**

The primary endpoint is the Annualized Relapse Rate

The Secondary Endpoints were:

3-month confirmed disability worsening (pooled studies 2301 and 2302)
The number of GdE lesions
The number of new or enlarging T2 lesions
6-month confirmed disability worsening (pooled studies 2301 and 2302)
Brain volume loss
6-month confirmed disability improvement

Secondary endpoints were analyzed in a closed sequential hierarchy as listed above.

#### **Statistical Analysis Plan**

The Full Analysis dataset (FAS) was defined as all randomized subjects who had received a treatment assignment. The FAS was used for all efficacy analyses which were based on the intended treatment.

The Safety analysis dataset (SAF) was defined as all subjects who had received at least one dose of investigational product. Safety analyses were based on the actual treatment received.

The sample size was based on an estimated ARR in the teriflunomide group of 0.28, based on

several previous studies of teriflunomide. An ARR reduction of 40% was assumed, based in part on the reduction seen with ocrelizumab, a comparable anti-CD20 monoclonal antibody (mAb), and on the results of phase 2 studies of ofatumumab. A 20% drop-out rate was assumed. This yielded a total sample size of 805 was required to demonstrate superiority of ofatumumab at 90% power and one-sided alpha of 0.025. At 900 subjects for each of the two trials, there would be adequate power to demonstrate superiority on the 3mCDW endpoint.

A sample size reassessment was planned based on a blinded data review prior to completion of enrollment. The reassessment was to address the sample size needed for the primary endpoint and for the secondary endpoint Confirmed Disability Worsening confirmed over 3 months (3mCDW). The 3mCDW endpoint was to be analyzed for the pooled population from studies OMB157G2301 and OMB157G2302, which were identical in design. The maximum enrollment was 1250 patients.

Blinded data were also reviewed to determine the end of study date.

Analysis of the ARR used a negative binomial model with the individual confirmed relapse count as the response variable and the time in study as the offset variable. Treatment and region were used as factors, and the number of relapses in the previous year, baseline EDSS, baseline number of GdE lesions at baseline and the subject's age as covariates. This analysis was repeated based on all reported (as opposed to confirmed) relapses. The analysis was also repeated based on time on study drug as opposed to time on study. Time to the first relapse was also calculated using a Cox proportional hazards model.

A 3-month and 6-month confirmed disability worsening (3mCDW, 6mCDW) were defined as an increase from baseline in EDSS sustained for at least 3 and 6 months, respectively. After a scheduled or unscheduled visit at which the patient fulfills the disability worsening criterion, all EDSS assessments (scheduled or unscheduled) were required fulfill the worsening criteria until the worsening was confirmed at the first scheduled visit that occurred 3-months or 6 months after the onset of the worsening, or later. All patients who did not experience a 3mCDW (or 6mCDW) event in the Study were censored at the time of the last available EDSS assessment. Subjects who had a "tentative" disability worsening that could not be confirmed due to an early discontinuation or any another reason were also censored at the time from the first dose to the last available EDSS assessment. The worsening criteria were as follows:

| Total EDSS at baseline* | "Disability worsening" criterion |
|-------------------------|----------------------------------|
| 0                       | ≥ +1.5                           |
| 1 to 5                  | ≥ +1                             |
| ≥5.5                    | ≥ +0.5                           |

\* Baseline EDSS was defined as the last EDSS assessment prior to the first dose of study medication (protocol inclusion criterion is EDSS 0-5.5)

A 3-month confirmed disability worsening (3mCDW) could have an onset at any scheduled or unscheduled visit if the disability worsening criterion was met. A disability worsening could only be confirmed at a scheduled visit if, over a period of 3 months (≥90 days), all assessments met the worsening criterion.

A 6-month confirmed disability worsening (6-mCDW) could have an onset at any scheduled or unscheduled visit if the disability worsening criterion was met. A disability worsening event could only be confirmed at a scheduled visit if, over a period of 6 months (≥166 days), all assessments meet the worsening criterion.

If a patient died due to MS (EDSS=10 at any time), it was considered a confirmed disability worsening regardless of the baseline EDSS or the change in EDSS.

Reviewer Comment: It appears from the above criteria that a period of confirmed worsening of disability could start with a relapse. Since the period of recovery from a relapse may extend over 3 to 6 months, some of these periods of confirmed disability progression may simply represent relapses and, therefore, be a partial replication of any reduction in relapses. In sequence 0264, the sponsor responded to a request for additional information regarding this endpoint and provided an analysis of confirmed progression (as opposed to worsening) using standard DN2 criteria for that endpoint.

6 month confirmed disability improvement was defined as for 6 month confirmed disability worsening with the following criteria for improvement:

| Total EDSS at baseline* | "Disability improvement" criterion |
|-------------------------|------------------------------------|
| 0 to 1.5                | No improvement possible            |
| ≥2 to 6                 | ≤ -1                               |
| ≥6.5 to 9.5             | ≤ -0.5                             |

6mCDI: A disability improvement could have an onset at any scheduled or unscheduled visit if the disability improvement criterion was met. A disability improvement could only be "confirmed" at a scheduled visit if, over a period of 6 months (≥166 days) time interval, all assessments met the improvement criterion. A 6mCDI sustained until the End of Study is defined as a 6mCDI after which all EDSS assessments met the disability improvement criterion through End of Study.

The analysis of the number of GdE lesions per scan used a negative binomial regression model

with the cumulative number of GdE across all MRI scans per subject as the response variable and natural logarithm of the number of MRI scans as the offset variable.

The analysis of the annualized rate of new or enlarging T2 lesions also used a negative binomial regression model with the number of new or enlarging T2 lesions on the last available MRI scan relative to baseline as the response variable with the natural logarithm of the time in years from baseline to the last MRI scan as the offset variable.

### **Protocol Amendments**

Amendment 1: January 19, 2017

Amendment 1 was created at the request of several Health Authorities to provide additional guidance to the Investigators in regard to:

- switching to alternative disease modifying therapy for patients that have discontinued study drug
- re-evaluation of benefit/risk of continuing study treatment in patients, who experience relevant progression of their disease (have met criterion for 6-month confirmed disease worsening) while on study medication.

### Amendment 2: August 6, 2018

Amendment 2 was created to update the secondary objectives of the study and to provide clarification of the rescreening of patients.

Modifications to the secondary objectives include:

- Addition of endpoints related to neurofilament light chain (NfL) as secondary objectives
- Additional endpoint related to cognitive decline as measured on the Symbol Digit Modalities Test (SDMT)
- Addition of composite endpoint related to physical disability and cognition, as measured by disability worsening on Expanded Disability Status Scale (EDSS) and cognitive decline on SDMT

## 6.1.2. Study Results

## **Compliance with Good Clinical Practices**

The sponsor reports that "All studies were conducted in full compliance with current Good Clinical Practices. Studies G2301, G2302 and G2102 were closely monitored by Novartis personnel or a contract organization for compliance to the protocol, Novartis standard

operating procedures, and applicable regulatory guidance. Written informed consent was obtained from each subject prior to the performance of any study-specific procedures. The subject was provided as much time as necessary to review the document, to inquire about details of the study, and to decide whether or not to participate in the study. The informed consent was signed and dated by the study subject and by the person who conducted the informed consent discussion."

### **Financial Disclosure**

No clinical investigators were full or part-time employees of Novartis Pharmaceuticals Corporation. There were 7 investigators who participated in study 2301 who had a disclosable financial interest. Dr. (b)(6) at site (b)(6) held Novartis stock shares valued at over \$50,000. The (b)(6) of Dr. (b)(6) at site (b)(6) held Novartis stock shares valued at over \$50,000. The the other investigators had financial interests of other sorts, typically research grants or speaking honoraria.

### **Patient Disposition**

Nine-hundred and twenty-seven (927) patients were randomized, 465 to ofatumumab 20mg and 462 to teriflunomide 14 mg. Eighty-six percent of the ofatumumab group and 78.8% of the teriflunomide group completed the study on treatment (Table 5). The reasons for discontinuation from treatment are listed in Table 6.

| End of Treatment | Total |        | OMB | 20 mg  | TERI 14 mg |        |
|------------------|-------|--------|-----|--------|------------|--------|
| Status (EOTSTT)  | N     | %      | N   | %      | N          | %      |
| COMPLETED        | 764   | 82.4%  | 400 | 86.0%  | 364        | 78.8%  |
| DISCONTINUED     | 163   | 17.6%  | 65  | 14.0%  | 98         | 21.2%  |
| TOTAL            | 927   | 100.0% | 465 | 100.0% | 462        | 100.0% |

### Table 5: Disposition by End of Treatment status, FAS, Study 2301

Source: FASFL\_Y Subset of ADSL 2301 TRT01P By (EOTSTT)

### Table 6: Reason for early discontinuation from treatment, FAS, Study 2301

| Reason for Discontinuation | Total |                     | OMB 20 mg |      | TERI 14 mg |      |
|----------------------------|-------|---------------------|-----------|------|------------|------|
| from Treatment (DCTREAS)   | N     | %                   | N         | %    | N          | %    |
| SUBJECT/GUARDIAN DECISION  | 61    | 6.6%                | 23        | 4.9% | 38         | 8.2% |
| ADVERSE EVENT              | 47    | 5. <mark>1</mark> % | 24        | 5.2% | 23         | 5.0% |
| PHYSICIAN DECISION         | 40    | 4.3%                | 10        | 2.2% | 30         | 6.5% |
| LOST TO FOLLOW-UP          | 9     | 1.0%                | 4         | 0.9% | 5          | 1.1% |
| PREGNANCY                  | 2     | 0.2%                | 2         | 0.4% | 0          | 0.0% |

CDER Clinical Review Template

Version date: September 6, 2017 for all NDAs and BLAs

| Reason for Discontinuation | Total |       | OMB 20 mg |       | TERI 14 mg |       |
|----------------------------|-------|-------|-----------|-------|------------|-------|
| from Treatment (DCTREAS)   | Ν     | %     | N         | %     | Ν          | %     |
| TECHNICAL PROBLEMS         | 4     | 0.4%  | 2         | 0.4%  | 2          | 0.4%  |
| Total                      | 163   | 17.6% | 65        | 14.0% | 98         | 21.2% |

Source: EOTSTT\_DISC Subset of FASFL\_Y Subset of ADSL 2301 TRT01P by (DCTREAS)

Reviewer Comment: The number of subjects who were discontinued from treatment due to "Subject/Guardian decision" and "Physician decision" was much higher in the teriflunomide group (14.7%) compared to the ofatumumab group (7.1%). The imbalance is not likely to affect interpretation of efficacy or safety results. Review of the CRFs did not reveal any additional details.

Study completion status is listed in Table 7. There were 16 subjects in the ofatumumab group who discontinued treatment but completed the study period and one ofatumumab subject who discontinued treatment and was considered ongoing at the time of data cutoff; that subject completed the study after the cutoff date of July 5, 2019. Seventeen subjects in the teriflunomide group discontinued treatment early but completed the study period and 5 were considered ongoing at the time of data cutoff; 4 of those 5 completed the study after the cutoff date and one discontinued the study early. The reasons for premature study discontinuation are listed in Table 8.

| End of Study Status | To  | tal    | OMB 20 mg |                    | TERI 14 mg |        |
|---------------------|-----|--------|-----------|--------------------|------------|--------|
| (EOSSTT)            | N   | %      | N         | %                  | N          | %      |
| COMPLETED           | 792 | 85.4%  | 416       | <mark>89.5%</mark> | 376        | 81.4%  |
| DISCONTINUED        | 129 | 13.9%  | 48        | 10.3%              | 81         | 17.5%  |
| ONGOING             | 6*  | 0.6%   | 1*        | 0.2%               | 5*         | 1.1%   |
| TOTAL               | 927 | 100.0% | 465       | 100.0%             | 462        | 100.0% |

### Table 7: Disposition by End of Study status, FAS, Study 2301

Source: FASFL\_Y Subset of ADSL 2301 TRT01P by (EOSSTT)

#### Table 8: Reasons for early study discontinuation, FAS, Study 2301

| Reasons for Discontinuation from Study | Total |      | OMB 20 mg |      | TERI 14 mg |      |
|----------------------------------------|-------|------|-----------|------|------------|------|
| (DCSREAS)                              | N     | %    | N         | %    | N          | %    |
| SUBJECT/GUARDIAN DECISION              | 58    | 6.3% | 16        | 3.4% | 42         | 9.1% |
| ADVERSE EVENT                          | 28    | 3.0% | 14        | 3.0% | 14         | 3.0% |
| LOST TO FOLLOW-UP                      | 15    | 1.6% | 10        | 2.2% | 5          | 1.1% |
| PHYSICIAN DECISION                     | 7     | 0.8% | 3         | 0.6% | 4          | 0.9% |
| PROTOCOL DEVIATION                     | 5     | 0.5% | 3         | 0.6% | 2          | 0.4% |

CDER Clinical Review Template

Version date: September 6, 2017 for all NDAs and BLAs

| Reasons for Discontinuation from Study | Total |       | OMB 20 mg |       | TERI 14 mg |       |
|----------------------------------------|-------|-------|-----------|-------|------------|-------|
| (DCSREAS)                              | N     | %     | N         | %     | N          | %     |
| LACK OF EFFICACY                       | 13    | 1.4%  | 1         | 0.2%  | 12         | 2.6%  |
| PREGNANCY                              | 1     | 0.1%  | 1         | 0.2%  | 0          | 0.0%  |
| NEW THERAPY FOR STUDY INDICATION       | 1     | 0.1%  | 0         | 0.0%  | 1          | 0.2%  |
| NON-COMPLIANCE WITH STUDY<br>TREATMENT | 1     | 0.1%  | 0         | 0.0%  | 1          | 0.2%  |
| TOTAL                                  | 129   | 13.9% | 48        | 10.3% | 81         | 17.5% |

Source: EOSSTT\_DISC Subset of FASFL\_Y Subset of ADSL 2301 TRT01P by (DCSREAS)

Reviewer Comment: The number of subjects discontinued from the study for "Subject/guardian decision" and "Physician Decision" was higher in the group treated with teriflunomide (10%) compared to of a tumumab (4%). The CRFs for those subjects who discontinued due to "Subject/Guardian decision" and due to "physician decision" were generally not included in the submission (and were not specifically requested. Of those that were available, there was usually no additional comment or the comments from the investigator were consistent with the recorded reason for discontinuation.

The most common adverse event that resulted in discontinuation of treatment (DAE) with ofatumumab was decreased blood IgM; for the teriflunomide group the most common DAE was alopecia (Table 66).

The number of patients randomized was balanced by major region. Slightly over one-half of the subjects randomized were from either Eastern Europe or North America and Australia (Table 9).

| REGION                | Total<br>N=927 |      |     | 20 mg<br>465 | TERI 14 mg<br>N=462 |      |
|-----------------------|----------------|------|-----|--------------|---------------------|------|
|                       | N* % N*        |      | N*  | %            | N*                  | %    |
| Asia Pacific          | 30             | 3.24 | 15  | 3.23         | 15                  | 3.25 |
| Eastern Europe        | 325            | 35.1 | 163 | 35.1         | 162                 | 35.1 |
| Latin America         | 26             | 2.8  | 13  | 2.8          | 13                  | 2.81 |
| North America and AUS | 212            | 22.9 | 106 | 22.8         | 106                 | 22.9 |
| Others                | 164            | 17.7 | 82  | 17.6         | 82                  | 17.7 |
| Western Europe        | 170            | 18.3 | 86  | 18.5         | 84                  | 18.2 |

#### Table 9: Randomization by Region, FAS, Study 2301

Source: FASFL\_Y Subset of ADSL 2301 TRTOP By (REGION2).jmp

Reviewer Comment: One site randomized 73 patients, 7.9% of the total. The 10 highest enrolling sites randomized 33.6% of the patients. Nine of these sites were from Poland or Russia. Randomization was more evenly distributed in study 2302 (see Table 33).

## **Protocol Violations/Deviations**

The number of subjects with at least one protocol deviation was 88 (18.9%) in the ofatumumab treatment group and 92 (19.9%) in the teriflunomide group (Table 10).

| Table 10: Protoco | deviations | , FAS po | pulation, | , study | / 2301 |
|-------------------|------------|----------|-----------|---------|--------|
|                   |            |          |           |         |        |

| Protocol Deviation<br>Coded Term        | Protocol Deviation Term                                                                                                                                                                                     | Ofatumumab 20<br>mg | Teriflunomide 14<br>mg |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------|
|                                         | EDSS rater acted as a treating physician or treating physician acted as EDSS rater                                                                                                                          | 3 (0.6%)            | 0 (0.0%)               |
| Other Deviation                         | Investigator reviewing EDSS results or Independent EDSS Rater reviewing patient's medical<br>records other than EDSS assessment-related records                                                             | 19 (4.1%)           | 11 (2.4%)              |
| Other Deviation                         | Investigator reviewing MRI and/or MRI report                                                                                                                                                                | 17 (3.7%)           | 14 (3.0%)              |
|                                         | Not following per protocol blinding procedures such that the integrity of the study is<br>compromised                                                                                                       | 3 (0.6%)            | 5 (1.1%)               |
| Prohibited<br>Concomitant<br>Medication | Any other immunomodulatory or disease-modifying MS treatment such as fingolimod, interferon beta, glatiramer acetate, dimethyl fumarate or systemic corticosteroids while taking double-<br>blind treatment | 3 (0.6%)            | 1 (0.2%)               |
|                                         | AST (SGOT) or ALT (SGPT) greater than 1.5 times the ULN range prior to randomization or<br>missing                                                                                                          | 2 (0.4%)            | 3 (0.6%)               |
|                                         | Disease duration of more than 10 years in patients with EDSS score of 2 or less                                                                                                                             | 8 (1.7%)            | 17 (3.7%)              |
|                                         | DNA sample taken prior to signing pharmacogenetic informed consent or pharmacogenetic<br>informed consent is No or missing                                                                                  | 1 (0.2%)            | 0 (0.0%)               |
|                                         | EDSS score at screening 0 to 5.5 and not missing                                                                                                                                                            | 4 (0.9%)            | 4 (0.9%)               |
| Selection Criteria Not<br>Met           | Gamma-glutamyl-transferase (GGT) greater than 2 times the ULN range prior to randomization<br>or missing                                                                                                    | 1 (0.2%)            | 0 (0.0%)               |
|                                         | Lymphocyte count < 800/mm3 (< 0.8 10E9/L) prior to randomization or missing data                                                                                                                            | 1 (0.2%)            | 1 (0.2%)               |
|                                         | Missing serum pregnancy test at screening                                                                                                                                                                   | 4 (0.9%)            | 6 (1.3%)               |
|                                         | Patient age at screening <18 or 55< or missing data                                                                                                                                                         | 1 (0.2%)            | 0 (0.0%)               |
|                                         | Patients at risk of developing or having reactivation of syphilis or tuberculosis                                                                                                                           | 29 (6.2%)           | 23 (5.0%)              |
|                                         | Patients currently treated with or needing treatment with cholestyramine (unless for accelerated teriflunomide elimination) during the study                                                                | 0 (0.0%)            | 1 (0.2%)               |

| Protocol Deviation<br>Coded Term | Protocol Deviation Term                                                                                                                                 | Ofatumumab 20<br>mg | Teriflunomide 14<br>mg |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------|
|                                  | Patients with suicidal ideation in the past 6 months or suicidal behavior in the past 2 years prior to randomization                                    | 3 (0.6%)            | <mark>2 (</mark> 0.4%) |
|                                  | Positive results of screening period testing for serological markers for hepatitis A, B, C, and E indicating acute or chronic infection or missing data | 0 (0.0%)            | <mark>2 (</mark> 0.4%) |
|                                  | Serum IgG or IgM < Lower limit of normal                                                                                                                | 3 (0.6%)            | 5 (1.1%)               |
|                                  | Systemic steroid or adrenocorticotropic hormone treatment within 30 days prior to Screening MRI                                                         | 3 (0.6%)            | 3 (0.6%)               |
|                                  | White blood cell (WBC) count < 3,500/mm <sup>3</sup> (< 3.5 x 10E <sup>9</sup> /L) prior to randomization or missing data                               | 1 (0.2%)            | 0 (0.0%)               |
|                                  | Women of child-bearing potential not using highly effective contraception                                                                               | 4 (0.9%)            | 5 (1.1%)               |
| Subject Not Withdrawn            | Emergence of certain adverse events, such as malignancy, liver failure or serious chronic infection and treatment was not discontinued                  | 0 (0.0%)            | 1 (0.2%)               |
| as Per Protocol                  | Protocol violation that results in a significant risk to the patient's safety, but treatment was not discontinued                                       | 0 (0.0%)            | 1 (0.2%)               |
|                                  | Patient received damaged or expired study drug                                                                                                          | 1 (0.2%)            | 5 (1.1%)               |
| Treatment Deviation              | Patient received incorrect study drug                                                                                                                   | 2 (0.4%)            | 2 (0.4%)               |
|                                  | Site or global team unintentionally unblinded to the treatment allocation of an individual patient by vendor (including drug supply)                    | 0 (0.0%)            | 1 (0.2%)               |
| Total                            | Subjects(filtered)                                                                                                                                      | 465 (100.0%)        | 462 (100.0%)           |
| Total                            | 1stColltemSubjects                                                                                                                                      | 465 (100.0%)        | 462 (100.0%)           |

Source: JRevSelADSL2301FASFL\_Y EPOCHbyDVDECODbyDVTERM

Reviewer Comment: The number and types of protocol deviations are not likely to affect interpretation of efficacy, given the relatively large effect size seen in both pivotal studies. The number and types of deviations are not likely to affect interpretation of safety.

### **Table of Demographic Characteristics**

### Table 11

## Table 11: Baseline demographic characteristics, study 2301

| Subgroup                  | Ofatumumab 20 mg<br>(N = 465)<br>n (%) | Teriflunomide 14 mg<br>(N = 462)<br>n (%) | Total<br>(N = 927)<br>n (%) |
|---------------------------|----------------------------------------|-------------------------------------------|-----------------------------|
|                           | Sex                                    |                                           |                             |
| Female                    | 318 (68.4)                             | 317 (68.6)                                | 635 (68.5)                  |
| Male                      | 147 (31.6)                             | 145 (31.4)                                | 292 (31.5)                  |
|                           | Age                                    |                                           |                             |
| Mean                      | 38.84                                  | 37.75                                     | 38.3                        |
| Standard Deviation        | 8.77                                   | 8.94                                      | 8.87                        |
| Minimum                   | 19                                     | 18                                        | 18                          |
| Median                    | 40                                     | 38                                        | 39                          |
| Maximum                   | 56                                     | 55                                        | 56                          |
|                           | Age Group                              |                                           |                             |
| Age Group 1 (AGE < 40)    | 230 (49.5)                             | 269 (58.2)                                | 499 (53.8)                  |
| Age Group 2 (40 <= AGE)   | 235 (50.5)                             | <b>1</b> 93 ( <b>41</b> .8)               | 428 (46.2)                  |
|                           | AGEGR1                                 |                                           |                             |
| > 55 Years                | 1 (0.2)                                | 0 (0.0)                                   | 1 (0.1)                     |
| 18 to 30 Years            | 94 (20.2)                              | 104 (22.5)                                | 198 (21.4)                  |
| 31 to 40 Years            | 152 (32.7)                             | <b>1</b> 78 (38.5)                        | 330 (35.6)                  |
| 41 to 55 Years            | 218 (46.9)                             | <b>1</b> 80 (39.0)                        | 398 (42.9)                  |
|                           | Race                                   |                                           |                             |
| Asian                     | 15 (3.2)                               | 16 (3.5)                                  | 31 (3.3)                    |
| Black or African American | 15 (3.2)                               | 20 (4.3)                                  | 35 (3.8)                    |
| Missing                   | 2 (0.4)                                | 0 (0.0)                                   | 2 (0.2)                     |
| Other                     | 22 (4.7)                               | 14 (3.0)                                  | 36 (3.9)                    |
| White                     | 411 (88.4)                             | 412 (89.2)                                | 823 (88.8)                  |
|                           | Ethnicity                              |                                           |                             |
| Hispanic or Latino        | 37 (8.0)                               | 36 (7.8)                                  | 73 (7.9)                    |
| Missing                   | 68 <b>(1</b> 4.6)                      | 71 (15.4)                                 | 139 (15.0)                  |
| Not Hispanic or Latino    | 360 (77.4)                             | 355 (76.8)                                | 715 (77.1)                  |
|                           | Region                                 |                                           |                             |
| Asia                      | 27 (5.8)                               | 27 (5.8)                                  | 54 (5.8)                    |

**CDER Clinical Review Template** 

Version date: September 6, 2017 for all NDAs and BLAs

| Subgroup      | Ofatumumab 20 mg<br>(N = 465)<br>n (%) | Teriflunomide 14 mg<br>(N = 462)<br>n (%) | Total<br>(N = 927)<br>n (%) |
|---------------|----------------------------------------|-------------------------------------------|-----------------------------|
| Canada        | 6 (1.3)                                | 9 (1.9)                                   | 15 (1.6)                    |
| Europe        | 319 (68.6)                             | 316 (68.4)                                | 635 (68.5)                  |
| Other         | 3 (0.6)                                | 1 (0.2)                                   | 4 (0.4)                     |
| South America | 13 (2.8)                               | 13 (2.8)                                  | 26 (2.8)                    |
| United States | 97 (20.9)                              | 96 (20.8)                                 | 193 (20.8)                  |

Source: DM\_TOOL Study 2301

#### Medical History

Medical conditions that ended prior to the start of the study were most commonly previous surgical procedures such as a tonsillectomy, cholecystectomy, and appendectomy. The remaining conditions were relatively infrequent and are generally not relevant to the study results.

The most common medical conditions that were concurrent during the study are listed by Body System in Table 12 and by Body System and preferred term in Table 14. Depression was the single most common individual medical history term (Table 13). Of the psychiatric disorders, terms that included depression were the most common preferred medical history terms and occurred in 17.9% of the ofatumumab group and in 15.6% of the teriflunomide group. Headache and migraine were the most common nervous system disorders, each occurring in approximately 8% of subjects.

| Body System or Organ Class                      | Ofatumumab 20 mg | Teriflunomide 14 mg |
|-------------------------------------------------|------------------|---------------------|
| Psychiatric disorders                           | 124 (26.7%)      | 101 (21.9%)         |
| Nervous system disorders                        | 119 (25.6%)      | 119 (25.8%)         |
| Musculoskeletal and connective tissue disorders | 106 (22.8%)      | 108 (23.4%)         |
| Metabolism and nutrition disorders              | 76 (16.3%)       | 72 (15.6%)          |
| Gastrointestinal disorders                      | 65 (14.0%)       | 52 (11.3%)          |
| Immune system disorders                         | 62 (13.3%)       | 58 (12.6%)          |
| Vascular disorders                              | 57 (12.3%)       | 49 (10.6%)          |
| Subjects(filtered)                              | 331 (71.2%)      | 318 (68.8%)         |
| 1stColltemSubjects                              | 465 (100.0%)     | 462 (100.0%)        |

Source: JRevSelADSLFASFL\_Y MHSOCbyTRT01PfiltMHCAT\_GEN MHENRF\_DURING AFTER

### Table 13: Concurrent medical disorders by MHDECOD, 5% for more of OMB group, study 2301

| Dictionary Derived Term | Ofatumumab 20 mg | Teriflunomide 14 mg |
|-------------------------|------------------|---------------------|
| Depression              | 78 (16.8%)       | 69 (14.9%)          |
| Hypertension            | 49 (10.5%)       | 37 (8.0%)           |
| Migraine                | 41 (8.8%)        | 37 (8.0%)           |
| Anxiety                 | 41 (8.8%)        | 34 (7.4%)           |
| Headache                | 39 (8.4%)        | 35 (7.6%)           |
| Drug hypersensitivity   | 31 (6.7%)        | 32 (6.9%)           |
| Seasonal allergy        | 30 (6.5%)        | 28 (6.1%)           |
| Back pain               | 27 (5.8%)        | 27 (5.8%)           |
| Hypothyroidism          | 27 (5.8%)        | 26 (5.6%)           |
| Insomnia                | 26 (5.6%)        | 26 (5.6%)           |
| Subjects(filtered)      | 331 (71.2%)      | 318 (68.8%)         |
| 1stColltemSubjects      | 465 (100.0%)     | 462 (100.0%)        |

Source: JRevSelADSLFASFL\_Y MHDECODbyTRT01PfiltMHCAT\_GEN MHENRF\_DURING AFTER

# Table 14: Selected concurrent medical disorders by MHSOC and preferred term, study 2301

| Body System or Organ Class     | Dictionary Derived Term          | OMB<br>20 mg           | TERI<br>14 mg |
|--------------------------------|----------------------------------|------------------------|---------------|
|                                | Anaemia                          | 13 (2.8%)              | 6 (1.3%)      |
|                                | Anaemia megaloblastic            | <mark>0 (</mark> 0.0%) | 1 (0.2%)      |
| Blood and lymphatic system     | Anaemia of pregnancy             | 0 (0.0%)               | 1 (0.2%)      |
| disorders                      | Hypochromic anaemia              | 1 (0.2%)               | 0 (0.0%)      |
|                                | Iron deficiency anaemia          | 1 (0.2%)               | 5 (1.1%)      |
|                                | Normocytic anaemia               | 1 (0.2%)               | 0 (0.0%)      |
|                                | Autoimmune thyroiditis           | 5 (1.1%)               | 8 (1.7%)      |
|                                | Basedow's disease                | 2 (0.4%)               | 0 (0.0%)      |
| Endocrine disorders            | Goitre                           | 3 (0.6%)               | 1 (0.2%)      |
| Endocrine disorders            | Hyperthyroidism                  | 3 (0.6%)               | 0 (0.0%)      |
|                                | Hypothyroidism                   | 27 (5.8%)              | 26 (5.6%)     |
|                                | Thyroiditis                      | 1 (0.2%)               | 1 (0.2%)      |
|                                | Chronic gastritis                | 6 (1.3%)               | 5 (1.1%)      |
| Gastrointestinal disorders     | Gastritis                        | 3 (0.6%)               | 4 (0.9%)      |
| Gastrointestinal disorders     | Gastrooesophageal reflux disease | 22 (4.7%)              | 7 (1.5%)      |
| General disorders and          | Chronic fatigue syndrome         | 0 (0.0%)               | 1 (0.2%)      |
| administration site conditions | Fatigue                          | 23 (4.9%)              | 23 (5.0%)     |
| Immune system disorders        | Drug hypersensitivity            | 31 (6.7%)              | 32 (6.9%)     |
|                                | Genital herpes simplex           | 0 (0.0%)               | 1 (0.2%)      |
|                                | Gingivitis                       | 1 (0.2%)               | 0 (0.0%)      |
| Infections and infestations    | Herpes simplex                   | 2 (0.4%)               | 2 (0.4%)      |
| imections and intestations     | Herpes zoster                    | 1 (0.2%)               | 1 (0.2%)      |
|                                | Oral herpes                      | 9 (1.9%)               | 4 (0.9%)      |
|                                | Proctitis herpes                 | 0 (0.0%)               | 1 (0.2%)      |
| Investigations                 | JC polyomavirus test positive    | 3 (0.6%)               | 3 (0.6%)      |

| Body System or Organ Class                      | Dictionary Derived Term                  | OMB<br>20 mg | TERI<br>14 mg |
|-------------------------------------------------|------------------------------------------|--------------|---------------|
|                                                 | Vitamin D decreased                      | 5 (1.1%)     | 5 (1.1%)      |
| Metabolism and nutrition disorders              | Vitamin D deficiency                     | 22 (4.7%)    | 22 (4.8%)     |
| Musculoskeletal and connective tissue disorders | Arthralgia                               | 8 (1.7%)     | 10 (2.2%)     |
|                                                 | Headache                                 | 39 (8.4%)    | 35 (7.6%)     |
|                                                 | Migraine                                 | 41 (8.8%)    | 37 (8.0%)     |
|                                                 | Migraine with aura                       | 1 (0.2%)     | 3 (0.6%)      |
|                                                 | Migraine without aura                    | 1 (0.2%)     | 1 (0.2%)      |
|                                                 | Muscle spasticity                        | 19 (4.1%)    | 12 (2.6%)     |
| Nervous system disorders                        | Neuralgia                                | 13 (2.8%)    | 10 (2.2%)     |
|                                                 | Optic neuritis                           | 6 (1.3%)     | 9 (1.9%)      |
|                                                 | Restless legs syndrome                   | 3 (0.6%)     | 7 (1.5%)      |
|                                                 | Seizure                                  | 3 (0.6%)     | 1 (0.2%)      |
|                                                 | Temporal lobe epilepsy                   | 1 (0.2%)     | 0 (0.0%)      |
|                                                 | Anxiety                                  | 41 (8.8%)    | 34 (7.4%)     |
|                                                 | Anxiety disorder                         | 6 (1.3%)     | 2 (0.4%)      |
|                                                 | Bipolar disorder                         | 3 (0.6%)     | 5 (1.1%)      |
|                                                 | Depression                               | 78 (16.8%)   | 69 (14.9%)    |
| Develoietria disordora                          | Depressive symptom                       | 1 (0.2%)     | 0 (0.0%)      |
| Psychiatric disorders                           | Insomnia                                 | 26 (5.6%)    | 26 (5.6%)     |
|                                                 | Major depression                         | 2 (0.4%)     | 1 (0.2%)      |
|                                                 | Mixed anxiety and depressive<br>disorder | 1 (0.2%)     | 0 (0.0%)      |
|                                                 | Persistent depressive disorder           | 2 (0.4%)     | 0 (0.0%)      |
| Respiratory, thoracic and                       | Asthma                                   | 16 (3.4%)    | 15 (3.2%)     |
| mediastinal disorders                           | Sleep apnoea syndrome                    | 8 (1.7%)     | 3 (0.6%)      |
| Veseuler disorders                              | Essential hypertension                   | 3 (0.6%)     | 3 (0.6%)      |
| Vascular disorders                              | Hypertension                             | 49 (10.5%)   | 37 (8.0%)     |
| Subtotal                                        | Subjects(filtered)                       | 331 (71.2%)  | 318 (68.8%)   |
| Total                                           | 1stColltemSubjects                       | 465 (100.0%) | 462 (100.0%)  |

Source: JRevSelADSLFASFL\_Y MHSOCbyMHDECODbyTRT01PfiltMHCAT\_GEN MHENRF\_DURING AFTER

### Other Baseline Characteristics (disease characteristics, important concomitant drugs)

Previous treatment for MS

Interferons and glatiramer acetate were the most common previous treatment for MS (Table 15). Treatment-naïve patients accounted for 41.1% of the ofatumumab treatment group and for 39.4% of the teriflunomide treatment group. The most recent treatments for MS are listed in Table 16.

| Table 15: All | previous treatments | s for MS, F | AS, study 2301 |
|---------------|---------------------|-------------|----------------|
|---------------|---------------------|-------------|----------------|

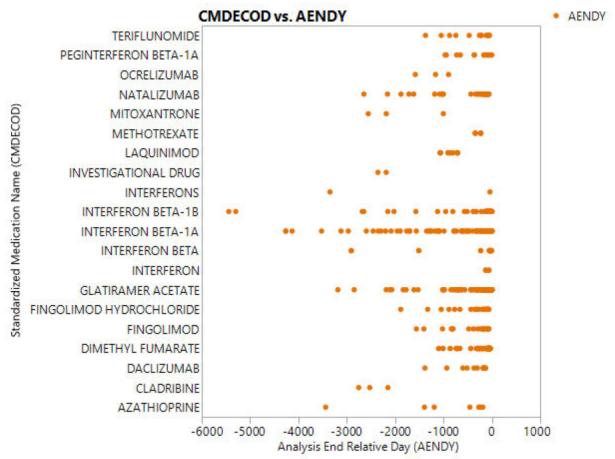
| Standardized Medication Name | OMB<br>20 mg | TERI<br>14 mg |
|------------------------------|--------------|---------------|
| INTERFERON BETA-1A           | 121 (26.0%)  | 117 (25.3%)   |
| GLATIRAMER ACETATE           | 124 (26.7%)  | 106 (22.9%)   |
| INTERFERON BETA-1B           | 62 (13.3%)   | 66 (14.3%)    |
| DIMETHYL FUMARATE            | 36 (7.7%)    | 37 (8.0%)     |
| NATALIZUMAB                  | 31 (6.7%)    | 36 (7.8%)     |
| FINGOLIMOD HYDROCHLORIDE     | 17 (3.7%)    | 29 (6.3%)     |
| FINGOLIMOD                   | 10 (2.2%)    | 15 (3.2%)     |
| DACLIZUMAB                   | 5 (1.1%)     | 12 (2.6%)     |
| INTERFERON BETA              | 6 (1.3%)     | 10 (2.2%)     |
| PEGINTERFERON BETA-1A        | 6 (1.3%)     | 9 (1.9%)      |
| INTERFERONS                  | 6 (1.3%)     | 8 (1.7%)      |
| TERIFLUNOMIDE                | 8 (1.7%)     | 6 (1.3%)      |
| AZATHIOPRINE                 | 7 (1.5%)     | 5 (1.1%)      |
| LAQUINIMOD                   | 5 (1.1%)     | 4 (0.9%)      |
| INVESTIGATIONAL DRUG         | 5 (1.1%)     | 2 (0.4%)      |
| MITOXANTRONE                 | 2 (0.4%)     | 4 (0.9%)      |
| INTERFERON                   | 3 (0.6%)     | 2 (0.4%)      |
| OCRELIZUMAB                  | 2 (0.4%)     | 2 (0.4%)      |
| CLADRIBINE                   | 3 (0.6%)     | 1 (0.2%)      |
| METHOTREXATE                 | 1 (0.2%)     | 2 (0.4%)      |
| CYCLOPHOSPHAMIDE             | 0 (0.0%)     | 2 (0.4%)      |
| MYCOPHENOLATE MOFETIL        | 2 (0.4%)     | 0 (0.0%)      |
| RITUXIMAB                    | 0 (0.0%)     | 1 (0.2%)      |
| MITOXANTRONE HYDROCHLORIDE   | 0 (0.0%)     | 1 (0.2%)      |
| Subjects(filtered)           | 274 (58.9%)  | 280 (60.6%)   |
| 1stColltemSubjects           | 465 (100.0%) | 462 (100.0%)  |

Source: JRevSelADSLFASFL\_Y CMDECODbyTRT01PfiltANL01FL\_Y

### Table 16: Most recent treatment for MS, FAS, study 2301

| Standardized Medication Name | Ofatumumab 20 mg | Teriflunomide 14 mg |
|------------------------------|------------------|---------------------|
| GLATIRAMER ACETATE           | 82 (17.6%)       | 64 (13.9%)          |
| INTERFERON BETA-1A           | 62 (13.3%)       | 63 (13.6%)          |
| INTERFERON BETA-1B           | 32 (6.9%)        | 30 (6.5%)           |

**CDER Clinical Review Template** 


Version date: September 6, 2017 for all NDAs and BLAs

| Standardized Medication Name | Ofatumumab 20 mg | Teriflunomide 14 mg |
|------------------------------|------------------|---------------------|
| DIMETHYL FUMARATE            | 26 (5.6%)        | 29 (6.3%)           |
| NATALIZUMAB                  | 17 (3.7%)        | 17 (3.7%)           |
| FINGOLIMOD HYDROCHLORIDE     | 10 (2.2%)        | 18 (3.9%)           |
| FINGOLIMOD                   | 7 (1.5%)         | 14 (3.0%)           |
| DACLIZUMAB                   | 3 (0.6%)         | 11 (2.4%)           |
| PEGINTERFERON BETA-1A        | 6 (1.3%)         | 7 (1.5%)            |
| TERIFLUNOMIDE                | 7 (1.5%)         | 5 (1.1%)            |
| INTERFERON BETA              | 5 (1.1%)         | 6 (1.3%)            |
| AZATHIOPRINE                 | 4 (0.9%)         | 4 (0.9%)            |
| LAQUINIMOD                   | 5 (1.1%)         | 3 (0.6%)            |
| CLADRIBINE                   | 2 (0.4%)         | 1 (0.2%)            |
| OCRELIZUMAB                  | 2 (0.4%)         | 1 (0.2%)            |
| MITOXANTRONE                 | 0 (0.0%)         | 3 (0.6%)            |
| INTERFERON                   | 1 (0.2%)         | 1 (0.2%)            |
| METHOTREXATE                 | 0 (0.0%)         | 2 (0.4%)            |
| INTERFERONS                  | 1 (0.2%)         | 1 (0.2%)            |
| INVESTIGATIONAL DRUG         | 2 (0.4%)         | 0 (0.0%)            |
| Subjects(filtered)           | 274 (58.9%)      | 280 (60.6%)         |
| 1stColltemSubjects           | 465 (100.0%)     | 462 (100.0%)        |

Source: JRevSelADSLFASFL\_Y CMDECODbyTRT01PfiltANL02FL\_Y

The distribution of the relative study day that the last dose of the most recent treatment for MS was given is shown in Figure 1. The most recent end date by therapy is shown in Table 17 which also includes a column for the protocol-defined limit for the most recent dose of the medication.

Reviewer Comment: The last date of treatment with previous MS therapies appear to be within the protocol requirements for the individual drugs.



### Figure 1: Distribution of end date for most recent MS treatment, study 2301

Source: AENDYbyCMDECOD ANL02FL\_Y subset ADCM 2301.jrp

### Table 17: Most recent end date of previous MS treatment, study 2301

| CMDECOD                  | Last day limit for | Tatal subjects | Max(AENDY) |            |
|--------------------------|--------------------|----------------|------------|------------|
| CMDECOD                  | eligibility        | Total subjects | OMB 20 mg  | TERI 14 mg |
| AZATHIOPRINE             | 180                | 8              | -252       | -187       |
| CLADRIBINE               | 730                | 3              | -2151      | -2526      |
| DACLIZUMAB               | 60                 | 14             | -128       | -136       |
| DIMETHYL FUMARATE        | 30                 | 110            | -33        | -36        |
| FINGOLIMOD               | 60                 | 22             | -68        | -63        |
| FINGOLIMOD HYDROCHLORIDE | 60                 | 29             | -62        | -68        |
| GLATIRAMER ACETATE       | 0                  | 151            | -1         | -1         |
| INTERFERON               | 0                  | 4              | -129       | -62        |
| INTERFERON BETA          | 0                  | 22             | -37        | -6         |
| INTERFERON BETA-1A       | 0                  | 131            | -2         | -1         |
| INTERFERON BETA-1B       | 0                  | 63             | -1         | -1         |
| INTERFERONS              | 0                  | 2              | -39        | -3349      |

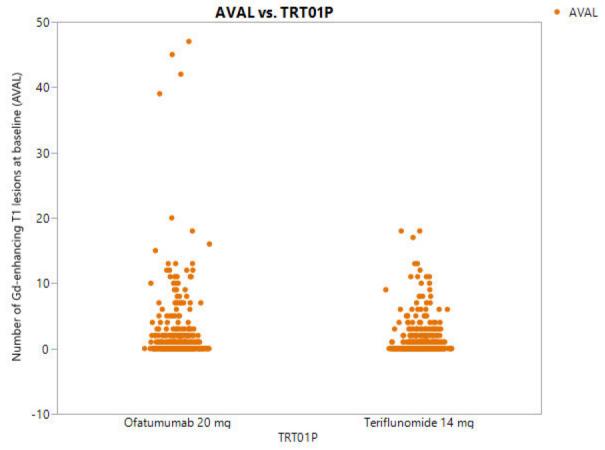
| CMDECOD               | Last day limit for | Total aubiasta | Max(AENDY) |            |  |
|-----------------------|--------------------|----------------|------------|------------|--|
| CMDECOD               | eligibility        | Total subjects | OMB 20 mg  | TERI 14 mg |  |
| INVESTIGATIONAL DRUG  |                    | 2              | -2186      |            |  |
| LAQUINIMOD            | 730                | 16             | -708       | -708       |  |
| METHOTREXATE          | 180                | 6              |            | -230       |  |
| MITOXANTRONE          | 730                | 3              |            | -1003      |  |
| NATALIZUMAB           | 60                 | 35             | -61        | -96        |  |
| OCRELIZUMAB           | 730                | 3              | -1165      | -895       |  |
| PEGINTERFERON BETA-1A | 0                  | 14             | -1         | -14        |  |
| TERIFLUNOMIDE         | 105 (30 with AEP)  | 13             | -58        | -48        |  |

Source: ANL02FL\_Y Subset of ADCM 2301 By (CMDECOD) 2.jmp

The baseline disease characteristics are listed in Table 18. The clinical and MRI characteristics were generally well balanced between the treatment groups. One notable exception is the number of baseline gadolinium-enhancing lesions. There were many more such lesions in the group treated with of a compared to teriflunomide. The difference in the mean is nominally statistically significant but the median is zero for both groups. The difference appears attributable to a small number of subjects in the of atumumab group with an unusually large number of lesions (Figure 2).

| TRT01P              | N      | Mean           | Std Dev               | Min                 | Max  | Median |  |  |  |  |
|---------------------|--------|----------------|-----------------------|---------------------|------|--------|--|--|--|--|
| EDSS                |        |                |                       |                     |      |        |  |  |  |  |
| Ofatumumab 20 mg    | 465    | 2.97           | 1.36                  | 0                   | 6    | 3      |  |  |  |  |
| Teriflunomide 14 mg | 462    | 2.94           | 1.36                  | 0                   | 6.5  | 3      |  |  |  |  |
| 25FWT               |        |                |                       |                     |      |        |  |  |  |  |
| Ofatumumab 20 mg    | 465    | 7.47           | 7.11                  | 3.15                | 101  | 5.75   |  |  |  |  |
| Teriflunomide 14 mg | 462    | 7.99           | 9.76                  | 2.5                 | 140  | 5.65   |  |  |  |  |
|                     |        | Duration of    | of MS since diagno    | sis (years)         |      |        |  |  |  |  |
| Ofatumumab 20 mg    | 465    | 5.77           | 6.05                  | 0.1                 | 29   | 3.94   |  |  |  |  |
| Teriflunomide 14 mg | 462    | 5.64           | 6.2                   | 0.07                | 35.8 | 3.49   |  |  |  |  |
|                     |        | Duration of    | MS since first symp   | otom (years)        |      |        |  |  |  |  |
| Ofatumumab 20 mg    | 465    | 8.36           | 6.84                  | 0.14                | 38.7 | 6.41   |  |  |  |  |
| Teriflunomide 14 mg | 462    | 8.18           | 7.21                  | 0.24                | 35.8 | 6.69   |  |  |  |  |
|                     | Number | of relapses i  | n the 12 to 24 mon    | ths prior to screen | ing  |        |  |  |  |  |
| Ofatumumab 20 mg    | 465    | 0.89           | 0.95                  | 0                   | 5    | 1      |  |  |  |  |
| Teriflunomide 14 mg | 462    | 0.95           | 1.21                  | 0                   | 12   | 1      |  |  |  |  |
|                     | Nun    | nber of relaps | es in the last year   | prior to screening  |      |        |  |  |  |  |
| Ofatumumab 20 mg    | 465    | 1.22           | 0.63                  | 0                   | 4    | 1      |  |  |  |  |
| Teriflunomide 14 mg | 462    | 1.27           | 0.69                  | 0                   | 5    | 1      |  |  |  |  |
|                     | Time   | since the onse | et of the most rece   | nt relapse (months  | ;)   |        |  |  |  |  |
| Ofatumumab 20 mg    | 465    | 7.13           | 10.5                  | 1.25                | 119  | 4.86   |  |  |  |  |
| Teriflunomide 14 mg | 462    | 7.94           | 16.1                  | 1.22                | 265  | 5.34   |  |  |  |  |
|                     | N      | lumber of Gd   | enhancing T1 lesi     | ons at baseline     | •    |        |  |  |  |  |
| Ofatumumab 20 mg    | 465    | 1.74*          | 4.93                  | 0                   | 47   | 0      |  |  |  |  |
| Teriflunomide 14 mg | 462    | 1.17           | 2.58                  | 0                   | 18   | 0      |  |  |  |  |
|                     |        | Volume o       | of T2 lesions (cc) at | t baseline          |      |        |  |  |  |  |
| Ofatumumab 20 mg    | 465    | 13.2           | 13.3                  | 0.08                | 85.9 | 8.78   |  |  |  |  |

#### Table 18: Baseline disease characteristics, FAS, study 2301


# **CDER Clinical Review Template**

Version date: September 6, 2017 for all NDAs and BLAs

| TRT01P                      | N            | Mean | Std Dev | Min  | Max  | Median |
|-----------------------------|--------------|------|---------|------|------|--------|
| Teriflunomide 14 mg         | 462          | 13.1 | 14.6    | 0.05 | 93.5 | 7.67   |
| *: p=0.0278, unpaired t-tes | t. two sided |      |         |      |      |        |

: p=0.0278, unpaired t-test, two sided

# Figure 2: Number of GdE lesions at baseline, study 2301



Source: PARAM\_BLT1GDN Subset of ADBS 2301 TRT01P By (AVAL).jmp

#### Treatment Compliance, Concomitant Medications, and Rescue Medication Use

#### **Treatment Compliance**

Compliance for each treatment group is shown in Table 19. Compliance was close to 100% for both treatment groups.

#### Table 19: Percent compliance by treatment group, study 2301

| TRT01P              | Total |      |         | AVAL |     |        |
|---------------------|-------|------|---------|------|-----|--------|
| IKIUIP              | Total | Mean | Std Dev | Min  | Max | Median |
| Ofatumumab 20 mg    | 465   | 98.2 | 3.99    | 73.7 | 100 | 99.8   |
| Teriflunomide 14 mg | 462   | 98.7 | 4.91    | 57.9 | 100 | 100    |

Source: PARAM\_COMPLIANCE Subset of ADEX 2301 AVAL By (TRT01P).jmp

#### Concomitant medications during the RCP

The most common concurrent medications not being used to treat MS or an MS relapse are listed in Table 20. These drugs primarily represent drugs used to treat common general medical conditions or medications used prior to administration of the study drugs.

# Table 20: Concurrent medications, not MS-related, RCP, 10% or more of OMB treatment group, study 2301

| WHODrug ATC 3                                                           | OMB<br>20 mg | TERI<br>14 mg      |
|-------------------------------------------------------------------------|--------------|--------------------|
| OTHER ANALGESICS AND ANTIPYRETICS                                       | 320 (68.8%)  | 297 (64.3%)        |
| ANTIHISTAMINES FOR SYSTEMIC USE                                         | 293 (63.0%)  | 287 (62.1%)        |
| TOPICAL PRODUCTS FOR JOINT AND MUSCULAR PAIN                            | 156 (33.5%)  | 157 (34.0%)        |
| ANTIINFLAMMATORY AND ANTIRHEUMATIC PRODUCTS, NON-<br>STEROIDS           | 152 (32.7%)  | 144 (31.2%)        |
| VITAMIN A AND D, INCL. COMBINATIONS OF THE TWO                          | 133 (28.6%)  | 108 (23.4%)        |
| ANTIPRURITICS, INCL. ANTIHISTAMINES, ANESTHETICS, ETC.                  | 132 (28.4%)  | 123 (26.6%)        |
| HORMONAL CONTRACEPTIVES FOR SYSTEMIC USE                                | 131 (28.2%)  | 143 (31.0%)        |
| THROAT PREPARATIONS                                                     | 127 (27.3%)  | 122 (26.4%)        |
| ANTIDEPRESSANTS                                                         | 120 (25.8%)  | 109 (23.6%)        |
| STOMATOLOGICAL PREPARATIONS                                             | 108 (23.2%)  | 106 (22.9%)        |
| OTHER GYNECOLOGICALS                                                    | 108 (23.2%)  | 115 (24.9%)        |
| ANTIEPILEPTICS                                                          | 96 (20.6%)   | 97 (21.0%)         |
| (missing)                                                               | 95 (20.4%)   | 89 (19.3%)         |
| OTHER CARDIAC PREPARATIONS                                              | 92 (19.8%)   | 100 (21.6%)        |
| ANTIINFECTIVES                                                          | 83 (17.8%)   | 87 (18.8%)         |
| HYPNOTICS AND SEDATIVES                                                 | 82 (17.6%)   | 86 (18.6%)         |
| ANXIOLYTICS                                                             | 81 (17.4%)   | 74 (16.0%)         |
| DRUGS FOR PEPTIC ULCER AND GASTRO-OESOPHAGEAL REFLUX<br>DISEASE (GORD)  | 76 (16.3%)   | 93 (20.1%)         |
| MUSCLE RELAXANTS, CENTRALLY ACTING AGENTS                               | 74 (15.9%)   | 68 (14.7%)         |
| OTHER DERMATOLOGICAL PREPARATIONS                                       | 72 (15.5%)   | 48 (10.4%)         |
| ANTIINFECTIVES AND ANTISEPTICS, EXCL. COMBINATIONS WITH CORTICOSTEROIDS | 70 (15.1%)   | 65 <b>(1</b> 4.1%) |
| ANTIINFLAMMATORY AGENTS                                                 | 66 (14.2%)   | 56 (12.1%)         |
| UROLOGICALS                                                             | 63 (13.5%)   | 65 (14.1%)         |

**CDER Clinical Review Template** 

Version date: September 6, 2017 for all NDAs and BLAs

| WHODrug ATC 3                           | OMB<br>20 mg | TERI<br>14 mg |
|-----------------------------------------|--------------|---------------|
| BETA-LACTAM ANTIBACTERIALS, PENICILLINS | 63 (13.5%)   | 56 (12.1%)    |
| CONTRACEPTIVES FOR TOPICAL USE          | 60 (12.9%)   | 62 (13.4%)    |
| OTHER OPHTHALMOLOGICALS                 | 59 (12.7%)   | 71 (15.4%)    |
| DIRECT ACTING ANTIVIRALS                | 57 (12.3%)   | 56 (12.1%)    |
| OPIOIDS                                 | 48 (10.3%)   | 54 (11.7%)    |

Source: JRevSelADSLFASFL\_Y CMCAT3byTRT01PfiltCMCAT\_GEN ACAT01\_CONMED

#### **Rescue medication**

The proportion of subjects with at least one dose of systemic corticosteroids for the treatment of a relapse is shown in Table 21. More frequent use in the teriflunomide group reflects the higher relapse rate in that treatment group.

# Table 21: Proportion of subjects with at least one dose of systemic corticosteroids for relapse treatment during the RCP, FAS, study 2301

| Planned treatment (TRT01P) | N Rows | N(USUBJID) | % of FAS |
|----------------------------|--------|------------|----------|
| Ofatumumab 20 mg           | 85     | 85         | 18.3%    |
| Teriflunomide 14 mg        | 143    | 143        | 31.0%    |

Source: ACAT01\_CONMED Subset of CMCAT2\_SYSTEMIC CS Subset of CMSCAT\_MSRL Subset EPOCH\_TRT Subset ADCM 2301 By (USUBJID, TRT01P) NUSUBJID By (TRT01P).jmp

#### Efficacy Results – Primary Endpoint

The proportion of subjects who did not have a confirmed relapse was 83.0% for those treated with ofatumumab and 71.4% for those treated with teriflunomide. Seventy-nine subjects treated with ofatumumab had a total of 90 confirmed relapses during the RCP and 132 subjects treated with teriflunomide had a total of 177 relapses (Table 22).

| Num RLP | Ofatumumab 20 mg |        |          | Teriflunomide 14 mg |        |          |  |
|---------|------------------|--------|----------|---------------------|--------|----------|--|
| (AVAL)  | N, Subjects      | % of N | RL total | Num subjects        | % of N | RL total |  |
| 0       | 386              | 83.0%  |          | 330                 | 71.4%  |          |  |
| 1       | 68               | 14.6%  | 68       | 99                  | 21.4%  | 99       |  |
| 2       | 11               | 2.4%   | 22       | 23                  | 5.0%   | 46       |  |
| 3       | 0                | 0.0%   | 0        | 8                   | 1.7%   | 24       |  |
| 4       | 0                | 0.0%   | 0        | 2                   | 0.4%   | 8        |  |
| Total   | 465              | 100.0% | 90       | 462                 | 100.0% | 177      |  |

#### Table 22: Confirmed relapses, FAS, study 2301

Source: PARAM\_NCFRLSTY Subset of ADARR 2301 TRT01P by (AVAL)

The mean and median period of observation for relapses was very similar for the two treatment groups (Table 23).

#### Table 23: Time in study, years, FAS, study 2301

| TRT01P              | м   | Time in study - Overall (Years)- FAS (AVAL) |         |      |      |        |  |
|---------------------|-----|---------------------------------------------|---------|------|------|--------|--|
| IKIVIP              | N   | Mean                                        | Std Dev | Min  | Max  | Median |  |
| Ofatumumab 20 mg    | 465 | 1.65                                        | 0.41    | 0.1  | 2.57 | 1.63   |  |
| Teriflunomide 14 mg | 462 | 1.6                                         | 0.43    | 0.04 | 2.56 | 1.61   |  |

Source: PARAM\_TIMESYRS Subset of ADARR 2301 AVAL By (TRT01P).jmp

Unadjusted Annualized Relapse Rate, confirmed relapses

Ofatumumab: 90/769.131 sum of years in study = 0.117 Teriflunomide: 177/741.065 sum of years in study = 0.239 ARR ratio: 0.49

Reviewer Comment: The sponsor's analysis of ARR used a negative binomial model and did adjust for the number of baseline gadolinium-enhancing lesions as well as for region, number of relapses in the preceding year, baseline EDSS, and baseline age. The adjusted ARR using these methods was 0.11 (0.09, 0.14) for the ofatumumab group and 0.22 (0.18, 0.26), yielding a rate ratio of 0.495 (0.374, 0.654), p<0.001.

The proportion of subjects who did not have a confirmed or unconfirmed relapse was 79.4% for those treated with ofatumumab and 64.1% for those treated with teriflunomide. Ninety-six subjects treated with ofatumumab had a total of 122 confirmed or unconfirmed relapses and 166 subjects treated with teriflunomide had a total of 234 confirmed or unconfirmed relapses (Table 24).

| Num RLP | C            | )fatumumab 20 m | g        | Teriflunomide 14 mg |                    |          |  |
|---------|--------------|-----------------|----------|---------------------|--------------------|----------|--|
| (AVAL)  | Num subjects | % of N          | RL total | Num subjects        | % of N             | RL total |  |
| 0       | 369          | 79.4%           |          | 296                 | <mark>64.1%</mark> |          |  |
| 1       | 77           | 16.6%           | 77       | 116                 | 25.1%              | 116      |  |
| 2       | 15           | 3.2%            | 30       | 35                  | 7.6%               | 70       |  |
| 3       | 2            | 0.4%            | 6        | 12                  | 2.6%               | 36       |  |
| 4       | 1            | 0.2%            | 4        | 3                   | 0.6%               | 12       |  |
| 5       | 1            | 0.2%            | 5        | 0                   | 0.0%               | 0        |  |
| Total   | 465          | 100.0%          | 122      | 462                 | 100.0%             | 234      |  |

Table 24: All reported relapses, FAS, study 2301

Source: PARAM\_NRLSTY Subset of ADARR 2301 TRT01P By (AVAL)

# Unadjusted Annualized Relapse Rate, all relapses

Ofatumumab: 122/769.131 sum of years in study = 0.159 Teriflunomide: 234/741.065 sum of years in study = 0.316 ARR ratio: 0.503

Reviewer Comment: The sponsor reports an ARR of 0.15 for the ofatumumab group and 0.30 for the teriflunomide group using the negative binomial model with the same adjustments.

The proportion of reported relapses that were confirmed was similar by treatment group (Table 25). This supports a lack of bias in that phase of the relapse identification process.

|              | Ofatumumab | Teriflunomide |
|--------------|------------|---------------|
| All relapses | 122        | 234           |
| Confirmed    | 90         | 177           |
| % confirmed  | 73.8%      | 75.6%         |

Table 25: Rate of confirmation of relapses by assigned treatment, FAS

The ARR was also analyzed for the first 8 weeks of treatment and compared to rates after the first 8 weeks on the assumption that treatment with of a unumab may require that period of time for full benefit. This is included in Table 27 which also includes a comparison of the unadjusted ARR as calculated by the reviewer and the adjusted rate calculated by the sponsor.

The severity of the relapses, confirmed and unconfirmed, is shown in Table 26. The severity rating criteria are listed in Appendix 13.4. Relapses that were not confirmed tended to be much milder that those that were confirmed. The severity of those that were confirmed as well as those that were not confirmed did not differ greatly by treatment group.

| **     |                 |    | Ofatumun | nab 20 mg |        | Teriflunomide 14 mg |        |     |        |
|--------|-----------------|----|----------|-----------|--------|---------------------|--------|-----|--------|
| AVAL** | Total           |    | CRIT1FL* |           |        |                     |        |     |        |
| A      |                 | 1  | N        |           | Y      | N                   |        | Y   |        |
|        | Ν               | N  | %        | Ν         | %      | Ν                   | %      | N   | %      |
| 0      | 38              | 16 | 50.0%    | 0         | 0.0%   | 22                  | 38.6%  | 0   | 0.0%   |
| 1      | <mark>98</mark> | 8  | 25.0%    | 29        | 31.5%  | 20                  | 35.1%  | 41  | 22.7%  |
| 2      | 154             | 0  | 0.0%     | 46        | 50.0%  | 1                   | 1.8%   | 107 | 59.1%  |
| 3      | 50              | 0  | 0.0%     | 17        | 18.5%  | 0                   | 0.0%   | 33  | 18.2%  |
| 99     | 22              | 8  | 25.0%    | 0         | 0.0%   | 14                  | 24.6%  | 0   | 0.0%   |
| Total  | 362             | 32 | 100.0%   | 92        | 100.0% | 57                  | 100.0% | 181 | 100.0% |

# Table 26: Relapse severity rating, confirmed and unconfirmed relapses, FAS, study 2301

Source: ANL01FL\_Y Subset of ADMSREL 2301 TRT01P by CRIR1FL By (AVAL)

\*: "Y" = confirmed relapse

\*\*: 0: No worsening; 1: MILD; 2: MODERATE; 3: SEVERE; 99: Missing EDSS

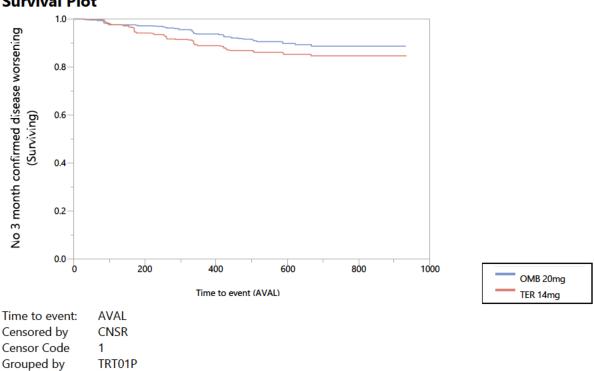
|                                        | ОМВ                       | TERI        |  |  |
|----------------------------------------|---------------------------|-------------|--|--|
| Confirme                               | d Relapses                |             |  |  |
| Unadjusted ARR /Adjusted ARR (sponsor) | 0.117/0.11                | 0.239/0.22  |  |  |
| Rate ratio reviewer/sponsor            | 0.49/0                    | .495        |  |  |
| All re                                 | lapses                    |             |  |  |
| Unadjusted ARR /Adjusted ARR (sponsor) | 0.159/0.15                | 0.316/0.30  |  |  |
| Rate ratio reviewer/sponsor            | 0.50/0                    | 0.50        |  |  |
| Relapses within 8 weeks or less        |                           |             |  |  |
| Unadjusted ARR /Adjusted ARR (sponsor) | 0.365/0.391               | 0.326/0.328 |  |  |
| Rate ratio reviewer/sponsor 1.12/1.19  |                           |             |  |  |
| Relapses a                             | fter 8 weeks              |             |  |  |
| Unadjusted ARR /Adjusted ARR (sponsor) | 0.092/0.095               | 0.230/0.240 |  |  |
| Rate ratio reviewer/sponsor            | 0.40/0                    | .397        |  |  |
| ARR based on mean of individual        | subject rates – confirmed | relapses    |  |  |
| ARR                                    | 0.12                      | 0.29        |  |  |
| Rate ratio                             | 0.41                      |             |  |  |
| ARR based on mean of                   | individual subject rates  |             |  |  |
| ARR                                    | 0.17                      | 0.38        |  |  |
| Rate ratio                             | 0.4                       | 5           |  |  |

Reviewer Comment: The reduction of the ARR attributable to of atumumab treatment appears to occur predominantly after 8 weeks of treatment.

# Data Quality and Integrity

There were no issues regarding the quality or integrity of the data submitted.

# Efficacy Results - Secondary and other relevant endpoints


3-month confirmed disability worsening (3MCDW)

The population for the primary analysis for confirmed disability worsening is the combined population from studies 2301 and 2302 – see Section **7.1.2.** The analysis of 3MCDW for the study 2301 population as defined by the sponsor is shown in Figure 3. The analysis of the time to 3-month confirmed disability (T3MCDW) does not clearly exclude periods that started with a relapse, does not exclude the possibility of a relapse during the period of disability, but does exclude confirmation at a relapse. To address the concern that relapses may have influenced

the analysis of T3MCDW, an analysis of the subpopulation from study 2301 that had no relapses at any time during the trial is shown in Figure 4.

# Figure 3: Time to 3-month confirmed disability worsening, FAS, study 2301

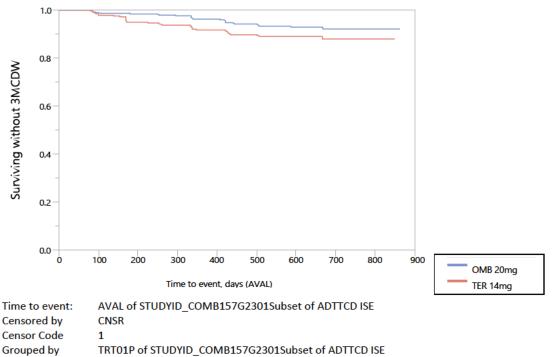
Product-Limit Survival Fit



# **Survival Plot**

#### Summary

| Group    | Number failed | Number censored | Simple OR | HR (sponsor)                    |
|----------|---------------|-----------------|-----------|---------------------------------|
| OMB 20mg | 45            | 420             |           | 0.652 (0.445, 0.957)<br>P=0 029 |
| TER 14mg | 63            | 396             | 0.672     |                                 |
| Combined | 108           | 816             |           | F-0.029                         |


#### **Tests Between Groups**

| Test     | ChiSquare | DF | Prob>ChiSq |
|----------|-----------|----|------------|
| Log-Rank | 4.1180    | 1  | 0.0424*    |
| Wilcoxon | 4.8160    | 1  | 0.0282*    |

Source: PARAM\_T3MCDW Subset of STUDYID\_COMB157G2301Subset of ADTTCD ISE.jmp

Figure 4: Time to 3-month confirmed disability worsening, no relapses during trial, FAS, study 2301

Product-Limit Survival Fit Survival Plot

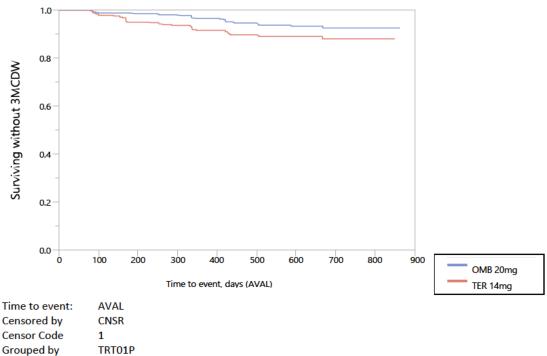


#### Summary

| Group    | Number failed | Number censored | Simple OR | HR (sponsor)                     |
|----------|---------------|-----------------|-----------|----------------------------------|
| OMB 20mg | 26            | 360             |           | 0.564 (0.220, 0.027)             |
| TER 14mg | 35            | 292             | 0.603     | 0.564 (0.339, 0.937)<br>p=0.027) |
| Combined | 61            | 652             |           | p=0.027)                         |

# **Tests Between Groups**

| Test     | ChiSquare | DF | Prob>ChiSq |
|----------|-----------|----|------------|
| Log-Rank | 3.8364    | 1  | 0.0502     |
| Wilcoxon | 4.3934    | 1  | 0.0361*    |


**Source:** T3MCDW Relapse Free Study 2301 Survival.jrp; PARAM\_T3MCDW Subset of Join AVAL\_0 of PARAM\_NCFRLSTY ADARR 2301 c 2301 subset of ADTTCD ISE.jmp

Reviewer Comment: The above is in agreement with the sponsor's analysis of the relapse-free population provided in Table C2 1.3.6-1a - page 329 of SCE Appendix 1.

An analysis similar to the above analysis but including subjects in the analysis who did have a relapse prior to the start of an otherwise confirmed period of disability worsening, but censoring those subjects at the day of the progression event is shown in Figure 5.

# Figure 5: Time to 3-month confirmed disability worsening, censor at any preceding relapse, FAS, study 2301

# Product-Limit Survival Fit Survival Plot



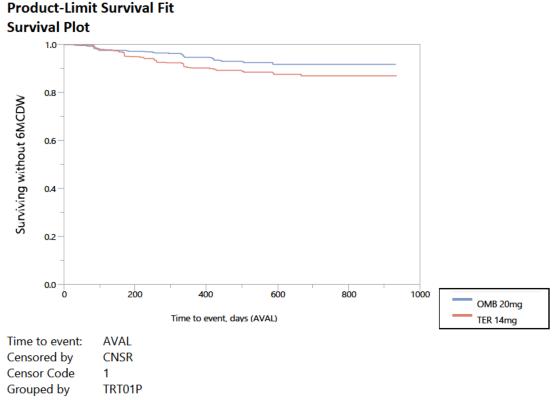
# Summary

| Group    | Number failed | Number censored | Simple OR | HR (sponsor)                     |
|----------|---------------|-----------------|-----------|----------------------------------|
| OMB 20mg | 26            | 439             |           | 0 500 (0 044 0 007)              |
| TER 14mg | 41            | 418             | 0.604     | 0.536 (0.344, 0.837)<br>p= 0.006 |
| Combined | 67            | 857             |           | p- 0.000                         |

#### **Tests Between Groups**

| Test     | ChiSquare | DF | Prob>ChiSq |
|----------|-----------|----|------------|
| Log-Rank | 5.6834    | 1  | 0.0171*    |
| Wilcoxon | 6.7961    | 1  | 0.0091*    |

Source: T3MIPCW Study 2301 Survival.jrp; PARAM\_T3MIPCW Subset of STUDYID\_COMB157G2301Subset of ADTTCD ISE.jmp


Reviewer Comment: The results for study 2301 are supportive of the analyses of disability worsening in the pooled population. Analyses that at least minimize

any effect of relapses on the period of disability are more comparable to those typically considered confirmed disability progression.

6-month confirmed disability worsening (6MCDW)

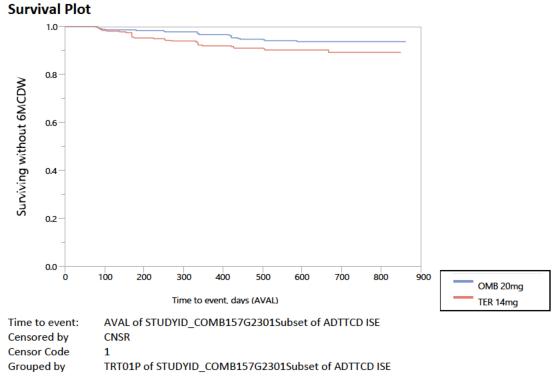
The analysis of time to 6-month confirmed disability worsening for study 2301 alone is shown in Figure 6. Because this analysis did not exclude relapses that may have occurred just before or during the period of worsened disability, an analysis of the population that did not experience a relapse at any time during the trial was conducted and is shown in Figure 7.

# Figure 6: Time to 6-month confirmed disability worsening, FAS, study 2301



# Summarv

| <u></u>  |               |                 |           |                                 |
|----------|---------------|-----------------|-----------|---------------------------------|
| Group    | Number failed | Number censored | Simple OR | HR (sponsor)                    |
| OMB 20mg | 35            | 430             |           | 0 007 (0 200 0 200)             |
| TER 14mg | 53            | 406             | 0.624     | 0.607 (0.396, 0.390)<br>p=0.022 |
| Combined | 88            | 836             |           | p=0.022                         |


#### **Tests Between Groups**

| Test     | ChiSquare | DF | Prob>ChiSq |
|----------|-----------|----|------------|
| Log-Rank | 4.6284    | 1  | 0.0314*    |
| Wilcoxon | 4.5062    | 1  | 0.0338*    |

Source: T6MCDW Study 2301.jrp

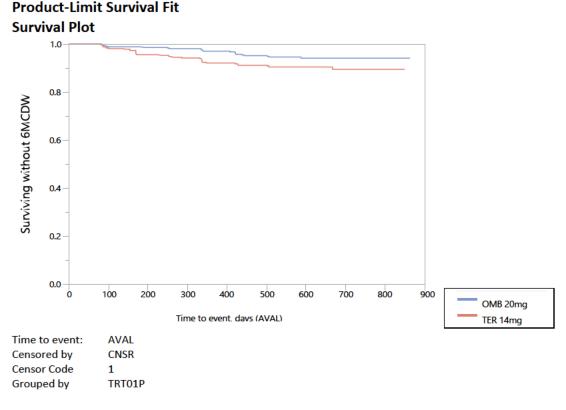
Figure 7: Time to 6-month confirmed disability worsening, subjects with no relapses at any time, FAS, study 2301

Product-Limit Survival Fit



#### Summary

| Group    | Number failed | Number censored | Simple OR | HR (sponsor)                   |
|----------|---------------|-----------------|-----------|--------------------------------|
| OMB 20mg | 22            | 364             |           | 0.546 (0.315, 0.944)<br>P=0.30 |
| TER 14mg | 31            | 296             | 0.577     |                                |
| Combined | 53            | 660             |           |                                |


#### **Tests Between Groups**

| Test     | ChiSquare | DF | Prob>ChiSq |
|----------|-----------|----|------------|
| Log-Rank | 3.8961    | 1  | 0.0484*    |
| Wilcoxon | 4.0767    | 1  | 0.0435*    |

Source: T6MCDW AVAL\_0 NCFRLSTY ADARR 2301 Survival.jrp; T6MCDW Subset of Join AVAL\_0 of PARAM\_NCFRLSTY ADARR 2301 c 2301 subset of ADTTCD ISE.jmp

An analysis that is similar to the above analysis but including subjects in the analysis who did have a relapse prior to the start of an otherwise confirmed period of disability worsening, but censoring those subjects at the day of the progression event is shown in Figure 8.

Figure 8: Time to 6-month confirmed disability worsening, censor at any preceding relapse, FAS, study 2301



#### Summary

| Group    | Number failed | Number censored | Simple OR | HR (sponsor)                    |
|----------|---------------|-----------------|-----------|---------------------------------|
| OMB 20mg | 22            | 443             |           |                                 |
| TER 14mg | 36            | 423             | 0.584     | 0.525 (0.325, 0.848)<br>P=0.008 |
| Combined | 58            | 866             |           | F-0.000                         |

#### **Tests Between Groups**

| Test     | ChiSquare | DF | Prob>ChiSq |
|----------|-----------|----|------------|
| Log-Rank | 5.3953    | 1  | 0.0202*    |
| Wilcoxon | 5.9542    | 1  | 0.0147*    |

Source: T6MIPCW study 2301 Survival.jrp; PARAM\_T6MIPCW Subset of STUDYID\_COMB157G2301Subset of ADTTCD ISE.jmp

Reviewer Comment: Although the odds ratio and hazard ratio are slightly higher when subjects with relapses are excluded or censored if they occurred prior to a period of disability worsening, the results clearly favor of a tumumab treatment compared to teriflunomide which itself has shown a benefit on disability in other studies.

# **MRI** lesions

# Number of gadolinium-enhancing lesions per scan

For the treatment period there were 0.018 lesions per scan for those treated with ofatumumab and 0.645 per scan for those treated with teriflunomide. The percent reduction was 93.8%. The sponsor's analysis using a negative binomial model and adjusting for region, age and the number of GdE lesions at baseline yielded adjusted means of 0.0317 lesions per scan for ofatumumab and 0.514 lesions per scan for teriflunomide for a 93.8% reduction.

# Annualized rate of new T2 lesions

For the treatment period, the annual rate of new T2 lesions was 1.11 for the ofatumumab group and 5.16 for the teriflunomide group. The percent reduction was 78.5%. The sponsor's analysis using a negative binomial model and adjusting for region, age and the baseline volume of T2 lesions yielded an adjusted mean annual rate of 0.72 for the ofatumumab group and 4.00 for the teriflunomide group (to the end of study visit). The percent reduction was 82.0%.

Patient-reported outcome measure – Multiple Sclerosis Impact scale (MSIS-29)

The sponsor reports a reduction (reduced impact) of physical impact score in the MSIS-29 with of atumumab treatment. As this was an exploratory endpoint, it will not be analyzed further in this review.

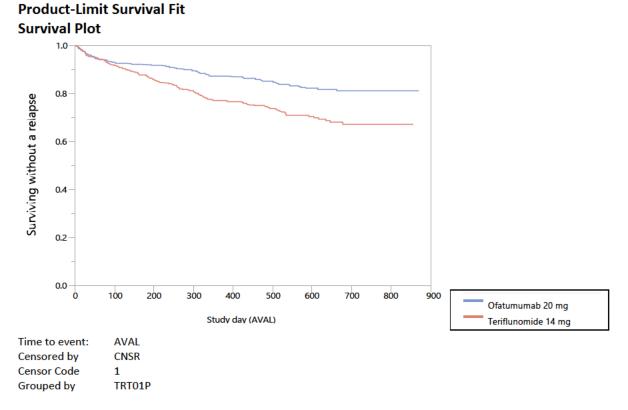
# **Dose/Dose Response**

A single dose was studied in studies 2301 and 2302.

# **Durability of Response**

The durability of the response was not studied.

# **Persistence of Effect**


The persistence of the response was not studied.

#### Additional Analyses Conducted on the Individual Trial

Time to first confirmed relapse

The time to the first confirmed relapse was significantly prolonged with of a tumumab treatment (Figure 9). If all relapses are included, the odds ratio is 0.464, p < 0.0001.

#### Figure 9: Time to first confirmed relapse, study 2301



#### Summary

| Group               | Number failed | Number censored | Simple OR |
|---------------------|---------------|-----------------|-----------|
| Ofatumumab 20 mg    | 79            | 386             |           |
| Teriflunomide 14 mg | 132           | 330             | 0.512     |
| Combined            | 211           | 716             |           |

#### **Tests Between Groups**

| Test     | ChiSquare        | DF          | Prob>ChiSq |
|----------|------------------|-------------|------------|
| Log-Rank | 18.3612          | 1           | <.0001*    |
| Wilcoxon | 16.4552          | 1           | <.0001*    |
| C        | the Contract Con | and and and |            |

Source: Time to first confirmed relapse study 2301.jrp

# 6.2. Study COMB157G2302: A Randomized, double-blind, double dummy, parallel group study comparing the efficacy and safety of ofatumumab vs. teriflunomide in patients with relapsing multiple sclerosis

6.2.1. Study Design

# **Overview and Objective**

# **Trial Design**

The design of study 2302 is identical to that of study 2301.

# **Study Endpoints**

The endpoints for study 2302 are the same as those for study 2301.

# **Statistical Analysis Plan**

The plan for statistical analysis of study 2302 is the same as for study 2301.

# **Protocol Amendments**

The amendments for study 2302 are the same as those for study 2301.

# 6.2.2. Study Results

# **Compliance with Good Clinical Practices**

The sponsor reports that "All studies were conducted in full compliance with current Good Clinical Practices. Studies G2301, G2302 and G2102 were closely monitored by Novartis personnel or a contract organization for compliance to the protocol, Novartis standard operating procedures, and applicable regulatory guidance. Written informed consent was obtained from each subject prior to the performance of any study-specific procedures. The subject was provided as much time as necessary to review the document, to inquire about details of the study, and to decide whether or not to participate in the study. The informed consent was signed and dated by the study subject and by the person who conducted the informed consent discussion."

# **Financial Disclosure**

Six investigators who participated in study 2302 had reportable financial interests. Two held stock in Novartis and 4 had financial interests of other sorts, primary research grants to their institutions. The number of investigators with such interests are not likely to have influenced the trial results.

# **Patient Disposition**

Nine hundred and fifty-five (955) patients were randomized, 481 to treatment with ofatumumab and 474 to treatment with teriflunomide. The proportion of subjects who completed the study on treatment was 80% for the ofatumumab group and 78.5% for the teriflunomide group (Table 28). The reasons for discontinuation of treatment are listed in Table 29. The reasons for discontinuation of treatment were reasonably balanced by treatment group.

# Table 28: Disposition of subjects by treatment status, ITT, study 2302

| End of Treatment Status | Total |        | OMB | 20 mg  | TERI 14 mg |        |
|-------------------------|-------|--------|-----|--------|------------|--------|
| (EOTSTT)                | Ν     | %      | Ν   | %      | Ν          | %      |
| COMPLETED               | 757   | 79.3%  | 385 | 80.0%  | 372        | 78.5%  |
| DISCONTINUED            | 198   | 20.7%  | 96  | 20.0%  | 102        | 21.5%  |
| Total                   | 955   | 100.0% | 481 | 100.0% | 474        | 100.0% |

Source: FASFL\_Y subset of ADSL 2302 TRT01P By (EOTSTT)

# Table 29: Reasons for discontinuation of treatment, ITT, study 2302

| Reason for Discontinuation of Treatment | Total |       | OMB 20 mg |       | TERI 14 mg |       |
|-----------------------------------------|-------|-------|-----------|-------|------------|-------|
| (DCTREAS)                               | N     | %     | N         | %     | N          | %     |
| SUBJECT/GUARDIAN DECISION               | 72    | 7.5%  | 35        | 7.3%  | 37         | 7.8%  |
| PHYSICIAN DECISION                      | 57    | 6.0%  | 25        | 5.2%  | 32         | 6.8%  |
| ADVERSE EVENT                           | 50    | 5.2%  | 27        | 5.6%  | 23         | 4.9%  |
| LOST TO FOLLOW-UP                       | 12    | 1.3%  | 8         | 1.7%  | 4          | 0.8%  |
| PREGNANCY                               | 5     | 0.5%  | 1         | 0.2%  | 4          | 0.8%  |
| TECHNICAL PROBLEMS                      | 2     | 0.2%  | 0         | 0.0%  | 2          | 0.4%  |
| Total                                   | 198   | 20.7% | 96        | 20.0% | 102        | 21.5% |

EOTSTT\_DISC Subset of FASFL\_Y subset of ADSL 2302 TRT01P By (DCTREAS)

Reviewer Comment: Although more balanced by treatment group compared to study 2301, the number of subjects discontinued from treatment due to "Subject/guardian decision" and "Physician decision" seems unusually large at a total of 12.5% for the ofatumumab group and 14.6% for the teriflunomide

group. Relatively few CRFs are submitted from these subjects. Of those that were available, there was usually no additional comment or the comments from the investigator were consistent with the recorded reason for discontinuation.

Of the 96 subjects in the ofatumumab group who discontinued treatment prematurely, 11 completed the RCP off medication and one (subject <sup>(b)(6)</sup>) was considered "ongoing" at the end of the RCP. Of the 102 subjects in the teriflunomide group who discontinued treatment prematurely, 17 completed the study off treatment and one (subject <sup>(b)(6)</sup>) was considered ongoing at the end of the RCP.

| End of Study Status | Total |        | OMB | 20 mg  | TERI 14 mg |        |  |
|---------------------|-------|--------|-----|--------|------------|--------|--|
| (EOSSTT)            | N     | %      | Ν   | %      | N          | %      |  |
| COMPLETED           | 786   | 82.3%  | 397 | 82.5%  | 389        | 82.1%  |  |
| DISCONTINUED        | 167   | 17.5%  | 83  | 17.3%  | 84         | 17.7%  |  |
| ONGOING             | 2     | 0.2%   | 1   | 0.2%   | 1          | 0.2%   |  |
| Total               | 955   | 100.0% | 481 | 100.0% | 474        | 100.0% |  |

# Table 30: End of Study status, ITT, study 2302

NON-COMPLIANCE WITH STUDY TREATMENT

PHYSICIAN DECISION

PROTOCOL DEVIATION

TECHNICAL PROBLEMS

SUBJECT/GUARDIAN DECISION

PREGNANCY

| ONGOING                                                     | 2                 | 0.2%      | 1           | 0.2%    | D          | 1        | 0.2%         |
|-------------------------------------------------------------|-------------------|-----------|-------------|---------|------------|----------|--------------|
| Total                                                       | <mark>9</mark> 55 | 100.0%    | 481         | 100.0   | %          | 474      | 100.0%       |
| Source: FASFL_Y subset of ADSL 2302                         | 2 TRT01P by (EC   | DSSTT)    | •           | •       | •          | •        |              |
|                                                             |                   |           |             |         |            |          |              |
|                                                             |                   |           |             |         |            |          |              |
|                                                             | ntinuation        | from stud | v ITT stu   | dv 2302 |            |          |              |
| Table 31: Reasons for Disco                                 | munuation         | nom stuu  | y, 111, 3tu | uy 2002 |            |          |              |
| Table 31: Reasons for Disco                                 |                   |           | y, 111, 3tu | uy 2302 |            |          |              |
| Table 31: Reasons for Disco<br>Reason for Discontinuation f |                   |           | otal        | OMB 2   | 20 mg      | TER      | l 14 mg      |
|                                                             |                   |           |             |         | !0 mg<br>% | TER<br>N | l 14 mg<br>% |
| Reason for Discontinuation f                                |                   | T         | otal        | OMB 2   |            |          |              |
| Reason for Discontinuation f<br>(DCSREAS)                   |                   | N         | otal %      | OMB 2   | %          | N        | %            |

3

25

4

2

73

1

167

0.3%

2.6%

0.4%

0.2%

7.6%

0.1%

17.5%

2

14

1

2

32

0

83

0.4%

2.9%

0.2%

0.4%

6.7%

0.0%

17.3%

1

11

3

0

41

1

84

Source: EOSTT\_DISC Subset of FASFL\_Y subset of ADSL 2302 TRT01P By (DCSREAS)

The most common TEAE that resulted in discontinuation of treatment in the ofatumumab group was a reduction in IgM or IgG or both (see Table 68 and Table 69). The most common TEAE that resulted in discontinuation of treatment in the teriflunomide group was related to elevation of liver transaminases (see Table 68).

CDER Clinical Review Template Version date: September 6, 2017 for all NDAs and BLAs 0.2%

2.3%

0.6%

0.0%

8.6%

0.2%

17.7%

Randomization evenly distributed by the major regions with approximately 25% coming from the US, Canada and Australia (Table 32). Approximately 20% of those randomized were from the US, and 20% from Russia. No other country randomized more than 10% of the patients. No single site randomized more than 5% of the patients.

#### Table 32: Randomization by region, FAS, study 2302

| REGION1               | OMB | 20 mg | TER 14 mg |      |  |
|-----------------------|-----|-------|-----------|------|--|
| REGIONT               | N   | %     | N         | %    |  |
| Eastern Europe        | 117 | 24.3  | 116       | 24.5 |  |
| North America and AUS | 107 | 22.2  | 107       | 22.6 |  |
| Others                | 132 | 27.4  | 130       | 27.4 |  |
| Western Europe        | 125 | 26    | 121       | 25.5 |  |

Source: FASFL\_Y subset of ADSL 2302 TRT01P By (REGION1).jmp

## **Protocol Violations/Deviations**

One or more protocol deviations occurred in 111 (23.1%) of subjects in the ofatumumab group and in112 (23.6%) of the teriflunomide group (Table 33).

