CENTER FOR DRUG EVALUATION AND RESEARCH **APPLICATION NUMBER: 20-816** # **ADMINISTRATIVE DOCUMENTS** # LUIAINIU TALE (Complete for all original applications and all efficacy supplements) | NDDIPLA # 20 8 16 Supplement # Circle one: SE1 SE2 SE3 SE4 SE5 SE6 | |---| | HF)-SSO Trade (generic) nameldosage form: Azopt (hunzalanide vothalmic Suspension), 1.0% Action: (AP) AE NA Applicant Alcon Laboratories Therapeutic Class 15 | | Applicant Alcon Labratories Therapeutic Class 15 | | Indication(s) previously approved Pediatric labeling of approved indication(s) is adequate inadequate | | Indication in this application <u>Keduction of Ior</u> (For supplements, answer the following questions in relation to the proposed indication.) | | 1. PEDIATRIC LABELING IS ADEQUATE. Appropriate information has been submitted in this or previous applications and has been adequately summarized in the labeling to permit satisfactory labeling for all pediatric subgroups. Further information is not required. | | 2. PEDIATRIC STUDIES ARE NEEDED. There is potential for use in children, and further information is required to permit adequate labeling for this use. | | a. A new dosing formation is needed, and applicant has agreed to provide the appropriate formulation. | | b. The applicant has committed to doing such studies as will be required. (1) Studies are ongoing, (2) Protocols were submitted and approved. (3) Protocols were submitted and are under review. (4) If no protocol has been submitted, explain the status of discussions on the back of this form. | | c. If the sponsor is not willing to do pediatric studies, attach copies of FDA's written request that such studies be done and of the sponsor's written response to that request. | | 3. PEDIATRIC STUDIES ARE NOT NEEDED. The drug/biologic product has little potential for use in children. Explain, on the back of this form, why pediatric studies are not needed. | | 4. EXPLAIN. If none of the above apply, explain, as necessary, on the back of this form. | | EXPLAIN, AS NECESSARY, ANY OF THE FOREGOING ITEMS ON THE BACK OF THIS FORM. | | PM 2/5/98 | | Signature of Preparer and Title (PM, CSO, MO, other) CC: Orig(NDA)PLA # 20-816 HFD-550 Div File NDA/PLA Action Package HFD-510/GTroendle (plus, for CDER APs and AEs, copy of action letter and labeling) | | TE: A new Pediatric Page must be completed at the time of each action even though one was lared at the time of the last action. | # ITEM 15. DEBARMENT STATEMENT Pursuant to section 306(k)(1) of the Federal Food, Drug and Cosmetic Act, Alcon Laboratories, Inc. certifies that, to the best of its knowledge and belief, the applicant did not and will not use in any capacity in connection with this application the services of any person listed pursuant to section 306(e) as debarred under subsections 306(a) or (b) of the Act. APPEARS THIS WAY ON ORIGINAL | EXCLUS | IVITY SUMMARY for NDA # <u>30-816</u> SUPPL # | |----------------|---| | | Tame Azopt Generic Name brinzekanide aptitalist Sisper | | Applica | nt Name Alcon Laboratories, Inc. HFD-550 | | Approva | l Date, if known | | PART I | is an exclusivity determination needed? | | ap
PA
an | exclusivity determination will be made for all original plications, but only for certain supplements. Complete RTS II and III of this Exclusivity Summary only if you swer "yes" to one or more of the following question about e submission. | | at | Is it an original NDA? YES / NO // | | b) | Is it an effectiveness supplement? | | | YES // NO // | | - | If yes, what type? (SE1, SE2, etc.) | | c) | support a safety claim or change in labeling related to safety? (If it required review only of bioavailability or bioequivalence data, answer "no.") | | | YES // NO // | | | If your answer is "no" because you believe the study is a bioavailability study and, therefore, not eligible for exclusivity, EXPLAIN why it is a bioavailability study, including your reasons for disagreeing with any arguments made by the applicant that the study was not simply a bioavailability study. | | المعار | | | • | · | | | If it is a supplement requiring the review of clinical data but it is not an effectiveness supplement, describe the change or claim that is supported by the clinical data: | | | | | | YES // NO // | |-------|---| | | If the answer to (d) is "yes," how many years of exclusivity did the applicant request? | | | <u>5yrs</u> | | | OU HAVE ANSWERED "NO" TO ALL OF THE ABOVE QUESTIONS, GO CTLY TO THE SIGNATURE BLOCKS ON PAGE 8. | | 2. | Has a product with the same active ingredient(s), dosage form, strength, route of administration, and dosing schedule, previously been approved by FDA for the same use? (Rx-to-OTC switches should be answered NO-please indicate as such.) | | | YES // NO / <u>/</u> / | | | If yes, NDA # Drug Name | | | HE ANSWER TO QUESTION 2 IS "YES," GO DIRECTLY TO THE SIGNATURE KS ON PAGE 8. | | -3. | Is this drug product or indication a DESI upgrade? | | | YES // NO // | | | HE ANSWER TO QUESTION 3 IS "YES," GO DIRECTLY TO THE SIGNATURE RS ON PAGE 8 (even if a study was required for the upgrade). | | PART | II FIVE-YEAR EXCLUSIVITY FOR NEW CHEMICAL ENTITIES | | (Ansv | wer either #1 or #2 as appropriate) | | 1. | Single active ingredient product. | | . • | Has FDA previously approved under section 505 of the Act any drug product containing the same active moiety as the drug under consideration? Answer "yes" if the active moiety | | | (including other esterified forms, salts, complexes, chelates or clathrates) has been previously approved, but this particular form of the active moiety, e.g., this particular ester or salt (including salts with hydrogen or coordination bonding) or other non-covalent derivative (such as a complex, chelate, or clathrate) has not been approved. Answer "no" if the compound requires metabolic conversion (other than deesterification of an esterified form of the drug) to produce an already approved active moiety. YES // NO /_/ | Did the applicant request exclusivity? d) | | active moiety, and, if known, the NDA #(s). | |----------|--| | | NDA# | | | NDA# | | | NDA# | | 2 | Combination product. | | | If the product contains more than one active moiety (as defined in Part II, #1), has FDA previously approved an application under section 505 containing any one of the active moieties in the drug product? If, for example, the combination contains one never-before-approved active moiety and one previously approved active moiety, answer "yes." (An active moiety that is marketed under an OTC monograph, but that was never approved under an NDA, is considered not previously approved.) | | | YES // NO // | | | If "yes," identify the approved drug product(s) containing the active moiety, and, if known, the NDA #(s). | | | NDA# | | | NDA# | | | NDA# | | | | IF THE ANSWER TO QUESTION 1 OR 2 UNDER PART II IS "NO," GO DIRECTLY TO THE SIGNATURE BLOCKS ON PAGE 8. IF "YES" GO TO PART III. # PART III THREE-YEAR EXCLUSIVITY FOR NDA'S AND SUPPLEMENTS To qualify for three years of exclusivity, an application or supplement must contain "reports of new clinical investigations (other than bioavailability studies) essential to the approval of the application and conducted or sponsored by the applicant." This section should be completed only if the answer to PART II, Question 1 or 2 was "yes." | 1. | inve
othe
cont
refe
answ
3(a)
appl | the applications? stigations" to than bioavaring clinical rence to clinical rence to clinical results "yes," the is "yes" for ication, do not stigation. | o mean in
ailability
investiga
ical inves
n skip to | vestigati vestigati vestions only stigations question estigation te remain | ons cond
) If
by virt
in anot
3(a).
referreder of | the ap
the ap
tue of a
her app
If the
ed to i | on humans plication right of lication, answer to n another for that | |----|---|--
---|--|--|---|--| | | 11110 | sergacion. | | | /*
/* | 1 1 1 1 1 1 | | | | | GO DIRECTLY TO | | 1110 / | / | NO / | | | IF | "NO," | GO DIRECTLY TO | O THE SIGN | ATURE BLO | CKS ON P | AGE 8. | ÷ | | 2. | Agen with inve clin or a (i.e bioa for what 2) t cond avai to s | clinical inve | nave appro- on tha not essention is not light of on other ata, would n ANDA or own about ished report sored by at independant at of the stigation efform so | t invest the approximation to ecessary to previous than climated to be sufficiently work application application submitted the approximated approximate appr | pplicati igation the app o suppor y appro nical to cient to applic sly appro udies (cant) or uld have on, with in the ved app onducted source | on or s Troval t the s ved app rials, provid ation b oved pro other t c other been s out ref applica lication by the , inclu | upplement nus, the if 1) no supplement lications such as e a basis ecause of oduct), or han those publicly ufficient erence to tion. ns, is a applicant iding the | | | | published lit | terature)
ion or sup | necessary | to sup | port ap | proval of | | | | | | YES / | / | NO / | _/ | | | * د. | If "no," sta
clinical tri
DIRECTLY TO S | al is not | necessa | ry for | nclusio
approva | n that a
l AND GO | | | | | | | | | | | | | | | YES / | / | NO / | | | (b)
- | Did the applicant submit a list of published studies relevant to the safety and effectiveness of this drug product and a statement that the publicly available data would not independently support approval of the application? | | | | | |---------------------------------|--|---|--|--|--| | | | YES /// NO // | | | | | | (1) | If the answer to 2(b) is "yes," do you personally know of any reason to disagree with the applicant's conclusion? If not applicable, answer NO. | | | | | | | YES // NO // | | | | | | | If yes, explain: | | | | | | | | | | | | ` | (2) | If the answer to 2(b) is "no," are you aware of published studies not conducted or sponsored by the applicant or other publicly available data that could independently demonstrate the safety and effectiveness of this drug product? | | | | | | | YES // NO // | | | | | | | If yes, explain: | | | | | (c) | ident | he answers to (b)(1) and (b)(2) were both "no," ify the clinical investigations submitted in the ication that are essential to the approval: | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | idere | omparing two products with the same ingredient(s) are d to be bioavailability studies for the purpose of ion. | | | | | investigation by previous somet | ipport
stigated on
lously
cate
y th
lously | on to being essential, investigations must be "new" exclusivity. The agency interprets "new clinical tion" to mean an investigation that 1) has not been by the agency to demonstrate the effectiveness of a paperoved drug for any indication and 2) does not the results of another investigation that was relied agency to demonstrate the effectiveness of a approved drug product, i.e., does not redemonstrate the agency considers to have been demonstrated in an approved application. | | | | З. | a) | For each investigation ider approval," has the investigation agency to demonstrate the eapproved drug product? (If on only to support the safedrug, answer "no.") | gation been reli
ffectiveness of
the investigation | ed on by the
a previously
on was relied | |----|---|--|---| | | Investigation #1 | ÝES // | NO // | | | Investigation #2 | YES // | NO // | | | If you have answered investigations, identify each NDA in which each was relie | ch such investiga | | | | | | | | td | For each investigation ider approval", does the investi of another investigation that to support the effectivenedrug product? | gation duplicate
t was relied on 1 | the results
by the agency | | | Investigation #1 | YES // | NO // | | | Investigation #2 | YES // | NO // | | · | If you have answered "yes" fidentify the NDA in which relied on: | | | | | <u> </u> | | | | c) | If the answers to 3(a) and "new" investigation in the aris essential to the approvalisted in #2(c), less any to | pplication or sug
al (i.e., the in | oplement that
evestigations | | | | | • | | | | | | | | | | | | 4. | esser
spons
or s
condu
of th
or 2)
subst
suppo | e eligible for exclusivity, a new investigation that is thial to approval must also have been conducted or sored by the applicant. An investigation was "conducted ponsored by" the applicant if, before or during the act of the investigation, 1) the applicant was the sponsor of the investigation, 1) the applicant was the sponsor of the applicant (or its predecessor in interest) provided cantial support for the study. Ordinarily, substantial ort will mean providing 50 percent or more of the cost of study. | |----|---|---| | | a) | For each investigation identified in response to question 3(c): if the investigation was carried out under an IND, was the applicant identified on the FDA 1571 as the sponsor? | | | | Investigation #1 ! | | | | IND # YES // ! NO // Explain:! | | | | Investigation #2 ! | | - | | <pre>IND # / ! NO // Explain:! !</pre> | | | (b) | For each investigation not carried out under an IND or for which the applicant was not identified as the sponsor, did the applicant certify that it or the applicant's predecessor in interest provided substantial support for the study? | | | | Investigation #1 ! | | | | YES // Explain ! NO // Explain ! | | | | | | | | <u> </u> | | | , see | ! Investigation #2 ! | | | | YES // Explain ! NO // Explain | | | | | | | (c) | there other renot be credite study? (Purch for exclusivit purchased (not may be conside | ng an answer of asons to believe d with having "dased studies may. However,
if just studies cered to have some or conduct | e that the ap
conducted or
by not be use
all rights to
on the drug),
ponsored or | plicant should sponsored" the das the basis o the drug are the applicant conducted the | |-------|------|---|---|---|--| | J-10 | | | YES | // No | 0 // | | | | If yes, explain | 1: | more, avegans, et waller | TOTAL IN THE | | _Titl | | JSI Of Division Di DCAN | Moject Manage | 2/5/98 Date) 4/198 Date | | | | | | • | | | | cc: | Orig | inal NDA | Division File | HFD-93 Ma | ry Ann Holovac | # PART 13 PATENT AND EXCLUSIVITY INFORMATION # A. Patent Information Below are listed all patents known to the applicant that claim the drug or a method of using the drug and with respect to which a claim of patent infringement could reasonably be asserted if a person not licensed by the owner engaged in the manufacture, sale, or use of the drug. 1. U.S. Patent No.: 5,240,923 Issue Date: August 31, 1993 Expiration Date: August 31, 2010 Patent Owner: Alcon Laboratories, Inc. Claims For: Compound, Formulations and Methods of Use - Controlling Intraocular Pressure 2. U.S. Patent No.: 5,378,703 Issue Date: January 3, 1995 Expiration Date: August 31, 2010 Patent Owner: Alcon Laboratories, Inc. Claims For: Compound, Formulation and Methods for Use - Controlling Intraocular Pressure 3. U.S. Patent No.: 5,461,081 Issue Date: October 24, 1995 Expiration Date: October 24, 2012 Patent Owner: Alcon Laboratories, Inc. Claims For: Formulation and Method for Delivery 1 # United States Patent [19] # Dean et al. US005240923A [11] Patent Number: 5,240,923 [45] Date of Patent: Aug. 31, 1993 [54] SULFONAMIDES USEFUL AS CARBONIC ANHYDRASE INHIBITORS [75] Inventors: Thomas R. Dean, Weatherford: Hwang-Hsing Chen: Jesse A. May, both of Fort Worth, all of Tex. [73] Assignee: Alcon Laboratories, Inc., Fort Worth, Tex. [21] Appl. No.: 775,313 [22] Filed: Oct. 9, 1991 # Related U.S. Application Data [63] Continuation-in-part of Ser. No. 618,765, Nov. 27, 1990. Pat. No. 5,153,192, which is a continuation-inpart of Ser. No. 506,780, Apr. 9, 1990, abandoned. [51] Int. Cl. CO7D 513/04; A61K 31/54 [52] U.S. Cl. 514/226.5; 544/48: 540/552; 548/207; 548/209; 548/212; 514/373 ### [56] References Cited #### | 4,746.745 5/1988 Maren 548/
4,797.413 1/1989 Baldwin et al | 4. 21.200 | 1.200 2.1700 | HOHMAII. Jr. Cl al | 214/301 | |---|-----------|--------------|--------------------|----------| | | 4,746,745 | 5.745 5/1988 | Maren | 548 (139 | | | 4,797,413 | .413 1/1989 | Baldwin et al | 514/432 | | 4.847.289 7/1989 Baldwin et al | 4,847,289 | 7,289 7/1989 | Baldwin et al | 514/445 | ### FOREIGN PATENT DOCUMENTS 1096916 1/1961 Fed. Rep. of Germany . 1516024 6/1978 United Kingdom . #### OTHER PUBLICATIONS "The Reactions of Some Thiophene Sulfonyl Derivatives," Cremyln et al., *Phosphorus and Sulfur*, vol. 10, pp. 111-119, 1981. "Studien in der Thiophenreihe. XXIV.² Uber Nitrothiophene and Thiophensulfochloride." Steinkopf et al., Justus Liebigs Analen Der Chemie, vol. 501, pp. 174–186, 1933 "Heterocyclic Disulphonamides and Their Diuretic Properties," deStevens et al., Journal of Medicinal and Pharmaceutical Chemistry, vol. 1(6), pp. 565-576, 1959. Primary Examiner—John M. Ford Attorney, Agent, or Firm—James A. Arno; Sally S. Yeager # [57] ABSTRACT Sulfonamides and pharmaceutical compositions containing the compounds useful in controlling intraocular pressure are disclosed. Methods for controlling intraocular pressure through administration of the compositions are also disclosed. 14 Claims, No Drawings Provided that when G is SO₂ and R₃ is in the 4 position and is H or halogen then R₁ and R₂ are not H. C₁₋₆ alkyl substituted optionally with OH. C₁₋₆ alkoxy. C₂₋₆ alkoxycarbonyl. C₂₋₆ alkenyl, phenyl, phenoxy, pyridyl, tetrahydrofuryl, C₂₋₆ alkanoyl. 5 C₂₋₆ alkenyl, nor are they joined to form a 5. 6 or 7 member ring, saturated or unsaturated, comprised of atoms selected optionally from C. O. S. N in which said nitrogen, when saturated, is substituted optionally with H or C₁₋₆ alkyl or in which said 10 carbon is substituted optionally with C₁₋₆ alkyl, C₁₋₆ alkoxy or OH; and when R₃ is in the 5 position and is H. Cl. Br, or C₁₋₃ alkyl then neither R₁ nor R₂ can be H or C₁₋₄ alkyl; and when G is C(=O) and in the 5- position and R₃ is H, then R₁ and R₂ 15 cannot both be CH3: R. & R. are the same or different and are H; C1-4 alkyl; C2-4 alkyl substituted optionally with OH. halogen, C14 alkoxy or C(=O)R7; C14 alkoxy; gen. C1-4 alkoxy or C(=O)R7; C3-7 alkenyl unsubstituted or substituted optionally with OH. NR₅R₆. or C14 alkoxy; C1.7 alkynyl unsubstituted or substituted optionally with OH, NR₅R₆, or C₁₋₄ alkoxy; C1.2alkyl C3.5-cycloalkyl; C(==O)R7 or R5 and R6 25 can be joined to form a ring of 5 or 6 atoms selected from O, S. C or N. such as, pyrrolidine, oxazolidine, thiomorpholine, thiomorpholine 1.1 dioxide, morpholine, piperazine, thiazolidine 1,1-dioxide, or tetrahydrooxazine, which can be unsubstituted or 30 substituted optionally on carbon with OH. (=O). halogen, C1-4 alkoxy, C(=O)R-, C1-6 alkyl, C1-6 alkyl substituted optionally with OH, halogen, C14 alkoxy. C(=0)R2 oron nitrogen with C14 alkoxy. $C(=O)R_7$. $S(=O)_mR_8$, C_{1-6} alkyl or C_{2-6} alkyl sub- 35 stituted optionally with OH, halogen, C1-4 alkoxy, C(=O)R; or on sulfur by $(=O)_m$, wherein m is 0 - 2 R₂ is C_{1.8} alkyl: C_{1.8} alkyl substituted optionally with OH. NR₃R₆, halogen, C_{1.4} alkoxy or C(=O)R₀; cyclic and/or acyclic now using methods known to OH. NR₃R₆, halogen or C_{1.4} alkoxy; NR₃R₆; or phenyl or a heteroaromatic group either of which can be unsubstituted or substituted optionally with OH, halogen, C_{1.3} alkyl, C_{1.3} haloalkoxy, (CH₂)n OH, halogen, C_{1.3} alkyl, C_{1.3} haloalkoxy, (CH₂)n or 1 and m is 0-2. R₈ IS C₁₋₄ alkyl: C₂₋₄ alkyl substituted optionally with OH, NR₅R₆, halogen, C₁₋₄ alkoxy or C(=O)R₇. R₉ C₁₋₄ alkyl: C₁₋₄ alkoxy; amino, C₁₋₃ alkylamino, or 50 di-C₁₋₃ alkylamino and G is C(=O) or SO₂. In the above definitions, the total number of carbon atoms in a substituent group is indicated by the C_{1-j} prefix where i and j are numbers from 1 to 8 for example. This C_{1-j} definition includes both the straight and branched chain isomers. For example, C₁₋₄ alkyl would designate methyl through the butyl isomers; and C₁₋₄ alkoxy would designate methoxy through the butoxy isomers. The term "halogen." either alone or in compound words such as "haloalkyl." means fluorine, chlorine, bromine or iodine. Further, when used in compound words such as "haloalkyl." said alkyl may be partially or fully substituted with halogen atoms, which may be 65 the same or different. The term heteroaromatic means a monocyclic ring system of 5 or 6 atoms comprised of C. N. O and or S such as furan, thiophene, pyrrole, pyrazole, imidazole, triazole, ietrazole, oxazole, isoxazole, isothiazole, thiazole, thiadiazole, pyridine, pyrimidine, pyridazine, and pyrazine. Structure [I] includes isomers, wherein R₃ and GNR₁R₂ are attached to the 4 and 5 position respectively or R₃ is attached to the 5 position and GNR₁R₂ is attached to the 4 position. Many of the novel compounds of Structure [I] possess one or more chiral centers, and this invention includes all enantiomers, diastereomers and mixtures thereof. # **SYNTHESIS** Compounds of the present invention can be prepared using a variety of procedures, a number of which are described below in equations 1 through 7. alkyl; $C_{2.4}$ alkyl substituted optionally with OH. halogen, $C_{1.4}$ alkoxy or $C(=O)R_7$; $C_{1.4}$ alkoxy; C_{2.4} alkoxy substituted optionally with OH, halogen, $C_{1.4}$ alkoxy or $C(=O)R_7$; $C_{3.7}$ alkenyl unsubspace of the novel compounds of Structure [I] can be prepared from N-t-Bu thiophene-2-sulfonamides with R₃ substituents according to the scheme shown in equation 1. In general, N-t-Bu thiophene-2-sulfonamides can be metallated in the 5-position at low temperatures using a strong organometallic base such as n-butyllithium and condensed with sulfur dioxide gas to produce intermediate sulfinate salts (equation 1a). These intermediates can be readily oxidized to the corresponding sulfonyl chloride which in turn can be aminated with primary or secondary amines, bearing the requisite R_1 and R_2 substituents, to furnish the novel compounds of Structure [I] (equation 1b). In many cases it is more advantageous to prepare initially simplified primary or secondary sulfonamides via the above sequence and then append the more complex R₁ and/or R₂ substituents using standard alkylation reactions (equation 1c). This sequence can furnish directly the novel compounds of Structure [1] or the R₁, R₂ and R₃ substituents can be modified to furnish the cyclic and/or acyclic novel compounds of Structure [1] using methods known to one skilled in the art. Primary sulfonamides can be prepared from the corresponding sulfonyl chloride by amination with ammonia or directly from sulfinate salts using hydroxylamine-O-sulfonic acid (equation 1d). $$R_{3} \longrightarrow SO_{2}NH_{1}Bu \xrightarrow{\frac{1}{2}} \xrightarrow{nBuL_{1}} SO_{2}NH_{1}Bu \xrightarrow{\frac{1}{2}} SO_{2}NH_{1}Bu \xrightarrow{R_{3}} SO_{2}NH_{1}Bu \xrightarrow{R_{1}R_{2}NH} SO_{2}S \xrightarrow{R_{3}} SO_{2}NH_{1}Bu \xrightarrow{R_{1}R_{2}NO_{2}S} SO_{2}NH_{1}Bu$$ 25 30 For $$Z_1 = CO$$ OH OPg NH $\frac{1) \text{ Protect}}{2r \text{ NaH-RX}}$ NR CO Certain cyclic compounds of Structure [1], such as the 2.3-dihydrothienoisothiazoles, can be obtained through the modification of an
