Study 154 -137/Nosocomial Pneumonia:

PRINCIPAL INVESTIGATORS	SUBINVESTIGATORS	STUDY SITES
$\begin{aligned} & 5170 \\ & \text { Gerard Huchon, MD } \end{aligned}$		Hopital Ambroise Pare Service De Pneumologie 9 Avenue Charles De Gaulle 92100 Boulogne France
5414 Jean-Francois Muir, MD	Benhamou, MD	Head of Department Pneumology Chu Bois Guillaume Avenue Mal Juin 76230 Bois Guillaume France
5439 J. Ducroix, MD	- *	Hopitaux Nord D'Amiens Medecine Interne E 80054 Amiens Cedex 1 France
5450 James Catterall, MD	Katharine Bale	Consultant Chest Physician Department of Respiratory Medicine Bristol Royal Infirmary Marlborough Road Bristol BS2 8HW United Kingdom
5795 Doria Grimard	RS THIS WAY ORIGINAL	Laboratoire De Microbiologie Hopial De Chicoitimi Incorporated 305 St-Vallier Chicoutimi Quebec G7H 5H6 Canada
5800 Gordon Ford, MD	Karen Rimmer, MD Sidney Viner, MD	Calgary General Hospital C4-024 841 Centre Avenue East Calgary AB T2E OA1 Canada
5869 lain MacDonald McLaren, MD	M.R. Ferguson, MD M.L. Pepperman, MD W.C. Russell, MD A. Swan, MD D.A. Turner, MD	Consultant Anaesthetist Leicester Royal Infirmary Leicester LE1 5WW United Kingdom
5871 Harry Bassaris, MD	Athanasios Skoutelis, MD	Patras University Medical School University Hospital Department of Medicine Section of Infectious Diseases Box 1045 26110 Rio Patras Greece
5877 Wolfgang Rosch, MD	Stauch Thomas	Krankenhaus Nordwest Medizinische Klinik Steinbacher Hohl 2-26 60488 Frankfurt Am Main Germany

$$
\begin{gathered}
\text { OQEXTHB WAY } \\
\text { ON OTGHAL }
\end{gathered}
$$

Study 154 -137/Nosocomial Pneumonia:		
PRINCIPAL INVESTIGATORS	SUBINVESTIGATORS	STUDY SITES
5923		
Jon Ayres, MD	T. Fletcher, MD	Consultant
	W.S. Tunnicliffe, MD	Clinical Trials unit
		Chest Research Institute
		Birmingham Heartiands Hospital
		Brodesley Green East
		Birmingham B9 5ST United Kingdom
5924 (5		
Mervyn Singer, MD	Steve Batson	Department of Medicine
		University College London Medical School
		Rayne Institute, University Street
		London WC1E 6JJ United Kingdom
		University College
	-	London Hospital
		Mortimer Street
		London W1 United Kingdom
5926		
Christopher Andrews, MD	C. Dance, MD	Consultant
		Anaesthetist
		Derriford Hospital
	-	Derriford Road Plymouth
		Devon P16 8DH United Kingdom
5929		
Bryce Randalls, MD	L. Hayek, MD	Department of Anaesthetics
		Torbay Hosptial
		Lawes Bridge
		Torquay Devon TQ2 7AA United Kingdom
Pushpinder Singh Mangat, MD	Dafydd Wyn Thomas, MD	Consultant in Anaesthesia \& Intensive Care c/o Intensive Therapy Unit
		Morriston Hospital NHS
		Trust Morriston
		Swansea Wales SA6 2NL United Kingdom
5933 Dennis Shale, MD		
	Alina lonescu, MD A. Quoraishi, MD	Professor of Respiratory and Communicable Diseases
		Llandough Hospital
		Llandough Penarth
		Cardiff CF64 2XX United Kingdom
5935		
Michael Whitby, MD	P. Lavercombe, MD	Department of Infectious Diseases
		Infection Control and Sexual Health
		Princess Alexandra Hospital
		Ipswich Road
		Woolloongabba
		Queensland 4102 Australia
	APPEARS THIS WAY	Mater Miscricordiae Adult Hospital
	ON OPITIMAL	Raymond Terrace \& Mater Miscricordiae
		Private Hospital
		Vulture Street
		South Brisbane
		Queensland 4101 Australia

Study 154 -137/Nosocomial Pneumonia:		
	SUBINVESTIGATORS	STUDY SITES
$\frac{\text { PRINCIPAL INVESTIGATORS }}{5936}$		
Brent Richards, MD	I. Feather, MD J. Renton, MD H. Stevens, MD	Intensive Care Unite Gold Coast Hospital Nerang Street Southport Queensland 4215 Australia
5937 Peter James McDonald, MD	H. Pruul, MD S. Wesselingh, MD	Department of Microbiology \& Infectious Diseases Flinders Medical Centre Flinders Drive, Bedford Park South Australia 5042 Australia
5938 John Moran, MD	R. Ruffin, MD	Intensive Care Therapy Unit The Queen Elizabeth Hospital 28 Woodville Road. Woodville South Australia 5011 Australia
5940 Anthony Bell, MD	M. Clarence, MD K. Ott, MD	Department of Critical Care Medicine Royal Hobart Hospital Liverpool Street Hobart Tasmania 7000 Australia
5941 Matthew Peters, MD	T. Gottlieb, MD	Department of Thoracic Medicine Repatriation General Hospital Concord Hospital Road Concord New South Wales 2139 Australia
5942 Simon Finfer, MD	R. Raper, MD APPEARS THIS WAY ON ORIGINAL	Intensive Therapy Unit Royal North Shore Hospital Pacific Highway St. Leonards New South Wales 2065 Australia
5944 Thomas Torda, MD	A. Belessis, MD P. Jones, MD Z. Nanavati, MD Y. Shehabi, MD	Prince Henry Hospital Anzac Parade Little Bay New South Wales 2036 Australia
5945 David Barrie McGechie, MD	M. Beaman, MD F. Breheny, MD P. Bremner, MD	Department of Microbiology Fremantle Hospital Alma Street Fremantle Western Australia 6160 Australia
5946 Keryn Christiansen, MD	B. Ng, MD R. Tarola, MD R. Wilson, MD	Department of Microbiology Royal Perth Hospital Wellington Street Perth Western Australia 6000 Australia

Study 154 -137/Nosocomial Pneumonia:		
PRINCIPAL INVESTIGATORS	SUBINVESTIGATORS	STUDY SITES
$\begin{aligned} & 5957 \\ & \text { Jean Marty, MD } \end{aligned}$	Corda, MD Feller, MD Lagneau, MD	Head of Department Medical ICU Hopital Beaujon 100 BD DU General Leelere 92110 Clichy France
5958 Jean Louis Pourriat, MD	Baud, MD Germain, MD Levacher, MD	Head of Departement Medical ICU Hopital Jean Verdier Avenue De 14 Juillet 93143 Bondy Cedex France
5959 Bertrand Bacq-Giraudon, MD	A. Ramassamy, MD F. Roblot, MD P. Roblot, MD M. Texeron, MD	Head of Department Internal Medicine \& Infectious Disease Hopital Jean Bernard BP 57786021 Poitiers Cedex France
5960 Pierre Balmes, MD	Mauboussin, MD Proust, MD	CHU Nimes 5 Rue Hoche BP 26 30006 Nimes France
5961 Jean Michel Coulaud, MD	Leresche, MD	Head of Department Medical ICU Centre Hospitalier Intercom Montfermeil 10 Rue Du General Leclerc 93370 Montermeil France
5962 Christian Brambilla, MD	Peterschmitt, MD	Head of Department Pneumology Chu La Tronche 38043 Grenoble France
5963 Pierre-Yves Lallement, MD	Deivoye, MD Nicholas, MD	Centre Hospitalier Curie 46 Avenue Du General De Gaulle 02200 Soissons France
5964 Michel Staroukine, MD	Dediste, MD J. Devriendt, MD Douat, MD	Hopital Universitaire Brugmann Place A Van Gehuchten $4 \mathrm{~B}-1020$ Brussels Belgium
5965 Paul Debondt, MD	K. Geernaert, MD L. Oncklinx, MD H. Reybroeck, MD D. Vanheuverzwijn, MD	AZ Heilig Hart Kliniekstraat 45 B-3300 Tienen Belgium