*Reviewer Comment: Protocol deviations were less frequent in study 2302 compared to study 2301. They are unlikely to affect the trial results.* 

#### Table 33: Protocol deviations, FAS population, study 2302

| Protocol Deviation<br>Coded Term | Protocol Deviation Term                                                                         | Ofatumumab 20<br>mg | Teriflunomide 14<br>mg |
|----------------------------------|-------------------------------------------------------------------------------------------------|---------------------|------------------------|
|                                  | EDSS rater acted as a treating physician or treating physician acted as EDSS rater              | 4 (0.8%)            | 3 (0.6%)               |
|                                  | Investigator reviewing EDSS results or Independent EDSS Rater reviewing patient's medical       |                     |                        |
| OTHER DEVIATION                  | records other than EDSS assessment-related records                                              | 9 (1.9%)            | 4 (0.8%)               |
| OTHER DEVIATION                  | Investigator reviewing MRI and/or MRI report                                                    | 20 (4.2%)           | 20 (4.2%)              |
|                                  | Not following per protocol blinding procedures such that the integrity of the study is          |                     |                        |
|                                  | compromised                                                                                     | 7 (1.5%)            | 5 (1.1%)               |
| PROHIBITED                       | Any other immunomodulatory or disease-modifying MS treatment such as fingolimod,                |                     |                        |
| CONCOMITANT                      | interferon beta, glatiramer acetate, dimethyl fumarate or systemic corticosteroids while taking |                     |                        |
| MEDICATION                       | double-blind treatment                                                                          | 3 (0.6%)            | 0 (0.0%)               |
|                                  | Oral activated charcoal or cholestyramine while taking double-blind treatment                   | 0 (0.0%)            | 1 (0.2%)               |
|                                  | (missing)                                                                                       | 0 (0.0%)            | 0 (0.0%)               |
|                                  | Alkaline phosphatase (AP) greater than 1.5 times the ULN range prior to randomization or        |                     |                        |
|                                  | missing                                                                                         | 1 (0.2%)            | 0 (0.0%)               |
| SELECTION CRITERIA               | Any other clinically significant laboratory assessment as determined by the Investigator (e.g.  |                     |                        |
| NOT MET                          | significant anemia, neutropenia, thrombocytopenia, signs of impaired bone marrow function)      | 0 (0.0%)            | 1 (0.2%)               |
|                                  | AST (SGOT) or ALT (SGPT) greater than 1.5 times the ULN range prior to randomization or         |                     |                        |
|                                  | missing                                                                                         | 2 (0.4%)            | 0 (0.0%)               |
|                                  | Dimethyl fumarate within 1 month prior to randomization                                         | 1 (0.2%)            | 0 (0.0%)               |
|                                  | Disease duration of more than 10 years in patients with EDSS score of 2 or less                 | 7 (1.5%)            | 10 (2.1%)              |

| Protocol Deviation | Protocol Deviation Term                                                                           | Ofatumumab 20 | Teriflunomide 14                      |
|--------------------|---------------------------------------------------------------------------------------------------|---------------|---------------------------------------|
| Coded Term         |                                                                                                   | mg            | mg                                    |
|                    | DNA sample taken prior to signing pharmacogenetic informed consent or pharmacogenetic             |               |                                       |
|                    | informed consent is No or missing                                                                 | 1 (0.2%)      | 0 (0.0%)                              |
|                    | EDSS score at screening 0 to 5.5 and not missing                                                  | 1 (0.2%)      | 5 (1.1%)                              |
|                    | Gamma-glutamyl-transferase (GGT) greater than 2 times the ULN range prior to                      |               |                                       |
|                    | randomization or missing                                                                          | 1 (0.2%)      | 0 (0.0%)                              |
|                    | History of malignancy of any organ system within the past 5 years, regardless of evidence of      |               |                                       |
|                    | local recurrence or metastases.                                                                   | 1 (0.2%)      | 0 (0.0%)                              |
|                    | Lymphocyte count < 800/mm3 (< 0.8 10E9/L) prior to randomization or missing data                  | 2 (0.4%)      | 4 (0.8%)                              |
|                    | Missing serum pregnancy test at screening                                                         | 6 (1.2%)      | 4 (0.8%)                              |
|                    | One or more relapse in the 1 year prior to screening OR 2 or more relapses in the 2 years         |               |                                       |
|                    | prior to screening OR a positive GDE MRI scan in the year prior to randomization                  | 1 (0.2%)      | 0 (0.0%)                              |
|                    | Patients at risk of developing or having reactivation of syphilis or tuberculosis                 | 47 (9.8%)     | 43 (9.1%)                             |
|                    | Patients currently treated with or needing treatment with cholestyramine (unless for              |               |                                       |
|                    | accelerated teriflunomide elimination) during the study                                           | 1 (0.2%)      | 3 (0.6%)                              |
|                    | Patients with an active chronic disease (or stable but treated) of the immune system other        |               |                                       |
|                    | than MS or with a known immunodeficiency syndrome                                                 | 0 (0.0%)      | 1 (0.2%)                              |
|                    | Patients with suicidal ideation in the past 6 months or suicidal behavior in the past 2 years     |               |                                       |
|                    | prior to randomization                                                                            | 2 (0.4%)      | 2 (0.4%)                              |
|                    | Positive results of screening period testing for serological markers for hepatitis A, B, C, and E |               |                                       |
|                    | indicating acute or chronic infection or missing data                                             | 1 (0.2%)      | 0 (0.0%)                              |
|                    | Serum IgG or IgM < Lower limit of normal                                                          | 3 (0.6%)      | 4 (0.8%)                              |
|                    | Systemic steroid or adrenocorticotropic hormone treatment within 30 days prior to Screening       |               | , , , , , , , , , , , , , , , , , , , |
|                    | MRI                                                                                               | 1 (0.2%)      | 1 (0.2%)                              |
|                    | Teriflunomide within 3.5 months prior to randomization or 1 month prior to randomization          |               |                                       |
|                    | following accelerated elimination procedure and documented teriflunomide plasma level             |               |                                       |
|                    | below 0.02 mg/L                                                                                   | 0 (0.0%)      | 1 (0.2%)                              |
|                    | White blood cell (WBC) count < 3,500/mm3 (< 3.5 x 10E9/L) prior to randomization or               |               |                                       |
|                    | missing data                                                                                      | 3 (0.6%)      | 3 (0.6%)                              |
|                    | Women of child-bearing potential not using highly effective contraception                         | 2 (0.4%)      | 3 (0.6%)                              |
|                    | Patient received damaged or expired study drug                                                    | 3 (0.6%)      | 5 (1.1%)                              |
| TREATMENT          | Patient received incorrect study drug                                                             | 5 (1.0%)      | 2 (0.4%)                              |
| DEVIATION          | Site or global team unintentionally unblinded to the treatment allocation of an individual        |               | , í                                   |
|                    | patient by vendor (including drug supply)                                                         | 0 (0.0%)      | 2 (0.4%)                              |
|                    | Subjects(filtered)                                                                                | 481 (100.0%)  | 474 (100.0%)                          |

| Protocol Deviation<br>Coded Term | Protocol Deviation Term | Ofatumumab 20<br>mg | Teriflunomide 14<br>mg |
|----------------------------------|-------------------------|---------------------|------------------------|
|                                  | 1stColltemSubjects      | 481 (100.0%)        | 474 (100.0%)           |

Source: JRevSelADSL2302FASFL\_Y DVDECODbyDVTERMbyTRT01P

# APPEARS THIS WAY ON ORIGINAL

#### **Table of Demographic Characteristics**

The demographic characteristics of the population in study 2302 are generally similar to those of study 2301 (Table 34). There are no major differences between the treatment group. The population is reasonably typical of patients with relapsing forms of MS.

| Subgroup                  | Ofatumumab 20 mg<br>(N = 481)<br>n (%) | Teriflunomide 14 mg<br>(N = 474)<br>n (%) | Total<br>(N = 955)<br>n (%) |
|---------------------------|----------------------------------------|-------------------------------------------|-----------------------------|
|                           | Sex                                    |                                           |                             |
| Female                    | 319 (66.3)                             | 319 (67.3)                                | 638 (66.8)                  |
| Male                      | 162 (33.7)                             | 155 (32.7)                                | 317 (33.2)                  |
|                           | Age                                    |                                           |                             |
| Mean                      | 37.89                                  | 38.16                                     | 38.02                       |
| Standard Deviation        | 9.28                                   | 9.48                                      | 9.38                        |
| Minimum                   | 18                                     | 18                                        | 18                          |
| Median                    | 38                                     | 38                                        | 38                          |
| Maximum                   | 56                                     | 56                                        | 56                          |
|                           | Age Group                              |                                           |                             |
| Age Group 1 (AGE < 40)    | 266 (55.3)                             | 270 (57.0)                                | 536 (56.1)                  |
| Age Group 2 (40 <= AGE)   | 215 (44.7)                             | 204 (43.0)                                | 419 (43.9)                  |
|                           | AGE Group                              | 1                                         |                             |
| > 55 Years                | 2 (0.4)                                | 1 (0.2)                                   | 3 (0.3)                     |
| 18 to 30 Years            | 129 (26.8)                             | 115 (24.3)                                | 244 (25.5)                  |
| 31 to 40 Years            | 154 (32.0)                             | 167 (35.2)                                | 321 (33.6)                  |
| 41 to 55 Years            | 196 (40.7)                             | 191 (40.3)                                | 387 (40.5)                  |
|                           | Race                                   |                                           |                             |
| Asian                     | 21 (4.4)                               | 19 (4.0)                                  | 40 (4.2)                    |
| Black or African American | 13 (2.7)                               | 18 (3.8)                                  | 31 (3.2)                    |
| Missing                   | 9 <mark>(</mark> 1.9)                  | 6 (1.3)                                   | 15 (1.6)                    |
| Other                     | 20 (4.2)                               | 14 (3.0)                                  | 34 (3.6)                    |
| White                     | 418 (86.9)                             | 417 (88.0)                                | 835 (87.4)                  |
| Ethnicity                 |                                        |                                           |                             |
| Hispanic or Latino        | 39 (8.1)                               | 35 (7.4)                                  | 74 (7.7)                    |
| Missing                   | <mark>91 (</mark> 18.9)                | 75 (15.8)                                 | 166 (17.4)                  |

**CDER Clinical Review Template** 

Version date: September 6, 2017 for all NDAs and BLAs

| Subgroup               | Ofatumumab 20 mg<br>(N = 481)<br>n (%) | Teriflunomide 14 mg<br>(N = 474)<br>n (%) | Total<br>(N = 955)<br>n (%) |
|------------------------|----------------------------------------|-------------------------------------------|-----------------------------|
| Not Hispanic or Latino | 351 (73.0)                             | 364 (76.8)                                | 715 (74.9)                  |
|                        | Region                                 |                                           |                             |
| Africa                 | 5 (1.0)                                | 6 (1.3)                                   | 11 (1.2)                    |
| Asia                   | 23 (4.8)                               | 20 (4.2)                                  | 43 (4.5)                    |
| Canada                 | 10 (2.1)                               | 3 (0.6)                                   | 13 (1.4)                    |
| Europe                 | 336 (69.9)                             | 332 (70.0)                                | 668 (69.9)                  |
| Other                  | 0 (0.0)                                | 1 (0.2)                                   | 1 (0.1)                     |
| South America          | 10 (2.1)                               | 9 (1.9)                                   | 19 (2.0)                    |
| United States          | 97 (20.2)                              | 103 (21.7)                                | 200 (20.9)                  |

Source: DM\_TOOL 2302

#### **General Medical Conditions**

Medical conditions that ended prior to the start of the study were most commonly previous surgical procedures such as a tonsillectomy, cholecystectomy, and appendectomy. The remaining conditions were relatively infrequent and are generally not relevant to the study results.

The most common medical conditions that were concurrent during the trial are listed by Body System in (Table 35). Depression was the single most common individual term (Table 36). Of the psychiatric disorders, terms that included depression were the most common preferred terms and occurred in 13.5% of the ofatumumab group and in 13.7% of the teriflunomide group. Headache was the most common nervous system disorder, occurring in 7.7% of ofatumumab subjects and in 9.5% of teriflunomide subjects. Migraine occurred in 5.4% of ofatumumab subjects and in 10.5% of teriflunomide subjects. Vitamin D deficiency was a concurrent condition in 7.5%. Other selected concurrent medical disorders of interest are listed by SOC in Table 37.

| Table 35: Concurrent medical disorders by MHSOC      | . 10% or more of OMB group, study 2302   |
|------------------------------------------------------|------------------------------------------|
| Tuble 551 concurrent incurcul also dels by initiso e | , reve of more of onib Broup, study 2502 |

| Body System or Organ Class                      | Ofatumumab 20 mg | Teriflunomide 14 mg |
|-------------------------------------------------|------------------|---------------------|
| Nervous system disorders                        | 120 (24.9%)      | 136 (28.7%)         |
| Psychiatric disorders                           | 114 (23.7%)      | 103 (21.7%)         |
| Musculoskeletal and connective tissue disorders | 99 (20.6%)       | 91 (19.2%)          |
| Metabolism and nutrition disorders              | 78 (16.2%)       | 84 (17.7%)          |
| Gastrointestinal disorders                      | 82 (17.0%)       | 78 (16.5%)          |
| Immune system disorders                         | 68 (14.1%)       | 71 (15.0%)          |
| Vascular disorders                              | 56 (11.6%)       | 57 (12.0%)          |

**CDER Clinical Review Template** 

Version date: September 6, 2017 for all NDAs and BLAs

| Body System or Organ Class                               | Ofatumumab 20 mg | Teriflunomide 14 mg |  |  |
|----------------------------------------------------------|------------------|---------------------|--|--|
| Subjects(filtered)                                       | 329 (68.4%)      | 322 (67.9%)         |  |  |
| 1stColltemSubjects                                       | 481 (100.0%)     | 474 (100.0%)        |  |  |
| A THE CLARGE VANDOOL TRIADCHARGE CONTRACTOR DURING AFTER |                  |                     |  |  |

Source: JRevSelADSLFASFL\_Y MHSOCbyTRT01PfiltMHCAT\_GEN MHENRF\_DURING AFTER

# Table 36: Concurrent medical disorders by MHDECOD, 5% or more of OMB population, study 2302

| Dictionary Derived Term | Ofatumumab 20 mg | Teriflunomide 14 mg |
|-------------------------|------------------|---------------------|
| Depression              | 63 (13.1%)       | 64 (13.5%)          |
| Hypertension            | 46 (9.6%)        | 48 (10.1%)          |
| Anxiety                 | 47 (9.8%)        | 41 (8.6%)           |
| Headache                | 37 (7.7%)        | 45 (9.5%)           |
| Vitamin D deficiency    | 36 (7.5%)        | 40 (8.4%)           |
| Migraine                | 26 (5.4%)        | 50 (10.5%)          |
| Insomnia                | 34 (7.1%)        | 37 (7.8%)           |
| Seasonal allergy        | 34 (7.1%)        | 36 (7.6%)           |
| Drug hypersensitivity   | 29 (6.0%)        | 27 (5.7%)           |
| Fatigue                 | 24 (5.0%)        | 31 (6.5%)           |
| Back pain               | 25 (5.2%)        | 27 (5.7%)           |
| Hypothyroidism          | 25 (5.2%)        | 21 (4.4%)           |
| Subjects(filtered)      | 329 (68.4%)      | 322 (67.9%)         |
| 1stColltemSubjects      | 481 (100.0%)     | 474 (100.0%)        |

Source: JRevSelADSLFASFL\_Y MHDECODbyTRT01PfiltMHCAT\_GEN MHENRF\_DURING AFTER

# Table 37: Selected concurrent medical disorders, by MHSOC, study 2302

| Body System or Organ Class           | Dictionary Derived Term          | OMB 20 mg | TERI 14 mg |
|--------------------------------------|----------------------------------|-----------|------------|
|                                      | Anaemia                          | 6 (1.2%)  | 6 (1.3%)   |
| Blood and lymphatic system disorders | Hypochromic anaemia              | 1 (0.2%)  | 0 (0.0%)   |
|                                      | Iron deficiency anaemia          | 9 (1.9%)  | 4 (0.8%)   |
|                                      | Autoimmune hypothyroidism        | 0 (0.0%)  | 1 (0.2%)   |
|                                      | Autoimmune thyroiditis           | 3 (0.6%)  | 5 (1.1%)   |
|                                      | Basedow's disease                | 1 (0.2%)  | 1 (0.2%)   |
|                                      | Goitre                           | 1 (0.2%)  | 5 (1.1%)   |
| Endocrine disorders                  | Hyperthyroidism                  | 1 (0.2%)  | 2 (0.4%)   |
|                                      | Hypothyroidism                   | 25 (5.2%) | 21 (4.4%)  |
|                                      | Thyroiditis                      | 1 (0.2%)  | 0 (0.0%)   |
|                                      | Thyroiditis chronic              | 1 (0.2%)  | 0 (0.0%)   |
|                                      | Chronic gastritis                | 17 (3.5%) | 11 (2.3%)  |
|                                      | Constipation                     | 13 (2.7%) | 15 (3.2%)  |
| Contraintenting! disorders           | Gastritis                        | 6 (1.2%)  | 6 (1.3%)   |
| Gastrointestinal disorders           | Gastritis erosive                | 0 (0.0%)  | 1 (0.2%)   |
|                                      | Gastrooesophageal reflux disease | 17 (3.5%) | 25 (5.3%)  |
|                                      | Irritable bowel syndrome         | 5 (1.0%)  | 7 (1.5%)   |

| Body System or Organ Class                | Dictionary Derived Term       | OMB 20 mg    | TERI 14 mg   |
|-------------------------------------------|-------------------------------|--------------|--------------|
| General disorders and administration site | Fatigue                       | 24 (5.0%)    | 31 (6.5%)    |
| conditions                                | Gait disturbance              | 6 (1.2%)     | 5 (1.1%)     |
| launa and an dia adam                     | Drug hypersensitivity         | 29 (6.0%)    | 27 (5.7%)    |
| Immune system disorders                   | Immunodeficiency              | 1 (0.2%)     | 0 (0.0%)     |
|                                           | Genital herpes                | 2 (0.4%)     | 0 (0.0%)     |
|                                           | Genital herpes simplex        | 0 (0.0%)     | 1 (0.2%)     |
| Infortions and infortations               | Herpes ophthalmic             | 0 (0.0%)     | 1 (0.2%)     |
| Infections and infestations               | Herpes simplex                | 4 (0.8%)     | 8 (1.7%)     |
|                                           | Herpes virus infection        | 0 (0.0%)     | 1 (0.2%)     |
|                                           | Oral herpes                   | 6 (1.2%)     | 12 (2.5%)    |
| I                                         | JC polyomavirus test positive | 4 (0.8%)     | 4 (0.8%)     |
| Investigations                            | Vitamin D decreased           | 1 (0.2%)     | 2 (0.4%)     |
| Metabolism and nutrition disorders        | Vitamin D deficiency          | 36 (7.5%)    | 40 (8.4%)    |
|                                           | Epilepsy                      | 4 (0.8%)     | 2 (0.4%)     |
|                                           | Headache                      | 37 (7.7%)    | 45 (9.5%)    |
|                                           | Migraine                      | 26 (5.4%)    | 50 (10.5%)   |
|                                           | Migraine with aura            | 2 (0.4%)     | 1 (0.2%)     |
|                                           | Migraine without aura         | 3 (0.6%)     | 4 (0.8%)     |
|                                           | Neuralgia                     | 10 (2.1%)    | 13 (2.7%)    |
| Nervous system disorders                  | Neuropathy peripheral         | 6 (1.2%)     | 8 (1.7%)     |
|                                           | Optic neuritis                | 1 (0.2%)     | 8 (1.7%)     |
|                                           | Restless legs syndrome        | 4 (0.8%)     | 6 (1.3%)     |
|                                           | Seizure                       | 4 (0.8%)     | 2 (0.4%)     |
|                                           | Tension headache              | 10 (2.1%)    | 2 (0.4%)     |
|                                           | Trigeminal neuralgia          | 4 (0.8%)     | 4 (0.8%)     |
|                                           | Anxiety                       | 47 (9.8%)    | 41 (8.6%)    |
|                                           | Anxiety disorder              | 3 (0.6%)     | 1 (0.2%)     |
|                                           | Depressed mood                | 2 (0.4%)     | 1 (0.2%)     |
| Psychiatric disorders                     | Depression                    | 63 (13.1%)   | 64 (13.5%)   |
|                                           | Generalised anxiety disorder  | 2 (0.4%)     | 0 (0.0%)     |
|                                           | Insomnia                      | 34 (7.1%)    | 37 (7.8%)    |
| Respiratory, thoracic and mediastinal     | Asthma                        | 19 (4.0%)    | 17 (3.6%)    |
| disorders                                 | Sleep apnoea syndrome         | 7 (1.5%)     | 5 (1.1%)     |
|                                           | Essential hypertension        | 1 (0.2%)     | 3 (0.6%)     |
| Vascular disorders                        | Hypertension                  | 46 (9.6%)    | 48 (10.1%)   |
|                                           | Labile hypertension           | 1 (0.2%)     | 0 (0.0%)     |
| Subtotal                                  | Subjects(filtered)            | 329 (68.4%)  | 322 (67.9%)  |
| Total                                     | 1stColltemSubjects            | 481 (100.0%) | 474 (100.0%) |

Source: JRevSelADSLFASFL\_Y MHSOCbyTRT01PfiltMHCAT\_GEN MHENRF\_DURING AFTER

#### Other Baseline Characteristics (disease characteristics, important concomitant drugs)

Previous treatment for MS

Interferons and glatiramer acetate were the most common previous MS treatments (Table 38). Treatment naïve patients accounted for 40.5% of the ofatumumab treatment group and for 38.2% of the teriflunomide treatment group. The most recent treatment for MS is listed in Table 39.

| Standardized Medication Name | OMB<br>20 mg | TERI<br>14 mg |
|------------------------------|--------------|---------------|
| INTERFERON BETA-1A           | 126 (26.2%)  | 131 (27.6%)   |
| GLATIRAMER ACETATE           | 118 (24.5%)  | 149 (31.4%)   |
| INTERFERON BETA-1B           | 61 (12.7%)   | 53 (11.2%)    |
| DIMETHYL FUMARATE            | 36 (7.5%)    | 44 (9.3%)     |
| FINGOLIMOD HYDROCHLORIDE     | 26 (5.4%)    | 33 (7.0%)     |
| NATALIZUMAB                  | 26 (5.4%)    | 20 (4.2%)     |
| FINGOLIMOD                   | 13 (2.7%)    | 10 (2.1%)     |
| TERIFLUNOMIDE                | 13 (2.7%)    | 9 (1.9%)      |
| PEGINTERFERON BETA-1A        | 10 (2.1%)    | 12 (2.5%)     |
| INTERFERONS                  | 10 (2.1%)    | 14 (3.0%)     |
| INTERFERON BETA              | 10 (2.1%)    | 9 (1.9%)      |
| DACLIZUMAB                   | 8 (1.7%)     | 7 (1.5%)      |
| MITOXANTRONE                 | 6 (1.2%)     | 2 (0.4%)      |
| INVESTIGATIONAL DRUG         | 6 (1.2%)     | 10 (2.1%)     |
| AZATHIOPRINE                 | 6 (1.2%)     | 4 (0.8%)      |
| LAQUINIMOD                   | 2 (0.4%)     | 7 (1.5%)      |
| METHOTREXATE                 | 1 (0.2%)     | 0 (0.0%)      |
| SIPONIMOD                    | 1 (0.2%)     | 1 (0.2%)      |
| INTERFERON                   | 1 (0.2%)     | 0 (0.0%)      |
| MITOXANTRONE HYDROCHLORIDE   | 1 (0.2%)     | 1 (0.2%)      |
| CYCLOPHOSPHAMIDE             | 0 (0.0%)     | 1 (0.2%)      |
| OZANIMOD                     | 0 (0.0%)     | 1 (0.2%)      |
| PEGINTERFERON                | 0 (0.0%)     | 1 (0.2%)      |
| CLADRIBINE                   | 0 (0.0%)     | 1 (0.2%)      |
| Subjects(filtered)           | 286 (59.5%)  | 293 (61.8%)   |
| 1stColltemSubjects           | 481 (100.0%) | 474 (100.0%)  |

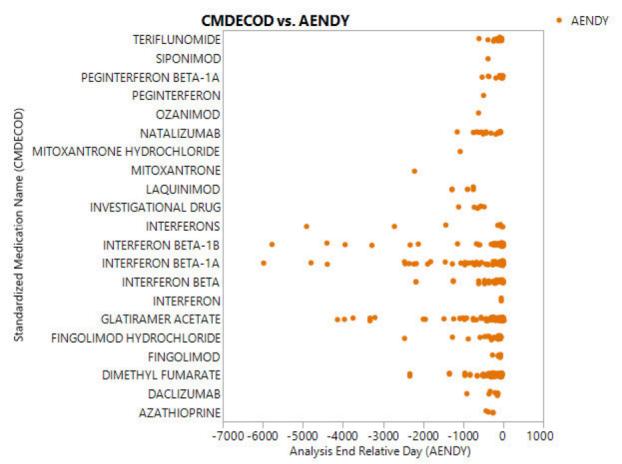
# Table 38: All previous treatments for MS, FAS, study 2302

Source: JRevSelADSLFASFL\_Y CMDECODbyTRT01PfiltANL01FL\_Y

# Table 39: Most recent MS treatment, FAS, study 2302

| Standardized Medication Name | OMB<br>20 mg | TERI<br>14 mg |
|------------------------------|--------------|---------------|
| GLATIRAMER ACETATE           | 74 (15.4%)   | 82 (17.3%)    |
| INTERFERON BETA-1A           | 66 (13.7%)   | 68 (14.3%)    |
| INTERFERON BETA-1B           | 41 (8.5%)    | 31 (6.5%)     |
| DIMETHYL FUMARATE            | 30 (6.2%)    | 31 (6.5%)     |
| FINGOLIMOD HYDROCHLORIDE     | 15 (3.1%)    | 21 (4.4%)     |
| NATALIZUMAB                  | 13 (2.7%)    | 5 (1.1%)      |
| TERIFLUNOMIDE                | 10 (2.1%)    | 8 (1.7%)      |
| PEGINTERFERON BETA-1A        | 8 (1.7%)     | 9 (1.9%)      |

**CDER Clinical Review Template** 


Version date: September 6, 2017 for all NDAs and BLAs

| Standardized Medication Name | OMB<br>20 mg | TERI<br>14 mg |
|------------------------------|--------------|---------------|
| DACLIZUMAB                   | 8 (1.7%)     | 5 (1.1%)      |
| FINGOLIMOD                   | 7 (1.5%)     | 6 (1.3%)      |
| INTERFERON BETA              | 7 (1.5%)     | 8 (1.7%)      |
| INVESTIGATIONAL DRUG         | 2 (0.4%)     | 4 (0.8%)      |
| INTERFERONS                  | 2 (0.4%)     | 5 (1.1%)      |
| SIPONIMOD                    | 1 (0.2%)     | 0 (0.0%)      |
| INTERFERON                   | 1 (0.2%)     | 0 (0.0%)      |
| AZATHIOPRINE                 | 1 (0.2%)     | 3 (0.6%)      |
| MITOXANTRONE                 | 0 (0.0%)     | 1 (0.2%)      |
| MITOXANTRONE HYDROCHLORIDE   | 0 (0.0%)     | 1 (0.2%)      |
| OZANIMOD                     | 0 (0.0%)     | 1 (0.2%)      |
| PEGINTERFERON                | 0 (0.0%)     | 1 (0.2%)      |
| LAQUINIMOD                   | 0 (0.0%)     | 3 (0.6%)      |
| Subjects(filtered)           | 286 (59.5%)  | 293 (61.8%)   |
| 1stColltemSubjects           | 481 (100.0%) | 474 (100.0%)  |

Source: JRevSelADSLFASFL\_Y CMDECODbyTRT01PfiltANL02FL\_Y

The distribution of the relative study day that the last dose of the most recent treatment for MS was given is shown in Figure 10. The most recent relative study day of previous treatment for MS is listed in Table 40 which also includes a column for the protocol required interval from last day of treatment to randomization (relative study day 1).

Reviewer Comment: Discontinuation of previous treatment is within the interval required by protocol for each drug.



#### Figure 10: Distribution of the last date of most recent MS treatment, FAS, study 2302

Source: AENDY by CMDECOD ANL02FL\_Y subset ADCM 2302.jrp

# Table 40: The last relative study day of previous treatment for MS, by CMDECOD, FAS, study2302

|                          |                |         | Max(A | ENDY) |
|--------------------------|----------------|---------|-------|-------|
| CMDECOD                  | Last day limit | Total N | OMB   | TERI  |
|                          |                |         | 20 mg | 14 mg |
| AZATHIOPRINE             | 180            | 4       | -251  | -253  |
| DACLIZUMAB               | 60             | 13      | -129  | -142  |
| DIMETHYL FUMARATE        | 30             | 122     | -28   | -34   |
| FINGOLIMOD               | 60             | 13      | -66   | -61   |
| FINGOLIMOD HYDROCHLORIDE | 60             | 36      | -62   | -49   |
| GLATIRAMER ACETATE       | 0              | 158     | 24    | -1    |
| INTERFERON               | 0              | 2       | -48   |       |
| INTERFERON BETA          | 0              | 36      | -2    | -1    |
| INTERFERON BETA-1A       | 0              | 137     | -2    | -1    |

|                            |                   |         | Max(A        | ENDY)         |
|----------------------------|-------------------|---------|--------------|---------------|
| CMDECOD                    | Last day limit    | Total N | OMB<br>20 mg | TERI<br>14 mg |
| INTERFERON BETA-1B         | 0                 | 72      | -1           | -1            |
| INTERFERONS                | 0                 | 7       | -38          | -8            |
| INVESTIGATIONAL DRUG       |                   | 6       | -473         | -554          |
| LAQUINIMOD                 | 730               | 6       |              | -744          |
| MITOXANTRONE               | 730               | 1       |              | -2213         |
| MITOXANTRONE HYDROCHLORIDE | 730               | 1       |              | -1073         |
| NATALIZUMAB                | 60                | 18      | -57          | -77           |
| OZANIMOD                   | 60                | 1       |              | -615          |
| PEGINTERFERON              | 0                 | 1       |              | -489          |
| PEGINTERFERON BETA-1A      | 0                 | 18      | -14          | -2            |
| SIPONIMOD                  | 60                | 1       | -377         |               |
| TERIFLUNOMIDE              | 105 (30 with AEP) | 23      | -35          | -38           |

ANL02FL\_Y Subset of ADCM 2302 MAX(AENDY)byTRT01P By (CMDECOD).jmp

#### Other baseline disease characteristics

The baseline characteristics of MS were generally well-balanced by treatment groups (Table 41). The number of gadolinium-enhancing lesions was higher in the group treated with ofatumumab, but the difference was not statistically significant as it was for study 2301 (Table 18).

Table 41: Baseline disease characteristics, study 2302

| TRT01P                                     | N      | Mean           | Std Dev             | Min                 | Max  | Median |  |
|--------------------------------------------|--------|----------------|---------------------|---------------------|------|--------|--|
| EDSS                                       |        |                |                     |                     |      |        |  |
| Ofatumumab 20 mg                           | 481    | 2.9            | 1.34                | 0                   | 6    | 3      |  |
| Teriflunomide 14 mg                        | 474    | 2.86           | 1.37                | 0                   | 6    | 2.5    |  |
|                                            |        |                | 25FWT               |                     |      |        |  |
| Ofatumumab 20 mg                           | 481    | 7.41           | 7.75                | 2.8                 | 99   | 5.5    |  |
| Teriflunomide 14 mg                        | 474    | 7.19           | 6.88                | 2.85                | 88.5 | 5.5    |  |
|                                            |        | Duration o     | f MS since diagno   | sis (years)         |      |        |  |
| Ofatumumab 20 mg                           | 481    | 5.59           | 6.38                | 0.06                | 31.8 | 3.15   |  |
| Teriflunomide 14 mg                        | 474    | 5.48           | 6.0                 | 0.1                 | 33.5 | 3.1    |  |
| Duration of MS since first symptom (years) |        |                |                     |                     |      |        |  |
| Ofatumumab 20 mg                           | 481    | 8.2            | 7.4                 | 0.12                | 34.5 | 5.7    |  |
| Teriflunomide 14 mg                        | 474    | 8.19           | 7.38                | 0.17                | 36.1 | 6.3    |  |
|                                            | Number | of relapses in | n the 12 to 24 mon  | ths prior to screen | ing  |        |  |
| Ofatumumab 20 mg                           | 481    | 0.7            | 0.95                | 0                   | 5    | 0      |  |
| Teriflunomide 14 mg                        | 474    | 0.78           | 1.02                | 0                   | 6    | 0      |  |
|                                            | Num    | nber of relaps | es in the last year | prior to screening  |      |        |  |
| Ofatumumab 20 mg                           | 481    | 1.28           | 0.74                | 0                   | 7    | 1      |  |
| Teriflunomide 14 mg                        | 474    | 1.26           | 0.73                | 0                   | 6    | 1      |  |
|                                            | Time s | since the onse | et of the most rece | nt relapse (months  | s)   |        |  |
| Ofatumumab 20 mg                           | 481    | 7.79           | 15                  | 1.28                | 262  | 5.17   |  |
| Teriflunomide 14 mg                        | 474    | 7.66           | 11.1                | 1.18                | 150  | 5.22   |  |
|                                            | N      | umber of Gd-   | enhancing T1 lesi   | ons at baseline     |      |        |  |

| TRT01P              | N                                     | Mean  | Std Dev | Min  | Max  | Median |  |  |
|---------------------|---------------------------------------|-------|---------|------|------|--------|--|--|
| Ofatumumab 20 mg    | 481                                   | 1.61* | 4.07    | 0    | 58   | 0      |  |  |
| Teriflunomide 14 mg | 474                                   | 1.49  | 4.07    | 0    | 63   | 0      |  |  |
|                     | Volume of T2 lesions (cc) at baseline |       |         |      |      |        |  |  |
| Ofatumumab 20 mg    | 481                                   | 14.3  | 14.2    | 0.08 | 81.9 | 9.01   |  |  |
| Teriflunomide 14 mg | 474                                   | 12    | 13      | 0.04 | 112  | 7.66   |  |  |

\*: p=0.6488

#### Treatment Compliance, Concomitant Medications, and Rescue Medication Use

**Treatment Compliance** 

Compliance with treatment for the RCP was close to 100% for both treatment groups (Table 42).

#### Table 42: Percent compliance, study 2302

| TRT01P              |        | N Power (AVAL) |         |      |     |        |
|---------------------|--------|----------------|---------|------|-----|--------|
| IKIVIP              | N Rows | Mean           | Std Dev | Min  | Max | Median |
| Ofatumumab 20 mg    | 481    | 98.5           | 4.96    | 24.2 | 100 | 100    |
| Teriflunomide 14 mg | 474    | 98.8           | 4.13    | 38.7 | 100 | 100    |

Source: PARAM\_COMPL Subset of ADEX 2302 AVAL By (TRT01P).jmp

#### Concomitant Medications during the trial

The most common concomitant medications during the trial are listed in Table 43. The most common concomitant medications most likely represent symptomatic treatment for common medical conditions and medications given prior to administration of study drug.

Table 43: Concurrent non-MS drugs during the trial. 10% or more in OMB group, study 2302

| WHODrug ATC 3                                             | OMB<br>20 mg | TERI<br>14 mg |
|-----------------------------------------------------------|--------------|---------------|
| OTHER ANALGESICS AND ANTIPYRETICS                         | 345 (71.7%)  | 344 (72.6%)   |
| ANTIHISTAMINES FOR SYSTEMIC USE                           | 293 (60.9%)  | 289 (61.0%)   |
| TOPICAL PRODUCTS FOR JOINT AND MUSCULAR PAIN              | 203 (42.2%)  | 175 (36.9%)   |
| ANTIINFLAMMATORY AND ANTIRHEUMATIC PRODUCTS, NON-STEROIDS | 183 (38.0%)  | 161 (34.0%)   |
| ANTIPRURITICS, INCL. ANTIHISTAMINES, ANESTHETICS, ETC.    | 180 (37.4%)  | 179 (37.8%)   |
| THROAT PREPARATIONS                                       | 172 (35.8%)  | 133 (28.1%)   |
| VITAMIN A AND D, INCL. COMBINATIONS OF THE TWO            | 165 (34.3%)  | 185 (39.0%)   |
| HORMONAL CONTRACEPTIVES FOR SYSTEMIC USE                  | 145 (30.1%)  | 148 (31.2%)   |
| OTHER CARDIAC PREPARATIONS                                | 141 (29.3%)  | 113 (23.8%)   |
| OTHER GYNECOLOGICALS                                      | 140 (29.1%)  | 123 (25.9%)   |
| ANTIDEPRESSANTS                                           | 118 (24.5%)  | 128 (27.0%)   |
| (missing)                                                 | 117 (24.3%)  | 123 (25.9%)   |
| STOMATOLOGICAL PREPARATIONS                               | 115 (23.9%)  | 146 (30.8%)   |

**CDER Clinical Review Template** 

Version date: September 6, 2017 for all NDAs and BLAs

| WHODrug ATC 3                                                              | OMB<br>20 mg | TERI<br>14 mg |
|----------------------------------------------------------------------------|--------------|---------------|
| ANXIOLYTICS                                                                | 103 (21.4%)  | 100 (21.1%)   |
| ANTIINFECTIVES                                                             | 100 (20.8%)  | 98 (20.7%)    |
| ANTIEPILEPTICS                                                             | 100 (20.8%)  | 108 (22.8%)   |
| DRUGS FOR PEPTIC ULCER AND GASTRO-OESOPHAGEAL REFLUX<br>DISEASE (GORD)     | 98 (20.4%)   | 135 (28.5%)   |
| HYPNOTICS AND SEDATIVES                                                    | 96 (20.0%)   | 101 (21.3%)   |
| MUSCLE RELAXANTS, CENTRALLY ACTING AGENTS                                  | 85 (17.7%)   | 69 (14.6%)    |
| BETA-LACTAM ANTIBACTERIALS, PENICILLINS                                    | 75 (15.6%)   | 73 (15.4%)    |
| DECONGESTANTS AND OTHER NASAL PREPARATIONS FOR TOPICAL USE                 | 65 (13.5%)   | 62 (13.1%)    |
| ANTIINFECTIVES AND ANTISEPTICS, EXCL. COMBINATIONS WITH<br>CORTICOSTEROIDS | 64 (13.3%)   | 73 (15.4%)    |
| OTHER OPHTHALMOLOGICALS                                                    | 63 (13.1%)   | 81 (17.1%)    |
| UROLOGICALS                                                                | 60 (12.5%)   | 67 (14.1%)    |
| CONTRACEPTIVES FOR TOPICAL USE                                             | 57 (11.9%)   | 61 (12.9%)    |
| ANTIINFLAMMATORY AGENTS                                                    | 53 (11.0%)   | 65 (13.7%)    |
| DRUGS FOR CONSTIPATION                                                     | 52 (10.8%)   | 38 (8.0%)     |
| OTHER DERMATOLOGICAL PREPARATIONS                                          | 51 (10.6%)   | 65 (13.7%)    |
| PSYCHOSTIMULANTS, AGENTS USED FOR ADHD AND NOOTROPICS                      | 51 (10.6%)   | 55 (11.6%)    |
| OPIOIDS                                                                    | 48 (10.0%)   | 59 (12.4%)    |
| Subjects(filtered)                                                         | 459 (95.4%)  | 457 (96.4%)   |
| 1stColltemSubjects                                                         | 481 (100.0%) | 474 (100.0%)  |

Source: JRevSelADSLFASFL\_Y CMCAT3byTRT01PfiltCMCAT\_GEN ACAT01\_CONMED

#### **Rescue Medication**

The proportion of subjects treated for one or more relapses with systemic corticosteroids is shown in Table 44. Subjects may have been treated on more than one occasion.

# Table 44: Proportion of subjects with one or more courses of systemic corticosteroids for relapse treatment during the RCP, FAS, study 2302

| TRT01P              | N(USUBJID) | % of FAS |
|---------------------|------------|----------|
| Ofatumumab 20 mg    | 67         | 13.9%    |
| Teriflunomide 14 mg | 140        | 29.5%    |

Source: ACAT01\_CONMED Subset CMCAT2\_SYSTEMIC CS Subset CMSCAT\_MSRLP Subset of EPOCH\_TRT Subset ADCM 2302 By (USUBJID, TRT01P) NUSUBJID By (TRT01P).jmp

#### Efficacy Results – Primary Endpoint

The proportion of subjects who did not have a confirmed relapse was 85.0% for those treated with ofatumumab and 70.9% for those treated with teriflunomide. Seventy-two subjects treated with ofatumumab had a total of 95 confirmed relapses during the RCP and 138 subjects treated with teriflunomide had a total of 198 confirmed relapses (Table 45).

| Num RLP | Ofatumumab 20 mg |        |          | Teriflunomide 14 mg |        |          |  |
|---------|------------------|--------|----------|---------------------|--------|----------|--|
| (AVAL)  | Num subjects     | % of N | RL total | Num subjects        | % of N | RL total |  |
| 0       | 409              | 85.0%  |          | 336                 | 70.9%  |          |  |
| 1       | 54               | 11.2%  | 54       | 104                 | 21.9%  | 104      |  |
| 2       | 15               | 3.1%   | 30       | 18                  | 3.8%   | 36       |  |
| 3       | 1                | 0.2%   | 3        | 9                   | 1.9%   | 27       |  |
| 4       | 2                | 0.4%   | 8        | 6                   | 1.3%   | 24       |  |
| 7       | 0                | 0.0%   | 0        | 1                   | 0.2%   | 7        |  |
| Total   | 481              | 100.0% | 95       | 474                 | 100.0% | 198      |  |

#### Table 45: Confirmed relapses, FAS, study 2302

Source: PARAM\_NCFRLSTY Subset of ADARR 2302 TRT01P By (AVAL)

The mean and median period of observation for relapses was very similar for the two treatment groups (Table 46).

#### Table 46: Time in study, years, FAS, study 2302

| TRT01P              | N   |      |         |       |      |        |
|---------------------|-----|------|---------|-------|------|--------|
| INIVIP              | N   | Mean | Std Dev | Min   | Max  | Median |
| Ofatumumab 20 mg    | 481 | 1.6  | 0.45    | 0.003 | 2.37 | 1.61   |
| Teriflunomide 14 mg | 474 | 1.58 | 0.44    | 0.04  | 2.65 | 1.61   |

Source: PARAM\_TIMESYRS Subset of ADARR 2302 TIMESYRS By (TRT01P).jmp

Unadjusted Annualized Relapse Rate, confirmed relapses

Ofatumumab: 95/767.781 sum of years in study = 0.124 Teriflunomide: 198/749.771 sum of years in study = 0.264 ARR ratio: 0.470

Reviewer Comment: The sponsor's analysis of ARR used a negative binomial model and did adjust for the number of baseline gadolinium-enhancing lesions as well as for region, number of relapses in the preceding year, baseline EDSS, and baseline age. The adjusted ARR using these methods was 0.10 (0.08, 0.13) for the ofatumumab group and 0.25 (0.21, 0.30), yielding a rate ratio of 0.415 (0.308, 0.559), p<0.001.

The proportion of subjects who did not have a confirmed or unconfirmed relapse was 80.9% for those treated with ofatumumab and 65.8% for those treated with teriflunomide. Ninety-two subjects treated with ofatumumab had a total of 131 confirmed or unconfirmed relapses and 162 subjects treated with teriflunomide had a total of 250 confirmed or unconfirmed relapses (Table 47).

|                   | Total           |        |          | Ofatumumab 20 mg |        |          | Teriflunomide 14 mg |                    |          |
|-------------------|-----------------|--------|----------|------------------|--------|----------|---------------------|--------------------|----------|
| Num RLP<br>(AVAL) | Num<br>subjects | % of N | RL total | Num<br>subjects  | % of N | RL total | Num<br>subjects     | % of N             | RL total |
| 0                 | 701             | 73.4%  |          | 389              | 80.9%  |          | 312                 | <mark>65.8%</mark> |          |
| 1                 | 179             | 18.7%  | 179      | 67               | 13.9%  | 67       | 112                 | 23.6%              | 112      |
| 2                 | 49              | 5.1%   | 98       | 17               | 3.5%   | 34       | 32                  | 6.8%               | 64       |
| 3                 | 11              | 1.2%   | 33       | 4                | 0.8%   | 12       | 7                   | 1.5%               | 21       |
| 4                 | 11              | 1.2%   | 44       | 2                | 0.4%   | 8        | 9                   | 1.9%               | 36       |
| 5                 | 2               | 0.2%   | 10       | 2                | 0.4%   | 10       | 0                   | 0.0%               | 0        |
| 7                 | 1               | 0.1%   | 7        | 0                | 0.0%   | 0        | 1                   | 0.2%               | 7        |
| 10                | 1               | 0.1%   | 10       | 0                | 0.0%   | 0        | 1                   | 0.2%               | 10       |
| Total             | 955             | 100.0% | 381      | 481              | 100.0% | 131      | 474                 | 100.0%             | 250      |

#### Table 47: All reported relapses, FAS, study 2302

Source: PARAM\_NRLSTY Subset of ADARR 2302 TRT01P By (AVAL)

#### Unadjusted Annualized Relapse Rate, all relapses

Ofatumumab: 131/767.781 sum of years in study = 0.171 Teriflunomide: 250/749.771 sum of years in study = 0.333 ARR ratio: 0.514

Reviewer Comment: For all relapses, the sponsor reports an ARR of 0.14 for the of atumumab group and 0.32 for the teriflunomide group using the negative binomial model with the same adjustments.

The proportion of reported relapses that were confirmed was similar by treatment group (Table 48).

Reviewer Comment: The comparable rate of confirmation supports a relative lack of bias in the confirmation process, as was the case for study 2301.

Table 48: Rate of confirmation of relapses by assigned treatment, FAS, study 2302

|              | Ofatumumab | Teriflunomide |
|--------------|------------|---------------|
| All relapses | 131        | 250           |
| Confirmed    | 95         | 198           |
| % confirmed  | 72.5%      | 79.2%         |

The ARR was also analyzed for the first 8 weeks of treatment and compared to rates after the first 8 weeks on the assumption that treatment with ofatumumab may require that period of

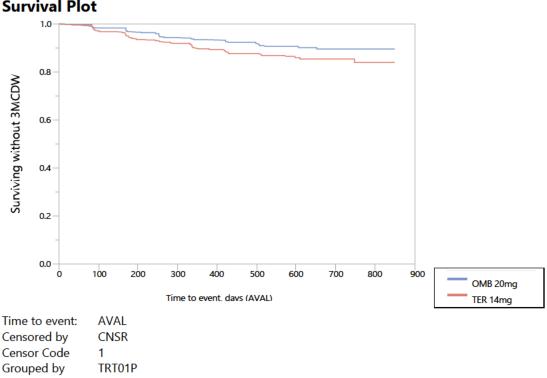
time for full benefit. This is included in (Table 49) which also includes a comparison of the unadjusted ARR as calculated by this reviewer and the adjusted rate calculated by the sponsor.

|                                                                    | ОМВ         | TERI        |  |  |  |
|--------------------------------------------------------------------|-------------|-------------|--|--|--|
| Confirmed Relapses                                                 |             |             |  |  |  |
| Unadjusted ARR /Adjusted ARR (sponsor)                             | 0.124/0.10  | 0.264/0.25  |  |  |  |
| Rate ratio reviewer/sponsor                                        | 0.470/0.415 |             |  |  |  |
| All relapses                                                       |             |             |  |  |  |
| Unadjusted ARR /Adjusted ARR (sponsor)                             | 0.171/0.14  | 0.333/0.32  |  |  |  |
| Rate ratio reviewer/sponsor                                        | 0.514/0.454 |             |  |  |  |
| Relapses within 8 weeks or less                                    |             |             |  |  |  |
| Unadjusted ARR /Adjusted ARR (sponsor)                             | 0.219/0.197 | 0.400/0.378 |  |  |  |
| Rate ratio reviewer/sponsor                                        | 0.548/0.52  |             |  |  |  |
| Relapses after 8 weeks                                             |             |             |  |  |  |
| Unadjusted ARR /Adjusted ARR (sponsor)                             | 0.114/0.097 | 0.250/0.242 |  |  |  |
| Rate ratio reviewer/sponsor                                        | 0.456/0.399 |             |  |  |  |
| ARR based on mean of individual subject rates – confirmed relapses |             |             |  |  |  |
| ARR                                                                | 0.13        | 0.32        |  |  |  |
| Rate ratio                                                         | 0.406       |             |  |  |  |
| ARR based on mean of individual subject rates – all relapses       |             |             |  |  |  |
| ARR                                                                | 0.18        | 0.39        |  |  |  |
| Rate ratio                                                         | 0.462       |             |  |  |  |

# Table 49: ARR calculations, unadjusted vs. adjusted, FAS, study 2302

Reviewer Comment: The unadjusted and adjusted ARRs and rate ratios are very similar and support the validity of the sponsor's results and methods. Unlike the results for study 2301 in which the benefit was seen only after the first 8 weeks (Table 27) the treatment effect over the full treatment period and after 8 weeks of treatment was similar.

# Data Quality and Integrity


There were no issues regarding the quality or integrity of the data submitted.

# Efficacy Results - Secondary and other relevant endpoints

Time to 3-month confirmed disability worsening (3MCDW)

The population for the primary analysis for confirmed disability worsening is the combined population from studies 2301 and 2302 – see Section **7.1.2.** The analysis of 3MCDW for the study 2302 population is shown in Figure 11. The analysis of the time to 3-month confirmed disability worsening (T3MCDW) does not exclude periods that started with a relapse, does not exclude the possibility of a relapse during the period of disability, but does exclude confirmation at a relapse. To address the concern that relapses may have influenced the analysis of T3MCDW, an analysis of the subpopulation from study 2302 that had no relapses at any time during the trial is shown in Figure 12.

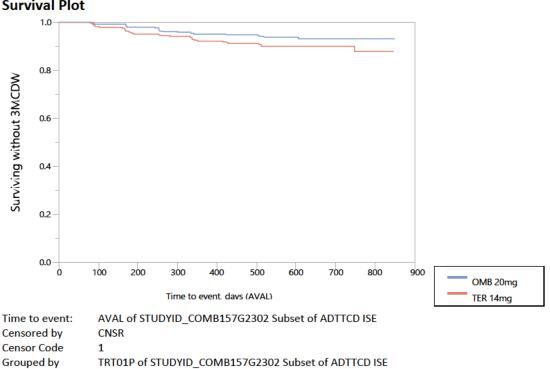
Figure 11: Time to 3MCDW, FAS, study 2302



Product-Limit Survival Fit Survival Plot

#### Summary

| Group    | Number failed | Number censored | Simple OR | HR (sponsor)                   |
|----------|---------------|-----------------|-----------|--------------------------------|
| OMB 20mg | 43            | 436             |           | 0.652 (0.445, .957)<br>p=0.029 |
| TER 14mg | 62            | 411             | 0.654     |                                |
| Combined | 105           | 847             |           |                                |


#### **Tests Between Groups**

| Test     | ChiSquare | DF | Prob>ChiSq |
|----------|-----------|----|------------|
| Log-Rank | 4.2969    | 1  | 0.0382*    |

| Test     | ChiSquare | DF | Prob>ChiSq |
|----------|-----------|----|------------|
| Wilcoxon | 4.2268    | 1  | 0.0398*    |

Source: T3MCDE study 2302.jrp

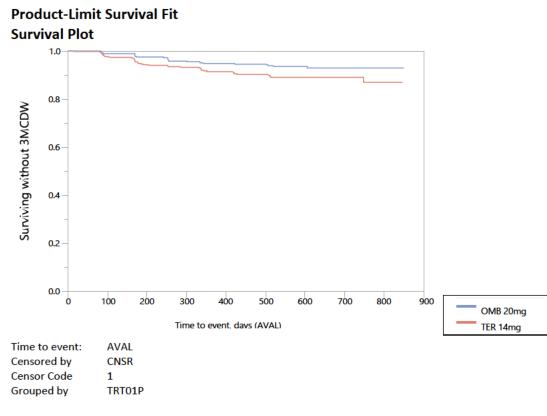
#### Figure 12: Time to 3-month CDW, FAS, subjects with no relapses at any time



## Product-Limit Survival Fit Survival Plot

| Group    | Number failed | Number censored | Simple OR | HR (sponsor)                    |
|----------|---------------|-----------------|-----------|---------------------------------|
| OMB 20mg | 24            | 383             |           | 0.614 (0.262, 1.044)            |
| TER 14mg | 32            | 303             | 0.593     | 0.614 (0.362, 1.044)<br>p=0.072 |
| Combined | 56            | 686             |           | p=0.072                         |

#### **Tests Between Groups**


| Test     | ChiSquare | DF | Prob>ChiSq |
|----------|-----------|----|------------|
| Log-Rank | 3.5851    | 1  | 0.0583     |
| Wilcoxon | 3.5410    | 1  | 0.0599     |

Source: T3MCDW no relapses Survival.jrp; PARAM\_T3MCDW Subset of Join AVAL\_0 of NCFRLSTY of ADARR c Study 2302 subset of ADTTCD ISE.jmp

Reviewer Comment: The above is in agreement with the sponsor's analysis of the relapse-free population provided in Table C2 1.3.6-1a - page 330 of SCE Appendix 1.

An analysis similar to the above analysis but including subjects in the analysis who did have a relapse prior to the start of an otherwise confirmed period of disability worsening, but censoring those subjects at the day of the progression event is shown in Figure 13.

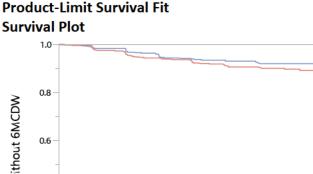
#### Figure 13: Time to 3MCDW, FAS, study 2302, censor at any prior relapse

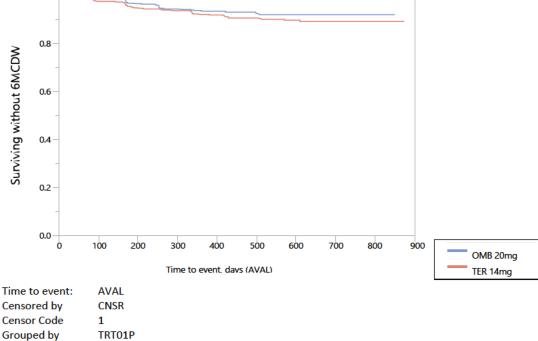


#### Summary

| Group    | Number failed | Number censored | Simple OR | HR (sponsor)                     |
|----------|---------------|-----------------|-----------|----------------------------------|
| OMB 20mg | 27            | 452             |           | 0.544 (0.251 0.942)              |
| TER 14mg | 41            | 432             | 0.629     | 0.544, (0.351, 0.843)<br>P=0.006 |
| Combined | 68            | 884             |           | F-0.000                          |

#### **Tests Between Groups**


| Test     | ChiSquare | DF | Prob>ChiSq |
|----------|-----------|----|------------|
| Log-Rank | 5.2214    | 1  | 0.0223*    |
| Wilcoxon | 5.1635    | 1  | 0.0231*    |


Source: T3MIPCW study 2302 Survival.jrp; PARAM\_T3MIPCW Subset of STUDYID\_COMB157G2302 Subset of ADTTCD ISE.jmp

#### 6-month confirmed disability worsening

The analysis of time to 6-month confirmed disability worsening for study 2301 alone is shown in Figure 14. Because this analysis did not exclude relapses that may have occurred just before or during the period of worsened disability, an analysis of the population that did not experience a relapse at any time during the trial was conducted and is shown in Figure 15.

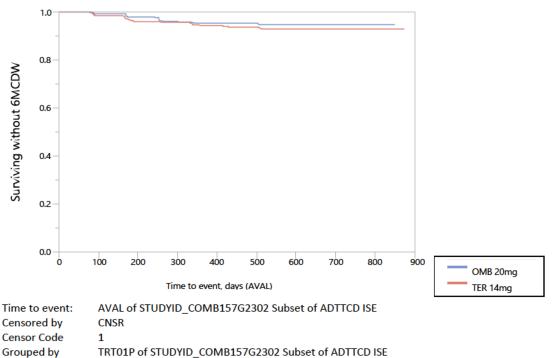
Figure 14: Time to 6-month confirmed disability worsening, FAS





#### Summary

| Group    | Number failed | Number censored | Simple OR | HR (sponsor)                    |
|----------|---------------|-----------------|-----------|---------------------------------|
| OMB 20mg | 36            | 443             |           | 0.756 (0.400 1.470)             |
| TER 14mg | 46            | 427             | 0.754     | 0.756 (0.489, 1.170)<br>P=0.209 |
| Combined | 82            | 870             |           | P-0.209                         |


#### **Tests Between Groups**

| Test     | ChiSquare | DF | Prob>ChiSq |
|----------|-----------|----|------------|
| Log-Rank | 1.5358    | 1  | 0.2152     |
| Wilcoxon | 1.3150    | 1  | 0.2515     |

Source: T6MCDW study 2302.jrp

## Figure 15; Time to 6-month confirmed disability worsening, FAS, study 2302, subjects with no relapse at any time

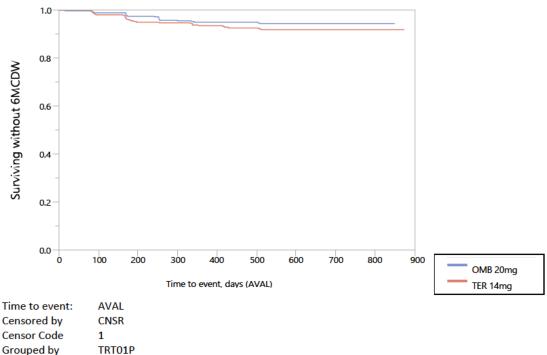
### Product-Limit Survival Fit Survival Plot



#### Summary

| Group    | Number failed | Number censored | Simple OR | HR (sponsor)                    |
|----------|---------------|-----------------|-----------|---------------------------------|
| OMB 20mg | 20            | 387             |           | 0.750 (0.444 4.200)             |
| TER 14mg | 22            | 313             | 0.735     | 0.758 (0.414, 1.390)<br>P=0.370 |
| Combined | 42            | 700             |           | P-0.370                         |

#### **Tests Between Groups**


| Test     | ChiSquare | DF | Prob>ChiSq |
|----------|-----------|----|------------|
| Log-Rank | 0.9420    | 1  | 0.3318     |
| Wilcoxon | 0.9285    | 1  | 0.3353     |

**Source:** T6MCDW no relapses study 2302 Survival.jrp; PARAM\_T6MCDW Subset of Join AVAL\_0 of NCFRLSTY of ADARR c Study 2302 subset of ADTTCD ISE.jmp

An analysis that is similar to the above analysis but including subjects in the analysis who did have a relapse prior to the start of an otherwise confirmed period of disability worsening, but censoring those subjects at the day of the progression event is shown in Figure 16.

## Figure 16: Time to 6-month confirmed disability worsening, censor at any preceding relapse, FAS, study 2302

## Product-Limit Survival Fit Survival Plot



### Summary

| Group    | Number failed | Number censored | Simple OR | HR (sponsor)                    |
|----------|---------------|-----------------|-----------|---------------------------------|
| OMB 20mg | 23            | 456             |           | 0.606 (0.006, 0.040)            |
| TER 14mg | 30            | 443             | 0.745     | 0.525 (0.325, 0.848)<br>P=0.008 |
| Combined | 53            | 899             |           | F-0.000                         |

#### **Tests Between Groups**

| Test     | ChiSquare | DF | Prob>ChiSq |
|----------|-----------|----|------------|
| Log-Rank | 1.9962    | 1  | 0.1577     |
| Wilcoxon | 1.9260    | 1  | 0.1652     |

Source: T6MIPCW study 2302Survival.jrp; PARAM\_T6MIPCW Subset of STUDYID\_COMB157G2302 Subset of ADTTCD ISE.jmp

Reviewer Comment: Although the odds ratio and hazard ratio are slightly higher when subjects with relapses are excluded or censored if they occurred prior to a period of disability worsening, the results clearly favor of a tumumab

# treatment compared to teriflunomide which itself has shown a benefit on disability in other studies.

**MRI** lesions

### Number of gadolinium-enhancing lesions per scan

For the treatment period there were 0.04 lesions per scan for those treated with ofatumumab and 0.62 per scan for those treated with teriflunomide. The percent reduction was 93.1%. The sponsor's analysis using a negative binomial model and adjusting for region, age and the number of GdE lesions at baseline yielded adjusted means of 0.0317 lesions per scan for ofatumumab and 0.514 lesions per scan for teriflunomide for a 93.8% reduction.

### Annualized rate of new T2 lesions

For the treatment period, the annual rate of new T2 lesions was 0.96 for the ofatumumab group and 5.27 for the teriflunomide group. The percent reduction was 81.8%. The sponsor's analysis using a negative binomial model and adjusting for region, age and the baseline volume of T2 lesions yielded an adjusted mean annual rate of 0.64 for the ofatumumab group and 4.2 for the teriflunomide group (to the end of study visit). The percent reduction was 84.5%.

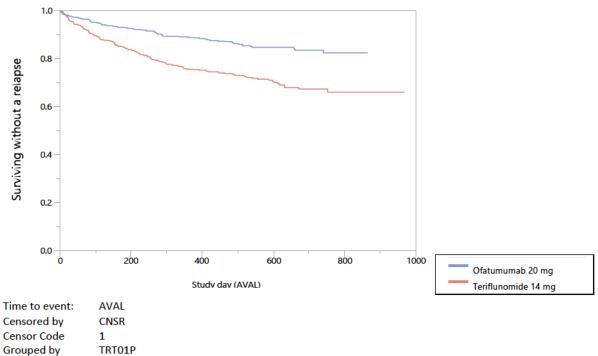
### **Dose/Dose Response**

A single dose was studied in studies 2301 and 2302

## **Durability of Response**

The durability of the response was not studied.

### **Persistence of Effect**


The persistence of the effect was not studied.

## Additional Analyses Conducted on the Individual Trial

The time to the first confirmed relapse was significantly prolonged with ofatumumab treatment (Figure 17). If all relapses are included in the analysis, the result is similar with an OR of 0.456.

#### Figure 17: Time to first confirmed relapse, study 2302

## Product-Limit Survival Fit Survival Plot



#### Summary

| Group               | Number failed | Number censored | Simple OR |
|---------------------|---------------|-----------------|-----------|
| Ofatumumab 20 mg    | 72            | 409             |           |
| Teriflunomide 14 mg | 138           | 336             | 0.429     |
| Combined            | 210           | 745             |           |

#### **Tests Between Groups**

| Test     | ChiSquare | DF | Prob>ChiSq |
|----------|-----------|----|------------|
| Log-Rank | 28.1504   | 1  | <.0001*    |
| Wilcoxon | 26.8236   | 1  | <.0001*    |

Source: Time to first confirmed relapse study 2302.jrp

## 7. Integrated Review of Effectiveness

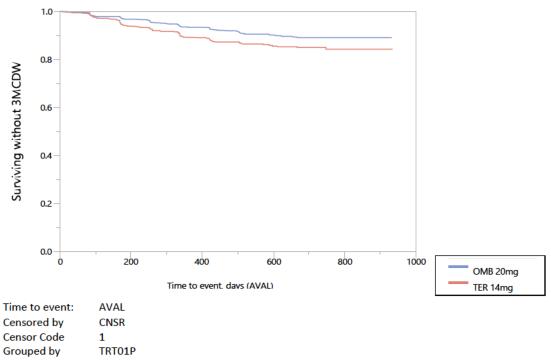
## 7.1. Assessment of Efficacy Across Trials

## 7.1.1. Primary Endpoint

Although the ARR was higher in study 2302 compared to study 2301, the percent reduction was essentially the same. The results based on an unadjusted raw ARR are consistent with those using the negative binomial model with adjustments. The results for confirmed relapses are consistent with those when all relapses are included (Table 50).

### Table 50: ARR across studies

|                    | 2301<br>OMB TER |            | 2302       |           |  |  |  |
|--------------------|-----------------|------------|------------|-----------|--|--|--|
|                    |                 |            | OMB        | TER       |  |  |  |
|                    | ARR- confirmed  |            |            |           |  |  |  |
| Unadjusted/sponsor | 0.117/0.11      | 0.239/0.22 | 0.124/0.10 | 0.26/0.25 |  |  |  |
| Rate ratio         | 0.49/0.50       |            | 0.47/0.42  |           |  |  |  |
|                    | ARR – all       |            |            |           |  |  |  |
| Unadjusted/sponsor | 0.16/0.15       | 0.32/0.30  | 0.17/0.14  | 0.33/0.32 |  |  |  |
| Rate ratio         | 0.50/0.50       |            | 0.51/0     | 0.45      |  |  |  |


## 7.1.2. Secondary and Other Endpoints

Time to 3-month confirmed disability worsening

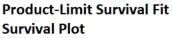
The time to the first 3-month confirmed disability worsening using the sponsor's primary analysis method, for the combined study 2301 and 2302 populations is shown in Figure 18. Because this analysis may be influenced by the occurrence of relapses that occurred just before or during the period of confirmation, an analysis that excludes all subjects with a relapse at any time during the trial was conducted (reviewer analysis) and is shown in Figure 19.

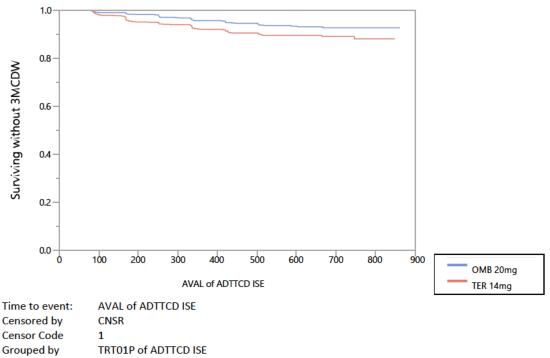
Figure 18: Time to first 3-month confirmed disability worsening, FAS, combined populations

### Product-Limit Survival Fit Survival Plot



#### Summary


| Group    | Number failed | Number censored | Simple OR | HR (sponsor)         |
|----------|---------------|-----------------|-----------|----------------------|
| OMB 20mg | 88            | 856             |           | 0.656 (0.499, 0.862) |
| TER 14mg | 125           | 807             | 0.664     | p=0.002              |
| Combined | 213           | 1663            |           | p=0.002              |


#### **Tests Between Groups**

| ChiSquare | DF | Prob>ChiSq |
|-----------|----|------------|
| 8.3913    | 1  | 0.0038*    |
| 9.0357    | 1  | 0.0026*    |
|           |    |            |

Source: T3MCDW ISE.jrp

Figure 19: Time to first 3-month confirmed disability worsening, FAS, combined studies, subjects with no relapse at any time (reviewer analysis)



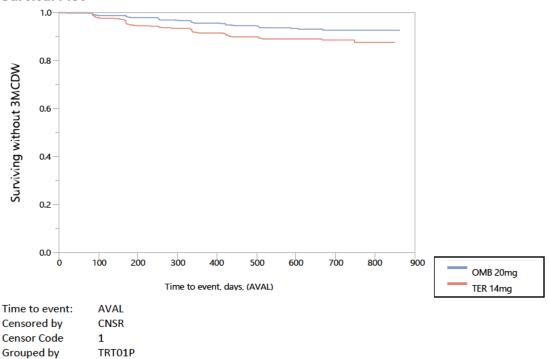


#### Summary

| Group    | Number failed | Number censored | Simple OR | HR (sponsor)                    |
|----------|---------------|-----------------|-----------|---------------------------------|
| OMB 20mg | 50            | 743             |           |                                 |
| TER 14mg | 67            | 595             | 0.598     | 0.587 (0.407, 0.848)<br>p=0.004 |
| Combined | 117           | 1338            |           | p=0.004                         |

#### **Tests Between Groups**

| Test     | ChiSquare | DF | Prob>ChiSq |
|----------|-----------|----|------------|
| Log-Rank | 7.4086    | 1  | 0.0065*    |
| Wilcoxon | 7.9689    | 1  | 0.0048*    |


Source: PARAM\_3MCDW subset Join AVAL\_0 of ADARR c ADTTCD ISE survival.jrp

Reviewer Comment: The above analysis corresponds to the sponsor analysis of a subset of subjects without relapses on study (Table C2 1.3.6-1a page 329 of SCE Appendix 1).

An additional analysis in which any subject with a relapse prior to a period of 3-month confirmed disability worsening was included as censored at the onset of the relapse is shown in Figure 20.

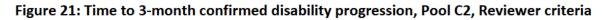
### Figure 20: Time to 3MCDW, IPCW analysis, PoolC2

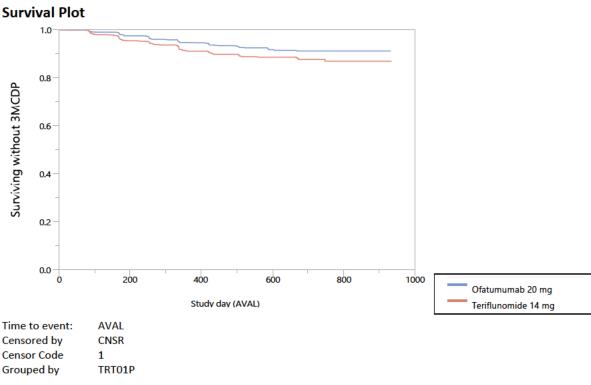




#### Summary

| Group    | Number failed | Number censored | Simple OR | HR (sponsor)                     |
|----------|---------------|-----------------|-----------|----------------------------------|
| OMB 20mg | 53            | 891             |           | 0 540 (0 200 0 720)              |
| TER 14mg | 82            | 850             | 0.617     | 0.540 (0.396, 0.738)<br>p=<0.001 |
| Combined | 135           | 1741            |           | p=<0.001                         |


#### **Tests Between Groups**


| ChiSquare | DF      | Prob>ChiSq |
|-----------|---------|------------|
| 10.8449   | 1       | 0.0010*    |
| 11.8312   | 1       | 0.0006*    |
|           | 10.8449 | 10.8449 1  |

T3MIPCW ISE Survival.jrp; PARAM\_T3MIPCW Subset of ADTTCD ISE.jmp

Reviewer Comment: The following request was sent to the sponsor: "Provide an analysis of 3- and 6-month confirmed disability worsening using the following criteria:

- a. The onset may not start within 30 days of a preceding relapse
- b. A relapse may not occur during the potential period of CDW
- c. Confirmation may not occur at the time of a relapse
- d. The applicable criterion for progression by EDSS score must be met throughout the period
- e. An intervention for relapse prevention, or a symptomatic treatment such as dalfampridine, may not have been started or increased during the potential period of CDW.
- The sponsor provided the requested analyses in sequence 0264. The analysis of 3-month confirmed disability progression using the above criteria are shown in Figure 21.





## **Product-Limit Survival Fit** Survival Plot

#### Summary

| Group               | Number failed | Number censored | Simple OR | HR (sponsor)         |
|---------------------|---------------|-----------------|-----------|----------------------|
| Ofatumumab 20 mg    | 72            | 872             | 0.749     | 0.648 (0.478, 0.890) |
| Teriflunomide 14 mg | 102           | 830             | 0.749     | P = 0.007            |

## **CDER Clinical Review Template**

Version date: September 6, 2017 for all NDAs and BLAs

| Group    | Number failed | Number censored | Simple OR | HR (sponsor) |
|----------|---------------|-----------------|-----------|--------------|
| Combined | 174           | 1702            |           |              |

#### **Tests Between Groups**

| Test     | ChiSquare | DF | Prob>ChiSq |
|----------|-----------|----|------------|
| Log-Rank | 6.6035    | 1  | 0.0102*    |
| Wilcoxon | 6.9897    | 1  | 0.0082*    |

Source: T3MCDP ISE FDA criteria.jrp

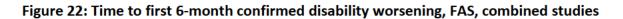
Reviewer Comment: The various methods for analysis of the 3-month endpoint of disability worsening, in which relapses may contribute to the worsening, or progression, in which there is an attempt to eliminate the role of relapses by various means are shown in Table 51 below. Because the population was selected to have a high likelihood of relapses occurring during the trial, and because the drug clearly reduces the occurrence of relapses, it is not possible to totally eliminate their role in any assessment of the assessment of disability over time. The "Reviewer criteria" have been used to reduce the role of relapses as much as possible in these analyses. The result using those criteria is a more clinically meaningful measure of any effect on disability not attributable to an effect on relapses (Figure 21).

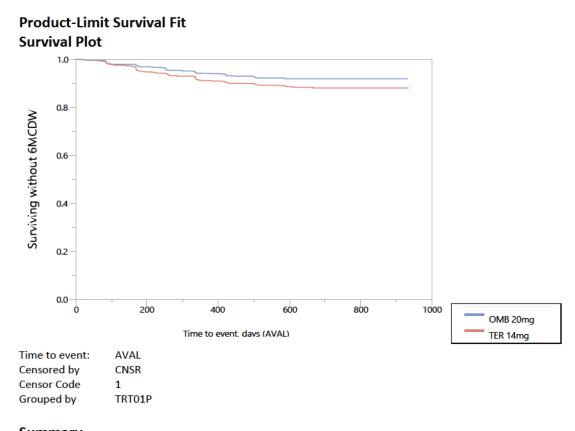
Summary of analyses of 3-month confirmed disability worsening and progression

#### Table 51: Summary of analyses of 3MCDW

|                        | T3M0       | CDW <sup>1</sup> | T3MF          | PIRA <sup>2</sup> | T3MCDW-              | T3MCDW-No relapses <sup>3</sup> |           | T3MIPCW <sup>4</sup>  |  |
|------------------------|------------|------------------|---------------|-------------------|----------------------|---------------------------------|-----------|-----------------------|--|
|                        | OMB        | TERI             | OMB           | TERI              | OMB                  | TERI                            | OMB       | TERI                  |  |
|                        |            |                  | Study         | 2301              |                      |                                 |           |                       |  |
| Odds                   | 45:420     | 63:396           | 37:427        | 52:407            | 26:360               | 35:292                          | 26:439    | 41:418                |  |
| Odds ratio             | 0.6        | 374              | 0.6           | 697               | 0                    | .603                            | 0.        | 604                   |  |
| p-value (KM, log rank) | 0.0        | 424              | 0.0           | 871               | 0.                   | 0502                            | 0.0       | 0171                  |  |
| HR (sponsor)           | 0.652 (0.4 | 445, .957)       |               |                   | 0.564 (0.            | 339, 0.937)                     | 0.536 (0. | 344, 0.837)           |  |
| p-value (sponsor)      | 0.0        | )29              |               |                   | 0                    | .027                            | 0.        | 006                   |  |
|                        |            |                  | Study         | 2302              |                      |                                 |           |                       |  |
| Odds                   | 43:436     | 62:411           | 37:442        | 53:420            | 24:383               | 32:303                          | 27:452    | 41:432                |  |
| Odds ratio             | 0.6        | 654              | 0.663         |                   | 0                    | 0.593                           |           | 0.629                 |  |
| p-value (KM, log rank) | 0.0        | 382              | 0.0           | 614               | 0.0583               |                                 | 0.0223    |                       |  |
| HR (sponsor)           | 0.660 (0.4 | 47, 0.974)       |               |                   | 0.614 (0.            | 0.614 (0.362, 1.044)            |           | 0.544, (0.351, 0.843) |  |
| p-value (sponsor)      | 0.0        | )36              |               |                   | 0                    | .072                            | 0.        | 006                   |  |
|                        |            |                  | Pooled Studie | es 2301&2302      |                      |                                 |           |                       |  |
| Odds                   | 88:856     | 125:807          | 75:869        | 105:827           | 50/743               | 67:595                          | 53:891    | 82:850                |  |
| Odds ratio             | 0.6        | 64               | 0.6           | 680               | 0.598                |                                 | 0         | 617                   |  |
| p-value (KM, log rank) | 0.0        | 038              | 0.0122        |                   | 0.                   | 0.0065                          |           | 0.0010                |  |
| HR (sponsor)           | 0.656 (0.4 | 99, 0.862)       |               |                   | 0.587 (0.407, 0.848) |                                 | 0.540 (0  | 396, 0.738            |  |
| p-value (sponsor)      | 0.0        | )02              |               |                   | 0                    | .004                            | <0        | .001                  |  |

1: Time to 3-month confirmed disability worsening of EDSS in days (Full Analysis Set) - sponsor analysis method


2: Time to 3-month progression independent of relapses in days - sponsor analysis method


3: Time to 3-month progression of disability – sponsor analysis method of subgroup with no relapses; review analysis of subgroup derived from subgroup of ADARR with no relapses

4: T3MIPCW Time to 3-month Inverse Probability Censoring Weight

#### 6-month confirmed disability worsening

An analysis of the time to the first 6-month confirmed disability worsening using the sponsor's primary analysis method is shown in Figure 22. Because this analysis method may be influenced by the occurrence of relapses just before or during the period of confirmed disability worsening, an analysis of the population that had no relapses at any time during the trial (reviewer analysis) was conducted and is shown in Figure 23.





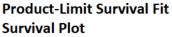
#### Reference ID: 4626907

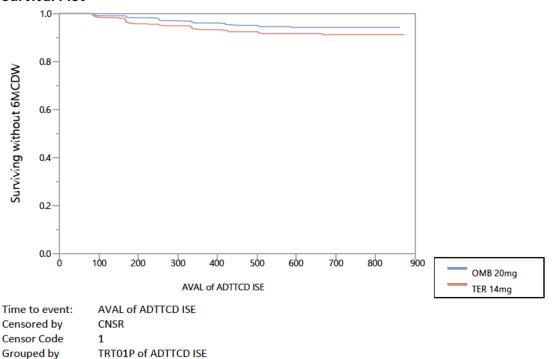
Summary

| Group    | Number failed | Number censored | Simple OR | HR (sponsor)                    |  |
|----------|---------------|-----------------|-----------|---------------------------------|--|
| OMB 20mg | 71            | 873             |           | 0.675 (0.409, 0.046)            |  |
| TER 14mg | 99            | 833             | 0.684     | 0.675 (0.498, 0.916)<br>P=0.012 |  |
| Combined | 170           | 1706            |           | F-0.012                         |  |

#### **Tests Between Groups**

| Test     | ChiSquare | DF | Prob>ChiSq |
|----------|-----------|----|------------|
| Log-Rank | 5.7596    | 1  | 0.0164*    |
| Wilcoxon | 5.3470    | 1  | 0.0208*    |
|          |           |    |            |


Source: T6MCDW ISE.jrp


. .

\_\_\_\_

| CDER Clinical Review Template                         |
|-------------------------------------------------------|
| Version date: September 6, 2017 for all NDAs and BLAs |

Figure 23: Time to 6-month confirmed disability worsening, FAS, combined studies, subjects with no relapses at any time (reviewer analysis)

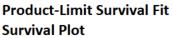


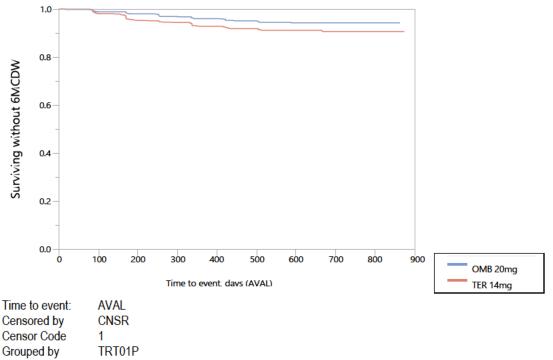


#### Summary

| Group    | Number failed | Number censored | Simple OR | HR (sponsor)                    |
|----------|---------------|-----------------|-----------|---------------------------------|
| OMB 20mg | 42            | 751             |           | 0 622 (0 424 0 0 47)            |
| TER 14mg | 53            | 609             | 0.643     | 0.632 (0.421, 0.947)<br>p=0.026 |
| Combined | 95            | 1360            |           | p=0.020                         |

#### **Tests Between Groups**


| Test     | ChiSquare | DF | Prob>ChiSq |
|----------|-----------|----|------------|
| Log-Rank | 4.4783    | 1  | 0.0343*    |
| Wilcoxon | 4.6034    | 1  | 0.0319*    |


Source: PARAM\_T6MCDW subset Join AVAL\_0 of ADARR ISE c ADTTCD ISE Survival.jrp

Reviewer Comment: Corresponds to C2 1.3.6-1b page 331 of SCE Appendix 1. Sponsor HR = 0.632 (0.421, 0.947), p=0.026

An additional analysis that includes subjects with a relapse prior to a period of 6-month confirmed disability, but which censors those subjects at the onset of the relapse is shown in Figure 24.

Figure 24: Time to 6-month confirmed disability worsening, FAS, combined studies, subjects with relapse prior censored

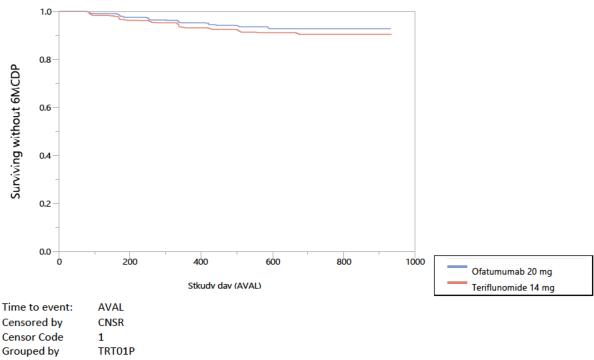




#### Summary

| Group    | Number failed | Number censored | Unadjusted OR | HR (sponsor)                    |
|----------|---------------|-----------------|---------------|---------------------------------|
| OMB 20mg | 45            | 899             |               | 0.575 (0.409, 0.808)            |
| TER 14mg | 66            | 866             | 0.657         | 0.575 (0.409, 0.606)<br>p=0.001 |
| Combined | 111           | 1765            |               | μ=0.001                         |

#### **Tests Between Groups**


| Test     | ChiSquare | DF | Prob>ChiSq |
|----------|-----------|----|------------|
| Log-Rank | 7.0000    | 1  | 0.0082*    |
| Wilcoxon | 7.2734    | 1  | 0.0070*    |

Source: T6MIPCW ISE Survival.jrp; PARAM\_T6MIPCW Subset of ADTTCD ISE.jmp

Reviewer Comment: As for the analysis of 3-month confirmed disability progression, the sponsor reanalyzed 6-month confirmed disability progression using the criteria listed earlier (Figure 25).

#### Figure 25: Time to 6-month confirmed disability progression, Pool C2, Reviewer criteria

### Product-Limit Survival Fit Survival Plot



#### Summary

| Group               | Number failed | Number censored | Simple OR | HR (sponsor)                      |  |
|---------------------|---------------|-----------------|-----------|-----------------------------------|--|
| Ofatumumab 20 mg    | 60            | 884             |           | 0.725 (0.524, 1.020)              |  |
| Teriflunomide 14 mg | 77            | 855             | 0.754     | 0.735 (0.524, 1.030)<br>P = 0.074 |  |
| Combined            | 137           | 1739            |           | F = 0.074                         |  |

#### **Tests Between Groups**

| Test     | ChiSquare | DF | Prob>ChiSq |
|----------|-----------|----|------------|
| Log-Rank | 2.7616    | 1  | 0.0966     |
| Wilcoxon | 2.8171    | 1  | 0.0933     |

Source: T6MCDP ISE FDA criteria.jrp

Reviewer Comment: The various methods for analysis of the 6-month endpoint of disability worsening, in which relapses may contribute to the worsening, or progression, in which there is an attempt to eliminate the role of relapses by various means are listed in below in Table 52. Because the population was selected to have a high likelihood of relapses occurring during the trial, and because the drug clearly reduces the occurrence of relapses, it is not possible to

> totally eliminate their role in any assessment of the assessment of disability over time. The "Reviewer criteria" have been used to reduce the role of relapses as much as possible in these analyses. The result using those criteria is a more clinically meaningful measure of any effect on disability not attributable to an effect on relapses (Figure 25).

> > APPEARS THIS WAY ON ORIGINAL

#### Summary of 6-month progression of disability analyses

#### Table 52: Summary of analyses of 6MCDW

|                        | T6M0       | CDW <sup>1</sup> | T6MF          | PIRA <sup>2</sup> | T6MCDW - N           | lo relapses <sup>3</sup> | T6MI                 | PCW <sup>4</sup> |
|------------------------|------------|------------------|---------------|-------------------|----------------------|--------------------------|----------------------|------------------|
|                        | OMB        | TERI             | OMB           | TERI              | OMB                  | TERI                     | OMB                  | TERI             |
|                        |            |                  | Study         | 2301              |                      |                          |                      |                  |
| Odds                   | 35:430     | 53:406           | 32:433        | 44:415            | 22:364               | 31:296                   | 22:443               | 36:423           |
| Odds ratio             | 0.6        | 624              | 0.6           | 697               | 0.5                  | 577                      | 0.                   | 584              |
| p-value (KM, log rank) | 0.0        | 314              | 0.1           | 144               | 0.04                 | 484                      | 0.0                  | 202              |
| HR (sponsor)           | 0.607 (0.3 | 96, 0.930)       |               |                   | 0.546 (0.3           | 15, 0.944)               | 0.525 (0.3           | 325, 0.848)      |
| p-value (sponsor)      | 0.0        | )22              |               |                   | 0.3                  | 30                       | 0.0                  | 800              |
|                        |            |                  | Study         | 2302              |                      |                          |                      |                  |
| Odds                   | 36:443     | 46:427           | 33:446        | 36:437            | 20:387               | 22:313                   | 23:456               | 30:443           |
| Odds ratio             | 0.7        | ′54              | 8.0           | 398               | 0.735                |                          | 0.745                |                  |
| p-value (KM, log rank) | 0.2        | 152              | 0.6           | 423               | 0.3318               |                          | 0.1577               |                  |
| HR (sponsor)           | 0.756 (0.4 | 89, 1.170)       |               |                   | 0.758 (0.414, 1.390) |                          | 0.525 (0.325, 0.848) |                  |
| p-value (sponsor)      | 0.2        | 209              |               |                   | 0.3                  | 0.370                    |                      | 800              |
|                        |            |                  | Pooled Studie | es 2301&2302      |                      |                          |                      |                  |
| Odds                   | 71:873     | 99:833           | 65:879        | 80:852            | 42:751               | 53:609                   | 45:899               | 66:866           |
| Odds ratio             | 0.6        | 684              | 0.7           | 788               | 0.6                  | 643                      | 0.0                  | 657              |
| p-value (KM, log rank) | 0.0        | 164              | 0.1444        |                   | 0.0343               |                          | 0.0082               |                  |
| HR (sponsor)           | 0.675 (0.4 | 98, 0.916)       |               |                   | 0.632 (0.421, 0.947) |                          | 0.575 (0.4           | 109, 0.808)      |
| p-value (sponsor)      | 0.0        | )12              |               |                   | 0.0                  | 26                       | 0.0                  | 001              |

1: Time to 3-month confirmed disability worsening of EDSS in days (Full Analysis Set) – sponsor analysis method

2: Time to 3-month progression independent of relapses in days - sponsor analysis method

3: Time to 3-month progression of disability – sponsor analysis method of subgroup with no relapses; review analysis of subgroup derived from subgroup of ADARR with no relapses

4: T3MIPCW Time to 3-month Inverse Probability Censoring Weight

### 7.1.3. Subpopulations

### Annualized Relapse Rate

The rate ratio for the ARR was similar in subgroups based on sex, region and age category (Table 53). There were too few subjects in the non-white race categories to assess the ARR in these subgroups. The ARR was higher in the 18- to 30-year old age group, as expected, but the rate ratio remained similar to the other age groups.

| Subgroup      | N      | Relapse | e free %    | ARR   |       | Data ratio |  |
|---------------|--------|---------|-------------|-------|-------|------------|--|
| Subgroup      | IN IN  | OMB     | TER         | OMB   | TER   | Rate ratio |  |
| Sex           |        |         |             |       |       |            |  |
| F             | 1273   | 83      | 73          | 0.134 | 0.237 | 0.57       |  |
| М             | 609    | 87      | 68          | 0.092 | 0.284 | 0.32       |  |
|               | Region |         |             |       |       |            |  |
| Europe        | 974    | 84      | 72          | 0.121 | 0.239 | 0.51       |  |
| North America | 421    | 81      | 70          | 0.132 | 0.250 | 0.53       |  |
| ROW           | 487    | 87      | 71          | 0.108 | 0.277 | 0.39       |  |
|               |        | Ag      | ge category |       |       |            |  |
| ≥18 - ≤30     | 442    | 82      | 62          | 0.147 | 0.344 | 0.43       |  |
| >30 - ≤40     | 651    | 87      | 71          | 0.097 | 0.25  | 0.39       |  |
| >40 - ≤55     | 785    | 83      | 76          | 0.124 | 0.201 | 0.62       |  |

### Table 53: ARR by subgroups, FAS, PoolC2 ISE

\*: There are not enough subjects in the non-white categories to assess RACE

#### Disability worsening or progression

For the purpose of assessing subgroups, the "IPCW" method was used in which the influence of relapses with reduced by censoring subjects at the time of a relapse at the time of any relapse that occurred on or before the start of a period of disability worsening/progression. The treatment effect favors treatment with ofatumumab for all subgroups Table 54.

### Table 54: 3- and 6-month CDW by subgroups, PoolC2, ISE

|          |      |         | 3-month CDW |       | th CDW   |
|----------|------|---------|-------------|-------|----------|
|          |      | T3MIPCW |             | T6MI  | IPCW     |
| Subgroup | Ν    | OR      | p-value*    | OR    | p-value* |
|          |      | Sex     |             |       |          |
| Female   | 1271 | 0.537   | 0.0016      | 0.604 | 0.0160   |

|                           |                  | 3-mont                       | th CDW            | 6-mon | th CDW   |
|---------------------------|------------------|------------------------------|-------------------|-------|----------|
|                           |                  | T3M                          | IPCW              | T6M   | IPCW     |
| Subgroup                  | Ν                | OR                           | p-value*          | OR    | p-value* |
| Male                      | 605              | 0.796                        | 0.1932            | 0.768 | 0.2317   |
|                           |                  | Region                       |                   |       |          |
| Europe                    | 970              | 0.652                        | 0.0323            | 0.629 | 0.0390   |
| North America             | 419              | 0.648                        | 0.0950            | 0.758 | 0.3163   |
| ROW                       | 487              | 0.477                        | 0.0477            | 0.595 | 0.1588   |
|                           |                  | Race                         |                   |       |          |
| Asian                     | 71               | 0.627                        | 0.7368            | 0.628 | 0.7368   |
| Black or African-American | 65               | 0.397                        | 0.1525            | 0.492 | 0.2676   |
| Other                     | 87               | 0.957                        | 0.5780            | 0.844 | 0.5280   |
| White                     | 1653             | 0.602                        | 0.0019            | 0.657 | 0.0166   |
|                           |                  | Age grou                     | р                 |       |          |
| ≤40                       | 1087             | 0.563                        | 0.0069            | 0.654 | 0.0431   |
| >40                       | 789              | 0.643                        | 0.0447            | 0.642 | 0.0791   |
|                           |                  | Baseline EDSS                |                   |       |          |
| ≤3.5                      | 1344             | 0.602                        | 0.0094            | 0.618 | 0.0270   |
| >3.5                      | 532              | 0.614                        | 0.0280            | 0.691 | 0.1080   |
|                           | Rel              | lapses in the last 24 months |                   |       |          |
| ≤2                        | 1357             | 0.712                        | 0.0324            | 0.691 | 0.0402   |
| >2                        | 519              | 0.413                        | 0.0064            | 0.573 | 0.0948   |
|                           |                  | Baseline GdE l               | esions            |       |          |
| 0                         | 1142             | 0.569                        | 0.0023            | 0.595 | 0.0114   |
| >0                        | <mark>698</mark> | 0.716                        | 0.1849            | 0.735 | 0.2511   |
|                           | Baseline         | volume of T2 les             | sions by quartile | S     |          |
| < 3.46                    | 465              | 0.453                        | 0.0429            | 0.470 | 0.0705   |
| ≥3.46 and <8.46           | 464              | 0.666                        | 0.1138            | 0.584 | 0.1037   |
| ≥8.46 and                 | 161              | 0.620                        | 0 1707            | 0.911 | 0 5462   |
| <18.43                    | 464              | 0.630                        | 0.1707            | 0.811 | 0.5463   |
| ≥18.43                    | 466              | 0.606                        | 0.0350            | 0.658 | 0.0785   |
|                           |                  | Baseline Timed 2             | 25 MWT            |       |          |
| 10 sec or less            | 1636             | 0.624                        | 0.0058            | 0.653 | 0.0219   |
| Over 10 sec               | 237              | 0.600                        | 0.0964            | 0.678 | 0.2132   |

\*: log-rank test; nominal

## 7.1.4. Dose and Dose-Response

One dose was studied in the pivotal trials.