existing cyclic compound (equation 5). The metallated ketals of equation 3 can be readily converted to the desired intermediate 55 mercaptoketones as shown in equation 5a, and the oxime O-esters of such compounds can be cyclized according to equation 5b. Oxidation and subsequent reduction of the thienoisothiazole by procedures well known in the art provides the intermediate cyclic sulfonamides shown in equation 5c. These cyclic sulfonamides can be substituted on nitrogen utilizing standard alkylation conditions such as demonstrated by equation 5d. Incorporation of the primary sulfonamide into posi- 65 tion five of these examples of Structure [1] can be accomplished under the basic conditions demonstrated by equations la-d. $$\begin{array}{c|c} R^2 & d \\ NH & NaH/R^1N \\ S & S & S \\ O & O & O \end{array}$$ c) Yet other cyclic compounds of Structure [I], such as tetrahydrothienothiazepines, can be prepared from substituted thiophenesulfonamides according to equation 6. Thiophene acetals can be metallated in the two position with strong metallic bases in a manner similar to that described in equation 3a for thiophene ketals. These intermediates can be further converted to the thiophene-2-sulfonamides desired for equation 6a in a manner similar to that described for thiophene ketals by equations 3a and 1d. Thiophene acetals can be readily converted to the corresponding aldehydes by acid hydrolysis, and reaction of these aldehydes with an olefinic Grignard reagent can provide the olefin intermediates of equation 6a. The aliylic alcohols from equation 6a can be oxidized to intermediate ketones by a variety of procedures well known to the art, and these ketones can be cyclized upon treatment under basic conditions. such as sodium carbonate, to the cyclic sulfonamides N-[2-(4-morpholiny))ethyl]-2.5-thiophenedisulfonamide hydrochloride Step A: N-(1.1-Dimethylethyl)-2-thiophenesulfonamide To a solution of t-butylamine (8.35 g, 0.114 mol) in 5 dry tetrahydrofuran (THF) (20 mL) cooled to 0° C. was added dropwise 2-thiophenesulfonyl chloride (5.0 g. 27.4 mmol). After the addition was completed, the reaction mixture was warmed to ambient temperature and st:rred overnight. The mixture was extracted with ethyl 10 acetate (3×80 mL) and the combined extracts were washed with water, dried over molecular sieves and concentrated. The residue was chromatographed on (silica, eluting with 25% ethyl acetate-hexane) to yield 5.62 g (94%) of solid: mp 80'-82' C. # Step B: # N-(1,1-Dimethylethyl)-2.5-thiophenedisulfonamide To a solution of the product from Step A (1.5 g, 6.85) mmol) in THF (10 mL) cooled to -60° C. was added 20 n-butyllithiumin hexane (2.5 M. 6.0 mL, 15.1 mmol). The mixture was stirred for 15 min at -60° C. and for 30 min at -10° C. Sulfur dioxide gas was passed through the surface of the mixture for 10 min. The cooling bath was removed and the mixture was stirred 25 for an additional 1 h. The volatiles were evaporated and the residue was dissolved in water (30 mL) and sodium acetate trihvdrate (5.59 g. 41.1 mmol) was added. The mixture was cooled in an ice-water bath and hydroxylamine-0-sul- 30 fonic acid (2.71 g. 23.9 mmol) was added. The cooling bath was removed and the mixture was stirred for 2 h. The suspension was extracted with ethyl acetate (3×50) mL) and the combined extracts were washed with 5% sodium bicarbonate solution, brine and dried over mo- 35 lecular sieves. The solvent was evaporated and the residue was chromatographed on (silica, eluting with 40% ethyl acetate-hexane) to yield 1.25 g (61%) of a liquid which solidified on standing: rnp 116*-120* C. # Step C: # N-(1.1-Dimethylethyl)-N'-[2-(4-morpholinyl)ethyl]-2.5thiophenedisulfonamide A solution of the product from Step B (1.05 g. 3.52 mmol), sodium hydride (60% dispersion in mineral oil, 45 solid (2.47 g. 72%): mp 200°-202° C. 310 mg. 7.75 mmol) and 4-(2-chloroethyl)morpholine hydrochloride (0.721 g. 3.88 mmol) in anhydrous dimethylformamide (DMF) (20 mL) was heated at 110° C. for 2.5 h and then stirred at ambient temperature overnight. The reaction mixture was extracted with 50 heated at reflux for 1 h. The THF was evaporated and ethyl acetate (3×100 mL), washed with brine, dried over molecular sieves and concentrated. The residue was chromatographed (silica, elution with 50% ethyl acetate-hexane) to yield 0.32 g (22%) of the desired product: # Step D: # N-[2-(4-Morpholinyl)ethyl]-2,5-thiophenedisulfonamide hydrochloride A solution of the product from Step C (0.31 g, 0.75 60 mmol) in trifluoroacetic acid (7 mL) was stirred at ambient temperature for 4 h. The trifluoroacetic acid was evaporated and the residue was chromatographed (silica. eluting with methylene chloride-methanolammonium hydroxide (10/1/0.1)) to give 230 mg (86%) 65 of a viscous liquid. The liquid was dissolved in ethanol and treated with ethanolic HCl. Evaporation gave a white solid which was recrystallized from ethanolwater to afford colorless crystals (145 mg): mp 219°-220° C. Analysis calculated for C10H18ClN1O5S1; C. 30.65; H. 4.63; N. 10.72 Found: C, 30.54; H. 4.67; N, 10.64. # Example 2 4-Ethylamino-3,4-Dihydro-2-methyl-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide 1,1-dioxide hydrochloride # Step A: .. # 3-(2.5,5-Trimethyl-1,3-dioxane-2-yl)-2-thiophenesulfonamide To a solution of 3-(2,5,5-Trimethyl-1,3-dioxane-2yl)thiophene (2.5 g, 11.7 mmol) in hexane (30 mL) cooled to 0° C. was added via syringe n-butyllithium in hexane (2.5 M, 10.3 mL, 25.7 mmol) over 5 min. The mixture was stirred at 0° C. for 20 min, the ice bath was removed and the stirring was continued for 30 min. At this time a white precipitate formed. The mixture was cooled to -60° C. and THF (20 mL) was added. Sulfur dioxide was then passed through the surface of the mixture for 30 min. The mixture was warmed to ambient temperature and stirred for an additional 15 min. The volatiles were evaporated and to the residue was added water (50 inL) and sodium acetate trihydrate (9.55 g, 70.2 mmol). The solution was cooled on an ice bath and hydroxylamine-O-sulfonic acid (4.62 g. 40.9 mmol) was added. The mixture was stirred at ambient temperature for 1 h, extracted with ethyl acetate (3×100 mL) and the combined extracts were washed with a sodium bicarbonate solution, brine and dried over molecular sieves. Evaporation to dryness gave a viscous liquid (4:93 g), which was chromatographed (silica, eluting with 33% ethyl acetate-hexane) to give a # Step B: 3-Acetyl-2-thiophenesulfonamide A mixture of the compound from Step A (9.45 g. 32.5 mmol) and 1N HCl (100 mL) in THF (100 mL) was the aqueous solution was made basic by the addition of sodium bicarbonate. The mixture was cooled using an ice bath and the precipatiate was filtered, washed with cold water and dried in vacuo to give 5.83 g (88%) of a 55 solid: mp 193°-196° C. # Step C: # 3,4-dihydro-4-hydroxy-2H-thieno[3,2-e]-1,2-thiazine 1,1-dioxide The product from Step B (5.73 g, 28.0 mmol) was dissolved in hot THF (200 mL). The solution was cooled to 10.C. and pyridinium bromide perbromide (10.73 g, 33.5 mmol) was added. The mixture was allowed to stir at ambient temperature for 1 h. The volatiles were evaporated and the residue was mixed with water. The precipitate was filtered, washed with cold water and dried in vacuo overnight to give 7.77 g of a solid. A portion of this solid (3.49 g. 12.3 mmol) was 15 16 **EXAMPLE 5** trihydrate (3.03 g, 22.2 mmol) was added. The mixture was cooled to 0' C. and hydroxylamine-O-sulfonic acid (1.51 g. 13.3 mmol) was added. The mixture was stirred overnight, neutralized with saturated sodium bicarbonate solution and extracted with ethyl acetate (3 × 80 5 mL). The combined extracts were washed, dried and evaporated in a manner analogous to Step A to furnish a viscous liquid (2.17 g). This was chromatographed (silica, methylene chloride-methanol-ethyl acetate, 20/1/10)) to give some recovered starting material (1.15 g. 53%) and the desired product (0.82 g, 30%). This product was treated with ethanolic HCl and crystallized from ethanol to furnish white crystals: mp 172°-173° C. Analysis calculated for C11H20CIN3O5S3: C, 32.55; H. 4.97; N. 10.35. Found: C. 32.67; H. 4.92; N. 10.28. This method can be used to prepary many of the novel compounds of Structure [1] wherein the R₁ and R_2 substituents are joined to form a ring of 5 to 6 atoms. 20 In many cases the simplified heterocyclic rings used to couple with sulfonvl chlorides, such as that in Step A or those described in equations 1 and 2, are available commercially. Other examples can be prepared using methods known to one skilled in the art. A useful series of 25 references pertinent to this method are "Comprehensive Heterocyclic Chemistry." A. R. Katritzky et al. Volumes 2-6, and references cited therein. #### **EXAMPLE 4** 5-[[4-12-Hydroxyethyl)piperazinyl]sulfonyl]-2-thiophenesulfonamide hydrochloride To a solution of 2-[[4-(2-hydroxyethyl)piperazinyl]sulfonyl]thiophene (2.5 g. 9.0 g mmol) in THF (15 mL) cooled to -78° C. was added slowly over 5 min n- 45 butyllithium (2.5M, 8.5 mL, 20.8 mmol). The mixture was allowed to stir for 40 min at -65° C. and 20 min at -40° C. when a stream of sulfur dioxide was passed through the surface for 30 min. The mixture was warmed to ambient temperature, stirred for 1.5 h then 50 evaporated to dryness. The residue was dissolved in water (30 mL) and sodium acetate trihydrate (6.16 g. 45.3 mmol) was added. The mixture was cooled to 0° C. and hydroxylamine-O-sulfonic acid (3.59 g. 31.7 mmol) was added. The mixture was stirred overnight, neutralized with saturated sodium bicarbonate solution and extracted with ethyl acetate (3 × 80 mL). The combined extracts were washed, dried and evaporated to furnish a viscous liquid (3.15 9). This was chromatographed (silica, methylene chloride-methanol 70/1) to give some recovered starting material (1.24 g. 50%) and the desired product-as a liquid (0.8 g. 25%). The liquid was dissolved in
ethanol, filtered and treated with ethanolic HCl. The mixture was filtered and the solid dried to 65 give the desired product (0.54 g): mp 206°-207° C. Analysis calculated for C10H18ClN3O5S3: C.30.65; H. 4.65; N. 10.72 Found: C.30.62; H. 4.64; N. 10.68. N-Ethyl-N-[2-(4-morpholinyl)ethyl]-2.5-thiophenedisulfonamide hydrochloride # Step A: N-Ethyl-N-[2-(4-morpholinyl)ethyl]-2-thiophenesulfonamide To a mixture of sodium hydride (60% dispersion in mineral oil, 0.606 g, 15.1 mmol) in N,N-dimethyl formamide (DMF) (60 mL) cooled to 0° C. was added N-[2-(4-morpholinyl)ethyl]-2-thiophenesulfonamide (3.8 g. 13.8 mmol). The mixture was stirred for 1 h and then allowed to warm to ambient temperature overnight. The mixture was poured onto water, extracted with ethyl acetate, dried and concentrated to furnish a viscous oil (3.81 g). The liquid was dissolved in ethyl acetate and washed with 1 H NaOH, brine, dried and concentrated. This liquid was chromatographed (silica. ethyl acetate) to give the desired product as a liquid (2.95 g, 70%). # Step B: N-Ethyl-N-[2-(4-morpholinyl)ethyl]-2.5-thiophenedisulfonamide hydrochloride 'he product from Step A (2.2 g, 7.24 mmol) was 35 treated sequentially with n-butyllithium, sulfurdioxide. hydroxylamine-O-sulfonic acid and ethanolic HCl in much the same way as described in Example 4 to furnish the desired product as a hygroscopic white solid: mp 80'-85' C. Analysis calculated for C₁₂H₂₂ClN₃O₅S₃: C. 34.32: H, 5.28; N, 10.01 Found: C, 34.06; H, 5.20; N, 9.66. # **EXAMPLE 6** 3,4-Dihydro-2-methyl-4-(2-methyl)propylamino-2Hthieno[3,2-e]-1,2-thiazine-6-sulfonamide 1.1-dioxide hydrochloride ### Step A: 3,4-Dihydro-2-methyl-2H-thieno[3,2-e]-1,2-thiazine-4ol-1,1-dioxide To a mixture of sodium hydride (60% dispersion in mineral oil, 1.352 g, 33.8 mmol) in DMF (60 mL) was added 2,3-dihydro-4-hydroxy-2H-thieno [2,3-e]-1,2thiazine 1,1-dioxide (6.30 g, 30.7 mmol), prepared using the procedure described in Example 2. The mixture was cooled (dry ice-acetone bath) and methyl iodide (4.8 9. 33.8 mmol) was added over 5 min. After the addition was complete, the mixture was allowed to warm to 4-Bromo-5-[[4-(2-hydroxyethyl)-piperazinyl]sulfonyl]-2-thiophenesulfonamide hydrochloride A sample of 4-bromo-5-chlorosulfonvl-thiophene-2sulfonamide (5.2 g. 15.2 mmol) was treated sequentially with 1 -(2-hydroxyethyl)-piperazine (4.97 g. 38.0 mmol) and ethanolic HCl in much the same way as described in Example 8. Step B, to -furnish the desired hydrochloride salt. This material-was-recrystallized-from metha- 10 nol to give a white solid: mp 212° C. Analysis calculated for C10H17BrClN3O5S3-0.25 H₂O: C, 25.27; H. 3.71; N, 8.84 Found: C, 25.47; H, 3.51; N. 8.46 # **EXAMPLE 10** R-(+)-4-Ethylamino-3.4-dihydro-2-methyl-2Hthieno[3.2-e]-1.2-thiazine-6-sulfonamide 1,1-dioxide hy- A hot solution (about 80° C.) of the free base corresponding to Example 2 (10.88 g. 33.5 mmol) in npropanol (250 mL) was mixed with a hot solution of di-p-toluoyl-D-tartaric acid (3.27 g. 8.47 mmol) in nand the mixture was kept at greater than 50° C. for 30 min and filtered through a pad of celite. The filtrate was concentrated to about 200 mL and was placed in the freezer overnight. The solid was filtered, washed with 40 cold n-propanol and dried to give the tartrate salt (6.95 g), which was recrystallized four times from hot npropanol (250, 200, 160 and 160 mL respectively) to afford the tartrate (4.30 g). The salt was mixed with a saturated sodium bicarbonate solution (300 mL) and the 45 resulting suspension was allowed to stir for 1 h and was extracted with ethyl acetate (3 × 300 mL). The extracts were dried, filtered and evaporated to dryness to afford the free base (2.71 g), which was treated with 2N HCl to 50 give 2.71 g of the salt. $[a]_D + 14.7^{\circ}$ C. $(c=0.55, H_2O)$; mp 261°-263° C. Analysis calculated for C₀H₁₆ClN₃O₄S₃--0.5 H₂O: C. 29.87; H. 4.46; N. 11.61 Found: C, 29.85; H. 4.28; N. 55 ### EXAMPLE 11 Alternative preparation of: R-(+)-4-Ethylamino-3.4-dihydro-2-methyl-2Hthieno[3,2-e]-1,2-thiazine-6-sulfonamide 1,1-dioxide hydrochloride Step A: 3-(2,5,5-Trimethyl-1,3-dioxan-2-yl)thiophene Hydrogen chloride gas was bubbled briefly into a mixture of 3-acetylthiophene (100 g. 0.794 mol) and 2.2-dimethyl-1,3-propanediol (1.5 eq. 1.19 mol, 123 g) in toluene (650 mL) and the mixture was refluxed for 18 h with water removal using a Dean-Starck trap. Since only about half of the theoretical amount of water had been removed after this time, a few drops of concentrated sulfuric acid were added to the mixture and reflux was continued another 24 h. The mixture was allowed to cool to room temperature under a drying tube and potassium carbonate (10 g) was added followed by saturated aqueous sodium bicarbonate (300 mL) and 20 hexane (1 L) The organic phase was separated and the aqueous was extracted with hexane (3×400 mL). The combined hexane extracts were washed with brine (6×500 mL), dried over MgSO₄, treated with decolorizing carbon, filtered through celite and evaporated 25 under reduced pressure. The residue was distilled through a 12 inch Vigreux column to provide 120 g (71%) of the ketal as a colorless liquid that solidified on standing: bp 88° C./0.1 mmHg). # Step B: 3-Acetyl-N-methyl-2-thiophenesulfonamide A solution of the compound from Step A (50.0 g. 0.236 mol) in hexane (400 mL) was cooled to -60° C. under nitrogen. n-Butyllithium (1.3 eq. 120 mL of a 2.5 proponol (250 mL). Activated carbon (2.0 g) was added 35 M hexane solution) was added over 15 min while the temperature was maintained at -60° C. The cold bath was removed, and the reaction mixture was allowed to warm to room temperature, taking 30 min. After the mixture had stirred at room temperature for 30 min, it was again cooled to -60° C., at which point tetrahydrofuran (100 mL) was added. After the mixture had returned to -60° C., sulfur dioxide gas was bubbled into the reaction until the mixture was acidic, and the mixture was stirred overnight while warming to room temperature. N-Chlorosuccinimide (40 g, 1.3 eq) was added in one portion and stirring was continued at room temperature for 6 h. Methylamine gas was then bubbled into the mixture until the sulfonyl chloride was no longer present as indicated by TLC. (silica, 30% ethyl acetate/hexane). The reaction mixture was then concentrated on the rotary evaporator under reduced pressure, and the residue was diluted with tetrahydrofuran (400 mL) and 1 M aqueous hydrochloric acid (400 mL) and refluxed for 1 h. The mixture was then cooled, basified using solid sodium bicarbonate, and partitioned between water (1 L) and ethyl acetate (500 mL). The organic phase was separated and the aqueous layer was further extracted with ethyl acetate (3×400 mL). The combined organic layers were washed with saturated aq. sodium bicarbonate (4×500 mL), dried over MgSO₄, treated with decolorizing carbon, filtered through celite, and so concentrated. The residual oily 65 solid was leached with diethyl ether (500 mL) resulting in a solid that was collected by filtration, washing with ether, to provide, after air drying. 31 g (60%) of the sulfonamide: mp 101°-103° C. over MgSO4, treated with decolorizing carbon (Norite A), filtered through celite, and concentrated under reduced pressure, to provide 5.2 g (73%) of the sulfona- ### Step G: (+)-4-Ethylamino-3.4-dihydro-2-methyl-2H-thieno[3.-2.e]-1.2-thiazine-6-sulfonamide 1.1-dioxide The compound from Step F (27.0 g. 83.1 mmol) (94% ee) was dissolved in n-propanol (800 mL) and the solu- 10 dissolved in tetrah drofuran (75 mL) and cooled to 0° tion was filtered through a sintered glass filter. The filtrate was heated to about 80° C., and an 80° C. solution of di-p-toluoyl-D-tartaric acid (15.7 g. 40.7 mmol) in n-propanol (500 mL) was added. The mixture was allowed to stand at room temperature overnight before 15 it was cooled in an ice-water bath for 1 h. The crystals were collected by filtration, washed with cold npropanol, and dried to provide 39.2 g (93%) of the di-p-toluoyl-D-tartrate salt of greater than 98% ee. Because this material was somewhat colored, it was 20 recrystallized from n-propanol (1.5 L) to provide a first crop of 34.8 g. This solid was added to a saturated aqueous solution of sodium bicarbonate (500 mL), and the mixture was stirred for 1 h. The mixture was then extracted with ethyl acetate (4×400 mL), and the com- 25 bined extracts were dried over 4A molecular sieves. filtered, and concentrated on the rotary evaporator at reduced pressure to provide 20.2 g (75% recovery) of the (+)-sulfonamide of greater than 98% ee. # Step H: (-)-4-Ethylamino-3.4-dihydro-2-methyl-2Hthieno[3.2-e]-1.2-thiazine-6-sulfonamide 1.1-dioxide hydrochloride The compound from Step G (20.2 g. 62.2 mmol) was 35 treated with 2 M ethanolic hydrogen chloride (40 mL). and then the mixture was evaporated to dryness under reduced pressure. The residue was dissolved in water (200 mL) and evaporated to dryness to provide the hydrochloride salt which was washed with ethyl acetate and dried under high vacuum at 78° C. for 6 h. The yield of the hydrochloride salt was 21.7 g (94%) as the hemihydrate. # Example 12 2-Allyl-4-ethylamino-3.4-dihydro-2H-thieno[3.2-e]-1.2-55 thiazine-6-sulfonamide-1,1-dioxide-hydrochloride # 2-Allyl-3.4-dihydro-4-hydroxy-2H-thieno[3.2-e]-1,2thiazine 1,1-dioxide The product from Step C of Example 2 (4.0 g. 19.5 mmol) was dissolved in anhydrous DMF (70 mL) cooled to - 10° C. and sodium hydride (21.5 mmol) was added. After stirring for five minutes allyl bromide (2.53 mL. 29.25 mmol) was added and this mixture stirred for 65 2 h at 0° C. The reaction mixture was poured onto ice water (100 mL) and this solution was extracted with ethyl acetate. The combined extracts were washed with brine, dried (MgSO₄) and evaporated to give a crude product which was purified by column chromatography (silica, methylene chloride:methanol, 20:1) to provide the desired product (4.2 g, 88%) as a syrup.