Study 154-137/Nosocomial
Pneumonia:

PRINCIPAL INVESTIGATORS	SUBINVESTIGATORS	STUDY SITES	
5966			
M. DeHovre, MD	L. Marien, MD K. Nobels, MD	AZ St Norbertus Rooienberg 25 B-2570	
	H. Raes	Duffel Belgium	
	L. Van Daele, MD		
APPEARS THIS WAY	J. Van Gool		
ON ORIGINAL	R. Van Hoof, Md	4298	
	C. Van Wambeke, MD		
	J. Vander Sande, MD C. Vermeulen, MD		
5972			
Ignace Demeyer, MD	H. De Smet W. Lust, MD	Az Stuivenberg Lange	
		Beeldekensstraat 267	
		2060 Antwerp Belgium	
5973			
Raymond Zakhia, MD	Berton, MD	Hopital De Warquinies	
	Marechal, MD	Rue Des Chauffours 27 B-7300 Boussu Belgium	
5975			
Hendrik Dienemann, MD	Angelika Mewes, MD Ruckdeschel, MD	Ludwig-Maximilians-Universitat Klinikum Crobhadern Chirurgische	
		Klinik and Poliklinik Marchioninistr	
		1581366	
		Munchen Germany	
5976			
Franz-Peter Lenhart, MD		Universitatsklinikum Innenstadt I	
	Ruckdeschel, MD	Frauenklinik Intensivstation Maistre 1180337 Munchen Germany	
5978			
Thomas Henneberg, MD	Mauch, MD	Intensivstation Behring Krankenhaus	
		Zehlendorf Gimpelsteig	
		3-5 14165 Berlin Germany	
5979			
Claudia Spies, MD	Isabel Hab, MD		
	Mauch, MD	Klinik Fur Anasthesiologie Und Operative	
	Walter Schaffartzik, MD	Intensivmedizin Hindenburgdamm 3012200 Berlin Germany	
5980			
Lothar Mathea, MD	Frau Fahr, MD	Rotes Kreuz Krankenhaus	
	Mounzer, MD	Chirurgie E Konigswarter Street	
5981			
Jorg Odewald, MD		Iris Gunther, MD	Elisabethenstift Darmstadt
	Carsten Schulz, MD	Landgraf-Georg-Strasse	
	Rita Stolz, MD	10064287 Darmstadt Germany	
5983			
Richard Strauss, MD	Muller, MD Solbach, MD	Medizinische Klinik I Mit Poliklinik	
		Der Friedrich-Alexander-Universitat	
		Erlangen-Nurnberg Krankenhausstrasse 1291054 Erlangen Germany	

Study 154 -137/Nosocomial Preumonia:		
PRINCIPAL INVESTIGATORS	SUBINVESTIGATORS	STUDY SITES
5996 Gary Mann, MD	Roland Leader, MD	580 Harwood Avenue South Ajax and Pickering General Hospital South Ajax Ontario Canada L1S 2J4
6071 Mark Smithies, MD	Peter Flanigan, MD Ialina lenescu, MD	Director Intensive Care University Hospital of Wales NHS Trust Heath Park Cardiff CF4 4XW United Kingdom
6072 George Pylypctick, MD	Joseph Blondeau, MD Albert Unger, MD	St. Paul's Hospital 1702-20th Street West Saskatoon Saskatchewan Canada 57M OZ9
6073 Ronald Grossman, MD	Diane Dellio Stephen Lapinsky, MD	640-600 University Avenue Mount Sinai Hospital Toronto Ontario Canada M5G 1X5
6075 IVving Salit, MD	John Conly, MD Mitche!l Weinstein	The Toronto Hospital General Division 200 Elizabeth Street EN G-216 Toronto Ontario Canada M5G 2C4
APPEARS THIS WAY :anntan!		The Toronto Hospital Western Division 399 Bathurst Street Toronto Ontario Canada M5T 2S8
6076 Kurt Williams, MD	Karen McClean, MD Ben Tan, MD	Infectious Diseases Royal University Hospital 103 Hospital Drive Saskatoon Saskatchewan Canada S7N OW8
6316 Wolfgang Rosch, MD	Stauch, MD Thomas, MD	Krakenhaus Nordwest Medizinische Klinik Steinbacher Hohl $\text { 2-26 } 60488$ Frankfurt Am Main Germany
6342 Friedrich Eckart Isemer, MD	Guido Kirchgesser, MD	Department of Surgery St. Josefs Hospital Solmsstr 15 D-65189 Wiesbaden Germany
6357 Tommaso Todisco, MD	Stefano Baglioni Eva Tikotin Amir Varzaneh	Unita Organica De Pneumologia Ospedale R Silvestrini Sant Andrea Delle Fratte 06100 Perugia Italy

Study 154 -137/Nosocomial Pneumonia:

| | SRINCIPAL INVESTIGATORS | SUBINVESTIGATORS |
| :--- | :--- | :--- |\quad STUDY SITES

Medical Officer Review of Community Acquired Pneumonia Indication

1. Overview of requested labeling and organisms.

Concerning study design, the IDSA states "Whenever possible, the study design should be randomized, prospective, and double-blinded." Recommended evaluation timepoints include a baseline assessment to determine study eligibility and enrollment; daily assessment while hospitalized; and an assessment within 5-7 days after completion of therapy (with a follow-up chest radiograph within 72 hours of completion of therapy, plus follow-up sputum cultures if clinical material is available).

The discussion of evaluability criteria in the IDSA Guidelines includes the following points:
A. all patients who receive at least 5 days of therapy and at least 80% of the prescribed medication should have an assessment of clinical response
B. an assessment of clinical cure requires complete resolution of all signs and symptoms of pneumonia and improvement or lack of progression of all abnormalities on the chest radiograph. C. clinical failure is defined as any of the following:
I. persistence or progression of all signs and symptoms after 3-5 days of therapy;
II. development of new pulmonary or extrapulmonary clinical findings consistent with active infection;
III. persistence or progression of radiographic abnormalities;
IV. death due to pneumonia; or
V. inability to complete the study because of adverse effects.

3. Points To Consider document regarding Community Acquired Pneumonia (CAP).

The divisional Points To Consider (PTC) document contains the following discussion regarding community acquired pneumonia (CAP):
"One statistically adequate and well-controlled multicenter trial establishing equivalence or superiority to an approved product, and one open trial are suggested. The adequate and well-controlled trial should preferably be performed in the US... In this trial, the primary effectiveness endpoints should be clinical and radiographic endpoints; however, microbiologic evaluations should also be performed on each patient. Isolation of a pathogen from the baseline sputum culture should not be required for overall evaluability; however, rigid case definitions including specific entry sputum microscopy and radiographic findings... should be included in the trial design.
"Patients should be analyzed in two separate groups: those who were clinically evaulable (whether or not microbiologically evaluable) and those who were both clinically and microbiologically evaluable...
"Also suggested is a second study, which may be an open trial, involving at least 2 investigators in different geographic areas (no one center contribution more than 55% of the evaluable patients) in which 80 evaluable patients are studied. In this trial, the microbiologic etiology of the pneumonia should be confirmed for each patient.