## 7.1.5. Onset, Duration, and Durability of Efficacy Effects

The onset and duration of the treatment effect was not studied.

## 7.2. Additional Efficacy Considerations

### 7.2.1. Considerations on Benefit in the Post-market Setting

There are no specific considerations for the benefit after approval.

### 7.2.2. Other Relevant Benefits

There are no additional relevant benefits

## 7.3. Integrated Assessment of Effectiveness

See the Sections above

There was no significant change in EDSS score from baseline to the End of Study visit for either treatment group and no difference between the treatment groups (Table 55).

#### Table 55: EDSS change from baseline to EOS visit, ISE

| TRT01P   | N   | EDSS Change from Baseline |         |      |     |        |
|----------|-----|---------------------------|---------|------|-----|--------|
| IKIUIP   | N   | Mean                      | Std Dev | Min  | Max | Median |
| OMB 20mg | 883 | -0                        | 0.86    | -4.5 | 4   | 0      |
| TER 14mg | 875 | 0.07                      | 0.85    | -3.5 | 4.5 | 0      |

Source: VISIT\_EOS Subset of PARAM\_EDSS Subset of ADEDSS ISE CHG By (TRT01P).jmp

## 8. Review of Safety

## 8.1. Safety Review Approach

The safety population is identified by the "SAFFL" flag. These subjects received at least one dose of investigational treatment. The "On Treatment" flag only indicates that the treatment start date precedes the start date of any adverse event. The key flag is the "SAFRFL" flag which indicates that the event started on or after the start of investigational treatment and ended within the interval of treatment start date to treatment end date plus 100 days. This allows for the pharmacodynamic effect of either investigational treatment. The population defined by both the SAFFL flag and the SAFRFL flag is therefore used for key safety analyses. The key subject pool is the "C2" pool which includes subjects from the 2 pivotal trials, 2102 and 2103.

Reviewer Comment: The use of the "SAFRFL" flag instead of the "ONTRTFL" flag only adds a small number of AEs or SAEs from the 100-day period after the end of treatment.

## 8.2. Review of the Safety Database

### 8.2.1. Overall Exposure

The overall number of RMS subjects exposed to any ofatumumab dose and route of administration and the duration of exposure are listed in Table 56. Over 824 subjects were exposed to the proposed clinical dose regimen of ofatumumab for one year or more (Table 57).

#### Table 56: Overall exposure to ofatumumab

| Chudu                            | N          |               | Exposure (patient-years) |               |
|----------------------------------|------------|---------------|--------------------------|---------------|
| Study                            | Ofatumumab | Teriflunomide | Ofatumumab               | Teriflunomide |
|                                  | Studies in | n RMS         |                          |               |
| 2311+2302 (Phase 3 in RMS)       | 946        | 936           | 1486.7                   | 1397.8        |
| 115102 (Dose ranging IV in RMS)  | 38         |               |                          |               |
| 112831 POC, dose ranging in RMS) | 167        |               | 38.4                     |               |
| OMB 30mg q12w                    | 32         |               | 7.4                      |               |
| OMB 3mg q12w                     | 34         |               | 7.9                      |               |
| OMB 60mg q12w                    | 34         |               | 8.0                      |               |
| OMB 60mg q4w                     | 64         |               | 15.0                     |               |
| G2102 (PFS vs. autoinjector)     | 284        |               | 68.5                     |               |
| Any OMB 20mgSC                   | 123        | 0             | 155                      | 5             |

Source: ADEX ISS

## Table 57: Duration of exposure to ofatumumab, 20 mg SC q4W, or teriflunomide comparator, pool L2

| Duration of owneours | Number of subjects |     |  |
|----------------------|--------------------|-----|--|
| Duration of exposure | ОМВ                | TER |  |
| $\geq$ 6 months      | 889                | 871 |  |
| ≥ 12 months          | 824                | 805 |  |
| ≥ 18 months          | 551                | 506 |  |
| Total                | 1230               | 936 |  |

Source: PARAM\_EXDUR days Subset of PoolL2FL\_Y Subset of ADEX ISS AVAL By (TRT01A).jmp

## 8.2.2. Relevant characteristics of the safety population:

The demographic characteristics of the pooled safety population from studies 2301 and 2302 are listed in Table 58. The characteristics are well balanced by treatment group and typical of an RMS population. The sources of subjects by region and country support translation of the results to the US population.

|                           | OMB 20mg<br>n=946           | TER 14mg<br>n=936 | Totals<br>n=1882 |
|---------------------------|-----------------------------|-------------------|------------------|
| SEX - (                   | count subjects and %        | 11 000            | 111002           |
| F                         | 637 (67.3%)                 | 636 (67.9%)       | 1273 (67.6%)     |
| M                         | 309 (32.7%)                 | 300 (32.1%)       | 609 (32.4%)      |
|                           | AGE                         |                   |                  |
| AGE - mean                | 38.36                       | 37.96             | 38.16            |
| AGE - std.dev.            | 9.04                        | 9.22              | 9.13             |
| AGE - min                 | 18                          | 18                | 18               |
| AGE - max                 | 56                          | 56                | 56               |
| AGE - median              | 39                          | 38                | 38               |
| AGEGR                     | - count subjects and %      |                   | •                |
| <=40                      | 529 (55.9%)                 | 564 (60.3%)       | 1093 (58.1%)     |
| >40                       | 417 (44.1%)                 | 372 (39.7%)       | 789 (41.9%)      |
| RACE -                    | count subjects and %        |                   |                  |
| WHITE                     | 829 (87.6%)                 | 829 (88.6%)       | 1658 (88.1%)     |
| ASIAN                     | 36 (3.8%)                   | 35 (3.7%)         | 71 (3.8%)        |
| OTHER                     | 42 (4.4%)                   | 28 (3.0%)         | 70 (3.7%)        |
| BLACK OR AFRICAN AMERICAN | 28 (3.0%)                   | 38 (4.1%)         | 66 (3.5%)        |
| UNKNOWN                   | 11 (1.2%)                   | 6 (0.6%)          | 17 (0.9%)        |
| RACEGR1                   | 1 - count subjects and %    | -                 |                  |
| White                     | 829 (87.6%)                 | 829 (88.6%)       | 1658 (88.1%)     |
| Other                     | 53 (5.6%)                   | 34 (3.6%)         | 87 (4.6%)        |
| Asian                     | 36 (3.8%)                   | 35 (3.7%)         | 71 (3.8%)        |
| Black or African American | 28 (3.0%)                   | 38 (4.1%)         | 66 (3.5%)        |
| COUNTRY - cr              | ount subjects and over 10 % | Ď                 |                  |
| USA                       | 194 (20.5%)                 | 199 (21.3%)       | 393 (20.9%)      |
| RUS                       | 176 (18.6%)                 | 176 (18.8%)       | 352 (18.7%)      |
| POL                       | 1 <mark>1</mark> 3 (11.9%)  | 130 (13.9%)       | 243 (12.9%)      |
| REGION1                   | - count subjects and %      |                   |                  |
| Eastern Europe            | 280 (29.6%)                 | 278 (29.7%)       | 558 (29.6%)      |
| Others                    | 242 (25.6%)                 | 240 (25.6%)       | 482 (25.6%)      |
| North America and AUS     | 213 (22.5%)                 | 213 (22.8%)       | 426 (22.6%)      |
| Western Europe            | 211 (22.3%)                 | 205 (21.9%)       | 416 (22.1%)      |
| RGSUBGR                   | 1 - count subjects and %    |                   |                  |
| Europe                    | 491 (51.9%)                 | 483 (51.6%)       | 974 (51.8%)      |
| Rest of world             | 245 (25.9%)                 | 242 (25.9%)       | 487 (25.9%)      |
| North America             | 210 (22.2%)                 | 211 (22.5%)       | 421 (22.4%)      |
| RGSUBGR                   | 2 - count subjects and %    |                   | -                |
| Rest of world             | 914 (96.6%)                 | 905 (96.7%)       | 1819 (96.7%)     |
| Asian                     | 32 (3.4%)                   | 31 (3.3%)         | 63 (3.3%)        |
| RGSUBGR                   | 3 - count subjects and %    |                   |                  |
| Europe                    | 491 (51.9%)                 | 483 (51.6%)       | 974 (51.8%)      |
| Rest of world             | 213 (22.5%)                 | 211 (22.5%)       | 424 (22.5%)      |

## Table 58: Demographic characteristics, studies 2301 and 2302 pooled

CDER Clinical Review Template

Version date: September 6, 2017 for all NDAs and BLAs

| OMB 20mg<br>n=946 | TER 14mg<br>n=936    | Totals<br>n=1882                       |
|-------------------|----------------------|----------------------------------------|
| 210 (22.2%)       | 211 (22.5%)          | 421 (22.4%)                            |
| 32 (3.4%)         | 31 (3.3%)            | 63 (3.3%)                              |
|                   | n=946<br>210 (22.2%) | n=946 n=936<br>210 (22.2%) 211 (22.5%) |

Source: JRevISSSeIADSLSAFFL\_Y POOLC2FL\_Y DEMSUMMREPORT2

#### 8.2.3. Adequacy of the safety database:

The size of the individual study databases and the pooled pivotal studies are adequate to assess safety.

## 8.3. Adequacy of Applicant's Clinical Safety Assessments

## 8.3.1. Issues Regarding Data Integrity and Submission Quality

The were no issues related to data integrity or quality.

### 8.3.2. Categorization of Adverse Events

Adverse events were categorized using the standard MedDRA terms. A review of those preferred terms that did not match the verbatim term exactly did not reveal any significant miscoding.

### 8.3.3. Routine Clinical Tests

Routine hematologic tests included a standard CBC plus CD19+ B-cell counts. Clinical chemistry included electrolytes, calcium, magnesium, phosphorus, glucose, total protein, BUN, creatinine albumin, alkaline phosphatase, liver transaminases, bilirubin, creatinine, amylase, total, HDL and LDL cholesterol, triglycerides, and C-reactive protein. Total IgG and IgM levels were collected at regular intervals. Teriflunomide levels were collected periodically. An ECG was done at screening and at the end of treatment. The timing of the key assessments is described in Appendix 13.5.

### 8.4. Safety Results

8.4.1. Deaths

Study 2301

There were no deaths during any phase of study 2301.

Study 2302

There was one death in study 2302 (subject COMB157G2302 (b)(6)). An aortic and vertebral artery dissection occurred 152 days after the last dose of teriflunomide. Transthoracic echocardiography showed left ventricular dysfunction, hypokinesis of the anteroseptal left ventricular region, severe aortic insufficiency. Resuscitation was required during attempted cardiothoracic surgery. Death due to aortic rupture occurred on the day of surgery.

Reviewer Comment: This death is not likely to be related to teriflunomide.

### 8.4.2. Serious Adverse Events

#### Study 2301

One or more serious adverse events occurred in 48 subjects (10.3%) treated with ofatumumab and in 38 subjects (8.2%) of subjects treated with teriflunomide (Table 59). The most common SAEs were in the Infections and Infestations SOC. Events occurring in 2 or more subjects treated with ofatumumab are shown by preferred term in Table 60. The serious infections are listed in Table 61. Appendicitis was the most common serious infection, occurring in 3 ofatumumab subjects and 1 teriflunomide subject. Nine ofatumumab subjects had a serious psychiatric AE compared to no teriflunomide subjects. The preferred terms for these nine subjects are listed in Table 62. Five of 9 of these events were related to depression or suicidality.

| Body System or Organ Class                                          | OMB 20 mg    | TERI 14 mg   |
|---------------------------------------------------------------------|--------------|--------------|
| Infections and infestations                                         | 12 (2.6%)    | 7 (1.5%)     |
| Psychiatric disorders                                               | 9 (1.9%)     | 0 (0.0%)     |
| Injury, poisoning and procedural complications                      | 6 (1.3%)     | 1 (0.2%)     |
| Musculoskeletal and connective tissue disorders                     | 4 (0.9%)     | 6 (1.3%)     |
| Gastrointestinal disorders                                          | 4 (0.9%)     | 3 (0.6%)     |
| Neoplasms benign, malignant and unspecified (incl cysts and polyps) | 4 (0.9%)     | 2 (0.4%)     |
| Reproductive system and breast disorders                            | 3 (0.6%)     | 3 (0.6%)     |
| Nervous system disorders                                            | 3 (0.6%)     | 11 (2.4%)    |
| Ear and labyrinth disorders                                         | 3 (0.6%)     | 0 (0.0%)     |
| Hepatobiliary disorders                                             | 3 (0.6%)     | 1 (0.2%)     |
| Blood and lymphatic system disorders                                | 2 (0.4%)     | 0 (0.0%)     |
| Investigations                                                      | 2 (0.4%)     | 1 (0.2%)     |
| General disorders and administration site conditions                | 1 (0.2%)     | 0 (0.0%)     |
| Respiratory, thoracic and mediastinal disorders                     | 1 (0.2%)     | 3 (0.6%)     |
| Immune system disorders                                             | 1 (0.2%)     | 0 (0.0%)     |
| Renal and urinary disorders                                         | 0 (0.0%)     | 3 (0.6%)     |
| Vascular disorders                                                  | 0 (0.0%)     | 1 (0.2%)     |
| Metabolism and nutrition disorders                                  | 0 (0.0%)     | 1 (0.2%)     |
| Subjects(filtered)                                                  | 48 (10.3%)   | 38 (8.2%)    |
| 1stColltemSubjects                                                  | 465 (100.0%) | 462 (100.0%) |

### Table 59: Serious adverse events by SOC, Safety population, EOT\* + 100 days, study 2301

**CDER Clinical Review Template** 

Version date: September 6, 2017 for all NDAs and BLAs

**Source:** JRevSelADSLSAFFL\_Y SOCbyTRT01AfiltAESER\_Y SAFRFL\_Y \*: EOT = End of Treatment

## Table 60: Serious adverse events by preferred term, Safety population, 2 or more OMB subjects, FAS, EOT + 100 days, study 2301

| Dictionary Derived Term    | OMB 20 mg    | TERI 14 mg   |
|----------------------------|--------------|--------------|
| Appendicitis               | 3 (0.6%)     | 1 (0.2%)     |
| Injection related reaction | 2 (0.4%)     | 0 (0.0%)     |
| Suicidal ideation          | 2 (0.4%)     | 0 (0.0%)     |
| Vertigo                    | 2 (0.4%)     | 0 (0.0%)     |
| Back pain                  | 2 (0.4%)     | 1 (0.2%)     |
| Gastroenteritis            | 2 (0.4%)     | 0 (0.0%)     |
| Total Subjects(filtered)   | 48 (10.3%)   | 38 (8.2%)    |
| 1stColltemSubjects         | 465 (100.0%) | 462 (100.0%) |

Source: JRevSelADSLSAFFL\_Y AEDECODbyTRT01AfiltAESER\_Y SAFRFL\_Y

## Table 61: SAEs, Infections and infestations by preferred term, safety population, EOT plus 100 days, study 2301

| Dictionary Derived Term             | OMB 20 mg    | TERI 14 mg   |
|-------------------------------------|--------------|--------------|
| Appendicitis                        | 3 (0.6%)     | 1 (0.2%)     |
| Gastroenteritis                     | 2 (0.4%)     | 0 (0.0%)     |
| Escherichia urinary tract infection | 1 (0.2%)     | 0 (0.0%)     |
| Cystitis                            | 1 (0.2%)     | 0 (0.0%)     |
| Influenza                           | 1 (0.2%)     | 0 (0.0%)     |
| Kidney infection                    | 1 (0.2%)     | 0 (0.0%)     |
| Neutropenic sepsis                  | 1 (0.2%)     | 0 (0.0%)     |
| Osteomyelitis                       | 1 (0.2%)     | 0 (0.0%)     |
| Upper respiratory tract infection   | 1 (0.2%)     | 0 (0.0%)     |
| Urinary tract infection             | 1 (0.2%)     | 0 (0.0%)     |
| Campylobacter infection             | 0 (0.0%)     | 1 (0.2%)     |
| Pneumonia                           | 0 (0.0%)     | 1 (0.2%)     |
| Influenzal Pneumonia                | 0 (0.0%)     | 1 (0.2%)     |
| Salpingo-oophoritis                 | 0 (0.0%)     | 1 (0.2%)     |
| Tick-borne viral encephalitis       | 0 (0.0%)     | 1 (0.2%)     |
| Abscess sweat gland                 | 0 (0.0%)     | 1 (0.2%)     |
| Subjects(filtered)                  | 12 (2.6%)    | 7 (1.5%)     |
| 1stColltemSubjects                  | 465 (100.0%) | 462 (100.0%) |

Source: JRevSelADSLSAFFL\_Y AEDECODbyTRT01AfiltAESER\_Y SAFRFL\_Y SOC\_INFINF

## Table 62: SAEs, Psychiatric SOC, by preferred term, safety population, EOT plus 100 days, study 2301

| Dictionary Derived Term | OMB 20 mg |
|-------------------------|-----------|
| Suicidal ideation       | 2 (0.4%)  |
| Mental status changes   | 1 (0.2%)  |

| Dictionary Derived Term  | OMB 20 mg    |
|--------------------------|--------------|
| Psychotic disorder       | 1 (0.2%)     |
| Somatic symptom disorder | 1 (0.2%)     |
| Stress                   | 1 (0.2%)     |
| Depression suicidal      | 1 (0.2%)     |
| Suicide attempt          | 1 (0.2%)     |
| Depression               | 1 (0.2%)     |
| Subjects(filtered)       | 9 (1.9%)     |
| 1stColltemSubjects       | 465 (100.0%) |

Source: JRevSelADSLSAFFL\_Y AEDECODbyTRT01AfiltSAFRFL\_Y AESER\_Y SOC\_PSYCH

#### Study 2302

One or more serious adverse events occurred in 38 subjects (7.9%) treated with ofatumumab and in 36 subjects (7.6%) treated with teriflunomide (Table 63). As in study 2301, appendicitis was the most common serious infection, occurring in 5 ofatumumab subjects and one teriflunomide subject (Table 64). There were no notable imbalances by treatment group.

Reviewer Comment: The disproportionate incidence of psychiatric SAEs in the of atumumab group noted in study 2301 (Table 62) was not seen in study 2302.

| Body System or Organ Class                                          | OMB 20 mg    | TERI 14 mg   |
|---------------------------------------------------------------------|--------------|--------------|
| Infections and infestations                                         | 12 (2.5%)    | 10 (2.1%)    |
| Injury, poisoning and procedural complications                      | 7 (1.5%)     | 8 (1.7%)     |
| Neoplasms benign, malignant and unspecified (incl cysts and polyps) | 5 (1.0%)     | 2 (0.4%)     |
| Musculoskeletal and connective tissue disorders                     | 4 (0.8%)     | 2 (0.4%)     |
| Gastrointestinal disorders                                          | 4 (0.8%)     | 1 (0.2%)     |
| Nervous system disorders                                            | 4 (0.8%)     | 4 (0.8%)     |
| Cardiac disorders                                                   | 3 (0.6%)     | 1 (0.2%)     |
| General disorders and administration site conditions                | 2 (0.4%)     | 1 (0.2%)     |
| Hepatobiliary disorders                                             | 2 (0.4%)     | 2 (0.4%)     |
| Psychiatric disorders                                               | 1 (0.2%)     | 2 (0.4%)     |
| Reproductive system and breast disorders                            | 1 (0.2%)     | 5 (1.1%)     |
| Respiratory, thoracic and mediastinal disorders                     | 1 (0.2%)     | 1 (0.2%)     |
| Skin and subcutaneous tissue disorders                              | 1 (0.2%)     | 0 (0.0%)     |
| Renal and urinary disorders                                         | 0 (0.0%)     | 1 (0.2%)     |
| Vascular disorders                                                  | 0 (0.0%)     | 2 (0.4%)     |
| Eye disorders                                                       | 0 (0.0%)     | 1 (0.2%)     |
| Subjects(filtered)                                                  | 38 (7.9%)    | 36 (7.6%)    |
| 1stColltemSubjects                                                  | 481 (100.0%) | 474 (100.0%) |

Source: SAFFL\_Y Subset of ADAE 2302 By (USUBJID, TRT01A, AEBODSYS) NUSUBJIDbyTRT01A By (AEBODSYS) \*: EOT = End of Treatment

## Table 64: Serious adverse events by preferred term, safety population, 2 or more OMB subjects, FAS, EOT + 100 days, study 2302

| Dictionary Derived Term | OMB 20 mg    | TERI 14 mg   |
|-------------------------|--------------|--------------|
| Appendicitis            | 5 (1.0%)     | 1 (0.2%)     |
| Ankle fracture          | 2 (0.4%)     | 0 (0.0%)     |
| Syncope                 | 2 (0.4%)     | 0 (0.0%)     |
| Uterine leiomyoma       | 2 (0.4%)     | 1 (0.2%)     |
| Basal cell carcinoma    | 2 (0.4%)     | 1 (0.2%)     |
| Urinary tract infection | 2 (0.4%)     | 2 (0.4%)     |
| Cholelithiasis          | 2 (0.4%)     | 0 (0.0%)     |
| Subjects(filtered)      | 38 (7.9%)    | 36 (7.6%)    |
| 1stColltemSubjects      | 481 (100.0%) | 474 (100.0%) |

Source: JRevSelADSLSAFFL\_Y AEDECODbyTRT01AfiltSAFRFL\_Y AESER\_Y

## Table 65: SAEs, Infections and infestations SOC by preferred term, safety population, EOT plus100 days, study 2302

| Dictionary Derived Term           | OMB 20 mg    | TERI 14 mg   |
|-----------------------------------|--------------|--------------|
| Appendicitis                      | 5 (1.0%)     | 1 (0.2%)     |
| Urinary tract infection           | 2 (0.4%)     | 2 (0.4%)     |
| Lower respiratory tract infection | 1 (0.2%)     | 0 (0.0%)     |
| Pneumonia                         | 1 (0.2%)     | 0 (0.0%)     |
| Respiratory tract infection viral | 1 (0.2%)     | 0 (0.0%)     |
| Influenza                         | 1 (0.2%)     | 0 (0.0%)     |
| Gastroenteritis                   | 1 (0.2%)     | 0 (0.0%)     |
| Urosepsis                         | 1 (0.2%)     | 0 (0.0%)     |
| Osteomyelitis                     | 0 (0.0%)     | 1 (0.2%)     |
| Paronychia                        | 0 (0.0%)     | 1 (0.2%)     |
| Peritonitis                       | 0 (0.0%)     | 1 (0.2%)     |
| Postoperative abscess             | 0 (0.0%)     | 1 (0.2%)     |
| Sepsis                            | 0 (0.0%)     | 1 (0.2%)     |
| Viral infection                   | 0 (0.0%)     | 1 (0.2%)     |
| Cystitis                          | 0 (0.0%)     | 1 (0.2%)     |
| Subjects(filtered)                | 12 (2.5%)    | 10 (2.1%)    |
| 1stColltemSubjects                | 481 (100.0%) | 474 (100.0%) |

Source: JRevSelADSLSAFFL\_Y AEDECODbyTRT01AfiltSAFRFL\_Y AESER\_Y SOC\_INFINF

## 8.4.3. Dropouts and/or Discontinuations Due to Adverse Effects

### Study 2301

Study treatment was discontinued due to an adverse event in 5.8% of subjects treated with ofatumumab and in 5.2% of subjects treated with teriflunomide (Table 66). A reduction in immunoglobulins accounted for 15 (3.2%) of the ofatumumab subjects compared to 4 (0.9%) in the teriflunomide group (Table 67).

## Table 66: Discontinuation of Study Treatment due to a treatment emergent adverse event, study 2301, EOT+100 days, safety population

| Dictionary Derived Term              | Ofatumumab 20 mg | Teriflunomide 14 mg |
|--------------------------------------|------------------|---------------------|
| Blood immunoglobulin M decreased     | 10 (2.2%)        | 3 (0.6%)            |
| Alopecia                             | 0 (0.0%)         | 4 (0.9%)            |
| Immunoglobulins decreased            | 3 (0.6%)         | 0 (0.0%)            |
| Diarrhoea                            | 0 (0.0%)         | 3 (0.6%)            |
| Multiple sclerosis relapse           | 0 (0.0%)         | 3 (0.6%)            |
| Blood immunoglobulin G decreased     | 1 (0.2%)         | 1 (0.2%)            |
| Dyspnoea                             | 1 (0.2%)         | 0 (0.0%)            |
| Flatulence                           | 1 (0.2%)         | 0 (0.0%)            |
| Gamma-glutamyltransferase increased  | 1 (0.2%)         | 0 (0.0%)            |
| Gastroenteritis                      | 1 (0.2%)         | 0 (0.0%)            |
| Depression suicidal                  | 1 (0.2%)         | 0 (0.0%)            |
| Blood immunoglobulin M abnormal      | 1 (0.2%)         | 0 (0.0%)            |
| Intentional overdose                 | 1 (0.2%)         | 0 (0.0%)            |
| Invasive breast carcinoma            | 1 (0.2%)         | 0 (0.0%)            |
| Blood creatinine increased           | 1 (0.2%)         | 0 (0.0%)            |
| Liver function test increased        | 1 (0.2%)         | 0 (0.0%)            |
| Pulmonary sarcoidosis                | 1 (0.2%)         | 0 (0.0%)            |
| Respiratory tract infection          | 1 (0.2%)         | 0 (0.0%)            |
| Suicide attempt                      | 1 (0.2%)         | 0 (0.0%)            |
| Upper respiratory tract infection    | 1 (0.2%)         | 0 (0.0%)            |
| Weight increased                     | 1 (0.2%)         | 0 (0.0%)            |
| Abdominal pain                       | 0 (0.0%)         | 1 (0.2%)            |
| Abdominal pain upper                 | 0 (0.0%)         | 1 (0.2%)            |
| Aspartate aminotransferase increased | 1 (0.2%)         | 0 (0.0%)            |
| Blood pressure increased             | 0 (0.0%)         | 1 (0.2%)            |
| Cervix carcinoma                     | 0 (0.0%)         | 1 (0.2%)            |
| Colitis microscopic                  | 0 (0.0%)         | 1 (0.2%)            |
| Dehydration                          | 0 (0.0%)         | 1 (0.2%)            |
| Leukopenia                           | 1 (0.2%)         | 0 (0.0%)            |
| Dyspepsia                            | 0 (0.0%)         | 1 (0.2%)            |
| Hepatic enzyme increased             | 0 (0.0%)         | 1 (0.2%)            |
| Interstitial lung disease            | 0 (0.0%)         | 1 (0.2%)            |
| Metrorrhagia                         | 0 (0.0%)         | 1 (0.2%)            |
| Alanine aminotransferase increased   | 1 (0.2%)         | 0 (0.0%)            |
| Nausea                               | 0 (0.0%)         | 1 (0.2%)            |
| Pain in extremity                    | 0 (0.0%)         | 1 (0.2%)            |
| Rash                                 | 0 (0.0%)         | 1 (0.2%)            |
| Rash erythematous                    | 0 (0.0%)         | 1 (0.2%)            |
| Tachycardia                          | 0 (0.0%)         | 1 (0.2%)            |
| Vomiting                             | 0 (0.0%)         | 1 (0.2%)            |
| Subjects(filtered)                   | 27 (5.8%)        | 24 (5.2%)           |
| 1stColltemSubjects                   | 465 (100.0%)     | 462 (100.0%)        |

Source: JRevADSLTRT01AbyAEDECODfiltSAFRFL\_Y AEACN\_WD

Table 67: TEAE related to Immunoglobulin reduction leading to discontinuation of treatment, EOT+100 days safety population, study 2301

| Dictionary Derived Term          | Ofatumumab 20 mg | Teriflunomide 14 mg |
|----------------------------------|------------------|---------------------|
| Blood immunoglobulin M decreased | 10 (2.2%)        | 3 (0.6%)            |
| Immunoglobulins decreased        | 3 (0.6%)         | 0 (0.0%)            |
| Blood immunoglobulin G decreased | 1 (0.2%)         | 1 (0.2%)            |
| Blood immunoglobulin M abnormal  | 1 (0.2%)         | 0 (0.0%)            |
| Subtotal                         | 15 (3.2%)        | 4 (0.9%)            |
| 1stColltemSubjects               | 465 (100.0%)     | 462 (100.0%)        |

Source: JRevADSLTRT01AbyAEDECODfiltSAFRFL\_Y AEACN\_WD

#### Study 2302

Study treatment was discontinued due to an adverse event in 5.6% of subjects treated with ofatumumab and in 5.3% of subjects treated with teriflunomide (Table 68). A reduction in immunoglobulins accounted for 20 (4.2%) of these subjects in the ofatumumab group and 3 (0.6%) subjects in the placebo group (Table 69).

## Table 68: Discontinuation of Study Treatment due to a treatment emergent adverse event,safety population, study 2302

| AEDECOD                              | Ofatumumab 20 mg | Teriflunomide 14 mg |
|--------------------------------------|------------------|---------------------|
| Blood immunoglobulin M decreased     | 9 (1.9%)         | 3 (0.6%)            |
| Immunoglobulins decreased            | 7 (1.5%)         | 0 (0.0%)            |
| Blood immunoglobulin G abnormal      | 2 (0.4%)         | 0 (0.0%)            |
| Dizziness                            | 1 (0.2%)         | 0 (0.0%)            |
| Enlarged uvula                       | 1 (0.2%)         | 0 (0.0%)            |
| Blood immunoglobulin M abnormal      | 1 (0.2%)         | 0 (0.0%)            |
| Blood immunoglobulin G decreased     | 1 (0.2%)         | 0 (0.0%)            |
| Injection related reaction           | 1 (0.2%)         | 1 (0.2%)            |
| Mechanical urticaria                 | 1 (0.2%)         | 0 (0.0%)            |
| Myocardial infarction                | 1 (0.2%)         | 0 (0.0%)            |
| Pharyngeal swelling                  | 1 (0.2%)         | 0 (0.0%)            |
| Pulmonary sarcoidosis                | 1 (0.2%)         | 0 (0.0%)            |
| Pyrexia                              | 1 (0.2%)         | 0 (0.0%)            |
| Rash generalised                     | 1 (0.2%)         | 0 (0.0%)            |
| Rheumatic disorder                   | 1 (0.2%)         | 0 (0.0%)            |
| Urinary incontinence                 | 1 (0.2%)         | 0 (0.0%)            |
| Vertigo                              | 1 (0.2%)         | 0 (0.0%)            |
| Abdominal pain                       | 0 (0.0%)         | 1 (0.2%)            |
| Alanine aminotransferase increased   | 0 (0.0%)         | 5 (1.1%)            |
| Alopecia                             | 0 (0.0%)         | 1 (0.2%)            |
| Anxiety disorder                     | 0 (0.0%)         | 1 (0.2%)            |
| Aspartate aminotransferase increased | 0 (0.0%)         | 2 (0.4%)            |
| Blood alkaline phosphatase increased | 0 (0.0%)         | 1 (0.2%)            |
| Blood pressure increased             | 0 (0.0%)         | 1 (0.2%)            |

**CDER Clinical Review Template** 

Version date: September 6, 2017 for all NDAs and BLAs

| AEDECOD                             | Ofatumumab 20 mg | Teriflunomide 14 mg |
|-------------------------------------|------------------|---------------------|
| Delusion                            | 0 (0.0%)         | 1 (0.2%)            |
| Gamma-glutamyltransferase increased | 0 (0.0%)         | 1 (0.2%)            |
| Hepatic enzyme increased            | 0 (0.0%)         | 1 (0.2%)            |
| Hepatitis B core antibody positive  | 0 (0.0%)         | 1 (0.2%)            |
| Latent tuberculosis                 | 0 (0.0%)         | 1 (0.2%)            |
| Liver function test increased       | 0 (0.0%)         | 1 (0.2%)            |
| Lymphopenia                         | 0 (0.0%)         | 1 (0.2%)            |
| Mood altered                        | 0 (0.0%)         | 1 (0.2%)            |
| Multiple sclerosis relapse          | 0 (0.0%)         | 1 (0.2%)            |
| Nausea                              | 0 (0.0%)         | 1 (0.2%)            |
| Oedema peripheral                   | 0 (0.0%)         | 1 (0.2%)            |
| Rash pruritic                       | 0 (0.0%)         | 2 (0.4%)            |
| Sepsis                              | 0 (0.0%)         | 1 (0.2%)            |
| Transaminases increased             | 0 (0.0%)         | 1 (0.2%)            |
| Subjects(filtered)                  | 27 (5.6%)        | 25 (5.3%)           |
| 1stColltemSubjects                  | 481 (100.0%)     | 474 (100.0%)        |

Source: JRev2302ADSLTRT01AbyAEDECODfiltSAFRFL\_Y AEACN\_DC

## Table 69: TEAE related to Immunoglobulin reduction leading to discontinuation of treatment, safety population, study 2302

| AEDECOD                          | Ofatumumab 20 mg | Teriflunomide 14 mg |
|----------------------------------|------------------|---------------------|
| Blood immunoglobulin M decreased | 9 (1.9%)         | 3 (0.6%)            |
| Immunoglobulins decreased        | 7 (1.5%)         | 0 (0.0%)            |
| Blood immunoglobulin G abnormal  | 2 (0.4%)         | 0 (0.0%)            |
| Blood immunoglobulin M abnormal  | 1 (0.2%)         | 0 (0.0%)            |
| Blood immunoglobulin G decreased | 1 (0.2%)         | 0 (0.0%)            |
| Subtotal                         | 20 (4.2%)        | 3 (0.6%)            |
| 1stColltemSubjects               | 481 (100.0%)     | 474 (100.0%)        |

Source: JRev2302ADSLTRT01AbyAEDECODfiltSAFRFL\_Y AEACN\_DC

### 8.4.4. Significant Adverse Events

### 8.4.5. Treatment Emergent Adverse Events and Adverse Reactions

#### Study 2301

One or more adverse events occurred in 82.2% of subjects treated with ofatumumab and in 82.3% of those treated with teriflunomide. Infections were the most common adverse events in both treatment groups (Table 70). There were no notable differences by SOC between the treatment groups, with the possible exception of the Skin and Subcutaneous Tissue Disorders SOC where there were more events in the teriflunomide group. Although hepatobiliary disorders were uncommon, there were twice as many events in the ofatumumab group. The most common adverse event terms are listed by treatment group in Table 71.

| Body System or Organ Class                                          | OMB 20 mg    | TERI 14 mg   |
|---------------------------------------------------------------------|--------------|--------------|
| Infections and infestations                                         | 229 (49.2%)  | 238 (51.5%)  |
| Nervous system disorders                                            | 128 (27.5%)  | 148 (32.0%)  |
| General disorders and administration site conditions                | 126 (27.1%)  | 107 (23.2%)  |
| Musculoskeletal and connective tissue disorders                     | 123 (26.5%)  | 124 (26.8%)  |
| Injury, poisoning and procedural complications                      | 117 (25.2%)  | 111 (24.0%)  |
| Gastrointestinal disorders                                          | 104 (22.4%)  | 135 (29.2%)  |
| Investigations                                                      | 94 (20.2%)   | 86 (18.6%)   |
| Psychiatric disorders                                               | 74 (15.9%)   | 60 (13.0%)   |
| Skin and subcutaneous tissue disorders                              | 71 (15.3%)   | 116 (25.1%)  |
| Respiratory, thoracic and mediastinal disorders                     | 48 (10.3%)   | 56 (12.1%)   |
| Reproductive system and breast disorders                            | 34 (7.3%)    | 44 (9.5%)    |
| Renal and urinary disorders                                         | 27 (5.8%)    | 37 (8.0%)    |
| Ear and labyrinth disorders                                         | 24 (5.2%)    | 22 (4.8%)    |
| Metabolism and nutrition disorders                                  | 24 (5.2%)    | 27 (5.8%)    |
| Eye disorders                                                       | 22 (4.7%)    | 29 (6.3%)    |
| Vascular disorders                                                  | 20 (4.3%)    | 32 (6.9%)    |
| Blood and lymphatic system disorders                                | 13 (2.8%)    | 21 (4.5%)    |
| Neoplasms benign, malignant and unspecified (incl cysts and polyps) | 11 (2.4%)    | 11 (2.4%)    |
| Immune system disorders                                             | 10 (2.2%)    | 18 (3.9%)    |
| Cardiac disorders                                                   | 9 (1.9%)     | 15 (3.2%)    |
| Hepatobiliary disorders                                             | 9 (1.9%)     | 4 (0.9%)     |
| Endocrine disorders                                                 | 4 (0.9%)     | 2 (0.4%)     |
| Social circumstances                                                | 2 (0.4%)     | 2 (0.4%)     |
| Subjects(filtered)                                                  | 382 (82.2%)  | 380 (82.3%)  |
| 1stColltemSubjects                                                  | 465 (100.0%) | 462 (100.0%) |

#### Table 70: Adverse events by SOC, Safety population, EOT +100 days, study 2301

Source: JRevSelADSLSAFFL\_Y SOCbyTRT01AfiltSAFRFL\_Y

## Table 71: Adverse events by PT, 5% or more of either treatment group, safety population, EOT + 100 days, study 2301

| Dictionary Derived Term           | OMB 20 mg  | TERI 14 mg |
|-----------------------------------|------------|------------|
| Nasopharyngitis                   | 82 (17.6%) | 69 (14.9%) |
| Injection related reaction        | 76 (16.3%) | 77 (16.7%) |
| Headache                          | 57 (12.3%) | 51 (11.0%) |
| Upper respiratory tract infection | 48 (10.3%) | 73 (15.8%) |
| Fatigue                           | 46 (9.9%)  | 40 (8.7%)  |
| Urinary tract infection           | 42 (9.0%)  | 41 (8.9%)  |
| Injection site reaction           | 42 (9.0%)  | 26 (5.6%)  |
| Back pain                         | 37 (8.0%)  | 34 (7.4%)  |
| Influenza                         | 32 (6.9%)  | 29 (6.3%)  |
| Nausea                            | 31 (6.7%)  | 32 (6.9%)  |
| Alopecia                          | 27 (5.8%)  | 64 (13.9%) |
| Blood immunoglobulin M decreased  | 26 (5.6%)  | 13 (2.8%)  |
| Arthralgia                        | 25 (5.4%)  | 23 (5.0%)  |

CDER Clinical Review Template

Version date: September 6, 2017 for all NDAs and BLAs

| Dictionary Derived Term | OMB 20 mg    | TERI 14 mg   |
|-------------------------|--------------|--------------|
| Diarrhoea               | 21 (4.5%)    | 62 (13.4%)   |
| Pain in extremity       | 23 (4.9%)    | 36 (7.8%)    |
| Paraesthesia            | 16 (3.4%)    | 31 (6.7%)    |
| Hypertension            | 15 (3.2%)    | 24 (5.2%)    |
| Subjects(filtered)      | 382 (82.2%)  | 380 (82.3%)  |
| 1stColltemSubjects      | 465 (100.0%) | 462 (100.0%) |

Source: JRevSelADSLSAFFL\_Y AEDECODbyTRT01AfiltSAFRFL\_Y

#### Study 2302

One or more adverse events occurred in 85.0% of subjects treated with ofatumumab and in 86.1% of those treated with teriflunomide (Table 72). Infections were the most common adverse events in both treatment groups. No single infection or type of infection was more common in one treatment group. Fungal infections were uncommon in both groups. There were no cases of PML. The most common individual preferred terms are listed in Table 73. Both injection-related and injection site-related adverse events were more common in the ofatumumab group.

#### AEBODSYS OMB 20 mg TERI 14 mg Infections and infestations 259 (53.8%) 255 (53.8%) Injury, poisoning and procedural complications 161 (33.5%) 115 (24.3%) 144 (29.9%) 152 (32.1%) Nervous system disorders General disorders and administration site conditions 131 (27.2%) 96 (20.3%) Musculoskeletal and connective tissue disorders 124 (25.8%) 106 (22.4%) 151 (31.9%) Gastrointestinal disorders 120 (24.9%) 107 (22.2%) Investigations 106 (22.4%) Skin and subcutaneous tissue disorders 87 (18.1%) 122 (25.7%) 80 (16.6%) 75 (15.8%) Psychiatric disorders Respiratory, thoracic and mediastinal disorders 58 (12.1%) 61 (12.9%) 35 (7.3%) 45 (9.5%) Vascular disorders Eye disorders 33 (6.9%) 30 (6.3%) Metabolism and nutrition disorders 29 (6.0%) 45 (9.5%) Renal and urinary disorders 25 (5.2%) 36 (7.6%) Reproductive system and breast disorders 24 (5.0%) 35 (7.4%) Blood and lymphatic system disorders 19 (4.0%) 23 (4.9%) Cardiac disorders 17 (3.5%) 18 (3.8%) Ear and labyrinth disorders 17 (3.5%) 12 (2.5%) Neoplasms benign, malignant and unspecified (incl cysts and polyps) 13 (2.7%) 12 (2.5%) Hepatobiliary disorders 8 (1.7%) 13 (2.7%) Immune system disorders 6 (1.2%) 9 (1.9%) Endocrine disorders 5 (1.0%) 1 (0.2%) Social circumstances 1 (0.2%) 0 (0.0%) Congenital, familial and genetic disorders 1 (0.2%) 1 (0.2%) Subjects(filtered) 409 (85.0%) 408 (86.1%)

#### Table 72: Treatment emergent adverse events by SOC, EOT + 100 days, study 2302

#### **CDER Clinical Review Template**

Version date: September 6, 2017 for all NDAs and BLAs

| AEBODSYS           | OMB 20 mg    | TERI 14 mg   |
|--------------------|--------------|--------------|
| 1stColltemSubjects | 481 (100.0%) | 474 (100.0%) |
|                    |              |              |

Source: JRev2302 AEBODSYSbyADSLTRT01AfiltSAFRFL\_Y

## Table 73: Treatment emergent adverse events by preferred term, EOT+100days, 5% or more in either treatment group, study 2302

| AEDECOD                           | Ofatumumab 20 mg | Teriflunomide 14 mg |
|-----------------------------------|------------------|---------------------|
| Injection related reaction        | 119 (24.7%)      | 66 (13.9%)          |
| Nasopharyngitis                   | 88 (18.3%)       | 87 (18.4%)          |
| Headache                          | 69 (14.3%)       | 65 (13.7%)          |
| Injection site reaction           | 61 (12.7%)       | 26 (5.5%)           |
| Urinary tract infection           | 55 (11.4%)       | 37 (7.8%)           |
| Upper respiratory tract infection | 49 (10.2%)       | 47 (9.9%)           |
| Back pain                         | 35 (7.3%)        | 24 (5.1%)           |
| Blood immunoglobulin M decreased  | 30 (6.2%)        | 8 (1.7%)            |
| Influenza                         | 30 (6.2%)        | 30 (6.3%)           |
| Nausea                            | 30 (6.2%)        | 32 (6.8%)           |
| Diarrhoea                         | 28 (5.8%)        | 49 (10.3%)          |
| Anxiety                           | 28 (5.8%)        | 18 (3.8%)           |
| Alopecia                          | 27 (5.6%)        | 74 (15.6%)          |
| Fatigue                           | 25 (5.2%)        | 32 (6.8%)           |
| Insomnia                          | 24 (5.0%)        | 19 (4.0%)           |
| Depression                        | 24 (5.0%)        | 24 (5.1%)           |
| Arthralgia                        | 24 (5.0%)        | 21 (4.4%)           |
| Pain in extremity                 | 23 (4.8%)        | 30 (6.3%)           |
| Hypertension                      | 20 (4.2%)        | 31 (6.5%)           |
| Subjects(filtered)                | 409 (85.0%)      | 408 (86.1%)         |
| 1stColltemSubjects                | 481 (100.0%)     | 474 (100.0%)        |

Source: JRev2302 AEDECODbyADSLTRT01AfiltSAFRFL\_Y

### 8.4.6. Laboratory Findings

#### Study 2301

#### <u>Hematology</u>

<u>Leukocytes</u>: The median change during the RCP was +3% for those treated with ofatumumab compared to -9% for those treated with teriflunomide. The proportion of subjects with a leukocyte count below the LLN at any visit was 8% in the ofatumumab group compared to 23.8% in the teriflunomide group. There were no subjects in the ofatumumab group with a grade 3 reduction  $(1-2X10^9/L)$  compared to 5 teriflunomide subjects.

Reviewer Comment: One subject treated with of a tumumab (Subject <sup>(0)(0)</sup>) did have a grade 3 reduction on one occasion at study week 48 but that was 12

# weeks after discontinuation of study treatment due to a new diagnosis of invasive breast cancer.

<u>Neutrophils</u>: The median change during the RCP was +5% for those treated with ofatumumab and -15% for teriflunomide subjects. The proportion with a neutrophil count below the LLN at any visit was 16.1% of the ofatumumab group compared to 39% for the teriflunomide group. Three ofatumumab subjects and 4 teriflunomide subjects had a grade 4 reduction (<0.2X10<sup>9</sup>/L).

<u>Lymphocytes</u>: The median reduction during the RCP for both treatment groups was 10%. Five percent of ofatumumab subjects and 7% of teriflunomide subjects had a level below the LLN at any assessment. There were no reductions above a toxicity grade of 1.

Reviewer Comment: In general, reductions in white cell counts were more prominent in the teriflunomide group. Adverse events related to a reduction of WBCs are not prominent in either treatment group. Ofatumumab subject (<sup>b)(6)</sup> had an SAE of neutropenic sepsis. This subject had not received any immunotherapy prior to being randomized to ofatumumab in this trial. She developed mouth ulcerations on day 518 while on treatment. On Day 520, she was hospitalized and was diagnosed with neutropenic sepsis. The neutrophil count was 0.26 × 10<sup>9</sup>/L (CTCAE grade 2). Treatment included meropenem. The event was considered resolved by day 522.

<u>Hemoglobin, Hematocrit, RBCs, platelets</u>: There were no significant changes in any red blood cell assessments or in platelet counts.

## <u>Chemistry</u>

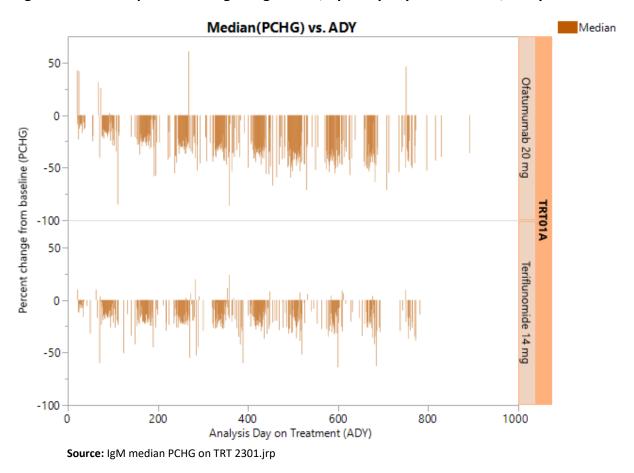
## Liver transaminases, bilirubin, alkaline phosphatase

<u>ALT</u>: For all visits, the median change in ALT was a decline of 6% in the ofatumumab group and an increase of 10% in the teriflunomide group. The proportion of subjects with one or more values above the ULN was 13% in the ofatumumab group and 25% in the teriflunomide group. One subject in each treatment group had a grade 3 elevation (>5 but <20X).

<u>AST</u>: For all visits, the median change in AST was zero for the ofatumumab group and an increase of 7% in the teriflunomide group. The proportion of subjects with one or more values above the ULN was 8% in the ofatumumab group and 14% in the teriflunomide group. One subject in each treatment group a grade 3 elevation (>5 but ≤20X).

123

<u>Bilirubin</u>: For all visits, the median change in bilirubin was zero for both treatment groups. The proportion of subjects with a value above the ULN was 7% for the ofatumumab group and 8% for the teriflunomide group. Eleven ofatumumab subjects (2%) and 9 teriflunomide subjects had a grade 3 elevation (>3 but ≤10X).


## Renal function

Patients with a GFR below 30 mL/min/1.73m<sup>2</sup> were excluded from the trial. There was no significant change in creatinine level during treatment in either treatment group. No subject treated with ofatumumab had a GFR below 30 during treatment. One subject in the teriflunomide group had a single GFR of essentially zero. This occurred 12 weeks after the end of treatment and appears to be due to a creatinine level that was most likely a lab error.

### **Immunoglobulins**

<u>IgM</u>: There was a reduction in IgM levels in both treatment groups. For all assessments, the median reduction was 28% in the ofatumumab group and 17% in the teriflunomide group. The reduction was seen soon after the start of treatment and remained stable thereafter (Figure 26).

<u>IgG</u>: The median reduction in IgG levels over all assessments was 2% and 9% for the ofatumumab and teriflunomide treatment groups, respectively.



#### Figure 26: Median percent change in IgM level, by study day of treatment, study 2301

CD19 positive cells – see review of ISS (8.10).



### **Hematology**

<u>Leukocytes</u>: The median change during the RCP was +3% for those treated with ofatumumab compared to -8% for those treated with teriflunomide. The proportion of subjects with a leukocyte count below the LLN at any visit was 9% in the ofatumumab group compared to 21% in the teriflunomide group. There were no subjects in the ofatumumab group with a grade 3 reduction (1-2X10<sup>9</sup>/L) compared to 1 teriflunomide subject.

<u>Neutrophils</u>: The median change during the RCP was +3% for those treated with ofatumumab and -14% for teriflunomide subjects. The proportion with a neutrophil count below the LLN at any visit was 15% of the ofatumumab group compared to 38% for the teriflunomide group. Two

ofatumumab subjects and no teriflunomide subjects had a grade 4 reduction (<0.2X10<sup>9</sup>/L).

Reviewer Comment: One of a tumumab subject had a grade 4 reduction on one occasion, week 60, with no associated AEs and one subject had a grade 4 reduction on one occasion, week 48; this subject had no AEs at any time.

<u>Lymphocytes</u>: The median reduction during the RCP for subjects treated with ofatumumab was -6% and for those treated with teriflunomide the reduction was -7%. Six percent of ofatumumab subjects and 7% of teriflunomide subjects had a level below the LLN at any assessment. There were no reductions above a toxicity grade of 1.

Reviewer Comment: As for study 2301, reductions in white blood cell counts were more prominent in the teriflunomide group. For the SMQ "haematopoietic leukopenia, the proportion of subjects was 1.66% for of atumumab subjects compared to 3.38% for teriflunomide.

<u>Hemoglobin, Hematocrit, RBCs, platelets</u>: There were no significant changes in any red blood cell assessments or in platelet counts.

## <u>Chemistry</u>

## Liver transaminases, bilirubin, alkaline phosphatase

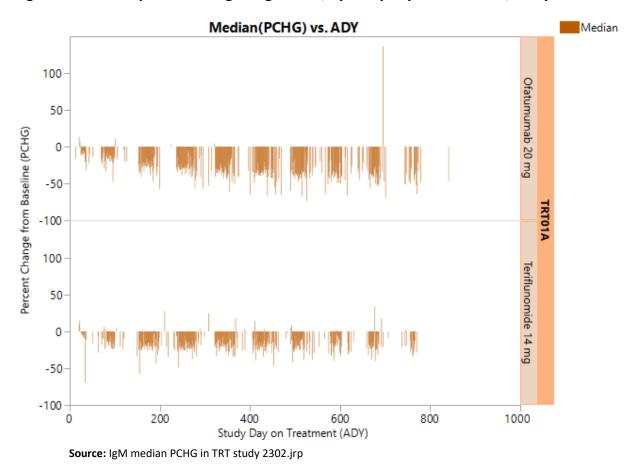
<u>ALT</u>: For all visits, the median change in ALT was a decline of 5% in the ofatumumab group and an increase of 9% in the teriflunomide group. The proportion of subjects with one or more values above the ULN was 14% in the ofatumumab group and 24% in the teriflunomide group. No ofatumumab subjects had a grade 3 or 4 increase; 6 teriflunomide subjects had a grade 3 increase and one had a grade 4 increase.

<u>AST</u>: For all visits, the median change in AST was zero for the ofatumumab group and an increase of 6% in the teriflunomide group. The proportion of subjects with one or more values above the ULN was 7% in the ofatumumab group and 10% in the teriflunomide group. One subject in the ofatumumab group had a grade 3 increase; 3 teriflunomide subjects had a grade 3 elevation (>5 but ≤20X) and one had a grade 4 elevation (> 20X).

<u>Bilirubin</u>: For all visits, the median change in bilirubin was zero for both treatment groups. The proportion of subjects with a value above the ULN was 7% for both treatment groups. Thirteen ofatumumab subjects (3%) and 12 (3%) teriflunomide subjects had a grade 3 elevation (>3 but ≤10X).

<u>Hy's Law criteria</u>: No subject in the ofatumumab group met the Hy's Law criteria. One teriflunomide subject did meet Hy's Law criteria - COMB157G2302\_ <sup>(b) (6)</sup> Five ofatumumab subjects had a greater than 5X elevation of AST or ALT on one or more occasions. Four of these subjects had transient elevations of no apparent cause. One (COMB157G2302 <sup>(b) (6)</sup> had elevations of all transaminases, bilirubin, and ALP attributable to an acute cholecystitis.

# *Reviewer Comment: The narrative for the teriflunomide subject who met Hy's Law criteria is in Section* **13.6***.*


## Renal function

Patients with a GFR below 30 mL/min/1.73m<sup>2</sup> were excluded from the trial. There was no significant change in creatinine level during treatment in either treatment group. No subject had a GFR below 30 during treatment.

## **Immunoglobulins**

<u>IgM</u>: The median reduction in IgM level for all visits on treatment was 28% for those treated with ofatumumab and 17% for those treated with teriflunomide. The reduction was seen soon after the start of treatment and remained relatively stable thereafter (Figure 27).

<u>IgG</u>: The median reduction in IgG level for all visits on treatment was 2% for the ofatumumab group and 9% for the teriflunomide group.



#### Figure 27: Median percent change in IgM level, by study day on treatment, study 2302

CD19 positive cells – see review of ISS (8.10).

### 8.4.7. Vital Signs

#### Study 2301

<u>Blood pressure and pulse rate</u>: A systolic blood pressure (SBP) below 90 mm Hg or above 160 mm Hg was very infrequent in both treatment groups. A diastolic blood pressure (DBP) below 50 mm Hg was very infrequent in both treatment groups. A DBP above 100 mm Hg occurred in 0.86% of ofatumumab subjects but in 5.84% of subjects treated with teriflunomide. There was no significant alteration of pulse rate.

Reviewer Comment: The proportion of subjects with a DBP above 100 mm Hg was somewhat more common in the teriflunomide group, but this difference is not as prominent in study 2302. In the Investigations SOC there were 2

# ofatumumab subjects and 7 teriflunomide subjects with an AE of increased blood pressure.

<u>Weight</u>: There were no subjects in either treatment group with significant weight loss. The proportion of subjects with 7% or greater weight increase was 21.7% in the ofatumumab group and 10.6% in the teriflunomide group.

Reviewer Comment: The modest gain in weight was more prominent in the ofatumumab group in both trials. However, the median percent change was less than 2% for both treatment group. Under the Investigations SOC, there were 2 ofatumumab subjects with an AE of weight gain compared to 9 teriflunomide subjects. The difference is therefore most likely a chance finding in a small trial and not likely to be of clinical significance.

Body temperature: The were no significant alterations in body temperature

Study 2302

<u>Blood pressure and pulse rate</u>: An SBP below 90 mm Hg or above 160 mm Hg was very infrequent in both treatment groups. A DBP below 50 mm Hg was very infrequent in both treatment groups. A DBP above 100 mm Hg occurred in 3.5% of ofatumumab subjects and in 5.3% of subjects treated with teriflunomide. There was no significant alteration of pulse rate.

*Reviewer Comment: In the investigations SOC there were 7 of atumumab subjects and 6 teriflunomide subjects with an AE of increased blood pressure. There are no AEs of a decreased blood pressure.* 

<u>Weight</u>: There were no subjects in either treatment group with significant weight loss. The proportion of subjects with 7% or greater weight increase was 23.9% in the ofatumumab group and 15.4% in the teriflunomide group.

Reviewer Comment: In the investigations SOC there were 5 of a tumumab subjects and 9 teriflunomide subjects with an AE of weight loss; there were 8 of a tumumab subjects and 7 teriflunomide subjects with an AE of weight gain.

Body temperature: The were no significant alterations in body temperature

## 8.4.8. Electrocardiograms (ECGs)

#### Study 2301

There are no events related to ECG changes under the Investigations SOC. The broad SMQ for Cardiac arrhythmias does not indicate a significant incidence in either treatment group.

#### Study 2302

There are no events related to ECG changes under the Investigations SOC. The broad SMQ for Cardiac arrhythmias does not indicate a significant incidence in either treatment group.

8.4.9. **QT** 

#### Study 2301

The occurrence of changes in the QT interval, corrected by Fridericia's formula, were infrequent and generally small in both treatment groups (Table 74).

Table 74: QTcF changes during RCP, study 2301

| QTcF parameter                         | OMB 20 mg<br>N = 465 |     | TER 14 mg<br>N = 462 |     |
|----------------------------------------|----------------------|-----|----------------------|-----|
|                                        | N                    | %   | N                    | %   |
| CRIT4 flag*                            | 9                    | 1.9 | 18                   | 3.9 |
| QTcF > 450 msec**                      | 11                   | 2.4 | 8                    | 1.7 |
| QTcF > 480 msec**                      | 0                    | 0   | 1                    | 0.2 |
| QTcF >500 msec**                       | 0                    | 0   | 0                    | 0   |
| $\Delta QTcF \ge 30 \text{ msec}^{**}$ | 24                   | 5.2 | 23                   | 5   |
| $\Delta QTcF \ge 60 \text{ msec}^{**}$ | 2                    | 0.4 | 3                    | 0.7 |

Source: PARAM\_SPQTCFS Subset of SAFRFL\_Y Subset of EPOCH\_RCP Subset of ADEG 2301 By (X parameter, USUBJID, TRT01A) NUSUBJID By (X parameter).jmp

\*: QTcF = <350 or >450 for males and <360 or >460 for females

\*\*: reviewer flags

### Study 2302

The occurrence of changes in the QT interval, corrected by Fridericia's formula, were infrequent and generally small in both treatment groups (Table 75).

#### Table 75: QTcF changes during RCP, study 2302

| QTcF parameter                         | OMB 20 mg<br>N = 481 |      | TER 14 mg<br>N = 474 |      |
|----------------------------------------|----------------------|------|----------------------|------|
|                                        | N                    | %    | N                    | %    |
| CRIT4 flag*                            | 6                    | 1.25 | 20                   | 4.22 |
| QTcF > 450 msec**                      | 6                    | 1.25 | 20                   | 4.22 |
| QTcF > 480 msec**                      | 2                    | 0.42 | 4                    | 0.84 |
| QTcF >500 msec**                       | 0                    | 0    | 1                    | 0.21 |
| $\Delta QTcF \ge 30 \text{ msec}^{**}$ | 34                   | 7.1  | 23                   | 4.9  |
| $\Delta QTcF \ge 60 \text{ msec}^{**}$ | 4                    | 0.83 | 4                    | 0.84 |

Source: SPQTCFS Subset of SAFRFL\_Y Subset of EPOCH\_RCP Subset of ADEG 2302 By (X parameter, USUBJID, TRT01A) NUSUBJID By (X parameter).jmp

\*: QTcF = <350 or >450 for males and <360 or >460 for females

\*\*: reviewer flags

## 8.4.10. Immunogenicity

### Study 2301

At baseline there were 4 subjects subsequently treated with ofatumumab who were positive for ADA OMB157 and 3 who were positive for anti-OMB157. At any visit during treatment with ofatumumab, 2 subjects were positive for ADA OMB157 antibody and 3 subjects were positive for anti-OMB antibodies. Two subjects were negative for neutralizing antibody. Only one subject who was positive at baseline was also positive during treatment with ofatumumab

<sup>(b) (6)</sup>). There was therefore only one subject who was negative for ADA OMB157 at baseline but positive during treatment and two subjects who were negative at baseline for anti-OMG who were positive during treatment.

Reviewer Comment: See the Clinical Pharmacology review of the accuracy of the ADA assays.

#### Study 2301

At baseline there were 7 subjects subsequently treated with ofatumumab who were positive for ADA OMB157 and 8 who were positive for anti-OMB157. There were no subjects with neutralizing antibodies at baseline. At any visit during treatment, 3 subjects were positive for ADA OMB157 and 2 were positive for anti-OMB157. No subject had neutralizing antibodies. Two subjects who were positive for both ADA OMB157 and anti-OMB157 at baseline were also positive during treatment, leaving just one subject who was not positive at baseline but became positive during treatment with ofatumumab.

## 8.5. Analysis of Submission-Specific Safety Issues

## 8.5.1. Injection-related reactions

For the pooled populations from studies 2301 and 2302 (Pool C2) a TEAE with the preferred term of injection-related reaction occurred in 20.6% of subjects treated with ofatumumab and in 15.2% of those who received a placebo injection during the RCP (Table 83). Two of the events were serious, both in the ofatumumab group. One in each treatment group led to discontinuation of study drug. Systemic symptoms were most commonly musculoskeletal or a change in vital signs. There are no features that distinguish these reactions in the group treated with ofatumumab compared to those who received a placebo injection (Table 76). The IRR occurred on day 1 (84%) or day 2 (13%) after ofatumumab injections and in essentially 100% of those treated with placebo. Pre-medication may have lowered the incidence, although this was the case in the placebo group as well (Table 77).

### Table 76: Systemic symptoms in subjects with a treatment emergent IRR, ISS pool C2

| PARCAT2                                    | OMB 20mg     | TER 14mg     |
|--------------------------------------------|--------------|--------------|
| Other manifestations                       | 160 (16.9%)  | 103 (11.0%)  |
| Musculoskeletal/connective tissue symptoms | 44 (4.7%)    | 20 (2.1%)    |
| Gastrointestinal symptoms                  | 27 (2.9%)    | 28 (3.0%)    |
| Related to change in vital signs           | 34 (3.6%)    | 20 (2.1%)    |
| Skin/mucosal tissue symptoms               | 20 (2.1%)    | 28 (3.0%)    |
| Respiratory compromise                     | 7 (0.7%)     | 14 (1.5%)    |
| Subjects(filtered)                         | 191 (20.2%)  | 140 (15.0%)  |
| 1stColltemSubjects                         | 946 (100.0%) | 936 (100.0%) |

Source: JRevISS IRR SeIADSLSAFFL\_Y POOLC2FL\_Y PARCAT2byTRT01AfiltANL01FL\_Y PARCAT1\_SYST

### Table 77: Proportion with an IRR by pre-medication, ISS, PoolC2

| Premedication | OMB 20mg    | TER 14mg  |
|---------------|-------------|-----------|
| None          | 114 (12.1%) | 80 (8.5%) |
| Steroids      | 65 (6.9%)   | 65 (6.9%) |
| NSAIDs        | 43 (4.5%)   | 41 (4.4%) |
| Any           | 100 (10.6%) | 87 (9.3%) |

Source: JRev ISS IRR SelADSLSAFFL\_Y POOLC2FL\_Y CRIT1, 2, 3, 4 byTRT01AfiltANL01FL\_Y PARCAT1\_SYST

## 8.6. Safety Analyses by Demographic Subgroups

*Reviewer Comment: Safety analyses by demographic subgroup are included in* 8.10.

# 8.7. Specific Safety Studies/Clinical Trials

Study 112831

Study OMS112831 was the initial proof of concept study intended to explore the safety of a several dose levels administered subcutaneously and to explore efficacy using MRI markers of disease activity. Treatment was for 12 weeks with a placebo comparator arm, at which point the placebo group was treated with the lowest dose of atumumab for 12 weeks so that the total duration of treatment was 24 weeks. In addition to an assessment of multiple dose levels, the study also explored the usefulness of a "conditioning" dose of of atumumab. The conditioning dose was a "a sub-depleting dose of of atumumab given one week prior to a fully-depleting dose to reduce post-injection systemic reactions (PISRs) to the SQ formulation".

There are 231 subjects in the safety dataset. The dosing regimens that were explored are listed in Table 78.

| Dosing regimen (TRT01A) | N  |
|-------------------------|----|
| Ofa30mg q12w            | 16 |
| Ofa30mg q12wc*          | 16 |
| Ofa3mg q12w             | 34 |
| Ofa60mg q12w            | 17 |
| Ofa60mg q12wc*          | 17 |
| Ofa60mg q4w             | 32 |
| Ofa60mg q4wc*           | 32 |
| PBO                     | 67 |

#### Table 78: Dosing regimens, study 112831

Source: SAFFL\_Y Subset of ADSL 112831 By (TRT01A).jmp

\*: "c" indicates a conditioning dose of 3mg at day 0.

The overall proportion of subjects with any AE varied from 38% to 72% compared to 27% in the placebo group. There was no clear relationship to dose or dose frequency. The most common AEs were similar to those in the larger pivotal studies. There were 19 SAE's in those treated with ofatumumab and 6 in the placebo group.

There was one SAE of interest, namely a report of "cytokine release syndrome" in a subject (OMS112831 (b)(6)) treated with ofatumumab 60 mg q12W. The event occurred 7 days after the start of ofatumumab and 4.5 hours after the most recent dose (0 mg on day 1 and 60 mg on day 7). Symptoms were shivering at 4.5 hours after the dose, followed by nausea and vomiting. There was no rash or fever. The subject was hospitalized for observation and was treated with cetirizine and paracetamol. The event resolved within hours.

There was one non-serious AE of "anaphylaxis" (OMS112831- but this event occurred during the 24-week follow-up period and was attributed to erythromycin.

## 8.8. Additional Safety Explorations

## 8.8.1. Human Carcinogenicity or Tumor Development

The incidence of malignant neoplasms was relatively low for both treatment groups (Table 79). No single type of malignancy is prominent. Because the comparator in most of the trials was an immunosuppressant, the lack of a difference between the treatment groups must be interpreted with caution.

Reviewer Comment: The duration of exposure was relatively short and may limit interpretation of the incidence of neoplasms.

| Preferred term (AEDECOD)         | OMB 20mg      | TER 14mg     |
|----------------------------------|---------------|--------------|
| Uterine leiomyoma                | 6 (0.5%)      | 4 (0.4%)     |
| Melanocytic naevus               | 3 (0.2%)      | 1 (0.1%)     |
| Basal cell carcinoma             | 2 (0.2%)      | 2 (0.2%)     |
| Seborrhoeic keratosis            | 2 (0.2%)      | 0 (0.0%)     |
| Skin papilloma                   | 2 (0.2%)      | 4 (0.4%)     |
| Fibroadenoma of breast           | 2 (0.2%)      | 1 (0.1%)     |
| Dysplastic naevus                | 1 (0.1%)      | 0 (0.0%)     |
| Benign neoplasm of skin          | 1 (0.1%)      | 0 (0.0%)     |
| Invasive breast carcinoma        | 1 (0.1%)      | 0 (0.0%)     |
| Lipoma                           | 1 (0.1%)      | 2 (0.2%)     |
| Malignant melanoma in situ       | 1 (0.1%)      | 0 (0.0%)     |
| Benign neoplasm of pineal gland  | 1 (0.1%)      | 0 (0.0%)     |
| Non-Hodgkin's lymphoma recurrent | 1 (0.1%)      | 0 (0.0%)     |
| Anogenital warts                 | 1 (0.1%)      | 0 (0.0%)     |
| Haemangioma of skin              | 1 (0.1%)      | 0 (0.0%)     |
| Adrenal adenoma                  | 1 (0.1%)      | 0 (0.0%)     |
| Acoustic neuroma                 | 0 (0.0%)      | 1 (0.1%)     |
| Benign breast neoplasm           | 0 (0.0%)      | 3 (0.3%)     |
| Cervix carcinoma                 | 0 (0.0%)      | 1 (0.1%)     |
| Colon adenoma                    | 0 (0.0%)      | 1 (0.1%)     |
| Fibrosarcoma                     | 0 (0.0%)      | 1 (0.1%)     |
| Haemangioma of liver             | 0 (0.0%)      | 1 (0.1%)     |
| Intracranial haemangioma         | 0 (0.0%)      | 1 (0.1%)     |
| Neoplasm skin                    | 0 (0.0%)      | 1 (0.1%)     |
| Vulvovaginal warts               | 0 (0.0%)      | 1 (0.1%)     |
| Subjects(filtered)               | 25 (2.0%)     | 23 (2.5%)    |
| 1stColltemSubjects               | 1230 (100.0%) | 936 (100.0%) |

## Table 79: Proportion of subjects with a neoplasm, ISS all

Source: JRevSelADSLISSALL SAFFL\_Y AEDECODbyADSLTRT01AfiltADAESAFRFL\_Y SOC\_NEOPLASMS

## 8.8.2. Human Reproduction and Pregnancy

There were 4 pregnancies reported in studies 23012 and 2302, 3 in female subjects treated with ofatumumab and one in a female partner of a male subject treated with ofatumumab. Two of the pregnancies in females treated with ofatumumab were terminated, one elective and one therapeutic at 8 weeks due to a blighted ovum. The other two resulted in normal newborns. Four pregnancies were reported in ofatumumab subjects in study OMS112831. One resulted in a normal newborn, two were terminated electively, and one was ongoing at the time of the report. No pregnancies were reported in study COMB1572102 or OMS115102.

## 8.8.3. Pediatrics and Assessment of Effects on Growth

Subjects in the pediatric age group were not studied.

## 8.8.4. Overdose, Drug Abuse Potential, Withdrawal, and Rebound

There were no cases of overdose. The potential for drug abuse is minimal. No subjects were identified that may have had drug withdrawal symptoms. There was no indication of an increase in relapses after discontinuation of treatment although this was not specifically studied.

# 8.9. Safety in the Post-market Setting

## 8.9.1. Safety Concerns Identified Through Post-market Experience

There is post-approval experience with the treatment of CLL with ofatumumab, marketed as Arzerra<sup>®</sup>. Experience with the safety of Arzerra is confounded by the concurrent use of other chemotherapeutic drugs and the nature of the disease being treated, namely CLL. There is a black box warning for reactivation of hepatitis B. While this event was not seen during the trials of ofatumumab for RMS, it is a concern with more widespread use of the drug for RMS. PML has also been reported with Arzerra but was not seen in trials for RMS. This too is a risk with more widespread and more prolonged use.

## 8.9.2. Expectations on Safety in the Postmarket Setting

In addition to the concerns raised by the experience with Arzerra, there are concerns raised by the results of the trials in RMS. The reduction in IgM seen with ofatumumab raises a concern that infections may become more prominent with longer term use.

# 8.9.3. Additional Safety Issues From Other Disciplines

No specific safety concerns have been raised up to the time of this review by other disciplines. However, the pharmacology/toxicology and clinical pharmacology reviews are not completed at this time.

## 8.10. Integrated Assessment of Safety

Pooled Pivotal Studies 2301 and 2302 (Pool C2)

The primary population for the analysis of safety for the CSS/ISS includes subjects in studies 2301 and 2302 from the start of treatment to the end of treatment plus 100 days (SAFRFL flag). Adverse events are attributed to the treatment actually taken (TRT01A).

Treatment Emergent Adverse Events

The most common TEAEs by System Organ Class were infections for both treatment groups (Table 80). There were no notable imbalances by SOC by treatment group.

### Table 80: TEAEs by SOC, RCP, EOT+100days, ISS

| AEBODSYS                                                            | OMB 20mg     | TER 14mg     |
|---------------------------------------------------------------------|--------------|--------------|
| Infections and infestations                                         | 507 (53.6%)  | 505 (54.0%)  |
| Nervous system disorders                                            | 279 (29.5%)  | 311 (33.2%)  |
| Gastrointestinal disorders                                          | 234 (24.7%)  | 292 (31.2%)  |
| Injury, poisoning and procedural complications                      | 288 (30.4%)  | 231 (24.7%)  |
| Musculoskeletal and connective tissue disorders                     | 260 (27.5%)  | 241 (25.7%)  |
| General disorders and administration site conditions                | 266 (28.1%)  | 210 (22.4%)  |
| Investigations                                                      | 215 (22.7%)  | 200 (21.4%)  |
| Skin and subcutaneous tissue disorders                              | 162 (17.1%)  | 245 (26.2%)  |
| Psychiatric disorders                                               | 166 (17.5%)  | 142 (15.2%)  |
| Respiratory, thoracic and mediastinal disorders                     | 114 (12.1%)  | 126 (13.5%)  |
| Metabolism and nutrition disorders                                  | 64 (6.8%)    | 85 (9.1%)    |
| Reproductive system and breast disorders                            | 63 (6.7%)    | 81 (8.7%)    |
| Vascular disorders                                                  | 56 (5.9%)    | 82 (8.8%)    |
| Renal and urinary disorders                                         | 57 (6.0%)    | 77 (8.2%)    |
| Eye disorders                                                       | 57 (6.0%)    | 62 (6.6%)    |
| Blood and lymphatic system disorders                                | 45 (4.8%)    | 49 (5.2%)    |
| Ear and labyrinth disorders                                         | 44 (4.7%)    | 36 (3.8%)    |
| Cardiac disorders                                                   | 33 (3.5%)    | 38 (4.1%)    |
| Neoplasms benign, malignant and unspecified (incl cysts and polyps) | 27 (2.9%)    | 24 (2.6%)    |
| Immune system disorders                                             | 19 (2.0%)    | 29 (3.1%)    |
| Hepatobiliary disorders                                             | 17 (1.8%)    | 17 (1.8%)    |
| Endocrine disorders                                                 | 10 (1.1%)    | 3 (0.3%)     |
| Social circumstances                                                | 3 (0.3%)     | 2 (0.2%)     |
| Congenital, familial and genetic disorders                          | 2 (0.2%)     | 1 (0.1%)     |
| Subjects(filtered)                                                  | 946 (100.0%) | 936 (100.0%) |
| 1stColltemSubjects                                                  | 946 (100.0%) | 936 (100.0%) |

Source: JRevISS SeIADSLPOOLC2\_Y SOCbyADSLTRT01AfiltSAFRFL\_Y

#### Infections and Infestations

The 5 most common preferred terms in the SOC Infections and Infestations are listed in Table 81. There is no notable infection or group of infections that was more common in one treatment group. This conclusion is supported by the results from the ODE1 custom MedDRA term group analysis where there were no apparent differences between the treatment groups for the various groupings of terms for infections (Table 84).

# Table 81: Most common non-serious events in the SOC Infections and Infestations during the RCP, ISS

| AEDECOD                           | OMB 20mg    | TER 14mg    |
|-----------------------------------|-------------|-------------|
| Nasopharyngitis                   | 170 (18.0%) | 156 (16.7%) |
| Upper respiratory tract infection | 97 (10.3%)  | 120 (12.8%) |
| Urinary tract infection           | 97 (10.3%)  | 78 (8.3%)   |
| Influenza                         | 62 (6.6%)   | 59 (6.3%)   |
| Sinusitis                         | 30 (3.2%)   | 31 (3.3%)   |

Source: JRevISS SelADSLPOOLC2FL\_Y AEDECODbyADSLTRT01AfiltSAFRFL\_Y SOC\_INF

<u>General disorders and administration site conditions</u>: The only term in this SOC of note was Injection site reaction, which occurred in 10.9% of ofatumumab subjects and in 5.6% of teriflunomide subjects receiving a placebo injection during the RCP.

# Reviewer Comment: There is one event with the preferred term of Drug Withdrawal Syndrome – the verbatim term was sertraline withdrawal.

### **Investigations**

Terms related to a reduction in immunoglobulins are more frequent in subjects treated with ofatumumab and terms related to an increase in transaminases and a decrease in white cells are more common in subjects treated with teriflunomide (Table 82).

### Table 82: Selected preferred terms, Investigations SOC, RCP, ISS

| AEDECOD                              | OMB 20mg  | TER 14mg  |
|--------------------------------------|-----------|-----------|
| Blood immunoglobulin M decreased     | 56 (5.9%) | 21 (2.2%) |
| Alanine aminotransferase increased   | 17 (1.8%) | 37 (4.0%) |
| Aspartate aminotransferase increased | 17 (1.8%) | 23 (2.5%) |
| Immunoglobulins decreased            | 15 (1.6%) | 2 (0.2%)  |
| White blood cell count decreased     | 3 (0.3%)  | 13 (1.4%) |
| Blood immunoglobulin G decreased     | 4 (0.4%)  | 9 (1.0%)  |
| Neutrophil count decreased           | 1 (0.1%)  | 9 (1.0%)  |
| Liver function test increased        | 2 (0.2%)  | 7 (0.7%)  |
| Hepatic enzyme increased             | 2 (0.2%)  | 6 (0.6%)  |
| Lymphocyte count decreased           | 3 (0.3%)  | 4 (0.4%)  |
| Transaminases increased              | 1 (0.1%)  | 3 (0.3%)  |
| Monocyte count decreased             | 1 (0.1%)  | 3 (0.3%)  |
| Blood immunoglobulin G abnormal      | 2 (0.2%)  | 0 (0.0%)  |

**CDER Clinical Review Template** 

Version date: September 6, 2017 for all NDAs and BLAs

| AEDECOD                             | OMB 20mg     | TER 14mg     |
|-------------------------------------|--------------|--------------|
| Blood immunoglobulin M abnormal     | 2 (0.2%)     | 0 (0.0%)     |
| Aspartate aminotransferase abnormal | 0 (0.0%)     | 1 (0.1%)     |
| Subjects(filtered)                  | 201 (21.2%)  | 192 (20.5%)  |
| 1stColltemSubjects                  | 946 (100.0%) | 936 (100.0%) |

Source: JRevISS SelADSLPOOLC2FL\_Y AEDECODbyADSLTRT01AfiltSAFRFL\_Y SOC\_INVESTIG

Reviewer Comment: Despite the increased incidence of elevated transaminases in the Investigations SOC for subjects treated with teriflunomide, there is no evidence of an increase in clinical AE's in the Hepatobiliary SOC. In the MAED analysis of narrow SMQs, there is a suggestion of an increased risk for teriflunomide for severe drug-related hepatic disorders (3 events in 2 subjects vs. none for of atumumab), consistent with the black box warning for severe and fatal liver failure for Aubagio. Although hepatitis B reactivation is included in the Warning and Precautions section of the Arzerra label, no such events occurred during the MS trials.

<u>Blood and lymphatic system disorders</u>: The terms neutropenia and leukopenia occurred in 6 subjects treated with ofatumumab 22 subjects treated with teriflunomide.

Reviewer Comment: In the MAED analysis, the narrow SMQ for haematopoietic leukopenia yields a risk ratio of 0.391 (0.198, 0.737; p=0.002) indicative of a statistically significantly higher risk for the teriflunomide group. There is no indication of a higher risk of cytopenias in MS patients treated with of atumumab. Cytopenias are included in the Warnings and Precautions section of the Arzerra label. However, Arzerra is most commonly used in combination with other chemotherapeutic drugs for the treatment of chronic lymphocytic leukemia.

https://www.accessdata.fda.gov/drugsatfda\_docs/label/2016/125326s063lbl.pdf

<u>Neoplasms</u>: There is no single type of neoplasm that raises a safety concern for either treatment group.

Injury, poisoning and procedural complications

The increased incidence of Injection-related reactions in the ofatumumab group, 20.6% compared to 15.3% in teriflunomide group that received placebo injections during the RCP.

Reviewer Comment: There are no notable imbalances for the individual preferred terms in the remaining SOCs. The MAED analysis of narrow SMQs

> also does not raise any additional safety issues. It should be noted that conclusions about the safety of ofatumumab may be limited by the use of an active comparator. Some safety issues may be common to both drugs, in which case no difference is seen.

Adverse events by preferred term

The most common TEAEs by preferred term are listed in **Table 83**. Injection-related reactions, i.e. those with more systemic symptoms compared to injection-related reactions, were the most common single adverse event. Terms that most likely represent viral upper respiratory infections were the most common as a group (**Table 84**), occurring in 38.8% of ofatumumab subjects and in 37.1% of teriflunomide subjects.

*Reviewer Comment: The sponsor proposed comparable incidence rates of upper respiratory infections for the label.* 

## Table 83: TEAEs by preferred term, EOT+100days, ISS, 2% or more in either treatment group

| AEDECOD                                 | OMB 20mg     | TER 14mg     |
|-----------------------------------------|--------------|--------------|
| Injection related reaction              | 195 (20.6%)  | 143 (15.3%)  |
| Nasopharyngitis                         | 170 (18.0%)  | 156 (16.7%)  |
| Headache                                | 126 (13.3%)  | 116 (12.4%)  |
| Injection site reaction                 | 103 (10.9%)  | 52 (5.6%)    |
| Upper respiratory tract infection       | 97 (10.3%)   | 120 (12.8%)  |
| Urinary tract infection                 | 97 (10.3%)   | 78 (8.3%)    |
| Back pain                               | 72 (7.6%)    | 58 (6.2%)    |
| Fatigue                                 | 71 (7.5%)    | 72 (7.7%)    |
| Influenza                               | 62 (6.6%)    | 59 (6.3%)    |
| Nausea                                  | 61 (6.4%)    | 64 (6.8%)    |
| Blood immunoglobulin M decreased        | 56 (5.9%)    | 21 (2.2%)    |
| Alopecia                                | 54 (5.7%)    | 138 (14.7%)  |
| Diarrhoea                               | 49 (5.2%)    | 111 (11.9%)  |
| Arthralgia                              | 49 (5.2%)    | 44 (4.7%)    |
| Pain in extremity                       | 46 (4.9%)    | 66 (7.1%)    |
| Depression                              | 45 (4.8%)    | 48 (5.1%)    |
| Anxiety                                 | 43 (4.5%)    | 33 (3.5%)    |
| Insomnia                                | 39 (4.1%)    | 33 (3.5%)    |
| Dizziness                               | 39 (4.1%)    | 32 (3.4%)    |
| Pyrexia                                 | 37 (3.9%)    | 26 (2.8%)    |
| Oropharyngeal pain                      | 36 (3.8%)    | 32 (3.4%)    |
| Hypertension                            | 35 (3.7%)    | 55 (5.9%)    |
| Sinusitis                               | 30 (3.2%)    | 31 (3.3%)    |
| Pharyngitis                             | 28 (3.0%)    | 19 (2.0%)    |
| Paraesthesia                            | 27 (2.9%)    | 52 (5.6%)    |
| Abdominal pain                          | 27 (2.9%)    | 31 (3.3%)    |
| Gastroenteritis                         | 27 (2.9%)    | 22 (2.4%)    |
| Cough                                   | 25 (2.6%)    | 37 (4.0%)    |
| Hypoaesthesia                           | 25 (2.6%)    | 34 (3.6%)    |
| Oral herpes                             | 25 (2.6%)    | 25 (2.7%)    |
| Rhinitis                                | 25 (2.6%)    | 22 (2.4%)    |
| Bronchitis                              | 24 (2.5%)    | 33 (3.5%)    |
| Muscle spasms                           | 24 (2.5%)    | 31 (3.3%)    |
| Vertigo                                 | 24 (2.5%)    | 21 (2.2%)    |
| Constipation                            | 24 (2.5%)    | 14 (1.5%)    |
| Muscular weakness                       | 23 (2.4%)    | 13 (1.4%)    |
| Viral upper respiratory tract infection | 22 (2.3%)    | 13 (1.4%)    |
| Migraine                                | 21 (2.2%)    | 17 (1.8%)    |
| Influenza like illness                  | 21 (2.2%)    | 10 (1.1%)    |
| Abdominal pain upper                    | 20 (2.1%)    | 31 (3.3%)    |
| Rash                                    | 20 (2.1%)    | 23 (2.5%)    |
| Vomiting                                | 19 (2.0%)    | 33 (3.5%)    |
| Cystitis                                | 19 (2.0%)    | 15 (1.6%)    |
| Blood creatinine increased              | 19 (2.0%)    | 12 (1.3%)    |
| Subjects(filtered)                      | 791 (83.6%)  | 788 (84.2%)  |
| 1stColltemSubjects                      | 946 (100.0%) | 936 (100.0%) |

Source: JRevISS SelADSLPOOLC2FL\_Y AEDECODbyADSLTRT01AfiltSAFRFL\_Y

#### Injection-related reactions

The most common individual preferred term was an injection related reaction. Nearly all of these events occurred on the first or second day after the most recent dose, both for those receiving an injection of ofatumumab and those receiving an injection of placebo. All but 2 in the ofatumumab group were mild or moderate in severity.

<sup>(b) (b)</sup>. The event was considered One of these 2 grade 3 events occurred in subject G2301serious because the subject was hospitalized. This event occurred on day 1 with the first injection. "It was reported that, 4 hours after the injection, the patient was presented with injection related reaction with symptoms of fever (body temperature of 38°C), tremors, (b) (6) tachycardia, vomiting, and nausea, which resulted in hospitalization on the same day ( <sup>(b) (b)</sup>. Treatment for the event (injection related reaction) included dexamethasone, (<sup>(b) (6)</sup>). No action was taken with the study ondansetron, and pheniramine (all once on <sup>(b) (6)</sup>, the patient medication due to this event (injection related reaction). On Day 3 recovered from the symptoms of tachycardia, vomiting, nausea, fever and the event (injection related reaction) was considered resolved. The patient was discharged from the hospital on Day (b) (6) <sub>//</sub> 3 (

One event in subject G2302\_\_\_\_\_\_<sup>(b) (b)</sup> was not considered serious but did result in discontinuation of study treatment. "The patient received the first injection of study medication on Day 1 \_\_\_\_\_\_<sup>(b) (b)</sup>). Premedication with methylprednisolone was administered prior to the injection. On the same day ( \_\_\_\_\_\_\_<sup>(b) (b)</sup>, 10 minutes after the injection, the patient experienced an injection systemic reaction with symptoms of asthenia, abdominal pain, urticaria and pruritus general. The patient was treated with clemastine fumarate for injection related reaction. Treatment with the study medication was permanently discontinued due the event (injection related reaction)."

| Analysis Columns                                                  | OME | OMB 20mg |     | TER 14mg |  |
|-------------------------------------------------------------------|-----|----------|-----|----------|--|
|                                                                   | N   | %        | N   | %        |  |
| Infection, All                                                    | 493 | 52.1%    | 493 | 52.7%    |  |
| URI, Cold, Rhinitis, Upper Resp Tract Infection, Flu-Like Illness | 367 | 38.8%    | 347 | 37.1%    |  |
| Allergic RXN, Hypersensitivity                                    | 208 | 22.0%    | 166 | 17.7%    |  |
| Infection, Viral                                                  | 150 | 15.9%    | 138 | 14.7%    |  |
| Headache                                                          | 147 | 15.5%    | 140 | 15.0%    |  |
| UTI                                                               | 113 | 11.9%    | 90  | 9.6%     |  |
| Injection Site Reaction (All)                                     | 106 | 11.2%    | 54  | 5.8%     |  |

### Table 84: ODE1 grouping of MedDRA terms, ISS, 5% or more in OMB group

| Analusia Calumna                                                        | OMB              | 20mg  | TER 14mg |       |  |
|-------------------------------------------------------------------------|------------------|-------|----------|-------|--|
| Analysis Columns                                                        | N                | %     | N        | %     |  |
| Asthenia, Fatigue, Malaise, Weakness, Narcolepsy                        | 102              | 10.8% | 99       | 10.6% |  |
| Diarrhea, Colitis, Enteritis, Proctitis, Gastroenteritis, C-Difficile   | 90               | 9.5%  | 146      | 15.6% |  |
| Dyspepsia, N, V, Indigestion, Epigastric Pain, Gastritis, Duodenitis    | 87               | 9.2%  | 103      | 11.0% |  |
| Somnolence, Fatigue, Sedation                                           | 79               | 8.4%  | 78       | 8.3%  |  |
| Abdominal Pain, Distension, Bloating, Spasm, IBS, Megacolon             | 76               | 8.0%  | 86       | 9.2%  |  |
| Nausea, Vomiting                                                        | 68               | 7.2%  | 84       | 9.0%  |  |
| Depression                                                              | 63               | 6.7%  | 60       | 6.4%  |  |
| Influenza                                                               | 62               | 6.6%  | 59       | 6.3%  |  |
| Fall, Dizziness, Balance Disorder                                       | <mark>5</mark> 8 | 6.1%  | 52       | 5.6%  |  |
| Fall, Dizziness, Balance Disorder, Gait Disturbance, Difficulty Walking | <mark>5</mark> 8 | 6.1%  | 52       | 5.6%  |  |
| Arthralgia, Arthritis, Arthrosis                                        | 57               | 6.0%  | 52       | 5.6%  |  |
| Anxiety, Nervousness, Panic Attacks                                     | 51               | 5.4%  | 41       | 4.4%  |  |
| Insomnia, Sleep Disturbance, Abnormal Dreams                            | 49               | 5.2%  | 45       | 4.8%  |  |

#### Adverse events by subgroups

#### By Sex

The distribution of subjects for the ISS by sex is listed in Table 85. The incidence of an AE was slightly higher for females.

### Table 85: Distribution of subjects by sex, RCP, ISS

|                    | OMB         | 20mg        | TER 14mg    |           |  |
|--------------------|-------------|-------------|-------------|-----------|--|
| SEX                | F           | М           | F           | М         |  |
| N                  | 637         | 309         | 636         | 300       |  |
| N, (%) with any AE | 543 (85.2%) | 248 (80.3%) | 551 (86.6%) | 237 (79%) |  |
| Total              | 94          | 46          | 93          | 36        |  |

Source: SAFFL\_Y Subset of PoolC2FL\_Y Subset of ADSL ISS Ir TRT01A By (SEX).jmp

There were generally no major differences by sex and actual treatment for the proportion of subjects with a TEAE (Table 86). The largest difference was the increased proportion infections in females for both treatment groups. This is largely attributable to the occurrence of non-serious urinary tract infections in females (Table 87). TEAEs in the Investigations SOC are more common in males for the ofatumumab group but there is no difference in the teriflunomide group. This appears attributable to a higher occurrence of decreased immunoglobulins in males treated with ofatumumab (Table 88).