2-Allyl-4-(1-ethoxy)ethoxy-3,4-dihydro-2H-thieno[3,2e]-1,2-thiazine 1,1-dioxide The product from Step A (4.2 g. 17.1 mmol) was C. at which point p-toluenesulfonic acid (163 mg. 0.6 mmol) was added followed by ethylvinyl ether (3.3 mL. 34.3 mmol). This mixture was stirred at 0° C. for 2 h, diluted with cold ethyl acetate (100 mL) and washed with saturated sodium bicarbonate (70 mL) and brine (70 mL). The organic layer was dried (MgSO₄) and evaporated to provide 5.2 g of crude product which was used in the next step without further purification. # Step C: 2-Allyl-3,4-dihydro-4-hydroxy-2H-thieno[3,2-e]-1,2thiazine-6-sulfonamide 1,1-dioxide The product from Step B (5.0 g, 15.8 mmol), dissolved in anhydrous tetrahydrofuran (125 mL) and cooled to -60° C., was treated dropwise with n-butyllithium (2.5 M, 7.6 mL, 18.9 mmol). This mixture was stirred at -40° C. for 40 min and then sulfur dioxide gas was bubbled over the surface for 20 min after which time the mixture was warmed to room temperature. After 30 min at room temperature the mixture was concentrated and the residue was dissolved in water (150 mL), cooled to 0° C. and sodium acetate trihydrate (6.4 g. 47.3 mmol) was added followed by hydroxylamine-O-sulfonic acid (3.2 g, 28.4 mmol). The reaction mixture was stirred at room temperature for 18 h after which time was basified with solid sodium bicarbonate and extracted with ethyl acetate. The combined extracts were washed with saturated sodium bicarbonate solution, dried (MgSO₄) and the solvent evaporated to give the desired intermediate (5.0 g). This residue was dissolved in tetrahydrofuran (70 mL), cooled to 0° C. and then IN HCI (70 mL) was added. After stirring at room temperature for 1 h the tetrahydrofuran was evaporated 45 and the solution was neutralized with saturated sodium bicarbonate solution. The product was extracted into ethyl acetate and the combined extracts were dried (MgSO₄) and evaporated to a residue which was purified by chromatography (silica. 5% methanol:methy-50 lene chloride) to give a syrup (1.2 g). # Step D: 2 - Allyl-4-ethylamino-3,4-dihydro-2H-thieno[3,2-e]-1,2thiazine-6-sulfonamide 1,1-dioxide hydrochloride The product from Step C (1 g, 3 mmol) was dissolved in tetrahydrofuran (50 mL) containing triethylamine (1.7 mL, 12.0 mmol) and the solution was cooled to -16° C. Tosyl chloride (1.1 g. 6.0 mmol) was added and the mixture stirred for 18 h at room temperature 60 after which time it was cooled to 0° C. and ethylamine (10 mL) was added. After heating at reflux for 1 h the solvent was evaporated and the residue dissolved in ethyl acetate (50 mL) and washed with 1N HCL (3×20 mL). The combined aqueous washes were basified (sodium bicarbonate) and extracted with ethyl acetate. The combined extracts were washed with saturated sodium bicarbonate solution (3×15 mL) and brine (3×15 mL). dried (MgSO₄) and evaporated to give the desired free 3: R₁=(CH₂)₂CH₃: R₂=(CH)₂O(CH₂)₂OCH₃: 3.4-Dihydro-4-propylamino-2-[2-(methoxyethoxy)e-thyl]-2H-thieno[3.2-e]-1,2-thiazine-6-sulfonamide-1,1-dioxide hydrochloride: mp 174*-178* C.; 4: R₁=CH₂CH₃; R₂=(CH₂)₃O(Crd₂)₂OCH₃: 4- 5 Ethylamino-3.4-dihydro-2-[3-(2-metnoxy)ethoxy]propyl-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide-1,1-dioxide hydrochloride: mp 209*-211* C.: 5: R₁=(CH₂)₂CH₃; R₂=(CH₂)₃O(CH₂)₂OCH₃: 3.4-Dihydro-4-propylamino-2-[3-(2-methoxy)ethoxy)propyl]-2H-thieno[3.2-e]-1,2-thiazine-6-sulfonamide-1,1-dioxide maleate: mp 150*-152* C. Using the procedures described in Examples 13 and 14 but substituting the appropriate alkylhaloether in Step A and the desired alkylamine in Step D the following compounds can be prepared: 6: R₁=(CH₂)₂CH₃; R₂ =(CH₂)₂OCH₂CH₃: 2-(2-Ethoxy)ethyl-3,4-dihydro-4-propyl amino-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide-1,1-dioxide hydrochloride; 7: R₁=CH₂CH₃: R₂=(CH₂)₃OCH₂CH₃: 2-(3-Ethoxy)propyl-4-ethylamino-3,4-dihydro-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide-1,1-dioxide hydrochloride. 8. R₁=(CH₂)₂CH₃;R₂=(CH₂)₃OCH₃: 3,4-Dihydro-₂₅ -2-(3-methoxy)propyl-4-propyl amino-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide-1,1-dioxide hydrochloride. # **EXAMPLE 17** R-(+)-3.4-Dihydro-2-(2-methoxy)ethyl-4propylamino-2H-thieno[3.2-e]-1.2-thiazine-6-sulfonamide 1.1-dioxide hydrochloride ### Step A: 3.4-Dihydro-2-(2-methoxy)ethyl-4-oxo-2H-thieno[3.2-e]-1.2-thiazine-6-sulfonamide 1.1-dioxide To a solution of the product of Example 13. Step C (1.0 g. 2.92 mmol), in acetone (65 mL) was added over 3 min Jones reagent (1.1 M, 2.66 mL, 2.92 mmol). After 20 min the mixture was evaporated to dryness and the 50 residue was triturated with ethyl acetate (3×80 mL) and the combined organics were washed with brine and dried over molecular sieves. Concentration gave the desired product (0.92 g). Step B: (-)-3,4-Dihydro-4-hydroxy-2-(2-methox-55 y)ethyl-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide 1,1-dioxide To a solution of the product from Step A (550 mg. 16.2 mmol) in tetrahydrofuran (200 mL) cooled to -65° C. was added dropwise a solution of (+)- β - 60 chlorodiisopinocampheyl borane (25.6 g. 79.8 mmol) in anhydrous tetrahydrofuran (30 mL) over 5 min. After the addition was completed the mixture was stored at -22° C. for 3 days. Diethanolamine (11.06 g. 105.2 mmol) was added and the mixture stirred for 30 min and 65 then evaporated to dryness. The residue was mixed with a saturated solution of sodium bicarbonate (100 mL) and extracted with ethyl acetate (3×150 mL). Concentration of the organics gave a viscous liquid which was chromatographed (silica, hexane to 50% hexane:ethyl acetate to 10% methanol:methylene chloride) to give the desired subject (5.23 g. 95%): mp 131^*-133^* C.; $[\alpha]_D = 3.31^*$ (C- 1.18, MeOH). ### Step C (+)-3.4-Dihydro-2-(2-methoxy)ethyl-4-propylamino-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide 1,1-dioxide - + hydrochloride To a solution of the product form Step B (2.68 g. 784 mmol) and triethylamine (3.19 g, 31.3 mmol) in anhydrous tetrahydrofuran (100 mL) cooled to -20° C. was added tosyl chloride (2.99 g. 15.7 mmol) over 5 min. This mixture was placed in an ice bath for 18 h and after which time an excess of propylamine (10.0 g, 169 mmol) was added. The mixture was stirred at ambient temperature for 1 h followed by heating at reflux for an additional 2 h. Evaporation of the mixture gave a crude product which was mixed with saturated sodium bicarbonate (100 mL) and extracted with ethyl acetate (3×100 mL) The combined extracts were evaporated and the residue chromatographed (silica, 5% methanol:methylene chloride) to give the free base (1.7 g. 57%). The free base was dissolved in ethyl acetate (20 mL) and treated with a solution of 1.5 N ethanolic HCl in ethanol (4.5 mL). The solution was evaporated to dryness and the residue dissolved in methanol (2 mL) and 30 methylene chloride (80 mL) was added. After crystallization was complete the solid was collected and dried (65° C. in vacuo) to give the desired product (1.45 g. 36%): mp 205°-206° C.; [α]_D +6.02° (C=1.03, H₂O). Analysis calculated for C₁₂H₂₂ClN₃O₅S₃: C, 34.31: 35 H, 5.27; N, 10.01 Found: C, 33.99; H, 5.12; N, 9.81 # Example 18 R-(+)-4-Ethylamino-3.4-dihydro-2-(2-methoxy)ethyl-2H-thieno[3,2-e]- 1,2-thiazine-6-sulfonamide 1,1-dioxide hydrochloride Using essentially the same procedure as described in Example 17 except substituting an equimolar amount of ethyl amine for propylamine the desired subject is produced: mp $224^{\circ}-227^{\circ}$ C.: $[\alpha]_D + 5.86^{\circ}$ (C = 1.11, H₂O). Analysis calculated for C, 31.84; H, 5.10; N, 10.13 Found: C, 31.97; H, 4.97; N, 10.15 # EXAMPLE 19 added a solution of n-butyllithium in pentane (20.6 mL of a 2.0 M solution) at -78° C. over a period of 20 minutes. After stirring this solution for 45 min, a stream of SO2 gas was passed over the surface of the solution (20 min). The reaction mixture was allowed to warm to 5 room temperature and stirred at this temperature for 2 hr. The reaction mixture was allowed to warm to room temperature and stirred at this temperature for 2 hr. The solvent was evaporated to give a residue which was dissolved in methylene chloride (200 mL), cooled to 0° 10 C., and N-chlorosuccinamide (7.4 g, 0.055 mol) was added in portions. After one hour the reaction mixture was allowed to warm to room temperature; stirring continued for two more hours, at which point the methylene chloride was removed by evaporation and the 15 residue dissolved in THF (100 mL). This solution was cooled (0° C.) and a solution of t-butylamine (7.8 mL. 0.075 mol)-in THF (50-mL) was added-dropwise-followed by stirring for 8 hr at room temperature. After removal of excess-amine-by evaporation,-2N-HCl-(10. 20. mL) was added and the reaction mixture stirred at room temperature for 8 hr. Water (50 mL) was added and the organic layer separated. The aqueous layer was extracted with ethyl acetate (3×100 mL) and the c mbined organic layers were washed with brine (30 mL). 25 dried-(MgSO4), and evaporated to provide crude product which was purified by column chromatography (silica: 5% CH3OH/CH2Cl2) to give the desired product as a yellow syrup (7.3 g. 72%). Step B: 2-(2-Bromoethyl)-3.4-dihydro-4-hydroxy-2H-thieno3.2-e]-1.2-thiazine-6-(N-t-butyl)-sulfonamide-1.1-dioxide To a suspension of NaH (1.9 g, 0.049 mol) in DMF (10 mL) was added a solution of the product from Step 35 A (8.3 g, 24.4 mmol) in DMF (20 mL) at 0° C. This mixture was stirred for 40 minutes and 1.2-dibromoethane (8.34 mL, 0.098 mol) was added dropwise after which the reaction mixture was stirred for 4 hr at room temperature. A saturated aqueous solution of ammonium chloride (20 mL) was added and the mixture extracted with ethyl acetate (3×100 mL). The combined extracts were washed with brine (50 mL), dried (MgSO₄) and evaporated to give an oil which was purified by chromatography (silica: 50% ethyl acetate/hex-45 ane) to give 8.8 g (81%) of the desired product. Step C:
2-[1-(4-Acetyl-piperazinyl)ethyl-3,4-dihydro-4hydroxy-2H-thieno-[3,2-e]-1,2-thiazine-6-sulfonamide-1,1-dioxide maleate To a solution of the product from Part B (2.02 g. 4.5 mmol) in 3-methyl-2-butanone (15 mL) was added 1acetylpiperazine (2.23 g. 17.5 mmol), sodium carbonate (1.8 g. 17.5 mmol), and potassium iodide (200 mg); this 55 mixture was heated at 95° C. for 4 hr. The solvent was evaporated and a saturated aqueous solution of ammonium chloride (30 mL) was added to the residue. This solution was extracted with ethyl acetate (3×50 mL) and the combined extracts were washed with brine (30 60 mL), dried (MgSO₄), and evaporated to give an oil which was dissolved in trifluoroacetic acid (20 mL). After stirring at room temperature for 24 hr, the trifluoroacetic acid was removed by evaporation and the residue dissolved in a saturated aqueous solution of sodium 65 bicarbonate (30 mL) which was extracted with ethyl acetate (3×50 mL). The combined extracts were washed with brine (30 mL), dried (MgSO₄), and evapprated to give an oil which was purified by column chromatography (silica: 10% CH₃OH/CH₂Cl₂) to give 1.2 g (60%) of free base. The free base (500 mg, 1.12 mmol) was dissolved in THF (10 mL) and added to a solution of maleic acid (172 mg, 1.48 mmol) in ether (10 mL). The solid which readily formed was collected by filtration, washed with an excess of ether, and dried to give the desired salt; mp 210° C. Analysis. Calculated for C₁₈H₂₆N₄O₁₀S₃H₂O: C,37.75; H, 4.93; N,9.78. Found: C;37.77; H,4.88; N,9.74. The 2-bromoethyl derivative described in Step B or analogous compounds such as that described in Example 25, Step A, or their corresponding acetals (represented by the compound in Example 25, Step B) are key starting materials for the incorporation of a number of the heterocyclic rings found in the novel compounds of Structure [1]. Many of the simplified rings which correspond to the general structure of NR3-R6 where R5 and R6 form a 5 or 6 member ring can be obtained commercially. In other cases the desired heterocyclic component can be prepared from these simplified rings or by other methods which are known to one skilled in the art. Important lead references which disclose the synthesis of these heterocyclic rings are: "Comprehensive Heterocyclic Chemistry," A. R. Katritzky et al., Volumes 2-6, and references cited therein. # **EXAMPLE 22** 3.4-Dihydro-hydroxy-2-[2-(N,N-dimethoxyethyl-)aminoethyl]-2H-thieno-[3.2-e]-1,2-thiazine-6-sulfonamide-1,1-dioxide hydrochloride To a solution of the product from Example 21, Part B (1.70 g. 4.0 mmol) in 3-methyl-2-butanone (10 mL) was added bis(2-methoxyethyl)amine (2.2 mL. 11.0 mmol). sodium carbonate (1.2 g. 11.0 mmol), and potassium iodide (200 mg); this mixture was heated at 100° C. for 8 hr. The solvent was evaporated and water (50 mL) was added to the residue. This solution was extracted with ethyl acetate (3×50 mL) and the combined extracts were washed with brine (30 mL), dried (MgSO₄), and evaporated to give an oil which was dissolved in trifluoroacetic acid (24 mL). After stirring at 45° C. for 20 hr, the trifluoroacetic acid was removed by evaporation and the residue dissolved in a saturated aqueous solution of sodium bicarbonate (50 mL) which was extracted with ethyl acetate (3 × 50 mL). The combined extracts were washed with brine (30 mL), dried (MgSO₄), and evaporated to give an oil which was purified by column chromatography (silica; 10% CH3OH/CH2Cl2) to give 1.1 g (58%) of free base. The free base (460 mg. 1.04 mmol) was dissolved in ethanol (10 mL) to which a solution of hydrochloric acid in ethanol (5 mL) was added, this solution was stirred for 30 min and evaporated. The solid was recrystallized (CH3OH/Et2O) to give the desired salt; mp 205° C. ### Step B: 2-(3-Bromo)propyl-4-(1-ethoxy)ethoxy-3,4-dihydro-2H-thieno-[3,2-e]-1,2-thiazine The product from Step A (10.1 g. 30.1 mmol) and 5 p-toluenesulfonic acid (1.1 g) were dissolved in THF (100 mL) and cooled to -20° C. at which point ethylvinyl ether (5.8 mL. 60.2 mmol) was added. This mixture was allowed to warm to 0° C. and kept at this temperature for 1.5 hr followed by dilution with cold ethyl 10 acetate (200 mL). The organic layer was separated, washed with saturated sodium bicarbonate (3×50 mL) and brine (50 mL), dried (MgSO₄), and evaporated to provide 9.5 g (79%) of crude product which was used in the next step without further purification. # Step C: 4-(1-Ethoxy)ethoxy-3,4-Dihydro-2-(3-methoxy)propyl-2H-thieno[3,2-e]-1,2-thiazine The product from Step B (9.5 g, 23.8 mmol) was 20 dissolved in methanol (200 ml) and sodium methoxide (6.5 g, 119 mmol) was added: the mixture was heated at reflux temperature for 18 hr. Evaporation of the solvent gave the crude product which was dissolved in ethyl acetate (300 mL). This solution was washed with water 25 (3×50 mL) and brine (3×35 mL), dried (MgSO₄) and evaporated to provide the curde product which was purified by column chromatography [silica: CH₂OH/CH₂Cl₂(20:1)] to give 6.5 g (78%) of product as a syrup. ### Step D: 3.4-Dihydro-4-hydroxy-2-(3-methoxy)propyl-2H-thieno[3.2-e]-1.2-thiazine-6-sulfonamide-1,1-dioxide The product from Step C.(6.5 g. 18.6 mmol) was 35 dissolved in THF (40 mL), cooled to -78° C, and treated sequentially with n-butyllithium, sulfur dioxide, and hydroxylamine-O-sulfonic acid in a manner essentially identical to that described in Example 2. Step D to provide the desired crude product which, after purification by column chromatography, provided 4.1 g (62%) of an amber syrup. # Step E: 3.4-Dihydro-2-(3-methoxy)propyl-4-oxo-2H-thieno[3.2-45] e]-1.2-thiazine-6-sulfonamide-1,1-dioxide To a solution of the product from Step D (3.8 g, 10.7 mmol) in acetone (40 mL) at room temperature was added Jones reagent [9.7 mL (prepared by dissolving CrO₃(7 g) in H₂O (50 mL) and adding H₂SO₄(6.1 mL)]. 50 This mixture was stirred at room temperature for one hour, diluted with ethyl acetate (200 mL) and washed with a 5% solution of sodium bisulfite (2×100 mL) and brine (2×50 mL), dried (MgSO₄), and evaporated to a syrup which was purified by column chromatography 55 [silica; CH₃OH/CH₂Cl₂(20:1)] to give 2.7 g (70%) of the desired product: mp 115°-117° C. # Step F: (+)-3.4-Dihydro-4-hydroxy-2-(3-methoxy)propyl-2H-thieno[3.2-e]-1.2-thiazine-6-sulfonamide-1.1-dioxide To a solution of the product of Step E (2.6 g. 7.34 mmol) in THF (30 mL) at -78° C. was added a solution of (+)- β -chlorodiisopinocampheyiborane (11.8 g. 36.7 mmol) in THF (10 mL). The reaction mixture was allowed to warm to -20° C. and kept at this temperature for 4 days. Diethanolamine (4.2 mL, 44 mmol) was added to the reaction mixture and the solution stirred for 30 min. diluted with EtOAc (150 mL), washed with water $(2\times50~\text{mL})$ and brine $(2\times50~\text{mL})$, dried (MgSO₄), and evaporated to a syrup which was purified by column chromatography [silica: CH₃OH/CH₂Cl₂(20:1)] to give 2.4 g (92%) of the desired compound as a colorless foam. ### Step G: (-)-4-Ethylamino-3,4-dihydro-2-(3-methoxy)propyl-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide-1,1-dioxide hydrochloride To a solution of the product from Step F (2.4 g, 6.74 15 mmol) and triethylamine (3.8 mL, 27 mmol) in anhydrous tetrahydrofuran (20 mL) cooled to -20° C. was added tosyl chloride (2.6 g, 13.5 mmol); this mixture was allowed to warm to room temperature and stirred for 18 hr. The reaction mixture was cooled to -60° C. and ethylamine (10 mL) was added and the mixture was again allowed to warm to room temperature. After 18 hr the reaction mixture was diluted with ethyl acetate (200 mL), washed with a saturated aqueous solution of sodium bicarbonate (3×50 mL), dried (MgSO₄), and evaporated to give the crude product which was puricolumn chromatography CH3OH/CH2Cl2(20:1)] to give 1.3 g (52%) of the desired amine. The free base was dissolved in ethanol (5 mL) and treated with a 2M solution of hydrochloric acid in ethanol (4 mL) at room temperature. Evaporation of the solvent provided a solid which was recrystallized from methanol: methylene chloride to give 950 mg (34%) of the desired product; mp 175°-177° C.; $[\alpha]_D$ 17.1° (C=1.00, H2O). Analysis. Calculated for C₁₂H₂₂ClN₃O₅S₃: C, 34.32; H, 5.28; N, 10.00 Found: C, 34.26; H. 5.23; N. 9.92. # **EXAMPLE 26** (+)-2-(2-Ethoxy)ethyl-4-ethylamino-3,4-dihydro-2Hthieno[3,2-e]-1,2-thiazine-6-sulfonamide-1,1-dioxide hydrochloride By following essentially the same procedure as used for the preparation of Example 25 but using instead 2-bromoethylethyl ether for the alkylation reaction in Step A, and omitting step C, the c_sired compound was prepared; mp $211^{\circ}-213^{\circ}$ C..[α]_D+9.4° (C=1.00, CH₃OH). Analysis. Calculated for C₁₂H₂₂ClN₃O₅S₃: C. 34.32: H, 5.28; N, 10.00. Found: C, 34.27: H, 5.28; N, 9.92. a blanket of nitrogen was added imidazole (300 mg. 4.4 mmol) and tert-butyldimethylsilyl chloride (904 mg. 6 mmol). The reaction mixture was stirred at room temperature for 5 hr and the solvent removed by evaporation to give a residue. The residue was dissolved in 6 ethyl acetate (150 mL) and the solution washed with water (2×50 mL) and brine (2×50 mL), dried (MgSO₄), and evaporated to a syrup which was purified by a column chromatography silica; CH₃OH/CH₂Cl₂(10:1)] to give 1.05 g (58%) of product 10 as an oil. # Step E: 2-[3-(tert-Butyldimethylsilyloxy)propyl]-4-ethylamino-3,4-dihydro-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide-1,1-dioxide To a solution of the product of Step D (1.4 g , 3 mmol) and triethylamine (1.7 mL, 12 mmol) in THF (10 mL) at -20° C. was added p-tolüenesulfonyl chloride (1.2 g, 6 mmol) and the reaction mixture was stirred at 0° C. for 5 hr. The reaction mixture was ecoled to -78° C. at which point ethylamine (10 mL) was added; this mixture was allowed to warm to reflux temperature for 2 hr and then maintained at room temperature for 40 hr. After-removing the solvent the crude product was diluted