AFters mesmat
UN UnChifal
"In situations where atypical microorganisms causing community-acquired pneumonia are evaluated or when different susceptibility patterns are expected for specific microorganisms in different populations, different comparative agents and/or different patient populations may be selected for the two trials that should corroborate one another in the establishment of effectiveness in treating this infection. In these circumstances, it should be appropriate to perform two studies that investigate outcomes in both the clinically evaluable patients and in the clinically and microbiologically (i.e., the pathogen is confirmed by an approved laboratory test methodology) evaluable subset of patients. Analyses of the data should confirm (by means of comparing the direction of the independent 95% confidence interval testing or by appropriate other analysis if the subgroups can be combined from the two separate studies) the successful outcome rates established for the overall clinically evaluable and for the clinically and microbiologically evaluable subset of patients."

4. Divisional evaluability criteria (proposed):

The criteria in this document are comparable to the IDSA guidelines stated above. There are some differences that are noteworthy; these are italicised below:
"Inclusion criteria should include at least two signs and/or symptoms of acute infectious pneumonia (cough, purulent sputum production, ascultatory findings, dyspnea, tachypnea, hypoxemia, or the isolation of an organism from blood culture that is consistent with a respiratory pathogen)
and at least one of the following
fever ($>38^{\circ} \mathrm{C}$ orally or $>39^{\circ} \mathrm{C}$ rectally or $>38.5^{\circ} \mathrm{C}$ tympanically)
or
elevated peripheral WBC count ($>10,000 / \mathrm{mL}$ or $>15 \%$ bands)
"Evaluation visits should include a pre-therapy (enrollment) assessment, an on-therapy assessment (the frequency of which depends on the severity of the pneumonia under study), an end-of-therapy evaluation (optional for evaluability purposes), and a test-of-cure evaluation that should be at least 7 days or 5 half-lives of the agent, whichever is the longer period, following completion of therapy."

5. Structure of claim

The sponsor has submitted a total of five clinical studies in support of the CAP indication. The general characteristics of these studies are outlined in the following table.

Clinical studies submitted as 'pivotal' to the CAP indication

Study \# location	$\begin{gathered} 154-102 \\ \text { USA/Costa } \\ \text { Rica } \end{gathered}$	$15+110$ USA/Canada l South Africa	$\begin{gathered} \text { 154-111 } \\ \text { USA/Europe } \\ f \\ \text { Australia } \end{gathered}$	$\begin{gathered} \text { 154-112 } \\ \text { USA/Europe } \\ h \\ \text { South Africa } \end{gathered}$	154-134 USA/Canada
Design	Rand., Double--blinded, dose-ranging, comparative	Rand, DB, comparative IV \rightarrow oral	Rand, DB, DD, comparative IV \rightarrow oral	Rand, DB, DD, comparative	Rand, DB, DD, comparative
comparator	cefaclor	$\begin{gathered} \text { IV } \rightarrow \mathrm{PO} \\ \text { cipro/ } \\ \text { ampicillin } \\ \hline \end{gathered}$	$\begin{gathered} \text { ceftriaxone } \rightarrow \\ \text { ceftin } \\ (\pm \text { erythro }) \\ \hline \end{gathered}$	amoxicillin \pm erythromycin	clarithromycin
Dates of conduct	$12 / 93 \rightarrow 11 / 94$	$1 / 95 \rightarrow 1 / 96$	2/95 $\rightarrow 3 / 96$	12/94 \rightarrow 6/96	11/94 \rightarrow 11/95
N per arm at enrollment	$\begin{gathered} \text { Trova } 200=50 \\ \text { Trova } 300=52 \\ \text { Ceclor }=47 \end{gathered}$	$\begin{aligned} & \text { Trova }=196 \\ & \text { Cipro }=200 \end{aligned}$	$\begin{gathered} \text { Trova }=215 \\ \text { Ceftriaxone }= \\ 222 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Trova }=150 \\ & \text { Amox }=152 \end{aligned}$	$\begin{gathered} \text { Trova }=178 \\ \text { Clarithromycin } \\ =180 \end{gathered}$

All of these studies (with the exception of study 102 , which was conducted as a phase 2 study and had a doseranging component using a 300 mg qd dose of trovafloxacin as well as the standard 200 mg qu dose) utilized a 200 mg daily dose of tróvafloxacin, in either the IV or oral mode of administration.

6. Medical officer comments:

In general, the above protocols comply with the IDSA Guidelines, as well as the Divisional Points To Consider and Evaluability Criteria documents. There is no shortage of studies, given that the PTC document calls for two studies in support of the indication.

It should be noted that although clarithromycin is indicated for the treatment of pneumonia, it is not labeled for the treatment of CAP per se, and is only labeled for pneumonia due to Mycoplasma pneumoniae or Streptococcus pneumoniae. Clarithromycin does, however, have activity against other organisms that might be encountered in CAP (for example, it is labeled for the treatment of both acute sinusitis and AECB due to Moraxella catarrhalis and Haemophilus influenzae, as well as due to Streptococcus pneumoniae). The sponsor discussed the appropriateness of clarithromycin as a comparator agent during the End of Phase 2 meeting with the Agency (24 August 1994), prior to initiating study 134. The Agency agreed at that time that clarithromycin was an appropriate selection as a comparator agent for this CAP study.

The IV to oral studies both recruited patients who were felt to be 'sufficiently ill to require initial hospitalization', although the entry criteria for each study appeared to be the same in both the PO and IV/PO protocols. (For example, there were no specific criteria such as pulse oximetry, respiratory rate, multilobar invlovement on CXR, etc. that would have standardized criteria for initial intravenous therapy across centers and across studies.)
Nonetheless, as demonstrated in tables 5 and 9 of the Integrated Summary of Efficacy (section H.4, pages 840 and 851 , volume 1.3 of NDA), there did appear to be approximately twice as many patients with co-morbid conditions
in the IV/PO studies as were enrolled in the PO studies. For example, 60% of trovafloxacin IV/PO subjects had at least one co-morbid condition listed vs. 35% of the PO subjects; 33% vs. 19% had COPD, 17% vs. 6% had CHF, and 17% vs. 8% had diabetes mellitus.

The requested organisms are also worthy of comment. Neither Staphylococcus aureus nor Pseudomonas aeruginosa are organisms usually considered to be etiologic agents in 'community acquired pneumonia'; to a somewhat lesser extent, neither is Klebsiella pneumoniae. The numbers subjects infected with each of these organisms will be closely reviewed; if adequate numbers of these agents are in fact present in these studies, it may indicate that a more severely ill patient population gained enrollment into these studies. Admittedly, the spectrum of illness between 'community acquired' and 'nosocomial' pneumonia is overlapping to a greater and greater extent as current trends in health care drive increasingly ill patients out of the hospital and into "the community", be it to home with in-house nursing assistance, or to an assisted living environment prior to actual return home. Thus it is not surprising to see that some organisms formerly associated exclusively with 'nosocomial' pneumonias may be showing up in protocols designed to study 'community acquired' pneumonia.

7. Review strategy

The following review strategy will be adopted: the five studies will be stratified according to the soundness of their design and the numbers of subjects enrolled. In this manner, when an adequate number of these studies have been reviewed and audited to justify the inclusion of this indication in the label, the review will be considered to be completed. Each of these studies will be sequentially audited. to ascertain the validity of the data entered on the Patient Profiles; following this, and assuming that the sponsor's assertion of efficacy in this indication is felt to be justified, organism-specific investigations will be conducted to verify which requested organisms can be recommended for inclusion in the product labeling.