### Table 86: TEAEs by SOC by SEX, RCP, ISS

|                                                                     |     | OMB 20mg |     |             |        | TER 14mg |         |       |  |
|---------------------------------------------------------------------|-----|----------|-----|-------------|--------|----------|---------|-------|--|
| AEBODSYS                                                            | Fe  | male     | Ν   | <b>lale</b> | Female |          | Male    |       |  |
| AEBOD313                                                            | Ν   | N = 637  |     | N = 309     |        | 636      | N = 300 |       |  |
|                                                                     | N   | %        | Ν   | %           | N      | %        | N       | %     |  |
| Infections and infestations                                         | 363 | 57.0%    | 125 | 40.5%       | 368    | 57.9%    | 125     | 41.7% |  |
| Nervous system disorders                                            | 197 | 30.9%    | 75  | 24.3%       | 227    | 35.7%    | 73      | 24.3% |  |
| Gastrointestinal disorders                                          | 169 | 26.5%    | 55  | 17.8%       | 205    | 32.2%    | 81      | 27.0% |  |
| Injury, poisoning and procedural complications                      | 203 | 31.9%    | 75  | 24.3%       | 163    | 25.6%    | 63      | 21.0% |  |
| Musculoskeletal and connective tissue disorders                     | 178 | 27.9%    | 69  | 22.3%       | 165    | 25.9%    | 65      | 21.7% |  |
| General disorders and administration site conditions                | 185 | 29.0%    | 72  | 23.3%       | 148    | 23.3%    | 55      | 18.3% |  |
| Skin and subcutaneous tissue disorders                              | 125 | 19.6%    | 33  | 10.7%       | 196    | 30.8%    | 42      | 14.0% |  |
| Investigations                                                      | 115 | 18.1%    | 86  | 27.8%       | 131    | 20.6%    | 61      | 20.3% |  |
| Psychiatric disorders                                               | 118 | 18.5%    | 36  | 11.7%       | 102    | 16.0%    | 33      | 11.0% |  |
| Respiratory, thoracic and mediastinal disorders                     | 77  | 12.1%    | 29  | 9.4%        | 86     | 13.5%    | 31      | 10.3% |  |
| Reproductive system and breast disorders                            | 46  | 7.2%     | 12  | 3.9%        | 68     | 10.7%    | 11      | 3.7%  |  |
| Vascular disorders                                                  | 41  | 6.4%     | 14  | 4.5%        | 60     | 9.4%     | 17      | 5.7%  |  |
| Metabolism and nutrition disorders                                  | 33  | 5.2%     | 20  | 6.5%        | 53     | 8.3%     | 19      | 6.3%  |  |
| Renal and urinary disorders                                         | 41  | 6.4%     | 11  | 3.6%        | 52     | 8.2%     | 21      | 7.0%  |  |
| Eye disorders                                                       | 41  | 6.4%     | 14  | 4.5%        | 45     | 7.1%     | 14      | 4.7%  |  |
| Blood and lymphatic system disorders                                | 24  | 3.8%     | 8   | 2.6%        | 39     | 6.1%     | 5       | 1.7%  |  |
| Ear and labyrinth disorders                                         | 31  | 4.9%     | 10  | 3.2%        | 25     | 3.9%     | 9       | 3.0%  |  |
| Cardiac disorders                                                   | 17  | 2.7%     | 9   | 2.9%        | 28     | 4.4%     | 5       | 1.7%  |  |
| Neoplasms benign, malignant and unspecified (incl cysts and polyps) | 19  | 3.0%     | 5   | 1.6%        | 19     | 3.0%     | 4       | 1.3%  |  |
| Immune system disorders                                             | 12  | 1.9%     | 4   | 1.3%        | 20     | 3.1%     | 7       | 2.3%  |  |
| Hepatobiliary disorders                                             | 13  | 2.0%     | 4   | 1.3%        | 11     | 1.7%     | 6       | 2.0%  |  |
| Endocrine disorders                                                 | 8   | 1.3%     | 1   | 0.3%        | 3      | 0.5%     | 0       | 0.0%  |  |
| Social circumstances                                                | 3   | 0.5%     | 0   | 0.0%        | 2      | 0.3%     | 0       | 0.0%  |  |
| Congenital, familial and genetic disorders                          | 1   | 0.2%     | 0   | 0.0%        | 1      | 0.2%     | 0       | 0.0%  |  |

Source: SAFRFL\_Y Subset of PoolC2 Subset of ADAE ISS By (USUBJID, AEBODSYS, SEX, TRT01A) TRT01AbySEX By (AEBODSYS)

\*: N = NUSUBJID

## CDER Clinical Review Template

Version date: September 6, 2017 for all NDAs and BLAs

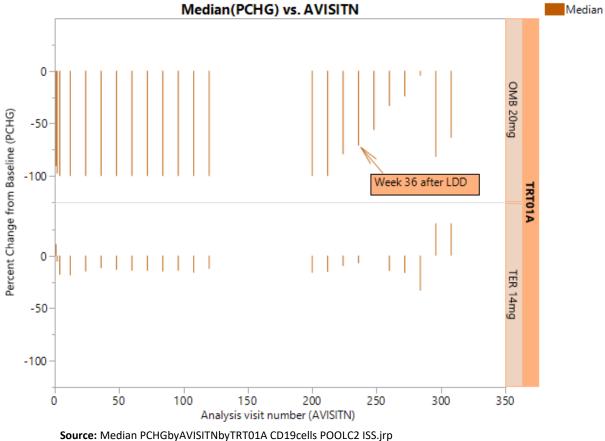
#### Table 87: TEAEs, Infection and Infestations, most frequent, RCP, ISS

|                                   | OMB 20mg |        |                 |       | TER 14mg |       |         |       |
|-----------------------------------|----------|--------|-----------------|-------|----------|-------|---------|-------|
| AEBODSYS                          | Fen      | Female |                 | ale   | Female   |       | Male    |       |
| AEBOD313                          | N = 637  |        | N = 637 N = 309 |       | N = 636  |       | N = 300 |       |
|                                   | N        | %      | N               | %     | N        | %     | N       | %     |
| Nasopharyngitis                   | 123      | 19.3%  | 47              | 15.2% | 106      | 16.7% | 50      | 16.7% |
| Upper respiratory tract infection | 69       | 10.8%  | 28              | 9.1%  | 87       | 13.7% | 33      | 11.0% |
| Urinary tract infection           | 86       | 13.5%  | 11              | 3.6%  | 73       | 11.5% | 5       | 1.7%  |
| Influenza                         | 50       | 7.8%   | 12              | 3.9%  | 50       | 7.9%  | 9       | 3.0%  |

Source: SOC\_INF Subset of SAFRFL\_Y Subset of PoolC2 Subset of ADAE ISS By (USUBJID, AEDECOD, TRT01A, SEX) TRT01AbySEX By (AEDECOD) \*: N = NUSUBJID

## Table 88: TEASs related to immunoglobulins, Investigations, RCP, ISS

|                                  | OMB 20mg |        |     | TER 14mg |         |      |         |      |
|----------------------------------|----------|--------|-----|----------|---------|------|---------|------|
| AEDECOD                          | Fen      | Female |     | Male     |         | nale | Male    |      |
| AEDECOD                          | N = 637  |        | N = | 309      | N = 636 |      | N = 300 |      |
|                                  | *N       | %      | *N  | %        | *N      | %    | *N      | %    |
| Blood immunoglobulin M decreased | 25       | 3.9%   | 31  | 10.0%    | 14      | 2.2% | 7       | 2.3% |
| Immunoglobulins decreased        | 10       | 1.6%   | 5   | 1.6%     | 1       | 0.2% | 1       | 0.3% |
| Blood immunoglobulin G decreased | 1        | 0.2%   | 3   | 1.0%     | 5       | 0.8% | 4       | 1.3% |
| Blood immunoglobulin G abnormal  | 1        | 0.2%   | 1   | 0.3%     | 0       | 0.0% | 0       | 0.0% |
| Blood immunoglobulin M abnormal  | 0        | 0.0%   | 2   | 0.6%     | 0       | 0.0% | 0       | 0.0% |
| Total                            |          | 5.8%   |     | 13.6%    |         | 3.1% |         | 4.0% |


Source: SOC\_INVESTIG Subset of SAFRFL\_Y Subset of PoolC2 Subset of ADAE ISS By (USUBJID, AEDECOD, TRT01A, SEX) TRT01AbySEX By (AEDECOD) \*: N = NUSUBJID

For the ISS population, the median reduction in IgM during treatment with ofatumumab was 29% compared to 17% for teriflunomide. For IgG the reduction was 2% for ofatumumab and 9% for teriflunomide. The reduction in CD19 positive cells for PoolC2 of the ISS is shown in Table 89 and graphically in Figure 28. The reduction in those treated with ofatumumab is nearly 100% by week 2 and remains at that level until approximately 24 weeks after the last dose of the drug.

|                               |      |      | P    | ercent Chang | je from basel | ine  |      |
|-------------------------------|------|------|------|--------------|---------------|------|------|
| AVIOIT                        |      | Me   | an   | Std          | Dev           | Mee  | dian |
| AVISIT                        | N    | OMB  | TER  | OMB          | TER           | OMB  | TER  |
|                               |      | 20mg | 14mg | 20mg         | 14mg          | 20mg | 14mg |
| Week 1                        | 1780 | -85  | 18.7 | 19.7         | 63.4          | -91  | 11.1 |
| Week 2                        | 1791 | -94  | 2.68 | 18.5         | 64.4          | -98  | -5.6 |
| Week 4                        | 1801 | -96  | -12  | 19.9         | 45.5          | -100 | -18  |
| Week 12                       | 1791 | -99  | -11  | 8.51         | 52.5          | -100 | -19  |
| Week 24                       | 1766 | -98  | -6   | 13           | 54            | -100 | -15  |
| Week 36                       | 1738 | -98  | -2.8 | 7.77         | 56.8          | -100 | -12  |
| Week 48                       | 1693 | -97  | -2.6 | 14.3         | 58.8          | -100 | -13  |
| Week 60                       | 1670 | -96  | -4.2 | 17.4         | 64.7          | -100 | -14  |
| Week 72                       | 1629 | -95  | -3.1 | 21.8         | 70.6          | -100 | -14  |
| Week 84                       | 1105 | -95  | -3.4 | 20.9         | 59.4          | -100 | -15  |
| Week 96                       | 685  | -95  | 1.84 | 23.6         | 83.7          | -100 | -14  |
| Week 108                      | 381  | -94  | 3.17 | 20.4         | 99.5          | -100 | -16  |
| Week 120                      | 117  | -93  | 15.4 | 27.1         | 98.6          | -100 | -13  |
| Last assessment on study drug | 1877 | -97  | -6.9 | 16.5         | 56.8          | -100 | -16  |
| Week 12 after LDD             | 1215 | -97  | 3.05 | 14.4         | 165           | -100 | -15  |
| Week 24 after LDD             | 160  | -72  | 10.1 | 27           | 123           | -79  | -9.8 |
| Week 36 after LDD             | 119  | -62  | 5.6  | 37.3         | 116           | -71  | -7   |
| Week 48 after LDD             | 75   | -45  | 20.2 | 49.4         | 145           | -56  | 0    |
| Week 60 after LDD             | 39   | -33  | 19.4 | 44.4         | 141           | -33  | -14  |
| Week 72 after LDD             | 20   | -32  | 90.4 | 59.5         | 225           | -24  | -16  |
| Week 84 after LDD             | 10   | -7.5 | 174  | 93.7         | 418           | -4.5 | -33  |
| Week 96 after LDD             | 7    | -67  | 165  | 45           | 259           | -82  | 30.8 |
| Week 108 after LDD            | 4    | -40  | 30.8 | 75.1         |               | -64  | 30.8 |

#### Table 89: Percent change from baseline, CD19+ cells, PoolC2, ISS

Source: ANL01FL\_Y Subset of CD19 cell count Subset of PARCAT1\_HEME Subset of ADLBOTH ISS PCHG By (AVISIT).jmp



## Figure 28: Percent change from baseline, CD19+ cells, PoolC2, ISS

**Source:** Median PCHGbyAVISITNbyTRT01A CD19cells POOLC2 ISS.jrp **LDD =** Last Dose of Drug

# 9. Advisory Committee Meeting and Other External Consultations

An Advisory Committee Meeting is not recommended.

## 10. Labeling Recommendations

## 10.1. **Prescription Drug Labeling**

See the final Prescribing Information.

## 10.2. Nonprescription Drug Labeling

Not applicable.

## **11.** Risk Evaluation and Mitigation Strategies (REMS)

A REMS is not recommended at this time.

# 12. Postmarketing Requirements and Commitments

See the approval letter for the post-marketing requirements and commitments.

## 13. Appendices

## 13.1. References

- 1. Polman CH, Reingold SC, Banwell B, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011;69:292-302.
- 2. Weinshenker BG, Bass B, Rice GP, et al. The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. Brain 1989;112 (Pt 1):133-46.
- 3. Weinshenker BG, Bass B, Rice GP, et al. The natural history of multiple sclerosis: a

geographically based study. 2. Predictive value of the early clinical course. Brain 1989;112 ( Pt 6):1419-28.

- 4. Confavreux C, Aimard, Devic M. Course and Prognosis of Multiple Sclerosis assessed by the Computerized Data Processing Of 349 Patients. Brain 1980;103:281-300.
- 5. Confavreux C, Vukusic S, Moreau T, Adeleine P. Relapses and progression of disability in multiple sclerosis. N Engl J Med 2000;343:1430-8.
- 6. Lublin FD, Baier M, Cutter G. Effect of relapses on development of residual deficit in multiple sclerosis. Neurology 2003;61:1528-32.
- 7. Paz Soldan MM, Novotna M, Abou Zeid N, et al. Relapses and disability accumulation in progressive multiple sclerosis. Neurology 2015;84:81-8.
- 8. Confavreux C, Vukusic S, Adeleine P. Early clinical predictors and progression of irreversible disability in multiple sclerosis: an amnesic process. Brain 2003;126:770-82.
- 9. Liu C, Blumhardt LD. Disability outcome measures in therapeutic trials of relapsing-remitting multiple sclerosis: effects of heterogeneity of disease course in placebo cohorts. J Neurol Neurosurg Psychiatry 2000;68:450-7.
- 10. Lublin FD, Reingold SC, Cohen JA, et al. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology 2014;83:278-86.
- 11. Wingerchuk DM, Lennon VA, Pittock SJ, Lucchinetti CF, Weinshenker BG. Revised diagnostic criteria for neuromyelitis optica. Neurology 2006;66:1485-9.

# 13.2. **Financial Disclosure**

## Covered Clinical Study (Name and/or Number): Studies 2301, 2302

| Was a list of clinical investigators provided:                                                                                       | Yes 🖂       | No 🗌 (Request list from |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------|--|--|--|--|
|                                                                                                                                      |             | Applicant)              |  |  |  |  |
|                                                                                                                                      |             |                         |  |  |  |  |
| Total number of investigators identified: <u>1310 (</u>                                                                              | study 2301) | ); 1322 (study 2302)    |  |  |  |  |
| Number of investigators who are Sponsor employees (including both full-time and part-time employees): <u>O</u>                       |             |                         |  |  |  |  |
| Number of investigators with disclosable financial interests/arrangements (Form FDA 3455): 7 (study 2301); 6 (study 2302)            |             |                         |  |  |  |  |
| If there are investigators with disclosable finance<br>number of investigators with interests/arrange<br>54.2(a), (b), (c) and (f)): |             |                         |  |  |  |  |
|                                                                                                                                      |             |                         |  |  |  |  |

Compensation to the investigator for conducting the study where the value could be

| influenced by the outcome of the study: <u>0</u>                                                                                  |                                               |                                           |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------|--|--|--|--|
| Significant payments of other sorts: <u>9</u>                                                                                     | Significant payments of other sorts: <u>9</u> |                                           |  |  |  |  |
| Proprietary interest in the product tester                                                                                        | d held by in                                  | vestigator: <u>3</u>                      |  |  |  |  |
| Significant equity interest held by invest                                                                                        | igator in \$:                                 | >50,000 held by 4 investigators           |  |  |  |  |
| Sponsor of covered study: <u>0</u>                                                                                                |                                               |                                           |  |  |  |  |
| Is an attachment provided with details<br>of the disclosable financial<br>interests/arrangements:                                 | Yes 🔀                                         | No 🔄 (Request details from Applicant)     |  |  |  |  |
| Is a description of the steps taken to minimize potential bias provided:                                                          | Yes 🔀                                         | No 🗌 (Request information from Applicant) |  |  |  |  |
| Number of investigators with certification of due diligence (Form FDA 3454, box 3) <u>1269</u><br>(study 2301); 1307 (study 2302) |                                               |                                           |  |  |  |  |
| Is an attachment provided with the reason:                                                                                        | Yes 🔀                                         | No 🗌 (Request explanation from Applicant) |  |  |  |  |

# 13.3. Eligibility Criteria

Inclusion criteria

- 1. Written informed consent must be obtained before any assessment is performed
- 2. Male or female patients aged 18 to 55 years (inclusive) at Screening
- 3. Diagnosis of MS according to the 2010 Revised McDonald criteria (Polman et al. 2011)
- 4. Relapsing MS: relapsing-remitting course (RRMS), or secondary progressive (SPMS) course with disease activity, as defined by Lublin et al 2014
- 5. Disability status at Screening with an EDSS score of 0 to 5.5 (inclusive)
- 6. Documentation of at least: 1 relapse during the previous 1 year OR 2 relapses during the previous 2 years prior to Screening OR a positive Gd-enhancing MRI scan during the year prior to randomization. Note: Screening MRI scan may be used if no positive Gd-enhancing scan exist from prior year.
- 7. Neurologically stable within 1 month prior to randomization

Exclusion criteria

- 1. Patients suspected of not being able or willing to cooperate or comply with study protocol requirements in the opinion of the Investigator
- 2. Patients with primary progressive MS (Polman et al. 2011) or SPMS without disease activity (Lublin et al. 2014)
- 3. Patients meeting criteria for neuromyelitis optica (Wingerchuk et al. 2006)
- 4. Disease duration of more than 10 years in patients with EDSS score of 2 or less
- 5. Pregnant or nursing (lactating) women, where pregnancy is defined as the state of a female after conception and until the termination of gestation, confirmed by a positive hCG laboratory test.
- 6. Women of child-bearing potential, defined as all women physiologically capable of becoming pregnant, unless they are using highly effective methods of contraception during dosing and for at least 12 months after stopping study medication. Given the long elimination time of teriflunomide of up to 2 years, women planning to become pregnant may undergo the accelerated elimination process (as per teriflunomide label) after the 12- month period. Highly effective contraception methods include:
  - Total abstinence (when this is in line with the preferred and usual lifestyle of the subject, if accepted by the local regulation). Periodic abstinence (e.g., calendar, ovulation, symptothermal, post-ovulation methods) and withdrawal are not acceptable methods of contraception.
  - Female sterilization (have had surgical bilateral oophorectomy with or without hysterectomy), total hysterectomy or tubal ligation at least six weeks before taking investigational drug. In case of oophorectomy alone, only when the reproductive status of the woman has been confirmed by follow up hormone level assessment
  - Male partner sterilization (at least 6 months prior to Screening). For female patients on the study, the vasectomized male partner should be the sole partner.
  - Use of oral (estrogen and progesterone), injected or implanted hormonal methods of contraception or placement of an intrauterine device or intrauterine system or other forms of hormonal contraception that have comparable efficacy (failure rate < 1%), for example hormone vaginal ring or transdermal hormone contraception. In case of use of oral contraception, women should have been stable on the same pill for a minimum of 3 months before taking study drug.</li>

Note: Women are considered post-menopausal and not of child bearing potential if they have had 12 months of natural (spontaneous) amenorrhea with an appropriate

clinical profile (e.g. age appropriate, history of vasomotor symptoms) or have had surgical bilateral oophorectomy (with or without hysterectomy), total hysterectomy or

tubal ligation at least six weeks ago. In the case of oophorectomy alone, only when

the reproductive status of the woman has been confirmed by follow up hormone level

assessment is she considered not of child bearing potential.

- 7. Sexually active males, unless they agree to use a condom during active treatment. Male patients should not father a child in this period. Given the long elimination time of teriflunomide of up to 2 years, the male patient wishing to father a child during the study should discontinue study drug and undergo the accelerated elimination process (refer to Section 7.8). A condom is required to be used also by vasectomized males in order to prevent accidental exposure of their female partner to study via seminal fluid
- 8. Patients with an active chronic disease (or stable but treated with immune therapy) of the immune system other than MS (e.g. rheumatoid arthritis, scleroderma, Sjögren's syndrome, Crohn's disease, ulcerative colitis, etc.) or with immunodeficiency syndrome (hereditary immune deficiency, drug-induced immune deficiency)
- 9. Patients with active systemic bacterial, viral or fungal infections, or known to have AIDS or to test positive for HIV antibody at Screening
- 10. Patients with neurological findings consistent with PML or confirmed PML
- 11. Patients at risk of developing or having reactivation of syphilis or tuberculosis (e.g. patients with known exposure to or history of syphilis or tuberculosis). Testing for syphilis and tuberculosis will be done at Screening unless such testing has been performed in the past 6 months prior to Screening with documented negative result. Testing should be done per local clinical practice (for syphilis e.g. by positive rapid plasma reagin (RPR); for tuberculosis e.g. skin test or blood test as per local practice).

NOTE: The Investigator may consult with an infectious disease expert if e.g. test results are unclear or there is suspicion of false positive test results. If the infectious disease expert considers the test results false positive and not clinically relevant, the Investigator

must document (in source data and as a comment in the electronic case report form (eCRF)) that the test results are considered false positive and may then randomize the patient.

- 12. Patients at risk of developing or having reactivation of hepatitis: Positive results at Screening for serological markers for hepatitis (H) A, B, C, and E indicating acute or chronic infection:
  - anti-HA Immunoglobulin (Ig) M (IgM)
  - HBs Ag and/or anti-HBc IgM and/or HB virus deoxyribonucleic acid (DNA)
  - anti-HBs negative and Anti-HBc positive
  - anti-HC lgG or lgM

• anti-HE IgM (if positive IgG and/or IgM, perform HE-RNA PCR and if negative, patient can be randomized)

NOTE: If the Investigator suspects false positive hepatitis serology results, such as an antibody pattern indicating acute hepatitis infection but no corresponding elevated liver enzymes and no signs or symptoms of liver disease, an infectious disease expert may be consulted. If the infectious disease expert finds no evidence of acute or chronic

hepatitis infection and considers the serology results false positive and not clinically relevant, the Investigator must document (in source data and as a comment in the eCRF) that the serology results are considered false positive and may then randomize the patient.

- 13. Have received any live or live-attenuated vaccines (including for varicella-zoster virus or measles) within 2 months prior to randomization
- 14. Have been treated with any of the medications listed below (Note: no wash-out period is required in the case of prior treatment with interferon-β or glatiramer acetate):

| Medication                                                                                                                                                                                    | Exclusionary if used/used within required<br>wash-out period                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Systemic corticosteroids, adrenocorticotropic hormone                                                                                                                                         | 30 days prior to Screening MRI scan                                                                                                                                                                                                                                                                |
| Dimethyl fumarate                                                                                                                                                                             | 1 month prior to randomization                                                                                                                                                                                                                                                                     |
| Intravenous immunoglobulin, fingolimod, natalizumab<br>(patients who have discontinued natalizumab in the 6 months<br>prior to randomization should be evaluated to rule out PML)             | 2 months prior to randomization                                                                                                                                                                                                                                                                    |
| Teriflunomide                                                                                                                                                                                 | 3.5 months prior to randomization or 1 month prior to<br>randomization if patient undergoes AEP and has<br>documented teriflunomide plasma level below 0.02 mg/L<br>before randomization (if discontinued for reason related to<br>safety or lack of efficacy, patient is not eligible, see below) |
| Mildly to moderately immunosuppressive/chemotherapeutic medications (e.g. azathioprine, methotrexate)                                                                                         | 6 months prior to randomization                                                                                                                                                                                                                                                                    |
| Highly immunosuppressive/chemotherapeuticmedications<br>(mitoxantrone, cyclophamide, cladribine)<br>B-cell targeted therapies such as rituximab, ocrelizumab<br>Laquinimod                    | 2 years prior to randomization                                                                                                                                                                                                                                                                     |
| Mitoxantrone (with evidence of cardiotoxicityfollowing<br>treatment or cumulative life-time dose > 60 mg/m <sup>2</sup> )<br>Alemtuzumab<br>Lymphoid irradiation; bone marrow transplantation | Any time                                                                                                                                                                                                                                                                                           |

| Medication                                                                                   | Exclusionary if used/used within required<br>wash-out period |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Other strongly immunosuppressive treatments (with effects potentially lasting over 6 months) |                                                              |
| Ofatumumab                                                                                   |                                                              |
| Teriflunomide (if discontinued for reasons related                                           |                                                              |
| to safety or lack of efficacy)                                                               |                                                              |

- 15. Patients currently treated with or needing treatment with cholestyramine (unless for accelerated teriflunomide elimination, Section 7.8) or leflunomide during the study
- 16. Use of other investigational drugs at the time of enrolment (Screening) or within the prior 30 days, or five elimination half-lives, or until the expected pharmacodynamic effect has returned to baseline, whichever is longer
- 17. History of malignancy of any organ system (other than basal cell carcinoma, in situ squamous cell carcinoma of skin, or in situ carcinoma of cervix of the uterus that have been radically treated e.g. completely excised with clear margins), within the past 5 years, regardless of whether or not there is evidence of local recurrence or metastases
- 18. Any of the following conditions or treatments that may impact the safety of the patient:
  - History of, or current, significant cardiac disease including cardiac failure (NYHA functional class II-IV), myocardial infarction (within 6 months), unstable angina (within 6 months), transient ischemic attack (within 6 months), stroke, cardiac arrhythmias requiring treatment or uncontrolled arterial hypertension
  - Concomitant clinically significant cardiac arrhythmias, e.g., sustained ventricular tachycardia, and clinically significant second- or third-degree AV block without a pacemaker on Screening electrocardiogram (ECG)
  - History of familial long QT syndrome or known family history of Torsades de Pointe
  - History of or active severe respiratory disease, including Chronic Obstructive Pulmonary Disease, interstitial lung disease or pulmonary fibrosis
  - Patients with asthma requiring regular treatment with oral steroids
  - Severe hepatic impairment (Child-Pugh class C) or any chronic liver or biliary disease
  - Patients with severe renal impairment (Glomerular Filtration Rate < 30 ml/min/1.73 m<sup>2</sup>)
  - Any medically unstable condition as determined by the Investigator

19. Any of the following abnormal laboratory values prior to randomization:

- Total or conjugated bilirubin (BIL) greater than 1.5 times upper limit of normal (ULN) range, unless in the context of Gilbert's syndrome
- Alkaline phosphatase (AP) greater than 1.5 times the ULN range
- AST or ALT greater than 1.5 times ULN or gamma-glutamyl-transferase (GGT) greater than 2 times ULN range

- White blood cell (WBC) count < 3,500/mm3 (< 3.5 x 109/L)
- Lymphocyte count < 800/mm3 (< 0.8 x 109/L)
- Serum IgG and IgM < lower limit of normal (according to central laboratory range)
- Any other clinically significant laboratory assessment as determined by the Investigator (e.g. significant anemia, neutropenia, thrombocytopenia, signs of impaired bone marrow function)
- 20. Patients with severe hypoproteinaemia e.g. in nephrotic syndrome
- 21. Patients with any of the following neurologic/psychiatric disorders prior to randomization:
  - Score "yes" on item 4 or item 5 of the Suicidal Ideation section of the Columbia -Suicide Severity Rating Scale (C-SSRS), if this ideation occurred in the past 6 months, or "yes" on any item of the Suicidal Behavior section, except for the "Non -Suicidal Self-Injurious Behavior" (item also included in the Suicidal Behavior section), if this behavior occurred in the past 2 years
  - Ongoing substance abuse (drug or alcohol) or any other factor (i.e. serious psychiatric condition, recurrent substance abuse) that may interfere with the subject's ability to cooperate and comply with the study procedures
  - History of clinically significant CNS disease (e.g. stroke, traumatic brain or spinal injury, history or presence of myelopathy) or neurological disorders which may mimic MS
- 22. Patients unable or unwilling to undergo MRI scans
- 23. History of hypersensitivity to any of the study drugs or excipients (including lactose intolerance) or to drugs of similar chemical classes

Note: If a patient fails on one or more laboratory (or other) assessment criteria, as part of the Screening process, the assessment(s) may be repeated at the discretion of the Investigator, and the patient may be included if criteria are then met, provided the assessments are completed within the Screening or Baseline time window.

\*If additional restrictions and/or assessments are required in order to comply with the local legal (e.g. in regard to a higher legal age for study participation) or regulatory (e.g. in regards to compliance with local prescribing information) requirements, the local requirements must be followed.

## 13.4. Relapse severity criteria

| MILD                        | MODERATE                       | SEVERE                      |
|-----------------------------|--------------------------------|-----------------------------|
| EDSS increase of 0.5 point  | EDSS increase of 1 or 2 points | Exceeding Moderate criteria |
| OR                          | OR                             | OR                          |
| 1-point FS change in one to | 2-point FS change in one or    | Exceeding Moderate criteria |

**CDER Clinical Review Template** 

Version date: September 6, 2017 for all NDAs and BLAs

| MILD          | MODERATE                       | SEVERE                      |
|---------------|--------------------------------|-----------------------------|
| three systems | two systems                    |                             |
|               | OR                             | OR                          |
|               | 1-point change in four or more | Exceeding Moderate criteria |
|               | systems                        |                             |

APPEARS THIS WAY ON ORIGINAL

| Visit              | SCR<br>D -45<br>to -8 | BL<br>D -7<br>to<br>D1 | D1 | D7 | D14 | M1                               | M3 | M6 | М9 | M12/24 | M15/21/27 | M18 | EOT | EOS |
|--------------------|-----------------------|------------------------|----|----|-----|----------------------------------|----|----|----|--------|-----------|-----|-----|-----|
| Phone<br>Interview |                       |                        |    | x  | Х   | Monthly between scheduled visits |    |    |    |        |           |     |     |     |
| PE                 | Х                     | Х                      |    |    |     |                                  |    | Х  |    | Х      |           |     |     |     |
| VS,<br>Weight      | x                     | Х                      | x  | X  | Х   | х                                | х  | х  | х  | x      | Х         | Х   | Х   | X   |
| Routine<br>labs    | x                     |                        |    |    |     | х                                | х  | х  | х  | X      | Х         | Х   | Х   | Х   |
| B-cells            | Х                     | Х                      |    | Х  | Х   | Х                                | Х  | Х  | Х  | Х      | Х         | Х   | Х   | Х   |
| TER level          |                       |                        |    |    |     |                                  |    |    |    |        |           |     |     | Х   |
| IgG, IgM           | Х                     | Х                      |    |    |     | Х                                | Х  | Х  | Х  | Х      | Х         | Х   | X   | Х   |
| ECG                | Х                     | Х                      |    |    |     |                                  |    |    |    |        |           |     | X   | Х   |
| MRI                | Х                     |                        |    |    |     |                                  |    |    |    | Х      |           |     | X   | Х   |
| eCSSRS             | Х                     | Х                      | Х  | Х  | Х   | Х                                | Х  | Х  | Х  | Х      | Х         | Х   | Х   | Х   |
| EDSS               | Х                     | Х                      | Х  |    |     | Х                                | Х  | Х  | Х  | Х      | Х         | Х   | Х   | Х   |
| T25FWT             | Х                     | Х                      |    |    |     | Х                                | Х  | Х  | Х  | Х      | Х         | Х   | Х   | Х   |
| 9HPT               | Х                     | Х                      |    |    |     |                                  |    | Х  |    | Х      |           | Х   | Х   | Х   |

## 13.5. Schedule of Assessments

### 13.6. Narratives

Subject G2302-

Patient [G2302 <sup>(b) (6)</sup>] – SAE (hepatic failure); AE leading to study drug discontinuation (transaminases increased)

Patient details: 38-year-old, female, Caucasian

Treatment group: Teriflunomide

Relationship to study treatment: Suspected

Treatment prematurely discontinued: Yes (transaminases increased)

A 38-year-old, Caucasian female (<sup>(b)(6)</sup>, with relapsing multiple sclerosis (RMS) subtype relapsing remitting multiple sclerosis (RRMS) was randomized in study COMB157G2302, at site <sup>(b)(6)</sup> in <sup>(b)(6)</sup>. The patient received the first dose of study medication (teriflunomide) on Day 1 (<sup>(b)(6)</sup>).

Prior disease-modifying treatment for MS included interferon beta-1b, which was started on <sup>(b) (6)</sup> and discontinued on <sup>(b) (6)</sup>, due to lack of efficacy, glatiramer acetate which was started on <sup>(b) (6)</sup> and discontinued on <sup>(b) (6)</sup>, due to lack of efficacy, and fingolimod hydrochloride which was started on <sup>(b) (6)</sup> and discontinued on <sup>(b) (6)</sup> due to lack of efficacy.

At Screening  $(10^{(b)})$ , the patient's alcohol consumption was less than 1 drink per day. At screening  $(10^{(b)})$ , the patient's aspartate aminotransferase (AST) was 21 U/L (RR:  $\leq$  41 U/L), alanine aminotransferase ALT was 20 U/L (RR:  $\leq$  45 U/L), alkaline phosphatase was 48 U/L (RR: 30 to125 U/L), total bilirubin was 36 µmol/L (RR: 2 to 21 µmol/L), direct bilirubin was 12 µmol/L (RR:  $\leq$  7 µmol/L), and gamma-glutamyl transferase (GGT) was 30 U/L (RR: 2 to 65 U/L).

The patient's relevant medical history included goiter (b) (6). The patient's relevant medical conditions ongoing at time of screening included Gilbert's syndrome (since (b) (6) for which the patient did not receive any treatment, arthralgia (since (b) (6) for which the patient received treatment with ibuprofen, headache (since (b) (6) for which the patient received treatment with ibuprofen, metamizole, flatulence (since (b) (6) for which the patient received treatment with pantoprazole sodium sesquihydrate, domperidone, esomeprazole, , and hepatic cyst (since (b) (6) for which the patient did not receive any treatment.

At the time of event onset, treatment with study medication was ongoing.

On Day 15 (<sup>(b) (6)</sup>), the patient was noted with increased transaminases with AST at 240 U/L (RR: 10 to 35 U/L), ALT at 372 U/L (RR: 10 to 35 U/L), and GGT at 33 U/L (RR: < 40 U/L) and had no clinical symptoms.

No treatment was reported for this event. Treatment with study medication was permanently discontinued due to the event (transaminases increased) and the patient received the last dose of study medication on Day 16

On (b) (6), the patient's abdominal ultrasound showed gastritis (non-serious) and patient was treated with omeprazole ((b) (6) (6) to (b) (6)). It was reported that, the patient underwent teriflunomide accelerated elimination procedure from (b) (6) to (b) (6).

On 14 days after the last dose of study medication, another laboratory work-up showed further increase in the transaminases (see the table below). No alcohol, drug nor Acetaminophen/paracetamol use was reported for that patient. On 20 days after the last dose of study medication, the patient was reported with symptoms of bloating, nausea and vomiting, fatigue, itching, loss of appetite sickness, emesis and flatulence, but she refused admission in the hospital. On the same day (b) (6), the patient showed signs of jaundice

on the skin, clinical hematoma due to coagulation deficit were detected and the patient was diagnosed with hepatic failure with AST at 643 U/L, ALT at 818 U/L, GGT at 43 U/L, and total bilirubin at 129 µmol/L. On the same day <sup>(b) (6)</sup>, hepatitis serology was negative. No treatment was reported for this event. On an unspecified date, an abdominal ultrasound was normal. The events (transaminases increased, hepatic failure) were considered resolved on <sup>(b) (6)</sup> with normal serum transaminases level.

Reviewer Comment: A table of laboratory results is provided in the CSR. The laboratory abnormalities peaked on <sup>(b) (6)</sup> and then gradually declined. The results were normal on <sup>(b) (6)</sup>.

This is a representation of an electronic record that was signed electronically. Following this are manifestations of any and all electronic signatures for this electronic record.

-----

/s/

LAWRENCE D RODICHOK 06/17/2020 04:22:03 PM

PAUL R LEE 08/14/2020 01:57:22 PM

# CENTER FOR DRUG EVALUATION AND RESEARCH

**APPLICATION NUMBER:** 

# 125326Orig1s070

# **NON-CLINICAL REVIEW(S)**

### MEMORANDUM

Department of Health and Human Services Public Health Service Food and Drug Administration Center for Drug Evaluation and Research

Date: August 19, 2020

From: Lois M. Freed, Ph.D. Supervisory Pharmacologist, Division of Neurology 2 Acting Director, Division of Pharmacology/Toxicology-Neuroscience Office of Neuroscience

Subject: BLA 125326 (ofatumumab)

Ofatumumab (Arzerra), a fully human type 1 IgG1κ monoclonal antibody targeting CD20+ B cells, was originally approved on October 26, 2009, for the treatment of chronic lymphocytic leukemia (CLL). The sponsor (Novartis Pharmaceuticals Corporation) submitted a Prior Approval Supplement to BLA 125326 on December 20, 2019, proposing a new indication for ofatumumab, relapsing forms of multiple sclerosis (RMS). Clinical development of ofatumumab for the treatment of RMS was conducted under IND 111116.

For the new indication, the sponsor conducted pharmacology (proof-of-concept) and reproductive and developmental toxicology (male and female fertility and enhanced preand postnatal development [ePPND]) studies to support clinical development and marketing authorization. The Division agreed with the sponsor that a standard assessment of carcinogenic risk was not required because of atumumab is not pharmacologically active in rodent species.

The nonclinical studies submitted to support the new indication were reviewed by Dr. Melissa Banks-Muckenfuss (Pharmacology/Toxicology BLA Review and Evaluation, BLA 125326, Supplement 70, July 9, 2020). Dr. Banks-Muckenfuss also references previous reviews of the nonclinical data submitted to support approval of ofatumumab for CLL.

The proposed mechanism by which of a tumumab exerts the rapeutic effects in patients with RMS is through binding to CD20<sup>+</sup> B cells (EC<sub>50</sub> of 287 ng/mL) resulting in B-cell lysis, possibly through antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). ADCC and CDC were demonstrated in in vitro assays with of a tumumab. In vivo studies demonstrated depletion of CD20<sup>+</sup> B-cell populations in blood and lymphoid tissues following subcutaneous (SC) or intravenous (IV) administration of of atumumab to cynomolgus monkeys.

The fertility study in sexually mature male and female cynomolgus monkeys, in which of atumumab was administered IV weekly for 5 doses (0, 10, and 100 mg/kg) followed by 4 biweekly doses (0, 3, and 20 mg/kg), resulted in no adverse effects on male or female reproductive parameters, including hormones, menstrual cycle, and sperm analysis, or on histopathological evaluation of reproductive organs. Anti-drug antibodies reduced plasma exposures at the low dose (LD) but not notably at the high dose (HD). Plasma exposures (M-F;  $AUC_{(0-168 hr)}$ ) at the HD (an NOAEL) were 247000-222000 and 162000-124000 µg\*hr/mL on Days 1 and 85, respectively.

In an ePPND study, ofatumumab was administered IV to pregnant cynomolgus monkeys (14/group) according to the same doses and frequency as in the fertility study, except the 5 weekly doses were initiated on gestation day (GD) 20 and the biweekly maintenance doses (0, 3, and 20 mg/kg) were administered from GD 62 to GD 160. (Offspring were not directly dosed.) Of the initial 14/group, 12, 10, and 13 dams (LD, MD, and HD, respectively) delivered an infant; of these infants, 1 LD infant was stillborn, and 1 C and 1 HD infant died or was sacrificed on day of birth (postnatal day [PND] 0). In addition, 1 C and 5 HD infants died or were sacrificed moribund during PNDs 1-37. (One high-dose dam was sacrificed on lactation day 96 because of severe glomerulonephropathy.) Ten C, 9 LD, and 7 HD infants survived to terminal sacrifice (PND 180).

Of the HD infants that died during the postnatal period, deaths were attributed to maternal injury (1 male), adrenal inflammatory cell infiltration and hemorrhage (1 female), hepatocellular degeneration and necrosis (1 male), and pulmonary inflammation and maternal rejection and injury (1 male); cause of death was not identified in 1 female. The adrenal, hepatic, and pulmonary findings were attributed by the sponsor to the severe depletion of CD20<sup>+</sup>-positive B cells in HD infants.

There was no ofatumumab-related maternal toxicity or effects on developmental parameters in infants, including body weight, morphology, neurobehavioral assessments (e.g., reflexes, postural tonus, eye tracking), grip strength, or skeletal development (bone mineral density, mineral content); however, immune function (TDAR, using KLH immunization) was clearly impaired in HD female infants.

While the high dose was a no-effect dose for adverse developmental effects, a no-effect dose for mortality and immune effects in offspring was not established because of the limited number of evaluable offspring at the low dose. Only 5 LD infants had dams who did not develop antidrug antibodies and were, therefore, adequately exposed to ofatumumab throughout pregnancy. Plasma exposure (AUC<sub>(0-336 hr</sub>) at the high dose in dams was 111000  $\mu$ g\*hr/mL on GD 146.

An embryofetal development study was conducted for the approval of ofatumumab for CLL, and the results are described in labeling for that indication. Ofatumumab was administered (GDs 20-50) by intravenous infusion to pregnant monkeys at weekly doses 0, 20, and 100 mg/kg. Plasma exposures (AUC<sub>(0-7d)</sub>) were 87860 and 622600  $\mu$ g\*hr/mL, respectively, on GD 48.

For comparison, plasma exposure (AUC<sub>(0-tau)</sub>) in humans at the recommended monthly maintenance dose of 20 mg is 483  $\mu$ g\*hr/mL.

#### Conclusions and Recommendations

Only reproductive and developmental toxicology studies in monkey were conducted to support clinical development and a supplemental BLA for treatment of patients with RMS, as agreed to by the Division. The fertility study is adequate and demonstrated no adverse effects of ofatumumab on male or female reproductive systems at plasma exposures substantially higher than that in humans at the recommended human maintenance dose. The expanded pre- and postnatal development study had limitations, primarily the lack of an adequate number of low-dose offspring exposed to ofatumumab during pregnancy, which precluded an assessment of dose-response. However, there were clear adverse effects, including those resulting from pharmacologically-mediated immunosuppression, which led to deaths and reduced functional immune response in offspring at the high dose. Therefore, the study does not need to be repeated.

The nonclinical data submitted by the sponsor are adequate to support approval of of atumumab for the proposed indication.

This is a representation of an electronic record that was signed electronically. Following this are manifestations of any and all electronic signatures for this electronic record.

/s/

LOIS M FREED 08/19/2020 03:47:44 PM

#### DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION CENTER FOR DRUG EVALUATION AND RESEARCH

#### PHARMACOLOGY/TOXICOLOGY BLA REVIEW AND EVALUATION

| Application number:       | 125326, Supplement 70                       |
|---------------------------|---------------------------------------------|
| Supporting document/s:    | SDN594, eCTD 0248                           |
| Applicant's letter date:  | 12/20/2019                                  |
| CDER stamp date:          | 12/20/2019                                  |
| Product:                  | Ofatumumab, Kesimpta (OMB157)               |
| Indication:               | Relapsing forms of multiple sclerosis (RMS) |
| Applicant:                | Novartis Pharmaceuticals Corp.              |
| Review Division:          | DN 2                                        |
| Reviewer:                 | Melissa Banks-Muckenfuss, PhD               |
| Supervisor:               | Lois Freed, PhD                             |
| Acting Division Director: | Nicholas Kozauer, MD                        |
| Project Manager:          | Candido Alicea, PhD                         |

# TABLE OF CONTENTS

| 1 E               | EXECUTIVE SUMMARY                              | 3      |
|-------------------|------------------------------------------------|--------|
| 1.1<br>1.2<br>1.3 |                                                | 3      |
| 2 C               | DRUG INFORMATION                               | 8      |
| 2.1<br>2.2<br>2.3 | Drug Formulation                               | 8<br>8 |
| 2.4<br>2.5        |                                                |        |
| 2.5               |                                                |        |
| 2.7               | REGULATORY BACKGROUND                          | 10     |
| 3 S               | STUDIES SUBMITTED                              | 10     |
| 3.1<br>3.2<br>3.3 |                                                |        |
| 4 F               | PHARMACOLOGY                                   | 11     |
| 4.1<br>4.2        | PRIMARY PHARMACOLOGY<br>Secondary Pharmacology |        |
| 6 0               | GENERAL TOXICOLOGY                             | 13     |
| 6.2               | REPEAT-DOSE TOXICITY                           | 15     |
| 8 C               | CARCINOGENICITY                                | 19     |
| 9 F               | REPRODUCTIVE AND DEVELOPMENTAL TOXICOLOGY      |        |
| 9.1               | FERTILITY AND EARLY EMBRYONIC DEVELOPMENT      |        |
| 9.2               | EMBRYONIC FETAL DEVELOPMENT                    |        |
| 9.3               |                                                |        |
| 11                | INTEGRATED SUMMARY AND SAFETY EVALUATION       |        |
| 12                | APPENDIX/ATTACHMENTS                           | 54     |

Abbreviations Used in This Review:

| LD= Low Dose     | GD = Gestation Day   |
|------------------|----------------------|
| HD= High Dose    | LacD = Lactation Day |
| IV= Intravenous  | PND = Postnatal Day  |
| SC= Subcutaneous |                      |

# **1 Executive Summary**

### 1.1 Introduction

Ofatumumab, a recombinant fully human IgG1 kappa monoclonal antibody directed at human CD20 antigen, for intravenous (IV) administration was approved in 2009 as Arzerra<sup>®</sup> for the treatment of chronic lymphocytic leukemia (CLL). The Sponsor has developed a formulation of ofatumumab for subcutaneous (SC) administration for the treatment of relapsing forms of multiple sclerosis (RMS).

### 1.2 Brief Discussion of Nonclinical Findings

The nonclinical toxicology package for the original BLA for of atumumab was comprised of several pharmacology, pharmacokinetics, and toxicology studies, including an embryofetal development study in monkeys. At the time Arzerra was approved, several nonclinical issues relevant to clinical use were noted in the review (see the BLA 125326 Nonclinical review by Dr. A. McDougal, dated 8/10/2009). Based on the toxicology studies by the IV route, the following were identified as clinically-relevant risks: increased risk of infection, infusion-reaction/cytokine response, delayed onset anemia, fetal toxicity (i.e., decreased placental, fetal spleen, and fetal thymus weights), and clinical chemistry alterations (i.e., increased lactate dehydrogenase, increased Creactive protein). These toxicities were considered to be "extensions of the pharmacology of the product, ... reflected in the clinical studies, and... monitorable in the clinical setting." While the toxicities remain potential risks of ofatumumab administration, the potential for these risks may be lower because of the considerably lower dose for SC administration in this indication (i.e., the proposed dose for RMS is 20 mg SC QW for 3 weeks followed by monthly maintenance doses, compared to up to 2000 mg ofatumumab IV at varying intervals for up to approximately 2 years for CLL).

The change from IV to SC administration in the Phase 2 and 3 clinical studies was supported by a 2-dose (Q2W) SC administration study of ofatumumab (0, 20, or 100 mg/kg SC or 100 mg/kg IV) with a 33-week recovery period in female cynomolgus monkeys. CD20+ B cells were depleted, and CD40+ B cells were markedly reduced, in all ofatumumab-dosed groups. During the dosing period, increases in eosinophils were observed in the SC administration groups (LD > HD) and slight RBC reductions were observed in the HD SC and IV groups. During the recovery period, WBC were mildly reduced in the LD SC group but were increased in the HD SC and IV groups. Recovery of CD20+ and CD40+ B cells occurred earliest in the LD SC group, followed by the HD SC group and the IV group. Relative bioavailability was variable after SC dosing, especially at the LD, and evidence of ADA development was observed in 3 of 6 animals in the LD SC group (compared to 1 of 6 animals in the HD SC group and no IV-dosed animals). The study had limitations but supported the change in route for Phase 2 and Phase 3 clinical studies, in which clinical experience was gained.

To address reproductive toxicology, an embryofetal development (EFD) study was submitted to support the approval of Arzerra (see BLA 125326 nonclinical review by Dr. McDougal, dated 8/10/2009). In the EFD study, both of atumumab and ADA (believed to

be maternal ADA) were observed in fetal blood. CD20+CD40+ B cells showed depletion at both doses in fetal cord blood (approximately 10% of control) on GD100. Teratogenicity was not observed but decreased placental weights and reduced fetal spleen and thymus weights (at the HD) were observed, with marked reductions in B cells in the spleens of most fetuses at both doses.

To support approval for indications with populations requiring chronic treatment (such as RMS), fertility and enhanced pre- and post-natal development studies were submitted. These studies provide an assessment of potential toxicity to reproductive tissues (i.e., the majority of the animals used in the toxicology studies had been sexually immature, as noted in the original BLA review) and pre- and postnatal development, including potential functional effects of the fetal immune alterations observed in the EFD study, respectively.

A fertility study was conducted by IV administration in cynomolgus monkeys. The monkeys were administered of atumumab (0, 10, or 100 mg/kg weekly for 5 weeks then 0, 3, or 20 mg/kg every 2 weeks) for 3 months followed by an 8-week recovery period. Marked B-cell depletion occurred at both doses, with dose-dependent decreased cellularity of the lymphoid follicles and absence/reduction of germinal centers in the spleen and lymph nodes. By immunohistochemistry, CD20+ cells were depleted in the spleen and lymphatic tissues (with reduced CD3+ cells considered secondary to reduced germinal centers reflecting marked depletion of CD20+ cells). ADA were observed at both doses, and neutralizing ADA were observed at the LD. Clearly drug-related adverse effects on reproductive tissues were not observed in females. Minimal evidence suggested an effect in HDM, i.e., an apparent increase in total sperm alterations, although the data were highly variable, and bilateral moderate testicular depletion/degeneration of germ cells in a single animal. The NOAEL/LOAEL (females/males) for drug-related adverse reproductive effects was the HD.

An ePPND study was conducted by IV administration in pregnant cynomolgus monkeys. Beginning on GD20, the monkeys were administered ofatumumab (0, 10 or 100 mg/kg) weekly for 5 weeks, followed by doses of 0, 3, or 20 mg/kg administered once every 2 weeks beginning GD62 until birth of the infants. Maternal ofatumumab exposures were observed until Lactation Day 28 (LacD28; in the LD group) or LacD91 (in the HD group). The LD maternal animals showed slightly reduced red cell mass and apparent increased prenatal loss. CD20+ B cells were depleted in blood of the maternal animals at both doses. In the maternal animals, repletion of CD20+ cells occurred by approximately LacD91 (in the LD group) or LacD175 (in the HD group), except for early repletion in 4 of 14 LD maternal animals that developed neutralizing ADA.

Infant postnatal survival was reduced at the HD; the early postnatal deaths were attributed to accidents (i.e., not considered drug-related) or secondary infection (i.e., considered drug-related). Birth weights were slightly reduced in the ofatumumab-dosed groups and reduced body weights persisted in female offspring during the observation period. Ofatumumab exposures were present in only three LD infants but were observed in all HD infants; seven LD infants (and no HD infants) exhibited ADA. Infants

of the LD maternal animals that developed neutralizing ADA did not show B-cell depletion. Otherwise, CD20+ B-cell depletion was observed, with repletion in the infants beginning on PND63 in the LD group and PND91/119 (males/females) in the HD group. Immune alterations were observed in the offspring of ofatumumab-dosed females, particularly at the HD. CD3+ and CD3+CD4+ T cells were increased in HD female infants from PND28 to PND119. IgG levels were reduced in the HD infants on PND70, recovering in males by PND175 but remaining reduced in female infants. The T Cell-Dependent Antibody Response (TDAR) assay, using immunizations on PND119 and PND147, demonstrated persistent problems with immune responsivity in the HD offspring of ofatumumab-dosed females. IgM responses to the first KLH immunization were absent or reduced in the HD infants (males and females) and were also reduced after the second immunization in the HD male infants. IgG responses were reduced and delayed after the first immunization in the HD female infants and were still reduced after the second immunization. Overall, there was no clear no-effect level for body weight and immune effects in the offspring. Increased postnatal mortality and persistent alterations in immune function were observed in infants of the HD maternal animals.

Overall, the systemic toxicities observed after high dose IV ofatumumab are notable concerns (e.g., long-lasting immunosuppression and potential delayed onset anemia); however, the proposed RMS treatment regimen uses considerably lower doses administered by SC administration. Clearly drug-related adverse effects on fertility were not observed in females, but there was a suggestion of an adverse effect (assessment was complicated by highly variable data) in HD males. Adverse neonatal/postnatal effects (e.g., increased postnatal mortality and persistent alterations in immune function) were evident in the ePPND study, demonstrating functional sequelae for the fetal B-cell alterations observed in the previously conducted EFD study. These issues should be addressed in labeling.

### 1.3 Recommendations

### 1.3.1 Approvability

Although the nonclinical studies conducted demonstrated several limitations, there is no objection to the approval of 20 mg SC ofatumumab (monthly maintenance doses) for the treatment of RMS. The adverse reproductive and developmental findings should be clearly addressed in labeling.

### 1.3.2 Additional Nonclinical Recommendations

### 1.3.3 Labeling

The following suggestions, below, are provided for proposed labeling.

#### HIGHLIGHTS OF PRESCRIBING INFORMATION

#### INDICATIONS AND USAGE

KESIMPTA is a CD20-directed cytolytic antibody indicated...

### USE IN SPECIFIC POPULATIONS

Pregnancy: Based on animal data, may cause fetal harm (8.1). Contraception: Use effective contraception during treatment and for ... after the last treatment. (8.3)

#### 8 USE IN SPECIFIC POPULATIONS

### 8.1 Pregnancy

#### Risk Summary

... Ofatumumab crosses the placenta and can cause peripheral and splenic fetal B-cell depletion based on findings from animal studies *(see Data)*. Increased postnatal mortality and persistent adverse immune effects occurred in offspring whose mothers were administered of atumumab intravenously throughout gestation until delivery. Teratogenicity was not observed after intravenous administration of of atumumab to pregnant monkeys during organogenesis.

Ofatumumab can cause fetal B-cell depletion [See Data]. Avoid administering live vaccines to neonates and infants exposed to KESIMPTA in utero until B-cell recovery occurs [see Warnings and Precautions (5.2) and Clinical Pharmacology (12.2)].

### <u>Data</u>

#### Animal Data

Embryo-fetal development and enhanced pre- and postnatal development studies in monkeys showed that exposure to ofatumumab given intravenously during gestation did not cause teratogenicity but showed increased postnatal mortality, persistently reduced postnatal body weights in females, and persistent adverse immune effects in the offspring that were maternally-exposed to the HD. A no-effect level was not determined for B-cell depletion in the offspring. The low adverse effect level (LOAEL) level for ofatumumab exposure during gestation was 10/3 mg/kg; based on maternal systemic exposure, the AUC was >20-fold the human AUC at 20 mg monthly.

In the EFD study, pregnant cynomolgus monkeys were administered 0, 20, or 100 mg/kg ofatumumab IV weekly beginning GD 20 through GD 50, with Cesarean sections performed on GD 100. Ofatumumab was detected in the fetal cord blood, showing placental transfer and fetal exposure to ofatumumab. Exposure to ofatumumab during gestation resulted in depletion of CD20+ B cells in maternal animals and their offspring, along with reduced spleen weights and splenic B cells in the fetuses. Teratogenicity was not observed.

In the ePPND study, cynomolgus monkeys were administered 0, 10/3, or 100/20 mg/kg ofatumumab IV from GD 20 until birth; doses of 0, 10 or 100 mg/kg were administered weekly for 5 weeks followed by doses of 0, 3 or 20 mg/kg administered once every 2 weeks beginning on GD 62. Ofatumumab was detected in the blood of the maternal animals and in the blood of the offspring (that persisted postnatally at 100/20 mg/kg). Increased postnatal mortality was observed in the offspring of females administered 100/20 mg/kg ofatumumab. Reduced birth weights were observed in the offspring of

ofatumumab-dosed females, and body weight reductions persisted into the maturation period in female offspring maternally exposed to ofatumumab. Depletion of CD20+ B-cells in the maternal animals and their offspring was observed, with reduced spleen weights and persistently reduced humoral immune responses (to Keyhole Limpet hemocyanin (KLH)) in the offspring at 100/20 mg/kg.

### 12 CLINICAL PHARMACOLOGY

#### 12.1 Mechanism of Action

The precise mechanism by which of a umumab exerts its therapeutic effects in multiple sclerosis is unknown, but it is presumed to involve binding to CD20, a cell surface antigen present on pre-B and mature B lymphocytes and certain subsets of T cells. Following cell surface binding to lymphocytes, of a tumumab results in antibody-dependent cellular cytolysis and complement-mediated lysis.

•••

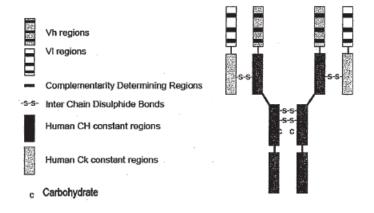
#### 13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility No carcinogenicity studies have been performed to assess the carcinogenic potential of

KESIMPTA.

No studies have been performed to assess the mutagenic potential of KESIMPTA. As an antibody, KESIMPTA is not expected to interact directly with DNA.

Male and female monkeys were administered ofatumumab by intravenous injection (0, 10, and 100 mg/kg weekly for 5 weeks, followed by doses of 0, 3, and 20 mg/kg every 2 weeks for 8 weeks). No clear effects on reproductive tissues were observed in females. No effects on the estrus cycle were observed in females. Although variable, evidence of effects on sperm were suggested in males administered 100/20 mg/kg. The no-effect/low-effect level (females/males) was 100/20 mg/kg. The AUC at 100/20 mg/kg was >250-fold the AUC in humans at the 20 mg monthly dose; at 10/3 mg/kg, the AUC was >20-fold the AUC in humans at the 20 mg monthly dose.


## 2 Drug Information

### 2.1 Drug

CAS Registry Number (Optional) Generic Name Code Name Molecular Weight

Structure or Biochemical Description

Ofatumumab OMB157 Approximately 149 kDa. Each light chain is approximately 25 kDa, each heavy chain is approximately 50 kDa. Recombinant monoclonal IgG1 kappa antibody against an epitope on CD20 (see below, from Dr. McDougal's BLA 125326 review)



Pharmacologic Class

CD20-directed cytolytic antibody

### 2.2 Relevant INDs, NDAs, BLAs and DMFs

| IND 111116 | MS  |                          |
|------------|-----|--------------------------|
| BLA 125326 | CLL | Arzerra approved in 2009 |
|            |     | (b) (4)                  |

### 2.3 Drug Formulation

Ofatumumab (Arzerra) was initially approved as a citrate buffered formulation (20 mg/mL) for IV infusion; this formulation was replaced <sup>(b)(4)</sup> to "minimize particle formation and to provide a more concentrated DS also more favorable for DP subcutaneous (s.c.) delivery." All materials were identified as "comparable based on CMC characterizations."

Two single-use formulations, each 20 mg/0.4 mL (i.e., 50 mg/mL), developed: in a pre-filled pen (auto-injector containing a PFS) and in a pre-filled syringe (PFS). See the Sponsor's summary Table 2-1, below.

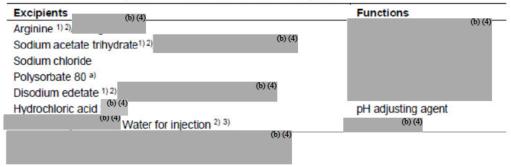

| Ingredient                                                 | Concentration<br>(mg / 1.0 mL) | Theoretical<br>amount per<br>syringe (mg /<br>0.4 mL) | Total amount<br>per syringe<br>including<br>overfill (mg) | Function              | Reference to<br>standards |
|------------------------------------------------------------|--------------------------------|-------------------------------------------------------|-----------------------------------------------------------|-----------------------|---------------------------|
| Ofatumumab<br>(OMB157)                                     | 50.000<br>(b) (4)              | 20.000                                                | (b) (4)                                                   | Drug substance        | Novartis<br>monograph     |
| Arginine <sup>1) 2)</sup> /<br>(b) (4)                     |                                | 4.000                                                 |                                                           | (b) (4)               | Ph. Eur.;<br>USP/NF; JP   |
| Sodium acetate<br>trihydrate <sup>1) 2)</sup> /<br>(b) (4) |                                | 2.722                                                 |                                                           |                       | Ph. Eur.;<br>USP/NF; JP   |
| Sodium chloride                                            |                                | 1.192                                                 |                                                           |                       | Ph. Eur.;<br>USP/NF; JP   |
| Polysorbate 80 a)                                          |                                | 0.080                                                 |                                                           |                       | Ph. Eur.;<br>USP/NF; JP   |
| Disodium edetate                                           |                                | 0.007                                                 |                                                           |                       | Ph. Eur.;<br>USP/NF; JP   |
| (b) (4)                                                    |                                |                                                       |                                                           |                       |                           |
| Hydrochloric acid                                          |                                | (b) (4)                                               |                                                           | pH adjusting<br>agent | Ph. Helv.                 |
| (b) (4)                                                    |                                | (b) (4)                                               |                                                           | (b) (4)               | Ph. Eur.;<br>USP/NF; JP   |
| Water for injection                                        |                                |                                                       |                                                           |                       |                           |

Table 2-1 Composition of the drug product

### 2.4 Comments on Novel Excipients

No novel excipients were identified; the excipients are identified in the Sponsor's Table 1-1, below.

Table 1-1 Excipients used in Ofatumumab drug product



### 2.5 Comments on Impurities/Degradants of Concern

None were identified for nonclinical assessment.

### 2.6 **Proposed Clinical Population and Dosing Regimen**

Ofatumumab subcutaneous injection is proposed for the treatment of relapsing forms of multiple sclerosis (RMS); dosing is by SC injection on Days 1, 7, and 14, followed by SC injection every month thereafter starting on Day 28.

### 2.7 Regulatory Background

Ofatumumab for IV infusion was previously approved (Arzerra<sup>®</sup>) on October 26, 2009, for the treatment of Chronic Lymphocytic Leukemia (CLL). Novartis acquired the rights to ofatumumab from GSK in 2015, with the transfer of IND 111116 (for the treatment of RMS) to Novartis in February 2016.

## **3 Studies Submitted**

### 3.1 Studies Reviewed

Study RD-2018-00361: *In vitro* comparison of the mode of action of anti-CD20 antibodies: ofatumumab and ocrelizumab

Study RD-2019-00356: Determination of kinetic rate constants and affinities of ofatumumab and ocrelizumab on CD20 expressing cells

Study RD-2019-00021: Imaging Mass Cytometry and Single-cell Genomics Reveals Differential Depletion and Repletion of B cell Populations Following Ofatumumab Treatment in Cynomolgus Monkeys

Study RD-2019-00332: MAPPs analysis of ofatumumab

Study CD2007-01024 (G07285): (b) (4) 1841157A: 2-Dose Subcutaneous and Intravenous Toxicity Study in Female Cynomolgus Monkeys Followed by a 33-Week Off-Dose Period

Study Pcs-r1670402 ( #8364864): 13 Week intravenous administration for effects on female and male fertility in the cynomolgus monkey with at least an 8 week recovery period.

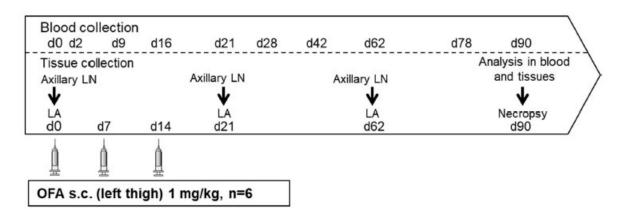
Study 1670033 (<sup>(b) (4)</sup>#8345086): Enhanced study for effects on pre- and postnatal development in cynomolgus monkey

### 3.2 Studies Not Reviewed

Study 2010n109133 (514630): Pilot Study in Cynomolgus Monkeys for Evaluating HuMab-CD20 (Clone 11B8) in Comparison with Ofatumumab

### 3.3 Previous Reviews Referenced

Nonclinical review for BLA 125326 (dated 07/29/2009. bv Dr. Andrew McDougal)

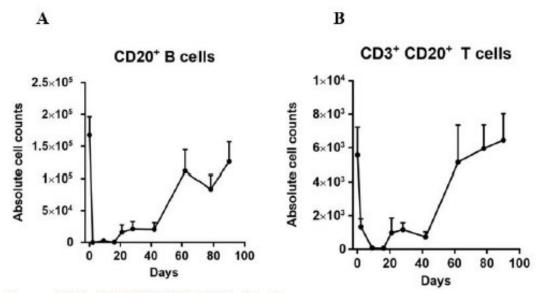

## 4 Pharmacology

### 4.1 **Primary Pharmacology**

Ofatumumab is a recombinant fully human monoclonal immunoglobulin G1 (IgG1) kappa antibody expressed in murine NS0 cells. It binds human CD20 with high affinity and specificity, and acts as a B cell-depleting agent (presumably via antibody-dependent cell-mediated cytotoxicity [ADCC] and complement-dependent cytotoxicity [CDC]). Ofatumumab bound rhesus and cynomolgus monkey CD20 with equal or greater affinity compared with human CD20 (EC<sub>50</sub> values of 97.4, 139, and 287 ng/mL, respectively). Ofatumumab did not bind CD20 of other species; therefore, cynomolgus monkey was the only nonclinical species used for testing.

In vitro and in vivo pharmacology studies were submitted in support of the sBLA. An in vitro assay was conducted comparing the binding of ofatumumab and ocrelizumab to CD20 antigen on BJAB cells (a Burkitt lymphoma-derived line; Study RD-2019-00356). The obtained  $K_D$  values were 167±59 pM for ofatumumab and 206±65 pM for ocrelizumab using directly labeled target antibody. Using the indirect labeling approach, the obtained  $K_D$  value was 395±73 pM for ofatumumab and 467±117 pM for ocrelizumab. In vitro assays comparing the modes of action of ofatumumab, ocrelizumab, and rituximab in primary human B (or RAJI) cells were conducted (Study RD-2018-00361). In these assays, ofatumumab was shown to act through both ADCC and CDC; in the CDC assays (2-hr direct and delayed), ofatumumab showed high potency and long-lasting B-cell depletion.

The Sponsor also used an in vivo transcriptional animal model to help elucidate the mode of action of ofatumumab administered SC (non-GLP Study RD-2019-00021). Six monkeys were treated on Days 0, 7, and 14 with ofatumumab (1 mg/kg; 100 mg/5 mL). Axillary lymph nodes (LN) were collected on Days 0, 21, 62, and 90; at termination (Day 90), lymphocytes were isolated from whole blood, and spleen and additional lymph nodes were collected (with cells mechanically dissociated for evaluation). See the Sponsor's summary design figure, below.




#### Supplementary Figure 1. Study design.

d, day; LA, lymphadenectomy; LN, lymph node; OFA, ofatumumab; s.c., subcutaneous

Changes in lymphocyte subsets were explored by flow cytometry, molecular imaging cytometry, immunohistochemistry, and single cell transcriptome analyses. In blood, ofatumumab resulted in a rapid reduction of CD20+ B cells, followed by a reduction in CD3+CD20+ T cells. B cells were depleted as early as Day 2 and showed a biphasic repletion (i.e., partial repletion on Days 21 to 42 and substantial repletion by Day 62); CD3+CD20+ T cells (these were identified as B cells in the original study report) followed a similar pattern. See the Sponsor's Figure 2-4 (taken from the pharmacology written summary), below.

#### Figure 2-4 Changes in lymphocyte counts in blood samples from cynomolgus monkeys treated acutely with subcutaneous of atumumab. A: CD20+ B cells. B: CD3+CD20+ T cells. Data are expressed as means plus/ minus standard error of the mean



Source: [Table 2.6.3.2-RD-2019-00021, Fig. 1]

In axillary LN, naïve and mature B-cell counts were generally reduced over Days 1 to 62 but showed repletion (and an apparent rebound) on Day 90. The Sponsor reported complete CD21+ B-cell (i.e., mature B cell) depletion in the perifollicular and interfollicular areas of the axillary LN, with less severe depletion in the lymphoid follicles (i.e., depletion primarily of the germinal center core). By Day 62, the perifollicular and interfollicular areas were infiltrated by CD21+ B cells and the distribution was considered similar to baseline cytoarchitecture by Day 90. In the spleen, no clear changes were observed on Day 90. The Sponsor submitted figures for the other LN assessed, both draining (inguinal) and non-draining (deep cervical, axillary, and popliteal); any pattern of effects among the LNs was difficult to assess based on the limited information provided.

### 4.2 Secondary Pharmacology

The Sponsor conducted a MAPPS assay (Study RD-2019-00332), an indicator of immunogenic potential, comparing four antibodies including of atumumab. In order (highest to lowest), the highest numbers of total and different clusters (i.e., indicating greater potential for immunogenicity) were observed for adalimumab, of atumumab, ocrelizumab, and ustekinumab. The Sponsor noted that the presentation of clusters does not necessarily result in T-cell recognition.

# 6 General Toxicology

Repeated dose toxicity studies were conducted in cynomolgus monkeys, up to 7 months in duration (see the original BLA 125326 nonclinical review by Dr. McDougal, dated 8/10/2009); the main findings from the review of the 7-month study are summarized below.

In **Study 25052** (CD2008/01521/00), cynomolgus monkeys (3/sex/dose main study + 4/sex/dose recovery) were administered 0, 20, or 100 mg/kg ofatumumab by 30-minute IV infusion weekly for 8 weeks, then monthly for 5 months. Both doses of ofatumumab, 20 mg/kg and 100 mg/kg, were reported to saturate the receptor. A dose-response relationship was observed for the duration but not the magnitude of the pharmacological effect. Circulating B cells were depleted at both doses and remained low for up to four months after the cessation of dosing; recovery was generally (except in mortalities) observed at the end of the 6-month recovery period.

Mortality occurred at both doses; several of these animals showed reduced body weights. Three deaths were attributed to infection (2 LD and 1 HD); these deaths were considered indirectly related to treatment and relevant to patient safety. Two deaths were attributed to hemolytic anemia (1 LD and 1 HD); the relevance of these mortalities to human risk was unclear. Clinical signs of increased heart force and heart rate were observed. Reduced red cell parameters were observed in both ofatumumab groups and continued through the recovery period; the LD animals showed recovery (Day 372). Ofatumumab bound RBCs were observed in 2 of 14 ofatumumab-treated animals. It was posited that the observed anemia may represent a humoral immune response to

ofatumumab in monkeys; such a toxicity would not be expected to be predictive of toxicity in humans. Lymph node biopsies also showed marked B-cell depletion, with recovery between Day 274 and Day 350. Histopathological findings observed in the survivors included minimal to moderate lymphoid atrophy, lymphoid depletion, and/or follicular atrophy in the lymph nodes (submandibular and mesenteric), Peyer's patches (ileum), and spleen. Signs of inflammatory cell infiltration were also in several organs (e.g., kidneys, brain, sciatic nerve, eye, lungs, and trachea); the inflammatory cell infiltration continued to be observed at the end of the recovery period. Assessments of humoral immune function (KLH) showed reduced responses in HD animals during the dosing period and in LD and HD during the recovery period.

Systemic exposure was variable; detection of ADA (observed in 1 LDF early mortality out of 24 animals) was not deemed reliable based on the study observations and higher incidences observed in other studies. The elimination half-life (in the recovery phase) was approximately 10 days. See the summary TK Tables C and D, below, taken from Dr. McDougal's review. A NOAEL for the study was not identified, based on the observed mortalities believed related to immune effects and infection.

| Dose<br>(mg/kg) | Day          | Part        | AUC(6)<br>(µg_h/mL)<br>(CV%) | AUC(0-t)<br>(ug.h/mL)<br>(CV%) | AUC(0-6.5 h)<br>(µg_h/mL)<br>(CV%) | AUC(0-168 h)<br>(µg.h/mL)<br>(CV%) | Cinax(obs<br>(µg /mL)<br>(CV%) |  |
|-----------------|--------------|-------------|------------------------------|--------------------------------|------------------------------------|------------------------------------|--------------------------------|--|
|                 | 1            | Main &      | 73950 ***                    | 41375                          | 2096                               | 41299                              | 531                            |  |
|                 | · •          | Recovery    | (35.4)                       | (24.9)                         | (37.0)                             | (24.9)                             | (21.9)                         |  |
| 1:              | 50           | Main &      | 405835                       | 304126                         | 6473                               | 119208                             | 1239                           |  |
|                 | 50           | Recovery    | (20.5)                       | (14.7)                         | (31.7)                             | (15.2)                             | (27.4)                         |  |
|                 | 134          | Main &      | 140268                       | 81235                          | 3443                               | 62492                              | 695                            |  |
|                 | 134          | Recovery    | (30.5)                       | (18.5)                         | (15.7)                             | (18.5)                             | (21.5)                         |  |
|                 |              | Main        | -                            | 1088                           | 3467***                            | -                                  |                                |  |
|                 | 190          | President 2 |                              | (5.1)                          | •                                  |                                    | 697 MT                         |  |
|                 | 100          | Decourage   | 202732                       | 189796                         | 2841                               | 58439                              | (10.0)                         |  |
|                 |              | Recovery    | (55.3)                       | (56.3)                         | (35.7)                             | (5.6)                              | (10.0)                         |  |
|                 |              | Main &      | 402347 ***                   | 265410                         | 13948                              | 264893                             | 2699                           |  |
| ÷.              | . <b>.</b> . | Recovery    | (15.7)                       | (19.3)                         | (6.5)                              | (19.3)                             | (9.9)                          |  |
|                 | 50           | Main &      | 2065198                      | 1277280                        | 27499                              | 545047                             | 6382                           |  |
|                 | 90           | Recovery    | (20.1)                       | (26.7)                         | (32.9)                             | (18.2)                             | (15.7)                         |  |
| 100             | 134          | Main &      | 560464                       | 276325                         | 16024                              | 304533                             | 3735                           |  |
|                 | 134          | Recovery    | (36.9)                       | (42.8)                         | (34.3)                             | (22.5)                             | (26.9)                         |  |
|                 |              | Main        |                              | 54892                          | 16244                              | -                                  |                                |  |
|                 | 190          | INVERSE 1   |                              | (25.9)                         | (27.3)                             | -                                  | 3110                           |  |
|                 | 190          | Recovery    | 903407                       | 765564                         | 13464                              | 287241                             | (29.9)                         |  |
|                 |              | neuvery     | (32.3)                       | (24.4)                         | (18.0)                             | (16.4)                             | (29.9)                         |  |

#### Table C: Geometric Mean (CV%) Parameter Estimates Indicative of Systemic Exposure to HuMax-CD20 Following i.v. Infusion on Days 1, 50, 134 and 190 in Male Cynomolgus Monkeys

| Dose<br>(mg/kg) | Day | Part     | AUC(0-=)<br>(µg_h/mL)<br>(CV%) | AUC(0-t)<br>(µg.h/mL)<br>(CV%) | AUC(0-6.5<br>h)<br>(ug_h/mL)<br>(CV%) | AUC(8-188 h)<br>(µg_h/mL)<br>(CV%) | Cmax(obs<br>(µg /mL)<br>(CV%) |  |
|-----------------|-----|----------|--------------------------------|--------------------------------|---------------------------------------|------------------------------------|-------------------------------|--|
|                 | 4   | Main &   | 62783                          | 41293                          | 1699                                  | 41202                              | 462                           |  |
| 20 1            |     | Recovery | (25.9)                         | (25.7)                         | (104.9)                               | (25.7)                             | (49.6)                        |  |
|                 | 50  | Main &   | 292676 ***                     | 225584                         | 5642***                               | 96208                              | 1114 ***                      |  |
|                 | 50  | Recovery | (23.4)                         | (24.6)                         | (37.4)                                | (29.4)                             | (36.6)                        |  |
|                 | 134 | Main &   | 93746                          | 25392                          | 3000 ***                              | 48493                              | 638 ***                       |  |
|                 | 104 | Recovery | (66.1)                         | (253.6)                        | (14.6)                                | (27.2)                             | (20.2)                        |  |
|                 |     | Main     |                                | 1072 (13.0)                    |                                       | -                                  | 567 ***                       |  |
|                 | 190 | Recovery | 128482                         | 120394                         | 2404                                  | 46397                              | (28.3)                        |  |
|                 |     |          | (15.2)                         | (12.3)                         | (14.2)                                | (5.5)                              |                               |  |
|                 | 1   | Main &   | 423185                         | 117697                         | 12557                                 | 272379                             | 2676                          |  |
|                 |     | Recovery | (5.1)                          | (264.1)                        | (56.6)                                | (12.2)                             | (36.1)                        |  |
|                 | 50  | Main &   | 1458986 ***                    | 1204139                        | 26832                                 | 487785                             | 5414                          |  |
|                 |     | Recovery | (44.8)                         | (51.3)                         | (17.7)                                | (26.0)                             | (18.8)                        |  |
| 100             | 134 | Main &   | 421266                         | 243873                         | 18862                                 | 282951                             | 4034                          |  |
|                 |     | Recovery | (25.2)                         | (45.5)                         | (29.5)                                | (26.3)                             | (21.1)                        |  |
|                 |     | Main     | 112886                         | 59183 ***                      | 18789                                 | 112298                             |                               |  |
|                 | 190 |          |                                | (4,4)                          | (19.4)                                | (-)                                | 3460***                       |  |
|                 |     | Recovery | 809700 ***                     | 757219                         | 15928                                 | 272464                             | (19.3)                        |  |
| n=7 for         |     |          | (7.7)                          | (6,4)                          | (10.1)                                | (5.5)                              |                               |  |

Table D: Geometric Mean (CV%) Parameter Estimates Indicative of Systemic Exposure to HuMax-CD20 Following i.v. Infusion on Days 1, 50, 134 and 190 in Female Cynomolgus Monkeys

### 6.2 Repeat-Dose Toxicity

The Sponsor conducted a 2-week dosing study (with a 33-week recovery period) of of atumumab administered SC and IV to support a change in the route of administration. This study

supported SC dosing in the Phase 2 and 3 clinical studies.

Study title: (b) (4) 1841157A: 2-Dose Subcutaneous and Intravenous Toxicity Study in Female Cynomolgus Monkeys Followed by a 33-Week Off-Dose Period

| Study no.:<br>Study report location:                                                        | CD2007-01024 (G07285)<br>EDR, BLA 125326 |
|---------------------------------------------------------------------------------------------|------------------------------------------|
| Conducting laboratory and location:                                                         | (b) (4)                                  |
| Date of study initiation:<br>GLP compliance:<br>QA statement:<br>Drug, lot #, and % purity: |                                          |

Methods (see the Sponsor's summary table, below)

| Frequency of dosing: | Days 1 and 15                                         |
|----------------------|-------------------------------------------------------|
| Dose volume:         | SC: 1 mL/kg                                           |
|                      | IV:10 mL/kg (infusion approximately 30 minutes)       |
| Formulation/Vehicle: | <sup>(b) (4)</sup> Sodium acetate trihydrate,         |
|                      | Disodium edetate                                      |
|                      | Arginine Sodium Chloride, and                         |
|                      | <sup>(0)(4)</sup> Polysorbate 80 in sterile water for |
|                      | injection (pH 5.5)                                    |
| Species/Strain:      | Cynomolgus moneys- Mauritian                          |
|                      | (b) (4)                                               |
| Age:                 | 3 to 5 years old                                      |
|                      | 2.04.4.00 km                                          |

Weight: 3.04-4.66 kg

| Group<br>Number | Dose <sup>1</sup><br>(mg/kg/day) | Dose<br>Concentration<br>(mg/mL) | Dosing<br>Regimen                 | Number/Sex |
|-----------------|----------------------------------|----------------------------------|-----------------------------------|------------|
| 1               | 0                                | 0                                | Subcutaneous <sup>2</sup>         | 4F         |
| 2               | 20                               | 20                               | Subcutaneous <sup>2</sup>         | 6F         |
| 3               | 100                              | 100                              | Subcutaneous <sup>2</sup>         | 6F         |
| 4               | 100                              | 10                               | Intravenous infusion <sup>3</sup> | 6F         |

1. Doses and concentrations are expressed in terms of the parent compound.

2. Interscapular region used for site of dose administration.

3. Duration of dosing was 30 minutes/dose at an infusion rate of 0.333 mL/kg/minute.

No mortality occurred and no clearly drug-related changes in body weight were observed. During the dosing period, eosinophils were increased on Day 1 in the HD SC group (approximately 1.7-fold) and on Days 1, 15, and 20 in the LD SC group (approximately 2.0-2.3-fold). RBC were slightly reduced on Days 15 and 20 in the HD SC and IV groups. During the recovery period, WBC counts were reduced in the LD SC group compared to the controls; reductions of approximately 20% to 30% through Day 195 and approximately 50% from Day 222 to Day 250 were observed (including neutrophils, lymphocytes, and monocytes). In contrast, WBC counts were increased up to 1.5-fold compared to controls in the HD SC and IV groups. In particular, neutrophils were increased 1.8-fold to 2.5-fold in the HD SC and IV groups from Day 47 to Day 104. The IV-dosed animals showed sporadic increases (approximately 10%-15%) in RBC counts on Day 76 and Day 128. No clearly drug-related changes in clinical chemistry parameters were noted at the end of the dosing week (Day 20). During the recovery period, increased total bilirubin was observed in 1 LD SC-dosed animal (approximately 1.9-fold) and 1 HD SC-dosed animal (+45%), compared to controls (N=2). One of 3 HD SC-dosed animals showed increased creatinine (+57%), compared to controls.

CD20+ B cells were not detectable on Days 15 or 20 in any ofatumumab-treated group, regardless of route; CD40+ B cells were also reduced by 50% to 100% of control counts. The LD SC group animals began to show CD20+ B-cell recovery between Days 47 and 128; by Day 163, CD20+ B cells were recovered. In comparison, CD20+ B-cell

recovery was delayed in the HD SC and IV group animals; recovery began on Day 76 to Day 195 in the HD SC group and on Day 195 in the IV group. Only 50% recovery of CD20+ B cells was observed by Day 250 in the HD SC and IV groups. Results for CD40+ B cells were similar to those for CD20+ B cells. The observed differences in CD20+ and CD40+ B-cell recovery rates, as well as systemic exposure [i.e., AUC], were attributed to the presence of ADA; the effects were considered similar in the HD SC and IV groups, in the absence of ADA. CD3+ lymphocyte (T cell) counts were variable, which complicated assessment. In the LD SC group, a slight reduction (approximately 10%-20%) in CD3+ T cells, compared to controls, was observed throughout the majority of the recovery period.

The anatomical pathology assessment was primarily focused on evaluation of local toxicity. A separate, signed pathology report was not provided (this is a limitation of the study); a peer review was conducted but not provided. Relative (to body) spleen weights were slightly increased (approximately 10%) on Day 21 and Day 258 in the HD SC group and were reduced (approximately 10%) in the IV group on Day 21 and Day 258. Relative thymus weights were increased on Day 21 (approximately 2-fold) in the IV group but were reduced in the LD SC and IV groups compared to the control and HD SC groups on Day 258. Misshapen, thickened, and firm caudate liver lobe (with irregular surface and accentuated lobular pattern) was observed in one HD SC group animal; however, there were no microscopic correlates. Limited tissues were evaluated microscopically, including: macroscopic findings, injection site, ileum and jejunum [Peyer's patches], lymph nodes [inguinal, mandibular/cervical, mesenteric, and axillary], spleen, and thymus). At terminal sacrifice, changes were observed in the lymph nodes and injection sites. Minimal to moderate extramedullary hematopoiesis in the mandibular/cervical lymph node was observed in one animal from the LD SC and HD SC groups (severity not dose-related). The Sponsor also indicated that "a high degree of variability was observed between animals in the number and size of primary and secondary lymphoid follicles in the spleen and lymph nodes," but considered this variability within normal limits as it "depends on the immunologic state of the animal." At the injection site, minimal subcutaneous fibrosis (with lymphocytic and granulomatous inflammation) and perivascular and/or focal lymphocytic inflammation of the dermis were observed in one to two animals of the SC-dosed groups. Minimal fibrosis of the dermis and minimal inflammatory cell infiltrate of the intima were observed in one to two IV-dosed animals. At the recovery sacrifice, no drug-related changes were reported.

Overall, three of six LD SC and one of six HD SC group animals showed ADA. See the Sponsor's table, below, for details. ADA were detected beginning on Day 20 in two animals of the LD SC group. ADA were not detected in IV-dosed animals. TK was affected for 2 LD SC group animals and 1 HD SC group animal on Day 47 and/or throughout the recovery period; the presence of ADA may have contributed to accelerated drug clearance and B-cell recovery.

| Group No.<br>Dose<br>(biweekly)         | Animal<br>Number | Day -6 | Day 15 | Day 20 | Day 47 | Day 76 | Day 104 | Day 128 | Day 163 | Day 195 | Day 222 | Day 250 |
|-----------------------------------------|------------------|--------|--------|--------|--------|--------|---------|---------|---------|---------|---------|---------|
| Group 1                                 | 2877             | NQª    | NQ     | NQ     |        |        |         |         |         |         |         |         |
| 0 mg/kg                                 | 2878             | NQ     | NQ     | NQ     |        |        |         |         |         |         |         |         |
|                                         | 2879             | NQ     | NQ     | NQ     | NQ     | NQ     | NQ      | NQ      | NQ      | NQ      | NQ      | NQ      |
|                                         | 2880             | NQ     | NQ     | NQ     | NQ     | NQ     | NQ      | NQ      | NQ      | NQ      | NQ      | NQ      |
| Group 2                                 | 2881             | NQ     | NQ     | NQ     |        |        |         |         |         |         |         |         |
| 20 mg/kg                                | 2882             | NQ     | NQ     | NQ     |        |        |         |         |         |         |         |         |
|                                         | 2883             | NQ     | NQ     | 65.2   |        |        |         |         |         |         |         |         |
|                                         | 2884             | NQ     | NQ     | 5.6    | 4220   | 21800  | 20900   | 18700   | 14700   | 10400   | 83400   | 67200   |
|                                         | 2885             | NQ     | NQ     | NQ     | 4.7    | 200    | 1210    | 1720    | 2930    | 3060    | 2810    | 3440    |
|                                         | 2886             | NQ     | NQ     | NQ     | NQ     | NQ     | NQ      | NQ      | NQ      | NQ      | NQ      | NQ      |
| Group 3                                 | 2887             | NQ     | NQ     | NQ     |        |        |         |         |         |         |         |         |
| 100 mg/kg                               | 2888             | 5.7    | NQ     | NQ     |        |        |         |         |         |         |         |         |
|                                         | 2889             | NQ     | NQ     | NQ     |        |        |         |         |         |         |         |         |
|                                         | 2890             | NQ     | NQ     | NQ     | NQ     | NQ     | NQ      | NQ      | NQ      | NQ      | NQ      | NQ      |
|                                         | 2891             | NQ     | NQ     | NQ     | NQ     | NQ     | NQ      | NQ      | NQ      | NQ      | NQ      | NQ      |
|                                         | 2892             | NQ     | NQ     | NQ     | 35.6   | 1420   | 3700    | 2150    | 1850    | 2040    | 1590    | 1310    |
| Group 4                                 | 2893             | NQ     | NQ     | NQ     |        |        |         |         |         |         |         |         |
| 100 mg/kg                               | 2894             | NQ     | NQ     | NQ     |        |        |         |         |         |         |         |         |
| - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 | 2895             | NQ     | NQ     | NQ     |        |        |         |         |         |         |         |         |
|                                         | 2896             | NQ     | NQ     | NQ     | NQ     | NQ     | NQ      | NQ      | NQ      | NQ      | NQ      | NQ      |
|                                         | 2897             | NQ     | NQ     | NQ     | NQ     | NQ     | NQ      | NQ      | NQ      | NQ      | NQ      | NQ      |
|                                         | 2898             | NQ     | NQ     | NQ     | NQ     | NQ     | NQ      | NQ      | NQ      | NQ      | NQ      | NQ      |

Anti-GSK1841157 Antibody Concentrations in Female Cynomolgus Monkey Serum (ng/mL)

Following SC and IV administration, of a unumab was quantifiable for at least 336 hr after the first dose and at least 72 hr after the Day 15 dose in all groups. In the recovery animals, of a unumab was quantifiable in at least 2 of 3 animals per group up to Day 61, Day 128 or Day 163 for the LD SC, HD SC, and IV-dosed groups, respectively. Mean relative bioavailability was approximately 75% on both Days 1 and 15 in the HD SC group, but was approximately 85% on Day 1 and 40% on Day 15 in the LD SC group. See the Sponsor's summary TK table, below.

|                                          |                                      | Female (n = 6)            |                        |                       |  |  |  |
|------------------------------------------|--------------------------------------|---------------------------|------------------------|-----------------------|--|--|--|
| Parameter                                | Period                               | Dose o                    | of GSK1841157 (mg/kg/  | (dose)                |  |  |  |
|                                          |                                      | 20 (SC)                   | 100 (SC)               | 100 (IV)              |  |  |  |
| AUC <sub>0-t</sub> a<br>(mg.h/mL)        | Day 1°                               | 57.9<br>[44.6 - 77.0]     | 257<br>[225 - 283]     | 340<br>[322 - 398]    |  |  |  |
|                                          | Day 15 <sup>d</sup>                  | 46.4<br>[18.7 - 67.9]     | 274<br>[134 - 347]     | 392<br>[375 - 423]    |  |  |  |
|                                          | Off-dose <sup>e</sup>                | 80.0<br>[18.7 – 136]      | 753<br>[136 - 1110]    | 1005<br>[889 - 1156]  |  |  |  |
| Relative                                 | Day 1                                | 85.1<br>[65.6 – 113]      | 75.6<br>[66.3 – 83.3]  | NA                    |  |  |  |
| Bioavailability<br>F% <sup>a</sup>       | Day 15 with<br>Off-dose <sup>f</sup> | 39.8<br>[9.29 – 67.6]     | 74.9<br>[13.5 – 110]   | NA                    |  |  |  |
| AUC <sub>0-72</sub> a<br>(mg.h/mL)       | Day 15 <sup>f</sup>                  | 16.7<br>[5.75 - 31.7]     | 88.9<br>[78.6 – 99.7]  | 145<br>[141-151]      |  |  |  |
| C <sub>max</sub> <sup>a</sup><br>(mg/mL) | Day 1                                | 0.218<br>[0.186 - 0.269]  | 1.00<br>[0.923 - 1.17] | 2.76<br>[2.47 - 3.32] |  |  |  |
|                                          | Day 15                               | 0.297<br>[0.0916 - 0.637] | 1.51<br>[1.16 - 2.01]  | 3.27<br>[2.93 - 3.93] |  |  |  |
| T <sub>max</sub> <sup>b</sup><br>(h)     | Day 1                                | 120<br>[36.0 - 168]       | 48.0<br>[24.0 - 48.0]  | 0.50<br>[0.50-0.50]   |  |  |  |
|                                          | Day 15                               | 60.0<br>[24.0 - 72.0]     | 48.0<br>[24.0 - 72.0]  | 1.00<br>[0.50 - 6.00] |  |  |  |
| T <sub>1/2</sub> <sup>b</sup><br>(h)     | Off-dose                             | 76.8<br>[26.5 - 210]      | 226<br>[72.2 - 353]    | 320<br>[265 - 345]    |  |  |  |

NA = Not applicable.