with ethyl acetate (150 mL), washed with water (2 × 50 mL) and brine (2 × 50 mL), dried (MgSO₄), and evaporated to a syrup which was purified by column chromatography [silica: CH₁OH/CH₂Cl₂(20:1)] to give 30 mg (64%) as a colorless foam. #### Step F: 4-Ethylamino-2-(3-hydroxy)propyl-3.4-dihydro-2Hthieno[3.2-e]-1.2-thiazine-6-sulfonamide-1.1-dioxide hydrochloride The product from Step E (900 mg, 1.86 mmol) was dissolved in a 1M solution of tetrabutylammonium fluoride in THF (10 mL) and stirred at room temperature for 20 hr under a nitrogen atmosphere. After removal of 40 the solvent, the residue was dissolved in ethyl acetate (100 mL) and this solution was washed with a saturated aqueous solution of sodium bicarbonate $(2 \times 50 \text{ mL})$. water $(3 \times 25 \text{ mL})$ and brine $(3 \times 25 \text{ mL})$, dried (MgSO₄), and evaporated to a syrup which was purified 45 [silica: column chromatography CH₂OH/CH₂Cl₂(10:1)] to give 600 mg (87%) of free base as a syrup. This syrup was dissolved in ethanol (3 mL), and a 2M solution of hydrochloric acid in ethanol (2 mL) was added followed by evaporation to provide a solid which was dissolved in water (5 mL) and evaporated. Recrystallization from methanol/methylene chloride gave 480 mg of the desired product: mp 203°-205° C. Analysis Calculated for C11H20ClN3O5S3: C; 32.55, H, 4.96; N, 10.35. Found C, 32.43; H, 4.92; N, 10.28. # **EXAMPLE 30** 4-Ethylamino-3,4-dihydro-2-(2-hydroxy)ethyl-2Hthieno[3,2-e]-1,2-thiazine-6-sulfonamide-1,1-dioxide hydrochloride By following the same procedure as that described in Example 29, but substituting 2-bromoethanol for 3-bromopropanol in Step A, the desired compound was obtained as a crystalline solid: mp 228*-230* C. Analysis Calculated for C₁₀H₁₈ClN₃O₅S₃: C, 30.65; H, 4.63; N, 10.72. Found C, 30.78; H, 4.68, N, 10.59. # EXAMPLE 31 2,3-Dihydro-3-methyl-2-[2-(4-morpholinyl)ethyl]-thieno13,2-d]isothiazole-5-sulfonamide-1,1-dioxide # Step A: 3-Methylthieno[3,2-d]isothiazole The product from Example 2, Step A (10.37 g. 48.8 mmol) was dissolved in anhydrous ether (100 mL). cooled to -20° C. and a 2.5M solution of n-butyllithium in hexanes (21.5 mL, 49 mmol) was slowly added. The mixture was allowed to warm to 0° C. and stirred at this temperature for two hours, again cooled to -20° C. at which point sulfur (1.56 g, 48.8 mmol) was added in 35 small portions. The cooling bath was removed and the mixture was allowed to warm to room temperature over a two hour period followed by the addition of 2 N HCl (10 mL). The ether layer was separated, washed with brine (3×25 mL) and evaporated to a residue which was mixed with THF (100 mL) and 2N HCl (10 mL) and heated at 45° C. for 45 min followed by the addition of solid sodium bicarbonate to neutralize the mixture. The organic layer was separated, washed with brine (3×25 mL), dried (MgSO₄), and evaporated to a solid which was recrystallized from methylene chloride/hexane to give 4.6 g (60%) of a solid (150°-152° C.). This solid was suspended in dioxane (400 mL), water (5 mL) was added, and the mixture degassed under nitor-50 gen. Concentrated hydrochloric acid (1 mL) was added to this mixture followed by triphenylphosphine (18.7 g. 71.2 mmol). This mixture became homogenous after 15 min and was stirred for one additional hour, diluted with water (IL, and extracted with ether (4×100 mL). The combined extracts were washed with water $(3 \times 100 \text{ mL})$, brine $(2 \times 100 \text{ mL})$, and evaporated to a residue which was dissolved in aqueous THF (400 mL, 1:1) to which was added hydroxylamine-O-sulfonic acid (8.1 g. 71.2 mmol). This mixture was stirred for 45 min followed by the addition of sodium carbonate (18.9 g. 178 mmol) and stirring continued at room temperature for 18 hr. The reaction mixture was diluted with water (500 mL) and extracted with ether (3×150 mL). The 65 combined extracts were dried (Na₂CO₃) and evaporated to a residue which was purified by column chromatography (silica, hexane/ethyl acetate) to provide 22.1 g (65%) of the desired compound as an amber oil. # TABLE 1-continued | R:
SO:NH: | | |--------------|--| | R: US | | | G | R: | R: | • | |---------------
--|------------------|--| | SO: | n-Pr | HNEt | | | \$O: | i-Pr | HNE) | ./ | | | | | | | SO: | CH;CHCH; | HNE | | | SO: | CH-CCH | HNE | | | so: | (CH ₂);OMe | HNE | | | so: | (CH ₂) ₂ OMe | E NCI=OIOEI | | | so: | (CH ₂) ₂ OMe ² | | • | | so: | (CH ₂) ₂ OH ₂ 1 Lift 2 may be 3 M. | HNE | • | | SO: | TCH HOEL TO THE TOTAL BY THE | HNELOG OL | · | | SO: | (CH:nOE) | HNn-Pr | | | SO: | (CH:)OH | , cHinElan a. | | | SO: | " (CH2hOH "241.711 | HNn-Pr | | | so: | (CH:):OC(=O)CH: | HNEt | | | SO: | (CH ₂) ₂ OMe | HNn-Pr | | | SO : | (CH ₂):OEi | HNE | | | 50: | (CH ₂₀ OE) | HNn-Pr | | | SO: | (CH ₂₀ OMe | HNE | | | SO: | (CH:nOMe | HNn-Pr | | | SO: | (CH2)(OMe | HNi-Bu | | | SO. | (CH ₂ P ₂ O(CH ₂ P ₂ OMe | HNE | 24 (25%) (NEW YOR) | | | | | the contract of o | | SO: | (CH2);O(CH2);OMe | HNn-Pr | t agreement on the large section of the | | SO: | (CH ₂ PO(CH ₂ POMe | HNi-Bu | | | SO: | (CH ₂);O(CH ₂);OMe | HNE | and the state of t | | so: | (CH ₂);O(CH ₂);OMe | HNn-Pr | Available to the highest of the more than | | so: | (CH ₂ nO(CH ₂ nOMe | HNi-Bu | | | SO: | CH_CHCHCH_OMe (trans) | HNEt | 11 TAPIANA MARKETA ALLEGADA PRACTOS | | so: | CH2CHCHCH2OMe (trans) | HNn-Pr | - Line Girl End demind as Fight (Fig. | | SO: | CH_CHCHCH_OMe (trans) | HNi-Bu | | | SO: | CH2CHCHCH2OMe (cis) | HNE | | | SO: | CH2CHCHCH2OMe (cis) | HNn-Pr | | | SO: | CH_CHCHCH_OMe (cis) | HNi-Bu | | | SO: | Me | HNCH:CHCH: | | | SO: | Me | HNC:H: | | | 5 O: | Me | HNCH:CiH | | | \$O: | Me | HNn-Pr | , | | SO: | Me | HNi-Bu | | | SO: | Mc | HN(CH2):OH | | | 50: | Me grand and a second | | | | SO: | Me | OH | | | S() | Mer was a Mar Commension | OM212 1.211 | | | SO: | Me | Oi-Bu | | | SO: | Mc | OCH :: NICH; CH: | ·•O | | 5 0; | Me | OICH: INCH: CH: | nNCOM. | | 50: | Me State of State W | 4-CI-Ph | ,con | | \$O: | Me | 3-N(Men Ph | | | SO: | Me | 3-CH2N(CH2CH2) | .O — Ph | | S O: | (CH ₂);N(CH ₂ CH ₂);O | OMe | · · · · | | S O: | (CH:::NICH:CH:::O | OH | | | | | OE: | | | SO: | (CH ₂):N(CH ₂ CH ₂):O |
| | | SO: | (CH ₂) ₂ N(CH ₂ CH ₂) ₂ NCOMe | CH-OMe | | | SO: | (CH2hN(CH2CH2hNCOMe | OE: | | | so: | (CH2nN(CH2CH2nNCOMe | OH | | | 5 O: | (CH ₂) ₂ N(CH ₂ CH ₂) ₂ O | CONHE | | | so: | (CH ₂ HMe | HNE | | | so: | (CH2nOMe | HNE | | | . s o: | CH-CONHMe" | HNE | | | so: | Ph | HNEt | | | so: | 4-C1-Ph | HNEt | | | so: | 4-CONHMe—Ph | HNE | | | SO: | 4-SO:NMc:-Ph | HNE | · · | | SO: | 3-SO: Me-Ph | HNE | | | SO: | 4-OCF;H-Ph | HNE | | | SO: | 4-OMe-Ph | HNE | | | SO: | 4-OH, 3-CH ₂ NMe ₂ —Ph | HNE | | | SO- | 4-NHCOMe-Ph | HNE | | | so. | CH2-4-pyridy! | HNE | | | SO: | (CH ₂₁₂ OH | HNE | | | su: | (CH:nOE | HNEi | | | so: | CHEROME | HNEI | •- | | SO: | CH-CONICH-CH-PNICH-POMe | OEı | ••• | | SO: | CH-CO-Pr | HNE | * | | SO: | ICH: PNICH: CHOO | осн-сн-он | | | | | | *** | TABLE 2-continuéd | _ | G | Richard Communication Communication | HRE THE STATE OF T | |---|-------------|---|--| | | SO: | (CH2)CONHMe | HNEI LIEGIE LIZ HELLEN BEI | | | so: | Ph | HNEI | | | so: | 4-CI-Ph | RNE | | | so: | 4-CONHMc—Ph | HNEI | | | SO: | 4-SO ₂ NMe ₂ Ph | HNEr | | | SO: | 3-SO-Me—Ph | HNEI- | | | so: | 4-OCF ₂ H-Ph | HNEr | | | SO: | 4-OMe-Ph | HNE: | | | SO: | 4-OH. 3-CH; NMe; — Ph | HNEI | | • | SO: | 4-NHCOMe—Ph | HNEi | | | SO: | (CH ₂) ₂ OH | HNEt | | | 5 0: | (CH ₂) ₂ OE ₁ | HNEt | | | SO: | (CH ₂ p ₂ COMe | HNE | | | SO: | CH2CON(CH2CH2)2N(CH2)2OMe | OE ₁ | | | SO: | CH ₂ CO ₂₁ -Pr | HNEr | | | 50: | (CH ₂);N(CH ₂ CH ₂);O | OCH;CH;OH | | | CO | Н | HNMe | | | CO | н - | HNEi | | | C O | Me | HNn-Pr | | • | CO | Me | HNi-Bu | | | CO | Me | HN(CH ₂₀₂ OH | | | CO | Me | HNICHEROME | | | CO | Me | OH | | | CO | Me | OMe | | | CO | Mc | Oi-Bu | | | C O | Me | O(CH ₂) ₂ N(CH ₂ CH ₂) ₂ O | | | CO | Mc | O(CH ₂) ₂ N(CH ₂ CH ₂) ₂ NCOMe2 | | | CO | Mc | 4-CI-Ph | | | C() | M. | 3-NeMery - Ph | | | CO | Mc | 3-CH ₂ N(CH ₂ CH ₂) ₂ O=1 | | - | CO | /CH ₂₀₂ N/CH ₂ CH ₂₀₂ O | OMc | | | CO | (CH ₂₁₂ N(CH ₂ CH ₂₁₂ O | OE: | | • | CO | (CH ₂₂ N(CH ₂ CH ₂₂ NCOMe | CH ₂ OM ₆ | | | co | iCH29NiCH2CH29NCOM. | OE: | | | CO | (CH ₂₁₂ N(CH ₂ CH ₂₁₂ O | CONHE | | (| CO | (CH ₂)(Me | HNE: | | | כס | (CH ₂) ₂ OM ₆ | HNEt | | (| CO | CH ₂ CONHM _C | HNEr | | | CO | Ph | HNEI | | | כט | 4-C!— Ph | HNEI | | | CO | 4-CONHMe-Ph | HNE | | | CO | 4-SO-NMe:-Ph | HNE | | | ÇΟ | 3-SO ₂ Mc—PE | HNEr | | | CO | 4-OCF:H-Ph | HNE | | | כָּח | 4-OMe—Ph | HNE | | | CO | 4-OH, 3-CH; NMe; — Ph | HNE | | | CO | 4-NHCOMe—Ph | HNE | | | co | (CH ₂₂ OH | HNE | | | co | (CH ₂) ₂ OE ₁ | HNEt . | | | CO | (CH ₂₂ COMe | HNE | | | CO | CH2CON(CH2CH2)2N(CH2)2OMe | OE ₁ | | | 02 | CH-COp-Pr | HNEI
OCH-CH-OH | | | co | (CH ₂) ₂ N ₁ CH ₂ CH ₂) ₂ O | осн;сн;он | TABLE 3 $$R_1$$ R_2 S_0 S_0 S_0 | R; | R: | R· | |---|----|-----| | (CH ₂₀ N(C1) ₂ CH ₂₀ O | н | н | | (CH2):N(CH2CH2):O | н | Н | | (CH2):N(CH2CH2);O. | Εı | н . | | (CH ₂₀ N(CH ₂ CH ₂₀ O | Me | н | | (CH5):N(CH5CH5):O | Mc | Me | | (CH2):N(CH2CH2):O | H | CI | | (CH:):N(CH:CH:):O | н | Br | # TABLE 4-continued | R | Y | - \$O ₂ NH ₂ | | | |--|--------|------------------------------------|-----------------------------------|-----------------------| | R: R | t: s | | | | | (CH2/2N(CH2CH2)2O | Me | CH:CONHE | | | | (CH2)2N(CH2CH2)2NCOMe | н | н | | | | (CH2)2N(CH2CH2)2NCOMe | H | н | , | | | (CH2)2N(CH2CH2)2NCOMe | Me | :
Н - | • • | | | (CH2):N(CH2CH2):NCOMe | Mc | Me | 1 1 | | | (CH2):N(CH2CH2):NCOMe | "Н | Ci | | | | (CH2):N(CH2CH2):NCOMe | . Н | Br | | | | (CHAINSICHACHAINSICOM) | н | CH2OEt | | | | ICH22NICH2CH22NCOMe | H | CH ₂ OMe | | • | | (CH2):N(CH2CH2):NCOMe | н | CH ₂ O ₁ -Pr | | and the second second | | (CH2):N(CH2CH2):NCOMe | H | CH ₂ O ₁ -Bu | | | | (CH2)2N(CH2CH2)2NCOMe | H | CH ₂ OH | | | | (CH ₂)sMe | H | CH2N(CH2CH2)2O | | | | (CH ₂) ₂ OMe | H | CH2N(CH2CH22O | . Transpiration and Personal Rep. | | | (CH ₂) ₂ OH | H | CH2N(CH2CH2)2O | | | | (CH2CONHMe | H | CH:N(CH:CH:)O | | | | Ph | H. | CH-N(CH-CH-)-NO | OMe | ter estar a la pro- | | 4-CI-Ph | Ĥ | Me | | | | +CONHMe-Ph | Ĥ | Me | _ | | | 4-SO-NMePh | H | Me | | | | 3-SO:Me-Ph | н | Me | | - | | 4-OCF:H-Ph | H | Me | a de la seco | | | 4-OMe-Ph | Me | Me | | | | 4-OH. 3-CH ₂ NMe ₂ -Ph | Me | Me | • | | | 4-NHCOMe—Ph | Me | Mc | | | | (CH ₂)OH | Me | Mc | | | | (CH-1-OE: | Me | Me | | | | CH2CON(CH2CH2EN(CH2EOMe | Me | н | | | | CH2CO21-Pr | Me | Me | | | | (CHai:N(CH:CHai:O | H | CH-CH-OH | • ; | | | (CH) PN(CH-CH) PNCOMe | H | CH:CH:OH | | | | | | | | | | R ₁ and R: | | R: | | | | −(CH ₂ CH ₂) ₂ N(CH ₂) ₂ O ⁴ | | Н | • | | | ─(CH2CH2)2N(CH2)2O | | Me | | | | −(CH ₂ CH ₂) ₂ N(CH ₂) ₂ O: | | CI | - | | | -(CH2CH2/2N(CH2/2O) | | Сн₂он | | | | ─ïCH2CH2½NiCH2½O¹ | | CH ₂ OM ₆ | | | | +(CH ₂ CH ₂) ₂ NCH ₂ CON | | н | | | | -(CH)CH):N(CH):CO | N'HAL. | н | | | | TABLE 5 | TABLE 5-continued | |------------|-------------------| | R:—NSO:NH: | R1-N SO:NH: | | R ¹ | R: | 50 | R ¹ | R: | |--|----------------------------------|----|---|---| | Me | CH ₂ NHMe | - | CH ₂ C ₆ H ₅ | CH ₂ NHE ₁ | | Me | CH2NHE: | | 2-thenyl | CH2NHE1 | | Ει | CH ₂ NHE ₁ | | 2-thenyl(5-SO ₂ CH ₃) | CH2NHE1 | | n-Pr | CH ₂ NHE ₁ | | CH2CH2N(CH2CH2)2O | н | | Et. | CH ₂ NHMe | 55 | CH2CH2N(CH2CH212O | CHi | | n-Pr | CH ₂ NHM ₆ | | CH-CH-N(CH2CH2):O | СН2ОН | | CH:CH=CH: " | CH ₂ NHMe | | CH2CH2N(CH2CH2)2O | CH ₂ OCH: | | Me | CH2NHCH2CH2OCH3 | | CH2CH2N(CH2CH2)2O | CH ₂ CH ₂ OH | | Et | CH-NHCH-CH-OCH | | CH2CH2N(CH2CH2)2O | CH ₂ OCH ₂ CH ₂ OH | | n-Pr | CH:NHCH:CH:OCH | | CH2CH2N(CH2CH2OH)2 | CHi | | Et . | CH:NHCH:CH:OH | 60 | | CHi | | CH ₂ CH ₂ OCH: | CH ₂ NHMe | | CH2CH2N(CH3)CH2CH2OCH3 | CHi | | сн-сн-осн | CH-NHE: | | CH2CH2N(CH2CH2)2NCOCH3 | н | | сн сн сн он | CH-NHMe | | CH2CH2N(CH2CH2)2NCOCH3 | CH ₃ | | СН-СН-СН-ОН | CH:NHE: | | CH2CH2N(CH2CH2)2NCOCH3 | СН-ОН | | СН-СН-СН-ОСН- | CH:NHE: | | CH2CH2N(CH2CH2)2NCOCH3 | CH ₂ CH ₂ OH | | C ₆ H ₄ | CH:NHCH:CH:OH | 65 | | CH: | | C _k H ₄ | CH:NHCH:CH:OCH: | • | CH2CH2NHCH2CH2F | CH:CH:OH | | C ₆ H ₄ (3-SO ₂ CH ₃) | CH-NHE) | | CH2CH2N(CH2CH2)2NCHO | H | | C ₆ H ₄ (3-OH) | CH:NHE: | | CH-CH-N(CH-CH-NCHO | CH; | | C ₆ H ₄ [3-SO ₂ N(CH ₃₁₂] | CH ₂ NHE ₁ | | CH2CH2N(CH2CH2)2NCH2CH2OCH3 | н | | -co | nti | nı | Jed. | |-----|-----|----|------| | Ingredient | Concentration (wt % | | |-----------------------|---------------------|--| | Benzalkonium Chloride | 0017 | | | Carbopol | 3 0% | | | HCI/NaOH | pH 50 | | | Purified Water | qs | | The mannitol (0.18 g), benzalkonium chloride (0.05 mL), Compound (0.1 g) and carbopol (0.15 g) can all be added to water (4.3 mL) and mixed well. The pH can be adjusted to pH 5.0 and purified water (q.s. to 5 mL) can be added and mixed well to form a gel. # EXAMPLE 35 Ophthalmic Solution | Ingredient | - | | Concentration- | |---|-----------|----|----------------| | R-t = 1-4-Ethylamino-3.4-dihydro-2-r
thieno[3,2-e]-1,2-thiazine-b-sulfonam | de | | 2 27% | | 1.1-dioxide hydrochloride (Compour
Hydroxypropylmethylaethulosa | | | | | Sodium Acetate Dihydrate | - | | 0 ا ت | | Mannitol (Osmolality - 282 mOsm) | | | 2 44% | | Benzalkonium Chloride | : | •• | 0.01% | | Disodium Edelate | | | 0.01% | | Purified Water | | | q s | | HCI 'NaOH | | | pH 50 T | The sodium acetate (0.2 g), disodium edta (0.02 g), 30 benzylalkonium chloride (2.1 g of a 1% solution) and mannitol (5.32 g) were dissolved in water for injection (115 mL). The pH was adjusted to 5.0 with 1% sodium hydroxide and the final volume was adjusted to
117 mL with water for injection. Hydroxypropylmethylcellulose (83.0.g of an 8% solution) was mixed with the 117 mL of the acetate buffer solution to furnish the vehicle. To prepare the final formulation, 0.068 g of the Compound was diluted with vehicle to make 3.0 mL total volume and the pH was adjusted to 5.0 with 1% sodium 40 hydroxide (5 μ L). EXAMPLE 36 Ophthalmic Solution | Ingredien: | Concentration (wt %) | |--|----------------------| | R-1 = 14-Ethylamino-3,4-dihydro-2-
(2-methoxylethyl-2H-thieno(3,2-e)- | 1 00% | | 1.2-thiazine-6-sulfonamide-1.1-dioxide | | | hydrochlonde (Compound) | | | Hydroxypropylmethylcellulose | 30% | | Sodium Acetate trihydrate | 0.1% | | Mannitol (Osmolality = 317 mOsm) | 2.4% | | Benzalkonium Chloride | 0.01⊊ | | Disodium Edetate | 0017 | | Purified Water | q.s | | HCI/NaOH | pH + 4 | The above ingredients were mixed together in substantially the same manner as described in Example 35 to furnish the ophthalmic solution. # EXAMPLE 37 Ophthalmic Solution | | | _ | |--|-----------------------|---| | Ingredien: | Concentration (w1777) | | | Rig = +3.4-Dihydro-2+2-methoxy sethyl- | 2197 - | | | Autony Jamino, "Hathienol 3 Nel-1 2- | | | -continued | Ingredient | Concentration (wt %) | | |------------------------------------|----------------------|--| | thiazine-6-sulfonamide-1,1-dioxide | | | | hydrochlonde (Compound) | | | | Hydroxypropylmethylcellulose | 3.0% | | | Sodium Acetate trihydrate | 016 | | | Mannitol (Osmolality = 286 mOsm) | 2.4% | | | Benzalkonium Chloride | 0.01% | | | Disodium Edetate | 0.01% | | | Punfied Water " | q.s | | | HCI/NaOH / | pH 0.5 | | The above ingredients were mixed together in substantially the same manner as described in Example 35 to furnish the ophthalmic solution. # EXAMPLE 38 # Ophthalmic Suspension | Ingredieni | Concentration (w) ? | |---|-------------------------------| | (= M-Ethylamino-3.4-dihydro-2-
(3-methoxy)propyl-2H-thieno[3.2-e]-
[1.2-thiazine-6-sulfonamide*1, 1-dioxide*
hydrochloride-(Compound): | 2.0% | | H. droxypropylmethylcellulose Dibasic Sodium Phosphate Disodium Edetate Sodium Chloride | 0.5জ
0.2জ
0.01জ
0.৪জ | | Purified-Water: T. 7. 7. 8
Benzalkonium Chloride
Polysorbate 80
NaOH (HC) | q.›
001ፍ
01ፍ