The five submitted studies will be reviewed in the following order: 134 (oral); 110 (IV \rightarrow oral); 111 (IV \rightarrow oral); 112 (oral); and finally, the phase 2 study 102 (oral, dose-ranging comparative). Of the submitted studies, 134 used the best single-agent comparator and thus could most successfully be conducted in the double blind, doubledummy manner in which it was designed. (In contrast, study 110 was also conducted in a DB, DD manner, but because of the design required subjects to ingest 12 tablets a day during the oral phase of the study. This raises concerns over compliance on the part of the subjects, many of whom would have just been discharged from hospital. Similarly, study 112 called for patients to take as many as 16 tablets and/or capsules daily.)

Medical Officer review of study 154-134

1. Per applicant

The synopsis of the applicant's final study report for study 134 is presented below; this is taken from pages 8-12 of the report, found in section

PROTOCOL 154-134: A RANDOMIZED, MULTICENTER, DOUBLE-BLIND, DOUBLE-DUMMY TRIAL COMPARING TROVAFLOXACIN (CP-99,219) WITH CLARITHROMYCIN FOR THE TREATMENT OF COMMUNITY-ACQUIRED PNEUMONIA.

Principal Investigators:

Anthony Puopolo, MD
John Gezon, MD.
Lee Payne, MD
Alain Martel, MD
Claude St-Pierre, MD
Diana Dark, MD
Charles Vanhook, MD
Robin Miller, MD
Marcus Zervos, MD
Jason Chu, MD
Kent Anthony, MD
Steven Bowman, MD
Meera Dewan, MD
Jeffrey Hartford, MD
Michael McAdoo, MD
Dennis Mikolich, MD
David Miller, DO
Michael Nelson, MD
David Schreck, MD
Richard Sterling, MD
Randall Stoltz, MD
James Sullivan, MD
John Upchurch, MD
Alan Storrow, MD
Kirk Jacobson, MD
Stephen Kraus, MD
Alex Pareigis, MD
Stan Parman, MD
Gary Ruoff, MD
Lawrence Alwine, DO
John Estess, MD
William Gray, MD
Onelio Perdomo, MD
Thomas Saddoris, II, MD.
Sandra Willsie, DO
Melvin Russell, MD
Julius Dunn, MD
John Herrod, MD
Thomas Nolen, MD
James Pearl, MD
George Knull, MD
Colby Grossman, MD
Jan Westerman, Maj.
Craig Schultz, DO
Joseph Follett, MD
Gregory Collins, MD
Walter Gaman, MD

Christopher Koeppl, MD
Mervyn Weerasinghe, MD
John Pappas, MD
Jeffery Applestein, MD
Maureen McCabe, MD
Kathryn Budzak, MD
Johnny Belenchia, MD
Donald Bias, MD
Mark Freiberg, MD
A. Stanley Link, Jr., MD

Hari Malik, MD
Steve Sanders, DO
J. Christopher Stringer, MD

Philip Masters, MD
Richard Brown, MD
Joseph Yao, MD
Laurance Weiss, MD
Boyd Harrison, MD
Filip Fattohi, MD
Thomas Decker, MD
Mark Hackman, MD
William Markel, MD
Michel Bergeron, MD

Study Publication: Not Applicable
Study Dates: 28 November 1994 to 13 November 1995
Study Objectives: The objective of this study was to compare the safety and efficacy of trovafloxacin and clarithromycin in the treatment of subjects with community- acquired pneumonia appropriate for oral therapy. Study Design: Study 154-134 was a randomized, double-blind, double-dummy, comparative, multicenter trial of trovafloxacin (200 mg once daily) versus clarithromycin (500 mg twice daily), administered orally for 7 or 10 days for the treatment of community-acquired pneumonia.

Evaluation Groups:
Entered Study ${ }^{\mathrm{a}}$
All Treated
Completed Treatment
Completed Study
Evaluated for Efficacy
\quad Clinical Intent-to-treat
Clinically Evaluable
\quad Bacteriologically Intent-to-Treat
\quad Bacteriologically Evaluable ${ }^{\mathrm{b}}$
Assessed for Safety
\quad Adverse Events
\quad Laboratory Tests
a Subjects who were randomized.
b Based on End of Treatment assessment.

Trovafloxacin
 (200 mg daily)

179
178 (>99\%)
147 (83\%)
157 (88%)

163	
144	(91%)

64 (36\%)
$\begin{array}{rr}178 & (100 \%) \\ .173 & (97 \%)\end{array}$

Clarithromycin
(500 mg BID)
180
180
154
167
172
156
72
67
(100\%)
(86\%)

$$
(96 \%)
$$

(100\%)
(97\%)

Diagnoses and Criteria for Inclusion of Subjects: Outpatient men or women, ≥ 16 years of age at the baseline assessment, with clinically and radiologically documented community-acquired pneumonia were eligible to participate in this study.
Drug Administration: Study drug was in the form of trovafloxacin tablets and clarithromycin blinded tablets and was packaged in blister cards, using a double-dummy technique to maintain blinding.
Efficacy and Safety Evaluations: Efficacy evaluations included clinical response (assessment based on resolution or improvement of radiological, clinical, and laboratory signs of infection) and bacteriologic response (based on eradication of causative organisms isolated from sputum specimens and blood cultures at baseline). Safety evaluations included assessment of adverse events, clinical laboratory tests (hematology, serum chemis̄try, and urinalysis) and vital signs (blood pressure, pulse rate, body temperature, and respiratory rate).
Statistical Methods: Treatment groups were compared using the confidence interval approach. Confidence intervals (95%) were produced for the difference in success rates between treatments using the normal approximation method. Additionally, a chi-squared test of general association using the Cochran-Mantel-Haenszel adjustment was used to account for investigator differences. Safety results including adverse events, laboratory abnormalities, and vital signs were analyzed using descriptive statistics.
Efficacy Results: Comparisons of the difference between the two treatment groups in sponsor-defined clinical success rates (cure + improvement) supported equivalence of the two treatments in both the clinically evaluable and intent-totreat analyses at the end of treatment ($95 \% \mathrm{CI}:-3.3,6.5$ and $-6.0,7.4$, respectively) and at the end of study ($95 \% \mathrm{CI}$: $5.0,10.5$ and $-6.0,10.1$, respectively).
Sponsor-defined clinical response rates for clinically evaluable and intent-to-treat subjects and pathogen eradication rates for bacteriologically evaluable and intent-to-treat subjects are presented in the following table.