The relative bioavailability was calculated by comparison between the dose normalized individual AUC<sub>0-t</sub> following SC administration and the mean AUC<sub>0-t</sub> following IV administration on Day 1 and Day 15, respectively

- a. Results are reported as Mean and [Range].
- b. Results are reported as Median and [Range].

c. AUC0+ was calculated from time 0 to the last sampling time 336 hours after dosing on Day 1.

d. n = 3, AUC<sub>01</sub> was calculated from time 0 up to the sampling time 312 hours after dosing on Day 15.

e. n = 3, AUCo+ was calculated from time 0 up to the last quantifiable time-point during the off-dose period.

f. n = 3.

# 8 Carcinogenicity

The Sponsor submitted a carcinogenicity assessment to justify the lack of a carcinogenicity study (IND 111116, Seq No. 0097, dated 8/9/2016); the justification was found acceptable upon review (see email correspondence dated 6/11/2017).

# 9 **Reproductive and Developmental Toxicology**

The reproductive toxicology assessment supporting the original BLA consisted of an embryofetal development study in cynomolgus monkey. The nonclinical review of the original BLA (see review by Dr. A. McDougal, dated 8/10/09) noted that the toxicology

studies were "of limited utility to assess reproductive toxicity" because most of the animals were sexually immature. To support the use of ofatumumab in indications requiring chronic treatment in a population such as RMS, fertility and enhanced pre- and postnatal development studies were submitted.

### 9.1 Fertility and Early Embryonic Development

Study Title: 13 Week Intravenous Administration for Effects on Female and Male Fertility in the Cynomolgus Monkey with at Least An 8 Week Recovery Period

| Study                                                                                                                       | no ·                                       | Pcs-r1670402                                    | (b)                          | (4)     |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------|------------------------------|---------|
| Study report loca                                                                                                           |                                            | EDR                                             |                              |         |
| Conducting laboratory and loca                                                                                              |                                            |                                                 |                              | (b) (4) |
| Date of study initia<br>GLP complia                                                                                         |                                            | analysis, & IHC                                 | analysis, TK, cytokine       | ,       |
| QA statem<br>Drug, lot #, and % pt                                                                                          |                                            | Yes                                             | OMB157), Batch #<br>.6% pure |         |
| Methods (See the Sponsor's Ta<br>Frequency of Dosing<br>Route of administration:<br>Formulation/Vehicle:<br>Species/Strain: | Days<br>IV infu<br>See T<br>Cynor<br>3.5-7 | 1, 8, 15, 22, 29,<br>usion<br>able 3.1.2, belov | w.<br>s (Vietnamese)         |         |

|                 |                      |                                          |                                | Animals/Group | Necropsy after           |              |  |
|-----------------|----------------------|------------------------------------------|--------------------------------|---------------|--------------------------|--------------|--|
| Group<br>Number | Group<br>Description | Dose Levela<br>(mg/kg)                   | Volume <sup>b</sup><br>(mL/kg) | Males/Females | 13<br>Weeks <sup>c</sup> | 21<br>Weeksd |  |
| 1               | Control              | 0 mg/kg weekly /<br>0 mg/kg bi-weekly    | 10                             | 6/6           | 4M/4F                    | 2 M/2 F      |  |
| 2               | Low                  | 10 mg/kg weekly /<br>3 mg/kg bi-weekly   | 10                             | 6/6           | 4 M / 4 F                | 2 M / 2 F    |  |
| 3               | High                 | 100 mg/kg weekly /<br>20 mg/kg bi-weekly | 10                             | 6/6           | 4 M / 4 F                | 2 M/2 F      |  |

#### Table 1.1: Study Design

F = Females; M = Males

a = First five weeks weekly / every 2 weeks thereafter starting on study Day 43.

b = Based on most recent individual body weight.

c = End of treatment period

d = End of treatment-free period

#### 3.1.2 Control Item (Vehicle)

The control item (vehicle) components were supplied as follows.

| Storage | Batch No.          | Expiry Date                                                                                          | Composition<br>per mL [mg]                                                                                                                                                                      |
|---------|--------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | AM0940967          | 31 Jan 2018                                                                                          | (b) (4                                                                                                                                                                                          |
|         | K48705904          | 28 Feb 2022                                                                                          |                                                                                                                                                                                                 |
|         | K49022887          | 31 May 2022                                                                                          |                                                                                                                                                                                                 |
| (h) (4) | HC60667757         | 30 Sep 2019                                                                                          |                                                                                                                                                                                                 |
|         | HC60683437         | 31 Oct 2019                                                                                          |                                                                                                                                                                                                 |
|         | 17C244111          | Dec 2021                                                                                             |                                                                                                                                                                                                 |
|         | K49092461          | 31 May 2019                                                                                          |                                                                                                                                                                                                 |
|         | NA                 | NA                                                                                                   |                                                                                                                                                                                                 |
|         | Storage<br>(b) (4) | AM0940967<br>K48705904<br>K49022887<br>HC60667757<br>(b) (4)<br>HC60683437<br>17C244111<br>K49092461 | AM0940967<br>31 Jan 2018<br>K48705904<br>28 Feb 2022<br>K49022887<br>31 May 2022<br>HC60667757<br>30 Sep 2019<br>HC60683437<br>31 Oct 2019<br>17C244111<br>Dec 2021<br>K49092461<br>31 May 2019 |

NA = Not applicable.

#### **Observations and Results**

#### Mortality

There were no early deaths.

#### **Clinical Signs**

Drug-related clinical signs or changes in respiration rate or body temperature were not observed. One LDM was reported to show moderate hypoactivity, excessive salivation, lying body position, and swollen eyelids between Day 71 and Day 85; incomplete B-cell depletion was observed in this animal on Day 85, and the effects were considered potentially ADA-related.

### **Body Weight**

No drug-related changes in body weight were observed.

### **Clinical Pathology**

#### Hematology & Coagulation

In males, reticulocytes were reduced in the ofatumumab-dosed groups (approximately 20% on Day 85 and 30-40% on Recovery Day 50 [not d-r]). WBC were increased 40% to 50% in ofatumumab-dosed males on Recovery Day 50; increased neutrophils accounted for most of the observed increase (approximately 70%).

In females, lymphocytes were reduced in the ofatumumab-dosed groups on Day 85 (approximately 40% in the HD group) and at the end of recovery (approximately 25% in the LD and 40% in the HD groups). Eosinophils were dose-dependently reduced on Day 85; partial recovery was observed (see the Sponsor's table, below).

| able                             |          |
|----------------------------------|----------|
| ummary of Hematology             |          |
| est Item (dosage)                | 1 2 3    |
| MB157 mg/kg weekly first 5 weeks |          |
| MB157 mg/kg biweekly from day 43 | 3 0 3 20 |

|                           | Phase                                                          | Pre                             |                                 | 10E9/L<br>Dosing                   | Recovery                         |
|---------------------------|----------------------------------------------------------------|---------------------------------|---------------------------------|------------------------------------|----------------------------------|
| Group/<br>Sex             | Day<br>Session                                                 | 65<br>1                         | 71<br>1<br>Hema/IPT             | 85<br>1                            | 52<br>1                          |
| 1/F                       | Mean<br>SD<br>N                                                | 0.25<br>0.218<br>6              | 0.31<br>0.429<br>6              | 0.43<br>0.366<br>6                 | 0.29<br>0.304<br>2               |
| 2/F                       | SD<br>N                                                        | 0.20<br>0.186<br>6<br>-20%      | 0.18<br>0.142<br>6<br>-42%      | 0.11<br>0.133<br>6<br>-74%         | 0.14<br>0.113<br>2<br>-52%       |
| 3/F                       | Mean<br>SD<br>N<br>&-Diff<br>Statistics                        | 0.14<br>0.131<br>6<br>-44%<br>A | 0.17<br>0.171<br>6<br>-45%<br>A | 0.04**<br>0.038<br>6<br>-91%<br>AT | 0.18<br>0.170<br>2<br>-38%<br>X7 |
| ** P<<br>*** P<<br>A = AN | =0.05<br>=0.01<br>=0.001<br>NOVA and Dunnet<br>unk-transformed |                                 |                                 | X7 = Not a<br>too small)           | analyzed (mean of                |

### Clinical Chemistry

Reductions in IgG and IgM were observed (approximately 10% to 40%) in both of atumumab-dosed groups in the recovery period; however, it is noted that the values were based on two animals per group.

#### Urinalysis

Urine volume was reduced in the HDM at the end of dosing (see the Sponsor's Table 4.3, below).

#### Table 4.3: Summary of Urinalysis

| OMB157<br>OMB157 |                        | first 5 weeks<br>y from day 43 |                    |                  |
|------------------|------------------------|--------------------------------|--------------------|------------------|
|                  | Phase                  | Predose                        | UVOL. mL<br>Dosing | Recovery         |
| Group/<br>Sex    | Day<br>Session<br>Name | 9<br>1<br>Urine                | 85<br>1<br>Urine   | 50<br>1<br>Urine |
| 1/M              | Mean                   | 76.8                           | 98.8               | 190.0            |
|                  | SD                     | 43.97                          | 103.38             | 35.36            |
|                  | N                      | 6                              | 6                  | 2                |
| 2/M              | Mean                   | 106.3                          | 78.8               | 104.0            |
|                  | SD                     | 29.73                          | 53.44              | 93.34            |
|                  | N                      | 6                              | 6                  | 2                |
|                  | %-Diff                 | 38%                            | -20%               | -45%             |
| 3/M              | Mean                   | 114.2                          | 29.6               | 109.5            |
|                  | SD                     | 39.50                          | 24.01              | 50.20            |
|                  | N                      | 6                              | 6                  | 2                |
|                  | %-Diff                 | 49%                            | -70%               | -42%             |
|                  | Statistics             | A                              | AT                 | X7               |

T = Rank-transformed data

X7 = Not analyzed (mean of actual group sizes too small)

#### Cytokines

No effects on IFN-γ, TNF-α, IL-1β, IL-2, IL-4, IL-6, IL-8, or IL-10 levels were reported.

#### Immunophenotyping (IPT)

Circulating CD20+ B cells were depleted in both of atumumab-dosed groups. Only animals with neutralizing ADA showed CD20+ B-cell counts exceeding the limit of quantitation on Day 85 and Recovery Day 50. See the Sponsor's tables, below.

|       | Phase      |          | Pre   | dose     |       | Dosing   | J       | Recov    | ery   |
|-------|------------|----------|-------|----------|-------|----------|---------|----------|-------|
| Group | / Day      | 8        |       | 16       |       | 85       | 20 KO   | 50       |       |
| Sex   |            | (10E9/L) | (8)   | (10E9/L) | (8)   | (10E9/L) | (%)     | (10E9/L) | (%)   |
| L/M   | Mean       | 1.42     | 34.09 | 1.60     | 30.16 | 1.29     | 33.25   | 1.56     | 43.94 |
|       | SD         | 1.09     | 15.83 | 0.96     | 15.75 | 1.18     | 14.69   | -        | -     |
|       | N          | 6        | 6     | 6        | 6     | 6        | 6       | 2        | 2     |
| 2/M   | Mean       | 1.24     | 23.80 | 1.26     | 21.22 | 0.32 **  | 6.36 ** | 0.82     | 17.44 |
|       | SD         | 0.38     | 6.16  | 0.48     | 6.16  | 0.37     | 7.00    | -        | -     |
|       | N          | 6        | 6     | 6        | 6     | 6        | 6       | 2        | 2     |
| 3/M   | Mean       | 1.90     | 25.86 | 2.09     | 23.59 | 0.00 *** | 0.01 ** | * 0.00   | 0.00  |
|       | SD         | 0.93     | 7.37  | 1.04     | 7.03  | 0.00     | 0.01    | 2        | S 2   |
|       | N          | 6        | 6     | 6        | 6     | 6        | 6       | 2        | 2     |
|       | Statistics | A        | AT    | A        | AT    | AT       | AT      | X        | X     |

Standard deviation not calculated for less than three values

Statistical analysis was performed using SAS release 9.2

A = ANOVA and Dunnett's \* P≤ 0.05 \*\* P≤ 0.01

T = Rank-transformed data \*\*\* P≤ 0.001 X = No analysis performed

CD20+ B cells absolute (10E9/L) and % of Lymphocytes Phase Recovery Predose Dosing Group/ Dav 65 85 (%) (10E9/L) (8) (%) (10E9/L) Sex (10E9/L) (10E9/L) (%) 1/F Mean 0.96 23.87 1.14 21.40 0.86 25.40 1.15 28.28 SD 0.47 8.65 0.49 5.97 0.25 8.09 2 6 6 6 6 2 N 6 6 2/F Mean 0.71 23.17 0.86 21.87 0.12 \*\*\* 4.19 \*\* 0.00 0.09 SD 0.46 10.02 0.52 7.99 0.29 10.24 2 2 N 6 6 6 6 6 6 3/F 1.15 30.09 1.60 30.34 0.00 \*\*\* 0.00 \*\*\* 0.00 0.00 Mean SD 0.58 8.00 0.75 7.87 0.00 0.00 2 N 6 6 6 6 6 6 2 AT AT х х Statistics A A A A

Standard deviation not calculated for less than three values

Statistical analysis was performed using SAS release 9.2

A = ANOVA and Dunnett's

\* P≤ 0.05 \*\* P≤ 0.01 T = Rank-transformed data \*\*\* ₽≤ 0.001

X = No analysis performed

Assessment of T cell counts (i.e., CD3+, CD3+CD8+ cytotoxic, and CD3+CD4+ helper) was complicated by high variability (i.e., predose differences between the groups, particularly in males). T cell counts tended to be reduced at the end of the dosing and/or recovery period compared to their predose counts in individual HDMs.

#### **Toxicokinetics & ADA**

TK was evaluated on Day 1 and Day 85. The non-GLP ADA assessment was performed using a qualified but non-validated method.

Systemic exposure to ofatumumab increased approximately dose-proportionally on Day 1 and slightly more than dose-proportionally on Day 85. No clear sex difference was observed. See the Sponsor's summary Table 4.1, below.

| Dose Level* |          |     |        | Cmax         |         | AUC <sub>0-168</sub> |             |
|-------------|----------|-----|--------|--------------|---------|----------------------|-------------|
| (mg/kg)     | Interval | Sex | n      | $(\mu g/mL)$ | DN Cmax | (µg·h/mL)            | DN AUC0-168 |
| 10/3        |          |     |        |              |         |                      |             |
| (Group 2)   | Day 1    | M   | 6<br>6 | 275          | 27.5    | 22600                | 2260        |
|             |          | F   | 6      | 248          | 24.8    | 1670                 | 167         |
|             | Day 85   | M   | 2**    | 113          | 37.6    | 11300                | 3780        |
|             |          | F   | 5**    | 136          | 45.3    | 13900                | 4620        |
| 100/20      |          |     |        |              |         |                      |             |
| (Group 3)   | Day 1    | M   | 6      | 2760         | 27.6    | 247000               | 2470        |
|             |          | F   | 6      | 2530         | 25.3    | 222000               | 2220        |
|             | Day 85   | м   | 6      | 1340         | 67.2    | 162000               | 8090        |
|             |          | F   | 6      | 1090         | 54.7    | 124000               | 6200        |

# Table 4.1: Summary of Mean Ofatumumab C<sub>max</sub>, DN C<sub>max</sub>, AUC<sub>0-168</sub>, and DN AUC<sub>0-168</sub> in Male and Female Monkey Serum

\* Dose administered weekly (first 5 occasions)/dose administered biweekly (last 4 occasions)

\*\* 4 male and 1 female animals were excluded due to being ADA positive on Day 22/57

Five of 12 LD animals (i.e., 4 LDM and 1 LDF) showed of a umumab concentrations below the LLOQ from Day 22/57, correlating with a neutralizing ADA response and recovery of CD20+ B cells in blood and lymphoid tissues. Five other LD animals and two of 12 HD animals (on Day 22 only) were positive for ADAs without a clear effect on of a tumumab TK.

### **Dosing Solution Analysis**

Formulation analyses on Day 1 and during Weeks 7 and 13 showed that the formulations were between 92.5% and 100.2% of the nominal concentration. Drug was not found in the vehicle control formulations.

### Necropsy

A separate, signed pathology report was submitted. A non-GLP peer review was conducted but not included in the report. A full necropsy was conducted, and organ weights were collected for adrenal gland, brain, epididymides, heart, kidneys, liver, ovaries, pituitary, prostate, spleen, testes, thymus, thyroid/parathyroid, and uterus/cervix. Epididymal sperm motility was assessed. The tissues evaluated histologically included: epididymides, mammary glands, gross lesions, injection sites, mandibular and mesenteric lymph nodes, ovaries, Peyer's patches (ileum), prostate, seminal vesicles, spleen, testes, thymus, and uterus/cervix.

#### Organ Weights

At the end of the dosing period, thymus weight was reduced approximately 50% in the LDM but was increased approximately 20% at the HD in both males and females.

Dose-dependent increases in epididymal (approximately 20% at the LD and approximately 40% at the HD) and testicular (approximately 20% at the LD and approximately 60% at the HD) weights were observed. Uterine weights were reduced (approximately 20%) in the HDF. The Sponsor considered the observations reflective of normal variation.

At the end of the recovery period, thymus weight was increased approximately 2-fold in the LDM, but slight reductions in spleen weight (approximately 10%-40%) were observed in ofatumumab-dosed males and females. Dose-dependent increases in epididymal weight (approximately 30% at the LD and 2-fold at the HD) were observed. Prostate weight was increased approximately 50% at the HD. Ovarian weight was slightly reduced (approximately 20%) but uterine weight was increased (approximately 50%) at the HD. Slight increases (20-30%) in other organ weights (heart in both sexes and liver in females at the HD) were attributed to individual variation.

#### Macroscopic

No clearly drug-related findings were observed.

#### Histopathology

Microscopic changes were observed in lymphatic tissues and spleen, with few observations in other evaluated tissues. See selected data from the Sponsor's summary table, below.

At the end of the dosing period, dose-dependent slight to severe reductions in germinal centers and minimal to moderate extramedullary hematopoiesis were observed in the lymph nodes. In the spleen, dose-dependent decreased cellularity in the lymphoid follicles and moderate to severe reductions in germinal centers were observed.

One HDM showed bilateral moderate depletion/degeneration of germ cells in the testis; changes observed in the other animals were unilateral. Low incidence uterine changes were observed, but similar changes have been reported as background lesions in cynomolgus monkeys (see Cline et al., 2008). Moderate hemorrhage and slight GALT hyperplasia in the cecum were observed with low incidence (i.e., each in 1 HDF).

| Summary o:<br>Terminal :<br>Test Item |                                                          | rvat<br>2 |   |          |          |          |          |
|---------------------------------------|----------------------------------------------------------|-----------|---|----------|----------|----------|----------|
| OMB157<br>OMB157                      | mg/kg weekly first 5 weeks<br>mg/kg biweekly from day 43 |           |   |          |          |          |          |
| Tissue/<br>Observatio                 | Group/Sex:<br>on Number of Animals:                      |           |   | 3/M<br>4 | 1/F<br>4 | 2/F<br>4 | 3/F<br>4 |
| Lymph Nod<br>Mandibul                 |                                                          | 4         | 4 | 4        | 4        | 4        | 4        |

| Germinal centers, abs              | ent/reduced    |      |       |      |         |        |        |
|------------------------------------|----------------|------|-------|------|---------|--------|--------|
|                                    | not present -  | 4    | 0     | 0    | 4       | 2      | 1      |
|                                    | slight 2       | 0    | 4     | 1    | 0       | 2      | 0      |
|                                    | moderate 3     | 0    | 0     | 0    | 0       | 0      | 3      |
|                                    | marked 4       | 0    | 0     | 3    | 0       | 0      | 0      |
|                                    |                |      |       |      |         |        |        |
| Tot                                | al Incidence:  | 0    | 4     | 4    | 0       | 2      | 3      |
| Hematopoiesis, extram              |                | 1.00 | 100   | 1210 |         |        |        |
| finding                            | not present -  | 4    | 4     | 2    | 3       | 4      | 3      |
|                                    | minimal 1      | 0    | 0     | 1    | 1       | 0      | 1      |
|                                    | moderate 3     | 0    | 0     | 1    | 0       | 0      | 0      |
| То                                 | tal Incidence: | 0    | 0     | 2    | 1       | 0      | 1      |
| Lymph Node,                        |                |      |       |      |         |        |        |
| Mesenteric Nu                      | mber Examined: | 4    | 4     | 4    | 4       | 4      | 4      |
|                                    | Unremarkable:  | 4    | 2     | 0    | 4       | 2      | 1      |
| Germinal centers, abs              |                |      |       |      |         |        |        |
| finding                            | not present -  | 4    | 2     | 0    | 4       | 2      | 1      |
|                                    | slight 2       | 0    | 1     | 0    | 0       | 1      | 0      |
|                                    | moderate 3     | 0    | 0     | 0    | 0       | 1      | 1<br>1 |
|                                    | marked 4       | 0    | 1     | 3    | 0       | 0      |        |
|                                    | severe 5       | 0    | 0     | 1    | 0       | 0      | 1      |
| То                                 | tal Incidence: | 0    | 2     | 4    | 0       | 2      | 3      |
| Hematopoiesis, extram              | nedullarv      |      |       |      |         |        |        |
|                                    | not present -  | 4    | 4     | 3    | 4       | 4      | 4      |
|                                    | slight 2       | ō    | 0     | 1    | ō       | 0      | ō      |
|                                    |                |      | 1.780 | 0.5  | 0.54.55 | 100.00 | 10     |
| То                                 | tal Incidence: | 0    | 0     | 1    | 0       | 0      | 0      |
| Spleen Nu                          | mber Examined: | 4    | 4     | 4    | 4       | 4      | 4      |
| Real and an and a second second    | Unremarkable:  | 4    | 1     | 0    | 3       | 1      | 1      |
| Decreased cellularity<br>follicles | 7, lymphoid    |      |       |      |         |        |        |
|                                    | not present -  | 4    | 3     | 0    | 4       | 4      | 2      |
| 11maing                            | slight 2       | 0    | õ     |      | ō       | 0      | ī      |
|                                    | moderate 3     | ŏ    | ĩ     | 1 2  | ŏ       | ŏ      | i      |
|                                    | marked 4       | õ    | ō     | 1    | ŏ       | õ      | ō      |
|                                    | marked 4       |      | Ŭ     | -    | 0       | 0      | 0      |
| To                                 | tal Incidence: | 0    | 1     | 4    | 0       | 0      | 2      |
| Germinal centers, abs              |                |      |       |      |         |        |        |
| finding                            | not present -  | 4    | 1     | 0    | 3       | 1      | 1      |
|                                    | moderate 3     | 0    | 1     | 0    | 0       | 0      | 0      |
|                                    | marked 4       | 0    | 0     | 1    | 1       | 0      | 0      |
|                                    | severe 5       | 0    | 2     | 3    | 0       | 3      | 3      |
| To                                 | tal Incidence: | 0    | 3     | 4    | 1       | 3      | 3      |
| Testis Nu                          | mber Examined: | 4    | 4     | 4    | 0       | 0      | 0      |
| 169019                             | Unremarkable:  |      | 4     | 2    | ŏ       | ŏ      | ŏ      |
| Depletion/degeneration             |                |      |       |      |         |        | -      |
|                                    | not present -  | 3    | 4     | 2    | 0       | 0      | 0      |
|                                    | minimal 1      | õ    | ō     | ī    | õ       | ŏ      | õ      |
|                                    | moderate 3     |      | ō     | ī    | ō       | ō      | ō      |
| То                                 | tal Incidence: | 1    | 0     | 2    | 0       | 0      | 0      |

| Uterus/Cervix | Number Examined:                  | 0 | 0 | 0 | 4 | 4 | 4 |
|---------------|-----------------------------------|---|---|---|---|---|---|
|               | Unremarkable:                     | 0 | 0 | 0 | 4 | 3 | 3 |
| Adenomyosis   |                                   |   |   |   |   |   |   |
|               | finding not present -             | 0 | 0 | 0 | 4 | 3 | 4 |
|               | minimal 1                         | 0 | 0 | 0 | 0 | 1 | 0 |
|               | Total Incidence:                  | 0 | 0 | 0 | 0 | 1 | 0 |
| Dilatation    |                                   |   |   |   |   |   |   |
|               | finding not present -             | 0 | 0 | 0 | 4 | 4 | 3 |
|               | finding not present -<br>slight 2 | 0 | 0 | 0 | 0 | 0 | 1 |
|               | Total Incidence:                  | 0 | 0 | 0 | 0 | 0 | 1 |

After an 8-week recovery period, changes persisted in the spleen and LN. See selected data from the Sponsor's summary table, below.

|                    | 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| kly first 5 wasks  | 0 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| eekly from day 43  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                    | 1/M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2/M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3/M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/F                                                                                                                                                                                                                                                                                                                                                                             | 2/F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3/F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Number of Animals: | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Number Examined:   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Unremarkable:      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| slight 2           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ō                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ō                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ō                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ō                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ō                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Total Incidence:   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Number Examined:   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Unremarkable:      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| , absent/reduced   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ding not present - | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| slight 2           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| marked 4           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| severe 5           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Total Incidence:   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Number Examined:   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| arity, lymphoid    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ding not present - | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| slight 2           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Total Incidence:   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| absent/reduced     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| severe 5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ŏ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ŏ                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Severe 5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    | Seekly from day 43<br>Group/Sex:<br>Number of Animals:<br>Number of Animals:<br>Number of Animals:<br>Number Examined:<br>Unremarkable:<br>, absent/reduced<br>ding not present -<br>slight 2<br>moderate 3<br>marked 4<br>Total Incidence:<br>, absent/reduced<br>nding not present -<br>slight 2<br>marked 4<br>severe 5<br>Total Incidence:<br>Number Examined:<br>Unremarkable:<br>arity, lymphoid<br>ding not present -<br>slight 2<br>moderate 3<br>Total Incidence:<br>, absent/reduced<br>ding not present -<br>slight 2<br>moderate 3 | ekly first 5 weeks 0 10<br>weekly from day 43 0 3<br>Group/Sex: 1/M<br>Number of Animals: 2<br>Number Examined: 2<br>unremarkable: 2<br>, absent/reduced<br>dding not present - 2<br>slight 2 0<br>moderate 3 0<br>marked 4 0<br>Total Incidence: 0<br>Number Examined: 2<br>unremarkable: 2<br>, absent/reduced<br>nding not present - 2<br>slight 2 0<br>marked 4 0<br>Total Incidence: 0<br>Total Incidence: 0<br>Number Examined: 2<br>unremarkable: 2<br>narked 4 0<br>Severe 5 0<br>Total Incidence: 0<br>Number Examined: 2<br>unremarkable: 2<br>arity, lymphoid<br>nding not present - 2<br>slight 2 0<br>moderate 3 0<br>Total Incidence: 0<br>, absent/reduced<br>dding not present - 2<br>slight 2 0<br>moderate 3 0<br>Total Incidence: 0<br>, absent/reduced<br>dding not present - 2<br>moderate 3 0 | Group/Sex: 1/M 2/M<br>Number of Animals: 2 2<br>Number of Animals: 2 2<br>Unremarkable: 2 2<br>, absent/reduced<br>dding not present - 2 2<br>slight 2 0 0<br>moderate 3 0 0<br>marked 4 0 0<br>Total Incidence: 0 0<br>Number Examined: 2 2<br>Unremarkable: 2 1<br>, absent/reduced<br>nding not present - 2 1<br>slight 2 0 1<br>marked 4 0 0<br>Total Incidence: 0 1<br>Number Examined: 2 2<br>Unremarkable: 2 1<br>arity, lymphoid<br>dding not present - 2 2<br>slight 2 0 0<br>moderate 3 0 0<br>Total Incidence: 0 0<br>, absent/reduced<br>dding not present - 2 2<br>slight 2 0 0<br>moderate 3 0 0 | ekly first 5 weeks       0       10       100         yeekly from day 43       0       3       20         Group/Sex: 1/M       2/M       3/M         Number of Animals:       2       2       2         Number of Animals:       2       2       2         Number of Animals:       2       2       2         Number Examined:       2       2       0         , absent/reduced | ekly first 5 weeks       0       10       100         yeekly from day 43       0       3       20         Group/Sex: 1/M       2/M       3/M       1/F         Number of Animals:       2       2       2       2         Number fixeduced       2       2       2       2       2         Number Examined:       2       2       0       2       2         absent/reduced       0       0       0       0       0         iding not present -       2       2       2       0       2         moderate 3       0       0       0       0       0       0         moderate 3       0       0       2       0       0       0       0         Total Incidence:       0       0       2       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 | ekly first 5 weeks       0       10       100         reekly from day 43       0       3       20         Group/Sex: 1/M       2/M       3/M       1/F       2/F         Number of Animals:       2       2       2       2       2       2         Number of Animals:       2       2       2       2       2       2       2         Number Examined:       2       2       0       2       1       3/M       1/F       2/F         Number Examined:       2       2       0       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 |

#### Table 7.8: Summary of Severity of Microscopic Observations - Recovery Sacrifice

Report Run: 3:19 P

| Uterus/Cervix | Number Examined:      | 0 | 0 | 0 | 2 | 2 | 2 |
|---------------|-----------------------|---|---|---|---|---|---|
|               | Unremarkable:         | 0 | 0 | 0 | 2 | 1 | 2 |
| Hyperplasia,  | endometrium           |   |   |   |   |   |   |
|               | finding not present - | 0 | 0 | 0 | 2 | 1 | 2 |
|               | moderate 3            | 0 | 0 | 0 | 0 | 1 | 0 |
|               | Total Incidence:      | 0 | 0 | 0 | 0 | 1 | 0 |

#### **Immunohistochemistry**

T-cell (anti-CD3) and B-cell (anti-CD20) staining was used to visualize depletion in the lymphoid tissues.

Lymphoid tissues (i.e., spleen, LN, GALT, and thymus) showed marked decreases in the intensity, quantity, and distribution of staining of CD20+ cells. After the recovery period, depletion was still present in the lymphoid tissues at the HD but showed partial recovery at the LD (although this is confounded by the effects of neutralizing ADA). "Minor" dose-dependent reductions in the distribution and quantity of staining of CD3+ cells in the lymphoid tissues were observed, with some evidence of recovery at the LD (see comment above regarding ADA); the changes in CD3+ cell staining were considered secondary to the reduction in size/number of germinal centers reflecting the marked reductions in CD20+ cells.

#### **Fertility Parameters**

In females, menstrual cycles were monitored; clearly drug-related changes in menstrual cycle length were not observed. One HDF showed "many extra bleedings" after 4 regular cycles; the cycles were described as regular, with "stronger bleeding"; uterine/cervical tissues in this animal were reported as microscopically normal. A few individuals showed microscopic changes in the uterus (see **Histopathology**; i.e., adenomyosis, slight lumen dilatation, and moderate focal hyperplasia of the endometrial lumen of the uterus); however, these changes have been reported as background lesions in cynomolgus monkeys, with endometrial hyperplasia reported as "rare" (see Cline et al., 2008).

In males, semen evaluation was performed during the predose period and during Weeks 1, 7, and 13; sperm count, motility, and morphology were assessed. Testicular size, volume, homogeneity, and echogenicity were also assessed. No clearly drug-related changes were observed for ejaculate weight or sperm count. A slight reduction in epididymal sperm motility at the HD (77.8%, compared to 88.7% in controls) at necropsy was not clearly observed in the semen evaluations; no clear differences were observed after the recovery period. Sperm morphology was variable but suggested increased sperm defects in HDM; the Sponsor attributed this observation to two individuals, but those individuals were not clearly outliers. See tables below, from the Sponsor. Clearly drug-related changes in testicular volume were not observed.

0304004

| Table       Summary of Sperm Morphology (%)       Test Item (dosage)     1       OMB157     mg/kg weekly first 5 weeks       OMB157     mg/kg biweekly from day 43       OMB157     mg/kg biweekly from day 43 |                 |        |                     |                      |                 |                            |                     |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|---------------------|----------------------|-----------------|----------------------------|---------------------|--|
|                                                                                                                                                                                                                | Occasion        |        | Dosing Phase Week 1 |                      |                 |                            |                     |  |
| Group/<br>Sex                                                                                                                                                                                                  |                 | normal | head<br>defects     | mid piece<br>defects | tail<br>defects | total amount<br>of defects | multiple<br>defects |  |
| 1/M                                                                                                                                                                                                            | Mean            | 84.4   | 0.6                 | 9.2                  | 8.6             | 18.3                       | 2.3                 |  |
|                                                                                                                                                                                                                | SD<br>N         | 8.1    | 0.6                 | 5.3                  | 5.9             | 9.0                        | 1.5                 |  |
| 2/M                                                                                                                                                                                                            | Mean            | 87.5   | 1.1                 | 8.4                  | 5.3             | 14.8                       | 2.0                 |  |
|                                                                                                                                                                                                                | SD<br>N         | 7.2    | 0.5                 | 5.2                  | 3.0             | 7.4                        | 1.3                 |  |
| 3/M                                                                                                                                                                                                            | Mean            | 69.8   | 1.0                 | 8.3                  | 23.0            | 32.3                       | 1.9                 |  |
|                                                                                                                                                                                                                | SD              | 25.3   | 0.9                 | 6.2                  | 25.6            | 25.6                       | 1.1                 |  |
|                                                                                                                                                                                                                | N<br>Statistics | AT     | AT                  | 6<br>AT              | AT              | 6<br>AT                    | 6<br>AT             |  |

Statistical analysis was performed using SAS release 9.2

A = ANOVA and Dunnett's
T = Rank-transformed data

Table

| Summary of | Sperm Morphology (%)       |      |    |
|------------|----------------------------|------|----|
| Test Item  | (dosage)                   | 1    | 2  |
| OMB157     | mg/kg weekly first 5 weeks | 0    | 10 |
|            |                            | 1.00 |    |

| OMB157 | mg/kg weekly first 5 weeks | 0 | 10 | 100 |
|--------|----------------------------|---|----|-----|
| OMB157 | mg/kg biweekly from day 43 | 0 | 3  | 20  |
|        |                            |   |    |     |

|               | Occasio    | on     | Dosing Phase Week 7 |                      |                 |                            |                     |
|---------------|------------|--------|---------------------|----------------------|-----------------|----------------------------|---------------------|
| Group.<br>Sex | (          | normal | head<br>defects     | mid piece<br>defects | tail<br>defects | total amount<br>of defects | multiple<br>defects |
| 1/M           | Mean       | 91.4   | 0.8                 | 5.0                  | 5.1             | 10.8                       | 1.8                 |
|               | SD<br>N    | 3.8    | 0.9                 | 1.5                  | 3.8             | 5.9                        | 1.7                 |
|               | 14         | 0      | 6                   | 0                    | 0               | 0                          | 0                   |
| 2/M           | Mean       | 92.7   | 0.5                 | 4.1                  | 3.8             | 8.3                        | 0.8                 |
|               | SD         | 2.4    | 0.4                 | 2.3                  | 1.4             | 2.6                        | 0.4                 |
|               | N          | 6      | 6                   | 6                    | 6               | 6                          | 6                   |
| 3/M           | Mean       | 74.8   | 1.7                 | 14.0                 | 11.3            | 26.9                       | 1.2                 |
|               | SD         | 16.6   | 1.8                 | 12.1                 | 7.7             | 17.9                       | 1.0                 |
|               | N          | 6      | 6                   | 6                    | 6               | 6                          | 6                   |
|               | Statistics | AT     | AT                  | AT                   | AT              | AT                         | AT                  |

Statistical analysis was performed using SAS release 9.2

A = ANOVA and Dunnett's T = Rank-transformed data

Reference ID: 4638509

......

| Test I<br>OMB157<br>OMB157 |            | ly first 5 week<br>ekly from day |                 | 3<br>1 0 0<br>2 0    |                 |                            |                     |
|----------------------------|------------|----------------------------------|-----------------|----------------------|-----------------|----------------------------|---------------------|
|                            | Occasio    | n                                | I               | osing Phase Week     | 13              |                            | dari din            |
| Group/<br>Sex              |            | normal                           | head<br>defects | mid piece<br>defects | tail<br>defects | total amount<br>of defects | multiple<br>defects |
| 1/M                        | Mean       | 89.5                             | 0.9             | 5.2                  | 6.8             | 12.9                       | 2.0                 |
|                            | SD         | 6.5                              | 1.2             | 2.9                  | 4.1             | 7.2                        | 1.4                 |
|                            | N          | 5                                | 5               | 5                    | 5               | 5                          | 5                   |
| 2/M                        | Mean       | 78.0                             | 0.4             | 6.2                  | 16.8            | 23.4                       | 1.2                 |
|                            | SD         | 22.4                             | 0.4             | 3.9                  | 22.3            | 22.8                       | 0.7                 |
|                            | N          | 5                                | 5               | 5                    | 5               | 5                          | 5                   |
| 3/M                        | Mean       | 82.2                             | 0.8             | 7.0                  | 12.3            | 20.1                       | 2.0                 |
|                            | SD         | 10.8                             | 1.1             | 2.6                  | 8.4             | 10.2                       | 0.7                 |
|                            | N          | 6                                | 6               | 6                    | 6               | 6                          | 6                   |
|                            | Statistics | AT                               | AT              | AT                   | AT              | AT                         | AT                  |

A = ANOVA and Dunnett's

T = Rank-transformed data

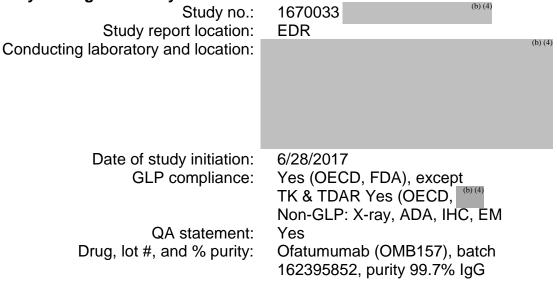
|               |                 | hology (%)<br>ly first 5 week<br>ekly from day 4 |                 | 3<br>100<br>20       |                 |                            |                     |
|---------------|-----------------|--------------------------------------------------|-----------------|----------------------|-----------------|----------------------------|---------------------|
|               | Occasio         | n                                                |                 | Recovery Phase       |                 |                            |                     |
| Group/<br>Sex |                 | normal                                           | head<br>defects | mid piece<br>defects | tail<br>defects | total amount<br>of defects | multiple<br>defects |
| 1/M           | Mean<br>SD      | 90.5                                             | 0.0             | 4.5                  | 5.8             | 10.3                       | 0.8                 |
|               | N               | 2                                                | 2               | 2                    | 2               | 2                          | 2                   |
| 2/M           | Mean            | 85.5                                             | 1.3             | 5.3                  | 10.8            | 17.3                       | 2.8                 |
|               | SD<br>N         | 2                                                | 2               | 2                    | 2               | 2                          | 2                   |
| 8/M           | Mean            | 52.3                                             | 0.8             | 11.0                 | 36.5            | 48.3                       | 0.5                 |
|               | SD              | -                                                |                 |                      |                 | -                          | -                   |
|               | N<br>Statistics | z<br>x                                           | 2<br>X          | 2<br>X               | 2<br>X          | 2<br>X                     | 2<br>X              |

X = No analysis performed

Overall, no clearly drug-related alterations in reproductive tissues were observed in females. There was inconsistent evidence of changes in sperm at the HD and one HDM showed microscopic testicular depletion/degeneration of germ cells. The NOAEL/LOAEL (females/males) for findings in reproductive tissues was the HD (i.e., 100/20 mg/kg over 13 weeks).

## 9.2 Embryonic Fetal Development

An embryofetal development study was conducted to support the BLA for Arzerra (see BLA 125326 by Dr. McDougal, dated 8/10/2009). In Study 2148-010, pregnant cynomolgus monkeys (12/group) were administered 0, 20, or 100 mg/kg ofatumumab IV weekly beginning GD20 and continuing through GD50 (i.e., 5 infusions total). Saturating levels of ofatumumab were reportedly present in maternal blood on GD100, when Cesarean sections were performed. Weekly dosing of ofatumumab resulted in accumulation; the half-life ranged from approximately 4 to 15 days. Ofatumumab and


ADA (believed to be maternal ADA) were observed in fetal blood, indicating placental cross-over. CD20+/CD40+ B cells showed nearly complete depletion at both doses in maternal blood throughout dosing until Day GD100 and in fetal cord blood (~10% of control) on GD100. Teratogenicity was not observed but decreased placental weights and reduced fetal spleen and thymus weights were observed. Immunophenotyping demonstrated marked B-cell reductions in the spleens of most fetuses at both doses.

Dr. McDougal's review noted the following:

- Lack of postnatal recovery data for animals exposed during gestation
  - Because fetuses were evaluated on GD100, no postnatal B-cell recovery data are available. These data may be important for maximizing the benefit of early childhood immunizations.
  - No data are available regarding the distribution of ofatumumab into milk, or the gastrointestinal absorption of ofatumumab from milk.

## 9.3 Prenatal and Postnatal Development

Study title: Enhanced Study for Effects on Pre- and Postnatal Development in Cynomolgus Monkeys



| Methods (see the Sponsor's stu<br>Frequency of dosing: | dy design table, below)<br>Weekly for 5 weeks (GD20, GD27, GD34,<br>GD41, and GD48), followed by dosing every 2<br>weeks from GD62 until GD160 (GD62, GD76,<br>GD90, GD104, GD118, GD132, GD146, and<br>GD160)                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Route of administration:                               | IV, 30-minute infusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Formulation/Vehicle:                                   | In sodium acetate trihydrate, sodium chloride<br>arginine <sup>(b) (4)</sup> hydrochloric acid <sup>(b) (4)</sup><br>disodium edetate <sup>(b) (4)</sup><br>polysorbate 80, and water for injection                                                                                                                                                                                                                                                                                                                                       |
| Species/Strain:                                        | cynomolgus monkey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                        | 4-6 years old; 2.8 – 4.9 kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Study design:                                          | Doses were selected based on the previous<br>EFD study and two repeat-dose toxicity studies.<br>The 100 mg/kg dose was selected to "further<br>characterize the B-cell depletion observed at<br>this dose in the fetuses of the EFD study and to<br>evaluate the postnatal reversibility of this<br>effect The once every other week (biweekly)<br>dosing regimen was selected based on the long<br>elimination half-life observed in the general<br>toxicity studies and the desire to minimize the<br>potential for formation of ADAs." |
| Deviation from study protocol:                         | Numerous deviations were noted but were not<br>reported to affect the integrity or interpretation of<br>the study.                                                                                                                                                                                                                                                                                                                                                                                                                        |

#### Table 1.1: Study Design

| Group<br>Number | Group<br>Description | Number<br>of Pregnant<br>Females | Dose Level (mg/kg)                   | Dose<br>Volume <sup>a</sup><br>(mL/kg) |
|-----------------|----------------------|----------------------------------|--------------------------------------|----------------------------------------|
| 1               | Control              | 14                               | 0 mg/kg weekly / 0 mg/kg biweekly    | 10                                     |
| 2               | Low                  | 14                               | 10 mg/kg weekly / 3 mg/kg biweekly   | 10                                     |
| 3               | High                 | 14                               | 100 mg/kg weekly / 20 mg/kg biweekly | 10                                     |

a Based on most recent individual body weight.

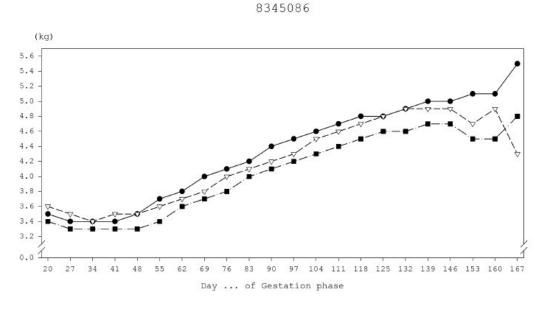
#### **Observations and Results**

The group size was small (N=14). The Sponsor stated that the group size was selected based on ICH S6(R1) Guideline Note 5 (i.e., the selected group size "... provided for 6-8 live infants per group on Day 7 p.p."; see Jarvis et al., 2010). The Sponsor also stated that, "Due to unexpected early pregnancy losses, additional two animals per group were recruited for the study." There were 10 or more surviving infants in the control and HD groups at PND4; however, the number of infants surviving for the duration of the study were 10, 9, and 7 in the control, LD and HD groups, respectively.

#### F<sub>0</sub> Animals

#### <u>Survival</u>

One HD maternal animal was euthanized on LacD96 for poor physical condition, including dehydration, body weight loss, and urine ammoniac odor. Clinical pathology alterations were observed as early as LacD71 and were considered secondary to severe bilateral glomerulonephropathy and tubular degeneration in the kidney, including: reduced red cell mass; increased creatinine concentration; increased neutrophil count, WBC counts, and fibrinogen concentration; and increased glucose and potassium concentrations. Depletion of CD20+ B cells as well as depletion of T-cell subsets, CD16+ NK cells, and CD3+CD14+ monocytes, were observed. Slight to moderate decreases in germinal centers were observed in the mesenteric lymph node and spleen. Inflammation and/or mononuclear cell infiltrates were observed in several tissues.


IHC staining of the kidneys showed moderate staining for cynomolgus monkey IgM in the glomeruli, with the majority located within the capillary lumen (i.e., representing circulating serum IgM). One vessel with apparent acute inflammatory changes had multifocal subendothelial deposition of IgM-positive material. The pathologist stated that, "... the observation of subendothelial IgM-positive deposits in an acutely inflamed vessel supports an immune-complex disease having contributed to the morbidity... the chronicity of the glomerular changes suggests the possibility of immune-complex formation and deposition at an earlier time point during this study." On this basis, the death of this animal was attributed to an adverse ADA-mediated event, supported by the presence of ADA on GD138 in blood and the IgM-positive deposits in an acutely inflamed vessel of the kidneys.

## **Clinical Signs**

Oxytocin was administered to 3 LD and 2 HD ofatumumab-dosed animals within the first 7 days of birth "to increase maternal animal-infant bonding." Several maternal animals, including controls, were reported to have harmed their offspring during the study. No drug-related clinical signs, veterinary treatments, or effects on vaginal bleeding were reported.

## Body Weight

During gestation, slightly reduced body weights (approximately 6%) were observed at the HD. See Figure 8.2, below, from the Sponsor. Note that for GD153, GD160, and GD167, fewer animals were included in the averages for the groups (i.e., 10, 8, and 8; 7, 5, and 3; and 2, 1, and 1; in the control, LD, and HD groups, respectively).



Female Animals

#### Figure 8.2: Group Mean Maternal Body Weights – During Gestation

← Group 1 - 0 mg/kg // 0 mg/kg −-▽-- Group 2 - 10 mg/kg // 3 mg/kg --■ - Group 3 - 100 mg/kg // 20 mg/kg

#### Gestation Length

Gestation length was slightly reduced at the HD compared to controls (i.e., 159, 160, and 154 days in the control, LD, and HD groups), but was within the historical reference range (136-179 days, average 160  $\pm$ 7 days).

#### Pregnancy Outcome

During the study, 2/14, 3/14, and 1/14 females aborted in the control, LD, and HD groups, respectively. Prenatal loss was 14.3%, 28.6%, and 7.1% in the control, LD, and HD groups, respectively; see the Sponsor's Table 4.1, below, for details. There were 3 early deliveries in the HD group (GD133-143), and 2 early deliveries in the control group (GD136-141). Each group showed one infant death on the day of birth (i.e., undetermined COD in the control group, stillborn in the LD group, and an infant with maternal injuries in the HD group).

|                              | Animals | Early<br>Pregnancy<br>Loss | Mid<br>Pregnancy<br>Loss | Late<br>Pregnancy<br>Loss | Stillbirths <sup>a</sup> ,<br>Including<br>Death<br>During<br>Birth or<br>Infant loss<br>PND 0 | Total<br>Pregnancy<br>Loss | Infant<br>Loss                                                                                             |
|------------------------------|---------|----------------------------|--------------------------|---------------------------|------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------|
| Group/<br>Dose               | N       | (GD 20<br>to 50)           | (GD 51<br>to 100)        | (GD 101<br>to 175)        | 201                                                                                            | (GD 20 to<br>175/PND 0)    | Postnatal<br>Days<br>(1-181)                                                                               |
| Group 1<br>(0/0<br>mg/kg)    | 14      | P0002,<br>P0013<br>(GD30)  |                          | 1                         | P0014<br>(GD141)                                                                               | 3                          | P0001-1<br>(PND2)                                                                                          |
|                              |         | 14.29%                     | 12                       | -                         | 7.14%                                                                                          |                            | 7.14%                                                                                                      |
| Group 2<br>(10/3<br>mg/kg)   | 14      | P0103,<br>P0104<br>(GD30)  | P0102<br>(GD58)          | P0108<br>(GD140)          | P0109<br>(GD166)                                                                               | 5                          | -                                                                                                          |
|                              |         | 14.29%                     | 7.14%                    | 7.14%                     | 7.14%                                                                                          |                            | 2                                                                                                          |
| Group 3<br>(100/20<br>mg/kg) | 14      | P0205<br>(GD30)            |                          | -                         | P0208<br>(GD133)                                                                               | 2                          | P0209-1<br>(PND1);<br>P0211-1<br>(PND1);<br>P0204-1<br>(PND4)<br>P0206-1<br>(PND12);<br>P0203-1<br>(PND37) |
| 0.0                          |         | 7.14%                      |                          |                           | 7.14%                                                                                          |                            | 35.71%                                                                                                     |

#### Table 4.1: Pregnancy Outcome and Infant Loss

GD = Gestation Day; PND = Postnatal Day.

a Stillbirth is defined as a infant born with a lung not inflated with air (determined by a lung flotation test).

#### Clinical Pathology

Samples for hematology evaluation were taken on GD20, GD48, GD118, and GD146 and LacD28, LacD91, and LacD175. Samples for clinical chemistry evaluation were taken on GD20, GD146, and LacD175.

Overall, the LD group showed slightly reduced (~8%) RBC counts on GD118 and LacD28 compared to controls.

#### Immunophenotyping

Samples taken for hematology were used when possible; additional samples were collected on LacD28, LacD91, and LacD175.

During gestation, CD20+ B cells were reduced at both doses; see the Sponsor's summary data, below. On GD48, GD118, and GD146, CD20+ B cells were at the limit of detection in all maternal animals, except four LD animals. The four LD animals began to show repletion of the CD20+ B cells beginning on GD118; the repletion was attributed to high ADA levels leading to increased clearance of drug.

|        | Phase   |          | Gestation |          |          |          |          |          |          |  |  |  |  |
|--------|---------|----------|-----------|----------|----------|----------|----------|----------|----------|--|--|--|--|
| Group/ | Day     | 20       |           | 48       |          | 118      |          | 146      |          |  |  |  |  |
| Sex    |         | (10E9/L) | (%)       | (10E9/L) | (%)      | (10E9/L) | (%)      | (10E9/L) | (%)      |  |  |  |  |
| 1/F    | Mean    | 1.41     | 33.36     | 1.35     | 24.76    | 0.82     | 19.38    | 0.66     | 23.47    |  |  |  |  |
|        | SD      | 0.68     | 9.91      | 0.54     | 6.97     | 0.32     | 5.55     | 0.28     | 9.67     |  |  |  |  |
|        | N       | 14       | 14        | 12       | 12       | 12       | 12       | 10       | 10       |  |  |  |  |
| 2/F    | Mean    | 0.90 *   | 25.50     | 0.02***  | 0.57 *** | 0.14 *** | 3.16***  | 0.14 *** | 4.13***  |  |  |  |  |
|        | SD      | 0.43     | 9.17      | 0.05     | 1.40     | 0.23     | 5.75     | 0.19     | 5.78     |  |  |  |  |
|        | N       | 14       | 14        | 12       | 12       | 11       | 11       | 10       | 10       |  |  |  |  |
| 3/F    | Mean    | 0.84 *   | 24.48 *   | 0.00***  | 0.00 *** | 0.00***  | 0.00 *** | 0.00***  | 0.01 *** |  |  |  |  |
|        | SD      | 0.43     | 9.04      | 0.00     | 0.00     | 0.00     | 0.01     | 0.00     | 0.01     |  |  |  |  |
|        | N       | 14       | 14        | 12       | 12       | 13       | 13       | 10       | 10       |  |  |  |  |
| Sta    | tistics | A        | A         | AT       | AT       | AT       | AT       | AT       | AT       |  |  |  |  |

T = Rank-transformed data $** P \leq 0.01$  $*** P \leq 0.001$ 

Clear effects on CD3+ T cell, CD3+CD4+ T helper cell, CD16+ natural killer cell, or CD14+ monocyte counts were not observed during the gestation period. Although complicated by variability (and similar to GD20 counts in the HD group), CD3+CD8+ cytotoxic T cell counts suggested a slight increase in the LD and HD groups on GD146 compared to controls. Overall, the relative percentage of T cells was increased (i.e., consistent with reductions in B cells). See the Sponsor's summary table, below.

|       | Phase    |          |          |          | Gesta    | tion     |           |          |           |
|-------|----------|----------|----------|----------|----------|----------|-----------|----------|-----------|
| Group | / Day    | 20       |          | 48       |          | 118      |           | 14       | 6         |
| Sex   |          | (10E9/L) | (%)      | (10E9/L) | (%)      | (10E9/L) | (%)       | (10E9/L) | (%)       |
| 1/F   | Mean     | 0.68     | 16.38    | 1.03     | 19.23    | 0.89     | 20.37     | 0.53     | 17.34     |
|       | SD       | 0.32     | 5.34     | 0.38     | 5.74     | 0.41     | 6.20      | 0.21     | 3.85      |
|       | N        | 14       | 14       | 12       | 12       | 12       | 12        | 10       | 10        |
| 2/F   | Mean     | 0.65     | 18.52    | 1.03     | 25.24 *  | 1.19     | 26.91 *   | 0.82     | 24.00 *   |
|       | SD       | 0.32     | 4.73     | 0.58     | 5.83     | 0.65     | 7.04      | 0.41     | 7.67      |
|       | N        | 14       | 14       | 12       | 12       | 11       | 11        | 10       | 10        |
| 3/F   | Mean     | 0.83     | 23.14 ** | 1.03     | 29.36*** | 1.22     | 31.66 *** | 0.81     | 29.32 *** |
|       | SD       | 0.41     | 6.33     | 0.28     | 5.67     | 0.44     | 5.64      | 0.39     | 5.97      |
|       | N        | 14       | 14       | 12       | 12       | 13       | 13        | 10       | 10        |
| Sta   | atistics | A        | A        | A        | A        | A        | A         | AT       | A         |

Statistical analysis was performed using SAS release 9.2

During the lactation period, CD20+ B cells remained reduced through at least LacD28. In the LD animals, CD20+ B cells were markedly reduced on LacD28 (i.e., <20% of control counts) but were similar to control counts by LacD91. In the HD group, CD20+ B-cell counts were at the level of detection on LacD28 and LacD91 and reached approximately 70% of control counts on LacD175. See the Sponsor's summary table, below.

|        | Phase      |          |          | Lactatio | n        |          |       |
|--------|------------|----------|----------|----------|----------|----------|-------|
| Group/ | Day        | 28       |          | 91       |          | 175      |       |
| Sex    |            | (10E9/L) | (%)      | (10E9/L) | (%)      | (10E9/L) | (%)   |
| 1/F    | Mean       | 1.38     | 23.15    | 1.43     | 23.54    | 1.31     | 27.47 |
|        | SD         | 0.59     | 6.71     | 0.52     | 5.85     | 0.61     | 9.81  |
|        | N          | 10       | 10       | 9        | 9        | 9        | 9     |
| 2/F    | Mean       | 0.24 *** | 4.33 *** | 1.32     | 16.60    | 1.49     | 27.68 |
|        | SD         | 0.38     | 6.52     | 1.05     | 11.43    | 1.01     | 15.73 |
|        | N          | 9        | 9        | 9        | 9        | 9        | 9     |
| 3/F    | Mean       | 0.00 *** | 0.01 *** | 0.02 *** | 0.57 *** | 0.94     | 20.52 |
|        | SD         | 0.00     | 0.01     | 0.03     | 0.81     | 0.58     | 11.54 |
|        | N          | 8        | 8        | 7        | 7        | 6        | 6     |
|        | Statistics | AT       | AT       | AT       | AT       | A        | A     |

During lactation, CD3+CD8+ cytotoxic T cells were slightly increased in the LD group (LacD28 and LacD91) and in the HD group (LacD28, LacD91, and LacD165), compared to controls. See the Sponsor's summary table, below. Clear effects on CD3+ T cells, CD3+CD4+ T helper cells, CD16+ natural killer cells, or CD14+ monocyte counts were not observed. Overall, the relative percentage of T cells was increased, consistent with the reduction in B cells.

| Group/ | Phase<br>Day    | 28                | <u> 1977 - 1977 - 1977 - 1977 - 1977 - 1977</u> | Lactat<br>91 | 1011                   | 175               | · · · ·               |
|--------|-----------------|-------------------|-------------------------------------------------|--------------|------------------------|-------------------|-----------------------|
| Sex    |                 | (10E9/L)          | (%)                                             | (10E9/L)     | (%)                    | (10E9/L)          | (%)                   |
| 1/F    | Mean<br>SD      | 1.23              | 20.72                                           | 1.29         | 21.09<br>6.87          | 0.93              | 19.59<br>6.62         |
|        | N               | 10                | 10                                              | 9            | 9                      | 9                 | 9                     |
| 2/F    | Mean<br>SD      | 1.73              | 30.83 *                                         | 2.08         | 28.11<br>5.51          | 1.15              | 22.98                 |
|        | N               | 9                 | 9                                               | 9            | 9                      | 9                 | 9                     |
| 3/F    | Mean<br>SD<br>N | 1.85<br>1.49<br>8 | 36.18 **<br>11.49<br>8                          | 2.08         | 41.57 ***<br>8.69<br>7 | 1.62<br>0.69<br>6 | 32.45 **<br>8.10<br>6 |
|        | Statistics      | A                 | A                                               | A            | A                      | A                 | A                     |

#### Necropsy Observations

No drug-related findings were observed in the heart, kidney, lung, liver, spleen, and stomach on LacD180; histological assessment was not conducted for the adult females, except for the early HD decedent.

#### **Toxicokinetics**

Maternal exposure increased approximately dose-proportionally after a single dose of 10 mg/kg or 100 mg/kg on GD20 and after multiple doses of 3 mg/kg or 20 mg/kg on GD146. No accumulation was observed. The Sponsor provided the following TK summary table, below.

| Dose Level*<br>(mg/kg)               | Interval | Cmax<br>(µg/mL) | Cmax/D<br>[(µg/mL)/(mg/kg)] | AUC0-168<br>(h·μg/mL) | AUC0-168/D<br>[(h·µg/mL)/(mg/kg)] |
|--------------------------------------|----------|-----------------|-----------------------------|-----------------------|-----------------------------------|
| 10 mg/kg weekly/<br>3 mg/kg biweekly | GD 20    | 225             | 22.5                        | 23800                 | 2380                              |
| (Group 2)                            | GD 146   | 90.1            | 30.0                        | 10500                 | 3510                              |
| 100 mg/kg                            | CD 20    | 2400            | 24.0                        | 250000                | 2500                              |
| weekly/<br>20 mg/kg<br>biweekly      | GD 20    |                 |                             |                       |                                   |
| (Group 3)                            | GD 146   | 733             | 36.6                        | 77900                 | 3900                              |

# Table 1.1: Summary of Mean OMB157 Cmax, Cmax/D, AUC0-168 and AUC0-168/D in Maternal Monkey Serum

Notes: Group 2 animals were dosed 10 mg/kg weekly through GD 48, then 3 mg/kg bi-weekly starting on GD 62.

Group 3 animals were dosed 100 mg/kg weekly through GD 48, then 20 mg/kg bi-weekly starting on GD 62.

## <u>ADA</u>

ADA analysis was conducted for samples taken on GD20, GD48, GD76, GD118, GD146, LacD28, LacD91, and LacD180. The non-GLP assay was not validated. ADA were observed in 9 LD and 5 HD animals. Four of the LD animals showed neutralizing ADAs beginning on GD48, and their offspring did not show of atumumab exposures on PND28. ADAs in the other females did not show an effect on exposure.

## Formulation Analysis

Ofatumumab was not detected in the control formulations. Concentration analysis of the dosing formulations from GD20, GD76, and GD146 were 96.3% to 98.8% of the nominal concentration.

## **F**<sub>1</sub> Generation

The maternal animals were dosed with ofatumumab until the birth of the infants (i.e., the offspring were not directly dosed with ofatumumab).

## <u>Survival</u>

Infant survival was reduced in the HD group. See the Sponsor's summary Table 4.5.1, below.

| Study Group                       | Control | 10/3 mg/kg | 100/20 mg/kg |
|-----------------------------------|---------|------------|--------------|
| Prenatal Loss                     | 2       | 4          | 1            |
| Still Birth                       | 0       | 1          | 0            |
| Infant Loss Between PND 0 and 181 | 2       | 0          | 6            |
| Surviving Infants on PND 181      | 10      | 9          | 7            |

## 4.5.1 Infant Survival

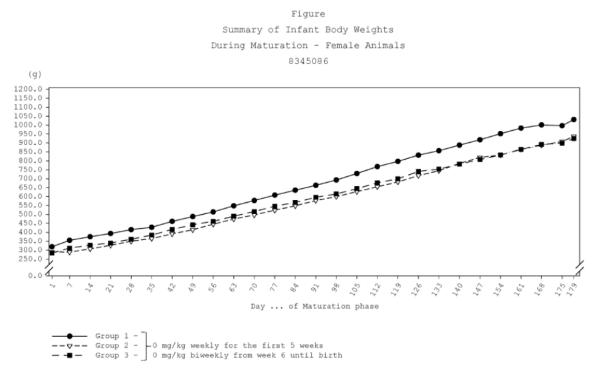
A total of 10 control, 9 LD, and 7 HD infants survived until PND180. The Sponsor noted that "intra-alveolar squames was noted in the lung, indicating intrauterine respiration of amniotic fluid due to stress (unspecific)" in all infants that were delivered early. In HD infants, there were 6 early deaths between PND0 and PND180; of these deaths, three were considered "accidental" (i.e., not drug-related).

One male infant was euthanized on PND1, following injury by the adult female (considered COD); this animal also showed markedly reduced thymus size (no histological correlate), minimal extramedullary hematopoiesis in the liver, and agonal congestion/ hemorrhage in the brain. A female infant was delivered early (GD140) and found dead on PND1; no COD was determined, but markedly reduced thymic size was noted. Another male infant was found dead on PND37 with maternal injuries (considered COD); markedly reduced thymic size (correlating histologically with moderate atrophy), reduced RBC mass, and slight pigment deposition in the red pulp of the spleen were also observed.

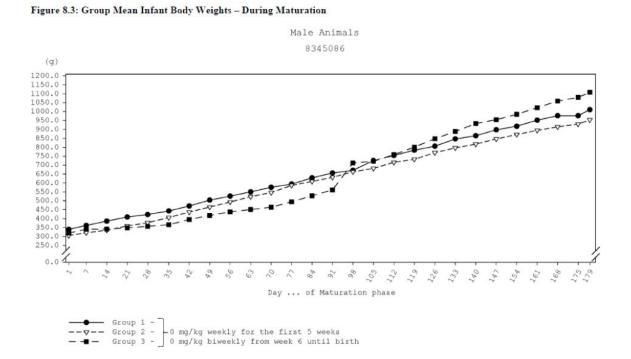
The three remaining HD infant deaths occurred between PND1 and PND12; the Sponsor attributed these deaths to infection secondary to the pharmacologically-induced immune modulation, based on the histopathological findings. Descriptions of these early mortalities are provided below.

One male infant was born early (GD143) and euthanized on PND1. On the day of birth, this infant showed an overall weak appearance, was hypoactive, showed panting respiration and a painful abdomen on palpation, and had no measurable body temperature; it was refused by the maternal female. Bilateral hematoma was observed in in the frontal lobes of the brain (correlating microscopically with moderate hemorrhage in the meninges and the cerebral cortex). Markedly reduced thymic size (without histologic correlate) was observed. Acute, locally-extensive, moderate alveolar inflammation was observed in the lung. Moderate intratubular eosinophilic granules in the kidneys and minimal extramedullary hematopoiesis in the liver were also observed. The COD was considered accidental by the pathologist, but the Sponsor highlighted the pulmonary inflammation.

One female infant was found dead on PND4. Both the thymus and the spleen were markedly reduced in size, correlating microscopically with marked thymic atrophy and moderate, diffuse splenic atrophy of the white and red pulp, respectively. In the heart, the ductus arteriosus was not completely closed. Moderate bilateral necrosis was observed in the adrenal medulla, with moderate infiltration of inflammatory cells (mainly neutrophils) and slight hemorrhage. Moderate, diffuse hepatocellular vacuolation was also observed. Minimal multifocal tubular degeneration with protein and cellular casts was observed in the kidneys. Partial autolysis limited assessment of the GI tract. The COD was considered undetermined by the pathologist; the Sponsor highlighted the acute, bilateral adrenal lesions.


One male infant was euthanized on PND12 after being found in a lying position, jaundiced, and without a measurable body temperature. Yellow discoloration and minimal scaling of the skin were observed, correlating microscopically with slight focal epidermal hyperplasia and hyperkeratosis with focal infiltration of inflammatory cells. Markedly increased ALT, AST, GLDH, ALP, and total bilirubin were observed, with coagulopathy (i.e., increased prothrombin and partial thromboplastin times and decreased fibrinogen concentration). Markedly reduced thymic size was observed (not available at histology). In the liver, the following were observed: moderate, diffuse hepatocellular degeneration/necrosis; slight multifocal regeneration; slight, multifocal increased cellularity of mononuclear inflammatory cells in the portal tracts; and minimal, multifocal extramedullary hematopoiesis. Additionally, an acute, focal area of slight necrosis was observed in the myocardium of the heart, with slight infiltration of inflammatory cells (mainly neutrophils). Minimal focal hyaline deposit was observed in the kidney, and slightly increased cellularity of lymphoid cells was observed in the mesenteric lymph node. The COD was considered undetermined by the pathologist, but the hepatic findings were highlighted by the Sponsor.

#### **Clinical Signs**


Several infants were reported to show short episodes of vomiting. One HD infant was administered glucose and saline solution subcutaneously for body weight loss on PND49 and received supplemental food through PND180.

#### Body weight

At birth, mean body weights of the LD and HD infants were slightly reduced (approximately 10%) compared to those of the control group infants. During the first 7 days after birth, the LD female infants showed reduced mean body weights compared to the control group (i.e., PND1 to PND7: LDF infants:  $290 \pm 24.7$  to  $289 \pm 27.6$  g; control female infants:  $319 \pm 63.4$  to  $355 \pm 37.7$  g). The Sponsor's figure (below) shows a slight but persistent reduction in mean body weight (approximately 10-15%) for the female infants of the LD and HD groups. Overall body weight gains (i.e., PND1-PND179) were reduced 6% in the LD female infants and 8% in the HD female infants.



Mean body weights in the LD and HD male infants were also slightly reduced compared to controls at the beginning of the observation period (see the Sponsor's Figure 8.3, below). Interpretation of the data was complicated by the removal of several animals from the calculation dataset for various reasons (e.g., euthanasia, hand-feeding). Note that the observed change in the HD mean at PND98 is related to removal of an animal from the calculation (resulting in a group size of 1 for the remaining measures).



#### Morphological Exams

Exams (including head circumference, distance between the eyes, crown-rump length, crown-heel length, tail length, thorax circumference, length of right arm, length of left arm, length of right leg, length of left leg, and ano-genital distance) were conducted on PND1, PND21, PND56, PND84, and PND168. Generally, 4 to 6 infants per sex were assessed for each group; however, only 2 to 4 male infants were available for assessment in the HD group (because of early mortality). This is a limitation of the study; however, no clearly drug-related differences were observed.

#### Neurobehavioral Assessment

A neurobehavioral test battery was performed on PND1 and PND7, consisting of three parts:

Part 1- general examination in the cage and in the hand.

Part 2- postural tonus, dorsiflexion, grasp support, righting reflex, prone progression, clasp support, and buildup.

Part 3- following of the eyes, lip smack orientation, sucking, rooting, snout reflex, nystagmus, and moro (pupil response and glabellar tap) reflex.

Generally, 4 to 6 infants per sex per group were available for assessment. No learning and memory assessment was conducted; this was a limitation of the study. The LD and HD male infants showed slight deficiencies on the prone progression test on PND1 and PND7. Generally, the LD and HD infants were slightly more reactive on the buildup test.

#### Grip Strength

Grip strength was tested on PND28. Few animals were available for assessment (i.e., 3-5 infants/sex/group). Grip strength was not clearly affected.

#### Skeletal and bone mineral assessment

Skeletal development was evaluated by x-ray on PND35 ( $\pm 2$  days). Bone mineral density (BMD) and bone mineral content (BMC) were measured on PND100 ( $\pm 2$  days) by DEXA scan of the lumbar spine (vertebra L2 through L5).

Skeletal x-rays were conducted on 10 control, 9 LD, and 7 HD infants. DEXA data were presented for 4 or 5 infants per sex in each group except HDM (N=2). BMD and BMC were reduced in 2 LDM infants (group mean 0.167 g/cm<sup>2</sup> compared to 0.274 g/cm<sup>2</sup>), compared to controls; these were reduced up to 80% in the most affected animal. One HDF infant (P0214-1) showed markedly reduced (approximately 70%) BMD and BMC, compared to controls. The Sponsor reported no drug-related findings.

#### Clinical Pathology

Blood samples were taken for hematology (PND28, PND63, PND91, PND119, and PND180), coagulation (PND56, PND84, PND112, and PND175), and clinical chemistry (PND70 and PND175) evaluations. Data for three animals were not available because

of errors. Additionally, IgG, IgM, and IgA were evaluated for 2 to 5 infants/sex/group. Interpretation was complicated by variability and the small number of animals per group.

WBC counts were reduced (approximately 40% compared to controls) in the HD male infants on PND28, PND63, and PND91. Lymphocyte counts were reduced in the LD male infants (25%) on PND21 and in the HD male infants (30-50%) on PND28, PND63, PND91, and PND119. Although the data were variable, eosinophil counts appeared increased in the HD male infants (1.8-2.8-fold), the LD female infants (2.1-2.3-fold), and the HD female infants (1.2-2.2-fold) during the maturation period. Neutrophil counts were increased (~80%) in the LD male infants. The clinical pathologist reported that two infants in the LD group showed minimal to mild reductions in red cell parameters but attributed the observation to the sampling procedure. Reductions in ALP (30-45%) and globulins (~20%) were observed in the HD male infants on PND70 and PND175.

Generally, reductions in immunoglobulins were reduced in the HD infants. IgG was reduced in the HD infants on PND70 (the means for males/females were BLOQ/1.10 g/L in the HD, compared to 2.67/3.09 g/L in the controls); on PND175, IgG was similar to controls in male infants but remained reduced (i.e., approximately 37% of the control value) in female infants. IgM appeared reduced in the HD female infants on PND70 but was not clearly affected on PND175. IgA was reduced approximately 50% on PND175 in the HD male infants.

#### Anatomical Pathology

Terminal organ weights and macroscopic and microscopic tissue evaluations were conducted for 5, 5, and 2 males and 5, 4, and 5 females in the control, LD, and HD groups, respectively. Assessments were also conducted for the infants that died early (see details for each of those animals under **Survival**).

#### Organ Weights

In the HD male infants, adrenal (approximately 40%) and testis (40-50%) weights were increased and spleen weight was reduced (20-25%), compared to controls. In the HD female infants, thymus weight was increased (approximately 24%) and spleen weight was reduced (approximately 35%). Liver weight was slightly reduced (approximately 20%) in the LD female infants.

#### Macroscopic Pathology

Clearly drug-related changes were not observed. Inguinal lymph node enlargement was observed in one HD male infant.

#### <u>Histopathology</u>

No clearly drug-related findings were reported.

A marked ovarian cyst was observed in one HD female infant (also minimal in one LD female infant). A few observations suggesting inflammatory or immune changes were observed. Slight to moderate increased lymphoid cellularity of the inguinal or mesenteric lymph nodes was observed in two HD male infants. In the stomach, slightly

increased lymphoid follicles were observed in one HD female infant and moderate chronic inflammation was observed in one HD male infant. Slight mononuclear cell infiltrates in the brain were observed in one HD female infant. Overall, minimal to slight mononuclear and/or inflammatory cells were observed sporadically in several tissues, including heart, kidney, brain, liver, lung, salivary gland, skeletal muscle, and GI tract.

#### Immunophenotyping

Blood samples were taken on PND28, PND63, PND91, PND119, and PND180. Few animals were assessed; three to five infants/sex/group were evaluated. Generally, CD20+ B cells were depleted or reduced in the HD male and female infants and were initially reduced in the LD male and female infants (showing recovery, or rebound, by PND63). See the Sponsor's summary data tables, below.

|       |           | Phase  |        |        |          |       | Matura   |       | 1 % of Lympl |            | 11 (150 - 43 |       |
|-------|-----------|--------|--------|--------|----------|-------|----------|-------|--------------|------------|--------------|-------|
| Group | 1         | Day 28 |        | 8 63   |          |       | 91       |       | 119          |            | 180          |       |
| Sex   |           | (1     | 0E9/L) | (%)    | (10E9/L) | (%)   | (10E9/L) | (%)   | (10E9/L)     | (%)        | (10E9/L)     | (%)   |
| 1/M   | Mean      |        | 3.83   | 37.10  | 4.79     | 38.56 | 4.99     | 40.75 | 5.71         | 37.48      | 3.30         | 35.10 |
|       | SD<br>N   |        | 1.41 5 | 7.71   | 2.84     | 9.93  | 2.46     | 17.42 | 4.63         | 18.54<br>5 | 1.84         | 15.40 |
| 2/M   | Mean      |        | 1.24 * | 15.48  | 5.09     | 35.59 | 6.38     | 38.88 | 6.14         | 37.63      | 4.30         | 33.67 |
|       | SD        |        | 1.92   | 20.92  | 1.53     | 8.23  | 2.96     | 13.17 | 1.23         | 10.69      | 2.40         | 9.34  |
|       | 23        |        | 5      | 5      | 5        | 5     | 5        | 5     | 5            | 5          | 5            | ~     |
| 3/M   | Mean      |        | 0.00 * | 0.00 * | * 0.02   | 0.44  | 1.52     | 18.09 | 3.00         | 31.43      | 1.73         | 38.96 |
|       | SD        |        | 0.00   | 0.01   | -        | -     | -        | -     | -            | -          | -            | _     |
|       | N         |        | 3      | 3      | 2        | 2     | 2        | 2     | 2            | 2          | 2            | 2     |
|       | Statistic | 5      | A      | AT     | A        | A     | A        | A     | A            | A          | A            | A     |

Standard deviation not calculated for less than three values

A = ANOVA and Dunnett's T = Rank-transformed data

\* P≤ 0.05 \*\* P≤ 0.01 \*\*\* P≤ 0.001

|       | Ph      | ase      |         |           |       | Maturatio | n      | <u></u>   | 100     |          |       |
|-------|---------|----------|---------|-----------|-------|-----------|--------|-----------|---------|----------|-------|
| Group | 1       | Day 28   |         | 63        |       | 91        |        | 119       |         | 180      |       |
| Sex   |         | (10E9/L) | (%)     | (10E9/L)  | (%)   | (10E9/L)  | (%)    | (10E9/L)  | (%)     | (10E9/L) | (%)   |
| 1/F   | Mean    | 3.00     | 31.61   | 2.98      | 31.94 | 3.60      | 29.65  | 3.44      | 30.23   | 2.56     | 26.45 |
|       | SD      | 1.32     | 10.41   | 0.57      | 4.94  | 1.07      | 9.32   | 0.82      | 8.16    | 1.11     | 9.25  |
|       | N       | 5        | 5       | 5         | 5     | 5         | 5      | 5         | 5       | 5        | 5     |
| 2/F   | Mean    | 1.29     | 15.07   | 5.17      | 36.48 | 6.24      | 35.33  | 6.10      | 36.74   | 3.55     | 28.85 |
|       | SD      | 1.56     | 17.86   | 2.98      | 10.50 | 3.39      | 7.74   | 2.51      | 6.90    | 1.79     | 10.82 |
|       | N       | 4        | 4       | 4         | 4     | 4         | 4      | 4         | 4       | 4        | 4     |
| 3/F   | Mean    | 0.00 *** | 0.00 ** | * 0.00 ** | 0.00  | 0.01 **   | 0.04 * | * 1.42 ** | 10.32 * | * 2.74   | 22.63 |
|       | SD      | 0.00     | 0.00    | 0.00      | 0.00  | 0.01      | 0.06   | 0.95      | 7.23    | 0.83     | 1.41  |
|       | N       | 5        | 5       | 5         | 5     | 5         | 5      | 5         | 5       | 5        | 5     |
|       | Statist | ics AT   | AT      | AT        | AT    | AT        | AT     | AT        | A       | A        | AT    |

Standard deviation not calculated for less than three values

A = ANOVA and Dunnett's \* P≤ 0.05 T = Rank-transformed data  $** P \le 0.01$ \*\*\* P \le 0.001

CD3+ T cells and CD3+CD4+ T-helper cells were increased in the HD female infants (see the Sponsor's summary tables, below). CD3+CD8+ cytotoxic T cells tended to be slightly reduced in HD male infants. Otherwise, clearly drug-related effects on CD3+ T cells (males), CD3+CD4+ T-helper cells (males), CD16+ NK cells, and CD14+ monocytes were not observed.

|       | E        | hase     |            |           |               | Matur   | ation     |         |           | 22       |               |
|-------|----------|----------|------------|-----------|---------------|---------|-----------|---------|-----------|----------|---------------|
| Group | 1        | Day 2    | 3          | 63        |               | 9:      |           | 11      | 9         | 180      |               |
| Sex   |          | (10E9/L) | (%)        | (10E9/L)  | (%) (         | 10E9/L) | (%)       | 10E9/L) | (%)       | (10E9/L) | (%)           |
| 1/F   | Mean     | 5.62     | 58.73      | 5.87      | 60.59<br>5.70 | 7.96    | 63.36     | 7.55    | 62.69     | 6.13     | 63.19<br>7.91 |
|       | SD<br>N  | 2.47     | 13.01<br>5 | 2.26      | 5.70          | 2.38    | 8.20      | 3.13    | 7.58      | 1.40     | 7.91          |
| 2/F   | Mean     | 4.96     | 71.05      | 7.00      | 55.01         | 9.87    | 55.66     | 8.61    | 53.51     | 7.28     | 59.46         |
|       | SD       | 1.36     | 16.78      | 1.77      | 8.62          | 5.57    | 6.33      | 2.78    | 5.47      | 2.74     | 9.43          |
|       | N        | 4        | 4          | 4         | 4             | 4       | 4         | 4       | 4         | 4        | 4             |
| 3/F   | Mean     | 9.64 *   | 92.94 *    | * 10.13 * | 94.33 ***     | 12.45   | 94.47 *** | 12.19   | 83.67 *** | 8.60     | 71.90         |
|       | SD       | 2.81     | 3.35       | 2.64      | 1.86          | 3.27    | 2.22      | 3.78    | 6.67      | 2.32     | 2.74          |
|       | N        | 5        | 5          | 5         | 5             | 5       | 5         | 5       | 5         | 5        | 5             |
|       | Statisti | cs A     | A          | A         | A             | A       | A         | A       | A         | A        | A             |

Standard deviation not calculated for less than three values

A = ANOVA and Dunnett's

\* P≤ 0.05 \*\* P≤ 0.01 \*\*\* P≤ 0.001

CD3+CD4+ T-helper-cells absolute (10E9/L) and % of Lymphocytes

|       |           | Phase |        |          |         |           | Matura  | tion    |          |         |          |       |
|-------|-----------|-------|--------|----------|---------|-----------|---------|---------|----------|---------|----------|-------|
| Group | 1         | Day   | 28     | 8        | 63      | £         | 91      | 1       | 11       | 9       | 18       | 0     |
| Sex   |           | (1    | 0E9/L) | (%) (    | 10E9/L) | (%)       | 10E9/L) | (%)     | (10E9/L) | (%)     | (10E9/L) | (%)   |
| 1/F   | Mean      |       | 4.35   | 45.56    | 4.37    | 45.05     | 5.73    | 45.63   | 5.20     | 42.84   | 3.97     | 41.23 |
|       | SD        |       | 1.97   | 10.95    | 1.78    | 6.05      | 1.95    | 8.26    | 2.51     | 8.94    | 1.19     | 10.01 |
|       | N         |       | 5      | 5        | 5       | 5         | 5       | 5       | 5        | 5       | 5        | 5     |
| 2/F   | Mean      |       | 3.97   | 57.33    | 5,27    | 41.51     | 6.07    | 36.28   | 5.37     | 33.93   | 4.53     | 37.85 |
|       | SD        |       | 1.14   | 15.99    | 1.40    | 7.61      | 2.60    | 10.09   | 1.59     | 7.60    | 1.45     | 9.79  |
|       | N         |       | 4      | 4        | 4       | 4         | 4       | 4       | 4        | 4       | 4        | 4     |
| 3/F   | Mean      |       | 7.42 * | 71.41 ** | 7.43 *  | 69.49 *** | 8.94    | 67.93 * | * 8.35   | 57.82 * | 5.74     | 48.08 |
|       | SD        |       | 2.22   | 5.18     | 1.80    | 5.79      | 2.32    | 1.61    | 2.35     | 7.62    | 1.67     | 5.39  |
|       | N         |       | 5      | 5        | 5       | 5         | 5       | 5       | 5        | 5       | 5        | 5     |
|       | Statistic | 3     | A      | A        | A       | A         | A       | AT      | A        | A       | A        | A     |

Standard deviation not calculated for less than three values

A = ANOVA and Dunnett's T = Rank-transformed data \* P≤ 0.05

\*\* P≤ 0.01 \*\*\* P≤ 0.001

## TDAR

A T Cell-Dependent Antibody Response (TDAR) assay was conducted; four to five animals/sex/group were assessed, except 2 males were assessed for the HD group. The levels of anti-Keyhole limpet hemocyanin (KLH) IgG and anti-KLH IgM were measured in serum from infants immunized with KLH on PND119 and PND147. Serum samples were obtained prior to and 14, 21, and 28 days after KLH injection to assess primary and recall (memory) responses. Generally, the humoral immune responses of the infants were highly variable.

After the first KLH immunization on PND119, an IgM response was observed shortly after immunization followed by an IgG response peaking between 2 to 3 weeks after immunization in controls. The Sponsor stated that the ofatumumab-exposed infants with the lowest B-cell levels on PND91 showed reduced IgG and IgM levels, compared to controls. In males, only one of 2 infants of the HD group showed an IgM response (which was delayed and reduced, approximately 35% of the control average), and the IgG response was slightly delayed. In females, there was no IgM response to the first KLH injection in the HD group (also no IgM response in one female of the LD group), and the IgG response was both delayed and reduced (i.e., IgG peaked 3 weeks after immunization at approximately 21% of the control group mean). The Sponsor attributed the reduced response in females of the HD group to reduced B-cell counts. See the Sponsor's tables, below.

After the second KLH immunization on PND147, only one of 2 HD male infants showed an IgM response (which was reduced, approximately 25% of the control average), but IgG responses similar to controls were observed. In females of the HD group, there was a clear IgM response, but the IgG response remained reduced (approximately 22%) of the control group average). See the Sponsor's summary tables below.

| OMB157<br>OMB157 |            | ly for the fi<br>ekly from wee | rst 5 weeks<br>k 6 until birt | 0 10 100<br>h 0 3 20 |        |       |       |  |  |  |
|------------------|------------|--------------------------------|-------------------------------|----------------------|--------|-------|-------|--|--|--|
| Group/           | Phase      | KLHM<br>Maturation             |                               |                      |        |       |       |  |  |  |
| Sex              | Day        | 112                            | 133                           | 140                  | 161    | 168   | 175   |  |  |  |
| 1/M              | Mean       | 125                            | 866                           | 324                  | 1169   | 291   | 295   |  |  |  |
|                  | SD         | 55.5                           | 628.0                         | 139.7                | 844.2  | 185.2 | 185.8 |  |  |  |
|                  | N          | 5                              | 5                             | 5                    | 5      | 5     | 5     |  |  |  |
| 2/M              | Mean       | 100                            | 773                           | 656                  | 926    | 446   | 257   |  |  |  |
|                  | SD         | 0.0                            | 551.1                         | 735.1                | 1004.1 | 427.7 | 204.7 |  |  |  |
|                  | N          | 5                              | 5                             | 5                    | 5      | 5     | 5     |  |  |  |
| 3/M              | Mean       | 100                            | 114                           | 201                  | 193    | 167   | 142   |  |  |  |
|                  | SD         | 0.0                            | 19.8                          | 142.1                | 131.5  | 33.9  | 59.4  |  |  |  |
|                  | N          | 2                              | 2                             | 2                    | 2      | 2     | 2     |  |  |  |
|                  | Statistics | X1                             | A                             | A                    | A      | AT    | A     |  |  |  |

Table 6.6: Summary of Anti-KLH IgM Data - Males

A = ANOVA and Dunnett's T = Rank-transformed data

#### Table 6.7: Summary of Anti-KLH IgM Data - Females

| OMB157<br>OMB157 |                               |                       | rst 5 weeks<br>k 6 until birth | 0 10 100<br>0 3 20    |                        |                     |                       |  |  |
|------------------|-------------------------------|-----------------------|--------------------------------|-----------------------|------------------------|---------------------|-----------------------|--|--|
| Group/           | Phase                         |                       |                                |                       | KLHM<br>uration        |                     |                       |  |  |
| Sex              | Day                           | 112                   | 133                            | 140                   | 161                    | 168                 | 175                   |  |  |
| 1/F              | Mean<br>SD<br>N               | 100<br>0.0<br>5       | 626<br>548.2<br>5              | 198<br>152.1<br>5     | 254<br>163.5<br>5      | 181<br>150.8<br>5   | 165<br>100.3<br>5     |  |  |
| 2/F              | Mean<br>SD<br>N               | 100<br>0.0<br>4       | 727<br>918.5<br>4              | 636<br>689.2<br>4     | 595<br>617.0<br>4      | 293<br>211.2<br>4   | 282<br>145.7<br>4     |  |  |
| 3/F              | Mean<br>SD<br>N<br>Statistics | 100<br>0.0<br>5<br>X1 | 100**<br>0.0<br>5<br>AT        | 100<br>0.0<br>5<br>AT | 546<br>647.9<br>5<br>A | 229<br>161.6<br>5 A | 136<br>81.4<br>5<br>A |  |  |

\*\*\* P<=0.001 X1 = No analysis required A = ANOVA and Dunnett's

| OMB157        |            |     | irst 5 weeks<br>ek 6 until birt |        |         |         |         |  |  |  |  |
|---------------|------------|-----|---------------------------------|--------|---------|---------|---------|--|--|--|--|
| Crean /       | Phase      |     | KLHG<br>Maturation              |        |         |         |         |  |  |  |  |
| Group/<br>Sex | Day        | 112 | 133                             | 140    | 161     | 168     | 175     |  |  |  |  |
| 1/M           | Mean       | 100 | 3307                            | 3334   | 42575   | 30543   | 32955   |  |  |  |  |
|               | SD         | 0.0 | 4160.9                          | 3582.4 | 19193.2 | 16940.7 | 23272.3 |  |  |  |  |
|               | N          | 5   | 5                               | 5      | 5       | 5       | 5       |  |  |  |  |
| 2/M           | Mean       | 100 | 1953                            | 5607   | 53438   | 41321   | 20989   |  |  |  |  |
|               | SD         | 0.0 | 491.7                           | 3914.8 | 29260.3 | 21701.6 | 19621.5 |  |  |  |  |
|               | N          | 5   | 5                               | 5      | 5       | 5       | 5       |  |  |  |  |
| 3/M           | Mean       | 107 | 1514                            | 5651   | 54153   | 51188   | 39803   |  |  |  |  |
|               | SD         | 9.2 | 213.5                           | 4642.9 | 5612.3  | 4839.4  | 5631.4  |  |  |  |  |
|               | N          | 2   | 2                               | 2      | 2       | 2       | 2       |  |  |  |  |
|               | Statistics | X1  | A                               | A      | A       | A       | A       |  |  |  |  |

#### Table 6.4: Summary of Anti-KLH IgG Data - Males

X1 = No analysis required A = ANOVA and Dunnett's

#### Table 6.5: Summary of Anti-KLH IgG Data - Females

|               | Phase                         |                       |                            |                        | KLHG<br>curation          |                           |                           |
|---------------|-------------------------------|-----------------------|----------------------------|------------------------|---------------------------|---------------------------|---------------------------|
| Group/<br>Sex | Day                           | 112                   | 133                        | 140                    | 161                       | 168                       | 175                       |
| /F            | Mean<br>SD<br>N               | 100<br>0.0<br>5       | 2424<br>1915.8<br>5        | 2867<br>2624.8<br>5    | 41792<br>20015.0<br>5     | 26266<br>16119.3<br>5     | 12167<br>9984.1<br>5      |
| 2/F           | Mean<br>SD<br>N               | 100<br>0.0<br>4       | 1591<br>818.8<br>4         |                        | 86470<br>105084.4<br>4    | 75849<br>79494.3<br>4     | 32119<br>42299.6<br>4     |
| 3/F           | Mean<br>SD<br>N<br>Statistics | 100<br>0.0<br>5<br>X1 | 149***<br>107.7<br>5<br>AT | 616<br>487.2<br>5<br>A | 9301<br>2622.3<br>5<br>AT | 9966<br>7131.7<br>5<br>AT | 5135<br>3740.7<br>5<br>AT |

## TK

Ofatumumab was present in the blood of 3 LD infants on PND28 (one until PND63) and in all HD infants until PND63 (males) or PND91 (females). Summary TK data for the infants were not provided (see selected from the Sponsor's Table 9.6, below).

| Maternal<br>Dose Dose Level |         |         | Post-Natal Day (PND) |        |        |         |             |  |  |  |
|-----------------------------|---------|---------|----------------------|--------|--------|---------|-------------|--|--|--|
| Group                       | (mg/kg) | Animal  | PND 28               | PND 63 | PND 91 | PND 119 | PND 180 ± 1 |  |  |  |
| 2                           | 10/3    | P0101-1 | 3890                 | < 400  | < 400  | < 400   | < 400       |  |  |  |
|                             |         | P0105-1 | < 400                | < 400  | < 400  | < 400   | < 400       |  |  |  |
|                             |         | P0106-1 | 2020                 | < 400  | < 400  | < 400   | < 400       |  |  |  |
|                             |         | P0107-1 | < 400                | 3740   | < 400  | < 400   | < 400       |  |  |  |
|                             |         | P0110-1 | < 400                | < 400  | < 400  | < 400   | < 400       |  |  |  |
|                             |         | P0111-1 | < 400                | < 400  | < 400  | < 400   | < 400       |  |  |  |
|                             |         | P0112-1 | < 400                | < 400  | < 400  | < 400   | < 400       |  |  |  |
|                             |         | P0113-1 | < 400                | < 400  | < 400  | < 400   | < 400       |  |  |  |
|                             |         | P0114-1 | 1010                 | < 400  | < 400  | < 400   | < 400       |  |  |  |

| Table 9.6 (Continued): Individual Concentrations (ng/mL) of OMB157 in Infant |
|------------------------------------------------------------------------------|
| Monkey Serum: PND 28, 64, 91, 119, and 180 ± 1                               |

Note: Maternal animals were dosed 10 mg/kg weekly through GD 48, then 3 mg/kg bi-weekly starting on GD 62 through birth.