pH " 1 | The above ingredients can be mixed together in substantially the same manner as described in Example 32 to furnish the ophthalmic suspension. We claim: - 1. A compound selected from the group consisting of: - 3.4-Dihydro-2-(2-methoxy)ethyl-4-propylamino-2Hthieno[3.2-e]-1,2-thiazine-6-sulfonamide 1,1-diox- - 2-(2-Ethoxyethyl-)-4-ethylamino-3.4-dihydro-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide 1.1-diox- - 2-(2-Ethoxy)ethyl-3,4-dihydro-4-propylamino-2Hthieno[3,2-e]-1,2-thiazine-6-sulfonamide 1.1-dioxide: - 4-Ethylamino-3.4-dihydro-2-(3-methoxy)propyl-2Hthieno[3,2-e]-1.2-thiazine-6-sulfonamide 1,1-dioxide: - 3,4-Dihydro-2-(3-methoxy)propyl-4-propylamino-2H-thieno[3,2-e]-1;2-thiazine-6-sulfonamide 1,1dioxide; - 3,4-Dihydro-2-[2-(methoxyethoxy)ethyl]-4propylamino-2H-thieno[3,2-e]-1,2-thiazine-6-syulfonamide 1,1-dioxide; - 4 Ethylamino-3.4-dihydro-2-[2-(methoxyethoxy)ethyl]-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide 1.1-dioxide; - 4-Ethylamino-3,4-dihydro-2-[3-(methoxyethoxy)-propyl]-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide 1,1-dioxide: and - 3.4-Dihydro-2-[3-(methoxyethoxy)propyl]-4propylamino-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide 1,1-dioxide. - 2. The compound of claim 10 which is - 3,4-Dihydro-2-(2-methoxy)ethyl-4-propylamino-2H-...thieno[3,2-e]-1,2-thiazine-6-sulfonamide 1,1-dioxide. :: # US005378703A # United States Patent [19] # Dean et al. [*] Notice: [11] Patent Number: 5,378,703 [45] Date of Patent: * Jan. 3, 1995 | [54] | SULFONAMIDES USEFUL AS CARBONIC | |------|---------------------------------| | _ | ANHYDRASE INHIBITORS | [75] Inventors: Thomas R. Dean, Wentherford; Hwang-Hsing Chen; Jesse A. May, both of Fort Worth, all of Tex. [73] Assignee: Alcon Laboratories, Inc., Fort Worth, Tex. The portion of the term of this patent subsequent to Aug. 31, 2010 has been disclaimed. [21] Appl. No.: 19,011 [22] Filed: Feb. 18, 1993 # Related U.S. Application Data | [63] | Continuation-in-part of Ser. No. 775,313, Oct. 9, 1991, | |------|---| | • | Pat. No. 5,240,923, which is a continuation-in-part of | | | _Ser. No. 618,765, Nov. 27, 1990, Pat. No. 5,153,192, | | | which is a continuation-in-part of Ser. No. 506,780, | | | Apr. 9, 1990, abandoned. | | [51] | Let. Cl.6 C07D | 513/04; A61K 31/54 | |------|-----------------|--------------------| | [52] | U.S. Cl | 514/222.8; 544/48 | | [58] | Field of Search | 544/48; 514/222.8 | #### [56] References Cited # U.S. PATENT DOCUMENTS | 4,619,939 10/1986 | Maren | 514/363 | |-------------------|--------------------|---------| | 4,731,368 3/1988 | Hoffman, Jr. et al | 514/301 | | 4,746,745 5/1988 | Marcn | 548/139 | #### FOREIGN PATENT DOCUMENTS 7661731 4/1963 Canada . 1516024 6/1978 United Kingdom . # OTHER PUBLICATIONS "The Reactions of Some Thiophene Sulfonyl Derivatives," Cremyln et al., *Phosphorus and Sulfur*, vol. 10. pp. 111-119, 1981. "Studien in der Thiophenreihe. XXIV.² Uber Nitrothiophene and Thiophensulfochloride," Steinkopf et al., Justus Liebigs Analen Der Chemie, vol. 501, pp. 174–186, 1933. "Heterocyclic Disulphonamides and Their Divertic Properties," deStevens et al., Journal of Medicinal and Pharmaceutical Chemistry, vol. 1(6), pp. 565-576, 1959. Gronowitz et al., Thiophene and its Derivatives, vol. 44, Pt. 3, pp. 135-307 (1986). Primary Examiner—John M. Ford Attorney, Agent, or Firm—Sally Yeager 7] ABSTRACT Sulfonamides and pharmaceutical compositions containing the compounds useful in controlling intraocular pressure are disclosed. Methods for controlling intraocular pressure through administration of the compositions are also disclosed. 14 Claims, No Drawings Provided that when G is SO2 and R3 is in the 4 position and is H or halogen then R1 and R2 are not H, C1-6 alkyl substituted optionally with OH, C1-6 alkoxy, C2.6 alkoxycarbonyl, C2.6 alkenyl, phenyl, phenoxy, pyridyl, tetrahydrofuryl, C2.6 alkanoyl, C2-6 alkenyl, nor are they joined to form a 5, 6 or 7 member ring, saturated or unsaturated, comprised of atoms selected optionally from C, O, S, N in which said nitrogen, when saturated, is substituted optionally with H or C alkyl or in which said car- 10 bon is substituted optionally with C alkyl, C1-6 alkoxy or OH; and when R₃ is in the 5 position and is H, Cl, Br, or C1-3 alkyl then neither R1 nor R2 can be H or C1-4 alkyl; and when G is C(==0) and in the 5- position and R3 is H, then R1 and R2 cannot 15 both be CH3; R₅ & R₆ are the same or different and are H; C₁₋₄ alkyl; C2-4 alkyl substituted optionally with OH. halogen, C14 alkoxy or C(=0)R7; C14 alkoxy; C2-4 alkoxy substituted optionally with OH, halo- 20 gen, C1-4 alkoxy or C(=0)R7; C3-7 alkenyl unsubstituted or substituted optionally with OH, NR3R6. or C1-4 alkoxy; C3-7 alkynyl unsubstituted or substituted optionally with OH, NR₅R₆, or C₁₋₄ alkoxy; C1.2alkylC15cycloalkyl; C(=O)R7 or R5 and R6 can 25 be joined to form a ring of 5 or 6 atoms selected from O, S, C or N, such as, pyrrolidine, oxazolidine, thiomorpholine, thiomorpholine 1,1 dioxide, morpholine, piperazine or thiazolidine 1,1-dioxide, which can be unsubstituted or substituted option-, 30 ally on carbon with OH, (=O), halogen, Ci4 alkoxy, C(=0)R7, C6-1 alkyl. C1-6 alkyl substituted optionally with OH, halogen, C1-4 alkoxy, C(=O)R7 or on nitrogen with C14 alkoxy, C(:O)R7, S(=O)mR8, C1-6 alkyl or C2-6 alkyl substi- 35 tuted optionally with OH, halogen, C1-4 alkoxy, $C(:O)R_7$ or on sulfur by $(=O)_{m_0}$, wherein m is 0-2. R₇ is C₁₋₈ alkyl; C₁₋₈ alkyl substituted optionally with OH, NR₃R₆, halogen, C₁₋₄ alkoxy or C(=O)R₉; C₁₋₄ alkoxy; alkoxy substituted optionally with OH, NR₃R₆, halogen or C₁₋₄ alkoxy; NR₃R₆; or phenyl or R₁₀ either of which can be unsubstituted or substituted optionally with OH, halogen, C₁₋₃ alkyl, C₁₋₃ haloalkoxy, (CH₂)_nNR₃R₆, S(=O)_mR₈ or SO₂NR₃R₆, wherein n is 0 or 1 and m is 0-2. R₈ is C₂₋₄ alkyl; C₂₋₄ alkyl substituted optionally with OH, NR₅R₆, halogen, C₁₋₄ alkoxy or C(=O)R₇. R₉ C₁₋₄ alkoxy; amino, C₁₋₃ alkylamino, or di-C₁₋₃ alkylamino; and R₁₀ is a monocyclic ring system of 5 or 6 atoms composed of C, N, O, and/or S, such as furan, thiophene, pyrrole, pyrazole, imidazole, triazole, tetrazole, oxazole, isoxazole, isothiazole, thiazole, thiadiazole, pyridine, pyrimidine, pyridazine, and pyrazine. G is C(=0) or SO_2 . In the above definitions, the total number of carbon atoms in a substituent group is indicated by the $C_{i,j}$ prefix where i and j are numbers from 1 to 8 for example. This $C_{i,j}$ definition includes both the straight and 60 branched clain isomers. For example, $C_{1,4}$ alkyl would designate methyl through the butyl isomers; and $C_{1,4}$ alkoxy would designate methoxy through the butoxy isomers. The term "halogen," either alone or in compound 65 words such as "haloalkyl," means fluorine, chlorine, bromine or iodine Further, when used in compound words such as "haloalkyl," said alkyl may be partially or fully substituted with halogen atoms, which may be the same or different. Structure I includes isomers, wherein R_3 and GNR_1R_2 are attached to the 4 and 5 position respectively or R_3 is attached to the 5 position and GNR_1R_2 is attached to the 4 position. Many of the novel compounds of Structure I possess one or more chiral centers and this invention includes all enantiomers, diastereomers and mixtures thereof. In addition to the following teaching, U.S. Pat. Nos. 5,153,192 and U.S. Pat. No. 5,240,923, the parents of
this case which are commonly assigned, are incorporated herein by reference, particularly for their synthesis teaching and their many specific examples. Compounds of the present invention can be prepared using a variety of procedures, a number of which are described below. Many of the novel compounds of Structure I can be prepared from 5-sulfamoyl-thiophene-2-sulfonyl chlorides or 3-substituted 5-sulfamoyl-thiophene-2-sulfonyl chlorides, or where it is particularly advantageous for subsequent reactions in a specific preparation that the sulfonamide group be protected, 3-substituted 5-(N-tbutylsulfamoyl)-thiophene-2-sulfonyl chlorides can be used. These thiophene-2-sulfonyl chlorides can be readily prepared by a variety of procedures known in the art, for example see Gronowitz et al in Thiophene and its Derivatives, Vol. 44, Pt. 3, p135. The preparative sequence for novel compounds of Structure I using a pro ected sulfonamide is illustrated in Equation 1. In general. N-t-butyl-thiophene-2-sulfonamides can be selectively metallated at C5 using a strong organometallic base such as n-butyllithium, subsequent condensation with sulfur dioxide gas produces the intermediate lithium sulfinate salts (Equation 1a). The intermediate sulfinate salt can be readily converted to the corresponding sulfonyl chloride with an appropriate chlorinating agent such as N-chlorosuccinimide; amination of the sulfonyl chloride with a primary alkylamine, primary arylamine, or secondary alkylamine, bearing the desired R₁ and R₂ substituents, provides, following deprotec-45 tion, the novel compounds of Structure I (Equation 1b). In many cases it is more advantageous initially to prepare simplified primary or secondary sulfonamides as described above, but then append the more complex R₁ or R₂ substituents using standard alkylation reactions (Equation 1c). This sequence can furnish directly certain novel compounds of Structure I; however, subsequent modification of the substituents R₁, R₂, and R₃ can furnish yet other novel compounds of Structure I including novel fused bicyclic compounds; all of which can be prepared using methods known to one skilled in the art. Primary sulfonamides can be prepared from the corresponding sulfonyl chlorides by amination with ammonia or directly from the lithium sulfinate salts using hydroxylamine-O-sulfonic acid (HOSA) (Equation 1d). Equation 1 -continued Conversion of these acyclic sulfonamides into the desired thienothiazine compounds can be accomplished using a variety of procedures well known in the art; e.g. acid hydrolysis of the ketal followed by bromination of the ketone and subsequent base catalyzed cyclization of the e-bromoketone (Equation 4). Equation 4 $$\begin{array}{c} O & 1. H_{7}O^{+} \\ CH_{3} & \frac{2. PBP}{3. NaBH_{4}} \end{array}$$ $$SO_{2}-NHR_{2} \qquad R_{2} \qquad O \qquad S \qquad S$$ Certain desired bicyclic compounds of Structure I can be readily prepared by a sequence which involves initial alkylation with an appropriate alkyl halide in the presence of a suitable base (Equation 5a) followed by introduction of the sulfamoyl group by procedures analogous to Equations 1a-d, that is metallation of the alkylated product of Equation 4 with a strong organometallic base such as n-butyllithium, followed by treatment with sulfur dioxide to give the intermediate sulfinate salt which is aminated, e.g. by reaction with hydroxylamine-O-sulfonic acid (Equation 5b). Treatment of this intermediate with an appropriate alkyl nitrile in the presence of sulfuric acid provides an amide which upon reduction gives the desired amine [Equation 5c; R' is lower alkyl (C₁₋₄)]. Equation 5 OH $$X \xrightarrow{R_2 \times N_0 H} X \xrightarrow{S_2 \times N_0 H} X \xrightarrow{S_2 \times N_0 \times S_0} N_0 \times S_0} X \xrightarrow{S_2 \times N_0 \times S_0} X \xrightarrow{S_2 \times N_0 \times S_0} X \xrightarrow{S_2 \times N_0 \times S_0} X \xrightarrow{S_$$ OR2 OR2 SO₂NH₂ SO₂NH₂ SO₂NH₂ NNS SO₂NH₂ NNS SO₂NH₂ NNS SO₂NH₂ SO₂NH₂ NNS SO₂NH₂ SO₂NH₂ SO₂NH₂ SO₂NH₂ Yet other desirable compounds of Structure I are better prepared according to Equation 6 where the cyclic intermediate from Equation 4 is sulfamoylated (see Equation 5b) at position six (Equation 6a) followed by conversion of the hydroxyl group to a sulfonate ester (e.g. R" is p-toluyl or methyl) and reaction of this intermediate with the desired alkylamine (Equation 6b). # Equation 6 Still other desirable compounds of Structure I can be prepared (Equation 7) from an appropriate thienyle-thanol; these intermediate alcohols can be readily prepared by procedures well known in the art, e.g. reaction of thienyl-3-acetaldehyde with an appropriate Grignard reagent. Sulfamoylation of such alcohols by the procedures described in Equations 1a and 1d provide exclusively the desired thiophene-2-sulfonamide intermediates of Equation 7a. Cyclization to the desired bicyclic b]pyridine [Heterocycles, 27, 1637 (1988)] with the requisite R₂ group using standard alkylation procedures followed by hydrolysis of the amide provides the primary amine as shown in Equation 9a. This intermediate primary amine can be selectively transformed to more 5 desirable secondary amines using well known methods of reductive amination, that is treatment with the desired aldehyde and a suitable reducing agent, or reductive alkylation, that is reaction with the requisite carboxylic acid and a suitable reducing agent [Equation 9b; 10 G is H or loweralkyl (C₁₋₄)]. Introduction of the primary sulfonamide can be accomplished as previously described in Equations 1a, 1b, and 1d, but preferably using t-butyllithium as the base (Equation 9c). to Equation 5b. Oxidation and subsequent reduction of the thienoisothiazole by procedures well known in the art provides the intermediate cyclic sulfonamides shown in Equation 10c. These cyclic sulfonamides can be substituted on nitrogen utilizing standard alkylation procedures such as demonstrated by Equation 10d. Incorporation of the primary sulfonamide into position five of these examples of Structure I can be accomplished under the basic conditions demonstrated by Equations 1a-d. Equation 10 Certain cyclic compounds of Structure I, such as the 2,3-dihydrothienoisothiazoles, can be obtained through the modification of an existing cyclic compound (Equation 10). The metallated ketals of Equation 3 can be 65 readily converted to the desired intermediate mercaptoketones as shown in Equation 10a, and the oxime 0-esters of such compounds can be cyclized according R₂-N Chlorosulfonation of this starting material followed by amination using methods similar to these described in Equation 2 will provide the desired this phene-3-sulfonamide (Equation 12a). Subsequent treatment of this intermediate with n-butyllithium at low temperature followed by quenching with acetic anhydride will give rise to the ketone of Equation 12b. This key intermediate can then be converted into the desired novel compounds of Structure I using substantially the same general methods described in Equations 4-6. # Equation 12 Still other desirable compounds of Structure I, such as 5-sulfamoyl-thiophene-2-carboxamides, can be prepared according to Equation 13. Treatment of the 40 readily prepared 5-bromo-thiophene-2-sulfonamides under palladium mediated amidation reaction conditions [see for example J. Org. Chem., 39, 3327 (1974)] in the presence of the desired amine component provides 45 the novel compounds of Structure I. Alternately, 5bromo-thiophene-2-sulfonamides can be initially protected, such as with the formamidine group, followed by treatment with a strong organometallic base, such as n-butyllithium or LDA, and carbon dioxide to give the intermediate carboxylic acid. Treatment of this intermediate acid with an activisting agent, such as dicyclohexylcarbodiimide or triphenylphosphine triflate, followed by reaction with the desired amine component pro- 55 vides, following deprotection, the desired compounds of Structure L ### Equation 13 -continued Ry Ry So₂NH₂ The compounds of Structure I can be incorporated into various types of ophthalmic formulations for delivery to the eye. These compounds may be combined with ophthalmologically acceptable preservatives, surfactants, viscosity enhancers, penetration enhancers, 15 buffers, sodium chloride and water to form an aqueous, sterile ophthalmic suspensions or solutions. In order to prepare sterile ophthalmic ointment formulations, the active ingredient is combined with a preservative in an appropriate vehicle, such as, mineral oil, liquid lanolin, 20 or white petrolatum. Sterile ophthalmic gel formulations may be prepared by suspending the active ingredient in a hydrophilic base prepared from the combination of, for example, carbopol-940 or the like according to the published formulations for analogous ophthalmic preparations; preservatives and tonicity agents can be incorporated. Ophthalmic solution formulations may be prepared by dissolving the active ingredient in a physiologically acceptable isotonic aqueous buffer. Further, 30 the ophthalmic solution may include an ophthalmologically acceptable surfactant to assist in dissolving the active ingredient. Furthermore, the ophthalmic solution may contain a thickener such as hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylmethylcellulose, methylcellulose, polyvinylpyrrolidone, or the like to improve the retention of the medicament in the conjunctival sac. The compounds are preferably formulated as topical ophthalmic suspensions or solutions, with pH of about 4.5 to 7.8. The compounds will normally be contained in these formulations in an amount of 0.1% to 10% by weight, but preferably in an amount of 0.25% to 5.0% by weight. Thus, for topical presentation 1 to 3 drops of these formulations would be delivered to the surface of the eye 1 to 4 times a day according to the routine discretion of a skilled clinician. The following examples, which are in no way limiting, illustrate the