Summary of the Sponsor's Assessment of Clinical Response (Clinically Evaluable Subjects)					
	End of Treatment		End of Study		
	$\begin{gathered} \text { Trovafloxacin } \\ 200 \mathrm{mg} \\ (\mathrm{~N}=144) \end{gathered}$	$\begin{aligned} & \text { Clarithromycin } \\ & 500 \mathrm{mg} \text { BID } \\ & (\mathrm{N}=156) \\ & \hline \end{aligned}$	Trovafloxacin 200 mg $(\mathrm{N}=135)$	$\begin{array}{r} \text { Clarithr } \\ 500 \mathrm{~m} \\ (\mathrm{~N}=1 \end{array}$	mycin BID 4)
	Number and Percentage (\%) of Subjects				
Number of Subjects Assessed	143 (100\%)	155 (100\%)	135 (100\%)	144	(100\%)
Success (Cure + improvement)	137 (96\%)	146 (94\%)	120 (89%)	124	(86\%)
	56 (39%) 81 (57%) 6 (4%) NA	59 (38%) 87 (56%) 9 (6%) NA	108 (80%) 12 (9%) 6 (4%) 9 (7%)	$\begin{array}{r} 113 \\ 11 \\ 9 \\ 11 \\ \hline \end{array}$	$\begin{array}{r} (78 \%) \\ (8 \%) \\ (6 \%) \\ (8 \%) \\ \hline \end{array}$
(Clinically Intent-to-Treat Subjects)					
	End of Treatment		End of Study		
- ... $+\cdots$	$\begin{gathered} \text { Trovafloxacin } \\ 200 \mathrm{mg} \\ (\mathrm{~N}=163) \\ \hline \end{gathered}$	$\begin{gathered} \text { Clarithromycin } \\ 500 \mathrm{mg} \text { BID } \\ (\mathrm{N}=172) \\ \hline \end{gathered}$	Trovafloxacin 200 mg $(\mathrm{N}=163)$	$\begin{array}{r} \text { Clarith } \\ 500 \mathrm{~m} \\ (\mathrm{~N}= \\ \hline \end{array}$	nycin BID 2)
	Number and Percentage (\%) of Subjects				
Number of Subjects Assessed	162 (100\%)	170 (100\%)	163 (100\%)	172	(100\%)
Success (Cure + improvement)	145 (90\%)	151 (89\%)	137 (84\%)	141	(82\%)
Distribution of Clinical Response: Cure Improvement Failure Relapse	59 (36%) 86 (53%) 17 (10%) NA	$\begin{array}{rr} 62 & (36 \%) \\ 89 & (52 \%) \\ 19 & (11 \%) \\ \mathrm{NA} & \end{array}$	122 (75%) 15 (9%) 17 (10%) 9 (6%)	127 14 20 11	$\begin{array}{r} (74 \%) \\ (8 \%) \\ (12 \%) \\ (6 \%) \\ \hline \end{array}$
Summary of Sponsor-Defined Pathogen Eradication Rates (Bacteriologically Evaluable Subjects)					
	Trovafloxacin 200 mg $(\mathrm{N}=59)$	Clarithromycin 500 mg BID $(\mathrm{N}=67)$	Trovafloxacin 200 mg $(\mathrm{N}=56)$	$\begin{array}{r} \text { Clarith } \\ 500 \mathrm{~m} \\ (\mathrm{~N} \\ \hline \end{array}$	mycin BID)
	Number of Pathogens ${ }^{\text {a }}$				
Pathogen	End of Treatment		End of Study		
H. influenzae	12/12	15/16 (94\%)	10/10	13/16	(81\%)
S. pneumoniae	10/11	14/15 (93\%)	11/12	13/15	(87\%)
C. pneumoniae	6/6	10/10	$5 / 6$	5/6	
M. pneumoniae	17/18 (94\%)	18/18 (100\%)	16/17 (94\%)	17/17	(100\%)
(Bacteriologically Intent-to-Treat Subjects)					
-	$\begin{gathered} \hline \text { Trovafloxacin } \\ 200 \mathrm{mg} \\ (\mathrm{~N}=64) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Clarithromycin } \\ 500 \mathrm{mg} \text { BID } \\ (\mathrm{N}=72) \\ \hline \end{gathered}$	Trovafloxacin 200 mg $(\mathrm{N}=64)$	$\begin{array}{r} \hline \text { Clarith } \\ 500 \mathrm{~m} \\ (\mathrm{~N} \\ \hline \end{array}$	$\begin{aligned} & \text { mycin } \\ & \text { BID } \\ & \text { 2) } \\ & \hline \end{aligned}$
	Number of Pathogens ${ }^{\text {a }}$				
Pathogen	End of Treatment		End of Study		
H. influenzae	14/15 (93\%)	15/17 (88\%)	12/13	13/17	(76\%)
S. pneumoniae	12/13	16/18 (89\%)	12/13	15/18	(83\%)
C. pneumoniae	6/6	11/11	5/6	10/12	
M. pneumoniae	17/18 (94\%)	18/18 (100\%)	17/18 (94\%)	18/18	(100\%)
a ≥ 10 isolates of a given pathogen at any evaluation period; percents displayed only when denominator is \geq A subject could have had more than one pathogen isolated at baseline NA=Not applicable Ref.: Tables 5.1.1, 5.1.2, 5.4.1, and 5.4.2					

A Summerse

a For two subjects in the clarithromycin group, the investigator indicated sas not checked off on the subject
event page of the CRF (Table 6.1); how
summary page of the CRF
ef.: Tables $1.2,4.1,4.2,6.1,6.3$, and 7.1

With the exception of the one subject in the clarithromyc events were attributed to other illnesses or to the dise considered to be related to study drug, all serious aned greater than 30 days after the last treatment dose; all deaths under study. There were three deaths 7 or 10 days was statistically equivalent to were unrelated to study drug. Trovafloxacin 200 mg once dally for 7 or 10 days acquired pneumonia. The percentage Summary and Conclusion: Tr 7 or 10 days for the treatment of comm in 10% in the trovafloxacin group and 7% in the clarithromycin 500 mg Bubjects discontinued from treatment due to adverse events of was lower (56%) in the trovafloxacin group of surithromycin group. The overall percentage of adverse events watere events were reported in 32% and 39% of compared to the clarithromycin group (67%); treatment-relment-related adverse events in the trovafloxacin group subjects, respectively. The most commonly reported treamonly reported treatment-related adverse events in the were nausea (12%) and dizziness (10%). The most , nausea (8%) and diarrhea (7%).
clarithromycin group were taste perversion (19\%), nausea (8\%) and diarrhea (7%)

The design of this study is in keeping with the parameters set forth in the IDSA Guidelines and the two Divisional documents (Points To Consider and the draft Evaluability Criteria). Since the for the comparators used and whether they are the CAP indication are very similar in their overall design (except fore presented here so that it may be referred back strictly PO studies vs. IV $\rightarrow \mathrm{PO}$), an over studies under this indication.
to in subsequent reviews following text is excerpted from the sponsor's text of protocol 154-134:

Numbers

Up to 320 subjects will be randomized into this study. Each study site should attempt to enroll at least 10 subjects.

Recruitment will cease when the appropriate number of subjects have been enrolled even if some centers have not reached their agreed recruitment targets.

Inclusion criteria

1. Subjects aged 16 years or more

Women of childbearing potential (i.e., not surgically sterile or less than one year postmenopausal) must have a negative gonadotrophin pregnancy test (urine or serum) immediately prior to entry in the study and must use adequate contraception (for women on oral contraceptives additional barrier contraception must be used) both during and for one month after the end of treatment.
2. Subjects with a medical history, and clinical and radiological findings consistent with an uncomplicated community acquired pneumonia and appropriate for oral therapy.

The following criteria must be met:
a. New infiltrate(s) on chest X-ray

AND
b. At least one of the following signs or symptoms:
1). Cough or increasing severity of coughing
2). Acute changes in the quality of sputum
3). Oral temperature $>38^{\circ} \mathrm{C}\left(100.4^{\circ} \mathrm{F}\right)$ or $\angle 36.1^{\circ} \mathrm{C}\left(97^{\circ} \mathrm{F}\right)$ or documented fever or hypothermia within the last 24 hours.
4). Auscultatory findings such as rales or evidence of pulmonary consolidation.
5). Leukocytosis (blood leukocyte count $>10,000 / \mathrm{mm}^{3}$ or $>15 \%$ bands)
3. Written informed consent from the patient and the patient's parent or legal guardian if less than 18 years old.