Table 9.6 (Continued): Individual Concentrations (ng/mL) of OMB157 in Infant Monkey Serum: PND 28, 64, 91, 119, and 180  $\pm$  1

| Maternal<br>Dose Dose Level |         |         | Post-Natal Day (PND) |        |        |         |             |  |  |
|-----------------------------|---------|---------|----------------------|--------|--------|---------|-------------|--|--|
| Group                       | (mg/kg) | Animal  | PND 28               | PND 63 | PND 91 | PND 119 | PND 180 ± 1 |  |  |
| 3                           | 100/20  | P0201-1 | 76400                | 11700  | < 400  | < 400   | < 400       |  |  |
|                             |         | P0202-1 | 96600                | 13900  | 3060   | < 400   | < 400       |  |  |
|                             |         | P0203-1 | 105000               | NS     | NS     | NS      | NS          |  |  |
|                             |         | P0207-1 | 51400                | 456    | < 400  | < 400   | < 400       |  |  |
|                             |         | P0210-1 | 118000               | 14400  | 2300   | < 400   | < 400       |  |  |
|                             |         | P0212-1 | 14800                | 7540   | 411    | < 400   | < 400       |  |  |
|                             |         | P0213-1 | 67200                | 1330   | < 400  | < 400   | < 400       |  |  |
|                             |         | P0214-1 | 124000               | 45400  | 10400  | < 400   | < 400       |  |  |

NS No sample.

Note: Maternal animals were dosed 100 mg/kg weekly through GD 48, then 20 mg/kg bi-weekly starting on GD 62 through birth.

## <u>ADA</u>

Blood samples for ADA were taken on PND180. ADAs were observed in 7 LD infants but were not observed in the HD infants. The assay was positive for one control group infant.

Overall, a no-effect dose was not identified for the study, based on birth weight reductions (that persisted into maturation in females), B-cell reductions, and immune effects. However, at the HD, clearly adverse effects (i.e., increased postnatal mortality and persistent adverse immune effects) were observed.

# **11** Integrated Summary and Safety Evaluation

Ofatumumab is a fully humanized IgG1 kappa monoclonal antibody directed at the human CD20 cell surface antigen. CD20 is expressed on B cells during differentiation and maturation and has also been reported on certain subsets of T cells. Ofatumumab binds human CD20 with high affinity and specificity and results in lysis of CD20+ B cells, presumably by inducing antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Ofatumumab was shown to bind human as well as cynomolgus and rhesus monkey CD20, but not CD20 of other species; therefore, cynomolgus monkey was used for toxicology testing.

Ofatumumab (for IV administration, as Arzerra) was previously approved for the treatment of chronic lymphocytic leukemia in 2009. To support the initial BLA, several repeat dose toxicity studies were conducted in cynomolgus monkeys, up to 7 months' duration (see BLA 125326 nonclinical review by Dr. McDougal, dated 8/10/2009).

In the 7-month repeated dose study (Study CD2008/01521/00), cynomolgus monkeys (3/sex/dose main study + 4/sex/dose recovery) were administered 0, 20, or 100 mg/kg ofatumumab weekly for 8 weeks, then monthly for 5 months. Both doses of ofatumumab were reported to saturate the receptor. Mortality occurred at both the LD and the HD. Three deaths (two LD and 1 HD) were attributed to infection, which was considered indirectly drug-related and relevant to patient safety. Two deaths were attributed to hemolytic anemia, which was considered indirectly related to drug and of uncertain relevance to human risk. Reductions in RBC parameters were observed in the ofatumumab-dosed animals beginning on Day 50 and continuing throughout the recovery period. Blood flow cytometry showed marked CD20+ B-cell depletion, with recovery of circulating B cells generally beginning on Day 246 (in the LD group) or Day 284/ Day 302 (in the HD group; females/males) followed by a rebound between Day 330 and Day 350/3, and returning to baseline by Day 372 (i.e., approximately 6 months after the last dose). Marked B-cell depletion was also observed in the lymph nodes (LN). Histologically, minimal to moderate lymphoid atrophy, lymphoid depletion, and follicular atrophy was observed in the LN, Peyer's patches (ileum), and spleen. Signs of inflammatory cell infiltration were observed in several tissues and continued to be observed at the end of the recovery period. Reduced humoral immune responses were observed during the dosing period in the HD group and in both of atumumab-dosed groups during the recovery period. Overall, a NOAEL for the 7-month repeated dose study was not identified, based on the observed mortalities attributed to infection and hemolytic anemia (considered a potential humoral immune response to drug). The following were identified as clinically-relevant risks: increased risk of infection, infusionreaction/cytokine response, delayed onset anemia, fetal toxicity (i.e., decreased placental, fetal spleen, and fetal thymus weights), and clinical chemistry alterations (i.e., increased lactate dehydrogenase, increased C-reactive protein). These remain potential risks, although the risk may be lower considering the lower dose given by the SC route of administration in the treatment of RMS.

The Sponsor indicated that a SC formulation of ofatumumab was developed because the potency at the target (i.e., CD20) allowed efficacy at a relatively low dose that could be administered in a small volume (i.e., 20 mg in 0.4 mL).

The change from IV to SC administration in the Phase 2 and 3 clinical studies was supported by a 2-dose SC administration study with a 33-week recovery period in female cynomolgus monkeys. Monkeys (6 females/group in the LD and HD groups; 4 females/group for the control group) were administered 0, 20, or 100 mg/kg ofatumumab SC or 100 mg/kg IV on Days 1 and 15. CD20+ B cells were depleted, and CD40+ B cells were markedly reduced, in the ofatumumab-dosed groups. Recovery of CD20+ and CD40+ B cells occurred earliest in the LD SC group, followed by the HD SC group and the IV group. During the dosing period, eosinophils were increased in the SC administration groups (LD > HD), and slight RBC reductions were observed in the HD SC and IV groups. During the recovery period, WBC were reduced in the LD SC group but were increased in the groups given 100 mg/kg SC or IV. ADA developed in the SCdosed groups, and an effect of ADA on TK was observed in the LD SC group. Microscopic changes included extramedullary hematopoiesis in the lymph nodes and inflammatory and fibrotic changes at the injection site. Overall, the treatment duration was shorter than that generally requested in a bridging toxicity study for a chronic indication, but the expected pharmacodynamic effects were observed well into the recovery period. Use of a single sex and minimally adequate numbers of animals in the main study groups (i.e., 3 females/group in the drug-dosed main study groups) were limitations of the study. The study design primarily addressed local toxicity, with a limited list of tissues assessed microscopically (a separate pathology report was not provided). Although the study suffers from limitations, the study supported the use of SC dosing in the clinical program.

Fertility and enhanced pre- and postnatal development studies were submitted to support the sBLA, given the population and chronic dosing regimen for the RMS indication. An EFD study was previously submitted to support the original BLA. The nonclinical review of the original BLA (see review by Dr. McDougal, dated 8/10/2009) noted that the majority of the animals used in the toxicology studies had been sexually immature; therefore, a reliable assessment of potential toxicity to reproductive tissues could not be obtained in those studies.

In the IV fertility study, cynomolgus monkeys (4/sex/group in the main study and 2/sex/group recovery) were administered of atumumab (0, 10/3 mg/kg, or 100/20 mg/kg) for approximately 3 months. The initial dose (10 or 100 mg/kg) was given weekly for 5 weeks (i.e., Days 1, 8, 15, 22 and 29) followed by a maintenance dose (3 or 20 mg/kg) given once every 2 weeks (i.e., Days 43, 57, 71 and 85). The main study animals were necropsied on Day 92, and the recovery animals were necropsied on Day 148. Marked CD20+ B-cell depletion was observed at both doses. After 8 weeks of recovery, circulating B cells remained depleted at the HD and showed only partial recovery at the LD. Dose-dependent decreased cellularity of the lymphoid follicles and absence/reduction of germinal centers were observed in the spleen and lymph nodes. By immunohistochemistry, CD20+ cells were depleted in the examined tissues,

including the spleen, LN, GALT, and thymus; dose-dependent reductions of CD3+ cells were also observed in most of these tissues (although this was considered secondary to the reduction in germinal centers reflecting the marked reductions in CD20+ cells). Clearly drug-related alterations in female reproductive tissues were not observed. There was some evidence for an effect in HD males (e.g., apparent, although highly variable, increases in total sperm alterations compared to controls and one HDM showing bilateral moderate testicular depletion/degeneration of germ cells); however, several measures such as testicular volume were not clearly affected. ADA were observed at both doses, but with greater incidence at the LD; neutralizing ADA were observed in 4 of 6 LDM and 1 of 6 LDF by Day 22/Day 57. The NOAEL/LOAEL (F/M) for reproductive effects was the HD.

In the ePPND study, groups of 14 pregnant females were administered of atumumab (0. 10/3, or 100/20 mg/kg IV) from GD20 until birth. The initial dose (0, 10, or 100 mg/kg) was administered weekly for 5 weeks followed by maintenance doses (0, 3, or 20 mg/kg) administered once every 2 weeks beginning on GD 62. Maternal ofatumumab administration was stopped at birth, and the maternal animals and infants were followed for a 6-month observation period (i.e., LacD/PND180). One HD maternal animal was euthanized on LacD96 in moribund condition with reduced red cell mass, markedly reduced B and T cells, and severe bilateral glomerulonephropathy; this finding was believed to be ADA-mediated based on the presence of ADA in the blood on GD138 and subendothelial IgM deposits in an acutely inflamed renal vessel. In the LD maternal animals, slightly reduced red cell mass was observed on GD118 and LacD28 compared to controls, and increased prenatal loss was suggested (i.e., 28.6% compared to 14.3% in controls). CD20+ B cells were depleted in the blood of the maternal animals as well as their infants. In the maternal animals, repletion of CD20+ cells occurred by approximately LacD91 in the LD group and approximately LacD175 in the HD group, except for early repletion in 4 of 14 LD maternal animals that developed neutralizing ADA (i.e., ofatumumab was not detected beginning on GD48, and infants of these females did not show B-cell depletion). In total, 9 LD and 5 HD maternal animals developed ADA.

Infant survival was reduced at the HD in the ePPND study; the early postnatal deaths were attributed to accidents (i.e., not considered drug-related) and secondary infection (i.e., drug-related). Birth weights were slightly reduced in infants of the ofatumumabdosed maternal animals and persisted in female infants during the observation period. IgG levels were reduced in the HD infants on PND70, recovering in males by PND175 but remaining reduced in females. Ofatumumab exposures were present in only three LD infants (until PND28 or PND63) but were observed in all HD infants until PND63 (males) or PND91 (females); seven LD infants (and no HD infants) showed ADA. In the infants of maternal animals showing persistent ofatumumab exposures, CD20+ B-cell repletion was observed beginning on PND63 in the LD infants and on PND91/119 (M/F) in the HD infants. CD3+ and CD3+CD4+ T cells were increased in female HD infants from PND28 to PND119. In the TDAR assay conducted, IgM responses were reduced after the first and second KLH administration in the HD male infants and were absent in HD female infants after the first immunization. IgG responses were reduced and delayed in the HD female infants after the first immunization and remained reduced in the HD female infants after the second KLH administration. A no-effect level was not identified for the study, based on CD20+ B-cell depletion and reduced birth weights (that persisted into maturation in female infants); the LD is considered a LOAEL. Increased postnatal mortality and adverse immune alterations that resulted in persistent functional effects were observed in the HD infants.

#### Comparisons to human exposures at the proposed RHD

The Sponsor reported that monthly SC doses of 20 mg after the initial "loading dose regimen" produced a steady state mean AUC<sub>tau</sub> of 483 mcg-hr/mL and a mean C<sub>max</sub> of 1.425 mcg/mL. See the Sponsor's Table 4-3, below, comparing the exposures at the sponsor's NOAELs in the nonclinical studies and human exposures at "steady state" following monthly SC doses of 20 mg ofatumumab. It is noted that although the sponsor identified 100 mg/kg IV as the NOAEL for the 7-month study, a clear NOAEL was not identified for that study (based on mortalities at both doses, which were attributed to infection [which was considered relevant to patient safety but an extension of the pharmacology and monitorable] and hemolytic anemia [which was considered of unclear relevance to human risk because it potentially represented a humoral immune response to drug that would be of limited predictivity to humans]). For the fertility study, the HD (i.e., 100 mg/kg / 20 mg/kg) is considered a NOAEL/LOAEL for females and males. For the ePPND study, the LD (i.e., 10 mg/kg / 3 mg/kg) is considered the LOAEL, based on increased postnatal mortality and persistent adverse immune effects at the HD (i.e., 100 mg/kg / 20 mg/kg).

|                                   |                         |        |                               |                 | Exposur                                                            | e multiples         |  |  |
|-----------------------------------|-------------------------|--------|-------------------------------|-----------------|--------------------------------------------------------------------|---------------------|--|--|
| Exposur                           | e <sup>a</sup> in cynon | nolgus | monkeys in pivotal stu        | udies           | Human exposure <sup>b</sup> at the<br>therapeutic dose of 20 mg s. |                     |  |  |
| Study Type<br>(Study<br>number)   | NOAEL<br>(mg/kg)        | Sex    | AUC0-tª<br>(µg⋅h/mL)          | Cmax<br>(µg/mL) | AUCtau<br>483.4<br>µg∙h/mL                                         | Cmax<br>1.425 µg/mL |  |  |
| 2-week                            | 100                     | F      | s.c. 274000 / 753000          | 1510            | 570 / 1600                                                         | 1100                |  |  |
| s.c.+i.v.<br>(CD2007-<br>01024)   |                         |        | i.v. 392000 / 1005000         | 3270            | 810 / 2100                                                         | 2300                |  |  |
| 4-week i.v.                       | 100                     | Μ      | 401489 / 1753889              | 10595           | 830 / 3600                                                         | 7400                |  |  |
| (CD2008-<br>01520)                |                         | F      | 747248 / 2172502              | 11535           | 1500 / 4500                                                        | 8100                |  |  |
| Cycled                            | 100                     | Μ      | 120585 / 254942               | 2811            | 250 / 520                                                          | 2000                |  |  |
| dosing i.v.<br>(CD2008-<br>01522) |                         | F      | 222705 / 267609               | 4071            | 460 / 550                                                          | 2900                |  |  |
| 7-month i.v.                      | 100                     | M      | 54892 / 765564                | 3110            | 110 / 1600                                                         | 2200                |  |  |
| (CD2008-<br>01521)                |                         | F      | 59183 / 757219                | 3460            | 120 / 1600                                                         | 2400                |  |  |
| Fertility i.v.                    | 100/20°                 | Μ      | 162000 / 312000d              | 1340            | 340 / 650                                                          | 940                 |  |  |
| (1670402)                         |                         | F      | 124000 / 251000 <sup>d</sup>  | 1090            | 260 / 520                                                          | 770                 |  |  |
| EFD i.v.<br>(CD2008-<br>01523)    | 100                     | Fe     | 622600 / 1646000 <sup>f</sup> | 5680            | 1300 / 3400                                                        | 4000                |  |  |
| ePPND i.v.                        | 10/3 <sup>c,g</sup>     | Fe     | 10500 / 16900 <sup>i</sup>    | 90              | 22/35                                                              | 63                  |  |  |
| (1670033)                         | 100/20 <sup>c,h</sup>   | F      | 77900 / 111000 <sup>i</sup>   | 733             | 160 / 230                                                          | 510                 |  |  |

#### Table 4-3 Exposure multiples for animal findings based on a 20 mg subcutaneous dose in humans

Footnotes

s.c. = subcutaneous; i.v. = intravenous; M = male, F = female

a: Geometric mean AUC and Cmax in monkeys at the end of the treatment period. Unless otherwise indicated, AUC0-t was calculated from the last administration to the last sample collected at the end of the treatment period (first value) / to the last sample containing quantifiable levels of ofatumumab (second value)

b: Geometric mean AUC and Cmax in subjects of the bioequivalence study [COMB157G2102-Table 14.2-11.1] at approximate steady state, n = 282 subjects

c: The initial dose (10 or 100 mg/kg) was given weekly for 5 weeks followed by the maintenance dose (3 or 20 mg/kg) given once every 2 weeks

d: Fertility study: mean AUC0-168h (first value) / AUC0-t (up to last collected sample, second value)

e: Exposure determined in maternal animals of the EFD and ePPND studies

f: EFD study: mean AUC0-7 days (first value) / AUC0-∞ (second value)

g: NOAEL related to the pharmacological activity in infants

h: NOAEL for maternal animals and pre/post-natal development

i: ePPND study: mean AUC0-168h (first value) / AUC0-336h (second value)

# 12 Appendix/Attachments

#### **References**

Cline JM et al. (2008) Toxicologic Pathology, 36(7): 142s-163s. Jarvis P et al (2010) Birth Defects Research (Part B), 89: 175-187. Rojko JL et al. (2014) Toxicologic Pathology, 42: 725-764. This is a representation of an electronic record that was signed electronically. Following this are manifestations of any and all electronic signatures for this electronic record.

-----

/s/

MELISSA K BANKS-MUCKENFUSS 07/09/2020 02:04:42 PM

LOIS M FREED 07/09/2020 02:33:00 PM

# CENTER FOR DRUG EVALUATION AND RESEARCH

**APPLICATION NUMBER:** 

# 125326Orig1s070

# **STATISTICAL REVIEW(S)**



U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research Office of Translational Sciences Office of Biostatistics

# STATISTICAL REVIEW AND EVALUATION

#### CLINICAL STUDIES

| NDA/BLA #:                   | BLA125326/S-70                            |
|------------------------------|-------------------------------------------|
| Drug Name:                   | ofatumumab                                |
| Indication(s):               | relapsing multiple sclerosis (RMS)        |
| Applicant:                   | Novartis                                  |
| Date(s):                     | Submission date: 12/20/2019               |
|                              | PDUFA Date: 9/20/2020                     |
| <b>Review Priority:</b>      | Priority                                  |
|                              |                                           |
| <b>Biometrics Division:</b>  | Division of Biometrics I                  |
| Statistical Reviewer:        | Xiang Ling, Ph.D.                         |
| <b>Concurring Reviewers:</b> | Kun Jin, Ph.D., Team Leader               |
|                              | James Hung, Ph.D., Director               |
| <b>Medical Division:</b>     | Division of Neurology 2                   |
| Clinical Team:               | LawrenceRodichok, M.D., Clinical reviewer |
|                              | PaulLee, M.D., Clinical Team Leader       |
| Project Manager:             | Candido Alicea                            |

| <b>Table of Contents</b> |
|--------------------------|
|--------------------------|

| 1 | EX                                                | ECUTIVE SUMMARY4                                                                                                                                                                                                        | ļ |
|---|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2 | INT                                               | RODUCTION                                                                                                                                                                                                               | į |
|   | 2.1<br>2.2                                        | Overview                                                                                                                                                                                                                | , |
| 3 | STA                                               | ATISTICAL EVALUATION                                                                                                                                                                                                    | ; |
|   | 3.1<br>3.2<br>3.2.<br>3.2.<br>3.2.<br>3.2.<br>3.3 | 2       Statistical Methodologies       8         3       Patient Disposition, Demographic and Baseline Characteristics       10         4       Results and Conclusions       13         EVALUATION OF SAFETY       21 |   |
| 4 | FIN                                               | DINGS IN SPECIAL/SUBGROUP POPULATIONS                                                                                                                                                                                   |   |
|   | 4.1<br>4.2                                        | GENDER, RACE, AGE, AND GEOGRAPHIC REGION                                                                                                                                                                                | 5 |
| 5 | SUN                                               | MMARY AND CONCLUSIONS23                                                                                                                                                                                                 | ; |
|   | 5.1<br>5.2<br>5.3                                 | Statistical Issues       23         Collective Evidence       23         Conclusions and Recommendations       24                                                                                                       | ; |

# LIST OF TABLES

| Table 1. Pivotal Studies with Ofatumumab in MS                                        | 5  |
|---------------------------------------------------------------------------------------|----|
| Table 2. Criterion for disability worsening based on change in EDSS score             | 7  |
| Table 3. Criterion for disability improvement based on change in EDSS score           | 7  |
| Table 4. Study G2301: Subject Disposition                                             | 11 |
| Table 5. Study G2302: Subject Disposition                                             | 11 |
| Table 6. Patient Demographics in Studies G2301 and G2302                              | 12 |
| Table 7. Baseline Disease Characteristics in Studies G2301 and G2302                  | 13 |
| Table 8. Study G2301: Summary of Annualized Relapse Rate                              | 14 |
| Table 9. Study G2301: Number of Gd-Enhancing Lesions per Scan                         | 14 |
| Table 10. Study G2301: Number of New or Enlarging T2 Lesions per Year                 | 14 |
| Table 11. Study G2301: Neurofilament light chain (NfL) Concentrations at Month 3      | 15 |
| Table 12. Study G2301: Percent Change in Brain Volume from Baseline                   | 15 |
| Table 13. Study G2302: Summary of Annualized Relapse Rate                             | 16 |
| Table 14. Study G2302: Number of Gd-Enhancing Lesions per Scan                        | 16 |
| Table 15. Study G2302: Number of New or Enlarging T2 Lesions per Year                 |    |
| Table 16. Study G2302: Neurofilament light chain (NfL) Concentrations at Month 3      | 17 |
| Table 17. Study G2302: Percent Change in Brain Volume from Baseline                   | 17 |
| Table 18. Time to First 3-month Confirmed Disability Worsening                        | 18 |
| Table 19. Additional Analyses on Time to First 3-month Confirmed Disability Worsening | 19 |
| Table 20. Time to First 6-month Confirmed Disability Worsening                        | 20 |
| Table 21. Additional Analyses on Time to First 6-month Confirmed Disability Worsening | 21 |
| Table 22. Time to First 6-month Confirmed Disability Improvement                      | 21 |
| Table 23. Study G2301: Summary of annualized relapse rate by demographics subgroups   | 22 |
| Table 24. Study G2302: Summary of annualized relapse rate by demographics subgroups   | 22 |
| Table 25. Summary of efficacy results                                                 |    |

# **LIST OF FIGURES**

| Figure 1. Study design for of atumumab Phase III clinical program in RMS        | 6 |
|---------------------------------------------------------------------------------|---|
| Figure 2. Testing procedure and type-I error control in studies G2301 and G2302 |   |
| Figure 3. Time to First 3-month Confirmed Disability Worsening                  |   |
| Figure 4. Time to First 6-month Confirmed Disability Worsening                  |   |

# **1 EXECUTIVE SUMMARY**

The data overall provide adequate evidence for the efficacy of ofatumumab as treatment of patients with relapsing multiple sclerosis (RMS).

Of a tumumab demonstrated superiority over teriflunomide in lowering MS relapse rate in 2 independent, well-controlled trials. In Study G2301, of a tumumab compared with teriflunomide significantly reduced the annualized relapse rate (ARR: 0.11 vs 0.22) by 50.5% (p<0.001). In Study G2302, of a tumumab compared with teriflunomide significantly reduced the ARR (0.10 vs 0.25) by 58.5% (p<0.001). The robustness of the treatment effect was confirmed in all sensitivity and supportive analyses. The treatment effect also appeared consistent across the subgroups.

In both pivotal studies, of atumumab resulted in statistically significant treatment effect on magnetic resonance imaging (MRI) and Neurofilament light chain (NfL) related key secondary endpoints, except for the rate of brain volume loss.

In the combined data from studies G2301 and G2302, of a tumumab significantly reduced the risk of 3-month confirmed worsening (3mCDW) compared with teriflunomide, with a consistent effect in both studies G2301 and G2302. Of a tumumab also significantly reduced the risk of 6-month confirmed worsening (6mCDW), but the statistical significance was lost when the disability event was assessed independent of relapses. Statistical significance was not achieved for the endpoint of 6-month confirmed improvement (6mCDI), although a positive trend was observed favoring the of a tumumab treatment group compared with the teriflunomide group.

## **2** INTRODUCTION

#### 2.1 Overview

Ofatumumab intravenous injection was originally approved in 2009 for the treatment of chronic lymphocytic leukemia. Novartis has developed a subcutaneous formulation of ofatumumab for the treatment of patients with relapsing multiple sclerosis (RMS) under IND 111116. The Phase III clinical program comprised two studies of identical design (COMB157 G2301 and COMB157G2302; abbreviated as G2301 and G2302) with a total of 1882 RMS patients. Both studies were randomized, double-blind, double-dummy, active comparator-controlled, parallel-group, multi-center study with variable treatment duration. Eligible patients were randomized in a 1:1 ratio to receive either of atumumab 20 mg s.c. injections every 4 weeks or teriflunomide 14 mg orally once daily. The maximum treatment duration for an individual patient was 30 study months (approximately 2.5 years). If the primary endpoint (annualized relapse rate) was successful in both studies, the disability-related key secondary endpoints were to be tested based on the combined data from the two studies.

| Study         | Objective, population                                                                                                                                                                                   | No. of patients<br>randomized / exposed to<br>study treatment | Treatment<br>dosing regimen                                               | Primary efficacy<br>endpoint                                        |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|
| Phase III cor | ntrolled studies in patients with RMS                                                                                                                                                                   |                                                               | 7.6 27.600 52.000                                                         |                                                                     |
| [G2301]       | Double-blind, double-dummy, active-comparator<br>controlled, parallel-group, multi-center study<br>evaluating efficacy and safety of ofatumumab vs<br>teriflunomide in patients with RMS (ASCLEPIOS I / | 927 / 927<br>Ofatumumab 465 / 465<br>Teriflunomide 462 / 462  | Ofatumumab<br>20 mg s.c. (PFS)<br>q4w <sup>d</sup><br>Teriflunomide 14 mg | ARR, defined as the<br>number of confirmed<br>MS relapses in a year |
| [G2302]       | ASCLEPIOS II)                                                                                                                                                                                           | 955 / 955                                                     | p.o. qd                                                                   |                                                                     |
|               |                                                                                                                                                                                                         | Ofatumumab 481 / 481                                          |                                                                           |                                                                     |
|               |                                                                                                                                                                                                         | Teriflunomide 474 / 474                                       |                                                                           |                                                                     |

#### Table 1. Pivotal Studies with Ofatumumab in MS

ARR=annualized relapse rate; Gd=gadolinium; MS=multiple sclerosis; RMS=relapsing multiple sclerosis; RRMS=relapsing-remitting multiple sclerosis; PFS=pre-filled syringe

#### 2.2 Data Sources

Materials reviewed for this application include the clinical study reports, raw and derived datasets, protocols, statistical analysis plans, and documents of regulatory communications, which are located in the following directories: <u>\CDSESUB1\evsprod\BLA125326\0248</u> and <u>\\CDSESUB1\evsprod\BLA125326\0264</u>.

# **3** STATISTICAL EVALUATION

#### 3.1 Data and Analysis Quality

Datasets were sufficiently structured and defined, and documentation of statistical analysis methods was included with sufficient details for this reviewer to reproduce the applicant's key efficacy results.

#### 3.2 Evaluation of Efficacy

#### 3.2.1 Study Design and Endpoints

Study G2301 was initiated on September 20, 2016 and completed on July 5, 2019. Study G2302 was initiated on August 26, 2016 and completed on July 10, 2019. Database lock occurred on August 16, 2019. The study protocol was amended 2 times and the last version was dated August 6, 2018 to update the secondary objectives of the study. The original SAP was dated July 15, 2016 and the final SAP was dated October 17, 2019 after database lock to correct B-cell depletion analysis.

#### Study design

Studies G2301 and G2302 were randomized, double-blind, active comparator-controlled, parallel-group, multi-center studies in 927 patients (G2301) and 955 patients (G2302) with RMS. The studies were of identical design and conducted in parallel. Eligible patients were randomized (1:1) to receive either of atumumab 20 mg s.c. injections every 4 weeks or teriflunomide 14 mg orally once daily. The randomization was stratified by geographical region and by MS subtype (relapsing-remitting MS, or secondary progressive MS).

The studies consisted of 3 epochs: Screening epoch (including Baseline), Treatment epoch (double-blind), and Safety follow-up epoch. The treatment duration for an individual patient was variable and based on when the End of Study (EOS) criteria were met. The maximal treatment duration for an individual patient was 30 study months (approximately 2.5 years). EOS was declared once sufficient information had been collected (based on blinded data) to ensure 90% power for the primary endpoint in each study individually, and sufficient power for the disability related endpoints (i.e.  $\geq$ 90% power for 3mCDW and  $\geq$ 80% power for 6mCDW).




Figure 1. Study design for of atumumab Phase III clinical program in RMS

EOS=end-of-study; FU=follow-up; M=month

A blinded sample size review (BSSR) was conducted prior to the completion of enrollment to allow the number of randomized patients to be increased to a maximum of 1250 patients in each study. The planned sample size was not increased based on the BSSR.

#### **Efficacy Endpoint**

The <u>primary endpoint</u> was the annualized relapse rate (ARR), which was defined as the number of confirmed MS relapses in a year. Relapse confirmation occurred through the assessment of a clinically relevant change in the Expanded Disability Status Scale (EDSS) by an independent EDSS rater.

The key secondary endpoints were the following for each study:

- Number of Gd-enhancing T1 lesions per scan;
- Annualized rate of new or enlarging T2 lesions;
- Neurofilament light chain concentration (NfL) in serum;
- Brain volume loss;

and for pooled studies:

- 3-months confirmed disability worsening (3mCDW);
- 6-months confirmed disability worsening (6mCDW);
- 6-month confirmed disability improvement (6mCDI).

The 3mCDW or 6mCDW was defined as an EDSS increase from baseline sustained for at least 3 or 6 months, respectively. Disability worsening could have an onset in- or outside the influence of a relapse. A disability worsening could only be confirmed at a scheduled visit in the absence of (confirmed or unconfirmed) relapse if, over a period of 3 or 6 months time interval, all assessments met the worsening criterion as listed in Table 2.

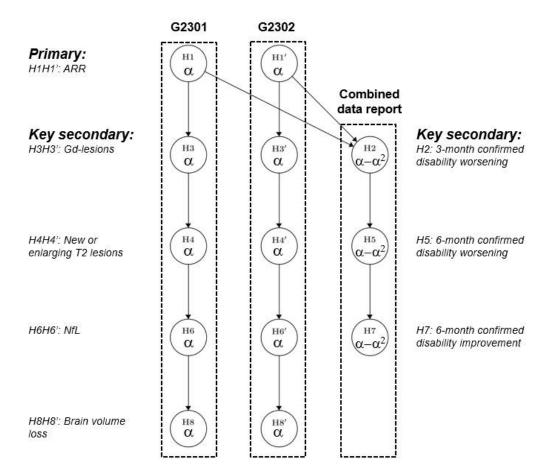
| Total EDSS at baseline* | "Disability worsening" criterion |  |
|-------------------------|----------------------------------|--|
| 0                       | ≥ +1.5                           |  |
| 0.5 to 5                | ≥ +1                             |  |
| ≥5.5                    | ≥ +0.5                           |  |

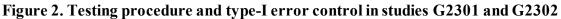
#### Table 2. Criterion for disability worsening based on change in EDSS score

The 6mCDI was defined in a similar fashion based on the criterion in Table 3. For 6mCDI, patients with a baseline EDSS total score <= 1.5 could not contribute to the analysis as improvement was not possible for them.

| Table 3. Criterion for disability | improvement based on change in EDSS score |
|-----------------------------------|-------------------------------------------|
|                                   |                                           |

| Total EDSS at baseline* | "Disability improvement" criterion |
|-------------------------|------------------------------------|
| 0 to 1.5                | No improvement possible            |
| ≥2 to 6                 | ≤ -1                               |
| ≥6.5 to 9.5             | ≤ -0.5                             |


#### 3.2.2 Statistical Methodologies


#### Analysis Population

Statistical analyses of clinical endpoints were based on Full analysis set (FAS), comprised of all randomized patients.

#### Multiple Testing Procedures

To control the type I error rate, a testing strategy containing all primary and key secondary endpoints of studies G2301 and G2302, as illustrated in Figure 2 was implemented. Hypotheses were tested in hierarchical order as indicated by the arrows. The number associated with each hypothesis ( $\alpha$ , or  $\alpha$ - $\alpha$ <sup>2</sup>, where  $\alpha$  was 0.025 1-sided) indicates the significance level at which that hypothesis was tested. Within each study, the primary endpoint (ARR) was tested first, and if the null hypothesis could be rejected, key secondary endpoints were tested according to the following hierarchy: Gd-enhancing T1 lesions (MRI), T2 lesions (MRI), NfL levels, brain volume loss (MRI).





A meta-analysis for the combined data was pre-planned for key secondary disability-related endpoints, as the individual studies were not powered for these analyses. If both studies

successfully rejected the null-hypothesis of the primary endpoint, disability-related endpoints could be tested at 1-sided significance level of 0.024 (=0.025-0.025^2) using the combined data from both studies, regardless of the outcomes of MRI- and NfL-related endpoints. The testing procedure was pre-planned and agreed by the Agency.

The testing procedure controls the type-I error rate (one-sided) at the study-level to  $\leq 0.025$ , and at combined studies level to  $\leq 0.000625 (= 0.025^{2})$ .

#### Analysis Methods

#### Annualized relapse rate (ARR)

The primary endpoint was analyzed using a negative binomial regression model with log-link, treatment and region as factors, number of relapses in previous year, baseline EDSS, baseline number of T1 Gd-enhancing lesions and the patient's age at baseline as covariates. The patient's time in study, calculated as natural log of [(end of treatment epoch date - first dose date +1) /365.25], was used as an offset variable to adjust for the varying lengths of patient's time in the study.

The following sensitivity analyses were planned for the primary endpoint. The primary analysis was to be repeated to include all reported MS relapses (confirmed or unconfirmed). The primary was also repeated using the per-protocol set to provide an analysis of on-treatment data from patients who have no major protocol violations. In this analysis, only relapses with a start date during the on-treatment period were included, in comparison with the primary analysis which used all available data up to the end of treatment epoch date, irrespective of on or off study treatment. Additionally, the time-to-first relapse was analyzed in a Cox proportional hazards model. In comparison with the primary analysis using a negative binomial model, the Cox proportional hazards model does not assume constant relapse rates (but rather it assumes proportional hazards).

#### Disability related endpoints

Disability related endpoints were analyzed using a Cox proportional hazards model with study as stratum, treatment, and region as factors and baseline EDSS as a continuous covariate. Censoring occurred in those patients who did not experience an event, this included patients who had a "tentative" disability worsening/improving that could not be confirmed due to an early discontinuation or any another reason. The censoring time was defined as the time from the first dose to the last available EDSS assessment during the treatment epoch. If a patient dies due to MS (EDSS=10 at any time), it was considered a confirmed disability worsening.

As a supportive analysis, the log-rank test stratified by study was performed. Additionally, an analysis was conducted assigning all patients who discontinued from the study due to "lack of efficacy" or died (due to any reason) during the treatment epoch as patients with a confirmed event. The event time for these patients was calculated based on the date of the discontinuation from study. A worse-case type of analysis for 3mCDW or 6mCDW considered only those of atumumab patients who discontinued the study due to lack of efficacy or died to have disability worsening.

#### MRI- and NfL-related key secondary endpoints

For gadolinium (Gd)-enhancing T1 lesions (which represent acute, transient inflammation on a specific scan), the data was analyzed in a negative binomial model with an offset for the number of MRI scans included in the analysis. The result was presented as the number of Gd-enhancing T1 lesions per MRI scan. The model included treatment and region, and age, and number of Gd-enhancing lesions at baseline as continuous covariates.

For the number of new or enlarging T2 lesions (which represent the cumulative increase in the number of lesions between baseline and the specific post-baseline scan), the data was analyzed in a negative binomial model with an offset for the time (in years) between the last post-baseline scan and the baseline (or screening) scan. The result was presented as the number of new or enlarging T2 lesions per year. The model included treatment and region, and age, and baseline volume of T2 lesions as continuous covariates.

NfL is a biomarker of neuroaxonal injury and neuronal loss. The data was analyzed in a repeated measure model (MMRM) with unstructured covariance assumed between assessments within patients. As the NfL level is expected to follow log-normal distribution, it was transformed by natural log before fitting the statistical model for analysis. The statistical hypothesis test was based on the treatment contrast and p-value obtained at month 3.

Percent brain volume change from baseline was analyzed in a random coefficient model (with random slope and intercept and unstructured covariance assumed for these random effects). Post-baseline assessments were done at Month 12, Month 24 (and EOT/EOS if discontinued prematurely). The hypothesis compared the slope of percent brain volume change between of atumumab and teriflunomide groups.

## 3.2.3 Patient Disposition, Demographic and Baseline Characteristics

In Study G2301, a total of 927 subjects were randomized. A higher proportion of patients in the teriflunomide treatment group (17.5%) discontinued prematurely from the Treatment epoch as compared to the of atumumab group (10.3%). The difference mainly resulted from the discontinuations due to patient/guardian decision in the teriflunomide group vs the of atumumab group (9.1% vs 3.4%) (Table 4).

| Disposition/Reason                               | OMB 20 mg<br>N=465<br>n (%) | TER 14 mg<br>N=462<br>n (%) | All Patients<br>N=927<br>n (%) |
|--------------------------------------------------|-----------------------------|-----------------------------|--------------------------------|
| Completed treatment epoch                        | 416 (89.5)                  | 376 (81.4)                  | 792 (85.4)                     |
| Completed study drug                             | 400 (86.0)                  | 359 (77.7)                  | 759 (81.9)                     |
| Discontinued study drug                          | 16 (3.4)                    | 17 (3.7)                    | 33 (3.6)                       |
| Discontinued treatment epoch                     | 48 (10.3)                   | 81 (17.5)                   | 129 (13.9)                     |
| Primary reason for discontinuing treatment epoch |                             |                             |                                |
| Patient/guardian decision                        | 16 (3.4)                    | 42 (9.1)                    | 58 (6.3)                       |
| Adverse event                                    | 14 (3.0)                    | 14 (3.0)                    | 28 (3.0)                       |
| Lost to follow-up                                | 10 (2.2)                    | 5 (1.1)                     | 15 (1.6)                       |
| Lack of efficacy                                 | 1 (0.2)                     | 12 (2.6)                    | 13 (1.4)                       |
| Physician decision                               | 3 (0.6)                     | 4 (0.9)                     | 7 (0.8)                        |
| Protocol deviation                               | 3 (0.6)                     | 2 (0.4)                     | 5 (0.5)                        |
| New therapy for study indication                 | 0                           | 1 (0.2)                     | 1 (0.1)                        |
| Non-compliance with study treatment              | 0                           | 1 (0.2)                     | 1 (0.1)                        |
| Pregnancy                                        | 1 (0.2)                     | 0                           | 1 (0.1)                        |

# Table 4. Study G2301: Subject Disposition

In Study G2302, a total of 955 subjects were randomized. A similar proportion of patients discontinued prematurely in the of atumumab and teriflunomide group (17.3% vs 17.7%) (Table 5).

# Table 5. Study G2302: Subject Disposition

| Disposition/Reason                               | OMB 20 mg<br>N=481<br>n (%) | TER 14 mg<br>N=474<br>n (%) | All Patients<br>N=955<br>n (%) |
|--------------------------------------------------|-----------------------------|-----------------------------|--------------------------------|
| Completed Treatment epoch                        | 397 (82.5)                  | 389 (82.1)                  | 786 (82.3)                     |
| Completed study drug                             | 383 (79.6)                  | 370 (78.1)                  | 753 (78.8)                     |
| Discontinued study drug                          | 14 (2.9)                    | 19 (4.0)                    | 33 (3.5)                       |
| Discontinued Treatment epoch                     | 83 (17.3)                   | 84 (17.7)                   | 167 (17.5)                     |
| Primary reason for discontinuing Treatment epoch |                             |                             |                                |
| Patient/guardian decision                        | 32 (6.7)                    | 41 (8.6)                    | 73 (7.6)                       |
| Adverse event                                    | 16 (3.3)                    | 13 (2.7)                    | 29 (3.0)                       |
| Physician decision                               | 14 (2.9)                    | 11 (2.3)                    | 25 (2.6)                       |
| Lack of efficacy                                 | 7 (1.5)                     | 9 (1.9)                     | 16 (1.7)                       |
| Lost to follow-up                                | 9 (1.9)                     | 5 (1.1)                     | 14 (1.5)                       |
| Pregnancy                                        | 1 (0.2)                     | 3 (0.6)                     | 4 (0.4)                        |
| Non-compliance with study treatment              | 2 (0.4)                     | 1 (0.2)                     | 3 (0.3)                        |
| Protocol deviation                               | 2 (0.4)                     | 0                           | 2 (0.2)                        |
| Technical problems                               | 0                           | 1 (0.2)                     | 1 (0.1)                        |

Demographics were generally balanced between the treatment groups for Study G2301 and G2302 populations. Most patients were female and White, with a mean age of 38 years (Table 6).

|                              | G2                 | 2301               | G23                | 02                 |
|------------------------------|--------------------|--------------------|--------------------|--------------------|
|                              | OMB 20 mg<br>N=465 | TER 14 mg<br>N=462 | OMB 20 mg<br>N=481 | TER 14 mg<br>N=474 |
| Age (yrs)                    |                    |                    |                    |                    |
| Mean (SD)                    | 38.9 (8.77)        | 37.8 (8.95)        | 38.0 (9.28)        | 38.2 (9.47)        |
| Median (min, max)            | 40.0 (19, 56)      | 38.0 (18, 55)      | 38.0 (18, 56)      | 38.0 (18, 56)      |
| Sex – n (%)                  |                    |                    |                    |                    |
| Male                         | 147 (31.6)         | 145 (31.4)         | 162 (33.7)         | 155 (32.7)         |
| Female                       | 318 (68.4)         | 317 (68.6)         | 319 (66.3)         | 319 (67.3)         |
| Race – n (%)                 |                    |                    |                    |                    |
| Asian                        | 15 (3.2)           | 16 (3.5)           | 21 (4.4)           | 19 (4.0)           |
| Black or African<br>American | 15 (3.2)           | 20 (4.3)           | 13 (2.7)           | 18 (3.8)           |
| White                        | 411 (88.4)         | 412 (89.2)         | 418 (86.9)         | 417 (88.0)         |
| Other                        | 22 (4.7)           | 14 (3.0)           | 20 (4.2)           | 14 (3.0)           |
| Unknown                      | 2 (0.4)            | 0                  | 9 (1.9)            | 6 (1.3)            |
| Region – n (%)               |                    |                    |                    |                    |
| Europe                       | 249 (53.5)         | 246 (53.2)         | 241 (50.3)         | 237 (50.0)         |
| North America                | 103 (22.2)         | 105 (22.7)         | 107 (22.2)         | 106 (22.4)         |
| Rest of world                | 113 (24.3)         | 111 (24.0)         | 132 (27.4)         | 131 (37.6)         |

| Table 6. Patient Demographics in Studies G | General Gene |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Source: FDA reviewer.

Baseline disease characteristics were generally balanced between the treatment groups for Study G2301 and G2302. The mean disease duration since MS diagnosis was 5.7 years for Study G2301 and 5.6 years for Study G2302. The mean baseline EDSS was 2.96 for Study G2301 and 2.88 for Study G2302 (Table 7).

| _                                                                        | G23              | 301              | G23              | 802              |
|--------------------------------------------------------------------------|------------------|------------------|------------------|------------------|
|                                                                          | OMB 20 mg        | TER 14 mg        | OMB 20 mg        | TER 14 mg        |
|                                                                          | N=465            | N=462            | N=481            | N=474            |
| Type of MS at study<br>entry, n (%)                                      |                  |                  |                  |                  |
| RRMS                                                                     | 438 (94.2)       | 434 (93.9)       | 452 (94.0)       | 450 (94.9)       |
| SPMS                                                                     | 27 (5.8)         | 28 (6.1)         | 29 (6.0)         | 24 (5.1)         |
| Duration of MS since<br>diagnosis (years)                                |                  |                  |                  |                  |
| Mean (SD)                                                                | 5.8 (6.0)        | 5.6 (6.2)        | 5.6 (6.4)        | 5.5 (6.0)        |
| Median (min, max)                                                        | 3.9 (0.1, 29.0)  | 3.5 (0.1, 35.8)  | 3.2 (0.1, 31.8)  | 3.1 (0.1, 33.5)  |
| Duration of MS since<br>first symptom (years)                            |                  |                  |                  |                  |
| Mean (SD)                                                                | 8.36 (6.841)     | 8.18 (7.207)     | 8.20 (7.404)     | 8.19 (7.376)     |
| Median (min, max)                                                        | 6.41 (0.1, 38.7) | 6.69 (0.2, 35.8) | 5.70 (0.1, 34.5) | 6.30 (0.2, 36.1) |
| Number of relapses in<br>the last 12 months prior<br>to screening, n (%) |                  |                  |                  |                  |
| Mean (SD)                                                                | 1.2 (0.63)       | 1.3 (0.69)       | 1.3 (0.74)       | 1.3 (0.73)       |
| Median (min, max)                                                        | 1.0 (0, 4)       | 1.0 (0, 5)       | 1.0 (0, 7)       | 1.0 (0, 6)       |
| EDSS                                                                     |                  |                  |                  |                  |
| Mean (SD)                                                                | 2.97 (1.357)     | 2.94 (1.355)     | 2.90 (1.343)     | 2.86 (1.374)     |
| Median (min, max)                                                        | 3.00 (0, 6.0)    | 3.00 (0, 6.5)    | 3.00 (0, 6.0)    | 2.50 (0, 6.0)    |
| Number of Gd-enhancing<br>T1 lesions                                     |                  |                  |                  |                  |
| n                                                                        | 454              | 452              | 469              | 470              |
| Mean (SD)                                                                | 1.7 (4.93)       | 1.2 (2.58)       | 1.6 (4.07)       | 1.5 (4.07)       |
| Median (min, max)                                                        | 0 (0, 47)        | 0 (0, 18)        | 0 (0, 58)        | 0 (0, 63)        |
| Previously treated patients                                              | 274 (58.9)       | 280 (60.6)       | 286 (59.5)       | 293 (61.8)       |
| Treatment-naïve patients                                                 | 191 (41.1)       | 182 (39.4)       | 195 (40.5)       | 181 (38.2)       |

#### Table 7. Baseline Disease Characteristics in Studies G2301 and G2302

Source: Summary of Clinical Efficacy Table 3-2.

# 3.2.4 Results and Conclusions

# 3.2.4.1 Study G2301

# Annualized Relapse Rate (ARR)

Treatment with of a unumab significantly reduced the annualized relapse rate by 50.5% (ARR ratio=0.495, p<0.001). The adjusted ARR was 0.11 in the of a unumab group, compared with 0.22 in the teriflunomide group (Table 8). Results of the all pre-specified sensitivity analyses were consistent with that of the primary analysis, including analysis of the ARR based on all relapses (confirmed and unconfirmed), analysis of confirmed relapses in the per-protocol population, as well as analysis of the time-to-first relapse.

|                                                | OMB 20 mg      | TER 14 mg    |
|------------------------------------------------|----------------|--------------|
|                                                | N=465          | N=462        |
| N: number of patients included in the analysis | 454            | 452          |
| Adjusted ARR                                   | 0.11           | 0.22         |
| (95% CI)                                       | (0.09, 0.14)   | (0.18, 0.26) |
| Rate ratio                                     | 0.495          |              |
| (95% CI)                                       | (0.374, 0.654) |              |
| Percentage reduction                           | 50.5%          |              |
| p-value                                        | < 0.001        |              |

#### Table 8. Study G2301: Summary of Annualized Relapse Rate

This endpoint was analyzed in a negative binomial model.

Source: CSR Table 11-1, confirmed by FDA reviewer.

#### Number of Gd-Enhancing Lesions

Treatment with of a tumumab compared with teriflunomide, significantly reduced the mean number of Gd-enhancing T1 lesions per scan (0.01 vs 0.45) by 97.5% (p<0.001; Table 9).

# Table 9. Study G2301: Number of Gd-Enhancing Lesions per Scan

|                                                       | OMB 20 mg<br>N=465 | TER 14 mg<br>N=462 |
|-------------------------------------------------------|--------------------|--------------------|
| N: number of patients included in the analysis        | 432                | 422                |
| Adjusted mean number of Gd-enhancing lesions per scan | 0.01               | 0.45               |
| (95% CI)                                              | (0.006, 0.022)     | (0.356, 0.575)     |
| Rate ratio                                            | 0.025              |                    |
| (95% CI)                                              | (0.013, 0.049)     |                    |
| Rate reduction                                        | 97.5%              |                    |
| p-value                                               | <0.001             |                    |

This endpoint was analyzed in a negative binomial model.

Source: CSR Table 11-4, confirmed by FDA reviewer.

# Annualized rate of new or enlarging T2 lesions

Treatment with of a tumumab, compared to teriflunomide, significantly reduced the mean number of new or enlarging T2 lesions per year (0.72 vs 4.00) by 82.0% (p<0.001; Table 10).

# Table 10. Study G2301: Number of New or Enlarging T2 Lesions per Year

|                                                           | OMB 20 mg    | TER 14 mg    |
|-----------------------------------------------------------|--------------|--------------|
|                                                           | N=465        | N=462        |
| N: number of patients included in the analysis            | 440          | 431          |
| Adjusted annualized mean rate of new/Enlarging T2 lesions | 0.72         | 4.00         |
| (95% CI)                                                  | (0.61, 0.85) | (3.47, 4.61) |
| Rate ratio                                                | 0.18         |              |
| (95% CI)                                                  | (0.15, 0.22) |              |
| Rate reduction                                            | 82.0%        |              |
| p-value                                                   | <0.001       |              |

This endpoint was analyzed in a negative binomial model

Source: CSR Table 11-5, confirmed by FDA reviewer.

# Neurofilament light chain (NfL) concentration

At Month 3, treatment with of a unumab compared to teriflunomide demonstrated a significant relative reduction in NfL concentration by 7% (p=0.011; Table 11).

# Table 11. Study G2301: Neurofilament light chain (NfL) Concentrations at Month 3

|                                        | OMB 20 mg<br>N=465 | TER 14 mg<br>N=462 |
|----------------------------------------|--------------------|--------------------|
| Adjusted mean concentration at Month 3 | 8.80               | 9.41               |
| (95% CI)                               | (8.48, 9.12)       | (9.06, 9.77)       |
| Ratio (95% CI)                         | 0.93 (0.89, 0.98)  |                    |
| p-value                                | 0.011              |                    |

This endpoint was analyzed using repeated measures mixed effects model. Source: CSR Table 11-6, confirmed by FDA reviewer.

# Percent change in brain volume from baseline

The annual rate of brain volume loss, estimated as the slope in volume change, was not statistically different between the of atumumab and teriflunomide treatment groups based on the random coefficients model (p=0.116; Table 12).

# Table 12. Study G2301: Percent Change in Brain Volume from Baseline

|                                                | OMB 20 mg<br>N=465 | TER 14 mg<br>N=462 |
|------------------------------------------------|--------------------|--------------------|
| N: number of patients included in the analysis | 418                | 409                |
| Annual rate of change from baseline            | -0.28              | -0.35              |
| (95% CI)                                       | (-0.34, -0.22)     | (-0.41, -0.29)     |
| Difference (95% CI)                            | 0.07 (-0.02, 0.15) |                    |
| p-value                                        | 0.116              |                    |

This endpoint was analyzed using a random coefficients model.

Source: CSR Table 11-7, confirmed by FDA reviewer.

# 3.2.4.2 Study G2302

# Annualized Relapse Rate (ARR)

Treatment with of a umumab significantly reduced the annualized relapse rate by 58.5% (ARR ratio=0.415, p<0.001). The adjusted ARR was 0.10 in the of a tumumab treatment group, compared with 0.25 in the teriflunomide group (Table 13). Results of the all pre-specified sensitivity analyses were consistent with that of the primary analysis.

|                                                | OMB 20 mg      | TER 14 mg    |
|------------------------------------------------|----------------|--------------|
|                                                | N=481          | N=474        |
| N: number of patients included in the analysis | 469            | 469          |
| Adjusted ARR                                   | 0.10           | 0.25         |
| (95% CI)                                       | (0.08, 0.13)   | (0.21, 0.30) |
| Rate ratio                                     | 0.415          |              |
| (95% CI)                                       | (0.308, 0.559) |              |
| Percentage reduction                           | 58.5%          |              |
| p-value                                        | < 0.001        |              |

#### Table 13. Study G2302: Summary of Annualized Relapse Rate

This endpoint was analyzed in a negative binomial model.

Source: CSR Table 11-1, confirmed by FDA reviewer.

#### Number of Gd-Enhancing Lesions

Treatment with of a unmab compared with teriflunomide, significantly reduced the mean number of Gd-enhancing T1 lesions per scan (0.03 vs 0.51) by 93.8% (p<0.001;Table 14).

#### Table 14. Study G2302: Number of Gd-Enhancing Lesions per Scan

|                                                       | OMB 20 mg<br>N=481 | TER 14 mg<br>N=474 |
|-------------------------------------------------------|--------------------|--------------------|
| N: number of patients included in the analysis        | 439                | 434                |
| Adjusted mean number of Gd-enhancing lesions per scan | 0.03               | 0.51               |
| (95% CI)                                              | (0.021, 0.048)     | (0.402, 0.658)     |
| Rate ratio                                            | 0.062              |                    |
| (95% CI)                                              | (0.037, 0101)      |                    |
| Rate reduction                                        | 93.8%              |                    |
| p-value                                               | <0.001             |                    |

This endpoint was analyzed in a negative binomial model.

Source: CSR Table 11-4, confirmed by FDA reviewer.

# Annualized rate of new or enlarging T2 lesions

Treatment with of a tumumab, compared to teriflunomide, significantly reduced the mean number of new or enlarging T2 lesions per year (0.64 vs 4.15) by 84.5% (p<0.001;Table 15).

#### Table 15. Study G2302: Number of New or Enlarging T2 Lesions per Year

|                                                           | OMB 20 mg<br>N=481 | TER 14 mg<br>N=474 |
|-----------------------------------------------------------|--------------------|--------------------|
| N: number of patients included in the analysis            | 448                | 443                |
| Adjusted annualized mean rate of new/Enlarging T2 lesions | 0.64               | 4.15               |
| (95% CI)                                                  | (0.55, 0.75)       | (3.64, 4.74)       |
| Rate ratio                                                | 0.15               |                    |
| (95% CI)                                                  | (0.13, 0.19)       |                    |
| Rate reduction                                            | 84.5%              |                    |
| p-value                                                   | <0.001             |                    |

This endpoint was analyzed in a negative binomial model

Source: CSR Table 11-5, confirmed by FDA reviewer.

# Neurofilament light chain (NfL) concentration

At Month 3, treatment with of a umumab compared to teriflunomide demonstrated a significant relative reduction in NfL concentration by 11% (p<0.001; Table 16).

# Table 16. Study G2302: Neurofilament light chain (NfL) Concentrations at Month 3

|                                        | OMB 20 mg<br>N=481 | TER 14 mg<br>N=474 |  |
|----------------------------------------|--------------------|--------------------|--|
| Adjusted mean concentration at Month 3 | 8.92               | 10.02              |  |
| (95% CI)                               | (8.62, 9.23)       | (9.68, 10.36)      |  |
| Ratio (95% CI)                         | 0.89 (0.85, 0.93)  |                    |  |
| p-value                                | <0.001             |                    |  |

This endpoint was analyzed using repeated measures mixed effects model. Source: CSR Table 11-6, confirmed by FDA reviewer.

# Percent change in brain volume from baseline

The annual rate of brain volume loss, estimated as the slope in volume change, was not statistically different between the of atumumab and teriflunomide treatment groups based on the random coefficients model (p=0.129; Table 17).

# Table 17. Study G2302: Percent Change in Brain Volume from Baseline

|                                                | OMB 20 mg          | TER 14 mg      |
|------------------------------------------------|--------------------|----------------|
|                                                | N=481              | N=462          |
| N: number of patients included in the analysis | 437                | 434            |
| Annual rate of change from baseline            | -0.29              | -0.35          |
| (95% CI)                                       | (-0.35, -0.23)     | (-0.42, -0.29) |
| Difference (95% CI)                            | 0.07 (-0.02, 0.15) |                |
| p-value                                        | 0.129              |                |

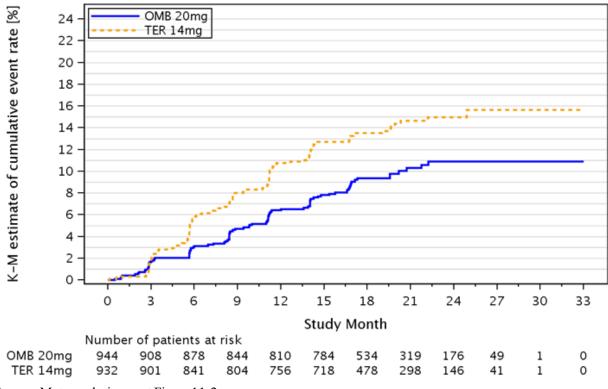
This endpoint was analyzed using a random coefficients model.

Source: CSR Table 11-7, confirmed by FDA reviewer.

# 3.2.4.3 Pooled Studies G2301 and G2302

As prespecified, disability-related key secondary efficacy endpoints were analyzed using the combined data of Studies G2301 and G2302.

# Disability worsening (time to 3mCDW)


Of a tumumab significantly lowered the risk of a 3mCDW by 34.4%, compared to teriflunomide (p=0.002) in pooled Studies G2301 and G2302 (Table 18). There was a consistent trend in favor of of atumumab in each individual study. Treatment with of atumumab delayed the time to first 3mCDW as shown in the corresponding Kaplan-Meier curves (Figure 3).

| Data source                    | KM estimate at Month 24<br>% (95% CI) | n/N (%)        | Hazard ratio<br>(95% Cl) | Risk reduction | P-value |
|--------------------------------|---------------------------------------|----------------|--------------------------|----------------|---------|
| Combined data<br>G2301 + G2302 |                                       |                |                          |                |         |
| OMB 20mg                       | 10.9 (8.8,13.4)                       | 88/944 (9.3)   | 0.656 (0.499, 0.862)     | 34.4%          | 0.002   |
| TER 14mg                       | 15.0 (12.6,17.7)                      | 125/931 (13.4) |                          |                |         |
| By study                       |                                       |                |                          |                |         |
| G2301                          |                                       |                |                          |                |         |
| OMB 20mg                       | 19.5 (15.5,24.2)                      | 76/465 (16.3)  | 0.652 (0.445, 0.957)     | 34.8%          | 0.029   |
| TER 14mg                       | 22.9 (18.7,27.8)                      | 88/459 (19.2)  |                          |                |         |
| G2302                          |                                       |                |                          |                |         |
| OMB 20mg                       | 10.5 (7.8,14.1)                       | 43/479 (9.0)   | 0.660 (0.447, 0.974)     | 34.0%          | 0.036   |
| TER 14mg                       | 14.6 (11.5,18.6)                      | 62/472 (13.1)  |                          |                |         |

Table 18. Time to First 3-month Confirmed Disability Worsening

Source: Meta-analysis report Table 11-1, confirmed by FDA reviewer.

Figure 3. Time to First 3-month Confirmed Disability Worsening



Source: Meta-analysis report Figure 11-2.

The pre-specified supportive and sensitivity analyses were generally consistent, including the worst-case type of analysis in which of atumumab patients who discontinued from the study due to lack of efficacy and/or died were considered as having 3mCDW (a risk reduction for of atumumab vs. teriflunomide of 32.9%, p=0.004; results not shown in table).

18

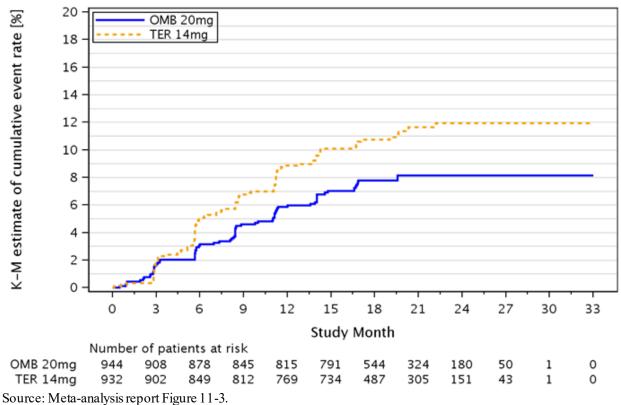
Additional analyses were conducted per the Agency's request. The protocol specified that disability worsening could have an onset in- or outside the influence of a relapse and the confirmation can only occur in the absence of relapse. To estimate the effect of ofatumumab on disability progression independent of relapse activity in patients with RMS, an analysis was conducted in which absence of relapses was required for the whole duration starting from the onset of disability progression event until the progression was confirmed. This is a common approach for analyzing the treatment effect on disease progression for RMS population. The analysis showed a risk reduction for ofatumumab vs. teriflunomide of 34.2% (p=0.007; Table 19).

In the second analysis, patients who had an onset of a tentative disability worsening but with no further EDSS assessments available for confirmation were defined as having confirmed disability worsening, instead of being censored. The analysis included over 100 additional events and showed a smaller risk reduction for of atumumab vs. teriflunomide of 25.1% (p=0.009; Table 19) for 3mCDW.

|                     | KM estimate at Month 24<br>% (95% CI) | n/N (%)          | Hazard ratio<br>(95% Cl) | Risk reduction | P-value    |
|---------------------|---------------------------------------|------------------|--------------------------|----------------|------------|
| Disability progress | ion independent of relapse            |                  |                          |                |            |
| OMB 20mg            | 8.9 (7.0,11.2)                        | 72/944 (7.6)     | 0.658 (0.487, 0.890)     | 34.2%          | 0.007      |
| TER 14mg            | 12.4 (10.2,15.0)                      | 102/931 (11.0)   |                          |                |            |
| Patients without El | DSS assessments available             | for confirmation | n assigned as having     | confirmed c    | lisability |
| OMB 20mg            | 20.1 (16.9,23.8)                      | 149/944 (15.8)   | 0.749 (0.603, 0.930)     | 25.1%          | 0.009      |
| TER 14mg            | 23.9 (20.7,27.5)                      | 182/931 (19.5)   |                          |                |            |

| Table 19. Additional Analyses on | Time to First 3-month C | Confirmed Disability <b>'</b> | Worsening |
|----------------------------------|-------------------------|-------------------------------|-----------|
|                                  |                         |                               |           |

Source: FDA reviewer.


# Disability worsening (time to 6mCDW)

Of a tumumab significantly lowered the risk of a 6mCDW by 32.5%, compared to teriflunomide (p=0.012) in pooled Studies G2301 and G2302 (Table 20). Trends in favor of of atumumab were observed in each individual study, and the risk reduction was numerically larger in Study G2301 than Study G2302. Treatment with of atumumab delayed the time to first 6mCDW as shown in the corresponding Kaplan-Meier curves (Figure 4).

| Data source                    | KM estimate at Month 24<br>% (95% CI) | n/N (%)       | Hazard ratio<br>(95% Cl) | Risk reduction | P-value |
|--------------------------------|---------------------------------------|---------------|--------------------------|----------------|---------|
| Combined data<br>G2301 + G2302 |                                       |               |                          |                |         |
| OMB 20mg                       | 8.1 (6.5,10.2)                        | 71/944 (7.5)  | 0.675 (0.498, 0.916)     | 32.5%          | 0.012   |
| TER 14mg                       | 12.0 (9.9,14.5)                       | 99/931 (10.6) |                          |                |         |
| By study                       |                                       |               |                          |                |         |
| G2301                          |                                       |               |                          |                |         |
| OMB 20mg                       | 8.2 (6.0,11.3)                        | 35/465 (7.5)  | 0.607 (0.396, 0.930)     | 39.3%          | 0.022   |
| TER 14mg                       | 13.0 (10.0,16.9)                      | 53/459 (11.5) |                          |                |         |
| G2302                          |                                       |               |                          |                |         |
| OMB 20mg                       | 8.0 (5.9,11.0)                        | 36/479 (7.5)  | 0.756 (0.489, 1.170)     | 24.4%          | 0.209   |
| TER 14mg                       | 10.9 (8.2,14.4)                       | 46/472 (9.7)  |                          |                |         |

Source: Meta-analysis report Table 11-2, confirmed by FDA reviewer.

Figure 4. Time to First 6-month Confirmed Disability Worsening



The pre-specified supportive and sensitivity analyses were generally consistent, including the worst-case type of analysis in which of atumumab patients who discontinued from the study due to lack of efficacy and/or died were considered as having 6mCDW (a risk reduction for of atumumab vs. teriflunomide of 29.6%, p=0.022; results not shown in table).

Additional analysis of 6-month disability progression independent of relapses showed a risk reduction for of atumumab vs. teriflunomide of 26.5% (p=0.074). The analysis in which patients without EDSS assessments available for confirmation were assigned as having confirmed disability included over 150 additional events and showed a smaller risk reduction for of atumumab vs. teriflunomide of 24.3% (p=0.013) for 6mCDW (Table 21).

|                    | KM estimate at Month 24<br>% (95% CI) | n/N (%)         | Hazard ratio<br>(95% Cl) | Risk reduction | P-value    |
|--------------------|---------------------------------------|-----------------|--------------------------|----------------|------------|
| Disability progree | ssion independent of relapse          |                 |                          |                |            |
| OMB 20mg           | 7.1 (5.5,9.1)                         | 60/944 (6.4)    | 0.735 (0.524, 1.030)     | 26.5%          | 0.074      |
| TER 14mg           | 9.5 (7.6,11.8)                        | 77/931 (8.3)    |                          |                |            |
| Patients without   | EDSS assessments available            | for confirmatio | n assigned as having     | confirmed o    | lisability |
| OMB 20mg           | 19.6 (16.4,23.2)                      | 145/944 (15.4)  | 0.757 (0.607, 0.943)     | 24.3%          | 0.013      |
| TER 14mg           | 23.2 (20.0,26.8)                      | 176/931 (18.9)  |                          |                |            |

| Table 21. Additional Analyses on Time to First 6-month Confirmed Disabilit | v Worsening |
|----------------------------------------------------------------------------|-------------|
|                                                                            |             |

Source: FDA reviewer.

#### Disability improvement (time to 6mCDI)

For 6mCDI, patients with a baseline EDSS total score  $\leq 1.5$  could not contribute to this analysis as improvement was not possible for them based on the definition. It is therefore an analysis in a subset of the total FAS population with 403 patients excluded from this meta-analysis.

Statistical significance was not achieved for the endpoint of 6mCDI, although patients treated with of atumumab had a 35.2% increased probability for a 6mCDI as compared to patients treated with teriflunomide (p=0.094; Table 22).

| Data source                    | KM estimate at Month 24<br>% (95% CI) | n/N (%)      | Hazard ratio<br>(95% Cl) | Risk reduction | P-value |
|--------------------------------|---------------------------------------|--------------|--------------------------|----------------|---------|
| Combined data<br>G2301 + G2302 |                                       |              |                          |                |         |
| OMB 20mg                       | 11.0 (8.8,13.7)                       | 74/749 (9.9) | 1.352 (0.950, 1.924)     | -35.2%         | 0.094   |
| TER 14mg                       | 8.1 (6.2,10.6)                        | 53/723 (7.3) |                          |                |         |

#### Table 22. Time to First 6-month Confirmed Disability Improvement

Source: Meta-analysis report Table 11-3, confirmed by FDA reviewer.

# 3.3 Evaluation of Safety

Please see the clinical review.

# **4** FINDINGS IN SPECIAL/SUBGROUP POPULATIONS

# 4.1 Gender, Race, Age, and Geographic Region

Subgroup analysis results for the primary endpoint of annualized relapse rate for Study G2301 and Study G2302 are shown in Table 23 and Table 24, respectively. Of a tumumab demonstrated a higher efficacy than teriflunomide and the treatment effect appeared consistent across the subgroups except for small subgroups of race.

| Subgroup                  | OMB 20 mg<br>N/ Adjusted ARR (95% CI) | TER 14mg<br>N/ Adjusted ARR (95% CI) | Rate Ratio (95% CI) |
|---------------------------|---------------------------------------|--------------------------------------|---------------------|
| Age                       |                                       |                                      |                     |
| <=40                      | 246/ 0.11 (0.08, 0.15)                | 282/ 0.27 (0.22, 0.33)               | 0.42 (0.29, 0.61)   |
| >40                       | 219/ 0.12 (0.09, 0.17)                | 180/ 0.20 (0.15, 0.26)               | 0.62 (0.40, 0.95)   |
| Gender                    |                                       |                                      |                     |
| Female                    | 318/ 0.12 (0.10, 0.16)                | 317/ 0.22 (0.18, 0.28)               | 0.55 (0.39, 0.76)   |
| Male                      | 147/ 0.10 (0.07, 0.16)                | 145/ 0.27 (0.21, 0.36)               | 0.38 (0.23, 0.63)   |
| Race                      |                                       |                                      |                     |
| White                     | 411/ 0.12 (0.10, 0.16)                | 412/ 0.24 (0.20, 0.29)               | 0.52 (0.39, 0.69)   |
| Black or African American | 15/ <0.01 (NA.)                       | 20/ 0.33 (0.15, 0.72)                | NA                  |
| Asian                     | 15/ 0.05 (<0.01, 0.34)                | 16/ 0.08 (0.02, 0.34)                | 0.57 (0.05, 6.75)   |
| Other                     | 24/ 0.10 (0.04, 0.29)                 | 14/ 0.32 (0.13, 0.79)                | 0.33 (0.08, 1.30)   |
| Region                    |                                       |                                      |                     |
| Europe                    | 249/ 0.13 (0.10, 0.18)                | 246/ 0.25 (0.20, 0.31)               | 0.54 (0.38, 0.77)   |
| North America             | 103/ 0.12 (0.07, 0.19)                | 105/ 0.29 (0.20, 0.40)               | 0.41 (0.23, 0.72)   |
| Rest of world             | 113/ 0.08 (0.05, 0.14)                | 111/ 0.19 (0.13, 0.27)               | 0.44 (0.23, 0.84)   |

| Table 23 Study   | C2301 · Summary | v of annualized i | ralansa rata hy | demographics subgroups |
|------------------|-----------------|-------------------|-----------------|------------------------|
| I able 25. Study | G2301: Summar   | y of annualized i | relapse rate by | demographics subgroups |

Source: FDA reviewer.

| Table 24. Study | G2302: Summary | v of annualized                         | relapse rate by | y demographics subgroups |  |
|-----------------|----------------|-----------------------------------------|-----------------|--------------------------|--|
|                 | 01001000000    | 01 01 000000000000000000000000000000000 |                 |                          |  |

| Subgroup | OMB 20 mg<br>N/ Adjusted ARR (95% CI) | TER 14mg<br>N/ Adjusted ARR (95% CI) | Rate Ratio (95% CI) |  |
|----------|---------------------------------------|--------------------------------------|---------------------|--|
| Age      |                                       |                                      |                     |  |
| <=40     | 283/ 0.12 (0.09, 0.17)                | 282/ 0.31 (0.25, 0.39)               | 0.39 (0.27, 0.57)   |  |
| >40      | 198/ 0.13 (0.09, 0.18)                | 192/ 0.21 (0.15, 0.28)               | 0.61 (0.38, 0.97)   |  |
| Gender   |                                       |                                      |                     |  |
| Female   | 319/ 0.15 (0.11, 0.19)                | 319/ 0.26 (0.21, 0.32)               | 0.57 (0.40, 0.81)   |  |
| Male     | 162/ 0.08 (0.05, 0.13)                | 155/ 0.30 (0.22, 0.41)               | 0.26 (0.15, 0.47)   |  |

| Subgroup                  | OMB 20 mg<br>N/ Adjusted ARR (95% CI) | TER 14mg<br>N/ Adjusted ARR (95% CI) | Rate Ratio (95% CI) |  |
|---------------------------|---------------------------------------|--------------------------------------|---------------------|--|
| Race                      |                                       |                                      |                     |  |
| White                     | 418/ 0.13 (0.10, 0.16)                | 417/ 0.28 (0.24, 0.34)               | 0.45 (0.33, 0.62)   |  |
| Black or African American | 13/ 0.14 (0.04, 0.53)                 | 18/ 0.13 (0.04, 0.42)                | 1.08 (0.19, 6.12)   |  |
| Asian                     | 21/ 0.12 (0.03, 0.41)                 | 19/ 0.11 (0.03, 0.38)                | 1.06 (0.18, 6.33)   |  |
| Other                     | 29/ 0.05 (0.01, 0.22)                 | 20/ 0.29 (0.11, 0.74)                | 0.18 (0.03, 1.00)   |  |
| Region                    |                                       |                                      |                     |  |
| Europe                    | 242/ 0.11 (0.08, 0.16)                | 237/ 0.24 (0.18, 0.32)               | 0.46 (0.30, 0.71)   |  |
| North America             | 107/ 0.15 (0.10, 0.24)                | 106/ 0.23 (0.15, 0.34)               | 0.66 (0.36, 1.20)   |  |
| Rest of world             | 132/ 0.13 (0.09, 0.20)                | 131/ 0.36 (0.26, 0.48)               | 0.37 (0.22, 0.62)   |  |

Source: FDA reviewer.

# 4.2 Other Special/Subgroup Populations

No other subgroups were analyzed.

# 5 SUMMARY AND CONCLUSIONS

# 5.1 Statistical Issues

Patients with RMS can experience disability worsening either due to incomplete recovery from relapses, or due to a gradual disability progression independent (or in absence) of relapse activity. The applicant used the terminology 'confirmed disability worsening' (CDW) for the former case of disability worsening with or without relapse activity being accounted for; and 'confirmed disability progression' (CDP) for the latter case of disability progression independent (or in absence) of relapse activity. The disability event specified in the protocol was CDW as key secondary endpoints. However, CDP is usually used in RMS trials for regulatory purpose.

# 5.2 Collective Evidence

In both pivotal studies, of atumumab resulted in statistically significant effects on relapses (primary endpoint) and MRI- and NfL-related key secondary endpoints, except for percent change in brain volume as assessed by comparing the slope of brain volume loss (Table 25).

In the combined data from studies G2301 and G2302, of atumumab significantly reduced the risk of 3mCDW and 3mCDP compared with teriflunomide, with a consistent effect in both studies G2301 and G2302. Of atumumab also significantly reduced the risk of 6mCDW but not 6mCDP. Statistical significance was not achieved for the endpoint of 6mCDI, although a positive trend was observed favoring the of atumumab treatment group compared with the teriflunomide treatment group (Table 25).

| Endpoints                                           | G2                  | 301                    | G2                  | 302                    |  |
|-----------------------------------------------------|---------------------|------------------------|---------------------|------------------------|--|
|                                                     | Ofatumumab<br>20 mg | Teriflunomide<br>14 mg | Ofatumumab<br>20 mg | Teriflunomide<br>14 mg |  |
|                                                     | (n = 465)           | (n = 462)              | (n = 481)           | (n = 474)              |  |
| Endpoints based on separate studies                 |                     |                        |                     |                        |  |
| Annualized relapse rate (primary endpoint)          | 0.11                | 0.22                   | 0.10                | 0.25                   |  |
| Rate reduction                                      | 50.5% (p            | o < 0.001)             | 58.5% (p            | o < 0.001)             |  |
| Mean number of T1 Gd-enhancing lesions per MRI scan | 0.01                | 0.45                   | 0.03                | 0.51                   |  |
| Relative reduction                                  | 97.5% (p            | o < 0.001)             | 93.8% (p            | o < 0.001)             |  |
| Number of new or enlarging T2 lesions               | 0.72                | 4.00                   | 0.64                | 4.15                   |  |
| Relative reduction                                  | 82.0% (p            | o < 0.001)             | 84.5% (p            | o < 0.001)             |  |
| Neurofilamentlight(NfL) at Month 3; pg/mL           | 8.80 9.41           |                        | 8.92                | 10.02                  |  |
| Relative reduction                                  | 7% (p =             | = 0.011)               | 11% (p < 0.001)     |                        |  |
| Brain volume rate of change from baseline           | -0.28               | -0.35                  | -0.29               | -0.35                  |  |
| Relative reduction                                  | 20% (p              | = 0.116)               | 17% (p              | = 0.129)               |  |
| Endpoints based on pooled studies                   |                     |                        |                     |                        |  |
| Proportion of patients with 3mCDW                   | 10.                 | 9% ofatumumab v        | s 15.0% teriflunom  | ide                    |  |
| Risk reduction                                      |                     | 34.4% (p               | = 0.002)            |                        |  |
| Proportion of patients with 3mCDP                   | 8.9                 | 9% ofatumumab vs       | 12.4% teriflunomi   | de                     |  |
| Risk reduction                                      |                     | 34.2% (p               | = 0.007)            |                        |  |
| Proportion of patients with 6mCDW                   | 8.1                 | l% ofatumumab vs       |                     | de                     |  |
| Risk reduction                                      |                     | 32.5% (p               | = 0.012)            |                        |  |
| Proportion of patients with 6mCDP                   | 7.                  | 1% ofatumumab vs       |                     | de                     |  |
| Risk reduction                                      |                     | 26.5% (p               | = 0.074)            |                        |  |
| Proportion of patients with 6mCDI                   | 11                  | .0% ofatumumab v       | s 8.1% teriflunomi  | de                     |  |
| Risk reduction                                      |                     | -35.2% (p              | o = 0.094)          |                        |  |

# Table 25. Summary of efficacy results

# 5.3 Conclusions and Recommendations

The data overall provide adequate evidence to support for the efficacy of ofatumumab as treatment of subjects with RMS.

This is a representation of an electronic record that was signed electronically. Following this are manifestations of any and all electronic signatures for this electronic record.

-----

/s/

XIANG LING 07/02/2020 11:12:35 AM

KUN JIN 07/02/2020 12:17:36 PM I concur with the review.

HSIEN MING J HUNG 07/02/2020 12:22:22 PM

# CENTER FOR DRUG EVALUATION AND RESEARCH

**APPLICATION NUMBER:** 

# 125326Orig1s070

# CLINICAL PHARMACOLOGY AND BIOPHARMACEUTICS REVIEW(S)

#### CLINICAL PHARMACOLOGY REVIEW

| sBLA#               | 125326/S0248                                                          |
|---------------------|-----------------------------------------------------------------------|
| Submission Date:    | 12/20/2019                                                            |
| Generic Name:       | Ofatumumab (OMB157, Kesimpta)                                         |
| Indication:         | Multiple Sclerosis (MS).                                              |
| Sponsor:            | Novartis Pharmaceuticals                                              |
| <b>Review Team:</b> | Jagan Mohan Parepally, Vishnu D Sharma, Atul Bhattaram,<br>Angela Men |
| Submission Type:    | Supplemental Biologics License Application (sBLA)                     |

# **EXECUTIVE SUMMARY**

The sponsor is seeking the approval for ofatumumab (Kesimpta), a recombinant, humanized monoclonal antibody that selectively targets CD20-expressing B cells to treat relapsing forms (RMS) of multiple sclerosis. This is a supplemental biologic licensing application (sBLA). The original Biologics License Application (BLA #125,326) with the trade name Arzerra® was submitted by GlaxoSmithKline (GSK) to the Division of Biologic Oncology Products to treat patients with chronic lymphocytic leukemia (CLL).

The proposed dosing regimen is 20 mg given by subcutaneous injection with initial dosing at Weeks 0, 1, and 2 followed by subsequent monthly dosing, starting at Week 4. The efficacy and safety of ofatumumab in multiple sclerosis patients was supported by two randomized, double-blind Phase 3 studies comparing the efficacy and safety of ofatumumab 20 mg s.c. versus teriflunomide 14 mg p.o. in 1882 patients with relapsing multiple sclerosis and an open label extension study. Two Phase 2 studies supporting dose-selection and exploratory efficacy and safety of ofatumumab were also included.

In addition, the sponsor submitted a PK study comparing of atumumab administered via pre-filled syringe assembled with a safety needle device and via pre-filled syringe assembled with an autoinjector. A population PK modeling and analysis was performed using data from Phase 2 and 3 studies to determine the effect of covariates such as body weight and baseline B-cell count on the steady state PK metrics AUC and Cmax.

From a clinical pharmacology perspective, the proposed 20 mg with initial dosing at Weeks 0, 1, and 2 followed by subsequent monthly dosing, starting at Week 4 supported the indication in Multiple Sclerosis. The incidence of immunogenicity was low. The treatment-induced ADA were detected in 2 of 923 patients with RMS treated with ofatumumab in the Phase III studies. From the ADA positive samples, no neutralizing antibodies (nAb) were identified in studies.

The primary focus of the review is to review the relative bioavailability of ofatumumab between ofatumumab administered via pre-filled syringe assembled with a safety needle device and via pre-filled syringe assembled with an autoinjector and population PK analysis focusing patient specific characteristics on the PK of ofatumumab.

# BACKGROUND

Kesimpta (Ofatumumab, s.c injection) is an anti-CD20 monoclonal antibody targeting and leading to B-cell depletion. The CD20 molecule is a transmembrane phosphoprotein expressed on B lymphocytes from the pre-B to mature B lymphocyte stage

Following studies were submitted supporting the sBLA:

# **Efficacy and Safety Studies**

# **Phase 3 Studies**

Ofatumumab has been investigated in two randomized, double-blind phase 3 studies (COMB157G2301 & COMB157G2302) comparing the efficacy and safety of ofatumumab 20 mg s.c. versus teriflunomide 14 mg p.o. in 1882 patients with relapsing multiple sclerosis (RMS).

The Phase 3 program also includes an open-label extension study (COMB157G2399) evaluating long-term safety, tolerability and effectiveness of ofatumumab in patients with RMS.

<u>COMB157G1301</u>: A study to support Japanese registration, assessing efficacy, safety, and tolerability in Japanese and ex-Japan Caucasian patients.

# Phase 2 Studies

Dose-selection Study OMS112831: This study was a Phase II, randomized, multicenter, double-blind, placebo-controlled, parallel-group study to assess the MRI efficacy, safety, and tolerability of a range of ofatumumab doses administered s.c. in patients with RRMS.

Supportive efficacy Study OMS115102: This study was a randomized, multicenter, double-blind, placebo-controlled Phase II study. It was primarily designed to evaluate the safety of 3 different doses of ofatumumab i.v. (100 mg, 300 mg, and 700 mg), but also included descriptive analyses of PK parameters and exploratory analysis of efficacy endpoints.

# **Clinical Pharmacology Studies:**

 COMB157G2102: A PK study (COMB157G2102) comparing of atumumab administered via pre-filled syringe assembled with a safety needle device (PFS-NSD, pre-filled syringe presentation) and via pre-filled syringe assembled with an autoinjector (PFS-AI, pre-filled pen presentation).  PopPK Modeling: Analysis of the ofatumumab concentration-time data was performed using data from 5 studies: G2301, G2302, G2102, OMS115102 and OMS112831.

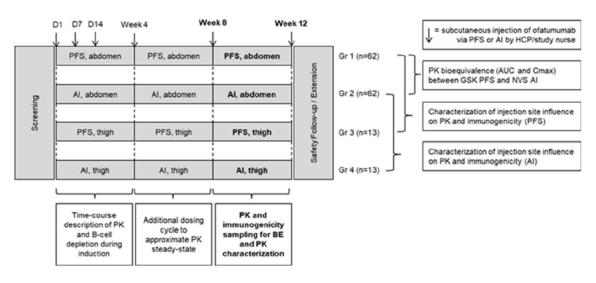
Following PK study (COMB157G2102) comparing of atumumab administered was conducted to support the PFS-NSD used in studies COMB157G2301, COMB157G2302 and COMB157G2102. At the request of Division of Neurology II, the Office of Scientific Investigations and surveillance (OSIS) declined to conduct audit of the current PK study, since the study sites were recently inspected, and the inspection results were found to be acceptable. The bioanalytical method validation and analytical performance of assay used to measure plasma concentrations of of a comparing of comparing of a comparing of comparing of

**COMB157G2102**: A 12 week randomized open label parallel group multicenter study to evaluate bioequivalence of 20 mg subcutaneous ofatumumab injected by pre-filled syringe or autoinjector in adult RMS patients (Week 12 analysis)

# **Objectives:**

The primary objective was to demonstrate bioequivalence of 20 mg of atumumab injected s.c. by the pre-filled syringe assembled in a needle safety device (PFS) versus the pre-filled syringe assembled in an autoinjector device (AI).