preparation of selected examples of the novel compounds of Structure I. The compounds set forth in Examples 1, 4-4, 4-5, 4-8, 4-9, 5-2, 5-4, 7, and 8 represent the preferred thiophene sulfonamides of this invention. The compounds represented in Exam55 ples 1, 7, and 8 are most preferred. # Example 1 60 (+)-4-Ethylamino-3,4-dihydro-2-(3-methoxy)propyl-2Hthicno[3,2-e]-1,2-thiazine-6-sulfonamide-1,1-dioxide hydrochloride Step I: - (S)-3,4-Dihydro-4-hydroxy-2-(3-methoxy)propyl-2Hthieno[3,2-e]-1;2-thiazine-6-sulfonamide-1;1-di-oxide To a solution of the product of Step H (2.6 g, 7.34 5 mmol) in THF (30 mL) at -78° C. was added a solution of (+)-β-chlorodiisopinocampheylborane (11.8 g, 36.7 mmol) in THF (10 mL). The reaction mixture was allowed to warm to -20° C. and kept at this temperature for 4 days. Diethanolamine (4.2 mL, 44 mmol) was added to the reaction mixture and the solution stirred for 30 min, diluted with EtOAc (150 mL), washed with water (2×50 mL) and brine (2×50 mL), dried (MgSO₄), and evaporated to a syrup which was purified by _______ column ______ chromatography ______ [silica, 15 CH₃₀OH/CH₂Cl₂(20:1)] to give 2.4 g (92%) of the desired compound as a coloriest foam. Step J (+)-4-Ethylamino-3,4-dihydro-2-(3-methoxy)propyl-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide-1,1-dioxide hydrochloride To a solution of the product from Step I (2.4 g, 6.74 mmol) and triethylamine (3.8 mL, 27 mmol) in anhydrous tetrahydrofuran (20 mL) cooled to -20° C.-was added tosyl chloride (2.6 g, 13.5 mmol); this mixture was allowed to warm to room temperature and stirred for 18 hr. The reaction mixture was cooled to -60°-C. and ethylamine (10 mL) was added and the mixture was again allowed to warm to room temperature. After 18 hr the reaction mixture was diluted with ethyl acetate (200 mL), washed with a saturated aqueous solution of sodium bicarbonate (3×50 mL), dried (MgSO₄), and evaporated to give the crude product which was purified bv column chromatography [silica; CH₃OH/CH₂Cl₂(20:1)] to give 1.3 g (52%) of the desired amine. The free base was dissolved in ethanol (5 mL) and treated with a 2M solution of hydrochloric acid in ethanol (4 mL) at room temperature. Evaporation of the solvent provided a solid which was recrystallized from methanol: methylene chloride to give 950 mg (34%) of the desired product; mp 175°-177° C.; $[\alpha]_D+10.35^{\circ}$ (C=1.00, H₂O). Analysis. Calculated for C₁₂H₂₂CIN₃O₅S₃: C, 34.32; H, 5.28; N, 10.00 Found: C, 34.26; H, 5.23; N, 9.92. # **EXAMPLE 2** 3,4-Dihydro-2-(3-methoxypropyl)-2Hthieno[3,2-e]-1,2-thiazine-6-sulfonsmide-1,1-dioxide sodium salt Step A: 3,4-Dihydro-4-hydroxy-2-(3-methoxypropyl)-2Hthieno[3,2-e]-1,2-thiazine-1,1-dioxide The product from Example 1, Step C (2.0 g, 9.74 mmol) was added to a suspension of sodium hydride (0.4 g, 10.0 mmol, of a 60% suspension in mineral oil) in DMF (30 mL) and the mixture was stirred for 1 hr. then 65 cooled to 20° C. 3-Bromopropyl methyl ether (1.5 g, 9.74 mmol) was added and the mixture was stirred overnight then quenched with water (200 mL), and ex- tracted with ethyl acetate (4×30 mL). The extracts were combined, washed with water (100 mL), dried (MgSO₄) and concentrated under reduced pressure which provided an oil which was purified by column chromatography (silica, gradient: hexane to ethyl acetate) to give 1.7 g (63%) of a clear oil which was not purified further. Step B: 3,4-Dihydro-2-(3-methoxypropyl)-4-O-phenoxythiocarbonyl-2H-thieno[3,2-e]-1,2-thiazine 1,1-dioxide The product from Step A (1.68 g, 6.06 mmol) and DMAP (1.48 g, 12.11 mmol) were dissolved in 1,2-dichloroethane (16 mL) and cooled in an ice bath. Phenoxythiocarbonyl chloride (1.26 mL, 9.09 mmol) was added-slowly and the reaction mixture was stirred at room temperature overnight, then quenched with water (40 mL). The mixture was extracted with dichloromethane (3×10 mL) and the extracts were combined, washed-with-saturated-sodium-chloride solution, dried (MgSO₄) and concentrated under reduced pressure. The residue was purified by column chromatography (silica, gradient: nexane to 3:1 hexane/ethyl acetate) to give 1.75 g (70%) the desired product as an oil which was used in the next step. Step C: 3,4-Dihydro-2-(3-methoxypropyl)-2H-thieno[3,2-e]-1,2-thiazine 1,1-dioxide The product from Step B (1.75 g, 4.23 mmol) and AIBN (100 mg) were mixed with dry benzene (12 mL) and degassed under nitrogen. The mixture was heated to reflux and tributyltin hydride (1.2 mL, 4.44 mmol) was added rapidly dropwise to maintain a gentle reflux. Heating was continued for 30 min and the reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography (silica, gradient: hexane to 3:1 hexane/ethyl acetate) to provide the desired product (1.06 g, 95%) as a clear oil. Step D: 3,4-Dihydro-2-(3-methoxypropyl)-2H-thieno[3,2-e]-1,2-thinzine-6-sulfonamide 1,1-dioxide sodium salt The product form Step C (1.03 g, 3.94 mmol) was dissolved in dry THF (20 mL) and cooled (-65° C.) under nitrogen. n-Butyllithium (2.1 mL of a 2.1M solution in hexanes) was added dropwise and the mixture was stirred for 45 min, then excess sulfur dioxide was 50 introduced into the flask until the solution tested acidic to moist litmus paper. The reaction mixture was concentrated under reduced pressure and the residue was dissolved in water (25 mL) and sodium acetate trihydrate (2.68 g, 19.7 mmol) then hydroxylamine-O-sul-55 fonic acid (1.34 g. 11.8 mmol) were added and the mixture was stirred at room temperature for 16 hr followed by extraction with ethyl acetate (5×5 mL). The extracts were combined, washed with saturated sodium chloride solution, dried (MgSO₄) and concentrated. 60 The residue was purified by column chromatography (silica, gradient: 3:1 hexane/ethyl acetate to 7:3 methylene chloride/methanol) which gave the desired product (1.21 g, 69%) as an amber syrup which was converted to the sodium salt as follows: The residue was dissolved in 2N NaOH (1.78 mL, 3.56 mmol), then mixed with ethanol (1.8 mL) and cooled. Ethyl ether was added to the cloud point and the product precipitated from the solution. The solids were collected and 23 By following the above general procedure but using the appropriate arylalkyl halide in Step B and either n-propylamine or ethylamine in Step C the following compounds were prepared: 1. 3,4-Dihydro-2-(3-phenylpropyl)-4-propylamino- 5 2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide dioxide hydrochloride, mp 124°-127° C. 2. 3,4-Dihydro-2-(4-phenylbutyl)-4-propylamino-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide dioxide hydrochloride, mp 120°-125° C. 3. 4-Ethylamino-3,4-dihydro-2-(2-thienyl)methyl-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide - 1,1dioxide hydrochloride, mp 182°-184° C. # **EXAMPLE 4** 4-Ethylamino-3,4-dihydro-2-[4-(2-hydroxyphenyl)phenyl]-2H-thieno(3,2-e)-1,2-thiazine-6-sulfonamide 1.1-dioxide hydrochloride # Step A: 3-Acetyl-2-(phenylmethyl)thio-5-chlorothiophene A mixture consisting of thiourea (858.4 g, 11.28 mol), benzyl bromide (1,930 g, 11.28 mol), THF (9000 ml), and water (3000 ml) was heated at reflux temperature for 2 hr followed by cooling to 50° C. To this solution 35 acetate/hexane) to provide an amber syrup (8.2 g, was added 3-acetyl-2,5-dichlorothior bene (2000 g, 10.25 mol) and an aqueous solution of sedium hydroxide (2,200 g of 50% NaOH diluted to 3000 ml); this mixture was heated at reflux temperature for 4 hr, cooled to room temperature, and the two layers separated. The 40 organic layer was diluted with ethyl acetate (6000 ml) and washed with water (3×2000 rul) and saturated aqueous sodium chloride, dried (MgSO4), and the solvent evaporated to give a residue which was triturated with hexane. This solid was collected by filtration and 45 dried to give the desired product (2,550 g, 88%): mp 86°-88° C. # Step B: 3-Acetyl -5-chloro-N-[4-(2-hydroxyethyl)phenyl]-thiophene-2-sulfonamide The product from Step A (15 g, 0.058 mol) was dissolved in glacial acetic acid (150 mL), water (15 mL) was added and the solution cooled to 3° C. Chlorine gas was slowly passed through the solution until the temperature reached 15° C. at which point the mixture was 55 cooled to 5° C. before the addition of chlorine was continued; this sequence was repeated four times. The reaction mixture was poured into ice water (400 mL) and extracted with methylene chloride $(3 \times 200 \text{ mL})$. The combined extracts were washed with cold saturated aqueous NaHCO3 (2×250 ml.), dried (MgSO4), and evaporated. The sulfonyl chloride obtained from this procedure was dissolved in THF (50 mL) and added to a solution of 4-(hydroxyethyl)aniline (16 g, 0.116 mol) in THF (100 mL); this mixture was stirred for 2 days followed by evaporation of the solvent. The residue was suspended in 1M HCl and extracted with methylene chloride (2×100 mL). The combined ex24 tracts were washed with IN HCl and then dried (MgSO₄), filtered, and evaporated to a syrup which was purified by column chromatography (silica, gradient: 3% to 5% ethanol/methylene chloride) to provide a yellow solid (11.6 g, 56%): mp 112°-116° C. ### Step C: 6-Chloro-3;4-dihydro-2-{4-{2-(t-butyldiphenylsiloxy)ethyl]phenyl]-4-hydroxy-2H-thieno[3,2-e]-1,2-thiazine 1,1-dioxide The product from Step B (11.5 g, 0.032 mol) was added to DMF (100 mL) containing imidazole (5.44 g, 0.08 mol) and t-butyldiphenylsilyl chloride (9.34 mL, 0.035 mol) and stirred at room temperature for 18 hr. The reaction mixture was evaporated to dryness and the residue was suspended in methylene chloride and filtered. The filtrate was concentrated and chromatographed (silica, methylene chloride) to provide a solid which was dissolved in THF (200 mL) and cooled to 5° C. A solution of pyridinium bromide perbromide (11.23) g, 0.035 mol) in THF (50 mL) was added dropwise and this mixture was stirred at 5° C. for 1 hr, at ambient temperature for 1 hr, and then evaporated to dryness. 25 The residue was suspended in ethanol (150 mL) and cooled to
5° C. followed by the addition of sodium borohydride (3.59 g, 95 mmol). The reaction mixture was maintained at room temperature for 1 hr and then heated at reflux temperature for 1.5 hr. Water was care-30 fully added and the ethanol evaporated. The aqueous mixture was neutralized and extracted with ethyl acetate (2×200 mL). The combined extracts were dried (MgSO₄) and evaporated to a residue which was purified by column chromatography (silica, 15% ethyl 44%). # Step D: 2-[4-[2-(t-Butyldiphenylsiloxy)ethyl]phenyl]-3,4-dihydro-4-hydroxy-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide 1.1-dioxide The product from Step C (8.2 g, 14 mmol) was dissolved in dry THF (50 mL) along with p-toluenesulfonic acid (0.5 g) and the solution cooled to 5° C. with an ice bath. Ethyl vinyl ether (2.62 mL, 27 mmol) was added and the reaction mixture was stirred for 0.5 hr. Saturated aqueous sodium bicarbonate (75 mL) was added to the reaction mixture followed extraction with ethyl acetate (2×50 mL). The combined extracts were dried (MgSO₄) and evaporated to a residue which was purified by-column chromatography (silica, 20% ethyl acetate/hexane) to provide an oil (7.62 g, 83%). This material was dissolved in dry THF (70 mL) under nitrogen and cooled to -65° C. n-BuLi (15 mL of a 1.76M solution, 26 mmol) was added dropwise, after 0.5 hr the reaction mixture was treated with sulfur dioxide until the dark solution turned yellow, stirring continued for 0.5 hr at room temperature. Evaporation of the solvent 60 provided a residue which was suspended in water (50 mL) containing sodium acetate (7.7 g, 57 mmol) and hydroxylamine-0-sulfonic acid (3.88 g, 34 mmol). This mixture was stirred at room temperature for 18 hr and then treated with 6N HCI (5 mL) for 3 hr followed by 65 extraction with ethyl acetate (2×60 mL). The combined extracts were dried (MgSO₄) and evaporated to a residue which was purified by column chromatography (silica, gradient: 4% to 5% ethanol/methylene chloride) from an additional funnel over 15 minutes, causing the temperature to rise to 15° C. The mixture was warmed to 20° C. over 30 minutes and then was stirred vigorously at ambient temperature for 15 hours without external temperature control. Water (5 L) was added, and 5 the phases were split. The organic phase was washed sequentially with saturated aqueous sodium chloride (5 L), 10% aq. sodium bisulfite (5 L), saturated aqueous sodium chloride (5 L), 10% aq. sodium bicarbonate (10 L), and saturated aqueous sodium chloride (10 L). It-10 was then dried over sodium sulfate (1 kg), filtered, and stripped of solvent by rotary evaporation. The residual solid was triturated with t-butyl methyl ether (3 L) and the mixture was chilled for 15 minutes. The solid was collected by filtration, washed with t-butyl methyl 15 ether (1 L), and dried in air at ambient temperature to give the desired product (666 g, 79%): mp 178°-179° C.; Analysis. Calculated for C6H6CINO3S2: C, 30.06; H, 2.52; N, 5.84; S, 26.75. Found: C, 30.19; H, 2.51; N, 5.80; S, 26.70. #### Step B:---- # 3-(2-Bromoacetyl)-5-chloro-thiophene-2-sulfonamide A 50-L, 5-necked flask equipped with a mechanical stirrer, a thermometer, and a 1 L addition funnel was 25 charged with the product from Step A (1.087 kg, 4.55 moi) and ethyl acetate (22 L). The pale yellow suspension was cooled to 1° C. over 45 minutes using an icewater bath and 90% pyridinium bromide perbromide (1.305 kg, 3.67 mol) was added in one portion. Sulfuric 30 acid (544 mL) was added via the addition funnel over 10 minutes causing the temperature to rise to 5° C. The reaction mixture was stirred and, after 1 hour, TLC analysis indicated complete reaction. Thirty minutes later, water (5 L) was added and the mixture was stirred 35 for 5 minutes before the phases were split. The organic phase was washed with saturated aqueous sodium chloride until the pH of the wash was 3 (4×5 L), dried over sodium sulfate (1 kg), filtered, and stripped of solvent by rotary evaporation. The residue was triturated with 40 methylene chloride (2 L) and chilled for 15 minutes before the solid was collected by filtration, washed with cold methylene chloride (2 L), and dried to give the desired product (1.041 kg, 72%): mp 147°-148° C. Analysis. Calculated for C6H5BrCINO3S2: C, 22.62; H, 1.58; 45 N, 4.40; S, 20.13. Found: C, 22.66; H, 1.60; N, 4.35; S, 20.12. # Step C: # (S)-6-Chloro-3,4-dihydro-4-hydroxy-2H-thieno[3,2-e]-1,2-thiazine 1,1-dioxide A 50-L, 5-necked flask equipped with a mechanical stirrer and a thermometer was flushed with nitrogen overnight. Working under nitrogen, the flask was charged with the product from Step B (855 g, 2.68 mol) 55 and t-butyl methyl ether (MTBE, 12.5 L). The stirred suspension was cooled to -40° C. using a dry-ice/2propanol bath and (+)-β-chlorodiisopino-campheylborane (4.5 L of a 1.2M solution in MTBE, 5.4 mol) was added via a cannula over 30 minutes, causing the tem- 60 perature to rise to -32° C. The reaction mixture was maintained between -25 to -20° C. for 3.5 hours. The mixture was warmed to 0° C. and 1M sodium hydroxide (11 L) was added from an addition funnel over 10 minutes, causing the temperature to rise to 22° C. The bi- 65 phasic mixture was stirred vigorously at ambient temperature for 2 hours, after which TLC analysis indicated complete cyclization. The phases were split, and the dark aqueous layer was extracted with t-butyl methyl ether (3 L), acidified to pH I using concentrated hydrochloric acid, and extracted with ethyl acetate $(2\times4 \text{ L})$. The combined ethyl acetate extracts were washed with saturated aqueous sodium chloride (3 L), dried over sodium sulfate (1 kg), filtered, and concentrated to a volume of about 1 liter by rotary evaporation, at which point toluene (2 L) was added. As the remainder of the ethyl acetate was removed, the product crystallized from toluene. It was collected by filtration, washed with toluene (2 L) and methylene chloride (2 L), and dried in air at ambient temperature (498 grams 77%): mp 126°-127° C.; [α]²⁵D-5.9° (c=1, CH₃OH). Analysis. Calculated for C₆H₆ClNO₃S₂: C, 30.06; H, 2.52; N, 5.84. Found: C, 30.14; H, 2.56; N, 5.80. # Step D: # (S)-6-Chloro-3,4-dihydro-4-hydroxy-2-(2-phenylethyl)-2H-thieno[3,2-e]-1,2-thiazine 1,1-dioxide The product from Step C (1.5 g, 6.2 mmol) was added to a suspension of potassium carbonate (2.14 g, 15.5 mmol) in ethanol (25 mL) and phenethyl bromide (2.1 mL, 15.4 mmol) was added in three equal portions over a 24 hr period; stirring continued for 64 hr. The reaction mixture was evaporated and the residue suspended in water which was extracted with ethyl acetate (30 mL). The organic layer was dried (MgSO₄) and evaporated to a residue which was partially purified by column chromatography (silica, 3% ethanol/methylene chloride) to give 2.16 g of crude product (consisting of a 1:2 mixture of phenethyl bromide and the desired product) as a yellow oil; this material was used in the next step without further purification. # Step E: # (S)-3,4-Dihydro-4-hydroxy-2-(2-phenylethyl)-2H-thieno[3,2-e]-1,2thiazine-6-sulfonamide 1,1-dioxide The product from Step D (1.36 g, 3.96 mmol) was dissolved in dry THF (25 mL) along with p-toluenesulfonic acid (0.11 g, 0.6 mmol) and the solution cooled to 5° C. at which point ethyl vinyl ether (1.16 mL, 12.1 mmol) was added. After stirring this mixture for 40 min, saturated aqueous sodium bicarbonate (15 mL) was added followed by extraction with ethyl acetate (40 mL). The organic layer was dried (Na₂SO₄), evaporated, and the residue dissolved in THF (40 mL) under nitrogen. The solution was cooled to 60° C. and n-BuLi (4.1 mL of n 1.76M solution, 7.2 mmol) was added dropwise followed by stirring for 30 min and the introduction of sulfur dioxide until the green solution turned yellow. The cooling bath was removed and the reaction mixture stirred for 1 hr. Evaporation of the solvent provided a residue which was suspended in water containing sodium acetate (4.89 g, 36 mmol) and hydroxylamine-O-sulfonic acid (2.73 g, 24 mmol); this mixture was stirred for 5 hr. The reaction mixture was acidified to pH 1 with 6N HCl and stirred at room temperature for 18 hr followed by extraction with ethyl acetate (2×50 mL). The combined extracts were dried (MgSO₄) and evaporated to a residue which was purified by column chromatography (silica, 5% ethanol/methylene chloride) to give the desired product as an oil which crystallized upon standing (1.14 g, 75%): mp 117°-114° C. 3,4-Dihydro-2-(2-methoxyethyl)-3-methyl-2Hthieno[3,2-e]-1,2-thiazine-6-sulfonamide 1,1-dioxide, mp 106*-108* C. # **EXAMPLE 7** R-(+)-3,4-Dihydro-2-(4-methoxybutyl)-4-propylamino-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide 1,1-dioxide hydrochloride Step A: N-(1,1-Dimethylethyl)-3,4-dihydro-4-hydroxy-2-(4-methoxybutyl)-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide 1,1-dioxide The product from Example 3, Step A (8.75 g, 0.26 mol) was dissolved in DMF (25 mL) and the solution was cooled to -0° C. Sodium hydride (1.56 g of an oil dispersion, 0.03 mol) was added, stirred for 30 min, and then 4-methoxybutyl bromide (8.6 g,0.052 mol) in DMF (15 mL) was added; this mixture was warmed to room temperature and stirred for 15 hr. A saturated aqueous solution of ammonium chloride (20 mL) was added and the mixture was extracted with ethyl acetate (5×50 mL). The combined extracts were washed with brine (10 mL), dried (MgSO₄) and evaporated to an oil which was purified by column chromatography (silica, gradient: 50% to 60% ethyl acetate/hexane) to give the desired product (9.5 g, 86%) as a yellow oil. Step B: N-(1,1-Dimethylethyl)-3,4-dihydro-2-(4-methox-ybutyl)-4-oxo-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide 1,1-dioxide To a solution of the product from Step A (9.5 g, 0.022 mol) in acetone (20 mL) at -10° C, was added freshly prepared Jones reagent (10 mL) and the mixture was stirred at room temperature for 2 hr. The solvent was