Exclusion criteria

1. Pregnant women, nursing mothers or women of childbearing potential not practicing adequate contraception.

$$
\alpha_{1}
$$

2. Known or suspected hypersensitivity to any quinolone or macrolide.
3. Treatment with any systemic antibiotic for 24 hours or longer within 72 hours prior to the baseline visit
4. Subjects with any of the following conditions:
a) Pneumonia whose severity is sufficient to warrant initial intravenous antibiotic therapy.
b) Suspected pulmonary infection (such as abscesses or empyemas) that may require antibiotic treatment for a period greater than 10 days.
c) Known Acquired Immunodeficiency Syndrome (AIDS) or suspected Pneumocystic carinii pneumonia.
d) Neutropenia, defined as a total white blood cell count less than 2500 leukocytes $/ \mathrm{mm}^{3}$ or absolute neutrophil count less than $1000 / \mathrm{mm}^{3}$.
e) Immunosuppressive therapy, defined as chronic treatment with known immunosuppressant medications (including treatment with greater than $10 \mathrm{mg} / \mathrm{day}$ of systemic prednisone or equivalent).
f) Cavitary lung disease by chest X-ray, or known lung cancer, or aspiration pneumonia.
g) Cystic fibrosis
h) Significant gastrointestinal or other conditions which may affect study drug absorption.
i) A history of any form of epilepsy or seizure.
5. Treatment with another investigational drug within four weeks prior to the baseline visit.
6. Prior enrollment in this protocol.
7. Evidence of recent drug or alcohol abuse or dependence.

October 18, 1994 Amendment

8. Subjects receiving treatment with terfenadine or who may require treatment during the duration of treatment.

STUDY TREATMENTS

Allocation to study treatment

The investigator will be provided with a masked randomization schedule consisting of a list of numbers to which the study drugs have been randomly allocated. The investigator will assign study numbers sequentially to the subjects as they are determined to be eligible for treatment. The study number will be entered onto the patient's case report form and the patient should receive study medication assigned to the corresponding number.

Drug presentation

All oral medication has been blinded by double-dummy technique and will be provided in blister packs with matching placebos. Drug supplies and the patient randomization number will be provided as follows:

CP-99,219 $\quad 200 \mathrm{mg}$ daily as a single dose for 7 or 10 days. Clarithromycin $\quad 500 \mathrm{mg}$ two times daily for 7 or 10 days.

Blister pack contains blinded oral CP-99,219 or matching placebo and blinded oral clarithromycin and matching placebo. Subjects will take two 100mg tablets of CP-99,219 or its matching placebo once a day and one 500 mg blinded tablet of clarithromycin or its matching placebo twice a day.

Blister packs will be labelled:
"morning" (am) dose containing:
2 tabs 100 mg CP-99,219 or matching placebo.

1 tab 500 mg clarithromycin or matching placebo
"evening" (pm) dose containing:
1 tab 500 mg clarithromycin or matching placebo

Drug administration

On the first day of therapy, subjects will be instructed to take three tablets from the blister pack ("morning" dose) regardless of the time of day; a further single tablet will be taken 12 hours later if appropriate to time of day ("evening" dose). If first ("morning") dose is late in the day, the "evening" dose may be skipped for Day 1. Day 2 will begin with the "morning" dose regardless of Day 1 dosing. This daily administration schedule will be repeated until the second visit (day 3 to 5). At this visit the investigator will decide whether the patient requires a total of 7 days or 10 days of therapy. This decision will be based on resolution of pyrexia, improving clinical symptomatology and the presence of other comorbid conditions. Subjects who are afebrile and clinicałty improving may only need 7 days of therapy.

After visit 2 subjects will be instructed to continue treatment as outlined above, such that the patient completes a total of 7 or 10 days of therapy.

Mineral supplements, calcium-, aluminium-, or magnesium-based antacids should not be taken within (before or after) two hours of dosing. All study medications may be taken without regard to food.

PATIENT evaluation VISITS

Visit 1 DAY 1 (Baseline)

The following procedure will be undertaken within 48 hours prior to the start of therapy.

Clinical

The baseline visit assessment includes collection of demographic information, concurrent disease, antibiotic therapy within the last seven days, concomitant medication use, targeted physical examination and vital signs (pulse, respiration, blood pressure and body temperature).

Clinical assessment of signs and symptoms of pneumonia will include sputum characteristics, cough, dyspnea, pleuritic chest pain, chills or rigors and lung sounds. In addition a blood and urine sample for laboratory safety testing (see Section 9.3) will be obtained and sent to the central laboratory for testing. Women of childbearing potential will also provide a urine or serum sample for pregnancy testing.

Chest X-ray

Chest X-rays, both PA and lateral will be obtained. An AP chest X-ray is acceptable if the subject's medical condition does not allow a PA and lateral to be obtained.

Bacteriology

Sputum

Freshly expectorated purulent sputum samples must be examined macroscopically for consistency and color and microscopically to determine the suitability for culture (presence of
>25 polymorphonuclear leukocytes and < 10 squamous cells per low power field of a Gram stained specimen defined as an "adequate sputum"). Suitable adequate specimens must be cultured at a local approved laboratory, preliminary sensitivities determined, and isolates sent to the central testing laboratory for final sensitivity determination.

If a satisfactory specimen of expectorated sputum cannot be obtained, the investigator may carry out induction of sputum with nebulized saline or physiotherapy. Should this technique also prove unsuccessful and, if medically indicated, the investigator may attempt to obtain other lower respiratory secretions such as transtracheal aspiration, bronchial brushings or biopsy material (obtained by bronchoscopy).

All sputum and other respiratory isolates will be sent to the central laboratory for testing. \therefore

Blood

Blood samples for culture must be obtained from all subjects. If the blood culture subsequently proves to be positive for a pathogen, therapy may be continued, at the discretion of the investigator, only if there is evidence of clinical improvement. If there is no such improvement study therapy must be discontinued and evaluated as a treatment failure. It is important that follow-up blood cultures be obtained. The procedure outlined in Section 9.4, must be followed for all discontinuations.

Isolates from blood must also be sent to the central laboratory for testing.

Susceptibility testing

Information on susceptibility testing with CP-99,219 is provided in Appendix D.

No baseline pathogen or resistant pathogen

Subjects need not be discontinued from the study drug if they do not have a pathogen isolated at baseline or because the pathogen is resistant to any of the study medications. If the patient needs to be discontinued because of failure to improve clinically, then the patient should be discontinued (see Section 9.4) and evaluated as a treatment failure and appropriate therapy instituted. The appropriate therapy should be recorded under the concomitant medication section of the CRF. The patient must however be followed up for safety assessment.
: : . :

Serology

Serum will be obtained at the baseline visit for the determination of antibodies to Mycoplasma pneumoniae, Legionella spp., Chlamydia pneumoniae and Chlamydia psittaci, and sent to the central laboratory for testing. Urine for Legionella antigen will also be obtained and sent to the central laboratory.

Visit 2 Day 4 (day 3 to 5)

Clinical

All signs and symptoms identified at the baseline visit should be assessed. New signs or symptoms since the first assessment should also be reported.

Other procedures to be performed at visit 2 are recording of vital signs, concomitant medication, study drug dosing, and adverse events volunteered by the patient or observed by the investigator.

The battery of blood safety tests performed at baseline should be repeated.

Bacteriology

If possible an "adequate" sputum sample must be obtained and sent for culture as defined for visit 1. All sputum isolates will be sent to the central laboratory for testing.

The absence of an adequate sputum specimen and reason must be documented as inability to produce sputum will be considered equivalent to a negative culture providing the patient is clinically improved or cured.

Blood culture is to be repeated if the baseline culture was positive. Isolates from blood must also be sent to the central laboratory for testing.