The secondary objectives were:


- To characterize the PK following s.c. administration of of atumumab to either the abdominal region or the thigh.
- To assess the immunogenicity, safety and tolerability of ofatumumab.

| Study Design | This study was a randomized, open-label, multi-center, parallel group, 12-<br>week study originally planned in 150 patients. An assessment of the<br>variability of data as measured by coefficient of variation for PK<br>parameters, AUCtau and Cmax, was planned as interim analysis. This<br>interim analysis was conducted before any results from the study were<br>available, when 36 patients randomized to the PFS-abdomen and the AI-<br>abdomen treatment groups completed Week 12. Based on results of interim<br>analysis, sample size was increased from originally planned sample size of<br>150 patients to enroll the maximum per-protocol allowed sample size of<br>284 patients by adding more patients to the PFS-abdomen and AI-abdomen<br>groups (approximately 129 patients per group). |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | The study had 3 Parts: screening (Part 1), treatment (Part 2), and safety<br>follow-up (Part 3).<br>Part 1 - Screening: Lasted up to 30 days and consisted of Screening and<br>Baseline assessments.<br>Part 2 - Treatment: Treatment period consisted of an open-label<br>administration of ofatumumab 20 mg s.c. as loading dose regimen (three                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Study Population               | <ul> <li>weekly doses on Day 1, Day 7 and Day 14), followed by a maintenance dose regimen of 20 mg every 4 weeks starting at Week 4. Evaluation of primary endpoint, bioequivalence, was performed between the AI-abdomen and the PFS-abdomen groups.</li> <li>Part 3 -Safety follow-up/Extension study: The Safety-FU period was applicable for the patients who either completed the Treatment period (i.e. Week 12) on study drug and did not enter the planned extension study or prematurely discontinued the study treatment.</li> <li>Study enrolled male and female patients (aged 18-55 years) diagnosed with MS according to the 2010 Revised McDonald criteria or Relapsing MS and with an EDSS score of 0 to 5.5 (inclusive). Additionally, patients had to have a history of at least 1 relapse during previous year or 2 relapses during</li> </ul> |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | previous 2 years or a positive Gd-enhancing MRI scan during the previous 1 year, and had to be neurologically stable within 1 month prior to randomization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Treatment Groups               | <ul> <li>Eligible patients were randomized in a 10:10:1:1 ratio into 1 of 4 ofatumumab treatment groups based on the type of injection device (PFS or autoinjector) and the injection location (abdomen or thigh):</li> <li>Group 1: PFS-abdomen: ofatumumab 20 mg s.c. injection with PFS administrated on abdomen</li> <li>Group 2: AI-abdomen: ofatumumab 20 mg s.c. injection with autoinjector administrated on abdomen</li> <li>Group 3: PFS-thigh: ofatumumab 20 mg s.c. injection with PFS administrated on thigh</li> <li>Group 4: AI-thigh: ofatumumab 20 mg s.c. injection with autoinjector administrated on thigh</li> </ul>                                                                                                                                                                                                                         |
| Number of<br>Subjects          | Three hundred and forty-four patients were enrolled/randomized at 41 study centers, and 284 patients were randomized. All 284 patients were included in the Safety set and PK analysis set, and 258 patients from the AI-abdomen and the PFS-abdomen treatment groups were included in BE analysis set.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Pharmacokinetic<br>Sampling    | Ofatumumab was administered subcutaneously on Day 1, Day 7, Day 14,<br>Week 4, Week 8 and Week 12. Blood samples for PK analysis were<br>collected at baseline (Day 1), Days 4, 7, 14, Week 4, 6, 8, 9, 10, 11 and 12<br>(Day 84).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sampling for<br>Immunogenicity | Blood samples for anti-drug antibodies (ADA) analysis were collected at baseline (Day 1), Week 4, 8, and 12 (Day 84).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Pharmacokinetic<br>Assessments | The primary variables are PK endpoints, namely AUCtau and Cmax<br>calculated from PK concentration data collected in the dosing interval after<br>Week 8 dose administration in accordance with the assessment schedule.<br>Bioequivalence analysis between PFS and autoinjector involved the two<br>groups (AI-abdomen and PFS-abdomen).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Safety<br>Assessments          | Safety assessments consisted of collecting all AEs, serious adverse events (SAEs), with their severity and relationship to study drug, and pregnancies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

|             | They included the regular monitoring of hematology, blood chemistry and regular assessments of vital signs, ECG and physical condition. Injection related reactions, infections and infestations, malignancy and suicidality assessment were the safety topic of interest. The number and percentage of patients with B-cells < LLN value (i.e., B-cell depleted) or with notable low level criteria in IgG or IgM at least once are presented by treatment group and visit-window. |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Statistical | Primary analysis to address the bioequivalence between PFS and<br>autoinizator involved two groups (AL address (T) and PFS address (R))                                                                                                                                                                                                                                                                                                                                             |
| Methods     | autoinjector involved two groups (AI-abdomen (T) and PFS-abdomen (R)).<br>The null hypothesis was that "Mean difference in ln (AUCtau) and/or ln                                                                                                                                                                                                                                                                                                                                    |
|             | (Cmax) greater than allowed-difference between these 2 groups". The                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             | alternative hypothesis was that "Mean difference in ln (AUCtau) and ln                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | (Cmax) less than allowed-difference between these 2 groups". Ln refers to                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | the natural log function. As the testing for Average Bioequivalence (ABE)                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | was based on a between-groups comparison, the variabilities of the R and T                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | groups were expected to be high, with a coefficient of variation (CV)                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | greater than 0.3. The reference-scaled ABE (RSABE) bioequivalence                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | approach for highly variable drugs was also used. For this purpose, the                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | current guidance for crossover design were modified for application in a                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | parallel groups design. Testing was performed for AUCtau and Cmax                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | separately on the BE analysis set.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

# **Study Design Schematic**



**Note:** This study was originally planned in 150 patients. Following interim analysis, sample size was increased from 150 to 284 patients by adding more patients to the PFS-abdomen and AI-abdomen groups (approximately 129 patients per group, see study design).

# **RESULTS:**

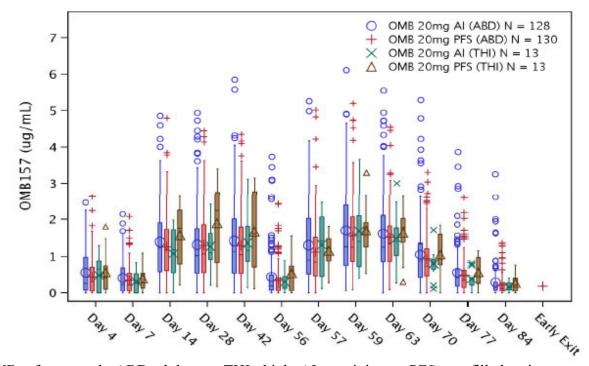
Out of 284 randomized patients, 1 patient in the PFS-abdomen group discontinued the study.

|                                                | OMB 20mg<br>AI (ABD) | OMB 20mg<br>PFS (ABD) | met. | Comparison    | Meet     | Bioequivalence o   | riteria            |
|------------------------------------------------|----------------------|-----------------------|------|---------------|----------|--------------------|--------------------|
| Statistics                                     | N = 128              | N = 130               |      | vs. PFS)      | Criteria | ABE <sup>1</sup>   | RSABE <sup>2</sup> |
| n                                              | 128                  | 128*                  |      |               | 0.       |                    | ×                  |
| Mean (hr*ug/mL)                                | 665.9                | 594.5                 |      |               |          |                    |                    |
| SD (hr*ug/mL)                                  | 545.96               | 412.66                |      |               |          |                    |                    |
| CV (%)                                         | 81.98                | 69.41                 |      |               |          |                    |                    |
| Min (hr*ug/mL)                                 | 23                   | 62                    |      |               |          |                    |                    |
| Q1 (hr*ug/mL)                                  | 307.2                | 295.6                 |      |               |          |                    |                    |
| Median (hr*ug/mL)                              | 513.7                | 494.2                 |      |               |          |                    |                    |
| Q3 (hr*ug/mL)                                  | 845.0                | 740.2                 |      |               |          |                    |                    |
| Max (hr*ug/mL)                                 | 2765                 | 2106                  |      |               |          |                    |                    |
| n (log)                                        | 128                  | 128*                  |      |               |          |                    |                    |
| Geo-mean (hr*ug/mL)                            | 487.7                | 474.1                 |      |               |          |                    |                    |
| Geo-CV (%)                                     | 103.5                | 79.7                  |      |               |          |                    |                    |
| SDlog                                          | 0.854                | 0.701                 |      |               |          |                    |                    |
| Log-scale mean difference<br>(90% CI)          |                      |                       | 0.03 | (-0.13, 0.19) | NA       | [ln(0.8),ln(1.25)] |                    |
| Geo-mean ratio (GMR)                           |                      |                       | 1.   | 03            | Yes      |                    | [0.8,1.25]         |
| 95% upper bound of the<br>linearised criterion |                      |                       | -0.  | 3131          | Yes      |                    | <= 0               |

#### **Bioequivalence testing of AUCtau during Week 8 dosing interval**

ABE (Average Bioequivalence) method: Concluded BE if 90% CI of log-scale mean difference meets the specified criteria [ln(0.8), ln(1.25)], i.e. [-0.223, 0.223].

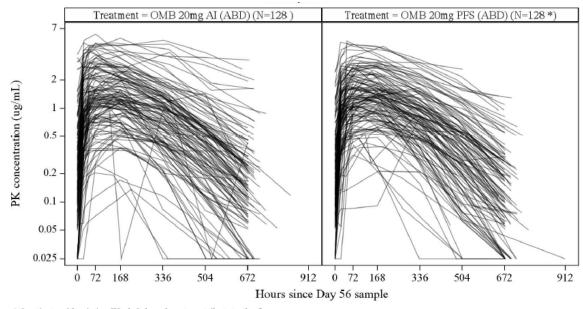
**Note:** RSABE method is applied to replicated crossover study designs to establish BE. However, RSABE in addition to ABE was also used to evaluate BE though the current study involves parallel group design. ABE approach is more appropriate for these calculations.


According to the sponsor the between-subject variability for the reference group was used instead of within-subject variability for scaling to the reference variability (ie, the permitted window increases as the variability increases). The window calculated was between -0.223 to 0.223.

RSABE (Reference Scaled ABE) method (applies if SDlogr>=0.294): Concluded BE if both 1) GMR (Geo-mean ratio) and 2) 95% upper bound of the linearized criterion meet the specified criteria respectively. SDlogr=Standard deviation of reference group (PFS) in log-scale.

| Bioequivalence | testing of ( | Cmax during | Week 8 dosin | g interval |
|----------------|--------------|-------------|--------------|------------|
| 2100941.000    |              |             |              |            |

|                                                | OMB 20mg<br>AI (ABD) | OMB 20mg<br>PFS (ABD) | Trt. | Comparison    | Meet     | Bioequivalence c   | riteria            |
|------------------------------------------------|----------------------|-----------------------|------|---------------|----------|--------------------|--------------------|
| Statistics                                     |                      |                       |      | vs. PFS)      | Criteria | ABE <sup>1</sup>   | RSABE <sup>2</sup> |
| n                                              | 128                  | 128*                  | 6    | - 61          | 25 c.    | at and             | 20 <b>2</b> 3      |
| Mean (ug/mL)                                   | 1.827                | 1.684                 |      |               |          |                    |                    |
| SD (ug/mL)                                     | 1.3016               | 1.0290                |      |               |          |                    |                    |
| CV (%)                                         | 71.2527              | 61.1189               |      |               |          |                    |                    |
| Min (ug/mL)                                    | 0.14                 | 0.21                  |      |               |          |                    |                    |
| Q1 (ug/mL)                                     | 0.868                | 0.984                 |      |               |          |                    |                    |
| Median (ug/mL)                                 | 1.400                | 1.440                 |      |               |          |                    |                    |
| Q3 (ug/mL)                                     | 2.465                | 2.245                 |      |               |          |                    |                    |
| Max (ug/mL)                                    | 6.11                 | 5.20                  |      |               |          |                    |                    |
| n (log)                                        | 128                  | 128*                  |      |               |          |                    |                    |
| Geo-mean (ug/mL)                               | 1.409                | 1.409                 |      |               |          |                    |                    |
| Geo-CV (%)                                     | 89.2                 | 67.9                  |      |               |          |                    |                    |
| SDlog                                          | 0.765                | 0.616                 |      |               |          |                    |                    |
| Log-scale mean difference<br>(90% CI)          |                      |                       | 0.00 | (-0.14, 0.14) | NA       | [ln(0.8),ln(1.25)] |                    |
| Geo-mean ratio (GMR)                           |                      |                       | 1.   | 00            | Yes      |                    | [0.8,1.25]         |
| 95% upper bound of the<br>linearised criterion |                      |                       | -0.  | 2446          | Yes      |                    | <= 0               |


ABE (Average Bioequivalence) method: Concluded BE if 90% CI of log-scale mean difference meets the specified criteria  $[\ln(0.8),\ln(1.25)]$ , i.e. [-0.223, 0.223].



Ofatumumab PK concentrations by visit and injection site

OMB: ofatumumab, ABD: abdomen, THI: thigh, AI: autoinjector, PFS: pre-filled syringe

The PK profiles, Cmax and AUCtau values of ofatumumab from the abdomen and thigh injection areas were essentially similar.



Spaghetti plot of PK concentrations by treatment at Week 8 dosing interval.

\* 2 patients with missing Week 8 dose do not contribute to the figure

**Note:** The spaghetti plots of PK concentrations by treatment show similar mean and variability for ofatumumab administered using AI or PFS in abdomen.

Ofatumumab administered subcutaneously either by pre-filled syringe in needle safety device or by pre-filled syringe in autoinjector resulted in similar depletion (< 10 cells/ $\mu$ L) of B-cell during the loading phase which was sustained through the maintenance phase.

**Note:** Both the average bioequivalence and reference-scaled average bioequivalence analysis methods were used for calculations showing that of atumumab administered using AI and the PFS at abdomen site meeting BE criteria.

# **Study Conclusions:**

Of a tumumab administered by pre-filled syringe assembled in an autoinjector device and the pre-filled syringe assembled in a needle safety device were bioequivalent.

# Immunogenicity

The overall incidence of positive ADA in RMS patients from all the studies was low. The treatment-induced ADA were detected in 2 of 923 patients with RMS treated with ofatumumab in the Phase III studies. No patients with treatment-enhanced ADA were identified. From the ADA positive samples, no neutralizing antibodies (nAb) were identified in studies G2301, G2302 and G2102.

#### Dose adjustments based on intrinsic factors

No dose adjustment of ofatumumab is needed in patients based on age, sex, body weight, race, and baseline B-cell count. Please refer to Pharmacometric review in appendix for more details.

#### Recommended Labeling Revisions Summary:

The labeling language described in Sections 6.2 (Immunogenicity), 7 (Drug-Drug Interactions), and 12.3 (Pharmacokinetics) were revised to be consistent with previous product labels within the same indication.

Section 7, Drug-Drug Interactions: Statement <sup>(b) (4)</sup> should be deleted, since this information is not relied on a clinically significant drug interaction.

Section 8.5 Geriatric Use: Statement <sup>(b) (4)</sup> should be deleted.

Section 12.3: A statement related to specific populations that the population characteristics do not have a clinically meaningful effect on the pharmacokinetics of ofatumumab: body weight, sex, age, race and baseline B-cell count. The above information was not described in the proposed label.

Jagan Mohan Parepally, M.S., Ph.D. Reviewer Division of Neuropsychiatric Pharmacology (DNP)

Vishnu D Sharma, Ph.D. Reviewer Division of Pharmacometrics (DPM)

Atul Bhattaram, Ph.D. Team Leader, DPM

Concurrence: Angela Men, M.D., Ph.D.\_\_\_\_\_ Team Leader, DNP

# **Appendix 1: Division of Pharmacometrics Review**

# **EXECUTIVE SUMMARY**

Novartis Pharmaceuticals is seeking an approval for KESIMPTA (Ofatumumab) injection for treatment of relapsing forms of multiple sclerosis (MS), to include clinically isolated syndrome, relapsing-remitting disease, and active secondary progressive disease, in adults. The recommended dose of KESIMPTA is 20 mg given by subcutaneous injection with initial dosing at Weeks 0, 1, and 2 followed by subsequent monthly dosing, starting at Week 4.

This document is a review of the sponsor's population pharmacokinetic (Pop PK) analysis which supports labeling statements. Few changes are suggested to Section 12 of the proposed label. Supportive information is also provided for these proposed changes in the document.

# **SPONSOR'S ANALYSIS**

# Objectives

- Characterize the PK relationship of ofatumumab concentrations and determine the covariate effects in the PK model to explain between-subject variability
- Explore the effect of covariates such as weight and baseline B-cell count on the steady state PK metrics AUC and C<sub>max</sub> derived from the developed Pop PK model

# Data

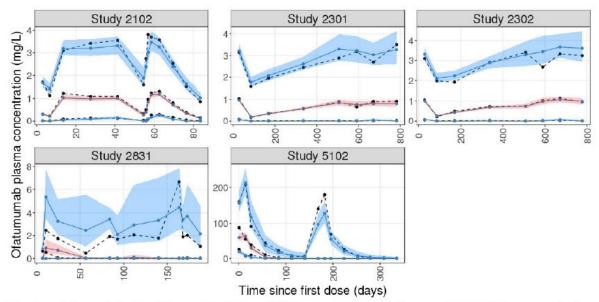
Th PK data from a total of 5 studies (COMB157G2301, COMB157G2302, COMB157G2102, OMS115102, and OMS112831) were used to develop Pop PK models for ofatumumab.

# Method

Nonlinear mixed effect PK modeling was conducted using Monolix (version 2018R1). The base structural PK model was first developed in which various models including TMDD and its approximations and a range of absorption models were explored. Covariate analysis was performed using initially a priori selected covariates, then performing an exploratory analysis of covariates versus inter-subject random effects to select a full covariate model, which was then reduced to include only significant covariate effects according to the Wald test. The final model was evaluated by using the likelihood-based criteria, goodness-of-fit plots, convergence plots, the precision and correlations of parameter estimates, the distribution of random effects and visual predictive checks. The clinical relevance of the covariates was assessed by simulating the effect of the selected covariates on the steady state PK metrics AUC and  $C_{max}$ .

# Results

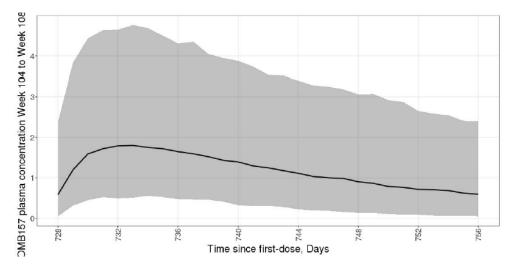
The PK of ofatumumab was described by 2-compartments quasi-steady state (QSS) model, a first order absorption for the SC administration, and a monotonically declining time effect on the target synthesis rate,  $k_{syn}$ . Covariates such as weight was added on clearance, absorption rate, central volume of distribution, inter-compartmental clearance, elimination rate constant for complex,  $k_{e(P)}$  and synthesis rate constant at time 0,  $k_{syn0}$ ; gender was added on bioavailability; auto-injector was added on  $k_{e(P)}$ ; and intravenous formulation was added on  $k_{syn0}$ . The parameter estimates of the final population PK model for ofatumumab are shown in **Table 2-1**.


| Parameter (unit)                      | Estimate (RSE %) |         | Inter-subject variability SD (RSE %) [Shrinkage %] |               |  |
|---------------------------------------|------------------|---------|----------------------------------------------------|---------------|--|
| k <sub>a</sub> (day <sup>-1</sup> )   | 0.329            | (4.07)  | 0.829                                              | (4.08) [54.1] |  |
| β(ka,WT70)                            | -0.768           | (19.8)  | NA                                                 |               |  |
| F                                     | 0.358            | (2.22)  | 0.252                                              | (6.95) [72.7] |  |
| β(F,female)                           | -0.152           | (19.3)b | NA                                                 |               |  |
| CL (L/day)                            | 0.156            | (2.92)  | 0.57                                               | (3.53) [36.7] |  |
| β(CL,WT70)                            | 1.47             | (5.02)  | NA                                                 |               |  |
| Q (L/day)                             | 0.0462           | (5.3)   | 0.425                                              | (10.3) [92.2] |  |
| β(Q,WT70)                             | 2.33             | (8.98)  | NA                                                 |               |  |
| Vc (L)                                | 2.8              | (1.91)  | 0.2                                                | (7.48) [76.8] |  |
| β(Vc,WT70)                            | 0.767            | (7.03)  | NA                                                 |               |  |
| Vp (L)                                | 2.8              | (fixed) | 8                                                  |               |  |
| k <sub>e(P)</sub> (day⁻¹)             | 1.01             | (8.41)  | 1.07                                               | (5.37) [77.0] |  |
| β(k <sub>e(p)</sub> ,WT70)            | 0.936            | (32.1)  | NA                                                 |               |  |
| β(k <sub>e(p)</sub> ,auto-injector)   | 0.495            | (30.3)  | NA                                                 |               |  |
| R <sub>0</sub> (nmol/L)               | 11.2             | (3.73)  | 0.434                                              | (7.8) [78.5]  |  |
| k <sub>syn0</sub> (nmol/L/day)        | 0.49             | (2.07)  | 0.159                                              | (11.6) [88.9] |  |
| β(k <sub>syn0</sub> ,WT70)            | -0.387           | (19.4)  | NA                                                 |               |  |
| β(k <sub>syn0</sub> ,IV)              | 1.68             | (4.28)  | NA                                                 |               |  |
| k <sub>syn∞</sub> (nmol/L/day)        | 0.0431           | (16.5)  | -                                                  |               |  |
| k <sub>des</sub> (year <sup>1</sup> ) | 2.65             | (6.03)  | 1.09                                               | (4.18) [42.7] |  |
| K <sub>D</sub> (nmol/L)               | 0.167            | (fixed) | -                                                  |               |  |
| koff (day-1)                          | 5.53             | (fixed) | -                                                  |               |  |
| correlation_ka_CL                     | -0.169           | (30.4)  | NA                                                 |               |  |
| correlation_kdes_CL                   | 0.802            | (3.06)  | NA                                                 |               |  |
| correlation_kdes_ka                   | 0.239            | (24.6)  | NA                                                 |               |  |
| a [additive] (mg/L)                   | 0.0322           | (2.64)  | NA                                                 |               |  |
| b [proportional]                      | 0.267            | (1.49)  | NA                                                 |               |  |

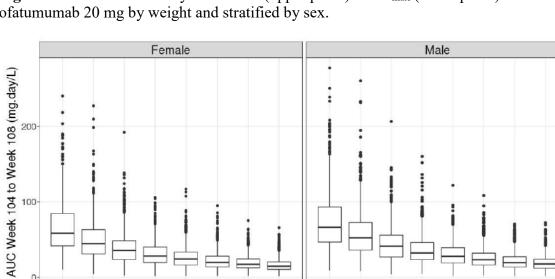
| Table 2-1: Parameter | estimates of | sponsor's final | population PK model |
|----------------------|--------------|-----------------|---------------------|
|                      |              |                 |                     |

Source: Novartis population PK report: Table 5-11, Page 51

The population PK model for of a unumab was assessed with diagnostics plots including goodness-of-fit (**Figure 3-1**) and visual predictive checks (VPC) (**Figure 2-1**). Overall, goodness-of-fit plots and VPC plots adequately describe the PK data of of a unumab. The final pop PK model was used to simulate steady-state PK profiles of of a unumab 20 mg (**Figure 2-2**). The effect of weight and sex on the simulated steady-state  $C_{max}$  and AUC of of a unumab 20 mg is shown in **Figure 2-3**.


**Figure 2-1**: Visual Predictive Checks for the final population PK model following subcutaneous administration stratified by studies. OMB157 represents of atumumab in the caption.




Black points and dashed lines: 5<sup>th</sup>, 50<sup>th</sup> and 95<sup>th</sup> percentiles of observed OMB157 concentration data Blue line and points: 5<sup>th</sup>, 50<sup>th</sup> and 95<sup>th</sup> percentiles of simulated OMB157 concentration data Red shaded area: 90% prediction interval of 50<sup>th</sup> percentile Blue shaded area: 90% prediction interval of 5<sup>th</sup> and 95<sup>th</sup> percentiles

**Source:** Novartis population PK report: Table 5-16, Page 52

**Figure 2-2**: Simulated steady state PK profile of ofatumumab 20 mg administered with pre-filled syringe in the patient population

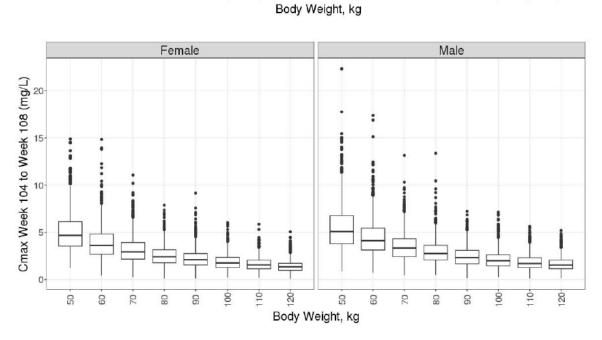


Source: Novartis population PK report: Table 5-19, Page 54



....

80


110-

100-

06

20-

Figure 2-3: Simulated steady-state AUC (upper panel) and C<sub>max</sub> (lower panel) of ofatumumab 20 mg by weight and stratified by sex.



Source: Novartis population PK report: Table 5-20,5-21, Page 56

100-

110-

120-

.09

50

20

100-

0-

50

.09

20

80.

.06

# **REVIEWER'S ANALYSIS**

#### Sponsor's Pop PK model evaluation

The reviewer was able to run the sponsor's final PK model and obtained similar results. Model diagnostics for ofatumumab are shown in **Figure 3-1**. The population- and individual-predicted parameter estimates derived from the final PK model were used to evaluate the bioavailability (i.e. 0.358) and steady-state volume of distribution (i.e. 5.6 L) of ofatumumab. These parameters are consistent with the sponsor's provided values in the pop PK report and drug label.

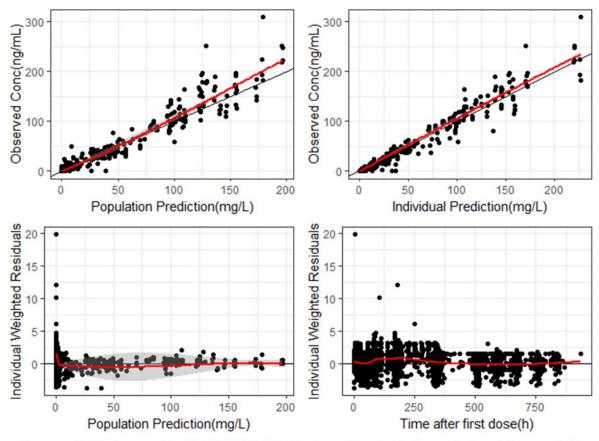
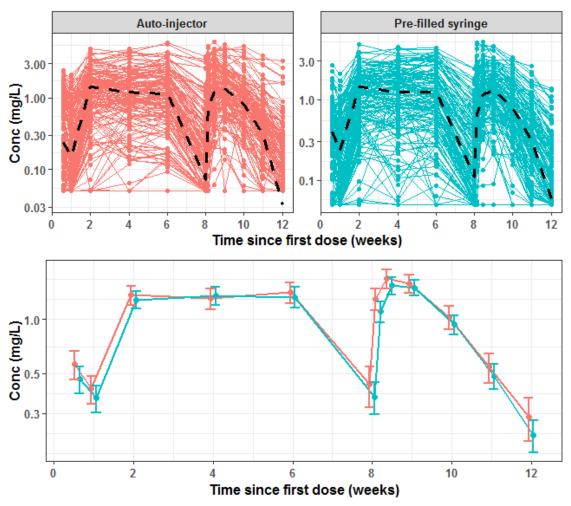



Figure 3-1: Goodness-of-fit plots of sponsor's final population PK model for of atumumab

Source: M:\Ofatumumab\_BLA125326\_VS\Reviewer\Rscripts\pk\_analysis\_ofatumumab.R

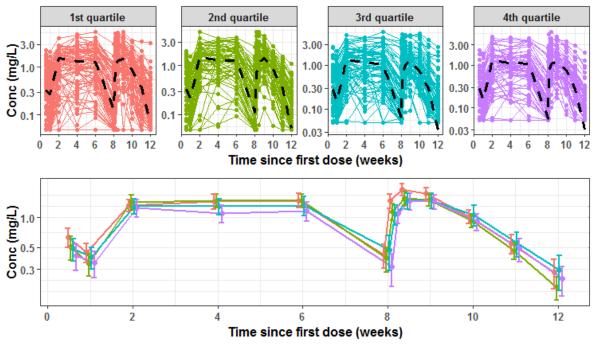

The effect of the covariates on the PK of ofatumumab was evaluated based on the population parameter estimates from the PK model and the observed data. Study 112102

was used to evaluate the impact of covariates on the PK of ofatumumab as it has reasonable amount of PK data at the proposed dosing regimen with rich PK sampling.

# **Type of Injector**

The observed PK profiles of ofatumumab 20 mg from 141 subjects with auto-injector injections and 143 subjects with pre-filled syringe injections are plotted along with the corresponding median population predictions (**Figure 3-2**). Overlap of 95% confidence intervals (CI) of the PK profiles by injector type suggest lack of clinically relevant impact of injector type on ofatumumab PK.

**Figure 3-2**: Top row: Individual PK profiles of ofatumumab by type of injector. Black dashed line indicates median population predictions from sponsor's final PK model; Bottom row: Mean PK profiles of ofatumumab by injector type. Red color indicates subjects with auto-injector and strong cyan color indicates subjects with pre-filled syringe injection. Error bars indicates 95% confidence intervals.

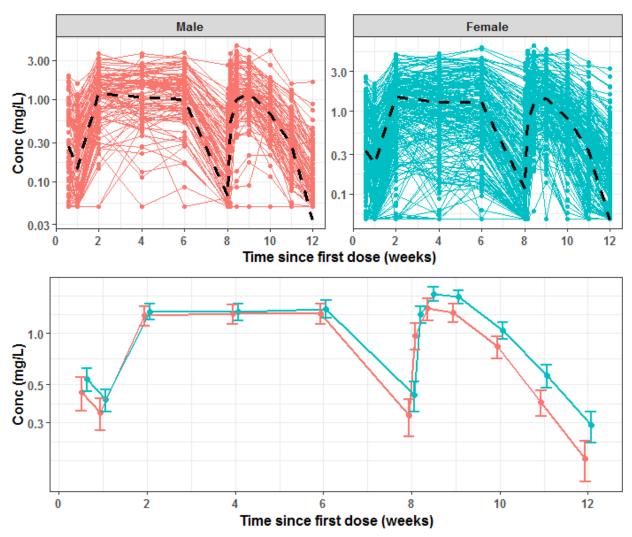



Source: M:\Ofatumumab\_BLA125326\_VS\Reviewer\Rscripts\pk\_analysis\_ofatumumab.R

# Age effect

The observed PK data of 284 subjects dosed with ofatumumab 20 mg were distributed into quartiles (i.e.  $1^{st}$  quartile: n=80, 18-31;  $2^{nd}$  quartile: n=64, 31- 37; third quartile: n=74, 37-44; and  $4^{th}$  quartile: n=66, 44-55) based on their age distribution and plotted along with the corresponding median population predictions (**Figure 3-3**). Overlap of 95% CI of the PK profiles by age quartile suggest lack of clinically relevant impact of age on ofatumumab PK (**Figure 3-6**). However, PK data was not available from the elderly subjects (>65 years of age).

**Figure 3-3**: Top row: Individual PK profiles of ofatumumab by age quartiles. Black dashed line indicates median population predictions from sponsor's final PK model; Bottom row: Mean PK profiles of ofatumumab by age quartiles. Red, green, cyan and purple color indicates 1<sup>st</sup>, 2<sup>nd</sup>, 3<sup>rd</sup> and 4<sup>th</sup> quartile of body weights respectively. Error bars indicates 95% confidence intervals.




Source: M:\Ofatumumab\_BLA125326\_VS\Reviewer\Rscripts\pk\_analysis\_ofatumumab.R

# Sex effect

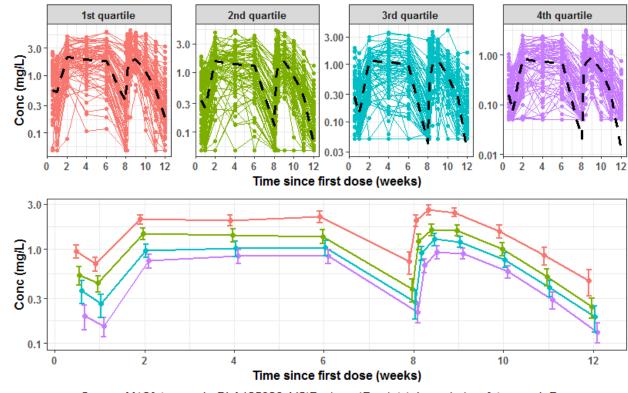
The PK data of 85 males and 199 females dosed with of atumumab 20 mg were compared and plotted along with the corresponding population predictions (**Figure 3-4**). The changes in steady-state  $C_{max,SS}$  and AUC<sub>SS</sub> for sex were within 20% across the weight range (**Figure 2-3** and **Table 3-1**) and thus do not suggest any clinical relevant impact of sex on the PK of of atumumab (**Figure 3-6**).

**Figure 3-4**: Top row: Individual PK profiles of ofatumumab by sex. Black dashed line indicates median population predictions from sponsor's final PK model; Bottom row: Mean PK profiles of ofatumumab by sex. Red color indicates females and strong cyan color indicates female subjects. Error bars indicates 95% confidence intervals.



Source: M:\Ofatumumab\_BLA125326\_VS\Reviewer\Rscripts\pk\_analysis\_ofatumumab.R

Table 3-1: Effect of weight and sex on steady-state AUC and C<sub>max</sub> of ofatumumab


| Weight (kg) | Median AUC <sub>ss</sub> ( | Median AUC <sub>ss</sub> (mg.day/L) |        | Median C <sub>max,ss</sub> (mg/L) |  |
|-------------|----------------------------|-------------------------------------|--------|-----------------------------------|--|
|             | Female                     | Male                                | Female | Male                              |  |
| 50          | 58.3                       | 66.3                                | 4.67   | 5.09                              |  |
| 70          | 35.6                       | 41.2                                | 2.93   | 3.34                              |  |
| 120         | 14.6                       | 17.6                                | 1.34   | 1.53                              |  |

Source: Novartis population PK report: Table 5-12, Page 57

#### **Body weight effect**

The PK data of 284 subjects dosed with ofatumumab 20 mg were distributed into quartiles (i.e. 1<sup>st</sup> quartile: n=72, 45-61; 2<sup>nd</sup> quartile: n=72, 61-70; third quartile: n=69, 70-85; and 4<sup>th</sup> quartile: n=71, 85-168) based on their weight distribution and plotted along with the corresponding median population predictions (**Figure 3-5**). Overall, increase in body weights resulted in lower AUC and C<sub>max</sub> of ofatumumab. The corresponding changes in steady-state C<sub>max</sub> and AUC were up to 60% when compared to the subject of 70 kg weight (**Figure 2-3** and **Table 3-1**). However, these differences do not have an impact on primary clinical endpoint (**Figure 3-6**).

**Figure 3-5**: Top row: Individual PK profiles of ofatumumab by body weight quartiles. Black dashed line indicates median population predictions from sponsor's final PK model; Bottom row: Mean PK profiles of ofatumumab by body weight quartiles. Red, green, cyan and purple color indicates 1<sup>st</sup>, 2<sup>nd</sup>, 3<sup>rd</sup> and 4<sup>th</sup> quartile of body weights respectively. Error bars indicates 95% confidence intervals.

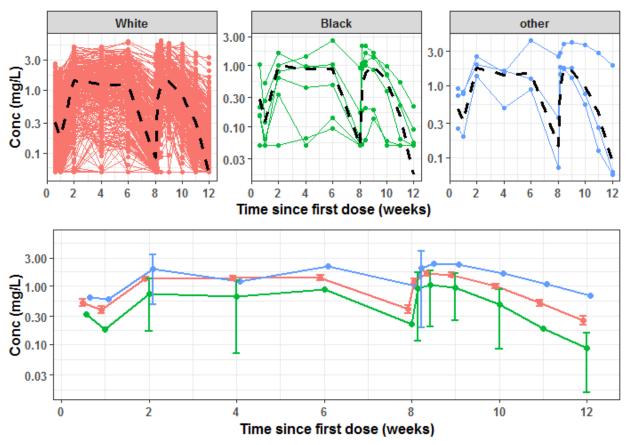


Source: M:\Ofatumumab\_BLA125326\_VS\Reviewer\Rscripts\pk\_analysis\_ofatumumab.R

| Figure 3-6: Annual relapse rates (time-based)- Confirmed relapses by subgroup: |
|--------------------------------------------------------------------------------|
| Ofatumumab 20 mg vs. Teriflunomide 14 mg (G2301 and G2302).                    |

| Overall<br>Age<br><=40<br>>40<br>Gender<br>Female<br>Male<br>Bodyweight<br>< Q1<br>>= Q1 and < Q2<br>>= Q2 and < Q3<br>>= Q3<br>Region | N/Adj. Rate (95% Cl)<br>946/ 0.12 (0.10, 0.14)<br>529/ 0.12 (0.10, 0.15)<br>417/ 0.12 (0.10, 0.15)<br>637/ 0.13 (0.11, 0.16)<br>309/ 0.09 (0.07, 0.13)<br>240/ 0.16 (0.12, 0.21)<br>249/ 0.12 (0.09, 0.16)<br>226/ 0.12 (0.09, 0.16)<br>231/ 0.09 (0.06, 0.13)<br>491/ 0.12 (0.10, 0.15) | N/Adj. Rate (95% Cl)<br>936/ 0.26 (0.23, 0.29)<br>564/ 0.29 (0.25, 0.34)<br>372/ 0.20 (0.16, 0.25)<br>636/ 0.24 (0.21, 0.28)<br>300/ 0.29 (0.23, 0.36)<br>227/ 0.24 (0.19, 0.31)<br>224/ 0.28 (0.22, 0.35)<br>244/ 0.25 (0.20, 0.32)<br>241/ 0.25 (0.20, 0.32)                       | OMB 20mg                                                            | TER 14mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P-value<br>0.049<br>0.013<br>0.198 |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Age<br><=40<br>>40<br>Gender<br>Female<br>Male<br>Bodyweight<br>< Q1<br>>= Q1 and < Q2<br>>= Q2 and < Q3<br>>= Q3                      | 529/ 0.12 (0.10, 0.15)<br>417/ 0.12 (0.10, 0.16)<br>637/ 0.13 (0.11, 0.16)<br>309/ 0.09 (0.07, 0.13)<br>240/ 0.16 (0.12, 0.21)<br>249/ 0.12 (0.09, 0.16)<br>226/ 0.12 (0.09, 0.16)<br>231/ 0.09 (0.06, 0.13)<br>491/ 0.12 (0.10, 0.15)                                                   | 564/         0.29 (0.25, 0.34)           372/         0.20 (0.16, 0.25)           636/         0.24 (0.21, 0.28)           300/         0.29 (0.23, 0.36)           227/         0.24 (0.19, 0.31)           224/         0.28 (0.22, 0.35)           244/         0.25 (0.20, 0.32) | •<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.013                              |
| Age<br><=40<br>>40<br>Gender<br>Female<br>Male<br>Bodyweight<br>< Q1<br>>= Q1 and < Q2<br>>= Q2 and < Q3<br>>= Q3                      | 529/ 0.12 (0.10, 0.15)<br>417/ 0.12 (0.10, 0.16)<br>637/ 0.13 (0.11, 0.16)<br>309/ 0.09 (0.07, 0.13)<br>240/ 0.16 (0.12, 0.21)<br>249/ 0.12 (0.09, 0.16)<br>226/ 0.12 (0.09, 0.16)<br>231/ 0.09 (0.06, 0.13)<br>491/ 0.12 (0.10, 0.15)                                                   | 564/         0.29 (0.25, 0.34)           372/         0.20 (0.16, 0.25)           636/         0.24 (0.21, 0.28)           300/         0.29 (0.23, 0.36)           227/         0.24 (0.19, 0.31)           224/         0.28 (0.22, 0.35)           244/         0.25 (0.20, 0.32) | *.<br>                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.013                              |
| <=40<br>>40<br>Gender<br>Female<br>Male<br>Bodyweight<br>< Q1<br>>= Q1 and < Q2<br>>= Q2 and < Q3<br>>= Q3                             | 417/ 0.12 (0.10, 0.16)<br>637/ 0.13 (0.11, 0.16)<br>309/ 0.09 (0.07, 0.13)<br>240/ 0.16 (0.12, 0.21)<br>249/ 0.12 (0.09, 0.16)<br>226/ 0.12 (0.09, 0.16)<br>231/ 0.09 (0.06, 0.13)<br>491/ 0.12 (0.10, 0.15)                                                                             | 372/ 0.20 (0.16, 0.25)<br>636/ 0.24 (0.21, 0.28)<br>300/ 0.29 (0.23, 0.36)<br>227/ 0.24 (0.19, 0.31)<br>224/ 0.28 (0.22, 0.35)<br>244/ 0.25 (0.20, 0.32)                                                                                                                             | ++<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+ | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.013                              |
| >40<br>Gender<br>Female<br>Male<br>Bodyweight<br>< Q1<br>>= Q1 and < Q2<br>>= Q2 and < Q3<br>>= Q3                                     | 417/ 0.12 (0.10, 0.16)<br>637/ 0.13 (0.11, 0.16)<br>309/ 0.09 (0.07, 0.13)<br>240/ 0.16 (0.12, 0.21)<br>249/ 0.12 (0.09, 0.16)<br>226/ 0.12 (0.09, 0.16)<br>231/ 0.09 (0.06, 0.13)<br>491/ 0.12 (0.10, 0.15)                                                                             | 372/ 0.20 (0.16, 0.25)<br>636/ 0.24 (0.21, 0.28)<br>300/ 0.29 (0.23, 0.36)<br>227/ 0.24 (0.19, 0.31)<br>224/ 0.28 (0.22, 0.35)<br>244/ 0.25 (0.20, 0.32)                                                                                                                             | +<br>+<br>+<br>+<br>+<br>+<br>+                                     | <ul> <li>Image: A set of the set of the</li></ul> |                                    |
| Gender         Female           Male         Body weight           < Q1                                                                | 637/ 0.13 (0.11, 0.16)<br>309/ 0.09 (0.07, 0.13)<br>240/ 0.16 (0.12, 0.21)<br>249/ 0.12 (0.09, 0.16)<br>226/ 0.12 (0.09, 0.16)<br>231/ 0.09 (0.06, 0.13)<br>491/ 0.12 (0.10, 0.15)                                                                                                       | 636/ 0.24 (0.21, 0.28)<br>300/ 0.29 (0.23, 0.36)<br>227/ 0.24 (0.19, 0.31)<br>224/ 0.28 (0.22, 0.35)<br>244/ 0.25 (0.20, 0.32)                                                                                                                                                       | +<br>+<br>+<br>+<br>+<br>+<br>+<br>+                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |
| Female<br>Male<br>Bodyweight<br>< Q1<br>>= Q1 and < Q2<br>>= Q2 and < Q3<br>>= Q3                                                      | 309/ 0.09 (0.07, 0.13)<br>240/ 0.16 (0.12, 0.21)<br>249/ 0.12 (0.09, 0.16)<br>226/ 0.12 (0.09, 0.16)<br>231/ 0.09 (0.06, 0.13)<br>491/ 0.12 (0.10, 0.15)                                                                                                                                 | 300/ 0.29 (0.23, 0.36)<br>227/ 0.24 (0.19, 0.31)<br>224/ 0.28 (0.22, 0.35)<br>244/ 0.25 (0.20, 0.32)                                                                                                                                                                                 | +<br>+<br>+<br>+<br>+<br>+                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |
| Male<br>Bodyweight<br>< Q1<br>>= Q1 and < Q2<br>>= Q2 and < Q3<br>>= Q3                                                                | 309/ 0.09 (0.07, 0.13)<br>240/ 0.16 (0.12, 0.21)<br>249/ 0.12 (0.09, 0.16)<br>226/ 0.12 (0.09, 0.16)<br>231/ 0.09 (0.06, 0.13)<br>491/ 0.12 (0.10, 0.15)                                                                                                                                 | 300/ 0.29 (0.23, 0.36)<br>227/ 0.24 (0.19, 0.31)<br>224/ 0.28 (0.22, 0.35)<br>244/ 0.25 (0.20, 0.32)                                                                                                                                                                                 | +<br>+<br>+                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.198                              |
| 8odyweight<br>< Q1<br>>= Q1 and < Q2<br>>= Q2 and < Q3<br>>= Q3                                                                        | 240/ 0.16 (0.12, 0.21)<br>249/ 0.12 (0.09, 0.16)<br>226/ 0.12 (0.09, 0.16)<br>231/ 0.09 (0.06, 0.13)<br>491/ 0.12 (0.10, 0.15)                                                                                                                                                           | 227/ 0.24 (0.19, 0.31)<br>224/ 0.28 (0.22, 0.35)<br>244/ 0.25 (0.20, 0.32)                                                                                                                                                                                                           | Ŧ                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.198                              |
| < Q1<br>>= Q1 and < Q2<br>>= Q2 and < Q3<br>>= Q3                                                                                      | 249/ 0.12 (0.09, 0.16)<br>226/ 0.12 (0.09, 0.16)<br>231/ 0.09 (0.06, 0.13)<br>491/ 0.12 (0.10, 0.15)                                                                                                                                                                                     | 224/ 0.28 (0.22, 0.35)<br>244/ 0.25 (0.20, 0.32)                                                                                                                                                                                                                                     | ÷                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.150                              |
| >= Q1 and < Q2<br>>= Q2 and < Q3<br>>= Q3                                                                                              | 249/ 0.12 (0.09, 0.16)<br>226/ 0.12 (0.09, 0.16)<br>231/ 0.09 (0.06, 0.13)<br>491/ 0.12 (0.10, 0.15)                                                                                                                                                                                     | 224/ 0.28 (0.22, 0.35)<br>244/ 0.25 (0.20, 0.32)                                                                                                                                                                                                                                     | ÷                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
| >= Q2 and < Q3<br>>= Q3                                                                                                                | 226/ 0.12 (0.09, 0.16)<br>231/ 0.09 (0.06, 0.13)<br>491/ 0.12 (0.10, 0.15)                                                                                                                                                                                                               | 244/ 0.25 (0.20, 0.32)                                                                                                                                                                                                                                                               | ÷                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
| >= Q3                                                                                                                                  | 231/ 0.09 (0.06, 0.13)<br>491/ 0.12 (0.10, 0.15)                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                      | -                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
|                                                                                                                                        | 491/ 0.12 (0.10, 0.15)                                                                                                                                                                                                                                                                   | 2417 0.25 (0.20, 0.52)                                                                                                                                                                                                                                                               |                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |
| Region                                                                                                                                 |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                      |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.557                              |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                          | 1001 0.05 /0.01 0.005                                                                                                                                                                                                                                                                | +                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.357                              |
| Europe                                                                                                                                 |                                                                                                                                                                                                                                                                                          | 483/ 0.25 (0.21, 0.29)                                                                                                                                                                                                                                                               | +                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
| North America                                                                                                                          | 210/ 0.13 (0.10, 0.18)                                                                                                                                                                                                                                                                   | 211/ 0.26 (0.20, 0.33)                                                                                                                                                                                                                                                               |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
| Rest of world                                                                                                                          | 245/ 0.11 (0.08, 0.15)                                                                                                                                                                                                                                                                   | 242/ 0.27 (0.22, 0.35)                                                                                                                                                                                                                                                               |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
| MS type                                                                                                                                |                                                                                                                                                                                                                                                                                          | hand were as loos                                                                                                                                                                                                                                                                    |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.692                              |
| RRMS                                                                                                                                   | 890/ 0.12 (0.10, 0.14)                                                                                                                                                                                                                                                                   | 884/ 0.26 (0.23, 0.29)                                                                                                                                                                                                                                                               | +                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
| SPMS                                                                                                                                   | 56/ 0.11 (0.06, 0.23)                                                                                                                                                                                                                                                                    | 52/ 0.20 (0.11, 0.36)                                                                                                                                                                                                                                                                |                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |
| Baseline EDSS                                                                                                                          |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                      |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.023                              |
| <= 3.5                                                                                                                                 | 670/ 0.10 (0.08, 0.12)                                                                                                                                                                                                                                                                   | 679/ 0.25 (0.21, 0.29)                                                                                                                                                                                                                                                               | -                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
| > 3.5                                                                                                                                  | 276/ 0.18 (0.14, 0.23)                                                                                                                                                                                                                                                                   | 257/ 0.28 (0.22, 0.35)                                                                                                                                                                                                                                                               | -+                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |
| Number of relapses                                                                                                                     |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                      |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
| in the previous 2 years                                                                                                                |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                      |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.560                              |
| <= 2                                                                                                                                   | 695/ 0.10 (0.08, 0.12)                                                                                                                                                                                                                                                                   | 666/ 0.21 (0.18, 0.24)                                                                                                                                                                                                                                                               | +                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
| > 2                                                                                                                                    | 251/ 0.19 (0.15, 0.25)                                                                                                                                                                                                                                                                   | 270/ 0.37 (0.30, 0.45)                                                                                                                                                                                                                                                               |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
| Gd-enhanced T1 lesions                                                                                                                 |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                      |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
| at baseline                                                                                                                            |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                      |                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.398                              |
| 0                                                                                                                                      | 561/ 0.11 (0.09, 0.14)                                                                                                                                                                                                                                                                   | 584/ 0.23 (0.19, 0.27)                                                                                                                                                                                                                                                               | +                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
| > 0                                                                                                                                    | 362/ 0.13 (0.10, 0.17)                                                                                                                                                                                                                                                                   | 338/ 0.31 (0.25, 0.37)                                                                                                                                                                                                                                                               |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
| Volume of T2 lesions                                                                                                                   |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                      |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
| at baseline                                                                                                                            |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                      |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.451                              |
| < Q1                                                                                                                                   | 213/ 0.11 (0.08, 0.16)                                                                                                                                                                                                                                                                   | 253/ 0.21 (0.16, 0.27)                                                                                                                                                                                                                                                               |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
| >= Q1 and < Q2                                                                                                                         | 234/ 0.09 (0.06, 0.13)                                                                                                                                                                                                                                                                   | 232/ 0.26 (0.21, 0.34)                                                                                                                                                                                                                                                               |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
| >= Q2 and < Q3                                                                                                                         | 232/ 0.13 (0.09, 0.17)                                                                                                                                                                                                                                                                   | 233/ 0.25 (0.19, 0.31)                                                                                                                                                                                                                                                               |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
| >= Q3                                                                                                                                  | 255/ 0.15 (0.11, 0.20)                                                                                                                                                                                                                                                                   | 212/ 0.31 (0.24, 0.40)                                                                                                                                                                                                                                                               |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
| Prior MS disease-modifying drug                                                                                                        | 255 0.15 (0.11, 0.20)                                                                                                                                                                                                                                                                    | 2121 0.01 (0.24, 0.40)                                                                                                                                                                                                                                                               |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.829                              |
| Previously treated                                                                                                                     | 560/ 0.14 (0.12, 0.17)                                                                                                                                                                                                                                                                   | 573/ 0.30 (0.26, 0.35)                                                                                                                                                                                                                                                               | +                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.023                              |
| Treatment-naive                                                                                                                        |                                                                                                                                                                                                                                                                                          | 363/ 0.18 (0.15, 0.23)                                                                                                                                                                                                                                                               |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
| i reament-hai ve                                                                                                                       | 386/ 0.09 (0.07, 0.12)                                                                                                                                                                                                                                                                   | 303/ 0.10 (0.15, 0.23)                                                                                                                                                                                                                                                               |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                      | 0.1                                                                 | 1 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                  |

MS=multiple sclerosis; N=total number of patients included in the analysis; OMB=ofatumumab; Q=quartile; RRMS=relapsing-remitting multiple sclerosis; SPMS=secondary progressive multiple sclerosis TER=teriflunomide

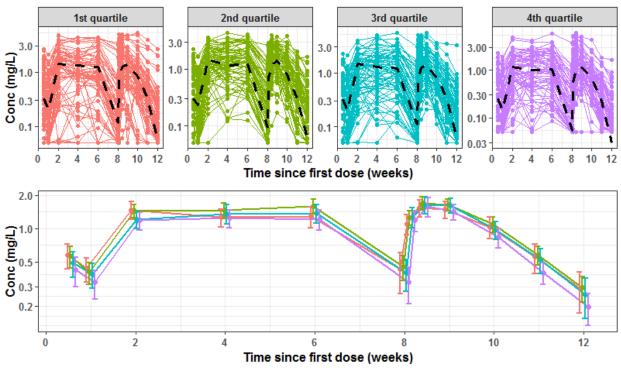

Source: Clinical Overview, Page-56, Figure 4-10.

#### **Race effect**

The PK data of 6 Black, 275 White and 3 other subjects dosed with ofatumumab 20 mg were compared and plotted along with the corresponding median population predictions (**Figure 3-7**). Overall, the data was limited to evaluate the impact of race on the PK of ofatumumab. However, the pop PK model was developed from additional studies which has enough subjects across different races (1330 White, 34 Black, 33 Asian and 54

others). The pop PK model did not suggest any clinically relevant impact of race on the PK of ofatumumab.

**Figure 3-7**: Top row: Individual PK profiles of ofatumumab by race. Black dashed line indicates median population predictions from sponsor's final PK model; Bottom row: Mean PK profiles of ofatumumab by race. Red, green, cyan and blue color indicates White, Black, and others respectively. Error bars indicates 95% confidence intervals.




Source: M:\Ofatumumab\_BLA125326\_VS\Reviewer\Rscripts\pk\_analysis\_ofatumumab.R

#### **Baseline B-cell effect**

The PK data of 284 subjects dosed with ofatumumab 20 mg were distributed into quartiles (i.e.  $1^{st}$  quartile: n=71, 15-154;  $2^{nd}$  quartile: n=71, 154-219; third quartile: n=71, 219-280; and  $4^{th}$  quartile: n=71, 280-859) based on the available baseline B-cell information and plotted along with the corresponding median population predictions (**Figure 3-8**). Overlap of 95% confidence intervals (CI) of the PK profiles by baseline B-cell quartiles suggest lack of clinically relevant impact of baseline B-cell on ofatumumab PK.

**Figure 3-8**: Top row: Individual PK profiles of ofatumumab by baseline B-cell quartiles. Black dashed line indicates median population predictions from sponsor's final PK model; Bottom row: Mean PK profiles of ofatumumab by baseline B-cell quartiles. Red, green, cyan and purple color indicates 1<sup>st</sup>, 2<sup>nd</sup>, 3<sup>rd</sup> and 4<sup>th</sup> quartile of B-cell values respectively. Error bar indicates 95% confidence intervals.



Source: M:\Ofatumumab\_BLA125326\_VS\Reviewer\Rscripts\pk\_analysis\_ofatumumab.R

#### LISTING OF ANALYSIS CODES AND OUTPUT FILES

| File Name | Description | Location |
|-----------|-------------|----------|
|           |             |          |

| pk_analysis_ofatumumab.R Exploratory | <u>\\Reviews Ofatumumab_BLA125326_VS\</u> |
|--------------------------------------|-------------------------------------------|
| PK analysis                          | Reviewer\Rscripts                         |

#### REFERENCES

- 1. Novartis population PK report: Population pharmacokinetics of OMB157 in relapsing multiple sclerosis patients, 25 Nov 2019.
- 2. Novartis population PD report: Exploratory analyses of the relationship between of atumumab dose regimen, peripheral blood CD19+ B-cell count and MRI lesions in relapsing-remitting multiple sclerosis patients, 03 Dec 2019.

\_\_\_\_\_

/s/

\_\_\_\_\_

JAGAN MOHAN R PAREPALLY 06/12/2020 05:07:46 PM

VISHNU D SHARMA 06/15/2020 09:25:43 AM

VENKATESH A BHATTARAM 06/15/2020 09:27:26 AM

YUXIN MEN 06/19/2020 02:14:54 PM

## CENTER FOR DRUG EVALUATION AND RESEARCH

**APPLICATION NUMBER:** 

# 125326Orig1s070

## **OTHER REVIEW(S)**



#### Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research | Office of Surveillance and Epidemiology (OSE) Epidemiology: ARIA Sufficiency

| Date:                     | August 19, 2020                                                       |  |
|---------------------------|-----------------------------------------------------------------------|--|
| Reviewer:                 | Silvia Perez-Vilar, PharmD, PhD<br>Division of Epidemiology I         |  |
| Team Leader:              | Kira Leishear, PhD, MS<br>Division of Epidemiology I                  |  |
| Deputy Division Director: | CAPT Sukhminder K. Sandhu, PhD, MPH, MS<br>Division of Epidemiology I |  |
| Subject:                  | ARIA Sufficiency Memo for Pregnancy Safety Concerns                   |  |
| Drug Name:                | KESIMPTA (ofatumumab)                                                 |  |
| Application Type/Number:  | BLA 125326, Supplement 70                                             |  |
| Applicant/sponsor:        | Novartis Pharmaceuticals Corporation                                  |  |
| OSE RCM #:                | 2020-1422                                                             |  |



#### **Expedited ARIA Sufficiency for Pregnancy Safety Concerns**

#### **1. BACKGROUND INFORMATION**

#### **1.1. Medical Product**

Ofatumumab (KESIMPTA, Novartis Pharmaceuticals Corporation) is a recombinant fully human IgG1 kappa anti-CD20 monoclonal antibody that targets an epitope of the CD20 molecule on the cell membrane.<sup>1,2</sup> The U.S. Food and Drug Administration (FDA) approved ofatumumab (ARZERRA®, currently Novartis Pharmaceuticals Corporation) under accelerated approval regulations for intravenous use for the treatment of patients with chronic lymphocytic leukemia refractory to fludarabine and alemtuzumab in October 2009.<sup>3</sup> The new proposed indication is for the treatment of relapsing forms of multiple sclerosis (RMS).<sup>4</sup> The precise mechanism by which ofatumumab exerts its therapeutic effects in multiple sclerosis (MS) is unknown, but is presumed to involve binding to CD20, a cell surface antigen present on pre-B and mature B lymphocytes. Following cell surface binding to B lymphocytes, ofatumumab results in antibody-dependent cellular cytolysis and complement-mediated lysis.<sup>5</sup> Other monoclonal antibodies that target the CD20 molecule are rituximab, commonly used offlabel for the treatment of RMS, and ocrelizumab, approved for the treatment of relapsing and progressive forms of MS.<sup>6</sup>

KESIMPTA is administered as a subcutaneous injection. The proposed initial dosing regimen is 20 mg administered at weeks 0, 1, and 2 with subsequent 20 mg-monthly doses starting at week 4.7 After subcutaneous administration, of a unumab is believed to be predominantly absorbed via the lymphatic system similarly to other therapeutic monoclonal antibodies. It is eliminated through both a target-independent route as with other IgG molecules and a B cell-mediated route. The half-life at steady state was estimated to be approximately 16 days following subcutaneous administration of repeated KESIMPTA 20 mg dose.<sup>8</sup>

The Supplemental Biological License Application (sBLA) submission included two randomized active comparator-controlled clinical trials—in which 946 adult patients with RMS were treated with KESIMPTA for a median duration of 85 weeks—and three additional studies to support safety.<sup>9</sup> The proposed label (as of August 19, 2020) includes warnings and precautions for infections, injection-related reactions, immunoglobulin levels, and fetal risk.<sup>10</sup>

<sup>&</sup>lt;sup>1</sup> KESIMPTA (ofatumumab). Clinical review dated May 15, 2020. Division of Neurology 2. U.S. Food and Drug Administration.

<sup>&</sup>lt;sup>2</sup> Proposed KESIMPTA labeling dated August 19, 2020.

<sup>&</sup>lt;sup>3</sup> ARZERRA (ofatumumab) label dated August 30, 2016. Accessed on July 8, 2020 at https://www.accessdata.fda.gov/drugsatfda\_docs/label/2016/125326s063lbl.pdf

<sup>&</sup>lt;sup>4</sup> The submission for the treatment of relapsing forms of multiple sclerosis is a supplemental Biological License Application with a different proposed trade name (KESIMPTA) to differentiate the therapy's indicated use and because of a different route of administration.

<sup>&</sup>lt;sup>5</sup> See footnote 2.

<sup>&</sup>lt;sup>6</sup> See footnote 1.

<sup>7</sup> Ibid.

<sup>&</sup>lt;sup>8</sup> See footnote 2.

<sup>&</sup>lt;sup>9</sup> See footnote 1.

<sup>&</sup>lt;sup>10</sup> See footnote 2.



#### 1.2. Describe the Safety Concern

The Division of Neurology 2 (DN2) requested that the Division of Epidemiology (DEPI) assess the sufficiency of ARIA for broad-based signal detection studies of ofatumumab during pregnancy. Safety during pregnancy due to drug exposure is a concern for women who are pregnant or of childbearing potential. In the U.S. general population, the estimated background risk of major birth defects in clinically recognized pregnancies is 2–4%.<sup>11,12</sup> MS is a chronic inflammatory disease of the central nervous system leading to demyelination and neurodegeneration. The vast majority of patients with MS initially follow a relapsing-remitting course, defined by acute exacerbations from which they typically completely or incompletely recover, with periods of relative clinical stability in between.<sup>13</sup> MS is commonly diagnosed in women of childbearing age and its incidence is two to three times higher in women than men. Women with MS are not less fertile and do not have more difficulty in completing a pregnancy to term compared with healthy controls.<sup>14</sup> However, maternal MS may be associated with an increased rate of caesarean delivery and lower infant birth weight compared with women without MS.<sup>15</sup>

Data on pregnancy exposure during clinical trials are insufficient to inform the risk of maternal, fetal, and infant outcomes associated with the use of ofatumumab. The ofatumumab clinical trials required that sexually active subjects of reproductive potential (both men and women) use an effective form of contraception for the duration of the study. A total of five female participants became pregnant in the ofatumumab long-term group (two randomized active comparator-controlled clinical trials and one of the studies to support safety). Of these, two pregnancies resulted in terminations—one elective (no reason given other than "patient's wish") at approximately eight weeks of gestation, and one therapeutic at eight weeks due to an embryonic pregnancy (blighted ovum). One pregnancy resulted in a normal healthy newborn through vaginal delivery at 39 weeks gestation. The outcomes of the other two pregnancies were unknown (one was ongoing at the time of the report).<sup>16</sup> The nonclinical toxicology package for the original BLA for of atumumab included an embryofetal development study in monkeys. To support approval for the new indication, the applicant submitted an enhanced preand post-natal development study also in monkeys. Both studies showed that exposure to ofatumumab given intravenously during gestation did not cause teratogenicity, but showed increased postnatal mortality, persistently reduced postnatal body weights in females, and

<sup>&</sup>lt;sup>11</sup> Food and Drug Administration. (2014). "Pregnancy, Lactation, and Reproductive Potential: Labeling for Human Prescription Drug and Biological Products — Content and Format. Draft Guidance." Guidance for Industry Retrieved February 3, 2020, from <u>https://www.fda.gov/media/90160/download</u>

<sup>&</sup>lt;sup>12</sup> Centers for Disease, Control and Prevention (2008). "Update on overall prevalence of major birth defects--Atlanta, Georgia, 1978-2005." MMWR Morb Mortal Wkly Rep 57(1): 1-5

<sup>&</sup>lt;sup>13</sup> Katz Sand, I. (2015). "Classification, diagnosis, and differential diagnosis of multiple sclerosis." Curr Opin Neurol 28(3): 193-205

<sup>&</sup>lt;sup>14</sup> Voskuhl, R. and C. Momtazee (2017). "Pregnancy: Effect on Multiple Sclerosis, Treatment Considerations, and Breastfeeding." Neurotherapeutics 14(4): 974-984

<sup>&</sup>lt;sup>15</sup> Kelly, V. M., L. M. Nelson and E. F. Chakravarty (2009). "Obstetric outcomes in women with multiple sclerosis and epilepsy." Neurology 73(22): 1831-1836

<sup>&</sup>lt;sup>16</sup> Novartis. OMB157 (ofatumumab). 2.7.4 Addendum 1 to 2.7.4 Summary of Clinical Safety: 120-day Safety Update, dated April 6, 2020.



persistent adverse immune effects in the offspring that were maternally-exposed to the high dose.  $^{\rm 17}$ 

The currently proposed labeling, as of August 19, 2020, includes warnings and precautions for fetal risk (Section 5.4). It states that KESIMPTA <sup>(b)(4)</sup> cause fetal harm <sup>(b)(4)</sup> to use <sup>(b)(4)</sup> effective <sup>(b)(4)</sup> contraception <sup>(b)(4)</sup> Section

8.1 (Pregnancy) states:

#### "<u>Risk Summary</u>

There are no adequate data on the developmental risk associated with the use of KESIMPTA in pregnant women. Ofatumumab may cross the placenta and cause fetal B-cell depletion based on findings from animal studies (see Data).

Transient peripheral B-cell depletion and lymphocytopenia have been reported in infants born to mothers exposed to other anti-CD20 antibodies during pregnancy. B-cell levels in infants following maternal exposure to KESIMPTA have not been studied in clinical trials. The potential duration of B-cell depletion in infants exposed to ofatumumab in utero, and the impact of B-cell depletion on the safety and effectiveness of vaccines, are unknown. Avoid administering live vaccines to neonates and infants exposed to KESIMPTA in utero until B-cell recovery occurs [see Warnings and Precautions (5.2) and Clinical Pharmacology (12.2)].

Following administration of ofatumumab to pregnant monkeys, increased mortality, depletion of B-cell populations, and impaired immune function were observed in the offspring, in the absence of maternal toxicity, at plasma levels substantially higher than that in humans (see Data). In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2% to 4% and 15% to 20%, respectively. The background risk of major birth defects and miscarriage for the indicated population is unknown. Data

#### Animal Data

Intravenous administration of ofatumumab (weekly doses of 0, 20, or 100 mg/kg) to pregnant monkeys during the period of organogenesis (gestations days 20 to 50) resulted in no adverse effects on embryofetal development; however, B-cell depletion was observed in fetuses at both doses when assessed on gestation day 100. Plasma exposure (Cave) at the no-effect dose (100 mg/kg) for adverse effects on embryofetal development was greater than 5000 times that in humans at the recommended human maintenance dose of 20 mg. A no-effect dose for effects on Bcells was not identified; plasma exposure (Cave) at the low-effect dose (20 mg/kg) was approximately 780 times that in humans at the recommended human maintenance dose (RHMD) of 20 mg/month.

Intravenous administration of ofatumumab (5 weekly doses of 0, 10, and 100 mg/kg, followed by biweekly doses of 0, 3, and 20 mg/kg) to pregnant monkeys throughout pregnancy resulted in no adverse effects on the development of the offspring. However, postnatal death, B-cell depletion, and impaired immune function were observed in the offspring at the high dose. The deaths at the high dose were considered secondary to B-cell depletion. Plasma exposure (Cave) in dams at the no-effect dose (100/20 mg/kg) for adverse developmental effects was approximately 500 times that in humans at RHMD. A no-effect level for mortality and immune effects in offspring was not established because of the limited number of evaluable offspring at the low dose."

Section 8.3 (Females and Males of Reproductive Potential) states:

<sup>&</sup>lt;sup>17</sup> KESIMPTA (ofatumumab). Non-clinical primary review dated July 9, 2020. Division of Neurology 2. U.S. Food and Drug Administration.



#### "Contraception

Females of childbearing potential should use effective contraception while receiving KESIMPTA and for 6 months after the last treatment of KESIMPTA [see Warnings and Precautions (5.4) and Clinical Pharmacology (12.3)]."

#### 1.3. FDAAA Purpose (per Section 505(o)(3)(B))

- Please ensure that the selected purpose is consistent with the other PMR documents in DARRTS

 Purpose (place an "X" in the appropriate boxes; more than one may be chosen)

 Assess a known serious risk

 Assess signals of serious risk

 Identify unexpected serious risk when available data indicate potential for serious risk

#### 2. REVIEW QUESTIONS

#### 2.1. Why is pregnancy safety a safety concern for this product? Check all that apply.

- □ Specific FDA-approved indication in pregnant women exists and exposure is expected
- □ No approved indication, but practitioners may use product off-label in pregnant women
- ☑ No approved indication, but there is the potential for inadvertent exposure before a pregnancy is recognized
- No approved indication, but use in women of child bearing age is a general concern

#### 2.2. Regulatory Goal

- Signal detection Nonspecific safety concern with no prerequisite level of statistical precision and certainty
- □ Signal refinement of specific outcome(s) Important safety concern needing moderate level of statistical precision and certainty. <sup>†</sup>
- □ Signal evaluation of specific outcome(s) Important safety concern needing highest level of statistical precision and certainty (e.g., chart review). <sup>†</sup>

#### <sup>†</sup> If checked, please complete <u>General ARIA Sufficiency Template</u>.

## 2.3. What type of analysis or study design is being considered or requested along with ARIA? Check all that apply.

- ☑ Pregnancy registry with internal comparison group
- ☑ Pregnancy registry with external comparison group
- □ Enhanced pharmacovigilance (i.e., passive surveillance enhanced by with additional actions)
- ☑ Electronic database study with chart review
- □ Electronic database study without chart review

☑ Other, please specify: Alternative study designs would be considered: e.g., retrospective cohort study using claims or electronic medical record data with outcome validation or a case-control study.



## 2.4. Which are the major areas where ARIA not sufficient, and what would be needed to make ARIA sufficient?

- □ Study Population
- □ Exposures
- ⊠ Outcomes
- □ Covariates
- ⊠ Analytical Tools

#### For any checked boxes above, please describe briefly:

<u>Outcomes</u>: ARIA lacks access to medical records. The pregnancy registry being considered requires that an expert clinical geneticist or dysmorphologist review and classify medical records of all major congenital malformations. Also, although in a first stage, the study using claims or electronic medical data may be algorithm-based, if it shows an imbalance in any of the outcomes being investigated, FDA may consider requiring outcome validation in the selected database(s) or a chart-confirmed analysis.

<u>Analytical tools</u>: ARIA analytic tools are not sufficient to assess the regulatory question of interest because data mining methods have not been tested for birth defects and other pregnancy outcomes.

#### 2.5. Please include the proposed PMR language in the approval letter.

The following language has been proposed by DN2, as of July 8, 2020, for the PMRs related to pregnancy outcomes:

#### "Pregnancy PMR 3901-2:

Prospective pregnancy exposure registry cohort analyses in the United States that compare the maternal, fetal, and infant outcomes of women with multiple sclerosis exposed to KESIMPTA (ofatumumab) during pregnancy with two unexposed control populations: one consisting of women with multiple sclerosis who have not been exposed to KESIMPTA (ofatumumab) before or during pregnancy and the other consisting of women without multiple sclerosis. The registry will identify and record pregnancy complications, major and minor congenital malformations, spontaneous abortions, stillbirths, elective terminations, preterm births, small-for-gestational-age births, and any other adverse outcomes, including postnatal growth and development. Outcomes will be assessed throughout pregnancy. Infant outcomes, including effects on postnatal growth and development, will be assessed through at least the first year of life."

#### "Pregnancy PMR 3901-3:

A pregnancy outcomes study using a different study design than provided for in PMR 3901-2 (for example, a retrospective cohort study using claims or electronic medical record data with outcome validation or a case-control study) to assess major congenital malformations, spontaneous abortions, stillbirths, preterm births, and small-for-gestational-age births in women exposed to KESIMPTA (ofatumumab) during pregnancy compared to an unexposed control population."

-----

/s/

SILVIA PEREZ-VILAR 08/19/2020 02:13:22 PM

KIRA N LEISHEAR 08/19/2020 02:17:54 PM

WEI HUA on behalf of SUKHMINDER K SANDHU 08/19/2020 02:20:27 PM

JUDITH W ZANDER 08/19/2020 02:22:15 PM

MICHAEL D NGUYEN 08/19/2020 02:38:04 PM

ROBERT BALL on behalf of GERALD J DALPAN 08/19/2020 03:38:41 PM

## MEMORANDUM

## REVIEW OF REVISED LABEL AND LABELING Division of Medication Error Prevention and Analysis (DMEPA) Office of Medication Error Prevention and Risk Management (OMEPRM) Office of Surveillance and Epidemiology (OSE) Center for Drug Evaluation and Research (CDER)

| Date of This Memorandum:       | July 29, 2020                                                 |
|--------------------------------|---------------------------------------------------------------|
| Requesting Office or Division: | Division of Neurology 2 (DN 2)                                |
| Application Type and Number:   | BLA 125326/Supplement 70                                      |
| Product Name and Strength:     | Kesimpta <sup>a</sup> (ofatumumab) injection,<br>20 mg/0.4 mL |
| Applicant/Sponsor Name:        | Novartis Pharmaceuticals Corporation                          |
| OSE RCM #:                     | 2020-84-2                                                     |
| DMEPA Safety Evaluator:        | Ebony Whaley, PharmD, BCPPS                                   |
| DMEPA Team Leader:             | Lolita White, PharmD                                          |

## 1 PURPOSE OF MEMORANDUM

The Applicant submitted revised Instructions for Use (IFU) and Prescribing Information received on July 28, 2020 for Kesimpta. The Division of Neurology 2 (DN 2) requested that we review the revised IFUs and PI for Kesimpta (Appendix A) to determine if they are acceptable from a medication error perspective. The revisions are in response to recommendations that we made during a previous label and labeling review.<sup>b</sup>

#### 2 CONCLUSION

The Applicant implemented our recommendations and we have no additional recommendations at this time.

<sup>&</sup>lt;sup>a</sup> The proposed proprietary name Kesimpta was found conditionally acceptable on March 26, 2020.

<sup>&</sup>lt;sup>b</sup> Whaley E. Human Factors Study Report and Label and Labeling Review for Kesimpta (BLA 125326/Supplement 70). Silver Spring (MD): FDA, CDER, OSE, DMEPA (US); 2020 MAY 6. RCM No.: 2020-17 and 2020-84.

### APPENDIX A. LABEL AND LABELING RECEIVED ON JULY 28, 2020

Instructions for Use – pen (not pictured)

- See link: <u>\\CDSESUB1\evsprod\bla125326\0288\m1\us\instructions-for-use-pen.docx</u>

Instructions for Use - prefilled syringe (not pictured)

- See link: <u>\\CDSESUB1\evsprod\bla125326\0288\m1\us\instructions-for-use-</u> syringe.docx

Prescribing information (not pictured)

- See link: <u>\\CDSESUB1\evsprod\bla125326\0288\m1\us\proposed-clean.pdf</u>

-----

/s/

EBONY A WHALEY 07/29/2020 03:19:58 PM

LOLITA G WHITE 07/29/2020 04:37:18 PM

#### Department of Health and Human Services Public Health Service Food and Drug Administration Center for Drug Evaluation and Research Office of Medical Policy

#### PATIENT LABELING REVIEW

| Date:                         | July 16, 2020                                                                                                                       |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| То:                           | Candido Alicea, Ph.D.<br>Regulatory Project Manager<br><b>Division of Neurology II</b>                                              |
| Through:                      | LaShawn Griffiths, MSHS-PH, BSN, RN<br>Associate Director for Patient Labeling<br><b>Division of Medical Policy Programs (DMPP)</b> |
|                               | Marcia Williams, PhD<br>Team Leader, Patient Labeling<br><b>Division of Medical Policy Programs (DMPP)</b>                          |
| From:                         | Lonice Carter, MS, RN, CNL<br>Patient Labeling Reviewer<br><b>Division of Medical Policy Programs (DMPP)</b>                        |
|                               | Christine Bradshaw, PharmD, RAC<br>Regulatory Review Officer<br><b>Office of Prescription Drug Promotion (OPDP)</b>                 |
| Subject:                      | Review of Patient Labeling: Medication Guide (MG) and<br>Instructions for Use (IFU)                                                 |
| Drug Name (established name): | KESIMPTA (ofatumumab)                                                                                                               |
| Dosage Form and Route:        | injection, for subcutaneous use                                                                                                     |
| Application<br>Type/Number:   | BLA 125326                                                                                                                          |
| Supplement Number:            | S-070                                                                                                                               |
| Applicant:                    | Novartis Pharmaceuticals Corporation                                                                                                |

#### **1 INTRODUCTION**

On December 20, 2019, Novartis Pharmaceuticals Corporation submitted for the Agency's review a Prior Approval Supplement-Efficacy for supplemental Biologics License Application (sBLA) 125326 Supplement 070 for KESIMPTA (ofatumumab) injection, for subcutaneous use. The purpose of this sBLA is to propose the addition of a new indication for the treatment of relapsing forms of multiple sclerosis.

Ofatumumab is currently approved for intravenous use under the tradename ARZERRA for the treatment of Chronic Lymphocytic Leukemia (CLL) and was approved on October 26, 2009.

This collaborative review is written by the Division of Medical Policy Programs (DMPP) and the Office of Prescription Drug Promotion (OPDP) in response to a request by the Division of Neurology II on January 17, 2020 for DMPP and OPDP to review the Applicant's proposed Medication Guide (MG) and Instructions for Use (IFU) for KESIMPTA (ofatumumab) injection, for subcutaneous use.

#### 2 MATERIAL REVIEWED

- Draft KESIMPTA (ofatumumab) MG and IFUs received on December 20, 2019, revised by the Review Division throughout the review cycle, and received by DMPP and OPDP on July 6, 2020.
- Draft KESIMPTA (ofatumumab) Prescribing Information (PI) received on December 20, 2019, revised by the Review Division throughout the review cycle, and received by DMPP and OPDP on July 6, 2020.
- DMPPs review of IND 111116 TRADENAME (ofatumumab), injection for subcutaneous use of the pen and prefilled syringe completed on April 23, 2018.
- Medication Guides and Prescribing information for Uplizna BLA 761142 (approved 6/11/2020) and Rituxan BLA 103705 (approved 11/26/1997).

#### **3 REVIEW METHODS**

To enhance patient comprehension, materials should be written at a 6<sup>th</sup> to 8<sup>th</sup> grade reading level, and have a reading ease score of at least 60%. A reading ease score of 60% corresponds to an 8<sup>th</sup> grade reading level.

Additionally, in 2008 the American Society of Consultant Pharmacists Foundation (ASCP) in collaboration with the American Foundation for the Blind (AFB) published *Guidelines for Prescription Labeling and Consumer Medication Information for People with Vision Loss*. The ASCP and AFB recommended using fonts such as Verdana, Arial or APHont to make medical information more accessible for patients with vision loss.

In our collaborative review of the MG and IFUs we:

• simplified wording and clarified concepts where possible

- ensured that the MG and IFUs are consistent with the Prescribing Information (PI)
- removed unnecessary or redundant information
- ensured that the MG and IFUs are free of promotional language or suggested revisions to ensure that it is free of promotional language
- ensured that the MG meets the Regulations as specified in 21 CFR 208.20
- ensured that the MG and IFUs meet the criteria as specified in FDA's Guidance for Useful Written Consumer Medication Information (published July 2006)

#### 4 CONCLUSIONS

The MG and IFUs are acceptable with our recommended changes.

#### **5 RECOMMENDATIONS**

- Please send these comments to the Applicant and copy DMPP and OPDP on the correspondence.
- Our collaborative review of the MG and IFUs is appended to this memorandum. Consult DMPP and OPDP regarding any additional revisions made to the PI to determine if corresponding revisions need to be made to the MG and IFUs.

Please let us know if you have any questions.

25 Pages of Draft Labeling have been Withheld in Full as b4 (CCI/TS) immediately following this page.

-----

/s/

KELLY D JACKSON 07/16/2020 10:48:33 AM

CHRISTINE J BRADSHAW 07/16/2020 12:29:35 PM

MARCIA B WILLIAMS 07/16/2020 12:31:09 PM

LASHAWN M GRIFFITHS 07/16/2020 12:53:45 PM

## \*\*\*\*Pre-decisional Agency Information\*\*\*\*

## Memorandum

| Date:    | July 10, 2020                                                                                                      |
|----------|--------------------------------------------------------------------------------------------------------------------|
| То:      | Lawrence Rodichok, M.D., Clinical Reviewer<br>Division of Neurology II (DN2)                                       |
|          | Candido Alicea, PhD, Regulatory Project Manager, (DN2)                                                             |
|          | Tracy Peters, PharmD, Associate Director for Labeling, (DN2)                                                       |
| From:    | Domenic D'Alessandro, PharmD, MBA, BCPS, Regulatory Review Officer<br>Office of Prescription Drug Promotion (OPDP) |
| CC:      | Aline Moukhtara, RN, MPH, Team Leader, OPDP                                                                        |
| Subject: | OPDP Labeling Comments for KESIMPTA (ofatumumab) injection, for subcutaneous use                                   |
| BLA:     | 125326 / Supplement 70                                                                                             |

In response to DN2 consult request dated January 17, 2020, OPDP has reviewed the proposed product labeling (PI), Medication Guide, Instructions for Use (IFU), and carton and container labeling for KESIMPTA (ofatumumab) injection, for subcutaneous use. This supplement (S-70) proposes the addition of a new indication for the treatment of relapsing forms of multiple sclerosis.

<u>PI:</u> OPDP's comments on the proposed labeling are based on the draft PI received by electronic mail from DN2 (Candido Alicea) on July 6, 2020, and are provided below.

**Medication Guide/IFU:** A combined OPDP and Division of Medical Policy Programs (DMPP) review will be completed, and comments on the proposed Medication Guide/IFU will be sent under separate cover.

<u>Carton and Container Labeling</u>: OPDP has reviewed the attached proposed carton and container labeling downloaded from DN2 SharePoint on July 8, 2020, and we do not have any comments.

Thank you for your consult. If you have any questions, please contact Domenic D'Alessandro at (301) 796-3316 or <u>domenic.dalessandro@fda.hhs.gov</u>.

23 Pages of Draft Labeling have been Withheld in Full as b4 (CCI/TS) immediately following this page.

/s/

DOMENIC G DALESSANDRO 07/10/2020 09:53:20 AM

## MEMORANDUM

## REVIEW OF REVISED LABEL AND LABELING Division of Medication Error Prevention and Analysis (DMEPA) Office of Medication Error Prevention and Risk Management (OMEPRM) Office of Surveillance and Epidemiology (OSE) Center for Drug Evaluation and Research (CDER)

| Date of This Memorandum:       | May 15, 2020                                  |
|--------------------------------|-----------------------------------------------|
| Requesting Office or Division: | Division of Neurology 2 (DN 2)                |
| Application Type and Number:   | BLA 125326/Supplement 70                      |
| Product Name and Strength:     | Kesimpta (ofatumumab) injection, 20 mg/0.4 mL |
| Applicant/Sponsor Name:        | Novartis Pharmaceuticals Corporation          |
| OSE RCM #:                     | 2020-84-1                                     |
| DMEPA Safety Evaluator:        | Ebony Whaley, PharmD, BCPPS                   |
| DMEPA Team Leader:             | Lolita White, PharmD                          |

#### 1 PURPOSE OF MEMORANDUM

The Applicant submitted revised container labels and carton labeling received on May 11, 2020 for Kesimpta. The Division of Neurology 2 (DN 2) requested that we review the revised container labels and carton labeling for Kesimpta (Appendix A) to determine if they are acceptable from a medication error perspective. The revisions are in response to recommendations that we made during a previous label and labeling review.<sup>a</sup>

#### 2 CONCLUSION

The Applicant implemented our recommendations and we have no additional recommendations at this time.

7 Pages of Draft Labeling have been Withheld in Full as b4 (CCI/TS) immediately following this page.

<sup>&</sup>lt;sup>a</sup> Whaley E. Human Factors Study Report and Label and Labeling Review for Kesimpta (BLA 125326/Supplement 70). Silver Spring (MD): FDA, CDER, OSE, DMEPA (US); 2020 MAY 6. RCM No.: 2020-17 and 2020-84.

-----

/s/

EBONY A WHALEY 05/15/2020 12:46:57 PM

LOLITA G WHITE 05/15/2020 12:50:23 PM

| Date                      | E /10 /2020                                        |  |
|---------------------------|----------------------------------------------------|--|
|                           | 5/12/2020                                          |  |
| From                      | Cara Alfaro, Pharm.D., Clinical Analyst            |  |
|                           | Good Clinical Practice Assessment Branch           |  |
|                           | Division of Clinical Compliance Evaluation         |  |
|                           | Office of Scientific Investigations                |  |
| То                        | Susan Daugherty, Regulatory Project Manager        |  |
|                           | Lawrence Rodichok, M.D., Medical Officer           |  |
|                           | Division of Neurology 2                            |  |
|                           | Office of Neuroscience                             |  |
| BLA #                     | 125326 S-70                                        |  |
| Applicant                 | Novartis Pharmaceuticals Corporation               |  |
| Drug                      | Ofatumumab (Arzerra <sup>®</sup> )                 |  |
| NME                       | No                                                 |  |
| Proposed Indication       | Treatment of relapsing forms of multiple sclerosis |  |
| Standard/Priority Review  | Priority                                           |  |
| Consultation Request Date | 1/31/2020                                          |  |
| Summary Goal Date         | 5/20/2020                                          |  |
| Action Goal Date          | 6/20/2020                                          |  |
| PDUFA Date                | 6/20/2020                                          |  |

## **Clinical Inspection Summary**

#### I. OVERALL ASSESSMENT OF FINDINGS AND RECOMMENDATIONS

The clinical site of Dr. Sundaram was inspected in support of this BLA and covered Protocol COMB157G2302. The study appears to have been conducted adequately, and the data generated by this site generally appear acceptable in support of the respective indication.

OSI received a consult from the Division of Neurology 2 (DN2) on 1/31/2020 that identified the following clinical investigators for Good Clinical Practice (GCP) inspections:

- Dr. Selmaj (Site 4000/Protocol COMB157G2301, Poland)
- Dr. Maciejowski (Site 4001/ Protocol COMB157G2301, Poland)
- Dr. Bosnjak-Pasic (Site 1091/ Protocol COMB157G2302, Croatia)
- Dr. Sundaram (Site 5056/ Protocol COMB157G2302, United States)

An inspection assignment for these four sites was issued on 2/4/2020, and the Office of Regulatory Affairs (ORA) scheduled these inspections. However, at the current time, the COVID-19 global pandemic has significantly limited our ability to conduct on-site GCP inspections. As a result, and in an effort to protect the health, safety, and welfare of FDA employees and study staff, the need for these planned inspections in support of BLA 125326 S-70 was reevaluated. At that time, the domestic clinical inspection of Dr. Sundaram was ongoing, so the discussion focused on the need to conduct the remaining inspections at the three foreign sites. Following discussions between OSI and DN2, a decision was made that assessment of the application could proceed without the three foreign GCP inspections. Since

the one completed domestic inspection covered only Protocol COMB157G2302, at this time OSI will be unable to determine if Protocol COMB157G2301 was conducted adequately and whether the study data are reliable in support of the proposed indication.

#### II. BACKGROUND

Ofatumumab (Arzerra<sup>®</sup>) injection was approved is 2009 for the treatment of chronic lymphocytic leukemia (BLA 125326). An efficacy supplement (BLA 125326 S-70) was submitted for the treatment of relapsing forms of multiple sclerosis (MS), including relapsing-remitting disease and active secondary progressive disease, in adults.

The sponsor has submitted two Phase 3 studies of identical study design, COMB157G2301 and COMB157G2302, to support the efficacy and safety of ofatumumab in the treatment of relapsing multiple sclerosis in adults.

#### Protocol COMB157G2301 (ASCLEPIOS I)

*Title*: "A randomized, double-blind, double-dummy, parallel-group study comparing the efficacy and safety of ofatumumab versus teriflunomide in patients with relapsing multiple sclerosis"

#### Subjects: 927 randomized

*Sites*: 170 sites in 28 countries; North America (United States 60, Canada 4), Western Europe (48), Eastern Europe (37), Middle East/Central Asia (8), Asia/Pacific (7), Latin America (4), and Australia (2)

#### Study Initiation and Data Cut-Off Dates: 9/20/2016 – 7/5/2019

This was a randomized, double-blind, double-dummy, active-comparator-controlled study in subjects with a diagnosis of relapsing multiple sclerosis (RMS). Main eligibility criteria included male or female subjects; 18 to 55 years of age; diagnosis of relapsing MS (relapsing-remitting course [RRMS] or secondary progressive course [SPMS] with disease activity), Expanded Disability Status Scale (EDSS) score of 0 to 5.5 (inclusive) at screening; documentation of at least 1 relapse during the previous year, or 2 relapses during the previous two years prior to screening, or a positive Gd-enhancing MRI scan during the year prior to randomization; and neurologically stable within one month prior to randomization. Excluded were subjects with primary progressive MS, SPMS without disease activity, or neuromyelitis optica; disease duration of >10 years in subjects with EDSS score <2.

This study was comprised on three phases:

Screening/Baseline – up to 45 days

<u>Double-Blind Treatment</u> – continued until the End of Study was declared by the sponsor (based on numbers of events), or 30 months, whichever was sooner.

Subjects were randomized (1:1) to:

- Ofatumumab arm: ofatumumab 20 mg sc injections on Day 1, 7, 14, Week 4 and every 4 weeks thereafter + teriflunomide-matching placebo capsule orally once daily
- Teriflunomide arm: teriflunomide 14 mg capsule orally once daily + ofatumumabmatching placebo injections on Day 1, 7, 14, Week 4 and every 4 weeks thereafter Randomization was stratified by geographic region and by MS subtype (RRMS, SPMS).

Investigational product was provided in pre-filled syringes for subcutaneous administration containing 20 mg ofatumumab (50 mg/mL) and matching placebo. The control treatment was provided as teriflunomide (Aubagio<sup>®</sup>) 14 mg over-encapsulated tablets for oral administration and matching placebo.

<u>Safety Follow-up</u>: Subjects who complete the double-blind treatment phase and who do not enroll in the separate open-label extension study will be followed up for safety for a minimum of 9 months. Subjects who have not repleted their B-cells or for whom teriflunomide plasma levels are >0.02mg/L at 9 months will continue in this phase until those targets are met. These assessments were performed centrally to maintain the study blind.

The primary efficacy endpoint was the annualized relapse rate comparing of a tumumab and teriflunomide. The annualized relapse rate was defined as the number of confirmed MS relapses in a year (based on EDSS scores).

Subjects were instructed to immediately report new neurological symptoms, re-occurring, or worsening of previous symptoms to the investigator. If symptoms were consistent with a relapse, an unscheduled visit to the investigator and independent EDSS rater was to occur within 7 days of symptom onset, if possible. The assessment, management, and reporting of MS relapse was made by the investigator. Confirmation of MS relapse and severity grading, based on EDSS score provided by the independent EDSS rater, was done centrally.

The definition of a MS relapse was the appearance of a new neurological abnormality or worsening of previously stable or improving pre-existing neurological abnormality, separated by at least 30 days from onset of a preceding clinical demyelinating event. The abnormality must have been present for at least 24 hours and occurred in the absence of fever or known infection.

The definition of a <u>confirmed</u> MS relapse is one accompanied by a clinically relevant change in the EDSS score, i.e. an increase of at least 0.5 points on the EDSS score, or an increase of 1 point on two functional scores (FSs) or 2 points on one FS, excluding changes involving bowel/bladder or cerebral FS compared to the previous available rating (the last EDSS rating

that did not occur during a relapse). Confirmation of MS relapse based on these definitions was done centrally.

#### Protocol COMB157G2302 (ASCLEPIOS 2)

*Title*: "A randomized, double-blind, double-dummy, parallel-group study comparing the efficacy and safety of ofatumumab versus teriflunomide in patients with relapsing multiple sclerosis"

Subjects: 955 randomized

*Sites*: 180 sites in 30 countries; North America (United States 60, Canada 4), Western Europe (60), Eastern Europe (34), Asia/Pacific (8), Latin America (7), Middle East/Central Asia (4), Africa (2) and Australia (1)

Study Initiation and Data Cut-Off Dates: 8/26/2016 – 7/10/2019

The study design was identical to Protocol COMB157G2301.