evaporated and saturated aqueous sodium bicarbonate 45 was added until the pH of the solution was 6. The aqueous mixture was extracted with ethyl acetate (4×50 mL). The combined extracts were washed with brine (2×10 mL), dried (MgSO₄) and evaporated to provide a yellow solid (7.5 g, 78%). Step C: (S)-Ñ-(1,1-Dimethylethyl)-3,4-dihydro-4-hydroxy-2-(4-methoxybutyl)-2H-thieno[3,2-e]-1,2-thiazine-6-sulfona-mide 1,1-dioxide To a solution of (+)- β -chlorodiisopinocamphenylborane (28.01 g, 0.087 mol) in THF (60 mL) at -20° C. was added a solution of the product from Step B (7.4 g, 0.017 mol) in THF (90 mL); this mixture was stirred for 40 hr while maintaining this temperature. Diethanolamine (9.13 g, 0.087 mol) was added to the reaction mixture which was allowed to warm to room temperature and stirred at this temperature for 2 hr. Evaporation of the THF gave a residue which was dissolved in ethyl acetate (100 mL); this solution was washed with 65 water (100 mL). The aqueous layer was separated and extracted with ethyl acetate (3×50 mL). The ethyl acetate extracts were combined, washed with brine (2×20 TL), dried (MgSO₄), and evaporated to a residual which was purified by column chromatography (silica, 60% ethyl acetate/hexane) to give an oil (6.4 g, 86%). Step D: R-(+)-3,4-Dihydro-2-(4-methoxybutyl)-4propylamino-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide 1,1-dioxide hydrochloride 10 To a solution of the product from Step C (5.4 g,0.013 mol) in THF (40 mL) at 0° C. was added triethylamine (5.38 g, 0.053 mol) followed by p-toluenesulfonyl chloride (5.07 g,0.027 mol) and the mixture was stirred for 2 hr. The reaction mixture was divided into two equal volumes, one of which was treated with propylamine (15 mL) at 0° C. for 15 hr. The excess propylamine was evaporated and the solution diluted with water (50 mL). The organic layer was separated and the aqueous layer was extracted with ethyl acetate (3 × 50 mL). The combined extracts were washed with brine (20 mL), dried (MgSO₄), and evaporated to a crude product which was purified by column chromatography (silica, gradient: 50% to 70% ethyl acetate/hexane). The free base was dissolved in ethanol (10 mL) and treated with ethanolic hydrogen chloride. Evaporation gave a solid which was recrystallized from isopropanol to give the desired product as a white solid (1.4 g, 26%): mp 183°-185° C.; $[\alpha]_D + 27.2^{\circ}$ (c=0.43, CH₃OH). Analysis: 30 Calculated for C14H26ClN3O5S3-0.5 H2O: C, 36.79; H, 5.95; N, 9.19. Found: C, 37.08; H, 6.34; N, 8.82. #### **EXAMPLE 8** R-(+)-4-Ethylamino-3,4-dihydro-2-(4-methoxyburyl)-2Hthieno[3,2-e]-1,2-thiazine-6-sulfonamide 1,1-dioxide hydrochloride The second portion of the intermediate tosylate prepared in Example 7, Step D was treated with ethylamine (18 mL) at 0° C. for 15 hr. By proceeding in a manner analogous to that already described in Example 7, Step D the title compound was obtained (2.4 g, 46%): mp 129°-130° C.; [a]_D+23.6° (c=0.49, CH₃OH). Analysis. Calculated for C₁₃H₂₄ClN₃O₅S₃: C, 35.97; H, 5.57; N, 9.68. Found: C, 35.80; H, 5.84; N, 9.41. Using modifications of the procedures described above and in Examples 7 but substituting the appropriate alkyl halide in Step A and the desired alkylamine in Step D the following compounds were prepared: R-(+)-4-Ethylamino-3,4-dihydro-2-(6-hydroxyhexyl)-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide 1,1-dioxide hydrochloride, mp 200°-201° C; R-(+)-4-Allylamino-3,4-dihydro-2-(2-methyl-propyl)-2H-thieno[3,2-e]-1,2-thiazine-6-sulfona-mide 1,1-dioxide hydrochloride, 202°-205° C.; R-(+)-3,4-Dihydro-2-(4-hydroxybutyl)-4propylamino-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide 1,1-dioxide hydrochloride, mp 197*-198* C.: #### -continued R-(--)-4-Ethoxy-3,4-dihydro-2-(3-methoxypropyl)-2Hthieno(3,2-e)-1,2-thiazine-6-sulfonamide 1,1-dioxide hydrochloride # Step A: (R)-3,4-Dihydro-4-hydroxy-2-(3-methoxypropyl)-2Hthieno[3,2-e]-1,2-thiazine-6-sulfonamide 1,1-dioxide To a solution of (-)-β-chlorodiisopinocampheylborane (20.4 g, 63.5 mmol) in THF (20 mL) at -20° C. was added a solution of the product from Example 1, Step H (4.5 g, 12.7 mmol) in THF (60 mL) at -20° C.; 15 this mixture was stirred for 48 hr maintaining this temperature. Diethanolamine (6,6 g, 63.5 mmol) was added and the solution allowed to warm to room temperature. The solvent was evaporated and the residue suspended in water (50 mL). This mixture was extracted with ethyl acetate (5×50 mL), and the combined extracts were washed with brine (15 mL), dried (MgSO₄), and evaporated to a syrup which was purified by column chromatography (silica, gradient: 50% to 60% ethyl acetate/- 25 hexane) to give a white solid (3.9 g, 85%); mp 109°-111° C. Analysis: Calculated for C₁₀H₁₆N₂O₆S₃: C, 33.69; H, 4.53; N, 7.86. Found: C, 33.74; H, 4.48; N, 7.85. # Step B: R-(-)-4-Ethoxy-3,4-dihydro-2-(3-methoxypropyl)-2Hthieno[3,2-e]-1,2-thiazine-6-sulfonamide 1,1-dioxide hydrochloride To a solution of the product from Part A (2.81 g, 7.9 mmol) in acetonitrile (10 mL) at room temperature was added dimethylformamide dimethyl acetal (1.16 mL, 8.6 mmol); this solution was stirred for 2 hr and evaporated to dryness. The crude product was purified by 40 acidified (pH 3), extracted with ethyl acetate (100 mL), chromatography (silica, 50% ethyl acetate/hexane)-to give the desired protected sulfonamide derivative. This compound (2.54 g, 5.6 mmol) was dissolved in DMF (15 mL), cooled to 0° C., and sodium hydride (0.33 9 of a 60% oil dispersion, 8.33 mmol) was added. After stirring for 30 min, ethyl iodide (1.3 g, 8.3 mmol) was added and stirring continued, but at room temperature, for 2 hr. A saturated aqueous solution of ammonium chloride (50 mL) was added and the mixture extracted with ethyl acetate $(3 \times 50 \text{ mL})$. The combined extracts were washed with brine (20 mL), dried (MgSO₄), and evaporated to a residue which was dissolved in ethanol (3 mL), acetic acid (6 mL) and hydrazine (1.4 mL) were 55 added and the mixture was heated at 55° C. for 24 hr. After cooling to room temperature, saturated aqueous sodium bicarbonate (30 mL) was added and the mixture was extracted with ethyl acetate (4×50 mL) The com- 60 bined extra its were washed with brine (10 mL), dried (MgSO₄), and evaporated to a residue which was purified by column chromatography (silica, gradient: 30% to 50% ethyl acetate/hexane) to give a syrup (500 mg). $[\alpha]_D$ =3.91° (c=0.67, CH₃OH). Analysis. Calculated for C₁₂H₂₀N₂O₆₃: C, 37.48; H, 5.24; N, 7.29. Found: C, 37.61; H, 5.25; N, 7.18. ### EXAMPLE 11 ethyla mino-4,5,6,7-tetrahydro-7-oxomo[2,3-b]pyridine-2-sulfonamide hydrochloride Step 6-Ethyl-4,5,6,7-tetrahydro-4-(tri-A: fluoroacetamino)-7-oxo-micno[2,3-b]pyridine After cooling a solution of 4,5,6,7-tetrahydro-4-(trifluoroacetamino)-7-oxo-thieno[2,3-b]pyridine (1.0 g, 3.8 mmol) in DMF (10 mL) to -20° C., sodium hydride (273 mg, 11.4 mmol of a 60% oil dispersion) was added followed by ethyl bromide (1.7 mL, 22.7 mmol). This mixture was allowed to warm to room temperature. Stirring continued at this temperature for an additional hour and then the mixture was poured into ice water (100 mL). This aqueous mixture was extracted with ethyl acetate (4×100 mL) and the combined extracts were washed with brine $(2 \times 50 \text{ mL})$, dried (MgSO₄), and concentrated to a crude oil which was purified by column chromatography (silica, 5% methanol/methylene chloride) to give a yellow solid (0.85 g, 77%): mp 30 136°-138° C. # Step B: 6-Ethyl-4-amino-4,5,6,7-tetrahydro-7-oxo-thieno[2,3b]pyridine To a solution of the product from Step A (4.5 g, 15.4 mmol) in 50% aqueous methanol (80 mL) was added potassium carbonate (3.2 g, 23 mmol) and the mixture stirred at room temperature for 5 hr. The methanol was evaporated and the remaining aqueous mixture was the pH was adjusted to 9 and again extracted with ethyl acetate (3×200 mL). The combined extracts were evaporated to an oil which was purified by column chromatography (silica, 5% methanol/methylene chloride) to give the desired product as a yellow oil (2.7 g, 70%). # Step C: 6-Ethyl-4-ethylamino-4,5,6,7-tetrahydro-7-oxothieno[2,3-b]pyridine To a solution of the product from Step B (2.7 g, 13.8 mmol) in methanol (20 mL) at room temperature was added acetic acid (790 mL, 13.8 mmol) and sodium cyanoborohydride (867 mg, 13.8 mmol). After stirring this mixture for 18 hr concentrated HCl (1 mL) was added; when the evolution of gas ceased, the pH of the mixture was adjusted to 9 with 50% NaOH. The solvent was evaporated and the residue dissolved in ethyl acetate (200 mL); this solution was washed with brine $(2\times50 \text{ mL})$, dried (MgSO₄), and evaporated to an oil which was purified by column chromatography (silica, 5% methanol/methylene chloride) to give the desired product (1.85 g, 62%). Step D: 6-Ethyl-4-ethylamino-4,5,6,7-tetrahydro-7-oxothieno[2,3-b]pyridine-2-sulfonamide hydrochloride After cooling a solution of the product from Step C $(1.7 \text{ g. } 7.6 \text{ mmol}) \text{ in THF } (10 \text{ mL}) \text{ to } -78^{\circ} \text{ C., a } 1.7\text{M}$ | | 39 | | 40 | |------------------------------------|--|---------------------------------|--| | | TABLE 1 | | TABLE 1-continued | | | R ₂ | | R ₂ | | | | | | | | - ! }-s | O ₂ NH ₂ | 5
SO ₂ NH ₂ | | | $R_1 \stackrel{N}{\smile}_G \stackrel{\sim}{\smile}_S$ | | $R_1 \stackrel{N}{\smile} G \stackrel{\sim}{\smile} S$ | | G | R ₁ | R ₂ | G - R ₁ | | SO ₂ | CH ₂ CO ₂ -i-Pr | NH-o-Pr | CO C6H4-(4-SO2Me) NHE: | | SO ₂
SO ₂ | CH2CO2+Pr
(CH2)3CO2+Pr | NHE:
NHE:
 10 CO C ₆ H ₃ —(4-OH)—(3-CH ₂ NMe ₂) OE:
CO C ₆ H ₃ —(4-OH)—(3-CH ₂ NMe ₂) H | | SO ₂ | (CH ₂) ₂ N(CH ₂ CH ₂) ₂ O | Н | CO C ₆ H ₃ —(3,4-OH) NHE: | | SO ₂
SO ₂ | (CH ₂) ₂ N(CH ₂ CH ₂) ₇ O
(CH ₂) ₂ N(CH ₂ CH ₂) ₇ O | OCH2CH2OH
OCH2CH2OMe | CO C4H3—(3,4-OMe) NHE:
CO C4H4—(4-COCH3) NHE: | | SO ₂ | (CH ₂) ₂ N(CH ₂ CH ₂) ₂ O | CH ₂ CH ₃ | CO CH2CaHa-(3,4-OMe) NHE1 | | SO ₂
SO ₂ | (CH ₂) ₂ N(CH ₂ CH ₂) ₂ O
(CH ₂) ₂ N(CH ₂ CH ₂) ₂ S | CH ₂ OMe
NHE: | 15 CO CH ₂ C ₆ H ₃ —(4-OH)—(3-CH ₂ NMe ₂) OE:
CO CH ₂ C ₆ H ₄ —(4-OMc) NHE: | | SO ₂ | (CH ₁) ₂ N(CH ₂ CH ₂) ₂ SO ₂ | ОН | CO CH ₂ C ₆ H ₄ —(3-OH) NHE: | | SO ₂ | CH ₂ CCH | NHE: | CO CH ₂ ((2-CO ₂ Et)-pyridin-4-yl] NHE: CO CH ₂ ((5-CO ₂ Pt)-thieno-2-yl) NHE: | | SO ₂ | CH2CCCH2OCH3
CH2CONHMe | NHE | CO CH2[(5-CO2iPr)-thieno-2-yl] NHE: | | SO ₂ | (CH ₂) ₂ CONH(CH ₂) ₂ OH | NHE | 20 | | SO ₂
SO ₂ | C ₆ H ₄ —(3-OE1)
C ₆ H ₄ —(3-OH) | NHE:
NHE: | TABLE 2 | | SO₂ | C6H4-(3-OH) | NH-a-Pr | R ₃ | | SO ₂ | _C ₆ H ₄ —(3-OMe)
C ₆ H ₄ —(4-OH) | NHE:
NHE: | R_2 | | SO2 | C6H4-(4-OMe) | NHE | 25 N | | SO ₂
SO ₂ | C6H4-(3-OCHF2)
C6H4-(4-SO2Me) | NHE:
NHE: | $R_1 G S SO_2NH_2$ | | SO2 | C ₆ H ₄ —(4-NHCOMe) | NHE | G R ₁ R ₂ R ₃ | | SO ₂ | C ₆ H ₄ —(4-CONM _{E2}) | NHE | SO ₂ (CH ₂) ₂ N(CH ₂ CH ₂) ₂ O H COCH ₃ | | SO ₂
SO ₂ | C ₆ H ₃ —(4-OH)—(3-CH ₂ NMe ₂)
C ₆ H ₃ —(4-OH)—(3-CH ₂ NMe ₂) | OE:
H | SO ₂ CH ₂ C ₆ H ₄ -(3-OH) CH ₃ H | | SO ₂ | C ₆ H ₃ —(3,4-OH) | NHE | 30 SO ₂ CH ₂ C ₆ H ₄ —(3-OMe) H H | | SO ₂
SO ₂ | C ₆ H ₃ —(3,4-OMe)
C ₆ H ₄ —(4-COCH ₃) | NHE: | SO ₂ CH ₂ C ₆ H ₄ —(4-OH) H CH ₃
SO ₂ CH ₂ C ₆ H ₄ —(4-OMe) H H | | SO ₂ | CH ₂ C ₆ H ₄ —(3,4-OMe) | NHE | SO ₂ CH ₂ C ₆ H ₄ —(4-OH) H CH ₂ OE: | | SO ₂
SO ₂ | CH2C4H3(4-OH)(3-CH2NMe2)
CH2C4H4(4-OMe) | OE:
NHE: | SO ₂ CH ₂ C ₆ H ₄ —(4-CONHMe) H CH ₃
SO ₂ CH ₂ C ₆ H ₄ —(4-SO ₂ NMe ₂) H H | | SO2 | CH ₂ C ₆ H ₄ —(3-OH) | NHE | 35 SO ₂ CH ₂ C ₆ H ₄ —(3-SO ₂ Me) H CH ₃ | | SO ₂
SO ₂ | CH2[(2-CO2E1)-pyridin-4-yl] CH2[(5-CO2iPr)-thieno-2-yl] | NHE: | SO ₂ CH ₂ C ₆ H ₄ —(4-OCHF ₂) CH ₃ H
SO ₂ CH ₂ C ₆ H ₃ —(4-OH)-3-(CH ₂ NMe ₂) CH ₃ CH ₃ | | SO ₂ | (CH ₂) ₃ OH | OH | SO ₂ CH ₂ C ₆ H ₄ —(3-NHCOMe) H CH ₃ | | SO ₂ | (CH ₂₎₄ OH | OH | SO ₂ CH ₂ -4-pyridinyl H CH ₃
SO ₂ CH ₂ -2-pyridinyl H CH ₃ | | SO ₂
SO ₂ | (CH ₂)5OH
(CH ₂)6OH | OH
OH | 40 SO ₂ CH ₂ -2-thienyl H CH ₃ | | SO2 | (CH ₂)₄OH | OE | SO ₂ CH ₂ —(5-Me-2-thienyl) H H CO (CH ₂)-N(CH ₂ CH ₂)-O H COCH ₃ | | SO2
SO2 | (CH ₂)¢OH · | NH-a-Pr
NH-∔Ba | CO (CH ₂) ₂ N(CH ₂ CH ₂) ₂ O H COCH ₃
CO CH ₂ C ₄ H ₄ —(3-OH) CH ₃ H | | SO2 | (CH ₂) ₃ OCH ₃ | OEs | CO CH2C4H4-(3-OMe) H H | | SO2
SO2 | (CH ₂) ₂ OCH ₃
CH ₂ -2-thicayi | OE:
OH | CO CH ₂ C ₆ H ₄ —(4-OH) H CH ₃ 45 CO CH ₂ C ₆ H ₄ —(4-OMe) H H | | SOn | CH2-C4H5 | OH | CO CH ₂ C ₆ H ₄ —(4-OH) H CH ₃ | | SO2 | (CH ₂) ₂ CH(OH)CH ₃
(CH ₂) ₃ CH(OH)CH ₃ | NHE:
NHE: | CO CH ₂ C ₆ H ₄ —(4-CONHMe) H CH ₃ CO CH ₂ C ₆ H ₄ —(4-SO ₂ NMe ₂) H H | | SO ₂
SO ₂ | (CH ₂)CH(OCH ₃)CH ₃ | NHE | CO CH2C4H4—(3-SO2Me) H CH3 | | SO ₂ | (CH ₂)yOH | H | CO CH ₂ C ₆ H ₄ —(4-OCHF ₂) CH ₃ H CO CH ₂ C ₆ H ₃ —(4-OH)-3-(CH ₂ NMe ₂) CH ₃ CH ₃ | | SO ₂
SO ₂ | (CH ₂) ₂ OCOCH ₃
(CH ₂) ₂ OCOCH ₃ | H
NHE: | 50 CO CH ₂ C ₆ H ₄ —(3-NHCOMe) H CH ₃ | | SOn | (CH ₂) ₂ OCOCH ₂ | NHE | CO CH ₂ -4-pyridinyl H CH ₃ CO CH ₂ -2-pyridinyl H CH ₃ | | SO ₂
SO ₂ | (CH ₂) ₂ CO ₂ Et
(CH ₂) ₃ CO ₂ Et | NHE:
NHE: | CO CH ₂ -2-thienyl H CH ₃ | | SO ₂ | (CH ₂) ₅ CO ₂ Et | NHE | CO CH ₂ —(5-Me-2-thienyl) H H | | SO ₂
SO ₂ | (CH2)₄CO2÷Pr
(CH2)₃CH3 | NHE: | 55 | | SO ₂ | (CH ₂) ₆ CH ₃ | NHE | TABLE 3 | | SO ₂
SO ₂ | (CH ₂) ₂ CH(CH ₃) ₂
CH ₂ -2-thiazole | NHE:
OH | R ₂ | | SO2 | CH2-2-oxazole | OH | R _k \bigwedge | | SO ₂
SO ₂ | CH ₂ -2-pyrimidine
CH ₂ -3-pyridazine | OH
OH | | | SO ₂ | CH ₂ -2-pyrazine | OH | N J JOHN | | SO ₂
SO ₂ | CH2-3-isothiazole
CH2-3-isoxazole | OH
OH | $R_1 \subset G_1 \subset S$ | | ∞ | (CH ₂) ₃ CO ₂ +Pr | NHE | R_1 R_2 R_3 | | æ | C ₆ H ₄ (3-OH)
C ₆ H ₄ (3-OH) | NHE:
NH-a-Pt | 65 CH ₃ H CH ₂ N(CH ₂ CH ₂) ₂ O | | ∞ | C ₄ H ₄ —(3-OMe) | NHE | (CH ₂) ₂ OM ₂ H CH ₂ N(CH ₂ CH ₂) ₂ O | | &
& | C ₆ H ₄ —(4-OH)
C ₆ H ₄ —(4-OMe) | NHE:
NHE: | CH2N(CH2CH2)2O H CH2OH CH2N(CH2CH2)2O H CH2OMe | | æ | C4H4—(1-OCHF2) | NHE | CH ₂ N(CH ₂ CH ₂) ₂ O H CH ₃ | 50 55 60 | -01 | imined | |------------|----------------------| | Ingredicat | Coucestration (wt %) | | HCI/NaOH | pH 6.4 | The above ingredients were mixed together in substantially the same manner as described in Example 18 to furnish the ophthalmic solution. **EXAMPLE 20** Ophthalmic Solution | Ingredient | Concentration (wt %) | |--|----------------------| | R-(+)-3,4-Dihydro-2-(2-methoxy)ethyl-
4-propylamino-2H-thieno[3,2-e]-1,2- | 2.19% | | thinzine-6-sulfonsmide-1,1-dioxide
hydrochloride (Compound) | | | Hydroxypropylmethylcellulose | 3.0% | | Sodium Acetate trihydrate | 0.1% | | Mannitol (Osmolality = 288 mOsm) | 2.4% | | Benzalkonium Chloride | 0.01% | | Disodium Edetate | 0.01% | | Purified Water | 9.8 | | HC1/NaOH | pH 5.0 | The above ingredients were mixed together in substantially the same manner as described in Example 18 to furnish the ophthalmic solution. **EXAMPLE 21** Ophthalmic Suspension | Ingredient | Concentration (wt %) | |--|----------------------| | (+)4-Ethylamino-3,4-dihydro-2- | 2.0% | | (3-methoxy)propyl-2H-thieno[3,2-e]- | | | 1.2-thiazine-6-sulfonamide-1,1-dioxide | | | hydrochloride (Compound) | | | Hydroxypropylmethylcellulose | 0.5% | | Dibasic Sodium Phosphate | 0.2% | | Disodium Edetate | 0.01% | | Sedium Chloride | 0.8% | | Purified Water | e.p | | Benzalkonium Chloride | 0.01% | | Polysorbete 80 | 0.1% | | NaOH/HCI | pH 7.1 | The above ingredients can be mixed together in substantially the same manner as described in Example 15 to furnish the ophthalmic suspension. **EXAMPLE 22** Ophthalmic Suspension | Ingredient | Concentration (wt % | | |---------------------------------------|---------------------|--| | R-(+)-3.4-Dihydro-2-(4-methoxyburyi)- | 2.0% | | | 4-propylamino-2H-thieno(3,2-e)-1,2- | | | | thinzine-6-mlfonemide 1,1-dioxide | | | | (Compound) | | | | Hydroxypropylmethylcellulose | 3.0% | | | Dibesic Sodium Phosphate | 0.2% | | | Sodium Chloride | 0.7% | | | Disodium EDTA | 0.01% | | | Polysorbate 80 | 0.03 | | | Benzalkonium Chloride Solution | 0.01% + 5% rs | | | Sodium Hydroxide | pH = 7.2 عـــه | | | Hydrochloric Acid | qs pH = 7.2 | | | Water for Injection | q.s. 100% | | The above ingredients were mixed together using a procedure similar to that described in Example 15 to furnish the ophthalmic suspension. # **EXAMPLE 23** # Ophthalmic Suspension | Ingredient | Concentration (wt %) | |---------------------------------------|----------------------| | R-(+)-3,4-Dihydro-2-(4-methoxybutyl)- | 2.0% | | 4-propylamino-2H-thieno[3,2-e]-1,2- | | | thiazine-6-mlfonamide 1,1-dioxide | | | (Compound) | | | Hydroxypropylmethylcellulose | 3.0% | | Sodium acetate (trihydrate) | 0.1% | | Mannitol | 4.1% | | Disodium EDTA | 0.01% | | Benzalkonium Chloride Solution | 0.01% + 5% xs | | Sodium Hydroxide | q.s. pH = 5.0 | | Hydrochloric Acid | q.s. pH = 5.0 | | Water for Injection | a.s. 100% | The above ingredients were mixed together in a manner similar to the same general procedure described in Example 15 to furnish the ophthalmic suspension. **EXAMPLE 24** Ophthalmic Suspension | Ingredient | Concentration (wt %) | |--|----------------------| | R-(+)-3,4-Dihydro-2-(4-esethoxybutyl)- | 2.0% | | 4-propylamino-2H-thieno(3,2-e)-1,2- | | | thiazine-6-sulfonamide 1,1-dioxide | | | (Compound) | | | Carbomer 934P | 0.5% | | Sodium Chloride | 0.4% | | Mannitol | 2.4% | | Disodium EDTA | 0.01% | | Polysorbate 80 | 0.05% | | Benzalkonium Chloride Solution | 0.01% + 5% zs | | Sodium Hydroxide | q = pH = 7.2 | | Hydrochloric Acid | q.s. pH = 7.2 | | Water for Injection | q.s. 100% | The above ingredients were mixed together using a 45 method similar to the same general procedure described in Example 15 to furnish the ophthalmic suspension. **EXAMPLE 25** Ophthalmic Suspension | Ingredient | Concentration (wt %) | | |--|----------------------|--| | R-(+)-4-Ethylamino-3,4-dihydro-2- | 2.0% | | | (2-methylpropyl)-2H-thieno[3,2-e]-1,2- | | | | thiszine-6-sulfonsmide 1,1-dioxide | | | | hydrochloride (Compound) | | | | Carboner 934P | 0.5% | | | Sodium Chloride | 0.4% | | | Mannitol | 2.4% | | | Disodium EDTA | 0.01% | | | Polysorbate 80 | 0.05% | | | Benzalkonium Chloride Solution | 0.01% + 5% zs | | | Sodium Hydroxide | q.s. pH = 7.2 | | | Hydrochloric Acid | q.s. pH = 7.2 | | | Water for Injection | g.s. 100% | | The above ingredients can be mixed together using a method similar to the same general procedure described in Example 15 to furnish the ophthalmic suspension. which can be unsubstituted or substituted optionally with C₁-C₃alkyl, C₁-C₃halo alkyl OH, (CH2), NR5R6, halogen, C14 alkoxy, C14 haloalkoxy, C(=O)R7, S(=O)mR8 or SO2NR3R6, wherein m is θ -2 and n is θ -2. 5. The compound of Claim 4 wherein: - R4 is OH; C1-4 alkoxy; C2-4 alkoxy substituted optionally with OH, NR₅R₆, halogen, C₁₋₄ alkoxy or $C(=0)R_{7}$, or $NR_{5}R_{6}$; phenyl, or R_{10} unsubstituted or substituted optionally with OH, (CH₂)_nNR₅R₆, ¹⁰ halogen, C_{14} alkoxy, C_{14} haloalkoxy, $C(=0)R_{7}$, $S(=0)_mR_8$ or $SO_2NR_5R_6$, wherein m is 0-2 and n is 0-2. - 6. The compound of Claim 1 wherein: - R4 is OH; C1-4 alkoxy; C2-4 alkoxy substituted option- 15 ally with OH, NR₅R₆, halogen, C₁₋₄ alkoxy or C(=O)R7, or NR5R6; phenyl, or R10, unsubstituted or substituted optionally with OH, (CH₂)₈NR₅R₆, halogen, C_{1-4} alkoxy, C_{1-4} haloalkoxy,