Visit 3-Day 11 (day 9 to-14) - the end of study therapy period

At the end of study therapy or at the time of premature discontinuations due to lack of efficacy the patient's response to treatment must be assessed by performing the following procedures:

Clinical

All signs and symptoms identified at the first and second visit as well as new signs or symptoms since the second visit should be assessed.

Other procedures to be performed at visit 3 are recording of vital signs concomitant medication, study drug dosing, adverse events volunteered by the patient or observed by the investigator.

Blood and urine samples should be obtained and the battery of blood and urine safety tests performed at baseline should be repeated.

At this visit the investigator is to provide an evaluation of clinical response, as described in Section 8.1.

Chest X-ray

A repeat chest X-ray must be undertaken and reported.

For the assignment of outcomes all X-rays from a given patient will be read by a qualified radiologist and intrepreted with respect to the baseline X-ray.

Bacteriology

If possible an "adequate" sputum sample must be obtained and sent for culture as defined for visit 1. All sputum isolates will be sent to the central laboratory for testing.

The absence of an adequate sputum specimen and reason must be documented as inability to produce sputum will be considered equivalent to a negative culture providing the patient is clinically improved or cured.

Blood culture is to be repeated if previous blood sample (visit 2) was positive. Isolates from blood must also be sent to the central laboratory for testing.

Visit 4 Day 30 (day 28 to 35) - the final assessment.
The final assessment of the patient's response to treatment must be assessed by performing the following procedures. If the patient was assessed as a failure at the previous visit and discontinued then the activities relating to the assessment of efficacy should not be undertaken but activities associated with safety (e.g., adverse events and safety bloods) must be undertaken.

Clinical

All signs and symptoms identified at all the previous visits as well as new signs or symptoms since the last visit should be assessed.

Other procedures to be performed at visit 4 are recording of vital signs, concomitant medication, adverse events volunteered by the patient or observed by the investigator.
The battery of blood and urine safety tests performed at baseline need to be repeated only if an abnormality was present at visit 3 (day 9 to 14), or if subject is experiencing a clinically significant adverse event.
At this visit the investigator is to provide a final evaluation of clinical response, as described in Section 8.1.
A.

Chest X-ray

A final chest X-ray needs to be undertaken only if the visit 3 (day 11) radiograph had not cleared (i.e., signs of infiltration remained) or the patient's clinician condition has deteriorated. For the assignment of outcomes all X-rays from a given patient will be read by a qualified radiologist and intrepreted with respect to the baseline X-ray.

Bacteriology

If clinically indicated an "adequate" sputum sample must be obtained and sent for culture as defined for visit 1 . All sputum isolates will be sent to the central laboratory.
The absence of an adequate sputum specimen and reason must be documented as inability to produce sputum will be considered equivalent to a negative culture providing the patient is clinically improved or cured.

Serum will be obtained for the determination of antibodies to the pathogens mentioned in

Serology

Section 7.1.4.

STUDY EVALUATIONS

Clinical

The overall clinical response will be determined by the investigator at the end of study treatment (visit 3, day 11) and at the last follow-up assessment (visit 4, day 30) or at the time of discontinuation.

Clinical response will be classified by the investigator as cure, improvement, failure as defined in Appendix C. Clinical evaluation of response will be based on the global assessment of the clinical presentation of the patient and compared to the baseline assessment. Clinical assessment will be based upon resolution or improvement of radiological, clinical signs of infection such as resolution of fever, disappearance or diminution in purulent sputum production, improvement or resolution of dyspnea, cough and leukocytosis, as well as improvement in general physical condition.

Bacteriological

The bacteriological response will be determined by the sponsor from the culture results of visit 2, (day 4), at the end of treatment (visit 3, day 11) and at the end of the study (day 30) or at the time of discontinuation due to lack of efficacy.

Bacteriological response will be classified by the sponsor as indicated in Appendix C. Repeat cultures of sputum, if obtainable, will be done at visits 2,3 and 4. Only "adequate" sputum specimens determined by Gram stain should be sent for culture. The absence of adequate sputum specimens at follow-up assessments will be considered equivalent to a negative culture if the clinical response is improved or cure. However, the investigator must document the fact that there was an inadequate sputum production

Standardized susceptibility testing will be performed on all pathogens (see Section 7.1.3). Collection of specimens that require semi-invasive techniques (e.g., bronchoscopy) should only be repeated if there is a suboptimal clinical response.

Radiological assessment

Consecutive chest X rays will be evaluated and their evolution will be graded as:
Resolution: disappearance of all radiological signs of infection
Marked improvement: Significant improvement in the radiological signs of infection compared to baseline.
Radiological failure: no change or worsening in the radiological signs of infection compared to baseline.

Serological

Serological assessments will be undertaken at baseline and day 30.

SAFETY ASPECTS

Adverse events will be monitored up to visit 4 (day 30). Serious adverse events will be monitored throughout the study and for 30 days after the last dose of study drug.

Adverse events

All observed or volunteered adverse events regardless of treatment group or suspected causal relationship to study drug will be recorded on the Adverse. Event page(s) of the case report form. Please note that adverse events are not limited to suspected adverse drug reactions but also include illnesses with onset during the study, or exacerbations of pre-existing illnesses which should therefore also be recorded.

For all adverse events, the investigator must pursue and obtain information adequate both to determine the outcome of the adverse event and to assess whether it meets the criteria for classification as a Serious Adverse Event requiring immediate notification to the Pfizer appointed monitor (see Section 9.2). Follow-up of the adverse event, even after the date of therapy discontinuation, is required if the adverse event or its sequelae persist. Followup is required until the event or its sequelae resolve or stabilize at a level acceptable to the investigator and the Pfizer appointed monitor.

Serious Adverse Events

All Serious Adverse Events which occur during the study until the last follow-up visit required by the protocol and for 30 days after the last dose of study drug, whichever comes later, regardless of treatment group or suspected relationship to drug, must be reported immediately by telephone to the Pfizer appointed monitor.

Serious Adverse Events include those that suggest a significant hazard, such as events which:

- are fatal
- are life-threatening
- result in permanent disability
- require in-patient hospitalization or prolongation of a hospital stay
- involve cancer, a congenital anomaly or drug overdose

It should be emphasized that, regardless of the above criteria, any additional adverse experience which the investigator considers serious should be immediately reported.

Any serious adverse event occurring either during the clinical trial and for 30 days after the last dose of study drug must be reported immediately independent of the circumstances or suspected cause.

All deaths should be immediately reported, regardless of elapsed time between last dose in a clinical trial and the death and thus extends beyond the 30 day post study limit.

For all serious adverse events, the investigator is obligated to pursue and provide information as requested by the Pfizer appointed monitor in addition-to that on the case report form. In general, this will include a description of the adverse event in sufficient detail to allow for a complete medical assessment of the case and independent determination of possible causality. In the case of a patient death, a summary of available autopsy findings must be submitted as soon as possible to the Pfizer appointed monitor. The investigator should ensure that information on such cases is reported by telephone or other means and information entered in the case report form is accurate and consistent.

For Canadian studies, in order to conform with Canadian Regulatory requirements as well as U.S. Regulatory requirements, such reactions originating from investigational drug studies conducted in Canada must also be reported IMMEDIATELY to the Director of Drug Regulatory Affairs, Pfizer Canada, Montreal (514-695-0500).

Laboratory safety tests and abnormal laboratory results

October 18, 1994

Since clarithromycin may raise theophylline levels, all subjects on concommitant theophylline should have theophylline levels monitored periodically at the local laboratory.