#### **Rationale for Site Selection**

The clinical sites were chosen primarily based on risk ranking in the site selection tool, site efficacy, numbers of enrolled subjects, and prior inspectional history.

#### III. RESULTS

#### Bharathy Sundaram, M.D.

Site #5056 Texas Institute for Neurological Disorders 321 N. Highland Ave, Suite 200 Sherman, TX 75092 Inspection Dates: 3/17/2020 – 3/20/2020

At this site for Protocol COMB157G2302, 12 subjects were screened, 9 subjects were enrolled and randomized, and 6 subjects completed the study. One of the enrolled subjects

(b) (6)

(b) (6)

(b) (6) Three subjects discontinued the study for the following reasons: [noted as physician decision in data listings] (n = 1) and loss to follow-up (n = 2).

Signed informed consent forms, dated prior to participation in the study, were present for all subjects who were screened. An audit of the study records of all enrolled subjects was conducted. Records reviewed included, but were not limited to, source documents, monitoring documents, IRB/sponsor communications, financial disclosure, test article accountability, inclusion/exclusion criteria, adverse event reports, laboratory results, concomitant medications, protocol deviations, and primary efficacy endpoint data (Expanded

Disability Status Score [EDSS]).

At the start of the study, independent EDSS raters recorded EDSS scores on paper forms. In August 2016, approximately 8 months after the sponsor initiated this study, an online, internet-based application (TrialManager) was launched. Independent EDSS raters were instructed to discontinue using the paper forms and to enter EDSS assessments directly into TrialManager. The FDA field investigator was able to review EDSS scores on paper forms as well as having access to TrialManager.

During the FDA inspection, differences in EDSS scores on paper forms vs. TrialManager data (b) (6) (b) (6) were identified in 2 of 9 enrolled subjects (Subjects and see Table 1). (b) (6) Subject site on (b) (6) had Despite the availability of TrialManager, the independent EDSS rater at Site continued to use the paper forms and transcribe the data, sometimes many months later, into TrialManager. Since all of the EDSS assessments with discrepancies between the paper forms and TrialManager for this subject occurred at Site (b) (6), no further information was available to determine the cause of these discrepancies. However, importantly, there were no data discrepancies for the unscheduled EDSS assessment for the multiple sclerosis relapse (b) (6) for Subject (b) (6) For Subject <sup>(b) (6)</sup>the independent EDSS performed on rater stated that the score was changed based on communication with the central EDSS expert but that the change was inadvertently not made on the paper form.

Additionally, when EDSS scores in TrialManager were verified against the sponsor data line listings for all subjects, one discrepancy was noted for one baseline EDSS assessment for Subject (see Table 1). There was no evidence of underreporting of adverse events, and no SAEs occurred at this site

| Subject  | Study Arm     | Date of   | EDSS Score |              |              |
|----------|---------------|-----------|------------|--------------|--------------|
|          |               | EDSS      | EDSS Paper | TrialManager | Sponsor      |
| (b) (6)- |               |           | Form       | Database     | Data Listing |
| (0)(0)-  | Teriflunomide | (b) (6)   | 1          | 2.5          | 2.5          |
|          |               | Screening |            |              |              |
| subject) |               | (b) (6)   | 2.5        | 1.5          | 1.5          |
|          |               | Baseline  |            |              |              |
|          |               | (b) (6)   | 0          | 1            | 1            |
|          |               | Month 9   |            |              |              |
|          |               | (b) (6)   | 0          | 1            | 1            |
|          |               | Month 12  |            |              |              |
|          |               | (b) (6)   | 0          | 1            | 1            |
|          |               | Month 15  |            |              |              |
|          |               | (b) (6)   | 0          | 1            | 1            |
|          |               | Month 18  |            |              |              |
| (b) (6)  | Ofatumumab    | (b) (6)   | 3.5        | 3            | 3            |
|          |               | EOS       |            |              |              |
| (b) (6)  | Teriflunomide | (b) (6)   | 3.5        | 3.5          | 4            |
|          |               | Baseline  |            |              |              |

#### Table 1. Data Discrepancies for EDSS Score

Reviewer's comment: It should be noted that the EDSS data discrepancies noted during the inspection were for EDSS assessments conducted at scheduled visits. No EDSS data discrepancies were noted for the unscheduled EDSS assessments conducted at the time of the multiple sclerosis relapses in the two subjects (Subjects and b) (6) both randomized to teriflunomide) at this site who had relapses.

Since Subject (b) (6) and the EDSS discrepancies occurred for assessments (b) (6) (Site (b) (6), there was insufficient information available to determine the reason for the discrepancies. The single EDSS discrepancy for Subject (b) (6) was due to an oversight by the independent EDSS rater in which changes to EDSS data in TrialManager were not recorded on the corresponding paper form.

For Subject <sup>(b) (6)</sup> the single EDSS discrepancy noted was between TrialManager and the sponsor data listings, so this discrepancy would have occurred at a vendor or sponsor level rather than at the site level. Since EDSS scores may be used in analyses of secondary efficacy endpoints, we recommend that the baseline EDSS score for Subject <sup>(b) (6)</sup> be corrected from 4 to 3.5.

#### {See appended electronic signature page}

Cara Alfaro, Pharm.D. Clinical Analyst Good Clinical Practice Assessment Branch Division of Clinical Compliance Evaluation Office of Scientific Investigations

#### CONCURRENCE:

#### {See appended electronic signature page}

Phillip Kronstein, M.D. Team Leader Good Clinical Practice Assessment Branch Division of Clinical Compliance Evaluation Office of Scientific Investigations

#### CONCURRENCE:

#### {See appended electronic signature page}

Kassa Ayalew, M.D., M.P.H Branch Chief Good Clinical Practice Assessment Branch Division of Clinical Compliance Evaluation Office of Scientific Investigations

#### cc:

Central Document Room/BLA #125326 Division of Neurology 2/Division Director/Nicholas Kozauer Division of Neurology 2/Medical Team Leader/Paul Lee Division of Neurology 2/Medical Officer/Lawrence Rodichok Division of Neurology 2/Project Manager/Susan Daugherty OSI/Office Director/David Burrow OSI/Office Deputy Director/Laurie Muldowney OSI/DCCE/ Division Director/Ni Khin OSI/DCCE/GCPAB/Branch Chief/Kassa Ayalew OSI/DCCE/GCPAB/Team Leader/Phillip Kronstein OSI/DCCE/GCPAB/Reviewer/Cara Alfaro OSI/DCCE/GCPAB Program Analyst/Yolanda Patague

-----

/s/

CARA L ALFARO 05/12/2020 12:08:47 PM

PHILLIP D KRONSTEIN 05/12/2020 12:18:47 PM

KASSA AYALEW 05/13/2020 07:32:15 AM HUMAN FACTORS STUDY REPORT AND LABELS AND LABELING REVIEW Division of Medication Error Prevention and Analysis (DMEPA) Office of Medication Error Prevention and Risk Management (OMEPRM) Office of Surveillance and Epidemiology (OSE) Center for Drug Evaluation and Research (CDER)

\*\*\* This document contains proprietary information that cannot be released to the public\*\*\*

| Date of This Review:                                                          | May 6, 2020                                                                                                  |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Requesting Office or Division:                                                | Division of Neurology 2 (DN2)                                                                                |
| Application Type and Number:                                                  | BLA 125326/S-070                                                                                             |
| Product Type:<br>Drug Constituent Name and<br>Strength<br>Device Constituent: | Combination product<br>Kesimptaª (ofatumumab) injection,<br>20 mg/0.4 mL<br>Prefilled pen; prefilled syringe |
| Rx or OTC:                                                                    | Rx                                                                                                           |
| Applicant/Sponsor Name:                                                       | Novartis Pharmaceuticals Corporation                                                                         |
| Submission Date:                                                              | December 20, 2019; December 23, 2019; March 4, 2020;<br>March 17, 2020; March 24, 2020                       |
| OSE RCM #:                                                                    | 2020-17; 2020-84                                                                                             |
| DMEPA Safety Evaluator:                                                       | Ebony Whaley, PharmD, BCPPS                                                                                  |
| DMEPA Team Leader:                                                            | Lolita White, PharmD                                                                                         |
| DMEPA Associate Director for<br>Human Factors:                                | QuynhNhu Nguyen, MS                                                                                          |

<sup>&</sup>lt;sup>a</sup> The proposed proprietary name Kesimpta was found conditionally acceptable on March 23, 2020.

## 1. REASON FOR REVIEW

This review evaluates the human factors (HF) validation study report and labels and labeling submitted under BLA 125326 Supplement 70 for Kesimpta (ofatumumab) injection. This is a combination product with proposed prefilled pen and prefilled syringe device constituent parts that is intended to treat relapsing forms of multiple sclerosis (RMS), to include clinically isolated syndrome, relapsing-remitting disease, and active secondary progressive disease, in adults.

## 1.1. PRODUCT DESCRIPTION

Kesimpta (ofatumumab) injection is supplied in two configurations: (1) a single-dose prefilled pen (Sensoready pen) and (2) a single-dose prefilled syringe teach Kesimpta prefilled pen or prefilled syringe is supplied in a one-count carton.

# 1.2. REGULATORY HISTORY RELATED TO THE PROPOSED PRODUCT'S HUMAN FACTORS DEVELOPMENT PROGRAM

Arzerra (ofatumumab) injection BLA 125326 was approved on October 26, 2009 for the treatment of patients with chronic lymphocytic leukemia (CLL) refractory to fludarabine and alemtuzumab. Arzerra is supplied in vials for intravenous infusion and is administered by healthcare providers.

We previously reviewed the Applicant's HF validation study protocol for the proposed RMS indication.<sup>bc</sup> We identified deficiencies in the proposed HF validation study protocol and communicated them to the Applicant. On December 20, 2019, the Applicant submitted Supplement 70.

## 2. MATERIALS REVIEWED

We considered the materials listed in Table 1 for this review. The Appendices provide our findings and evaluation of each material reviewed.

| Table 1. Materials Considered for this Review |  |  |
|-----------------------------------------------|--|--|
| Appendix Section (for<br>Methods and Results) |  |  |
|                                               |  |  |

<sup>&</sup>lt;sup>b</sup> Whaley, E. Human Factors Protocol Review for Ofatumumab injection (IND 111116). Silver Spring (MD): FDA, CDER, OSE, DMEPA (US); 2018 JUN 20. RCM No.: 2018-617.

<sup>&</sup>lt;sup>c</sup> Karpow, C. Human Factors Protocol Review Memo for Ofatumumab injection (IND 111116). Silver Spring (MD): FDA, CDER, OSE, DMEPA (US); 2018 NOV 8. RCM No.: 2018-617-1.

| Table 1. Materials Considered for this Review                        |                                               |  |
|----------------------------------------------------------------------|-----------------------------------------------|--|
| Material Reviewed                                                    | Appendix Section (for<br>Methods and Results) |  |
| Product Information/Prescribing Information                          | A                                             |  |
| Background Information<br>Previous HF Reviews (DMEPA and CDRH)       | В                                             |  |
| Background Information on Human Factors<br>Engineering (HFE) Process | С                                             |  |
| Human Factors Validation Study Report                                | D                                             |  |
| Information Requests Issued During the Review                        | E                                             |  |
| Labels and Labeling                                                  | F                                             |  |

#### 3. OVERALL ASSESSMENT OF MATERIALS REVIEWED

The sections below provide a summary of the study design, errors/close calls/use difficulties observed (Tables 2 and 3), and our analysis to determine if the results support the safe and effective use of the proposed product.

#### 3.1 SUMMARY OF STUDY DESIGN

The Applicant completed HF validation studies of the prefilled syringe (PFS) and of the prefilled pen (see Appendix D). We note the PFS device platform is used in approved products (i.e. Cosentyx, Zarxio) and the prefilled pen device platform, Sensoready, is also used in an approved product (i.e. Cosentyx).

The HF validation study for the PFS included a total of 33 participants in the following user groups: 15 untrained injection naïve adult patients with RMS and 18 untrained injection experienced adult patients with RMS.

The HF validation study for the prefilled pen included a total of 32 participants in the following user groups: 15 untrained injection naïve adult patients with RMS and 17 untrained injection experienced adult patients with RMS.

In both HF validation studies, participants completed two simulated use sessions. Following the second simulated use session, each participant completed knowledge-based assessment and root cause analysis.

#### 3.2 RESULTS AND ANALYSES

Tables 2 and 3 describes the study results, Applicant's analyses of the results, and DMEPA's analyses and recommendations.

| Tasks            | Number and Description of                                | Applicant's Root Cause Analysis | Applicant's Discussion of    | DMEPA's Analysis and                   |
|------------------|----------------------------------------------------------|---------------------------------|------------------------------|----------------------------------------|
|                  | Failures/Use Errors, Close Calls and<br>Use Difficulties |                                 | Mitigation Strategies        | Recommendations                        |
| 1A. Store PFS at | n = 9 failures                                           | Previous behaviors used for     | The Applicant stated that    | Based on the Applicant' use-related    |
| 2°-8°C           | • Nine participants did not identify the                 | their own medication            | in real use, users are also  | risk analysis (URRA), failure to store |
| (refrigerated) – | need for refrigeration. Instead, they                    | (negative transfer)             | likely to obtain storage     | the PFS refrigerated might result in   |
| knowledge-       | stated other places for storage such                     | Not paying attention to the     | information from the         | injection of degraded or aggregated    |
| based            | as: medicine or bathroom cabinet,                        | related information in the IFU  | pharmacy or would pay        | drug product and may lead to local     |
| assessment       | kitchen counter, kitchen cabinet or                      | or not reading the IFU due to   | more attention to the IFU    | and temporary limited pain and/or      |
|                  | drawers, or general cabinet.                             | study artifact                  | and/or packaging label if    | irritation.                            |
|                  | • Subjective feedback included: do not                   | • Focusing on other aspects of  | injecting for real. The      |                                        |
|                  | or did not store their own                               | the IFU                         | Applicant also noted that    | We disagree with the Applicant's       |
|                  | medication in refrigerator; did not                      | • Expecting to be trained by an | providing storage            | assertion that users will likely       |
|                  | refer to IFU because the short                           | НСР                             | instructions is also part of | receive storage information as         |
|                  | needle length and the simulated                          |                                 | routine instructions         | routine instructions from the          |
|                  | environment provided a sense of                          |                                 | provided by a pharmacist     | pharmacist or physician. While we      |
|                  | confidence; reported that the IFU                        |                                 | and/or physician. The        | acknowledge this may occur in some     |
|                  | was dense with information; relies                       |                                 | Applicant noted the risk     | cases, it is not guaranteed to occur   |
|                  | on an HCP to train her on how to use                     |                                 | of storage error applies     | in all cases.                          |
|                  | PFS (having not identified the                           |                                 | to all medications           |                                        |
|                  | information in the IFU); thought that                    |                                 | requiring refrigeration      | Our review of the study results did    |
|                  | a cabinet or drawer would protect                        |                                 | prior to use and is not      | not identify subjective feedback       |
|                  | the device from direct sunlight;                         |                                 | unique to this product.      | indicating confusion with labels and   |
|                  | forgot to mention due to focusing on                     |                                 |                              | labeling.                              |
|                  | the mechanics of the injection; and                      |                                 | The Applicant indicated      |                                        |
|                  | stated they did not notice PFS                           |                                 | that injection-              | Our review of the labels and labeling  |
|                  | storage instructions because she was                     |                                 | experienced participants     | finds that the PFS IFU instructs users |
|                  | focused on more salient (i.e., bold)                     |                                 | frequently assumed they      | to store the product under             |

|                  | text.                                                  |                                  | do not need to read the    | refrigeration. We also note the           |
|------------------|--------------------------------------------------------|----------------------------------|----------------------------|-------------------------------------------|
|                  |                                                        |                                  | IFU, or not in depth, but  | carton labeling includes this storage     |
|                  |                                                        |                                  | the majority of them       | information. However, we note the         |
|                  |                                                        |                                  | stated that in real-world  | information on the carton labeling        |
|                  |                                                        |                                  |                            |                                           |
|                  |                                                        |                                  | use they would have read   | does not appear on the principal          |
|                  |                                                        |                                  | it. As such, the Applicant | display panel (PDP).                      |
|                  |                                                        |                                  | attributed some errors to  |                                           |
|                  |                                                        |                                  | study artifact.            | As such, we provide PFS carton            |
|                  |                                                        |                                  |                            | labeling recommendation #1 in             |
|                  |                                                        |                                  | The Applicant              | Section 3.5 below to revise the           |
|                  |                                                        |                                  | determined that the        | carton labeling to include                |
|                  |                                                        |                                  | conclusion can support     | <u>"REFRIGERATE" on the PDP</u> . In this |
|                  |                                                        |                                  | that the risk control      | particular instance, we find this         |
|                  |                                                        |                                  | measures (RCM) in place    | revision can be implemented               |
|                  |                                                        |                                  | to mitigate risks related  | without the need for submission of        |
|                  |                                                        |                                  | to incorrect storage are   | additional HF validation data.            |
|                  |                                                        |                                  | sufficiently effective and |                                           |
|                  |                                                        |                                  | a small remaining          |                                           |
|                  |                                                        |                                  | residual risk is           |                                           |
|                  |                                                        |                                  | acceptable.                |                                           |
| 4B. Insert       | Session 1                                              | • The Applicant indicated that 1 | The Applicant did not      | Based on the Applicant's URRA,            |
| needle into skin | n = 14 use difficulties                                | participant did not notice any   | recommend revisions to     | failure to correctly insert the needle    |
|                  | <ul> <li>Fourteen participants inserted the</li> </ul> | IFU content directing him to     | the user interface in      | might result in: (1) underdose, (2)       |
|                  | needle at steep angle. Subjective                      | insert needle at moderate        | response to participant    | local and temporary limited pain or       |
|                  | feedback was not provided.                             | angle and was                    | performance on this task.  | irritation due to intradermal             |
|                  |                                                        | accustomed to injecting at 90°   |                            | injection, (3) injection into a blood     |
|                  | Session 2                                              | angle                            |                            | vessel or muscle, or (4) back spilling    |
|                  | n = 17 use difficulties                                | The Applicant did not            |                            | of drug product which may lead to         |
|                  | • Fourteen participants who had use                    | complete RCA for the majority    |                            | underdose.                                |
|                  | difficulty in Session 1 repeated the                   | of participants who failed this  |                            |                                           |

|            | same use difficulty in Session 2.<br>Three additional participants also<br>inserted the needle at a steep angle.<br>Subjective feedback was not<br>provided. | task due to study oversight.                               |                           | Our review of the labels and labeling<br>finds that the PFS IFU Step 10<br>includes a graphic that depicts an<br>approximately 45-degree injection<br>angle. However, the IFU text does<br>not specify the injection angle.  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                                              |                                                            |                           | As such, we provide PFS IFU<br>recommendation #1 in Section 3.5<br>below to revise the IFU specify the<br>injection angle. In this particular<br>instance, we find this revision can be<br>implemented without submission of |
|            |                                                                                                                                                              |                                                            |                           | additional HF validation data.                                                                                                                                                                                               |
| 4D. Wait 5 | Session 1                                                                                                                                                    | <ul> <li>Accustomed to removing past</li> </ul>            | The Applicant did not     | Based on the Applicant's URRA,                                                                                                                                                                                               |
| seconds    | n = 17 failures                                                                                                                                              | devices immediately after fully                            | recommend revisions to    | failure to wait 5 seconds after the                                                                                                                                                                                          |
|            | Seventeen participants did not pause                                                                                                                         | depressing plunger and/or                                  | the user interface in     | injection could result in back-spilling                                                                                                                                                                                      |
|            | after the injection with the needle in                                                                                                                       | observed HCPs doing so.                                    | response to participant   | of the drug product and further lead                                                                                                                                                                                         |
|            | the injection site.                                                                                                                                          | • Did not thoroughly read to IFU because they assumed they | performance on this task. | to: (1) skin contact with the drug product or (2) eye contact with drug                                                                                                                                                      |
|            | Session 2                                                                                                                                                    | knew how to perform all                                    | Additionally, the         | product resulting in local pain and                                                                                                                                                                                          |
|            | n = 16 failures                                                                                                                                              | steps.                                                     | Applicant noted that the  | irritation.                                                                                                                                                                                                                  |
|            | • Sixteen participants failed this task in                                                                                                                   | Would have read the IFU if                                 | instruction to "Wait 5    |                                                                                                                                                                                                                              |
|            | Session 2. Fifteen of these 16                                                                                                                               | they were to administer an                                 | seconds" has been         | Our review of the labels and labeling                                                                                                                                                                                        |
|            | participants repeated the same                                                                                                                               | actual injection at home                                   | included in the IFU for   | finds that the PFS IFU Step 12                                                                                                                                                                                               |
|            | failure in Session 1.                                                                                                                                        | (possible study artifact)                                  | similar products and was  | instructs users to hold the PFS in                                                                                                                                                                                           |
|            |                                                                                                                                                              | Overlooked IFU Step 12                                     | considered to be good     | place for 5 seconds. However, we                                                                                                                                                                                             |
|            | The Applicant did not provide                                                                                                                                | instruction due to focusing on                             | practice in order to      | note that this information is not                                                                                                                                                                                            |
|            | subjective feedback.                                                                                                                                         | the figures, the IFU's                                     | reduce the risk of a wet  | prominent and might be overlooked.                                                                                                                                                                                           |
|            |                                                                                                                                                              | information density, or                                    | injection. The Applicant  |                                                                                                                                                                                                                              |

| because the step was not                    | also noted that recently | Based on our review of the study      |
|---------------------------------------------|--------------------------|---------------------------------------|
| conspicuous.                                | FDA approved labeling    | results and user interface, we        |
| <ul> <li>Assumed injection was</li> </ul>   | for similar products     | recommend the IFU is revised to       |
| complete because all                        | indicates that this      | consolidate IFU Steps 11 and 12 so    |
| medication was expelled.                    | instruction is no longer | that Step 12, which instructs users   |
| <ul> <li>Received upward tactile</li> </ul> | commonly present in the  | to wait 5 seconds, is not overlooked. |
| feedback after fully depressing             | IFU. However, the        | As such, the PFS IFU                  |
| plunger, and interpreted it to              | Applicant indicate they  | recommendation #2 in Section 3.5.     |
| mean they could remove the                  | choose to retain the     | In this particular instance, we find  |
| needle                                      | instruction.             | this revision can be implemented      |
|                                             |                          | without submission of additional HF   |
|                                             |                          | validation data.                      |

| Tasks                                          | Number of, Description of, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Applicant's Root Cause                                                                                                                                                                                                                                                                                                      | Applicant's Discussion of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DMEPA's Analysis and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19212                                          | Subjective Feedback for Failures/Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analysis                                                                                                                                                                                                                                                                                                                    | Mitigation Strategies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                | Errors, Close Calls and Use Difficulties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1A. Store<br>autoinjector<br>at 2-8°C<br>(KBA) | <ul> <li><i>n</i> = 4 failures</li> <li>Four participants did not identify the need for refrigeration. The participants stated other places for storage: medicine cabinet; a dry location at room temperature; in the cabinet underneath the bathroom sink; and in a cabinet together with other MS medication "unless it must be stored in the refrigerator". Subjective feedback included: overlooked storage information in IFU due to focusing on the IFU's injection administration sections, would store in cabinet not easily accessible by others, were expecting to receive storage instructions from the pharmacy or more clearly printed on the packaging.</li> <li><i>n</i> = 2 use difficulties</li> <li>Two participants answered correctly but were unable to find the storage information in the IFU.</li> </ul> | <ul> <li>Participants focusing<br/>on other aspects of<br/>the IFU</li> <li>Partially attributed to<br/>study artifact (i.e. if<br/>injecting for real,<br/>would pay more<br/>attention to the IFU<br/>and/or packaging<br/>label)</li> <li>Expecting to receive<br/>storage information<br/>from the pharmacy.</li> </ul> | The Applicant states the risks<br>are mitigated by clearly<br>indicating storage conditions in<br>the labeling (carton, IFU and<br>device labelling). The Applicant<br>also states that requiring<br>refrigeration is not unique to the<br>proposed product.<br>The Applicant concludes that<br>given the above assessment of<br>root causes, and that 78.5%<br>(n=28/32) of participants were<br>able to correctly identify and<br>comprehend the required<br>information, the RCMs in place<br>to mitigate risks related to<br>incorrect storage are sufficiently<br>effective and a small remaining<br>residual risk is acceptable. | <ul> <li>Based on the Applicant's use-related risk analysis (URRA), failure to store the product refrigerated might result in potential absorption of degraded drug product after injection and injection of aggregated drug product that may lead to local and temporary limited pain and/or irritation.</li> <li>Our review of the study results did not identify subjective feedback indicating confusion with labeling. However, we note one participant expected to see the storage information clearly printed on the packaging.</li> <li>The carton labeling includes the storage information on the back panel and container label includes the storage information is listed in the IFU.</li> <li>As such, we provide prefilled pen carton labeling recommendation #1 in Section 3.5 below to revise the carton labeling to include "REFRIGERATE" on the PDP. In this particular instance, we find this revision can be implemented</li> </ul> |

|  | without the need for submission of |
|--|------------------------------------|
|  | additional HF validation data.     |

APPEARS THIS WAY ON ORIGINAL

## 3.3 ANALYSIS OF OTHER CRITICAL TASK ERRORS

The HF validation studies showed use errors (e.g. failures, difficulties, and close calls) with the critical tasks listed below; however, our assessment of these user errors finds the residual risk is acceptable and thus are not the focus of this review. We reviewed the available participants' subjective feedback, the Applicant's root cause analysis, and the Applicant's proposed risk mitigation strategy to determine acceptability. Subsequently, our assessment of the aforementioned considerations in totality finds the residual risk is acceptable for the use tasks below; thus, we find no recommendations to further address the use errors or mitigations are necessary at this time to address the use errors related to the following use tasks:

## Prefilled syringe

- Identify appropriate injection site
- Remove rigid needle shield/needle cap
- Depress plunger until the entire solution is injected
- Release plunger to retract the needle guard and remove prefilled syringe from injection site

## Prefilled pen

- Identify appropriate injection site
- Remove cap
- Apply the needle end of Delta-04 to the injection site
- Maintain pressure until the injection is completed and monitor injection
- Identify end of injection

## 3.4 ANALYSIS OF NON-CRITICAL TASKS

The HF validation studies showed use errors, close calls, and use difficulties with the noncritical tasks listed below. We reviewed the available subjective feedback, the Applicant's root cause analysis and Applicant's proposed risk mitigation strategy to determine acceptability. Subsequently, our assessment of the aforementioned considerations in totality finds the residual risk is acceptable for the use tasks below; thus, we find no recommendations to further address the use errors or mitigations are necessary at this time to address the use errors related to the following use tasks:

## Prefilled syringe

- Perform safety checks
- Bring drug to room temperature
- Clean injection site with alcohol swab
- Pinch skin
- Dispose of device and packaging

Prefilled pen

- Perform safety checks
- Wash hands
- Clean injection site with alcohol swab
- Dispose of device and packaging

After evaluating the errors pertaining to these use-related events, we agree with the Applicant that no additional mitigation strategies are necessary, and we determined that the residual risk is acceptable.

## 3.5 LABELS AND LABELING

Tables 4 and 5 below include the identified medication error issues with the submitted label and labeling, our rationale for concern, and the proposed recommendation to minimize the risk for medication error.

## APPEARS THIS WAY ON ORIGINAL

| Table 4: lo | Table 4: Identified Issues and Recommendations for Division of Neurology 2                                    |                                                                                                                                          |                                                                                                                                                                                                                                                                                               |  |  |
|-------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|             | Identified Issue                                                                                              | Rationale for Concern                                                                                                                    | Recommendation                                                                                                                                                                                                                                                                                |  |  |
| Full Presc  | ribing Information                                                                                            |                                                                                                                                          |                                                                                                                                                                                                                                                                                               |  |  |
| 1.          | The dosing<br>information in<br>Section 2 Dosage<br>and Administration<br>lacks clarity.                      | Lack of clarity regarding<br>the dosing regimen<br>might contribute to<br>incorrect frequency of<br>administration<br>medication errors. | <ul> <li>Revise the statement</li> <li>"The recommended dose of PROPRIETARY NAME is:</li> <li>initial dosing of 20 mg by subcutaneous injection at Weeks 0, 1, and 2, followed by</li> <li>subsequent dosing of 20 mg by subcutaneous injection once per month starting at Week 4"</li> </ul> |  |  |
| 2.          | In Section 16 How<br>Supplied/Storage<br>and Handling, the<br>NDC numbers are<br>denoted by a<br>placeholder. | We are unable to evaluate<br>this important product<br>identifier for risk of product<br>selection medication error.                     | We recommend Section 16 is updated to include the actual NDC numbers.                                                                                                                                                                                                                         |  |  |

|         | Table 5: Identified Issues and Recommendations for Novartis Pharmaceuticals Corporation (entire table to be conveyed to Applicant) |                                                                                                                                                                                                                                  |                                                                                   |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|
|         | Identified Issue                                                                                                                   | Rationale for Concern                                                                                                                                                                                                            | Recommendation                                                                    |  |  |
| Instruc | tions for Use (IFU) – p                                                                                                            | refilled syringe                                                                                                                                                                                                                 |                                                                                   |  |  |
| 1.      | The IFU does not<br>specify the<br>recommended<br>injection angle.                                                                 | In the HF validation study, 18 participants had use difficulties in which they inserted the needle of the PFS at a steep angle.                                                                                                  | Revise the IFU graphic in Step 10 to include text to specify the injection angle. |  |  |
|         |                                                                                                                                    | Lack of clarity regarding the injection angle might result in wrong technique in drug usage process errors (e.g. administration errors).                                                                                         |                                                                                   |  |  |
| 1.      | IFU Step 12 (e.g.<br>wait 5 seconds<br>after injection)<br>might be<br>overlooked due to<br>being decoupled<br>from Step 11.       | In the HF validation study, 18 participants did not<br>pause for 5 seconds after the injection.<br>Failure to wait 5 seconds after the injection<br>could result in wet injection or accidental<br>exposure to the drug product. | Revise the IFU such that IFU Steps 11<br>and 12 are combined into one step.       |  |  |
| Contair | ner Label – prefilled sy                                                                                                           | rringe                                                                                                                                                                                                                           |                                                                                   |  |  |
| 1.      | The NDC number is denoted by a placeholder.                                                                                        | We are unable to assess the NDC number.                                                                                                                                                                                          | Revise the labeling to include the intended NDC number.                           |  |  |
| Contair | Container Label – prefilled pen                                                                                                    |                                                                                                                                                                                                                                  |                                                                                   |  |  |
| 1.      | See PFS container<br>label<br>recommendation                                                                                       |                                                                                                                                                                                                                                  |                                                                                   |  |  |

|        | #1 and revise accordingly.                                                              |                                                                                                                                                                                                                                                                        |                                                                   |
|--------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Carton | Labeling – prefilled sy                                                                 | ringe                                                                                                                                                                                                                                                                  |                                                                   |
| 1.     | The principal<br>display panel (PDP)<br>does not include<br>key storage<br>information. | In the HF validation study, 9 participants did not<br>identify the need to store the product under<br>refrigeration.<br>User confusion regarding product storage might<br>results in deteriorated drug product errors<br>leading to patient harm and compromised care. | Revise the labeling to include the term "REFRIGERATE" on the PDP. |
| 2.     | The NDC number is denoted by a placeholder.                                             | We are unable to assess the NDC number.                                                                                                                                                                                                                                | Revise the labeling to include the intended NDC number.           |
| Carton | Labeling – prefilled pe                                                                 | en                                                                                                                                                                                                                                                                     |                                                                   |
| 1.     | See PFS carton<br>labeling<br>recommendations<br>#1-2 and revise<br>accordingly.        |                                                                                                                                                                                                                                                                        |                                                                   |

## 4. CONCLUSION AND RECOMMENDATIONS

The human factors (HF) validation study results identified use errors, close calls, and use difficulties with critical and non-critical tasks. Upon review of the subjective feedback from study participants and the root cause analyses, we identified some recommendations to revise the Instructions for Use (IFU) and carton labeling to improve prominence, clarity, and understanding of important information. These recommendations are based on our review of the subjective feedback and root cause analysis of the use-related issues as well as our expert review of the proposed product user interface. In this particular instance, we have determined that these changes are a reiteration of information already included in the user interface or are instructions that are not unique to the product. As such, we find these revisions can be implemented without submission of additional HF validation testing data for Agency's review

Additionally, our evaluation of the proposed packaging, label and labeling identified areas of vulnerability that may lead to medication errors. Above, we have provided recommendations in Table 4 for the Division and Table 5 for the Applicant. We ask that the Division convey Table 5 in its entirety to the Applicant so that recommendations are implemented prior to approval of this BLA 125326 Supplement 70.

4.1 RECOMMENDATIONS FOR THE NOVARTIS PHARMACEUTICALS CORPORATION Based on our evaluation of the HF validation study reports and proposed label and labeling, we identified areas of vulnerability that may lead to medication errors. We have provided recommendations in Table 5 and we recommend that you implement these recommendations.

## APPENDICES: METHODS & RESULTS FOR EACH MATERIALS REVIEWED

## APPENDIX A. DRUG PRODUCT INFORMATION/PRESCRIBING INFORMATION Table 6 presents relevant product information for Kesimpta that Novartis Pharmaceuticals Corporation submitted on December 20, 2019.

| Table 6. Relevant Produc | Table 6. Relevant Product Information                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Initial Approval Date    | 10/26/2009                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Therapeutic Drug Class   | (b) (4) CD20-directed cytolytic antibody                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| or New Drug Class        |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Active Ingredient        | ofatumumab                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Indication               | treatment of relapsing forms of multiple sclerosis (MS), to include clinically isolated syndrome, relapsing-remitting disease, and active secondary progressive disease, in adults                                                                                                                                                                                                                                                           |  |  |  |  |
| Route of                 | Subcutaneous                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Administration           |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Dosage Form              | Injection solution                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Strength                 | 20 mg/0.4 mL                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Dose and Frequency       | The recommended dose is 20 mg administered by subcutaneous<br>injection with: initial dosing at Weeks 0, 1, and 2 followed by<br>subsequent monthly dosing, starting at Week 4<br>Missed Doses<br>If an injection is missed, it should be administered as soon as<br>possible without waiting until the next scheduled dose.<br>Subsequent doses should be administered at the recommended<br>intervals.<br>2.3 Administration Instructions- |  |  |  |  |
|                          | <sup>(b) (4)</sup> the abdomen,                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                          | thigh, and outer upper arm.                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                          | The first injection should be performed under the guidance of a healthcare professional 2.4 Preparation Refere administration remove Sensoready® per or pro-filled                                                                                                                                                                                                                                                                           |  |  |  |  |
|                          | Before administration, remove Sensoready <sup>®</sup> pen or pre-filled<br>syringe from the refrigerator and allow to reach room<br>temperature for about 15 to 30 minutes. DO NOT remove the<br>needle cover while allowing the pre-filled syringe to reach room<br>temperature.                                                                                                                                                            |  |  |  |  |

|                | Inspect visually for particulate matter (b) (4). Do                  |  |  |
|----------------|----------------------------------------------------------------------|--|--|
|                | not use if the liquid contains visible particles or is cloudy.       |  |  |
| How Supplied   | <u>Sensoready<sup>®</sup> pen:</u>                                   |  |  |
|                | Carton of one 20 mg/0.4 mL single-use Sensoready <sup>®</sup> pen    |  |  |
|                | (injection)                                                          |  |  |
|                | NDC 0078-xxxx-xx                                                     |  |  |
|                | Prefilled syringe:                                                   |  |  |
|                | Carton of one 20 mg/0.4 mL single-use pre-filled syringe             |  |  |
|                | (injection)                                                          |  |  |
|                | NDC 0078-xxxx-xx                                                     |  |  |
|                | (b) (4)                                                              |  |  |
| Storage        | Sensoready pens and pre-filled syringes must be refrigerated at      |  |  |
|                | 2°C to 8°C (36°F to 46°F). Keep the product in the original carton   |  |  |
|                | to protect from light until the time of use. Do not freeze. To avoid |  |  |
|                | foaming do not shake.                                                |  |  |
| Container      | Finger grips board                                                   |  |  |
| Closure/Device | Needle Cap                                                           |  |  |
| Constituent    | Syringe guard body Plunger                                           |  |  |
|                | Viewing window                                                       |  |  |
|                | Label & expiration date I<br>Syringe guard wings                     |  |  |
|                | (b) (4) Inspection<br>Window<br>Needle<br>(b) (4) (b) (4) (b) (4)    |  |  |
|                |                                                                      |  |  |
|                | (b) (4)<br>(b) (4)<br>(b) (4)                                        |  |  |
|                |                                                                      |  |  |
| Intended Users | Patients, caregivers, HCP                                            |  |  |
| Intended Use   | Home, clinical                                                       |  |  |
| Environment    |                                                                      |  |  |

## APPENDIX B. BACKGROUND INFORMATION

## B.1 PREVIOUS HF REVIEWS

B.1.1 Methods

On April 7, 2020, we searched the L:drive and AIMS using the terms, of atumumab and IND 111116, to identify reviews previously performed by DMEPA or CDRH.

B.1.2 Results

Our search identified three previous reviews<sup>def</sup>, and we confirmed that our previous recommendations were implement or are discussed in this review.

APPENDIX C. BACKGROUND INFORMATION ON HUMAN FACTORS ENGINEERING PROCESS

The background information can be accessed in EDR via: <u>\\cdsesub1\evsprod\bla125326\0262\m5\53-clin-stud-rep\535-rep-effic-safety-stud\ms\5354-</u> <u>other-stud-rep\hfesr\rpt-omb157-hfesr-delta.pdf</u>

\\cdsesub1\evsprod\bla125326\0262\m5\53-clin-stud-rep\535-rep-effic-safety-stud\ms\5354other-stud-rep\hfesr\rpt-omb157-hfesr-pfs.pdf

## APPENDIX D. HUMAN FACTORS VALIDATION STUDY RESULTS REPORT

The HF study results reports can be accessed in EDR via: <u>\\cdsesub1\evsprod\bla125326\0262\m5\53-clin-stud-rep\535-rep-effic-safety-stud\ms\5354-other-stud-rep\hfesr\rpt-omb157-hfesr-delta.pdf</u>

\\cdsesub1\evsprod\bla125326\0262\m5\53-clin-stud-rep\535-rep-effic-safety-stud\ms\5354other-stud-rep\hfesr\rpt-omb157-hfesr-pfs.pdf

## APPENDIX E. INFORMATION REQUESTS ISSUED DURING THE REVIEW

In response to the Agency's March 12, 2020 Information Request, the Applicant submitted an updated table of root cause analysis and subjective feedback for both the prefilled syringe and autoinjector data. See EDR links:

\\cdsesub1\evsprod\bla125326\0262\m5\53-clin-stud-rep\535-rep-effic-safety-stud\ms\5354other-stud-rep\hfesr\rpt-omb157-hfesr-delta.pdf

<sup>&</sup>lt;sup>d</sup> Rider, B. Use-Related Risk Analysis Review for Ofatumumab injection (IND 111116). Silver Spring (MD): FDA, CDER, OSE, DMEPA (US); 2018 JAN 31. RCM No.: 2017-1775-1.

<sup>&</sup>lt;sup>e</sup> Whaley, E. Human Factors Protocol Review for Ofatumumab injection (IND 111116). Silver Spring (MD): FDA, CDER, OSE, DMEPA (US); 2018 JUN 20. RCM No.: 2018-617.

<sup>&</sup>lt;sup>f</sup> Karpow, C. Human Factors Protocol Review Memo for Ofatumumab injection (IND 111116). Silver Spring (MD): FDA, CDER, OSE, DMEPA (US); 2018 NOV 8. RCM No.: 2018-617-1.

\\cdsesub1\evsprod\bla125326\0262\m5\53-clin-stud-rep\535-rep-effic-safety-stud\ms\5354other-stud-rep\hfesr\rpt-omb157-hfesr-pfs.pdf

In response to the Agency's March 20, 2020 Information Request, the Applicant submitted information to justify that the education demographics of the HF validation study participants are reflective of the intended users of the proposed product. The Applicant indicated that the results of the REALM-SF<sup>g</sup> test of study indicated that 12% of the study participants had had a health literacy score equivalent to a seventh to eighth grade educational level. The Applicant also noted that 5 out of 30 injection naïve participants (17%) and 3 out of 35 injection experienced participants (9%) had a health literacy score equivalent to a seventh to eighth grade educational level, which per the Applicant is greater than the US adult population rates (i.e. the Applicant noted that US Census Bureau results for the 'Educational Attainment in the United States: 2018' showed that less than 4% of the US adult population have an educational level of 8th grade or below). As such, the Applicant determined that the education demographics of the participants in the HF validation studies are reflective of the intended user population. The Applicant provided their response on March 24, 2020. See EDR link:

\\cdsesub1\evsprod\bla125326\0266\m1\us\fda-response-clinical-03242020.pdf

<sup>&</sup>lt;sup>g</sup> The Rapid Estimate of Adult Literacy in Medicine—Short Form (REALM-SF) is a 7-item word recognition test to provide clinicians with an assessment of patient health literacy. Source: <u>https://www.ahrq.gov/health-literacy/quality-resources/tools/literacy/index.html</u>.

## APPENDIX F. LABELS AND LABELING

## F.1 List of Labels and Labeling Reviewed

Using the principles of human factors and Failure Mode and Effects Analysis,<sup>h</sup> along with postmarket medication error data, we reviewed the following Kesimpta (ofatumumab) labels and labeling submitted by Novartis Pharmaceuticals Corporation.

- Container label received on December 20, 2019
- Carton labeling received on December 20, 2019
- Professional Sample container label received on December 20, 2019
- Professional Sample carton labeling received on December 20, 2019
- Instructions for Use (Image not shown) received on December 23, 2019
   EDR link: \\cdsesub1\evsprod\bla125326\0249\m1\us\proposed.pdf
- Prescribing Information (Image not shown) received on December 23, 2019
  - o EDR link: \\cdsesub1\evsprod\bla125326\0249\m1\us\proposed.pdf

## 6 Pages of Draft Labeling have been Withheld in Full as b4 (CCI/TS) immediately following this page.

<sup>&</sup>lt;sup>h</sup> Institute for Healthcare Improvement (IHI). Failure Modes and Effects Analysis. Boston. IHI:2004.

This is a representation of an electronic record that was signed electronically. Following this are manifestations of any and all electronic signatures for this electronic record.

-----

/s/

EBONY A WHALEY 05/06/2020 03:29:58 PM

LOLITA G WHITE 05/06/2020 04:48:53 PM

QUYNHNHU T NGUYEN 05/06/2020 04:53:03 PM

## CENTER FOR DRUG EVALUATION AND RESEARCH

**APPLICATION NUMBER:** 

# 125326Orig1s070

# **PROPRIETARY NAME REVIEW(S)**

## **PROPRIETARY NAME REVIEW**

Division of Medication Error Prevention and Analysis (DMEPA) Office of Medication Error Prevention and Risk Management (OMEPRM) Office of Surveillance and Epidemiology (OSE) Center for Drug Evaluation and Research (CDER)

# \*\*\* This document contains proprietary information that cannot be released to the public\*\*\*

| Date of This Review:         | March 23, 2020                                                                  |  |
|------------------------------|---------------------------------------------------------------------------------|--|
| Application Type and Number: | BLA 125326/S-070                                                                |  |
| Product Name and Strength:   | Kesimpta (ofatumumab) Injection [pre-filled syringe], 20 mg/0.4 mL              |  |
|                              | Kesimpta Sensoready Pen (ofatumumab) Injection [pen autoinjector], 20 mg/0.4 mL |  |
| Product Type:                | Combination Product (Biologic-Device)                                           |  |
| Rx or OTC:                   | Prescription (Rx)                                                               |  |
| Applicant/Sponsor Name:      | Novartis Pharmaceutical Corporation (Novartis)                                  |  |
| Panorama #:                  | 2020-36962958 (Kesimpta); 2020-36970293<br>(Kesimpta Sensoready Pen)            |  |
| DMEPA Safety Evaluator:      | Denise V. Baugh, PharmD, BCPS                                                   |  |
| DMEPA Team Leader:           | Briana Rider, PharmD, CPPS                                                      |  |

## Contents

| 1 INT  | RODUCTION              | 1  |
|--------|------------------------|----|
| 1.1    | Regulatory History     | .1 |
| 1.2    | Product Information    | 1  |
| 2 RES  | ULTS                   | 2  |
| 2.1    | Misbranding Assessment | 2  |
| 2.2    | Safety Assessment      | 2  |
| 3 CON  | NCLUSION               | .6 |
| 3.1    | Comments to Novartis   | 6  |
| 4 REF  | ERENCES                | .7 |
| APPENI | DICES                  | .8 |
|        |                        |    |

## **1 INTRODUCTION**

This review evaluates the proposed proprietary names, Kesimpta and Kesimpta Sensoready Pen, from a safety and misbranding perspective. The sources and methods used to evaluate the proposed proprietary name are outlined in the reference section and Appendix A respectively. Novartis did not submit an external name study for these proposed proprietary names.

## **1.1 REGULATORY HISTORY**

Novartis currently markets of atumumab under the proprietary name Arzerra for BLA 125326 which was approved October 26, 2009. Arzerra is indicated for the treatment of chronic lymphocytic leukemia.

On December 20, 2019, Novartis submitted efficacy supplement (070) to seek approval of ofatumumab for the treatment of relapsing forms of multiple sclerosis under a different proprietary name, with separate and distinct labeling and presentations (i.e., prefilled syringe and auto-injector).

Thus, Novartis submitted the names, Kesimpta and Kesimpta Sensoready Pen, for a dual proprietary name review on January 6, 2020.

## **1.2 PRODUCT INFORMATION**

The following product information for Kesimpta and Kesimpta Sensoready Pen is provided in the proprietary name submission received on January 6, 2020.

- Intended Pronunciation: Ke-SIMP-ta and Ke-SIMP-ta SEN-so-re-di pen
- Nonproprietary Name: of atumumab
- Indication of Use: Treatment of relapsing forms of multiple sclerosis
- Route of Administration: subcutaneous
- Dosage Form: injection
- Strength: 20 mg/0.4 mL
- Dose and Frequency: 20 mg at week 0, 1, and 2, then every month beginning with week 4
- How Supplied: carton of one 20 mg/0.4 mL prefilled syringe (Kesimpta); carton of one 20 mg/0.4 mL auto-injector (Kesimpta Sensoready Pen)
- Storage: Refrigerate between 2°C to 8°C (36°F to 46°F). Keep in original container to protect from light until time of use. Do not freeze. To avoid foaming, do not shake.

## 2 RESULTS

The following sections provide information obtained and considered in the overall evaluation of the proposed proprietary names.

#### 2.1 MISBRANDING ASSESSMENT

The Office of Prescription Drug Promotion (OPDP) determined that the proposed names would not misbrand the proposed product. The Division of Medication Error Prevention and Analysis (DMEPA) and the Division of Neurology 2 (DN 2) concurred with the findings of OPDP's assessment of the proposed names.

#### 2.2 SAFETY ASSESSMENT

The following aspects were considered in the safety evaluation of the proposed proprietary name.

#### 2.2.1 United States Adopted Names (USAN) Search

There is no USAN stem present in the proposed proprietary names<sup>a</sup>.

#### 2.2.2 Components of the Proposed Proprietary Names and Analysis of Modifier "Sensoready Pen"

Novartis did not provide a derivation or intended meaning for the proposed proprietary names, Kesimpta and Kesimpta Sensoready Pen, in their submission.

#### <u>Kesimpta</u>

The proprietary name, Kesimpta, is comprised of a single word that does not contain any components (i.e. a modifier, route of administration, dosage form, etc.) that are misleading or can contribute to medication error.

#### Kesimpta Sensoready Pen

The proprietary name Kesimpta Sensoready Pen is comprised of the root name, Kesimpta and the modifier, 'Sensoready Pen'. The Applicant states that 'Sensoready Pen' refers to the name of the autoinjector device and is the same device used to deliver two other Novartis products, Cosentyx (BLA 125504) and Erelzi (BLA 761042). We note that the naming convention of adding a modifier to represent a specific device has been used before to differentiate the autoinjector presentation from other presentations (e.g., vial, prefilled syringe).

We acknowledge that modifiers may sometimes be omitted. If the modifiers, Sensoready Pen, are omitted, the pharmacist should call the prescriber to seek clarification, or the patient may receive the prefilled syringe presentation. However, since the 20 mg/0.4 mL strength will be available in both the prefilled syringe and autoinjector presentations, the patient will still be receiving the correct product and dose. Furthermore, as with any product that is available in multiple dosage forms or packaging presentations, the prescriber will need to indicate the intended product on the prescription.

<sup>&</sup>lt;sup>a</sup> USAN stem search conducted on January 21, 2020.

We do not anticipate that the modifiers "Sensoready Pen" will be written on their own on a prescription without the root name. Additionally, we do not anticipate any confusion between Cosentyx Sensoready Pen, Erelzi Sensoready Pen, and Kesimpta Sensoready Pen, given the root names are different. Also, we are not aware of any errors relating to the misinterpretation of the modifiers "Sensoready Pen" through our routine post-marketing surveillance.

In summary, we acknowledge that the proposed modifier, "Sensoready Pen", is consistent with the device platform of the proposed product and with the naming strategy used for other products, including Cosentyx and Erelzi. Furthermore, use of a modifier such as "Sensoready Pen" provides a safe means to differentiate the pen autoinjector from the prefilled syringe presentation of of atumumab. Thus, we find the use of the modifiers, Sensoready Pen, appropriate for this product.

## 2.2.3 Comments from Other Review Disciplines at Initial Review

In response to the OSE, January 16, 2020 e-mail, the Division of Neurology 2 (DN 2) did not forward any comments or concerns relating to Kesimpta at the initial phase of the review.

## 2.2.4 FDA Name Simulation Studies

## <u>Kesimpta</u>

Ninety-nine practitioners participated in DMEPA's prescription studies for Kesimpta. The responses did not overlap with any currently marketed products nor did the responses sound or look similar to any currently marketed products or any products in the pipeline. However, one respondent in the CPOE simulation study interpreted Kesimpta as the discontinued product, Kemstro. We evaluated the name pair, Kesimpta and Kemstro, further and find that Kemstro (NDA 021589) was withdrawn FR effective July 21, 2017 and there are no generic equivalents available. Thus, we find there is no risk of name confusion (See Appendix G).

#### Kesimpta Sensoready Pen

Eighty-eight practitioners participated in DMEPA's prescription studies for Kesimpta Sensoready Pen. The responses did not directly overlap with any currently marketed products or any products in the pipeline.

One respondent in the voice study interpreted the proposed proprietary name as "Casentra Sensa Ready Pen", which sound similar to the marketed product Kcentra. We evaluated the name pair, Kesimpta and Kcentra, further and find that there are sufficient orthographic and product characteristic differences.

Orthographically, the suffixes (pta vs. tra) look sufficiently different. Kesimpta contains the downstroke letter 'p', which gives the names different shapes when scripted.

Additionally, the modifier "Sensoready Pen" may provide additional orthographic and phonetic differentiation, if included.

Furthermore, there is no direct overlap in strength (20 mg/0.4 mL vs. 500 U range), dosage form (injection vs. lyophilized concentrate), route of administration (subcutaneous vs. intravenous), or frequency of administration (week 0, 1, and 2, then every month beginning with week 4 vs. as needed for urgent reversal of acquired coagulation factor deficiency), which may provide additional differentiation if included.

When all of the aforementioned mitigations are considered in totality, we find the risk of name confusion is mitigated to an acceptable level (See Appendix E).

Appendix B contains the results from the prescription simulation studies.

## 2.2.5 Phonetic and Orthographic Computer Analysis (POCA) Search Results

Our POCA search<sup>b</sup> identified 55 names with a combined phonetic and orthographic score of  $\geq$ 55% or an individual phonetic or orthographic score  $\geq$ 70%. These names are included in Table 1 below.

## 2.2.6 Names Retrieved for Review Organized by Name Pair Similarity

Table 1 lists the number of names retrieved from our POCA search. These name pairs are organized as highly similar, moderately similar or low similarity for further evaluation.

| Table 1. Names Retrieved for Review Organized by Name Pair Similarity                     |                 |  |
|-------------------------------------------------------------------------------------------|-----------------|--|
| Similarity Category                                                                       | Number of Names |  |
| Highly similar name pair:<br>combined match percentage score $\geq 70\%$                  | 1               |  |
| Moderately similar name pair:<br>combined match percentage score $\geq$ 55% to $\leq$ 69% | 53              |  |
| Low similarity name pair:<br>combined match percentage score $\leq 54\%$                  | 1               |  |

# 2.2.7 Safety Analysis of Names with Potential Orthographic, Spelling, and Phonetic Similarities

Our analysis of the 55 names contained in Table 1 determined none of the names will pose a risk for confusion as described in Appendices C through H.

## 2.2.8 Evaluation of Dual Proprietary Names

Novartis currently markets of a unumab injection under the proprietary name, Arzerra, for the treatment of chronic lymphocytic leukemia under BLA 125326 (See Section 1.1 above), and now seeks the dual proprietary names, Kesimpta and Kesimpta Sensoready Pen, for the new indication of treatment of relapsing forms of multiple sclerosis. Table 2 provides a side-by-side comparison of the two proprietary names and their respective product characteristics.

<sup>&</sup>lt;sup>b</sup> POCA search conducted on February 26, 2020 in version 4.3.

| Table 2. Relevant Product Information for Arzerra and Kesimpta |                                                                                                              |                                                                                                                                                                               |  |  |  |  |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                | Arzerra                                                                                                      | Kesimpta                                                                                                                                                                      |  |  |  |  |
| Approval date                                                  | October 26, 2009                                                                                             | Not applicable                                                                                                                                                                |  |  |  |  |
| Intended<br>pronunciation                                      | ahr-zer´-a                                                                                                   | Ke-SIMP-ta                                                                                                                                                                    |  |  |  |  |
| Indication                                                     | Treatment of chronic lymphocytic leukemia                                                                    | Treatment of relapsing forms of multiple sclerosis                                                                                                                            |  |  |  |  |
| Route of administration                                        | Intravenous infusion                                                                                         | subcutaneous                                                                                                                                                                  |  |  |  |  |
| Dosage Form                                                    | injection                                                                                                    | injection                                                                                                                                                                     |  |  |  |  |
| Strength                                                       | 100 mg/5 mL and<br>1000 mg/50 mL                                                                             | 20 mg/0.4 mL                                                                                                                                                                  |  |  |  |  |
| Dose and<br>Frequency                                          | 300 mg on Day 1 followed by 1000<br>mg to 2000 mg depending upon the<br>CLL indication                       | 20 mg at week 0, 1, and 2, then every month beginning with week 4                                                                                                             |  |  |  |  |
| How Supplied                                                   | Carton of three single use glass vials, 100 mg/5 mL in a carton;                                             | Carton of one 20 mg/0.4 mL single use pre-filled syringe (Kesimpta);                                                                                                          |  |  |  |  |
|                                                                | Carton of one single use glass vial, 1000 mg/50 mL in a carton                                               | Carton of one 20 mg/0.4 mL single<br>use auto-injector (Kesimpta<br>Sensoready Pen)                                                                                           |  |  |  |  |
| Storage                                                        | Refrigerate between<br>2°C to 8°C (36°F to 46°F). Do not<br>freeze. Vials should be protected<br>from light. | Refrigerate between<br>2°C to 8°C (36°F to 46°F). Keep in<br>original container to protect from light<br>until time of use. Do not freeze. To<br>avoid foaming, do not shake. |  |  |  |  |

We have evaluated the risks associated with this naming strategy and do not object to the use of a dual proprietary name in this case.

#### 2.2.9 Communication of DMEPA's Analysis at Midpoint of Review

DMEPA communicated our findings to the Division of Neurology 2 (DN 2) via e-mail on March 17, 2020. At that time, we also requested additional information or concerns that could inform our review. Per e-mail correspondence from the Division of Neurology 2 (DN 2) on March 23, 2020, they stated no additional concerns with the proposed proprietary names, Kesimpta and Kesimpta Sensoready Pen.

## **3** CONCLUSION

The proposed proprietary names Kesimpta and Kesimpta Sensoready Pen, are acceptable.

If you have any questions or need clarifications, please contact Monique Killen, OSE project manager, at 240-402-1985.

## 3.1 COMMENTS TO NOVARTIS

We have completed our review of the proposed proprietary names, Kesimpta and Kesimpta Sensoready Pen and have concluded that the names are acceptable.

If any of the proposed product characteristics as stated in your submission, received on January 6, 2020, are altered prior to approval of the marketing application, the names must be resubmitted for review.

#### REFERENCES 4

1. USAN Stems (https://www.ama-assn.org/about/united-states-adopted-names-approved-stems)

USAN Stems List contains all the recognized USAN stems.

#### 2. Phonetic and Orthographic Computer Analysis (POCA)

POCA is a system that FDA designed. As part of the name similarity assessment, POCA is used to evaluate proposed names via a phonetic and orthographic algorithm. The proposed proprietary name is converted into its phonemic representation before it runs through the phonetic algorithm. Likewise, an orthographic algorithm exists that operates in a similar fashion. POCA is publicly accessible.

#### Drugs@FDA

Drugs@FDA is an FDA Web site that contains most of the drug products approved in the United States since 1939. The majority of labels, approval letters, reviews, and other information are available for drug products approved from 1998 to the present. Drugs@FDA contains official information about FDAapproved brand name and generic drugs; therapeutic biological products, prescription and over-thecounter human drugs; and discontinued drugs (see Drugs @ FDA Glossary of Terms, available at http://www.fda.gov/Drugs/InformationOnDrugs/ucm079436.htm#ther biological).

#### **R**xNorm

RxNorm contains the names of prescription and many OTC drugs available in the United States. RxNorm includes generic and branded:

- Clinical drugs pharmaceutical products given to (or taken by) a patient with therapeutic or diagnostic intent
- Drug packs packs that contain multiple drugs, or drugs designed to be administered in a • specified sequence

Radiopharmaceuticals, contrast media, food, dietary supplements, and medical devices, such as bandages and crutches, are all out of scope for RxNorm

(http://www.nlm.nih.gov/research/umls/rxnorm/overview.html).

#### Division of Medication Errors Prevention and Analysis proprietary name consultation requests

This is a list of proposed and pending names that is generated by the Division of Medication Error Prevention and Analysis from the Access database/tracking system.

#### APPENDICES

#### Appendix A

FDA's Proprietary Name Risk Assessment evaluates proposed proprietary names for misbranding and safety concerns.

- 1. **Misbranding Assessment**: For prescription drug products, OPDP assesses the name for misbranding concerns. For over-the-counter (OTC) drug products, the misbranding assessment of the proposed name is conducted by DNDP. OPDP or DNDP evaluates proposed proprietary names to determine if the name is false or misleading, such as by making misrepresentations with respect to safety or efficacy. For example, a fanciful proprietary name may misbrand a product by suggesting that it has some unique effectiveness or composition when it does not (21 CFR 201.10(c)(3)). OPDP or DNDP provides their opinion to DMEPA for consideration in the overall acceptability of the proposed proprietary name.
- 2. **Safety Assessment**: The safety assessment is conducted by DMEPA, and includes the following:
- a. Preliminary Assessment: We consider inclusion of USAN stems or other characteristics that when incorporated into a proprietary name may cause or contribute to medication errors (i.e., dosing interval, dosage form/route of administration, medical or product name abbreviations, names that include or suggest the composition of the drug product, etc.) See prescreening checklist below in Table 2\*. DMEPA defines a medication error as any preventable event that may cause or lead to inappropriate medication use or patient harm while the medication is in the control of the health care professional, patient, or consumer. <sup>c</sup>

<sup>&</sup>lt;sup>c</sup> National Coordinating Council for Medication Error Reporting and Prevention. <u>http://www.nccmerp.org/aboutMedErrors.html</u>. Last accessed 10/11/2007.

|     | Answer the questions in the checklist below. Affirmative answers<br>to any of these questions indicate a potential area of concern that<br>should be carefully evaluated as described in this guidance.                                                       |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Y/N | Is the proposed name obviously similar in spelling and pronunciation to other names?                                                                                                                                                                          |
|     | Proprietary names should not be similar in spelling or pronunciation to proprietary names, established names, or ingredients of other products.                                                                                                               |
| Y/N | Are there inert or inactive ingredients referenced in the proprietary name?                                                                                                                                                                                   |
|     | Proprietary names should not incorporate any reference to an inert or inactive ingredient in a way that might create an impression that the ingredient's value is greater than its true functional role in the formulation $(21 \text{ CFR } 201.10(c)(4))$ . |
| Y/N | Does the proprietary name include combinations of active ingredients?                                                                                                                                                                                         |
|     | Proprietary names of fixed combination drug products should not include or suggest the name of one or more, but not all, of its active ingredients (see 21 CFR 201.6(b)).                                                                                     |
| Y/N | Is there a United States Adopted Name (USAN) stem in the proprietary name?                                                                                                                                                                                    |
|     | Proprietary names should not incorporate a USAN stem in the position that USAN designates for the stem.                                                                                                                                                       |
| Y/N | Is this proprietary name used for another product that does not share at least<br>one common active ingredient?                                                                                                                                               |
|     | Drug products that do not contain at least one common active ingredient should not use the same (root) proprietary name.                                                                                                                                      |
| Y/N | Is this a proprietary name of a discontinued product?                                                                                                                                                                                                         |
|     | Proprietary names should not use the proprietary name of a discontinued product if that discontinued drug product does not contain the same active ingredients.                                                                                               |

- b. Phonetic and Orthographic Computer Analysis (POCA): Following the preliminary screening of the proposed proprietary name, DMEPA staff evaluates the proposed name against potentially similar names. In order to identify names with potential similarity to the proposed proprietary name, DMEPA enters the proposed proprietary name in POCA and queries the name against the following drug reference databases, Drugs@fda, CernerRxNorm, and names in the review pipeline using a 55% threshold in POCA. DMEPA reviews the combined orthographic and phonetic matches and group the names into one of the following three categories:
  - Highly similar pair: combined match percentage score  $\geq 70\%$ .
  - Moderately similar pair: combined match percentage score  $\geq$  55% to  $\leq$  69%.
  - Low similarity: combined match percentage score  $\leq 54\%$ .

Using the criteria outlined in the check list (Table 3-5) that corresponds to each of the three categories (highly similar pair, moderately similar pair, and low similarity), DMEPA evaluates the name pairs to determine the acceptability or non-acceptability of a proposed proprietary name. The intent of these checklists is to increase the transparency and predictability of the safety determination of whether a proposed name is vulnerable to confusion from a look-alike or sound-alike perspective. Each bullet below corresponds to the name similarity category cross-references the respective table that addresses criteria that DMEPA uses to determine whether a name presents a safety concern from a look-alike or sound-alike perspective.

- For highly similar names, differences in product characteristics often cannot mitigate the risk of a medication error, including product differences such as strength and dose. Thus, proposed proprietary names that have a combined score of ≥ 70 percent are at risk for a look-alike sound-alike confusion which is an area of concern (See Table 3).
- Moderately similar names are further evaluated to identify the presence of attributes that are known to cause name confusion.
  - Name attributes: We note that the beginning of the drug name plays a significant role in contributing to confusion. Additionally, drug name pairs that start with the same first letter and contain a shared letter string of at least 3 letters in both names are major contributing factor in the confusion of drug names<sup>d</sup>. We evaluate all moderately similar names retrieved from POCA to identify the above attributes. These names are further evaluated to identify overlapping or similar strengths or doses.
  - Product attributes: Moderately similar names of products that have overlapping or similar strengths or doses represent an area for concern for FDA. The dose and strength information is often located in close proximity to the drug name itself on prescriptions and medication orders, and the information can be an important factor that either increases or decreases the potential for confusion between similarly named drug pairs. The ability of other product characteristics to mitigate confusion (e.g., route, frequency, dosage form) may be limited when the strength or dose overlaps. DMEPA reviews such names further, to determine whether sufficient differences exist to prevent confusion. (See Table 4).
- Names with low similarity that have no overlap or similarity in strength and dose are generally acceptable (See Table 5) unless there are data to suggest that the name might be vulnerable to confusion (e.g., prescription simulation study suggests that the name is likely to be misinterpreted as a marketed product). In these instances, we would reassign a low similarity name to the moderate similarity category and review according to the moderately similar name pair checklist.

<sup>&</sup>lt;sup>d</sup> Shah, M, Merchant, L, Characteristics That May Help in the Identification of Potentially Confusing Proprietary Drug Names. Therapeutic Innovation & Regulatory Science, September 2016

c. FDA Prescription Simulation Studies: DMEPA staff also conducts a prescription simulation studies using FDA health care professionals.

Four separate studies are conducted within the Centers of the FDA for the proposed proprietary name to determine the degree of confusion of the proposed proprietary name with marketed U.S. drug names (proprietary and established) due to similarity in visual appearance with handwritten prescriptions, verbal pronunciation of the drug name or during computerized provider order entry. The studies employ healthcare professionals (pharmacists, physicians, and nurses), and attempts to simulate the prescription ordering process. The primary Safety Evaluator uses the results to identify vulnerability of the proposed name to be misinterpreted by healthcare practitioners during written, verbal, or electronic prescribing.

In order to evaluate the potential for misinterpretation of the proposed proprietary name during written, verbal, or electronic prescribing of the name, written inpatient medication orders, written outpatient prescriptions, verbal orders, and electronic orders are simulated, each consisting of a combination of marketed and unapproved drug products, including the proposed name.

d. Comments from Other Review Disciplines: DMEPA requests the Office of New Drugs (OND) and/or Office of Generic Drugs (OGD), ONDQA or OBP for their comments or concerns with the proposed proprietary name, ask for any clinical issues that may impact the DMEPA review during the initial phase of the name review. Additionally, when applicable, at the same time DMEPA requests concurrence/non-concurrence with OPDP's decision on the name. The primary Safety Evaluator addresses any comments or concerns in the safety evaluator's assessment.

The OND/OGD Regulatory Division is contacted a second time following our analysis of the proposed proprietary name. At this point, DMEPA conveys their decision to accept or reject the name. The OND or OGD Regulatory Division is requested to provide any further information that might inform DMEPA's final decision on the proposed name.

Additionally, other review disciplines opinions such as ONDQA or OBP may be considered depending on the proposed proprietary name.

When provided, DMEPA considers external proprietary name studies conducted by or for the Applicant/Sponsor and incorporates the findings of these studies into the overall risk assessment.

The DMEPA primary reviewer assigned to evaluate the proposed proprietary name is responsible for considering the collective findings, and provides an overall risk assessment of the proposed proprietary name.

Table 3. Highly Similar Name Pair Checklist (i.e., combined Orthographic and Phonetic score is  $\geq$  70%).

Answer the questions in the checklist below. Affirmative answers to some of these questions suggest that the pattern of orthographic or phonetic differences in the names may render the names less likely to confusion, provided that the pair does not share a common strength or dose.

| Orthographic Checklist |                                                                                                                                                                           | Phonetic Checklist |                                                                                                                 |  |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------|--|
| Y/N                    | Do the names begin with different first letters?                                                                                                                          | Y/N                | Do the names have different number of syllables?                                                                |  |
|                        | Note that even when names begin with<br>different first letters, certain letters may be<br>confused with each other when scripted.                                        |                    |                                                                                                                 |  |
| Y/N                    | Are the lengths of the names dissimilar* when scripted?                                                                                                                   | Y/N                | Do the names have different syllabic stresses?                                                                  |  |
|                        | *FDA considers the length of names<br>different if the names differ by two or more<br>letters.                                                                            |                    |                                                                                                                 |  |
| Y/N                    | Considering variations in scripting of some letters (such as $z$ and $f$ ), is there a different number or placement of upstroke/downstroke letters present in the names? | Y/N                | Do the syllables have different<br>phonologic processes, such<br>vowel reduction, assimilation,<br>or deletion? |  |
| Y/N                    | Is there different number or<br>placement of cross-stroke or dotted<br>letters present in the names?                                                                      | Y/N                | Across a range of dialects, are<br>the names consistently<br>pronounced differently?                            |  |
| Y/N                    | Do the infixes of the name appear dissimilar when scripted?                                                                                                               |                    |                                                                                                                 |  |
| Y/N                    | Do the suffixes of the names appear dissimilar when scripted?                                                                                                             |                    |                                                                                                                 |  |

## Table 4: Moderately Similar Name Pair Checklist (i.e., combined score is $\geq 55\%$ to $\leq 69\%$ ).

|        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1 | Review the DOSAGE AND ADMINISTRATION and HOW<br>SUPPLIED/STORAGE AND HANDLING sections of the prescribing<br>information (or for OTC drugs refer to the Drug Facts label) to determine if<br>strengths and doses of the name pair overlap or are very similar. Different<br>strengths and doses for products whose names are moderately similar may<br>decrease the risk of confusion between the moderately similar name pairs. Name<br>pairs that have overlapping or similar strengths or doses have a higher potential<br>for confusion and should be evaluated further (see Step 2). Because the strength<br>or dose could be used to express an order or prescription for a particular drug<br>product, overlap in one or both of these components would be reason for further<br>evaluation. |
|        | For single strength products, also consider circumstances where the strength may not be expressed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | For any i.e. drug products comprised of more than one active ingredient, consider whether the strength or dose may be expressed using only one of the components.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | To determine whether the strengths or doses are similar to your proposed<br>product, consider the following list of factors that may increase confusion:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        | • Alternative expressions of dose: 5 mL may be listed in the prescribing information, but the dose may be expressed in metric weight (e.g., 500 mg) or in non-metric units (e.g., 1 tsp, 1 tablet/capsule). Similarly, a strength or dose of 1000 mg may be expressed, in practice, as 1 g, or vice versa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | • Trailing or deleting zeros: 10 mg is similar in appearance to 100 mg which may potentiate confusion between a name pair with moderate similarity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | • Similar sounding doses: 15 mg is similar in sound to 50 mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Step 2 | Answer the questions in the checklist below. Affirmative answers to some of these questions suggest that the pattern of orthographic or phonetic differences in the names may reduce the likelihood of confusion for moderately similar names <b>with</b> overlapping or similar strengths or doses.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Orthographic Checklist (Y/N to question)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | each Phonetic Checklist (Y/N to each question)                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Do the names begin with first letters?<br/>Note that even when names I different first letters, certain confused with each other wh</li> <li>Are the lengths of the nat dissimilar* when scripter *FDA considers the length of different if the names differ more letters.</li> <li>Considering variations i of some letters (such as there a different number placement of upstroke/d letters present in the names and the sufficient of cross-strok letters present in the names and the suffixes of the name dissimilar when scripted.</li> <li>Do the infixes of the name dissimilar when scripted.</li> <li>Do the suffixes of the name dissimilar when scripted.</li> </ul> | <ul> <li>different number of syllables?</li> <li>Do the names have different syllabic stresses?</li> <li>Do the syllables have different phonologic processes, such vowel reduction, assimilation, or deletion?</li> <li>Across a range of dialects, are the names consistently pronounced differently?</li> <li>Across a ppear</li> <li>n scripting</li> <li>are the names consistently?</li> </ul> |

#### Table 5: Low Similarity Name Pair Checklist (i.e., combined score is ≤54%).

Names with low similarity are generally acceptable unless there are data to suggest that the name might be vulnerable to confusion (e.g., prescription simulation study suggests that the name is likely to be misinterpreted as a marketed product). In these instances, we would reassign a low similarity name to the moderate similarity category and review according to the moderately similar name pair checklist.

## <u>Appendix B:</u> Prescription Simulation Samples and Results

## Figure 1. Kesimpta Study (Conducted on January 31, 2020)

| Handwritten Medication Order/Prescription                                                                                                                                                                                                             | Verbal<br>Prescription                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Medication Order:<br>K<br>K<br>Kesimpta 20 mg suboutaneously today<br>Outpatient Prescription:<br>Kesimpta<br>Aive 20 mg Anb & week 0,1,<br>2 then wery 4 weeks<br>#1<br>CPOE Study Sample (displayed as sans-serif, 12-point, bold font)<br>Kesimpta | Kesimpta – give<br>20 mg<br>subcutaneously<br>on weeks 0, 1, 2<br>and every 4<br>weeks. Dispense<br># 1 |

## FDA Prescription Simulation Responses (<u>Aggregate Report</u>)

212 People Received Study99 People Responded

| Total                 | 19         | 41   | 19    | 20        |       |
|-----------------------|------------|------|-------|-----------|-------|
| INTERPRETATION        | OUTPATIENT | CPOE | VOICE | INPATIENT | TOTAL |
| CASEMPTA              | 0          | 0    | 1     | 0         | 1     |
| CASIMPTA              | 0          | 0    | 2     | 0         | 2     |
| CASIMTA               | 0          | 0    | 3     | 0         | 3     |
| CASYMPTA              | 0          | 0    | 2     | 0         | 2     |
| COSEMPTA              | 0          | 0    | 1     | 0         | 1     |
| COSIMPTA              | 0          | 0    | 1     | 0         | 1     |
| CUSIMPTA              | 0          | 0    | 1     | 0         | 1     |
| KASIMPTA              | 0          | 0    | 3     | 0         | 3     |
| KASIMTA               | 0          | 0    | 2     | 0         | 2     |
| KASYMPTA              | 0          | 0    | 1     | 0         | 1     |
| KAZIMTA               | 0          | 0    | 1     | 0         | 1     |
| KEMSTRO               | 0          | 1    | 0     | 0         | 1     |
| KESIMPTA              | 16         | 40   | 0     | 19        | 75    |
| KESIMPTA<br>INJECTION | 1          | 0    | 0     | 0         | 1     |
| KESIMPTAI             | 1          | 0    | 0     | 0         | 1     |
| KESIMPTOR             | 1          | 0    | 0     | 0         | 1     |
| KESIPTA               | 0          | 0    | 0     | 1         | 1     |
| QUESIMTA              | 0          | 0    | 1     | 0         | 1     |

| Handwritten Medication Order/Prescription                                                                                                                                                                                                                                                                                                                                                          | Verbal                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Medication Order:<br><u>Medication Order</u> :<br><u>Kesimpta Sensolung Pen Sorng Subo</u><br><u>today</u><br><u>Outpatient Prescription</u> :<br><u>Kesimpta Sensolvady Pen</u><br><u>Sive 20 mg subculaneou</u><br><u>every week for 3 doses</u><br><u>then every 4 weeks</u><br><u>#4</u><br><u>CPOE Study Sample (displayed as sans-serif, 12-point, bold font)</u><br>Kesimpta Sensoready Pen | Prescription         "Kesimpta         Sensoready Pen -         give 20 mg         subcutaneously         every week for 3         doses, then every         4 weeks         Dispense 4" |

## Figure 1. Kesimpta Sensoready Pen Study (Conducted on February 4, 2020)

## FDA Prescription Simulation Responses (<u>Aggregate Report</u>)

212 People Received Study 88 People Responded

Study Name: Kesimpta Sensoready Pen

| Total                        | 21        | 17     | 32    | 18        |       |
|------------------------------|-----------|--------|-------|-----------|-------|
| INTERPRETATION               | OUTPATIEN | т срое | VOICE | INPATIENT | TOTAL |
| CASEMPTA PEN                 | 0         | 0      | 1     | 0         | 1     |
| CASENTRA SENSA READY<br>PEN  | 0         | 0      | 1     | 0         | 1     |
| CASIMPTA SENSOR READY<br>PEN | 0         | 0      | 1     | 0         | 1     |
| CASIMTA                      | 0         | 0      | 1     | 0         | 1     |
| DESIMPTA SENSOREADY<br>PEN   | 0         | 0      | 0     | 1         | 1     |
| KACEMPTA SENSORETTI<br>PEN   | 0         | 0      | 1     | 0         | 1     |
| KASEMPTA SENSOR READY<br>PEN | 0         | 0      | 1     | 0         | 1     |
| KASIMPSA                     | 0         | 0      | 1     | 0         | 1     |
| KASIMPTA                     | 0         | 0      | 1     | 0         | 1     |
| KASIMPTA PEN                 | 0         | 0      | 1     | 0         | 1     |
| KASIMPTA SENSA READY<br>PEN  | 0         | 0      | 2     | 0         | 2     |
| KASIMPTA SENSAREDI PEN       | 0         | 0      | 1     | 0         | 1     |
| KASIMPTA SENSIREADY<br>PEN   | 0         | 0      | 1     | 0         | 1     |
| KASIMPTA SENSOR READY<br>PEN | 0         | 0      | 1     | 0         | 1     |
| KASIMPTA SENSOREADY<br>PEN   | 0         | 0      | 1     | 0         | 1     |
| KASIMPTA SENSORREDI<br>PEN   | 0         | 0      | 1     | 0         | 1     |
| KASIMPTASENSAREADIPEN        | 0         | 0      | 1     | 0         | 1     |
| KASIMPTO SENSOREADY<br>PEN   | 0         | 0      | 1     | 0         | 1     |

| KASINTHA SENSORETTI<br>PEN   | 0  | 0  | 1 | 0  | 1  |
|------------------------------|----|----|---|----|----|
| KASYMPTA                     | 0  | 0  | 1 | 0  | 1  |
| KASYMPTA PEN                 | 0  | 0  | 1 | 0  | 1  |
| KASYMPTA SENSAREADY<br>PEN   | 0  | 0  | 1 | 0  | 1  |
| KASYMPTA SENSOREADY<br>PEN   | 0  | 0  | 1 | 0  | 1  |
| KAZIPTAM SENSOREDI PEN       | 0  | 0  | 1 | 0  | 1  |
| KERSIMPTA                    | 0  | 0  | 1 | 0  | 1  |
| KESIMPRA SENSOREADY          | 0  | 0  | 0 | 1  | 1  |
| KESIMPRA SENSOREADY<br>PEN   | 0  | 0  | 0 | 1  | 1  |
| KESIMPTA                     | 2  | 0  | 1 | 2  | 5  |
| KESIMPTA PEN                 | 0  | 0  | 1 | 0  | 1  |
| KESIMPTA SENORREADY<br>PEN   | 0  | 0  | 0 | 1  | 1  |
| KESIMPTA SENSORADY<br>PEN    | 1  | 0  | 0 | 0  | 1  |
| KESIMPTA SENSOREADY<br>PEN   | 14 | 17 | 0 | 11 | 42 |
| KESIMPTA SENSOREADY<br>PM    | 0  | 0  | 0 | 1  | 1  |
| KESIMPTA SENSORREADY         | 1  | 0  | 0 | 0  | 1  |
| KESIMPTA SENSORREADY<br>PEN  | 1  | 0  | 0 | 0  | 1  |
| KESIMPTA SENSOR-READY<br>PEN | 0  | 0  | 1 | 0  | 1  |
| KESIMPTA SESNOREADY<br>PEN   | 1  | 0  | 0 | 0  | 1  |
| KESIMPTA SESOREADY<br>PEN    | 1  | 0  | 0 | 0  | 1  |
| KESIMTA SENIREADY PEN        | 0  | 0  | 1 | 0  | 1  |
| TASEMPTA PEN                 | 0  | 0  | 1 | 0  | 1  |
| TECINTA                      | 0  | 0  | 1 | 0  | 1  |

| TESIMTA SENSA READY | 0 | 0 | 1 | 0 | 1 |
|---------------------|---|---|---|---|---|
| PEN                 | 0 | 0 | 1 | 0 | 1 |

#### APPEARS THIS WAY ON ORIGINAL

| No. | Proposed name: Kesimpta       | POCA      | Orthographic and/or phonetic           |
|-----|-------------------------------|-----------|----------------------------------------|
|     | Established name:             | Score (%) | differences in the names sufficient to |
|     | ofatumumab                    |           | prevent confusion                      |
|     | <b>Dosage form:</b> injection |           |                                        |
|     | Strength(s): 20 mg/0.4 mL     |           | Other prevention of failure mode       |
|     |                               |           | expected to minimize the risk of       |
|     | Usual Dose: 20 mg at week 0,  |           | confusion between these two names.     |
|     | 1, and 2, then every month    |           |                                        |
|     | beginning with week 4         |           |                                        |
| 1.  | Kesimpta                      | 100       | Name is the focus of this review.      |

**Appendix C:** Highly Similar Names (e.g., combined POCA score is  $\geq$ 70%)

<u>Appendix D:</u> Moderately Similar Names (e.g., combined POCA score is  $\geq$ 55% to  $\leq$ 69%) with no overlap or numerical similarity in Strength and/or Dose

| No. | Name  | POCA<br>Score (%) |
|-----|-------|-------------------|
| 2.  | Septa | 58                |

<u>Appendix E:</u> Moderately Similar Names (e.g., combined POCA score is  $\geq$ 55% to  $\leq$ 69%) with overlap or numerical similarity in Strength and/or Dose

| No. | Proposed name: Kesimpta                                                                                                                                                       | POCA      | Prevention of Failure Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Established name:<br>ofatumumab<br>Dosage form: injection<br>Strength(s): 20 mg/0.4 mL<br>Usual Dose: 20 mg at week 0,<br>1, and 2, then every month<br>beginning with week 4 | Score (%) | In the conditions outlined below, the<br>following combination of factors, are<br>expected to minimize the risk of<br>confusion between these two names                                                                                                                                                                                                                                                                                                                                                                           |
| 3.  | Cotempla                                                                                                                                                                      | 64        | This name pair has sufficient<br>orthographic and phonetic differences.<br>Orthographically, the prefixes (Kes vs.<br>Cot) look different. The names begin<br>with different first letters (K vs. C) that<br>look different and Cotempla contains<br>the cross-stroke letter 't' in the prefix,<br>whereas Kesimpta does not contain any<br>cross-stroke letters in the prefix, which<br>gives the names different shapes when<br>scripted.<br>Phonetically, the first syllables (ke vs.<br>koh), second syllables (SIMP vs. TEM) |

| No. | <b>Proposed name:</b> Kesimpta<br><b>Established name:</b>                                                                                               | POCA<br>Score (%) | Prevention of Failure Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | ofatumumab<br>Dosage form: injection<br>Strength(s): 20 mg/0.4 mL<br>Usual Dose: 20 mg at week 0,<br>1, and 2, then every month<br>beginning with week 4 |                   | In the conditions outlined below, the<br>following combination of factors, are<br>expected to minimize the risk of<br>confusion between these two names                                                                                                                                                                                                                                                                                                                                                     |
|     |                                                                                                                                                          |                   | and third syllables (ta vs. pluh) sound different.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |                                                                                                                                                          |                   | Additionally, there is no direct overlap<br>in strength (20 mg/0.4 mL vs. 8.6 mg,<br>17.3 mg, 25.9 mg), dose (20 mg vs.<br>17.3 mg to 51.8 mg in increments of<br>8.6 mg to 17.3 mg), dosage form<br>(injection vs. orally disintegrating<br>tablet), route of administration<br>(subcutaneous vs. oral), or frequency<br>of administration (week 0, 1, and 2,<br>then every month beginning with week<br>4 vs. once daily in the morning), which<br>may provide additional differentiation<br>if included. |
| 4.  | Tevimbra***                                                                                                                                              | 60                | This name pair has sufficient orthographic and phonetic differences.                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5.  | Kitabis Pak                                                                                                                                              | 59                | This name pair has sufficient<br>orthographic and phonetic differences.                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6.  | Cassipa                                                                                                                                                  | 58                | This name pair has sufficient<br>orthographic and phonetic differences.                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |                                                                                                                                                          |                   | Additionally, there is no direct overlap<br>in strength (20 mg/0.4 mL vs. 16 mg/4<br>mg), dosage form (injection vs. film),<br>route of administration (subcutaneous<br>vs. sublingual), or frequency of<br>administration (week 0, 1, and 2, then<br>every month beginning with week 4 vs.<br>once daily), which may provide<br>additional differentiation if included.                                                                                                                                    |
| 7.  | (b) (4)                                                                                                                                                  | 58                | This name pair has sufficient orthographic and phonetic differences.                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8.  | Kcentra                                                                                                                                                  | 58                | This name pair has sufficient<br>orthographic and product characteristic<br>differences.                                                                                                                                                                                                                                                                                                                                                                                                                    |

| No. | <b>Proposed name:</b> Kesimpta <b>Established name:</b>                                                                                                  | POCA<br>Score (%) | Prevention of Failure Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | ofatumumab<br>Dosage form: injection<br>Strength(s): 20 mg/0.4 mL<br>Usual Dose: 20 mg at week 0,<br>1, and 2, then every month<br>beginning with week 4 |                   | In the conditions outlined below, the<br>following combination of factors, are<br>expected to minimize the risk of<br>confusion between these two names                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |                                                                                                                                                          |                   | Orthographically, the suffixes (pta vs.<br>tra) look sufficiently different.<br>Kesimpta contains the downstroke<br>letter 'p', which gives the names<br>different shapes when scripted.<br>Additionally, there is no direct overlap<br>in strength (20 mg/0.4 mL vs. 500 U<br>range), dosage form (injection vs.<br>lyophilized concentrate), route of<br>administration (subcutaneous vs.<br>intravenous), or frequency of<br>administration (week 0, 1, and 2, then<br>every month beginning with week 4 vs.<br>as needed for urgent reversal of<br>acquired coagulation factor<br>deficiency), which may provide<br>additional differentiation if included.<br>When all of the aforementioned<br>mitigations are considered in totality,<br>we find the risk of name confusion is<br>mitigated to an acceptable level. |
| 9.  | K-Vescent                                                                                                                                                | 56                | This name pair has sufficient<br>orthographic and phonetic differences.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10. | Vimpat                                                                                                                                                   | 55                | This name pair has sufficient<br>orthographic and phonetic differences.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11. | (b) (4) ***                                                                                                                                              | 55                | This name pair has sufficient<br>orthographic and phonetic differences.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12. | Ketamine                                                                                                                                                 | 55                | This name pair has sufficient<br>orthographic and phonetic differences.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

## **<u>Appendix F:</u>** Low Similarity Names (e.g., combined POCA score is $\leq$ 54%)

| No. | Name    | POCA      |
|-----|---------|-----------|
|     |         | Score (%) |
| 13. | Stimate | 52        |

Appendix G: Names not likely to be confused or not used in usual practice settings for the reasons described.

| No. | Name        | POCA<br>Score<br>(%) | Failure preventions                                                                                                                                                                                                                             |  |
|-----|-------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 14. | Simplet     | 60                   | Name identified in RxNorm database. Product is deactivated and no generic equivalents are available.                                                                                                                                            |  |
| 15. | Ketoseb Ps  | 60                   | Name identified in RxNorm database. Unable to find product characteristics in commonly used drug databases.                                                                                                                                     |  |
| 16. | Ketaset     | 58                   | Veterinary product.                                                                                                                                                                                                                             |  |
| 17. | Tussin Pe   | 58                   | Name identified in RxNorm. Product is deactivated and no generic equivalents are available.                                                                                                                                                     |  |
| 18. | Sensipak    | 58                   | Name identified in RxNorm database. Unable to find product characteristics in commonly used drug databases.                                                                                                                                     |  |
| 19. | Desihist SA | 56                   | Name identified in RxNorm database. Product is deactivated and no generic equivalents are available.                                                                                                                                            |  |
| 20. | Campto      | 56                   | International product marketed in various countries outside of the U.S.                                                                                                                                                                         |  |
| 21. | K Tussin DM | 56                   | Name identified in RxNorm database. Unable to find product characteristics in commonly used drug databases.                                                                                                                                     |  |
| 22. | Kemstro     | 56                   | Brand discontinued with no generic equivalents available. NDA 021589 withdrawn FR effective 07/21/2017.                                                                                                                                         |  |
| 23. | Ketathesia  | 55                   | Veterinary product.                                                                                                                                                                                                                             |  |
| 24. | Keta-Thesia | 55                   | Veterinary product.                                                                                                                                                                                                                             |  |
| 25. | (b) (4) *** | 55                   | Proposed proprietary name found to be acceptable<br>(OSE # 2016-7963411 dated August 1, 2016) for<br>BLA 125544. However, the Applicant withdrew the<br>name on September 6, 2016. BLA 125544 approved<br>under the proprietary name Inflectra. |  |

| No. | Name                | POCA<br>Score (%) |
|-----|---------------------|-------------------|
| 26. | Ixempra             | 62                |
| 27. | Cresemba            | 61                |
| 28. | Tisept              | 61                |
| 29. | Desempacho          | 60                |
| 30. | Pediamist           | 59                |
| 31. | Prezista            | 59                |
| 32. | Femstat             | 58                |
| 33. | Femstat 3           | 58                |
| 34. | Peptimax 200        | 58                |
| 35. | Peptimax 400        | 58                |
| 36. | Peptimax 800        | 58                |
| 37. | Tepmetko***         | 58                |
| 38. | (b) (4) ***         | 58                |
| 39. | T-Tussin Pe         | 58                |
| 40. | Cesamet             | 57                |
| 41. | Medi-Paste          | 57                |
| 42. | Q-Tussin Pe         | 57                |
| 43. | Antisept            | 56                |
| 44. | Betasept            | 56                |
| 45. | (b) (4) ***         | 56                |
| 46. | Padimate A          | 56                |
| 47. | Pytest Kit          | 56                |
| 48. | (b) (4) <b>**</b> * | 56                |
| 49. | (b) (4) ***         | 56                |
| 50. | Semintra            | 56                |
| 51. | Sensipar            | 56                |
| 52. | Tavist Da           | 56                |
| 53. | Cepastat            | 55                |
| 54. | Gemtesa***          | 55                |
| 55. | (b) (4) ***         | 55                |

Appendix H: Names not likely to be confused due to absence of attributes that are known to cause name confusion<sup>e</sup>.

<sup>&</sup>lt;sup>e</sup> Shah, M, Merchant, L, Chan, I, and Taylor, K. Characteristics That May Help in the Identification of Potentially Confusing Proprietary Drug Names. Therapeutic Innovation & Regulatory Science, September 2016

This is a representation of an electronic record that was signed electronically. Following this are manifestations of any and all electronic signatures for this electronic record.

------

/s/

DENISE V BAUGH 03/23/2020 03:17:36 PM

BRIANA B RIDER 03/23/2020 03:21:34 PM