$C(=0)R_7$, S(=O)_mR₈ or SO₂NR₅R₆, wherein m is 0-2 and n - 7. A compound selected from the group consisting of: R-(+)4-Ethylamino-3,4-dihydro-2-(3-methoxy)propyl-2H-thieno 1,2-thierine-6-sulfonamide-1,1-diox-1/220 - (R) 4-Ethylamino-3, 4-dihydro-2-(3-methoxyphenyl)-2H-thieno-1,2-thiazine-6-sulfonamide 1,1- - (R)-4-Ethylamino-2-(4-hydroxy-phenyl)-3,4-dihydro-30 2H-thieno-1,2-thiazine-6-sulfonamide 1,1-dioxide; - (R)-4-Ethylamino-3,4-dihydro-2-(3-hydroxy-phenyl)-2H-thieno-1,2-thiazine-6-sulfonamide 1,1-dioxide; - (R)-4-Ethylamino-3,4-dihydro-2-(4-hydroxy-phenylmethyl)-2H-thieno-1,2-thiazine-6-sulfonamide 1,1-35 - (R)-4-Ethylamino-3,4-dihydro-2-(3-methoxy-phenylmethyl)-2H-thieno-1,2-thiazine-6-sulfonamide 1,1dioxide: - R(+)-3,4-Dihydro-2-(4-methoxybutyl)-4propylamino-2H-thieno-1,2-thiazine-6-sulfonamide 1.1-dioxide: - R-(+)-4-Ethylamino-3,4-dihydro-2-(4-methoxybutyl)-2H-thieno-1,2-thiazine-6-sulfonamide dioxide: - R-(+)-4-Ethylamino-3,4-dihydro-2-(2-methylpropyl)-2H-thieno-1,2-thiazine-6-sulfonamide 1,1dioxide: - R-(+)-4-Ethylamino-3,4-dihydro-2-(6-hydroxyhex- - (R)-3,4-Dihydro-2-(3-hydroxypropyl)-4-(2-methyl--1,2-thiazine-6-sulfonapropyl)ammo-2H-thieno mide 1,1-dioxide; - (R)-4-Ethylamino-3,4-dihydro-2-(3-hydroxy-phenyl- 55 methyl)-2H-thieno-1,2-thiazine-6-sulfonamide 1,1 dioxide: - (R)-3,4-Dihydro-2-(3-methoxy-phenyl)-4-(2-methylpropyl)amino-2H-thieno-1,2-thiazine-6-sulfonamide 1.1 dioxide: - (R)-3,4-Dihydro-2-(4-hydroxy-pheayl)-4-(2-methylpropyl)amino-2H-thieno-1,2-thiszine-6-sulfonamide 1,1 dioxide; - (R)-3,4-Dihydro-2-(3-methoxy-phenyl)-4propylamino-2H-thieno-1,2-thiazine-6-sulfonamide 1.1 dioxide: - (R)-3,4-Dihydro-2-(3-hydroxy-phenyl)-4propylamino-2H-thieno-1,2-thiazine-6-sulfonamide 1.1 dioxide: - (R)-3,4-Dihydro-2-(3-hydroxy-phenyl)-4-(2-methylpropyl)amino-2H-thieno-1,2-thiazine-6-sulfonamide 1,1 dioxide; - (R)-3,4-Dihydro-2-(4-methoxybutyl)-4-(2-methylpropyl)amino-2H-thieno-1,2-thiazine-6-sulfonamide 1,1 dioxide; - (R)-3,4-Dihydro-2-(3-methoxypropyl)-4-(2-methylpropyl)amino-2H-thieno-1,2-thiazine-6-sulfonamide 1,1 dioxide; - (R)-4-Cyclopropylmethylamino-3,4-dihydro-2-(2propenyl)-2H-thieno-1,2-thiazine-6-sulfonamide 1.1 dioxide: - (R)-4-Cyclopropylmethylamino-3,4-dihydro-2-(4methoxybutyl)-2H-thieno-1,2-thiazine-6-sulfonamide 1.1 dioxide: - (R)-4-Cyclopropylmethylamino-3,4-dihyro-2-(3methoxypropyl)-2H-thieno-1,2-thiazine-6-sulfonamide 1,1 dioxide; - (R)-4-Cyclopropylmethylamino-3,4-dihydro-2-propyl-2H-thieno-1,2-thiazine-6-sulfonamide 1,1 diox- - (R)-3,4-Dihydro-2-(2-methylpropyl)-4-(2-methylpropyl)amino-2H-thieno-1,2-thiazine-6-sulfonamide 1,1 dioxide; - (R)-4-Cyclopropylmethylamino-3,4-dihydro-2-(2methylpropyl)-2H-thieno-1,2-thiazine-6-sulfonamide 1.1 dioxide; - (R)-3.4-Dihydro-4-(2-methylpropyl)amino-2-propyl-2H-thieno-1,2-thiazine-6-sulfonamide 1,1 dioxide; - (R)-3,4-Dihydro-2-(4-hydroxybutyl)-4-(2-methylpropyl)amino-2H-thieno-1,2-thiazine-6-sulfonamide 1,1-dioxide; - (R)-3,4-Dihydro-2-(4-hydroxybutyl)-4-propylamino-2H-thieno-1,2-thiazine-6-sulfonamide 1,1-dioxide. - 8. A formulation for controlling intraocular pressure comprising a therapeutically effective amount of the compound of Claim 1 in a pharmaceutically acceptable carrier. - 9. A formulation for controlling intraocular pressure comprising a therapeutically effective amount of the compound of Claim 7 in a pharmaceutically acceptable carrier. - 10. The formulation of Claim 8 wherein the comyl)-2H-thieno-1,2-thiazine-6-sulfonamide 1,1-diox- 50 pound concentration is between 0.1 and 10% by weight. - 11. The formulation of Claim 9 wherein the compound concentration is between 0.1 and 10% by weight. - 12. The formulation of Claim 10 wherein the compound concentration is between 0.1 and 10% by weight. - 13. A method for controlling intraocular pressure which comprises topically administering to the affected eye a therapeutically effective amount of the compound of Claim 1. - 14. A method for controlling intraocular pressure 60 which comprises topically administering to the affected eye a therapeutically effective amount of the compound of Claim 7. #### United States Patent 1191 [11] Patent Number: 5,461,081 Ali et al. Date of Patent: Oct. 24, 1995 4.861.760 8/1989 Mazuel et al. TOPICAL OPHTHALMIC 3/1990 Jani et al. 424/78 PHARMACEUTICAL VEHICLES 4.911.92u 4,983,392 1/1991 Robinson 424/427 5,188,826 2/1993 Chandrasekaran et al. 424/78.04 [75] Inventors: Yusuf Ali, Forth Worth, Tex.; Kenneth_ 5,192,535 3/1993 Davis et al. 424/78.04 W. Reed, Lawrenceville, Ga. /5,212,162 5/1993 Missel et al. 514/54 [73] Assignee: Alcoa Laboratories, Inc., Fort Worth, **FOREIGN PATENT DOCUMENTS** Tex. 0495421A1 7/1992 European Pail Off. 2007091A 8/1979 United Kingdom . [21] Appl. No.: 178,941 WO39/06964 8/1989 WIPO . WO91/19481 12/1991 WIPO . [22] Filed: Jan. 7, 1994 OTHER PUBLICATIONS 3 205-194-Related U.S. Application Data Saettone et al., "Vehicle effects on ophthalmic bioavailabil-[63] Continuation-in-part of Ser. No. 109,748, Aug. 20, 1993, ity: the influence of different polymers on the activity of abandoned, which is a continuation-in-part of Ser. No. 913,110, Jul. 14, 1992, abandoned, which is a continuationpilocarpine in rabbit and man," J. Pharm. Pharmacol., vol. 34 pp. 464-466 (1982). in-part of Ser. No. 414,550, Sep. 28, 1989, abandoned. B. F. Goodrich Carbopol® Renins-Product Information [51] Int CL4 _ ... AG1K 47/90; A61K 31/715 (1991).[52] U.S. CL **514/772.**3; 514/54; 514/781; Primary Examiner-Zohreh Fay 514/782; 514/912 Attorney, Agent, or Firm-Patrick M. Ryan; Sally Yeager ... 514/772.3, 781. [58] Field of Search 514/782, 54, 912 **ABSTRACT** Universal ophthalmic pharmaceutical vehicles which [56] References Cited #### U.S. PATENT DOCUMENTS | 4,136,173 | 1/1979 | Pramoda et al 424/177 | |-----------|---------|------------------------| | 4,615,697 | 10/1986 | Robinson 604/890 | | 4,616,012 | 10/1986 | Neustadt et al 514/222 | | 4.638,059 | 1/1987 | Sutherland 525/121 | | 4,692,954 | 9/1987 | Mich et al 514/312 | | 4,783,444 | 11/1988 | Waskins et al 514/19 | | 4.795.436 | 1/1989 | Robinson 424/422 | embodiment, the vehicle gels upon instillation in the eye. In another embodiment, suspension vehicles having superior physical stability are provided. 19 Claims, 1 Drawing Sheet increase in viscosity upon instillation in the eye are dis- closed. Ophthalmic compositions of the universal vehicle and a pharmaceutically active drug are also disclosed. In one # TOPICAL OPHTHALMIC PHARMACEUTICAL VEHICLES This application is a continuation-in-part of U.S. Ser. No. 08/109,748, filed Aug. 20, 1993, now abandoned, which is a continuation-in-part of U.S. Ser. No. 07/913,110, filed Jul. 14, 1992, now abandoned, which is a continuation-in-part of U.S. Ser. No. 07/414,550, filed Sep. 28, 1989, now abandoned. #### **BACKGROUND OF THE INVENTION** This invention is directed to liquid ophthalmic pharmaceutical vehicles which become viscous on contacting the eye. This invention also relates to topical ophthalmic compositions comprising the vehicle and a pharmaceutically active drug. It is known that the addition of viscous or visco-elastic polymers to an eye drop pharmaceutical composition will increase the viscosity of the composition. This is usually 20 desirable on the premise that an increased vehicle viscosity chances drug delivery and duration of action; see, for example, J. Pharm. Pharmacol., Vol. 34, pp. 464–466 (Jan. 7, 1982). However, it is frequently advantageous to administer ophthalmic compositions as a drop, that is, an aqueous solution or suspension rather than a thick, viscous gel or ointment which can be messy and may tend to blur vision. In addition, non-droppable compositions can present problems with patient compliance, especial, with the elderly. Another problem, in the case of suspension compositions, 30 is their poor physical stability. Many marketed ophthalmic suspension products currently use the polymers hydroxypropyl methylcellulose, hydroxyethyl cellulose, and polyvinyl alcohol to increase the suspension's viscosity and thus decrease the settling rate of the drug particles. These suspensions are not well flocculated and, with time, the insoluble drug particles will completely settle forming a dense layer which will not resuspend easily. This in turn may undesireably lead to variable drug dosages. # SUMMARY OF THE INVENTION The present invention provides for ophthalmic vehicles and compositions which can be administered as a drop, but whose viscosity increases upon instillation into the eye so that the composition provides for relatively better drug delivery and duration of action, referred to herein as bioavailability, of drug over aqueous compositions whose viscosity does not increase upon instillation. In one embodiment the vehicle gels upon instillation. In another embodiment, the vehicle provides an improved suspension vehicle. This invention relates to ophthalmic pharmaceutical vehicles and compositions comprising the vehicle and a pharmaceutically active drug in which the vehicle comprises a charged polymer and oppositely charged electrolytes or molecules, hereinafter referred to collectively as "electrolytes", which can be administered as a drop and upon instillation, increase in viscosity. The polymer can be negatively charged, such as a carboxyvinyl polymer, in which case the vehicle will include positively charged electrolytes, such as calcium. Conversely, the polymer can be positively charged and then negatively charged electrolytes are used in the vehicle. The suspension vehicles of the present invention possess 65 improved suspension characteristics. They exhibit superior physical stability and permit easy resuspension of insoluble drug particles, thus resulting in greater uniformity of drug dosing. In addition to an ophthalmic dosage form, the vehicles and compositions of the present invention also provide for oral, parenteral and topical suspension dosage forms. The
vehicles of this in ention can be used in composition with pharmoceutically active drugs. The term "drug", as used herein, means any therapeutic agent that is desirable to deliver to the eye. There is no limitation on the type of drug which can be incorporated into the compositions disclosed herein. The drugs can be charged, uncharged, water soluble or insoluble. #### **BRIEF DESCRIPTION OF THE DRAWINGS** FIG. I compares the physical stability of two suspensions. # DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS The vehicles disclosed herein comprise a charged polymer and oppositely charged electrolytes. Without intending to be bound by any theory, it is understood that the vehicle's viscosity is increased due to the decrease in electrolyte concentration when the vehicle is administered to the eye. In the case of a gelling vehicle, the concentrations of the polymer and electrolytes in the vehicle are optimal when a small change in electrolyte concentration will result in a dramatic increase in vehicle viscosity. The small change in electrolyte concentration on instillation is caused by the electrolytes being taken up by the cells in the eye, by diffusing out of the polymer vehicle or being eliminated in tear fluid or by a combination of these mechanisms. Whatever the mechanism, the concentration of electrolytes in the vehicle is reduced and the vehicle viscosity increases. As used herein, "gels" means the vehicle's viscosity increases sufficiently to transform the drop into a semi-solid or gelatinous state. Polymers which can be used in the vehicle disclosed herein include any nontoxic charged water soluble polymer. These polymers can either be negatively or positively charged. Typically, negatively charged polymers will include, but are not limited to, carboxy vinyl polymers, such as Carbopol®, sodium carboxy methylcellulose, pectin. gelatin (Type B), sodium hyaluronate, acacia, calcium carboxy methylcellulose, sodium alginate and polystyrene sulfonic acid (PSSA). These polymers are used in the vehicles at concentrations from about 0.1 to about 10.0 weight percent (wt. %). Electrolytes which are used in conjunction with the charged polymers will be either cations or anions depending on the charged polymer being used. If negatively charged polymers are being used in the vehicle the electrolytes which are used to provide for the changing viscosity upon instillation will be positively charged. These cations will typically be Na*, K*, Mn*, Ca*, Mg*, Fe*, Fe*, Al*. Li*. Zn* and Be*. In addition, positively charged organic ions can be used, for example, lysineoHCl, arginineoHCl and histadineoHCl. These electrolytes will typically be present at a concentration of between 0.01 and ...0 wt. %. If a positively charged polymer is used, such as gelatin (Type A) or polyvinyl amine, the electrolyte used in conjunction therewith to provide for viscosity changes will be an amon. These anions will typically be PO_a^{-1} , HPO_a^{-2} , $H_2PO_a^{-1}$, CI^- , F^- , SO_a^{-2} , HCO_a^{-2} and negatively charged organic ions. Again, the polymer concentration will range from about 0.1-10.0 wt. % and the electrolytes will typically -continued 5. QS to 100% of the final batch weight with purified 6. Steam sterilize the formulation. The vehicles of Examples 2-6 were also prepared according to this compounding procedure. #### **EXAMPLE 2** "Universal" Ophthalmic Vehicle No. 2 | logredien | Weight Percent | |---------------|----------------| | Punfied Water | q.s. 100% | | | | #### **EXAMPLE 6** o "Universal" Pharmaceutical Vehicle No. 2 | | begrodiene | Weight Percent | _ | | | | |---|---|---|--------|--|---|--| | _ | Cartopol ● 934P | 0.40 | | lagrodiess | Weight Percent | | | | Calcium Chloride
Maunica
NaOH
Purified Water | 0.10
4.00
pH 7.2 ± 0.2
q.s. 100% | , , 15 | Certopol © 934° Polysertane 80 Sodium Chloride Saletane Disodium | 0.70
0.05
0.80
0.01 | | | | EVANG | ¥ C 1 | | Benzalhouium Chloride
NaOH
Purified water | 0.01 + 5% excess
pH 7.2 ± 0.2
a.s. 100% | | 30 #### **EXAMPLE 3** "Universal" Ophthalmic Vehicle No. 3 | Ingradient | Weight Percent | |-----------------|----------------| | Carbopol @ 934P | 0.40 | | Calcium Chionde | 0.05 | | Lynnae HCI | 0.225 | | Manmiol | 4.00 | | NeOH | pH 7.2 = 0.2 | | Purified Water | q.s. 100% | # **EXAMPLE 4** "Universal" Ophthalmic Vehicle No. 4 | Ingredien | Weight Percen | |-----------------|---------------| | Carbopol @ 934P | 1.00 | | Calcium Chlonde | 0 40 | | Manmol | 3 00 | | KOH | pH 7.2 ± 0.2 | | Punified Water | g.s 100% | # EXAMPLES 5-6: Universal ophthalmic pharmaceutical suspension vehicles which exhibit superior physical stability. If charged drug particles are added to these suspension vehicles, an appropriate adjustment may have to be made to the electrolyte concentration. # **EXAMPLE 5** "Universal" Pharmaceutical Vehicle No. 1 | Ingrodecor | Weight Percent | |---------------------|----------------| | Manmol | 1 80 | | Carbopol @ 934P | 0 45 | | Polysorbate 80 | 0.05 | | Sodium Chlonde | 0 50 | | Edetate Disodium | 001 | | Benzalkomum Chlonde | 001 - 5% exces | | N∎OH | pH 7.2 ± 0.2 | # **EXAMPLE 7** Preferred Ophthalmic Gelling Solution | logretient | Weight Percent | |----------------------|----------------| | Betavolol HCl | 28 | | Cartropol @ 934P | 1.00 | | Calcium Caloride | 75 | | Manutol | 1.5 | | Benzolkomum Chloride | 0 01 | | EDTA | .05 | | NaOH | pH 7.2 ± 0 2 | | Purified Water | g.s 100% | # **EXAMPLE 8** Preferred Suspension Composition | Ingredient | Weight Percent | | |---------------------|-----------------------|--| | Rimexolone | 1.0 | | | Mannisol | I 80 | | | Carbopol @ 934P | 0 45 | | | Polytorbase 80 | 0.05 | | | Sodium Chlonde | 0 50 | | | Edetate Disodium | 0.01 | | | Benzalkomum Chlonde | 001 + 5% exces | | | NaOH | pH 7 2 ± 0 2 | | | Punified Werer | q.s. 100 4 | | The results of a sedimentation/settling study comparing the physical stability of the Rimexolone steroid suspension of Example 8 to the commercially available prednisolone acetate steroid suspension (1 wt. %), Econopred®, are shown in FIG. 1. The Econopred® suspension contains hydroxypropyl methylcellulose as its polymeric viscosity enhancer. As indicated above, Example 8 contains Carbopol® as its stearic stabilizer and viscosity enhancer. After standing for six months in a measuring glass cylinder, 2% of the Econopred® suspension settled to the bottom as a cake or sediment. The remaining 98% consisted of a single supernatant phase. In contrast, none of the suspension of Example 8 settled to the bottom as a cake or sediment after standing for six months. Substantially all of the suspension # ORIGINAL DECLARATION FOR PATENT 5,240,923 The undersigned declares that Patent 5,240,923 covers the formulation, composition, and/or method of use of Brinzolamide 1% Ophthalmic Suspension. This product is the subject of this application for which approval is being sought: Sally 6. Yearer - Applicant 13-0063 # **ORIGINAL DECLARATION FOR PATENT 5,378,703** The undersigned declares that Patent 5,378,703 covers the formulation, composition, and/or method of use of Brinzolamide 1% Ophthalmic Suspension. This product is the subject of this application for which approval is being sought: Sally S. Yeage - Applicant 12-0064 # **ORIGINAL DECLARATION FOR PATENT 5,461,081** The undersigned declares that Patent 5,461,081 covers the formulation, composition, and/or method of use of Brinzolamide Ophthalmic Suspension. This product is the subject of this application for which approval is being sought: Sally/S. Yeader - Applicant Date # B. <u>Exclusivity</u> - Request for Five Year Exclusivity The applicant requests a Five year period of market exclusivity based on the following information: - 1. The active moiety of Brinzolamide 1% Ophthalmic Suspension, brinzolamide, is a new chemical entity which has not been previously approved in other applications under Section 505(b) of the Act after September 24, 1984. - 2. New clinical investigations (other than bioavailability studies) have been conducted by the applicant that are essential to approval of the application.