The clinical laboratory tests, outlined below, will be performed at baseline (visit 1), during therapy (visit 2, day 4 - no urinalysis) and at the end of therapy (visit 3, day 11). Additional safety tests, i.e., at day 30 need only to be undertaken if clinically indicated (e.g., post therapy, clinically significant adverse event) or if a clinically significant abnormality was present at visit 3.

The laboratory safety tests will be conducted by a central laboratory appointed by Pfizer. Transfer of laboratory data from the central laboratory to the investigator and to Pfizer will be by hard copy and where possible by electronic means. The results of all known laboratory tests required by the protocol will be held/recorded in the patient's Case Report Forms (CRFs).

Hematology

Hemoglobin, hematocrit, red blood cells, white blood cells, differential count and platelets.

Biochemistry
AST, ALT, total bilirubin, LDH, alkaline phosphatase, urea, creatinine, total protein, albumin, sodium, potassium, bicarbonate, chloride and random blood glucose.

Urinalysis

Microscopy and urine chemistry (protein, glucose, ketones, bilirubin, pH , urobilinogen, blood and nitrate).

Clinically significant laboratory tests

All clinically important abnormal laboratory tests occurring during the study will be repeated at appropriate intervals until they return either to baseline or to a level deemed acceptable by the investigator and the Pfizer appointed monitor.

Further procedures for specific laboratory abnormalities are given in Appendix B.

Discontinuation from study (withdrawals from study)

The reason for a patient discontinuing from the clinical trial must be recorded in the case report form. A discontinuation occurs when an enrolled patient ceases participation in the clinical trial, regardless of the circumstances, prior to completion of the protocol. A discontinuation must be reported immediately to the Pfizer appointed monitor if it is due to a Serious Adverse Event. The investigator is encouraged to contact the Pfizer appointed monitor to discuss
any patient he is considering withdrawing from the trial. However, the final decision as to withdrawal rests with the investigator.

The final efficacy evaluation required by the protocol and microbiology (see Section 7.4.) will be performed at the time of study drug discontinuation. However, subjects must be followed for safety until visit 4 . The investigator will record the reason for study discontinuation, provide or arrange for appropriate follow-up (if required) for such subjects, and document the course of the patient's condition. Any medication started after the discontinuation but before visit 4 must also be recorded on the concomitant medication section of the case record form.

Medical Officer comments:
In general, this study is a well designed, DB,DD trial against an appropriate comparator agent. The trial design basically follows the recommendations of the IDSA guidelines.

Although a total of 71 investigators (68 US and 3 Canadian) were listed as contributing to this study, only 51 of them (including 2 Canadian investigators who enrolled a total of 6 subjects) eventually contributed enrolled subjects. The following 9 of these investigators contributed at least 10 subjects to this study:

Investigator	ID\#	location	N	\#subinvestigators	subjects per investigator
Sullivan					
Gezon	5139	Alabama	44	1	22.0
Herrod	5017	Utah	32	7	4.0
Upchurch	5209	Utah	28	26	1.1
Hartford	5140	Oregon	20	1	10.0
Miller	5129	Idaho	18	12	1.5
Follett	5051	Oregon	15	5	2.5
Schultz	5252	Wyoming	14	5	2.3
Pearl	5251	Iowa	11	13	0.8
	5214	Utah	11	9	1.1

The number of subinvestigators and the ratio of enrolled subjects per investigator is listed to provide an index of the intensity of enrollment per listed investigator. Since the dates of this study are listed as November 1994 to November 1995, it can be seen that Dr. Sullivan and his co-investigator (Dr. Flippo), each saw 22 patients with CAP at a single practice site (Parkway Medical, Birmingham AL) over the course of one respiratory season in Alabama.

The geographic distribution of the largest recruiting centers in this study appears to be predominantly the western portion of the US, with the sole exception of Alabama. The states represented above are not among those with the highest degree of emerging penicillin resistance in pneumococci. Interestingly $71 / 358$ enrolled subjects (20%) in this study ended up being from the state of Utah.

Trovafloxacin patients

General comments:

1. No radiologist reports were included in any of the CRFs, despite the protocol statement that:

"A repeat chest X-ray must be undertaken and reported.

For the assignment of outcomes all X-rays from a given patient will be read by a qualified radiologist and intrepreted with respect to the baseline X-ray."

The sponsor was asked to present radiology reports on the audited subjects listed above. The following communication was transmitted to the sponsor on 9 October 1997 via electronic mail:

The CAP studies are designed in such a way that the only piece of objective clinical data that is required for entry is a CXR showing a 'new' infiltrate. (This of course implies the presence of a baseline
radiograph, but that is a pre-enrollment requirement that is in my opinion overly restrictive. That is not the point of this communication.)

Four of the five CAP studies (102 is the only one that does not) specify that the interpretation of xrays will be done by a radiologist.

I was disappointed to find that these interpretations were not included in the primary dataset that is included in the case record forms for each enrolled subject.
(The sole exception appears to be study 112, which includes some radiology reports in the CRFs.)

As I mentioned, this is the only piece of objective clinical evidence that is required for study entry in these studies.

I do not want to request that all such documentation be provided at this point. However, I would like to review a sample of one study's radiology reports as a check on the correlation between the information provided in the CRF (which varies from an apparrent verbatim transcription of a radiology report, to nothing other than checking off the boxes on the CRF) and the official interpretation of the admission CXR.

Here is a 10% random sample of subjects enrolled in study $154-134$. I have selected this study because it is (in my opinion) the best designed in terms of blinding and comparator, and is domestic. Please provide all radiologist reports on all entry radiographs taken on the following study subjects:

The sponsor's response:
2. None of the laboratory reports in the CRFs for this study reported a differential WBC count that included the number or percent immature forms (i.e., 'bands'). This is not of major concern, although this is a generally recognized parameter of acute infection that is helpful in making the diagnosis of an acute bacterial infectious process. It is also part of the entry criteria [page 8 of original protocol, item 5.2.b.5: "leukocytosis (blood leukocyte count $>10,000 / \mathrm{mm}^{3}$ or $>15 \%$ bands)].
3. Of the CRFs examined, practically all of the treated subjects received 10 days of therapy. In the study report (table 3 in appendix), 16 subjects in the trovafloxacin arm and 16 in the clarithromycin arm received 7 days of therapy, compared to 129 and 133 , respectively, who received 10 days. The proposed labeling requests a 7-14 day duration of therapy in the table presented in the DOSAGE AND ADMINISTRATION section. This study does not support a lower limit of 7 days of therapy for this indication.
4. The results of the CRF audit, in general, reveal no other inconsistencies of major concern. There were two CRFs in the trovafloxacin subjects and one clarithromycin subject for whom no CRFs were imaged in the "CRF Casebook" section of the CANDA. Although not of major concern, this represents $3 / 36$ or 8% of the audited CRFs.

Medical Officer conclusions regarding efficacy results, study 134:

1. This double-blinded study supports the clinical efficacy of trovafloxacin in the treatment of communityacquired pneumonia. The sponsor's evaluation using the clinically evaluable EOS endpoint demonstrates equivalence with the approved comparator, clarithromycin. The bacteriologically (and clinically) evaluable subset at EOS did not demonstrate any remarkable organism-specific differences in outcome between the two treatment arms.
2. The results of subjects who were considered failure or relapse did not reveal any discrepancies; both study arms had 11 culture negative failure/relapses. Of the remaining subjects who were culture positive at baseline, the clarithromycin failure/relapses had 3 M . catarrhalis and 3 H . influenzae failures, whereas there were none of either of these organisms listed as failure/relapses in the trovafloxacin arm (out of a total of 13 isloates for H. influenzae, and 4 for M. catarrhalis).
